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Abstract

Grammar induction, the task of learning a set of syntactic rules from minimally annotated training data, provides a means

of exploring the longstanding question of whether humans rely on innate knowledge to acquire language. Of the various

formalisms available for grammar induction, categorial grammars provide an appealing option due to their transparent

interface between syntax and semantics. However, to obtain competitive results, previous categorial grammar inducers

have relied on shortcuts such as part-of-speech annotations or an ad hoc bias term in the objective function to ensure

desirable branching behavior. We present a categorial grammar inducer that eliminates both shortcuts: it learns from raw

data, and does not rely on a biased objective function. This improvement is achieved through a novel stochastic process

used to select the set of available syntactic categories. On a corpus of English child-directed speech, the model attains a

recall-homogeneity of 0.48, a large improvement over previous categorial grammar inducers.
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1. Introduction

The learnability of linguistic structure by minimally

supervised models is a question of enduring interest

for both natural language processing and theoretical

linguistics. Studies using recent Transformer-based

(Vaswani et al., 2017) large language models (LLMs)

suggest that these models are increasingly able to

learn subtle syntactic phenomena such as subject-

verb agreement and filler-gap dependencies (Linzen

and Baroni, 2021; Wilcox et al., 2022)—casting doubt

on influential claims (e.g., Chomsky, 1965) about the

poverty of the stimulus and the importance of innate

linguistic knowledge (Piantadosi, 2023). However, be-

cause LLMs do not produce grammars with clearly

defined rules, it is difficult to characterize what kinds

of structure they acquire. Furthermore, the extremely

large scale of their training data makes LLMs unreal-

istic models of human language acquisition.

In contrast, grammar induction models provide a

more explicit account of how linguistic structure is

learned, with potentially greater relevance for under-

standing language acquisition. Although recent in-

duction studies have often worked with probablistic

context-free grammars (PCFGs; Kim et al., 2019; Zhu

et al., 2020; Zhao and Titov, 2020), categorial gram-

mars offer the advantage of a clean syntax–semantics

interface, opening up possibilities for joint models

of syntactic and semantic acquisition. But previous

work on categorial grammar induction has faced other

limitations. Earlier models relied on part-of-speech

annotations (e.g., Bisk and Hockenmaier, 2012), un-

like PCFG inducers that can learn from raw data. A

recent study (Clark and Schuler, 2023) learns from

raw data, but relies on an ad hoc bias term added to

the objective function in order to achieve acceptable

results.

We address these limitations by proposing a cate-

gorial grammar inducer that (1) learns from raw data,

and (2) achieves competitive results without an ad

hoc directional bias. This is accomplished by a novel

method for selecting syntactic categories (Section 4).

To evaluate the inducer as a model of child language

acquisition, experiments are performed on corpora of

child-directed speech in English (Section 5).

2. Related Work

Despite being considered a difficult task (Carroll and

Charniak, 1992), grammar induction has been an ac-

tive area of research for several decades (Lari and

Young, 1990; Klein and Manning, 2002). Recent

PCFG systems have achieved improvements through

neural network architectures and other innovations

such as multimodal grounding (Zhao and Titov, 2020;

Zhang et al., 2021, 2022). Prior to Clark and Schuler

(2023), earlier categorial grammar studies focused

on learning from minimal POS annotations and/or a

small number of labeled data points (Bisk and Hock-

enmaier, 2012, 2013; Bisk et al., 2015). Zettlemoyer

and Collins (2005) present a system that learns a

Combinatory Categorial Grammar (Steedman, 2000)

to help with the task of mapping a sentence to its

logical form—illustrating the potential for categorial

grammars to serve as an aid in models of meaning ac-

quisition, although this system requires explicit logical

forms as input.

A related line of research has used formal methods

to examine which classes of grammars are provably

learnable under various assumptions about the input

data and learner (e.g., Gold, 1967; Kanazawa, 1994;

Clark and Yoshinaka, 2016). Kanazawa studies cate-

gorial grammars, showing that certain varieties such

as rigid grammars are learnable from strings. The

present study differs from this research in proposing

a system that learns from broad-coverage, natural-



2894

S

S\NP

NP

cats

S\NP/NP

chase

NP

NP

dogs

NP/NP

fluffy

Figure 1: Example parse tree using a basic categorial

grammar.

language corpora rather than idealized data.

3. Background: Induction Model

3.1. Grammar Formalism

The model presented in this paper uses a basic cate-

gorial grammar or AB-grammar (Ajdukiewicz, 1935;

Bar-Hillel, 1953). This type of grammar includes a

set of primitive categories, such as S or NP; two

type-combining operators, \ and /; and two corre-

sponding composition operations, backward function

application and forward function application. Type-

combining operators allow complex categories such

as S\NP/NP to be formed from primitive categories.

Figure 1 shows an example parse tree from a basic

categorial grammar with the primitive categories S

and NP as well as complex categories NP/NP, S\NP,

and S\NP/NP. Forward function application occurs

when fluffy combines with dogs and when chase com-

bines with cats; backward function application occurs

when fluffy dogs combines with chase cats.

3.2. Objective Function

The induction model’s objective function also follows

previous work (Jin et al., 2021a; Clark and Schuler,

2023). It is defined as the marginal probability of the

sentences in the dataset:

P(σ) =
∑

τ,τ′

∏

η∈τ

P(cη → cη1 cη2) ·
∏

η∈τ′

P(cη → wη) (1)

Here, σ is a single sentence. A possible parse tree

for σ in Chomsky Normal Form can be divided into

a set of nodes τ undergoing nonterminal expansions

cη → cη1 cη2 and a set of nodes τ′ undergoing termi-

nal expansions cη → wη, where cη is the nonterminal

category at node η and wη is the word located at node

η.1

Bernoulli distributions determine whether a cate-

gory cη undergoes nonterminal or terminal expansion:

P(Term | cη) = softmax
{0,1}

(NTerm(E δcη )) (2)

1The variable η ∈ {1, 2}∗ is a Gorn address specifying

a path of left and right branches from the root node of the

parse tree.

In this equation, cη is a nonterminal category and δcη
is a vector representing a Kronecker delta function

with 1 at index cη and 0 elsewhere. E ∈ Rd×|C| is a

matrix of nonterminal category embeddings of size d,

where C is the set of nonterminal categories. NTerm

is a residual network containing 2 blocks (Kim et al.,

2019).

Binary-branching nonterminal expansion probabili-

ties are defined as follows:

P(cη → cη1 cη2) = P(Term=0 | cη) ·

P(cη → cη1 cη2 | cη,Term=0), (3)

with left- and right-child argument categories associ-

ated with weights WL,WR and biases bL,bR:2

P(cη → cη1 cη2 | cη,Term=0) =

softmax
(c′,o)∈Carg×{L,R}

(

[

WL

WR

]

δcη +

[

bL

bR

]

)

(4)

Carg ⊂ C is the set of possible argument categories,

and o ∈ {L,R} expresses the location of the argument

child relative to the functor child.

Lexical unary-expansion rule probabilities are com-

puted as follows:

P(cη → wη) = P(Term=1 | cη) ·

P(cη → wη | cη,Term=1), (5)

with a softmax taken over words in the vocabulary:

P(cη → wη | cη,Term=1) = softmax
wη

(N′(E δcη )) (6)

Here, N′ is residual network, similar to NTerm except

that the output layer’s dimension is the size of the

vocabulary.

4. Selection of Syntactic Categories

Along with defining an objective function, categorial

grammar induction requires selecting an appropriate

set of available syntactic categories. Because of con-

straints on how categories can combine, this decision

has a potentially large effect on the final performance

of the induction model.

Clark and Schuler (2023) select categories by set-

ting a fixed number of primitives and maximum cate-

gory depth.3 The total number of available categories

|CP,D| with P primitives and maximum depth D can be

calculated from the following recurrence relation:

|CP,0| = P (7)

|CP,i| = 2|CP,i−1|
2
+ P (8)

2Note that the bias vectors are randomly initialized and

thus do not enforce any particular branching behavior.
3Depth is defined according to a category’s tree-based

representation. For example, Figure 2(c) is a category of

depth 2.
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Induced category Annotated categories (relative freq.)

1 NP (0.22)

8 VP (0.55)

0 VP (0.30), S (0.19), SQ (0.08)

7 PP (0.29)

4 S (0.09)

26 ROOT (0.98)

30 ROOT (1.00)

18 ROOT (1.00)

10 SBAR (0.16), S (0.1)

31 ROOT (1.00)

Table 1: Annotated categories from the Penn Tree-

bank tag set associated with each of the 10 most fre-

quent induced categories (sorted from most to least

frequent). Induced categories come from the best-

performing induction model (RH=0.53). Annotated

categories that are associated with an induced cate-

gory at least 5% of the time are reported.

VP, while high-index primitives are almost exclusively

used for ROOT. This likely reflects the fact that high-

index primitives appear in fewer complex categories

overall, thanks to their lower probability according to

the stochastic process. Appendix C presents confu-

sion matrices relating the most frequent induced and

annotated syntactic categories.

6. Conclusion

We test a categorial grammar induction model that

uses a novel technique for category selection. On a

corpus of child-directed speech, this model attains

an average RH of 0.48, a large improvement over

the Clark and Schuler (2023) system that brings the

model’s performance to the level of state-of-the art

PCFG inducers. Predictions from the model lend sup-

port to the idea that syntactic structure may be learn-

able without extensive prior knowledge, and show

interesting correlations between induced and anno-

tated categories.
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A. Grid search for category selection

To select p and q values for the stochastic cate-

gory selection process detailed in Section 4, a grid

search was performed on the Adam corpus using

p, q ∈ {0.001, 0.01, 0.1, 0.2, 0.5, 0.8, 0.9, 0.99, 0.999}.

Because testing all pairs of p and q would have been

too costly, the range of p values was tested with q

fixed at 0.5, and then the range of q values was tested

with p fixed at 0.5. For each tested pair of p and q,

probability thresholds were set to select roughly 100,

1000, or 2500 categories. The probability threshold

was the minimal value t such that the number of cate-

gories with probability greater than or equal to t was

no more than 100, 1000, or 2500.

After the initial grid search, lower probability thresh-

olds permitting up to 7500 categories were tested

with p and q set to 0.5 and 0.01. However, the set of

2445 categories performed best on Adam. To avoid

underflow, probabilities were log-transformed during

category selection.

B. Hyperparameters

Hyperparameters in the induction model matched

those reported in Clark and Schuler (2023). The

Adam optimizer was used with a learning rate of

0.0001. The category embedding size and hidden

state size were set to 64. Each run was randomly

initialized and run for 20 epochs with a batch size of

2 sentences.

C. Comparison of Induced and

Annotated Categories

Figure 6 on the following page presents confusion

matrices comparing the most frequent induced and

annotated syntactic categories.




