
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

OPT-GCN: A Unified and Scalable Chiplet-based
Accelerator for High-Performance and

Energy-Efficient GCN Computation
Yingnan Zhao, Student Member, IEEE, Ke Wang, Member, IEEE, and Ahmed Louri, Fellow, IEEE

Abstract—As the size of real-world graphs continues to grow
at an exponential rate, performing the Graph Convolutional
Network (GCN) inference efficiently is becoming increasingly
challenging. Prior works that employ a unified computing engine
with a predefined computation order lack the necessary flexibility
and scalability to handle diverse input graph datasets. In this
paper, we introduce OPT-GCN, a chiplet-based accelerator design
that performs GCN inference efficiently while providing flexibility
and scalability through an architecture-algorithm co-design. On
the architecture side, the proposed design integrates a unified
computing engine in each chiplet and an active interposer, both of
which are adaptable to efficiently perform the GCN inference and
facilitate data communication. On the algorithm side, we propose
dynamic scheduling and mapping algorithms to optimize memory
access and on-chip computations for diverse GCN applications.
Experimental results show that the proposed design provides a
memory access reduction by a factor of 11.3⇥, 3.4⇥, 1.4⇥ energy
savings of 15.2⇥, 3.7⇥, 1.6⇥ on average compared to HyGCN,
AWB-GCN, and GCNAX, respectively.

Index Terms—Graph Convolutional Network, Hardware Ac-
celerator, Chiplet-based Design, Hardware-algorithm Co-design

I. INTRODUCTION

DEEP learning has demonstrated remarkable success in a
wide range of applications that rely on structured inputs,

such as vectors and images [1]–[7]. However, there has been
a growing number of applications that rely on relational and
irregular inputs, such as graphs. Therefore, Graph Convolu-
tional Network (GCN) [8]–[16] has been proposed to extend
deep learning to graph-related applications with the aim of
achieving improved performance [17]–[23].

Typically, the computation of inference in each GCN layer
includes two primary phases: Aggregation and Combina-
tion [12], [24]–[27]. The aggregation phase depends on the
input graph structure, which is commonly sparse, resulting in
irregular memory access and computation patterns. The com-
bination phase operates similarly to that of conventional con-
volutional neural networks (CNN), leading to regular memory
access and computation patterns. Different communication and
computation patterns of two distinct GCN phases impose new
requirements for the underlying hardware architecture. Unfor-
tunately, the current deep neural network accelerators [28]–
[30] are optimized specifically for either alleviating irregularity

Yingnan Zhao and Ahmed Louri are with George Washington University,
Washington, DC, 20052. Email: {yzhao96, louri}@gwu.edu

Ke Wang is with University of North Carolina at Charlotte, Charlotte, NC
28223. E-mail: ke.wang@uncc.edu.

or exploiting regularity in isolation, which are inefficient for
GCN inference.

Prior works have proposed several tailored GCN accelera-
tors to deliver substantial gains in both performance and en-
ergy efficiency [25], [31], [32]. HyGCN [31] has implemented
a tandem-engine architecture that utilizes two computing en-
gines to perform the aggregation and combination phases in
a sequential manner. Two engines are connected through an
on-chip buffer to facilitate the storage of intermediate data.
Instead of using two separate computing engines, both AWB-
GCN [32] and GCNAX [25] modify the computation order
of GCN inference to perform the combination phase followed
by the aggregation phase, with a unified computing engine.
However, with the existence of diverse input datasets, prior
works are limited in their flexibility to perform two distinct
GCN phases in a dynamic sequence. This results in additional
memory access and on-chip computations. Both data memory
access and on-chip computations are crucial factors that have
the potential to significantly improve overall performance and
energy efficiency. Furthermore, the exponential expansion of
real-world datasets has made it challenging to scale prior
works, as the two distinct GCN phases demand different
hardware requirements, resulting in significant costs.

To address the aforementioned challenges, we propose OPT-
GCN in this paper, a chiplet-based hardware accelerator de-
sign that effectively executes GCN inference while providing
flexibility and scalability through a collaborative architecture-
algorithm co-design approach. At the architecture level, the
proposed design implements a unified computing engine in
each chiplet and an active interposer, both of which are
adaptable and effectively meet the computational requirements
of both GCN phases. At the algorithm level, the proposed
design includes dynamic scheduling and mapping algorithms
to improve performance and energy efficiency. The main
contributions of this paper are detailed as follows:

• We propose a novel chiplet design, featuring a unified
computing engine and employing heterogeneous on-chip
dataflow to adaptively facilitate GCN inference. The
unified computing engine can be configured to efficiently
support the required computations of both the aggre-
gation and combination phases. The heterogeneous on-
chip dataflow is responsible for improving the data reuse
during each GCN phase.

• We propose an active interposer fabric for efficient data
communication between chiplets and the global buffer
(GLB). Such an interposer design can be dynamically

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3401543

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The George Washington University. Downloaded on August 30,2024 at 19:49:22 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2

reconfigured to adapt to diverse GCN workload patterns.
• We also propose a dynamic workload scheduling al-

gorithm (WSA), which is based on the input graph
dataset and the applied GCN model. This algorithm is
performed at the application level with the objective of
determining the workload pattern that optimizes memory
access and on-chip computations during both phases of
GCN inference.

• We finally propose a workload mapping algorithm
(WMA) based on the analysis of previously scheduled
workload patterns and the hardware architecture config-
uration. This algorithm is executed at the tile level to
effectively map scheduled workloads to the underlying
hardware accelerator with the aim of improving perfor-
mance and energy efficiency.

Experimental results with real-world graph datasets show
that the proposed chiplet-based design provides a memory
access reduction by a factor of 11.3⇥, 3.4⇥, 1.4⇥ while
achieving a speedup of 16.0⇥, 2.9⇥, 1.8⇥ and energy savings
of 15.2⇥, 3.7⇥, 1.6⇥ on average compared to HyGCN, AWB-
GCN, and GCNAX, respectively.

II. BACKGROUND AND MOTIVATION

A. GCN Background

During the GCN inference, the feature vector of each vertex
in the input graph dataset is updated by recursively aggregating
and transforming the representation vectors of its neighboring
vertices [24], [25], [32]–[34]. From the perspective of linear
algebra, the layer-wise forward propagation of the GCN model
can be formulated as Eq 1. Where A means the normalized
graph adjacency matrix. X(k) is the feature matrix of the layer-
k and W (k) is the weight matrix of layer-k. �(.) represents
the non-linear activation functions [8], [12], [35].

X(k+1) = �(AX(k)W (k)) (1)

Fig. 1 shows the main execution phases in GCN models,
which are named aggregation and combination, respectively.
In the aggregation phase, each vertex recursively collects
features from its neighbors. However, as the neighbors of
each vertex are not continuously stored in memory, this results
in irregular memory access when performing the aggregation
phase. During the combination phase, vertices use a pre-
trained weight matrix to update their feature vectors. This
process involves regular memory access for each vertex, as
both the feature vector and the weight matrix are stored
contiguously in memory. As a result, the two distinct GCN
phases necessitate varying hardware requirements based on
their communication patterns.

Additionally, concerning the input graph structure, some
vertices display a larger number of neighbors than others,
a unique characteristic known as the power-law distribu-
tion [36]–[42]. As shown in Eq. 2, the P(d) means the proba-
bility that a vertex has a degree d, and the exponent ↵ indicates
the skewness of the distribution. Given a predefined threshold,
all vertices of the input graph can be divided into two
categories: high-degree (HD) and low-degree (LD) vertices.

01
3
4

75

Aggregation Phase

Feature
Vector

Feature Vector

Input Graph Combination Phase

Feature Vector

Fe
at

ur
e

Ve
ct

or
Fe

at
ur

e
Ve

ct
or

0

7

03 1 2

6 74

5

Fig. 1. Illustration of the GCN model with two main computation phases:
Aggregation and Combination.

Tile Number

0
0.2
0.4
0.6
0.8
1
1.2

1 4 8 12 16 20 24 28 32 36 40 44 48

Aggregation Phase

Computation DRAM

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

1 4 8 12 16 20 24 28 32 36 40 44 48

Combination Phase

Computation DRAM
Tile Number

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e N

orm
alized Execution Tim

e

Fig. 2. Time distribution of each tile’s memory access (DRAM) and on-chip
computations for both the aggregation and combination phases. The time of
computations is normalized to that of DRAM access.

While both types of vertices follow the same computational
pattern during the combination phase, their computations differ
during the aggregation phase due to variations in the number
of neighbors they process.

P (d) = d↵ (2)

The performance of each GCN phase is limited by different
hardware resources owing to variations in memory access and
computation patterns. For instance, as shown in Fig. 2, with
several data chunks (tile) in the Cora [8], [43]–[45] (a real-
world graph dataset), either data memory access or on-chip
computations dominate the performance during the aggrega-
tion and combination phases, respectively. Therefore, using
the entire architecture to perform either the aggregation or the
combination phase induces hardware underutilization, thereby
degrading performance and energy efficiency. To illustrate this
issue, we evaluate three state-of-the-art solutions (HyGCN,
AWB-GCN, and GCNAX) with the Cora dataset, where the
hardware resource utilization averages 67%. As a result, it
is crucial to design a GCN hardware accelerator that can
effectively handle diverse workload patterns and hardware re-
quirements to achieve high performance and energy efficiency
during GCN inference.
B. Previous Works and Motivation

While several customized GCN accelerators have been pro-
posed to enhance performance and reduce energy consumption
in GCN inference [25], [31], [32], [46], with the existence of
diverse input datasets and GCN models, current approaches are
limited in their ability to provide flexible computation order for
each GCN layer and dynamically allocate hardware resources
based on specific requirements. Specifically, HyGCN [31]
implements a tandem-engine architecture design, with two
separate engines connected by an on-chip buffer, that can
only perform the aggregation phase at first followed by the
combination for all input vertices during each GCN layer. Both

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3401543

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The George Washington University. Downloaded on August 30,2024 at 19:49:22 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 3

Off-Chip
DRAM Global Buffer

(GLB)

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
R

C
S

C
S

Unified
Controller

C Chiplet S Switch

OPT-GCN Accelerator Design
Interposer

Fig. 3. Chiplet-based GCN accelerator design with N chiplets (N=16 in
this example). The unified controller is used for implementing the proposed
algorithms. The applied interposer facilitates data communication between
chiplets, as well as between chiplets and the Global Buffer (GLB). Each
chiplet features a unified computing engine that can perform computations
for both GCN phases. Blue and black links represent the transmission of
control signals and data, respectively.

AWB-GCN [32] and GCNAX [25] deploy a unified computing
engine to initially perform the combination phase followed by
the aggregation phase during each GCN layer. While EnGN
offers the flexibility to perform either the aggregation or
the combination phase first [46], once the computation order
is determined, all vertices experience the fixed computation
order across all GCN layers. Consequently, none of the
aforementioned works can optimize the computation order for
each GCN layer, especially when considering the substantial
variation in the degree of input vertices. Additionally, after
determining the computation order, current approaches utilize
the entire computing engine to sequentially perform one
phase at a time. These approaches lack dynamic allocation
of hardware resources based on the requirements of the input
workload, consequently affecting overall hardware utilization.
Furthermore, the exponential expansion of real-world datasets
poses challenges to the scalability of prior works, as the
two distinct phases demand different hardware requirements,
resulting in significant complexity in architecture design.

III. CHIPLET-BASED GCN ACCELERATOR DESIGN

In this paper, we propose OPT-GCN, a scalable chiplet-
based GCN accelerator design that effectively addresses the
aforementioned challenges through an architecture-algorithm
co-design approach. OPT-GCN aims to accelerate GCN infer-
ence while ensuring accuracy is not compromised. The subse-
quent sections provide a comprehensive overview encompass-
ing both architectural and algorithmic aspects in detail.
A. Architecture Design

1) Overall Architecture Design: First of all, we present the
overall architecture design as shown in Fig. 3. The proposed
architecture includes a unified controller, a global buffer
(GLB), an active silicon interposer, and N chiplets (N=16 in
this example) that work independently. The unified controller
is connected to the main memory and the interposer layer.
The dimensions of both the input dataset and the applied GCN
model are directly loaded from the main memory to the unified
controller, enabling the execution of the proposed algorithms.
Additional details regarding the function of the proposed
algorithms are provided in Sec. III-B. The details of the

Interposer

PE PE PE PE
The Unified Computing Engine

O
ut
pu
ts

Dense InputSparse Input

(a)

Register
File

MAC Unit

Reuse Data Input Data

Processing
Element

Register
File

MAC Unit

Reuse Data Input Data

Processing
Element

Outputs

(b)

Local Control
Unit

Input Sparse
Buffer

Input Dense
Buffer

Output Dense
Buffer

Fig. 4. (a) Chiplet GCN accelerator architecture design overview: The local
control unit is used to configure the value of MUXes. MUXes are utilized to
switch input buffers for a heterogeneous on-chip dataflow. The input sparse
and dense buffers are used to store sparse and dense matrices respectively.
The unified computing engine includes a 1⇥16 modified Processing Element
(PE) array. (b) The modified Processing Element (PE) design with a register
to store data locally and a MAC unit to perform required GCN computations.
The blue and black links are used to transmit control signals and required
data, respectively.

unified controller design are shown in Sec. III-A3. The global
buffer (GLB) is made up of a buffer controller and several
First-In-First-Out (FIFO) buffers that are separated into two
chunks to store HD and LD vertices according to the power-
law distribution introduced in Sec. II-A, respectively. The
proposed design applies the active silicon interposer instead
of the passive one to support the communication between
chiplets, such as the weight matrix. The proposed design
includes N (N=16 in this paper) separate chiplets. Each chiplet
is deployed to independently perform a specific type of GCN
computational task, either the aggregation or the combination
phase. Additionally, due to the existence of sparsity, each
chiplet processes a specific number of input vertices, without
sharing intermediate data with others directly. Details of the
proposed chiplet design are illustrated in Sec. III-A2.

2) Chiplet Design: Compared to previous works, the novel
chiplet design presented in this paper offer flexibility and
can be configured to efficiently perform computations of both
aggregation and combination phases. As shown in Fig. 4, each
chiplet includes a local control unit, input sparse and dense
matrix buffers, an output dense buffer, a pair of MUXes, and
a unified computing engine. The local control unit is connected
to the interposer to receive the control signal from the unified
controller. Based on the received signal, MUXes in each
chiplet will be configured to switch the input sparse and dense
buffers. This is because the chiplet applies a heterogeneous on-
chip dataflow when performing computations of both GCN
phases. The dataflow is implemented when mapping the data
from the on-chip buffer to Processing Elements (PEs) for
required computations in the spatial GCN accelerator domain.
The choice of dataflow reveals the reuse type of data operands
(input, weight, or output) over space and time. For the aggre-
gation phase, the feature vector is pre-loaded from the input
dense buffer to the register of each PE and stored locally.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3401543

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The George Washington University. Downloaded on August 30,2024 at 19:49:22 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 4

The adjacency matrix (A) in Compressed Sparse Column
(CSC) [47] format is streamed from the input sparse buffer
to the PE array for computations. During the combination
phase, the weight matrix is pre-loaded from the input dense
buffer to registers of PEs, and the feature vector is streamed
from the input sparse buffer to the computing engine. For
the on-chip buffers, the Input Sparse Buffer (ISB) is used
to store adjacency (A) and feature (X) matrices. The Input
Dense Buffer (IDB) is used to store the feature (X), the pre-
trained weight (W), and the intermediate (B) matrices. The
Output Dense Buffer (ODB) is used to store the intermediate
(B) and final (O) matrices. Here we assume that the result of
a sparse-sparse or sparse-dense matrix-matrix multiplication
(SpGEMM or SpMM) is a dense matrix [25], [48], which can
be appropriately stored in the ODB. The unified computing
engine consists of a 1⇥16 modified PE array. Fig. 4 (b)
depicts the architectural details of the modified PE design,
comprising a register that stores the pre-loaded data locally
and a multiply-accumulate (MAC) unit to perform required
GCN computations.

3) Unified Controller Design: The main functionality of the
unified controller is to perform the proposed algorithms and
inform chiplets about the type of upcoming workload. The
unified controller includes multiple registers and arithmetic-
logic units (ALUs), and it is connected to the main memory
and interposer. Specifically, before performing the current
GCN layer, the unified controller retrieves required parameters,
such as sparsity, from the main memory to facilitate the
execution of the proposed algorithms. These parameters are
stored within local registers (32-bit). Subsequently, these pa-
rameters are forwarded to local ALUs to carry out the required
computations according to the algorithm’s specifications. The
computation process involves two primary steps: In Step-1, the
unified controller utilizes graph information, such as sparsity,
to determine the computation order pattern, as introduced in
Sec. III-B2. In Step-2, hardware information, such as the num-
ber of chiplets, is used to configure each chiplet based on the
previously determined pattern, as depicted in Sec. III-B3. After
performing the proposed algorithms through the local ALUs,
the unified controller will send two types of control signals
to each chiplet for further configuration. The function of the
control signal (1-bit) is to notify each chiplet about the type
of upcoming workload. More precisely, the value of 0 denotes
a workload in the aggregation phase, whereas the value of 1
signifies a workload in the combination phase. Additionally,
the unified controller tunes interposer to configure connections
between chiplets, enabling efficient data communication.

4) Interposer Design: The silicon interposer serves the
purpose of connecting chiplets and GLB, and it can be
categorized into two types: passive and active interposers.
Aside from limited wiring, most of the interposer area and
wiring resources are underutilized for the passive interposer,
though they have been paid. Therefore, instead of using the
passive design, this paper applied the active interposer to
provide better performance and economics. All switches in
the interposer layer are connected to each other through a
Network-on-Chip (NoC) design for data communication, as
shown in Fig. 3. The blue links are used to transfer the

C
S
C

S
C

S
C

S

C C C C

C C C C

C C C C

Interposer

C C C C

C C C C

C C C C

C C C C

Interposer
(a) (b)

C
on

tr
ol

 S
ig

na
l

Data Matrices In Horizontal

In
 V

er
tic

al

S S S S

S S S S

S S S S

S S S S

S S S S

S S S S

S S S S

C Chiplet S Switch

Fig. 5. With N (N=16 in this example) chiplets, (a) the configuration setup
of each switch. (b) the workload distribution after the configuration setup.
Those chiplets in blue are assigned to the aggregation workload and others
are responsible for the combination workload. Blue and black links are used
for transferring control signals and data, respectively.

control signal, and the black links are used to transfer the
required data. After performing the proposed algorithms and
finishing the required configuration of the interposer layer,
each chiplet is assigned to independently and simultaneously
perform computations for a specific GCN workload. Details of
the data communication are illustrated in the following section.

5) Inter-chiplet Communication: In terms of data com-
munication, every chiplet employs its respective switch to
establish communication with the GLB and other chiplets for
data loading and sharing. Before each chiplet engages in data
loading and computations, the unified controller executes the
proposed algorithms and transmits the configuration informa-
tion of each chiplet to the switches within the same column
for additional configuration, as illustrated in Fig. 3. The con-
figuration information comprises a bit for every switch in the
corresponding column, indicating whether it shares common
data with neighboring switches in the same row. Rather than
employing a mesh topology to connect all switches, switches
within the same row or column are interconnected using a ring
topology. Additionally, in the proposed design, vertical links
are utilized for configuration setup, while horizontal links are
designated for data communication. In cases where chiplets
share common data with their neighboring counterparts, such
as the combination phase, switches will transmit the data
to the corresponding chiplet and the other adjacent switch.
Following the completion of the necessary configuration setup,
the loaded tiles are sequentially transmitted from the Global
Buffer (GLB) to the respective chiplet through the switches
in the interposer layer. In the interposer layer, only those
horizontal links are active when there is shared data (weight
matrix) between two chiplets in the same row. On the other
hand, the chiplets assigned to the aggregation phase operate
independently and concurrently. Applying this communication
strategy offers several advantages. Firstly, it helps prevent
data conflicts that can occur as the size of chiplets increases.
Additionally, all switches can be easily configured through
the unified controller before performing required computa-
tions, ensuring efficient communication and synchronization.
Furthermore, this strategy enhances the reuse of the weight
matrix, resulting in reduced memory access requirements.

Assume that the number of chiplets in the proposed design
is 16, as depicted in Fig. 5. After performing the proposed

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3401543

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The George Washington University. Downloaded on August 30,2024 at 19:49:22 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 5

algorithms, the first six chiplets are designated for the com-
bination workload, while the remaining chiplets are assigned
to the aggregation workload. In this scenario, the switches
in the first row will be interconnected to share the weight
matrix, and the first two switches of the second row will
also be configured to connect with each other. Furthermore,
the proposed design exclusively facilitates data sharing among
chiplets within the same row. In the case of chiplets located
in different rows, even if both are assigned to execute a
workload associated with the combination phase, they are
prohibited from sharing data in order to prevent data blocking.
Simultaneously, the switches of the chiplets designated for
the aggregation workload will operate independently, without
sharing data among them. After the configuration setup is
completed, each chiplet will sequentially load data (such as
adjacency, feature, and weight matrix) from the GLB for
subsequent computations.

B. Algorithm Design

In this section, we begin by analyzing the flexible workload
pattern of GCN inference proposed in this paper from an
algorithmic perspective. Subsequently, we introduce a dynamic
workload scheduling algorithm that determines the workload
pattern based on the input dataset and the applied GCN model,
which is operated at the graph level to optimize memory access
and computations. Then, we present a mapping algorithm
that works on the tile level, which effectively maps workload
patterns to underlying hardware for improved performance and
efficiency.

1) GCN Workload Pattern Analysis: The primary compu-
tational workload of GCN inference can be classified into
two categories: firstly, vector-matrix multiplication that occurs
during the aggregation phase, and secondly, matrix-matrix
multiplication that occurs during the combination phase. Fig. 6
(a) and (b) illustrate the algorithm-level details of GCN matrix-
matrix multiplication for two distinct workload patterns, where
< TM0, TN0, TC0, TK0 > is the tile size tuple. Both TM0 and
TN0 are equal to the number of vertices in the given graph.
This paper utilizes two distinct parameters to represent the tile
dimensions of the adjacency matrix (A) and feature matrix
(X), respectively. The tile size determines the amount of data
stored in the on-chip buffer during each epoch. Additionally,
the tile size impacts the reuse time of data in each input
matrix during matrix-matrix multiplication. Since different
input graphs with distinct GCN models have preferable tile
sizes, supporting various tile sizes increases the complexity of
the hardware design [25], [27]. Therefore, this paper applies
a pre-determined tile size < 2048, 2048, 16, 16 > for all input
graphs. The values of TK and TC are set to match the number
of Processing Elements (PEs) within each chiplet so that the
data elements of tiles X and W can be directly streamed from
the local buffer to the corresponding PE without requiring
additional partitioning. The value of TN is configured to strike
a balance between buffer utilization and execution time with
limited buffer size.

During the computation of each phase, the loop tiling can
be applied to leverage data locality. When performing each
for loop with applying different unrolling techniques, distinct

(a) Aggregation->Combination

Given three input matrices and one output matrix:
! ∈ #!!"×!#" , $ ∈ #!#"×!$" , % ∈ #!$"×!%" , and & ∈ #!!"×!%"

(b) Combination->Aggregation

Fig. 6. Computation order of GCN matrix multiplication from algorithm
level: (a) Performing the aggregation and combination phases sequentially.
(b) Performing the combination and aggregation phases sequentially. A, X,
W, B, and O represent the Adjacency matrix, Feature matrix, Weight matrix,
Intermediate matrix, and Final matrix, respectively.

sets of input/output data are reused during the entire GCN
process. Take the Inner product as an example, as shown
in Fig. 7 (a), there are two input matrices (A2 R(M⇥N)

and B2 R(N⇥K)) and one output matrix (O2 R(K⇥C)) for
performing the matrix-matrix multiplication. Obviously, each
element of the output matrix is reused and accumulated when
performing the inner for loop, while the index of elements
from both A and B matrices continues to increase. Despite
the fact that the inner product loop unrolling technique utilizes
output data locality, it can result in inefficiency and degrade
overall performance. This is due to the varying number of
inputs each Processing Element (PE) in the hardware receives
as a result of sparsity, which causes workload imbalance.
Concerning the row-based product, as illustrated in Fig. 7 (c),
multiple rows of matrix B are necessary to access multiple
times since they are shared for elements in the same column
of matrix A. This results in additional memory access, par-
ticularly when considering the matrices A and B are sparse
and dense, respectively, for performing Sparse-Dense Matrix-
Matrix Multiplication. Therefore, the proposed design applies
the outer product to reuse one of the input matrices during
each GCN phase. Although this method sacrifices the reuse
of the output matrix, it well supports the elimination of zero
computations and avoids the workload imbalance problem
because of the sparsity [25], [32]. All the input sparse matrices
are stored in Compressed Sparse Column (CSC) format, while
the input dense matrix is stored in a dense format in row-major
order. As shown in Fig. 7 (b), since the A[i][j] is reused by all
elements in the first row of the B matrix, these computations
can be eliminated if A[i][j] is zero. Note that it is unnecessary
to design and implement the ”compare” logic in the hardware
design to detect whether the current A[i][j] is zero, as the CSC
format has already eliminated the zeros when compressing and
storing the data.

2) Workload Scheduling Algorithm (WSA): Given an input
graph with the applied GCN model, current approaches apply
a fixed GCN computation order across all GCN layers with
their customized hardware design, which is insufficient for
various input graphs and applied GCN models. Specifically,
given an input dataset (A2 R(M⇥N) and X2 R(N⇥K))
and a weight matrix (W2 R(K⇥C)), existing designs per-
form either the aggregation phase or the combination phase

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3401543

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The George Washington University. Downloaded on August 30,2024 at 19:49:22 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 6

M
N

N
K

M
K

M
N

N
K

M
K

(a) Inner-product (IP) Dataflow

(b) Outer-product (OP) Dataflow

M N M

A B C

A B

A B

N K K

Given two input matrices (A and B) and one output matrix (C):
! ∈ #!×#, % ∈ ##×$, &'(* ∈ #!×$

C

C

(a)

(b)

(c)

Fig. 7. Loop unrolling techniques: (a) Inner-product: The inner for loop
produces an entire element of the output matrix, and the output matrix (O)
is reused. (b) Outer-product: The inner for loop produces partial sums of one
row of elements in the final output matrix, and the input matrix (A) is reused.
(c) Row-product: The dense rows of matrix B are reused.

at first in each GCN layer. Under this circumstance, the
length of each feature vector remains constant during the
aggregation phase, while it changes from dimension K to
dimension C during the combination phase. Hence, applying
a fixed computation order for all GCN layers across various
input graphs is inefficient. This efficiency arises due to the
potential increase in feature-length during the combination
phase, leading to additional memory access and computations
for the subsequent phase within the same GCN layer. To
address the aforementioned challenge, the proposed Workload
Scheduling Algorithm (WSA) dynamically determines the
computation order for each input vertex from the input graph
during each GCN layer. This determination takes into account
the parameters of both the input datasets and the applied
GCN models, such as dimensions, sparsity, and power-law
distribution. The primary objective of the proposed WSA is to
minimize both data memory access and the overall execution
time of GCN inference. In other words, a single vertex may
experience a different computation order in distinct GCN
layers, and vertices may undergo distinct GCN computation
orders within the same GCN layer. Particularly, considering
the parameters of the input graph and the applied GCN
model as < N0,K0, C0 > with sparsity SA, Eq. 3 and
Eq. 4 illustrate the computational requirements for distinct
computation orders, where the aggregation phase (case-1) and
combination phase (case-2) are executed first, respectively. In
this context, N0, K0, and C0 represent the number of input
vertices, the length of features, and the dimensions of the
weight matrix, respectively.

Opcase�1 =
Y

N0,K0, N0, SA +
Q

N0,K0, N0SA � 1

+
Y

N0, C0,K0 +
Q

N0, C0,K0 � 1
(3)

Opcase�2 =
Y

N0, C0,K0 +
Q

N0, C0,K0 � 1

+
Y

N0, C0, N0, SA +
Q

N0, C0, N0SA � 1
(4)

Opdiff = Opcase�1 �Opcase�2

= N0
2
SA(K0 � C0) +N0(N0SA � 1)(K0 � C0)

= N0(K0 � C0)(N0SA +N
2
0SA �N0)

(5)

With Eq. 3 and Eq. 4, Eq. 5 demonstrates the discrepancy
in the number of required computations between two different

Algorithm 1 Workload Scheduling Algorithm (WSA)
1: Inputs: SA: Sparsity of the input graph; N0: Number of input

vertices; K0: Length of feature vector; C0: Dimension of the
pre-trained weight matrix; DT : Pre-defined degree threshold;
offset array: The column offset array of the adjacency matrix
that stored in CSC format;

2: Outputs: Workload pattern and related control signals
3: Begin:
4: Initialize: pStart =0, pEnd = 1, degree = 0, signal = 0;
5: Initialize: H = V⇥P, L = V⇥(1-P), variation = 0;
6: // dynamically decide workload pattern
7: variation =

Q
N0, (K0 � C0), (N0SA +N

2
0SA �N0);

8: if variation  0 then
9: // LD vertices perform the combination phase first

10: signal = 1;
11: else
12: // LD vertices perform the aggregation phase first
13: signal = 0;
14: end if
15: //load vertex (n)
16: while n  N0 do
17: // do parallel
18: // Calculate the degree of the current vertex (n)
19: degree = offset array[pEnd]-offset array[pStart];
20: if degree  DT and signal == 1 then
21: workload pattern (n) = A(XW);
22: else
23: workload pattern (n) = (AX)W;
24: end if
25: pStart = pEnd, pEnd++;
26: end while

computation orders. According to the previous work [25], the
density of matrix A typically does not exceed 0.21%, which
means that the value of the third part (N0SA +N2

0SA �N0)
in Eq. 5 is always positive. Consequently, the relationship
between parameters K0 and C0 predominantly determines the
computation order for the given input matrices (A, X, and W).
If K0 is bigger than C0, performing the combination phase first
can reduce the length of the feature from K0 to C0, and vice
versa. With these formulations, the proposed WSA dynami-
cally schedules the computation order for each input vertex
during each GCN layer based on its degree. The rationale
behind this is that using the entire architecture to perform
each GCN phase at a time results in inefficiencies in either
communication or computation, as discussed in Sec. II-A.
Given a pre-defined threshold, the vertices of the input graph
can be classified into two types: High-degree vertices (HD)
and Low-degree vertices (LD). As the LD vertices occupy the
majority of the input vertices, WSA schedules the workload
from the perspective of LD vertices in order to optimize the
entire GCN inference. Each LD vertex has two options to
choose from: either perform the aggregation phase or the com-
bination phase at first. Therefore, by using Eq. 5 along with the
input dimensions, the workload of each input LD vertex can be
determined easily using WSA. The HD vertices are scheduled
with a different workload pattern compared to the LD vertices
simultaneously. This strategy provides two advantages: firstly,
it reduces memory access and computations by significantly
reducing the feature vector length for the majority of vertices,
as mentioned earlier; secondly, it improves the efficiency of
the hardware architecture by performing different GCN phases

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3401543

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The George Washington University. Downloaded on August 30,2024 at 19:49:22 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 7

on different chiplets simultaneously, as previously introduced
in Sec. II-A. The following pseudo-code illustrates details
about how the proposed WSA schedules the workload for
each input vertex dynamically. Specifically, WSA utilizes two
pointers (pStart and pEnd) with an offset array derived from
the CSC format to calculate the degree of the current input
vertex. The parameter variation in line 5 is used to record
the difference in the number of computations when initially
performing the aggregation and the combination for the input
LD vertex in the current GCN layer. The parameter signal is
employed to indicate the computation order for the subsequent
LD vertex in the current GCN layer. After determining the
value of the signal (lines 6-14), the computation order of each
vertex within the loaded tile is established and prepared for
subsequent processing (lines 15-24).

3) Workload Mapping Algorithm (WMA): WMA operates
at the tile level and is specifically designed to determine the
number of chiplets assigned to each GCN phase and map
the input tiles to the corresponding chiplets for computations.
The following pseudo-code illustrates how the proposed WMA
works in detail. Specifically, as described in Sec. III-B2, some
of the loaded vertices perform the aggregation phase con-
currently with others performing the combination phase. The
WSA algorithm takes parameters such as the bandwidth (B),
the size of the pre-defined tile (< Tn, Tk, Tc >), the generated
workload pattern, and the structure of the input graph (SA), as
parameters to complete its functionality. Given C chiplets in
total, each of them is responsible for performing computations
of either the aggregation phase or the combination phase with
the pre-defined tile size and limited bandwidth. During each
epoch, there are (C⇥ Tn) vertices’ features loaded from the
main memory for calculations. Due to sparsity, the number of
LD vertices in the total loaded vertices varies. To illustrate
the proposed WMA and facilitate understanding, we assume
that during each epoch, there are L LD vertices and H HD
vertices loaded, where the sum of H and L equals C ⇥
TN . Given a tile size tuple (< Tn, Tk, Tc >), Eq. 6 and
Eq. 7 illustrate the execution time (in cycles) of a single chip
performing the aggregation phase or the combination phase,
respectively. Particularly, the key difference between the two
equations is that the aggregation phase includes a write-back
time for storing the intermediate matrix B (B2 R(N⇥K)). This
is because the computations dominate the performance of the
combination phase as described in Sec. II-A.

Tagg. =
Tn

2
SA

B
+

TnTk

B
+

TnTk

No.(PEs)
+

TnTk

B
(6)

Tcomb. =
TnTk

B
+

TkTc

B
+

TnTc

No.(PEs)
(7)

No.(Chipletagg.)
No.(Chipletcomb.)

⇡ Tcomb.

Tagg.
(8)

To improve the efficiency and the overall performance,
the execution time of chiplets that perform the combination
phase must be equal to or greater than those performing the
aggregation phase, as indicated in Eq. 8. Here, Chipletagg.
and Chipletcomb. represent the number of chiplets assigned
to the aggregation and combination phases, respectively. Ad-
ditionally, the sum of these two parameters equals the total
number of chiplets the hardware has. After determining the

number of chiplets assigned to the aggregation and combina-
tion phases, the system will sequentially map the workload
to each chiplet to avoid data conflict during computation
(lines 10-17). Before mapping, the unified controller sends
the corresponding configuration information to each chiplet.
However, in scenarios where the architecture has a limited
number of chiplets, there may arise a corner case where
no chiplet is accessible to carry out the combination phase
after performing the Eq. 8. In this particular scenario, the
architecture will choose one of the chiplets to perform the
combination phase directly (lines 18-20).

Algorithm 2 Workload Mapping Algorithm (WMA)
1: Inputs: < Tn0, Tk0, Tc0 >: Pre-defined tile size; SA: Sparsity

of loaded tile; N: Number of PEs; C: Number of Chiplets; B:
Bandwidth between GLB and each chiplet.

2: Outputs: Each chiplet is assigned a specific input workload
3: Begin:
4: Initialize: Tagg. = 0, Tcomb. = 0, SA = 0, f lag = false;
5: Initialize: pStart = 0, pEnd = N ⇥ Tn0, tmp = 0;
6: SA = (pEnd� pStart)/(Tn0 ⇥ Tn0);
7: Tagg.= Tn

2SA
B + TnTk

B + TnTk
No.(PEs) +

TnTk
B ;

8: Tcomb. = TnTk
B + TkTc

B + TnTc
No.(PEs) ;

9: tmp = Tcomb./Tagg.;
10: for each i 2 C do
11: if i%tmp ⌘ 0 then
12: current chiplet performs Aggregation;
13: else
14: current chiplet performs Combination;
15: flag = true;
16: end if
17: end for
18: if flag ⌘ false then
19: Chiplet-0 performs the Combination (Corner Case);
20: end if

C. Workflow Example
In order to clearly illustrate the proposed design, this

paper presents a detailed five-step procedure with an example
workflow in this subsection. For a given graph dataset and
a GCN model with three input matrices: (A2 R(N⇥N) and
X2 R(N⇥K)) and a weight matrix (W2 R(K⇥C)), each step
is illustrated as the following:

• Step 1: Dimensions of input matrices (A, X, and W),
as well as the sparsity (SA), are loaded from the main
memory to the registers of the unified controller through
dedicated data links, as shown in Fig. 3. Simultaneously,
the feature matrix data will be loaded from the main
memory to the GLB as both GCN phases require it. Ad-
ditionally, the vertices of the input graph dataset loaded
from the main memory to GLB can be classified into two
categories based on a predefined threshold determined by
the power-law distribution, as introduced in Sec. II-A.

• Step 2: Once the necessary data is received, the unified
controller employs its local ALUs to perform the WSA
algorithm and determine the dynamic workload pattern
for each type (HD or LD) vertex, separately. When
the calculation is finished, the unified controller sends
a corresponding signal to the main memory controller,
initiating the loading of necessary data, such as adjacency
or weight matrices, for each type of vertex based on

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3401543

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The George Washington University. Downloaded on August 30,2024 at 19:49:22 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 8

High-degree vertices perform the Combination phase:

Low-degree vertices perform the Aggregation phase:

X of High-degree vertices
H x K

Feature Matrix

W

K x C

Weight Matrix

I_H

H x C

Intermediate matrix

(c)

X of low-degree vertices
L x K

L x K

A

L x L

I_L

Intermediate matrix
High-degree vertices perform the Aggregation phase:

Low-degree vertices perform the Combination phase: (d)

Adjacency Matrix Feature Matrix

H x H

A

H x C

I_H

H x C

O_H

Final matrixAdjacency Matrix Intermediate Matrix

L x K

I_L

K x C

W

L x C

O_L

Final matrixIntermediate Matrix Weight Matrix

Matrices Conquer:
H x C L x C N x C

Final
Results

O_H O_L (e)
(b)

(a)

Fig. 8. The partition and conquer of matrices multiplication. Analysis from the algorithm level for (a) High-degree vertices perform Combination and low-
degree vertices perform Aggregation. (b) High-degree vertices perform Aggregation and low-degree vertices perform Combination. (c) High-degree vertices
perform the Combination and low-degree vertices perform Aggregation simultaneously. (d) High-degree vertices perform the Aggregation and low-degree
vertices perform the Combination simultaneously. (e) Matrices of High/low-degree vertices are conquered to receive the final result.

!!!
Aggregation

("×!)
Outputs

!!" !!# !!$
$%%Cycle-1:
$&%Cycle-2:

!!! !"! !#! !$!
%%%Cycle-1:
%%'Cycle-2:

Combination
(!×&)

Outputs

(a)

(b)

(c)

'%% '%' '%& '%(
''% ''' ''& ''(
'&% '&' '&& '&(
'(% '(' '(& '((

!!! !!" 0 0
0 !"" !"# !"$
!#! 0 0 0
!$! !$" !$# !$$

%%%%%'%%&%%(
%'%%''%'&%'(
%&%%&'%&&%&(
%(%%('%(&%((

N

N

K

N

C

K

Adjacency Matrix (A) Feature Matrix (X) Weight Matrix (W)

Fig. 9. Data workflow of the proposed chiplet design. (a) Three input matrices
(A2 R(N⇥N), X2 R(N⇥K), and W2 R(K⇥C)) of input graphs. (b) For
the aggregation phase, values of the input dense buffer (Feature vector-X)
are pre-loaded, while values of the input sparse buffer (Adjacency list-A) are
broadcast in CSC format. (c) For the combination phase, values of the input
sparse buffer (Feature vector-X) are pre-loaded, while values of the input
dense buffer (Weight matrix-W) are broadcast.

the dynamic workload pattern. Due to the large data
chunk of the feature matrix, loading it from the main
memory to the GLB takes longer than performing the
WSA algorithm. Since loading the feature matrix and
performing the algorithm are processed concurrently, the
time required for performing the WSA and transmitting
control signals is negligible and can be disregarded.

• Step 3: Following the determination of the workload
pattern at the application level, the unified controller
performs WMA to ascertain the workload of each chiplet.
Subsequently, the controller transmits the relevant control
signal to each chiplet to facilitate further reconfiguration.

Based on the received signal, the local control unit in each
chiplet is responsible for configuring the local MUXes to
switch the input sparse/dense buffer. This is because a
heterogeneous dataflow is applied when performing the
two distinct GCN phases with the aim of maximizing
data reuse. After the configuration process, each chiplet
initiates the loading of data and uses the local unified
computing engine to perform the required vector-matrix
(aggregation) or matrix-matrix (combination) multiplica-
tions. Fig 8 (a) and (b) illustrate the execution of the
algorithm at the vertex level, where high-degree (HD)
vertices perform the combination phase, and low-degree
(LD) vertices perform the aggregation phase simultane-
ously. Fig 8 (c) and (d) show how the dimensions of each
input matrix changed during the entire process.

• Step 4: During the computation process, chiplets utilize
distinct preloaded dataflow strategies for each of the
current GCN phases. In the aggregation phase, the values
of the input dense buffer (X) are loaded into the register
of each PE and stored locally. In the combination phase,
the values of the input sparse buffer (X) are loaded and
stored locally within each PE, as shown in Fig 9 (b)
and (c), respectively. The other matrix, which is used
for required matrix multiplication, is broadcast to all PEs
in the computing engine on a cycling basis during both
GCN phases. During the aggregation phase, the entire PE
array is used to update one vertex’s features. During the
combination phase, each PE is responsible for updating
one specific vertex’s features.

• Step 5: After completing the required computations
of both GCN phases within each chiplet, the resultant
matrices are subsequently stored in the main memory,

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3401543

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The George Washington University. Downloaded on August 30,2024 at 19:49:22 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 9

TABLE I
DETAILS OF THE 2-LAYER GCN DATASET USED FOR EVALUATION

Datasets Cora Citeseer Pubmed Nell Reddit
Input Graph G=(V,E) G=(2708,10556) G=(3327,9104) G=(19717,88648) G=(65755,266144) G=(232965,114615892)

Feature Length 1,433-16-7 3,703-16-6 500-16-3 61,278-64-186 602-64-41
Density of Adjacency Matrix (A) 0.18% 0.11% 0.028% 0.0073% 0.21%

Density of Feature Matrix (X) L1:1.27%, L2:78% L1:0.85%, L2:89.1% L1:10.0%, L2:77.6% L1:0.01%, L2:86.4% L1:51.6%, L2:60.0%
Density of Weight Matrix (W) L1:100%, L2:100% L1:100%, L2:100% L1:100%, L2:100% L1:100%, L2:100% L1:100%, L2:100%

as shown in Fig 8 (e). As explained in Sec. III-B1, the
proposed design utilizes the outer product instead of the
inner product when performing the loop unrolling from
the algorithm level for matrix-matrix multiplications.
Therefore, this strategy easily eliminates the need for
designing additional hardware components to combine
the final results of both vertex types (HD and LD).

IV. EXPERIMENTAL METHODOLOGY

A. Experimental Setup
We evaluate the performance (execution time) of the pro-

posed chiplet-based GCN accelerator design through a cycle-
accurate simulator using C++ to model the behavior of the
hardware with the analysis mentioned in previous sections.
The simulator counts the demand amount of on-chip and off-
chip memory access, which is used to estimate the related
energy consumption according to [49]. To measure the area
and power consumption, we model all the required hardware
inside the proposed design. We use the Synopsys Design
Compiler with the TSMC 40nm library to synthesize and
estimate the power using Synopsys PrimeTime PX. We set the
clock frequency at 500 MHz. Furthermore, we use Cacit [50]
and Dsent [51] to estimate the area, power, and access latency
of the switch, on-chip FIFO buffers, MUX-DEMUXes, and
control logic. We compare the proposed chiplet-based acceler-
ator design (OPT-GCN) with three previous GCN accelerators:
HyGCN [31], AWB-GCN [32], and GCNAX [25]. To simulate
the power-law distribution for all GCN datasets simply, we
assume that 20% of the total graph vertices are high-degree
vertices and occupy around 80% of the entire input edges.
Additionally, we conduct a hardware parameter-sensitive anal-
ysis, including the power-law distribution, number of PEs, and
limited bandwidth, to show how each parameter impacts the
overall performance.

The baseline accelerators are scaled to be equipped with the
same number of computing units and memory bandwidth as
the proposed design. Since most of the previous accelerators
use single-precision floating point numbers (32-bit), on-chip
links used for data communication are 32-bit in width for
all accelerators. Since the HyGCN deploys a tandem-engine
architecture with two computing engines for the Aggregation
and Combination phases, MAC units are divided into two
groups equally to simulate the two separate engines for
required computations. For AWB-GCN and GCNAX, they
both use one 1⇥16 MAC (PE) array as a unified computing
engine for both aggregation and combination phases. For the
proposed chiplet-based design, each chiplet applies the 1⇥16
MAC (PE) array as a unified computing engine to support 32-
bit data computations. Furthermore, all baseline accelerators

are equipped with the same-sized on-chip buffer storage. For
a fair comparison, the DRAM bandwidth for all accelerators
is scaled to 128GB/s.

B. Evaluation Datasets
In this paper, we leverage commonly used datasets from

previous literature [17], [52]–[57] to conduct the further ex-
perimental evaluation. These datasets include Cora, Citeseer,
Pubmed, Nell, and Reddit. Cora, Citeseer, and Pubmed are
well-known datasets for paper citation networks, node classifi-
cation, and text summarization [8], [54], [58], [59]. The Reddit
dataset represents an undirected graph of social networks,
comprising posts gathered from the Reddit discussion forum.
The Nell dataset, on the other hand, is a knowledge graph
obtained from the Never-Ending Language Learning project.
Table I provides detailed information about each dataset used
in this study, including its structure and data density. It is
important to note that, except for the NELL dataset, the length
of features in most datasets decreases with each GCN layer.
The behavior of the NELL dataset differs in this aspect.
C. Architecture Modeling

In this subsection, we present a comprehensive analytical
model of the performance (cycles of execution time) and
data memory access required during our evaluation section.
To capture the polyhedral nature of the design space, we
demonstrate our analytical model using the design choices
depicted in Fig. 6 as a prime example.

1) Performance Modeling: Because of the limited capacity
of GLB and the on-chip buffer, all evaluation parameters are
modeled based on pre-defined tile size. Given a specific tile
size (< Tn0, Tk0, Tc0 >) with sparsity (SA) and a power-law
distribution (P%), the total number of execution cycles for one
specific chiplet to perform the required computations of either
the HD vertices or the LD vertices are shown as Eq. 9 and
Eq. 10, respectively. Since the computation order impacts the
execution cycles, we assume that the computation order for
HD and LD vertices are (AX)W and A(XW) respectively. As
mentioned previously, all chiplets work on different workloads
concurrently and independently. Therefore, the total number of
execution cycles to perform the required computations of the
entire GCN model is determined by the chiplet that completes
its workload last.
8
<

:

NHD cycles = Nagg. +Ncomb.

Nagg. = SA⇥ dNP
Tn0

e⇥ dNP
Tn0

e⇥ d K
Tk0

e⇥ (Tn0⇥Tk0)

Ncomb. = dNP
Tn0

e⇥ d K
Tk0

e⇥ d C
Tc0

e⇥ (Tn0⇥Tc0)
(9)

8
><

>:

NLD cycles = Nagg. +Ncomb.

Nagg. = SA⇥ dN(1�P)
Tn0

e⇥ dN(1�P)
Tn0

e⇥ d C
Tc0

e⇥ (Tn0⇥Tc0)

Ncomb. = dN(1�P)
Tn0

e⇥ d K
Tk0

e⇥ d C
Tc0

e⇥ (Tn0⇥Tc0)
(10)

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3401543

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The George Washington University. Downloaded on August 30,2024 at 19:49:22 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 10

0

1

2

3

4

5

HyGCN

AWB-GCN
GCNAX

Our D
esig

n

Cora
Of

f-c
hi

p
M

em
or

y A
cc

es
s (

M
B)

Off-chip M
em

ory Access (M
B)

(a) (b) (c) (d) (e)

0.0

1.0

2.0

3.0

HyGCN

AWB-GCN
GCNAX

Our D
esig

n

Citeseer

0.0
20.0
40.0
60.0
80.0

100.0
120.0

HyGCN

AWB-GCN
GCNAX

Our D
esig

n

Pubmed

0

0.5

1

1.5

2

HyGCN

AWB-GCN
GCNAX

Our D
esig

n

Nell×"#!

0
0.5

1
1.5

2
2.5

3

HyGCN

AWB-GCN
GCNAX

Our D
esig

n

Reddit×"#"

Layer-1
Layer-2

Layer-1
Layer-2

Layer-1
Layer-2

Layer-1
Layer-2

Layer-1
Layer-2

OPT-G
CN

OPT-G
CN

OPT-G
CN

OPT-G
CN

OPT-G
CN

Fig. 10. Total off-chip memory access (MB) of the chiplet-based design (OPT-GCN) compared to prior accelerators on real-world graph datasets. (a) Cora,
(b) Citesser, (c) Pubmed, (d) Nell, and (e) Reddit (lower is better).

2) Data Access Modeling: Since the main memory data
accesses typically dominate the energy consumption of accel-
erators [25], [29], [31], reducing the number of data accesses
can significantly improve the overall energy efficiency. As
the design space is polyhedral, we will use an example to
illustrate how the analytical models for the main memory
data accesses are built. Assume the predefined tile size for
each chiplet is (< Tn0, Tk0, Tc0 >) with an average sparsity
(SA) and loop fusion is not enabled during the two GCN
phases. Given N Chiplets, there are (N⇥Tn0) vertices loaded
from the main memory to GLB during each interaction. Same
with Sec. IV-C1, we assume that the aggregation phase is
performed first by the HD vertices, while the combination
phase is performed first by the LD vertices. Therefore, the
total number of the main memory accesses is shown in Eq. 11.
Here ↵A,↵X ,↵B ,↵O and MA,MX ,MB ,MW ,MO denote
the trip counts and buffer sizes of memory accesses to matrix
A/X/B/W/O respectively.8

<

:

NTotal = NHD Access +NLD Access

N = ↵AMA + ↵XMX + ↵I1MI1

+↵I2MI2 + ↵WMW + ↵OMO

(11)

Take the HD vertices with (AX)W computation order as an
example:

8
>>>>><

>>>>>:

MA = SA · Tn0 · Tn0

MX = Tn0 · Tk0

MI1 = Tn0 · Tk0

MI2 = Tn1 · Tk1

MW = Tk1 · Tc1

MO = Tn1 · Tc1

(12)

8
>>>><

>>>>:

↵A = ↵X = NP
Tn0

· N
Tn0

· K
Tk0

↵I1 = N
tn0

· K
Tk0

↵I2 = ↵W = N
Tn0

· K
Tk0

· C
Tc0

↵O = N
Tn0

· C
Tc0

(13)

Note that ↵I1,↵I2,MI1,MI2 are used to differentiate the
accesses in two different GCN phases respectively. In this
model, we assume that the zeros in matrix A are evenly
distributed so we can use the overall density (SA) of A to
represent the density of each loaded chunk when estimating
the memory access of A. Although it does not reflect the actual
distribution, we make this assumption for simplicity since
considering the sparsity distribution would lead to a significant
increase in model complexity. Additionally, we have observed
that the estimated values generated by the model show minimal
deviation when compared to the actual values obtained from
a cycle-accurate simulation.

V. EVALUATION AND ANALYSIS
A. Data Memory Access

Fig. 10 shows the normalized data memory access of the
proposed design compared to previous works. Firstly, OPT-
GCN partitions the input matrix into sub-matrices based on

the power-law distribution for further parallel processing.
Then, OPT-GCN implements a computation order decision
algorithm (WSA) to determine the optimal computation orders
for both high-degree and low-degree vertices, which reduces
the DRAM access. Compared to previous works, only PEs in
chiplets that perform the combination phase share the weight
matrix. Other chiplets will independently load the required
data from GLB to perform the aggregation phase. Compared
to the scale-up HyGCN, the new chiplet design proposed in
this paper uses a unified computing engine to support both
phases efficiently instead of two separate engines. Compared
to both scale-up AWB-GCN and GCNAX, the proposed design
utilizes the power-law distribution to reduce off-chip memory
access. Although the proposed design utilizes a predefined tile
size for all GCN datasets inducing extra DRAM access, it is
acceptable compared to hardware complexity when designing
an architecture to support adaptive tile sizes for variable
datasets. Compared to HyGCN, AWB-GCN, and GCNAX,
the proposed design reduces the DRAM access by a factor
of 11.3⇥, 3.4⇥, and 1.4⇥, respectively.

B. Performance

Fig. 11 shows the performance of the proposed design (OPT-
GCN) compared to the other scale-up baselines, measured
by the total number of execution cycles. The execution time
includes the time of configuration calculation, sending the
control signals, and setting up. The proposed design achieves
a reduced execution time by 16.0⇥, 2.9⇥, 1.8⇥ on average
compared to prior works. This benefit arises from the unified
computing engine implemented in each chiplet, which avoids
workload imbalance induced by tandem engines when pro-
cessing variable datasets. Moreover, OPT-GCN meticulously
designs dataflows among chiplets and within chiplets, leading
to additional reductions in data memory access. Additionally,
OPT-GCN introduces and employs two algorithms to dy-
namically configure the architecture, optimizing computation
patterns for the input dataset and the applied GCN model,
and efficiently utilizing hardware resources. This paper also
includes a performance breakdown analysis, aiming to elu-
cidate the effectiveness of various methodologies proposed
in the design for enhanced understanding, as depicted in
Fig. 13. OPT-GCN-1 and OPT-GCN-2 denote the proposed
architecture without and with the degree-aware scheduling
algorithm, respectively. The performance breakdown analysis
utilizes the NELL dataset, selected for its significant variation
in feature length during each GCN layer.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3401543

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The George Washington University. Downloaded on August 30,2024 at 19:49:22 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 11

Ex
ec

ut
io

n
Ti

m
e(

cy
cle

s)
Execution Tim

e (cycles

HyGCN AWB-GCN GCNAX Our Design

Cora

!"!

!""

!"#

HyGCN AWB-GCN GCNAX Our Design

Citeseer

!"!

!""

!"#
HyGCN AWB-GCN GCNAX Our Design

Pubmed

!""

!"$

!"!
HyGCN AWB-GCN GCNAX Our Design

Nell

HyGCN AWB-GCN GCNAX Our Design

Reddit

!"%

!"&'

!"$

!"(

!"(

!"%

!"&'

Layer-1
Layer-2

Layer-1
Layer-2

Layer-1
Layer-2

Layer-1
Layer-2

Layer-1
Layer-2

(a) (b) (c) (d) (e)
OPT-GCN OPT-GCN OPT-GCN OPT-GCN OPT-GCN

Fig. 11. Total execution time (cycles) of the chiplet-based design (OPT-GCN) compared to prior accelerators on real-world graph datasets. (a) Cora, (b)
Citesser, (c) Pubmed, (d) Nell, and (e) Reddit (lower is better).

No
rm

ali
ze

d
En

er
gy

 C
on

su
m

pt
io

n Norm
alized Energy Consum

ption(a) (b) (c) (d) (e)

0.9

1.0

1.1

1.2

1.3

1.4

1.5

Cora-1 Cora-2 Total

Cora

Citeseer-1 Citeseer-2 Total

Citeseer

Pubmed-1 Pubmed-2 Total

Pubmed

Nell-1 Nell-2 Total

Nell

0.9

1.0

1.1

1.2

1.3

1.4

1.5

Reddit-1 Reddit-2 Total

Reddit

1.
3

18.1%

1.
2

20.1%

1.
3

69.5%

3.
3

69.5%

2.
4

13.4%

1.
2 74.5%

3.
9

36.9%

1.
6

12.0%

1.
1 29.6%

1.
4

1.
2

14.7%
25.4%

1.
3

74.5%

1.
6

1.
2 1.
3

19.4% 20.3%

HyGCN AWB-GCN GCNAX OPT-GCN

20.6%

Fig. 12. Normalized energy consumption of the chiplet-based design (OPT-GCN) compared to prior accelerators on real-world graph datasets. (a) Cora, (b)
Citesser, (c) Pubmed, (d) Nell, and (e) Reddit. All values are normalized to the proposed design. Some values of HyGCN and AWB-GCN are beyond the
y-axis range for all datasets, which are not shown in the figure (lower is better).

HyGCN AWB-GCN GCNAX OPT-GCN-1 OPT-GCN-2

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

1.0

0.0

4.0

2.0

16.0

8.0

Fig. 13. Normalized execution time of the proposed design compared to prior
accelerators with NELL dataset (lower is better).

C. Energy Consumption

All accelerators estimate the related energy consumption
according to [50], and are normalized based on the proposed
chiplet-based design. Compared to HyGCN, the proposed
design utilizes the compressed A matrix in CRC format
to directly perform computations of the aggregation phase,
which eliminates redundant GCN computations during the
aggregation phase, which are induced by ”0s” in the un-
compressed A matrix. Additionally, the proposed design im-
plements optimization from the algorithm level for reduced
energy consumption. Specifically, the computation order deci-
sion algorithm (WSA) is used to reduce the number of main
memory accesses and the number of computations. The pro-
posed mapping algorithm is used to improve the efficiency of
the hardware platform with a hybrid workload pattern, which
decreases the total execution time. As shown in Fig. 12, the
proposed design achieves 15.2⇥, 3.7⇥ 1.6⇥ energy savings on
average compared to the scale-up HyGCN, AWB-GCN, and
GCNAX, respectively.

D. Scalability Analysis
As stated in Sec. V, the baseline accelerators are scaled to

match the hardware resources of the proposed design and a

0.13
0.03 0.02

0
0.2
0.4
0.6
0.8

1

1 2 4 8 16

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e

1
2
4
8

16
32
64

(a)

32 64 128
Dimension of PE Array

Norm
alized Execution Tim

e

(b)

1
2
4
8

16
32
64

Bandwidth (GB/s)
16 32 64

0.9 0.91.0 1.0

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e (c)

Number of Chiplets

Fig. 14. Scalability analysis: (a) Scaling the number of Processing Elements
(PEs). (b) Scaling the bandwidth. (c) Scaling the number of chiplets.

predefined threshold of the power-law distribution for eval-
uation, which could potentially compromise their efficiency.
Therefore, we conducted a scalability analysis in this section to
evaluate how variations in parameters affect the performance
of the system. All the analysis uses NELL [8] as the input
graph dataset. This is because the NELL dataset exhibits
a distinct characteristic in that the length of its features is
augmented in each GCN layer, setting it apart from the other
datasets used in this paper. To conduct a thorough scalability
analysis, we model the execution time of our proposed design
and compare it to prior works as the bandwidth, and the num-
ber of PEs is scaled up. All values have been normalized to the
proposed design that features 16 PEs and a bandwidth of 128
GB/s. As shown in Fig. 14 (a), we scale the number of PEs per
chiplet from 16 PEs to 64 PEs while maintaining a predefined
DRAM bandwidth of 128 GB/s. The proposed accelerator
demonstrates superior performance in comparison to the prior
accelerators. To explore the scalability of bandwidth, we sweep

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3401543

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The George Washington University. Downloaded on August 30,2024 at 19:49:22 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 12

the DRAM bandwidth provisioning varied from 32 GB/s up
to 128 GB/s while keeping the other hardware parameters
constant (each baseline configuration comprises 16 PEs in their
computing engine), as shown in Fig. 14 (b). Additionally, in
Fig. 14 (c), we present the performance scalability of running
NELL across various numbers of chiplets, each consisting of
16 PEs. All execution times are normalized to a single chiplet
performing GCN inference with the given input graph.

E. Sensitivity Analysis

In order to investigate the impact of the threshold sensitivity
in power-law distribution, as shown in Fig. 15 (a) and (b),
we conducted a sweeping analysis by varying the percentage
of the high-degree (HD) vertices from 10% to 30% while
occupying a constant number (80%) of the total edges. Sub-
sequently, the percentage of edges occupied by HD vertices
(20%) varied from 90% to 70%. It is evident that a graph
with a high number of HD vertices and edges exhibits superior
performance in relation to DRAM access. It should be noted
that the data presented in this context has been normalized to
the case that 20% HD vertices occupy 80% of total edges. To
provide a clear representation of the trends in performance,
energy consumption, and area cost as the dimension of the
PE array scales up in each chiplet, we have prioritized each
parameter. The final cost of each PE array is determined by
summing up the values of each evaluation parameter and its
corresponding priority. As a result, the cost value accurately
reflects the relationship between the evaluation parameters and
the dimension of the PE array, as depicted in Fig. 15 (c). The
X-axis (N) denotes the dimension of the N⇥1 PE array within
the unified computing engine. The experimental results suggest
that employing 16 PEs in the proposed design achieves an
optimal equilibrium among performance, energy consumption,
and area consumption.

0.8

0.9

1

1.1

1.2

10% 15% 20% 25% 30%

0.51
0.5

0.7

0.9

1.1

1.3

1.5

90% 85% 80% 75% 70%
Percentage of High-degree vertices Percentage of edges occupied by

High-degree vertices

N
or

m
al

iz
ed

D
R

A
M

 A
cc

es
s N

orm
alized

D
R

A
M

 A
ccess

(a) (b)

0.0

2.0

4.0

6.0

8.0

10.0

4 8 16 32 64 128 256

(c)

N
or

m
al

iz
ed

 c
os

t f
or

ch

ip
le

ts
of

 d
iff

er
en

t
gr

an
ul

ar
iti

es

Dimension of PE Array

Fig. 15. Parameter sensitive analysis: (a) A fixed number of edges are
occupied by different percentages of high-degree (HD) vertices. (b) A fixed
number of HD vertices are occupied by different percentages of edges. (c)
Chiplet Granularity: The X-axis (N) represents the dimension of the N⇥1 PE
array within the unified computing engine, ranging from 4 PEs to 128 PEs.

F. Area and Power Consumption

Table II summarizes details of the area and power consump-
tion of the proposed design, which includes a 2⇥2 chiplet
GCN accelerator array in total. Extra Hardware includes the

TABLE II
AREA AND POWER CONSUMPTION

Hardware parameters Area (mm2) Power (mW)
The unified controller 0.3 15.5
Global Buffer 10.8 297.2
A Specific Chiplet design 3.7 92.15
Extra Hardware 0.4 20.8
Total 14.8 702.1

additional links used to send control signals for configura-
tion. Because the proposed design is a chiplet-based design
with three layers, the largest of the three layers, which is
the chiplet array, determines the overall area consumption.
Power consumption can be divided into two types: static
power consumption and dynamic power consumption. Table II
only lists the static power consumption of each hardware
component in the proposed design. Obviously, the GLB is the
most power-consumed hardware component, which is around
50% of the entire design. For the dynamic power consumption,
the computing engine of each chiplet processes different GCN
phases with a variable number of vertices, which impacts the
specific value of dynamic power consumption. Additionally,
the dynamic workload pattern also determines the memory
access that each chiplet has. As a result, the dynamic power
consumption of the overall architecture design is determined
by the sparsity, the size of the input graph, and the applied
GCN model.

VI. CONCLUSION

In this paper, we present a chiplet-based GCN accelerator
design that offers high performance and energy efficiency for
graph-related applications through an architecture-algorithm
co-design. The proposed accelerator can be configured at the
architecture level to provide GCN inference with flexibility
and scalability. Additionally, from the algorithm side, we
propose workload scheduling and mapping algorithms that
leverage the input graph dataset, the applied GCN model, and
the hardware configuration to achieve maximum efficiency.
Experimental results with real-world graphs show that the pro-
posed design outperforms prior works in terms of performance
and energy efficiency.

REFERENCES

[1] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You
only look once: Unified, real-time object detection. In Proceedings of
the 29th IEEE conference on computer vision and pattern recognition
(CVPR), pages 779–788. Las Vegas, NY, USA, June. 26 - July. 1, 2016.

[2] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-
cnn: Towards real-time object detection with region proposal networks.
In Proceedings of the 29th advances in neural information processing
systems (NIPS), pages 1–9. Montreal, Quebec, Canda, December 7-12,
2015.

[3] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad
Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao,
Klaus Macherey, et al. Google’s neural machine translation system:
Bridging the gap between human and machine translation. arXiv preprint
arXiv:1609.08144, 2016.

[4] Weijing Shi and Raj Rajkumar. Point-gnn: Graph neural network for
3d object detection in a point cloud. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition (CVPR), pages
1711–1719, June 14-19, 2020.

[5] Xiaoyang Wang, Yao Ma, Yiqi Wang, Wei Jin, Xin Wang, Jiliang Tang,
Caiyan Jia, and Jian Yu. Traffic flow prediction via spatial temporal
graph neural network. In Proceedings of the web conference 2020,
pages 1082–1092. Taipei, China, April 20-24, 2020.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3401543

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The George Washington University. Downloaded on August 30,2024 at 19:49:22 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 13

[6] Shutao Li, Weiwei Song, Leyuan Fang, Yushi Chen, Pedram Ghamisi,
and Jon Atli Benediktsson. Deep learning for hyperspectral image
classification: An overview. in IEEE Transactions on Geoscience and
Remote Sensing, vol. 57, no. 9, pp. 6690–6709, April, 2019.

[7] Tsung-Han Chan, Kui Jia, Shenghua Gao, Jiwen Lu, Zinan Zeng, and
Yi Ma. Pcanet: A simple deep learning baseline for image classification?
in IEEE Transactions on Image Processing, vol. 24, no. 12, pp. 5017–
5032, September, 2015.

[8] Thomas N Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

[9] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spec-
tral networks and locally connected networks on graphs. arXiv preprint
arXiv:1312.6203, 2013.

[10] Ruoyu Li, Sheng Wang, Feiyun Zhu, and Junzhou Huang. Adaptive
graph convolutional neural networks. In Proceedings of the 32nd
Association for the Advancement of Artificial Intelligence (AAAI). New
Orleans, Louisiana, USA, February 2-7, 2018.

[11] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu,
and Kilian Weinberger. Simplifying graph convolutional networks. In
Proceedings of the 36th International Conference on Machine Learning
(ICML), pages 6861–6871. Long Beach, California, USA, June 9-15,
2019.

[12] Tong Geng, Chunshu Wu, Yongan Zhang, Cheng Tan, Chenhao Xie,
Haoran You, Martin Herbordt, Yingyan Lin, and Ang Li. I-gcn: A graph
convolutional network accelerator with runtime locality enhancement
through islandization. In Proceedings of the 54th IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO), pages 1051–1063.
Athens, Greece, October 18-22, 2021.

[13] Bingyi Zhang, Rajgopal Kannan, and Viktor Prasanna. Boostgcn: A
framework for optimizing gcn inference on fpga. In Proceedings of
the 29th IEEE Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), pages 29–39, May 9-12, 2021.

[14] Tao Yang, Dongyue Li, Fei Ma, Zhuoran Song, Yilong Zhao, Jiaxi
Zhang, Fangxin Liu, and Li Jiang. Pasgcn: An reram-based pim design
for gcn with adaptively sparsified graphs. in IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD), vol.
42, no. 1, pp. 150–163, May, 2022.

[15] Sudipta Mondal, Susmita Dey Manasi, Kishor Kunal, S Ramprasath,
Ziqing Zeng, and Sachin S Sapatnekar. A unified engine for accelerating
gnn weighting/aggregation operations, with efficient load balancing
and graph-specific caching. in IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), December, 2022.

[16] Kishor Kunal, Tonmoy Dhar, Meghna Madhusudan, Jitesh Poojary,
Arvind K Sharma, Wenbin Xu, Steven M Burns, Jiang Hu, Ramesh
Harjani, and Sachin S Sapatnekar. Gnn-based hierarchical annotation
for analog circuits. in IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), December, 2022.

[17] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi
Zhang, and S Yu Philip. A comprehensive survey on graph neural
networks. in IEEE Transactions on Neural Networks and Learning
Systems, vol. 32, no. 1, pp. 4–24, March, 2020.

[18] Ziwei Zhang, Peng Cui, and Wenwu Zhu. Deep learning on graphs: A
survey. in IEEE Transactions on Knowledge and Data Engineering, vol.
34, no. 1, pp. 249–270, March, 2020.

[19] Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, Baole Ai,
Yong Li, and Jingren Zhou. Aligraph: a comprehensive graph neural
network platform. arXiv preprint arXiv:1902.08730, 2019.

[20] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang,
Zhiyuan Liu, Lifeng Wang, Changcheng Li, and Maosong Sun. Graph
neural networks: A review of methods and applications. in AI Open,
vol. 1, pp. 57–81, January, 2020.

[21] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner,
and Gabriele Monfardini. The graph neural network model. in IEEE
Transactions on Neural Networks, vol. 20, no. 1, pp. 61–80, December,
2008.

[22] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-
Jui Hsieh. Cluster-gcn: An efficient algorithm for training deep and
large graph convolutional networks. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining (KDD), pages 257–266. Anchorage, Alaska, USA, August 4-8,
2019.

[23] Si Zhang, Hanghang Tong, Jiejun Xu, and Ross Maciejewski. Graph
convolutional networks: a comprehensive review. in Computational
Social Networks, vol. 6, no. 1, pp. 1–23, March, 2019.

[24] Xuefeng Xian, Ligang Fang, and Shiming Sun. Regnn: A repeat aware
graph neural network for session-based recommendations. in IEEE
Access, vol. 8, no. 1, pp. 98518–98525, May, 2020.

[25] Jiajun Li, Ahmed Louri, Avinash Karanth, and Razvan Bunescu. Gcnax:
A flexible and energy-efficient accelerator for graph convolutional neural
networks. In Proceedings of the 27th IEEE International Symposium
on High-Performance Computer Architecture (HPCA), pages 775–788.
Seoul, South Korea, February 27 - March 3, 2021.

[26] Haoran You, Tong Geng, Yongan Zhang, Ang Li, and Yingyan Lin.
Gcod: Graph convolutional network acceleration via dedicated algorithm
and accelerator co-design. In Proceedings of the 28th IEEE International
Symposium on High-Performance Computer Architecture (HPCA), pages
460–474. Seoul, South Korea, April 2-6, 2022.

[27] Jiajun Li, Hao Zheng, Ke Wang, and Ahmed Louri. Sgcnax: A scalable
graph convolutional neural network accelerator with workload balancing.
in IEEE Transactions on Parallel and Distributed Systems (TPDS), vol.
33, no. 11, pp. 2834–2845, December, 2021.

[28] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli,
Rangharajan Venkatesan, Brucek Khailany, Joel Emer, Stephen W
Keckler, and William J Dally. Scnn: An accelerator for compressed-
sparse convolutional neural networks. In Proceedings of the 44th
ACM/IEEE Annual International Symposium on Computer Architecture
(ISCA), pages 27–40. Toronto, ON, Canada, Jun 24-28, 2017.

[29] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji
Chen, and Olivier Temam. Diannao: A small-footprint high-throughput
accelerator for ubiquitous machine-learning. in ACM SIGARCH Com-
puter Architecture News, vol. 42, no. 1, pp. 269–284, February, 2014.

[30] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. Eyeriss:
An energy-efficient reconfigurable accelerator for deep convolutional
neural networks. in IEEE Journal of Solid-State Circuits, vol. 52, no.
1, pp. 127–138(1):127–138, November, 2016.

[31] Mingyu Yan, Lei Deng, Xing Hu, Ling Liang, Yujing Feng, Xiaochun
Ye, Zhimin Zhang, Dongrui Fan, and Yuan Xie. Hygcn: A gcn
accelerator with hybrid architecture. In Proceedings of the 26th IEEE
International Symposium on High Performance Computer Architecture
(HPCA), pages 15–29. San Diego, CA, USA, February 22-26, 2020.

[32] Tong Geng, Ang Li, Runbin Shi, Chunshu Wu, Tianqi Wang, Yanfei Li,
Pouya Haghi, Antonino Tumeo, Shuai Che, Steve Reinhardt, et al. Awb-
gcn: A graph convolutional network accelerator with runtime workload
rebalancing. In Proceedings of the 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 922–936. Virtual,
October 17-21, 2020.

[33] Shun Li, Yuxuan Tao, Enhao Tang, Ting Xie, and Ruiqi Chen. A survey
of field programmable gate array (fpga)-based graph convolutional
neural network accelerators: challenges and opportunities. in PeerJ
Computer Science, vol. 8, pp. e1116, November, 2022.

[34] Chukwufumnanya Ogbogu, Aqeeb Iqbal Arka, Lukas Pfromm,
Biresh Kumar Joardar, Janardhan Rao Doppa, Krishnendu Chakrabarty,
and Partha Pratim Pande. Accelerating graph neural network training
on reram-based pim architectures via graph and model pruning. in
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (TCAD), December, 2022.

[35] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet clas-
sification with deep convolutional neural networks. in Communications
of the ACM, vol. 60, no. 6, pp. 84–90, May, 2017.

[36] Jilan Lin, Shuangchen Li, Yufei Ding, and Yuan Xie. Overcoming the
memory hierarchy inefficiencies in graph processing applications. In
Proceedings of the 40th IEEE/ACM International Conference On Com-
puter Aided Design (ICCAD), pages 1–9. Munich, Germany, November
1-6, 2021.

[37] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Car-
los Guestrin. {PowerGraph}: Distributed {Graph-Parallel} computation
on natural graphs. In Proceedings of the 10th USENIX Symposium on
Operating Systems Design and Implementation (OSDI), pages 17–30.
Hollywood, CA, USA, October 8-10, 2012.

[38] Lada A Adamic and Bernardo A Huberman. Power-law distribution of
the world wide web. in American Association for the Advancement of
Science, vol. 287, no. 5461, pp. 2115–2115, March, 2000.

[39] Jason Mohoney, Roger Waleffe, Henry Xu, Theodoros Rekatsinas, and
Shivaram Venkataraman. Marius: Learning massive graph embeddings
on a single machine. In Proceedings of the 15th USENIX Symposium on
Operating Systems Design and Implementation (OSDI), pages 533–549.
virtual, July 14-16, 2021.

[40] Muhammad Adnan, Yassaman Ebrahimzadeh Maboud, Divya Mahajan,
and Prashant J Nair. Accelerating recommendation system training by
leveraging popular choices. arXiv preprint arXiv:2103.00686, 2021.

[41] Stefano Boccaletti, Vito Latora, Yamir Moreno, Martin Chavez, and D-U
Hwang. Complex networks: Structure and dynamics. in Physics reports,
vol. 424, no. 4-5, pp. 175–308, February, 2006.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3401543

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The George Washington University. Downloaded on August 30,2024 at 19:49:22 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 14

[42] Aaron Clauset, Cosma Rohilla Shalizi, and Mark EJ Newman. Power-
law distributions in empirical data. in SIAM review, vol. 51, no. 4, pp.
661–703, 2009.

[43] Mohammad Rasool Izadi, Yihao Fang, Robert Stevenson, and Lizhen
Lin. Optimization of graph neural networks with natural gradient
descent. In Proceedings of the 2020 IEEE international conference
on big data (IEEE BigData 2020), pages 171–179. Virtual, December
10-13, 2020.

[44] Matthias Fey, Jan Eric Lenssen, Frank Weichert, and Heinrich Müller.
Splinecnn: Fast geometric deep learning with continuous b-spline ker-
nels. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 869–877. Salt Lake City, UT, USA,
June 18-22, 2018.

[45] Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao,
Shuyuan Zhang, Xiao-Wen Chang, and Doina Precup. Is heterophily
a real nightmare for graph neural networks to do node classification?
arXiv preprint arXiv:2109.05641, 2021.

[46] Shengwen Liang, Ying Wang, Cheng Liu, Lei He, LI Huawei, Dawen
Xu, and Xiaowei Li. Engn: A high-throughput and energy-efficient
accelerator for large graph neural networks. in IEEE Transactions on
Computers, vol. 70, no. 9, pp. 1511–1525, August, 2020.

[47] Aydin Buluç, Jeremy T Fineman, Matteo Frigo, John R Gilbert, and
Charles E Leiserson. Parallel sparse matrix-vector and matrix-transpose-
vector multiplication using compressed sparse blocks. In Proceedings
of the 21st Annual Symposium on Parallelism in Algorithms and Archi-
tectures (SPAA), pages 233–244. Calgary, AB, Canada, August 11-13,
2009.

[48] Nitish Srivastava, Hanchen Jin, Jie Liu, David Albonesi, and Zhiru
Zhang. Matraptor: A sparse-sparse matrix multiplication accelerator
based on row-wise product. In Proceedings of the 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 766–780. Virtual, October 17-21, 2020.

[49] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A
Horowitz, and William J Dally. Eie: Efficient inference engine on
compressed deep neural network. In Proceedings of the 43rd ACM/IEEE
Annual International Symposium on Computer Architecture (ISCA),
pages 243–254. Seoul, South Korea, June 18-22, 2016.

[50] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P
Jouppi. Cacti 6.0: A tool to model large caches. in HP laboratories,
vol. 27, pp. 28, April, 2009.

[51] Chen Sun, Chia-Hsin Owen Chen, George Kurian, Lan Wei, Jason
Miller, Anant Agarwal, Li-Shiuan Peh, and Vladimir Stojanovic. Dsent-a
tool connecting emerging photonics with electronics for opto-electronic
networks-on-chip modeling. In Proceedings of the 6th IEEE/ACM
International Symposium on Networks-on-Chip (NOCS), pages 201–210.
Copenhagen, UT, USA, May 9-11, 2012.

[52] Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and S Yu
Philip. A survey on knowledge graphs: Representation, acquisition, and
applications. in IEEE Transactions on Neural Networks and Learning
Systems, vol. 33, no. 2, pp. 494–514, April, 2021.

[53] Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie
Seymore. Automating the construction of internet portals with machine
learning. in Information Retrieval, vol. 3, pp. 127–163, July, 2000.

[54] C Lee Giles, Kurt D Bollacker, and Steve Lawrence. Citeseer: An
automatic citation indexing system. In Proceedings of the 3rd ACM
conference on Digital libraries, pages 89–98. Pittsburgh, PA, USA, June
23-26, 1998.

[55] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian
Galligher, and Tina Eliassi-Rad. Collective classification in network
data. in AI magazine, vol. 29, no. 3, pp. 93–93, September, 2008.

[56] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation
learning on large graphs. In Proceedings of the 31st Annual Conference
in Neural Information Processing Systems (NeurIPS). Long Beach, CA,
USA, December 5-6, 2017.

[57] Kun Zhan and Chaoxi Niu. Mutual teaching for graph convolutional
networks. in Future Generation Computer Systems, vol. 115, pp. 837–
843, October, 2020.

[58] Lu Yu, Shichao Pei, Lizhong Ding, Jun Zhou, Longfei Li, Chuxu Zhang,
and Xiangliang Zhang. Sail: Self-augmented graph contrastive learning.
In Proceedings of the 36th AAAI Conference on Artificial Intelligence,
pages 8927–8935. Virtual, February 22 - March 1, 2022.

[59] Muhammet Balcilar, Guillaume Renton, Pierre Héroux, Benoit Gauzere,
Sebastien Adam, and Paul Honeine. Bridging the gap between spec-
tral and spatial domains in graph neural networks. arXiv preprint
arXiv:2003.11702, 2020.

Yingnan Zhao received the BS degree in computer
science from the Zhejiang University of Technology,
China, in 2018, and the MS degree in electrical
engineering from the George Washington University,
US, in 2020. He is currently working toward a
Ph.D. degree in computer engineering at George
Washington University, Washington, DC. His re-
search interests include graph neural networks, AI
accelerator design, and interconnection networks.

Ke Wang received the Ph.D. degree in Computer
Engineering from the George Washington University
in 2022. He received the M.S. degree in Electrical
Engineering from Worcester Polytechnic Institute in
2015, and the B.S. degree in Electrical Engineering
from Peking University in 2013. He is currently
an Assistant Professor of Electrical and Computer
Engineering at the University of North Carolina at
Charlotte. His research work focuses on parallel
computing, computer architecture, interconnection
networks, and machine learning.

Ahmed Louri (Fellow, IEEE) received the PhD
degree in computer engineering from the University
of Southern California, Los Angeles, California,
in 1988. He is the David and Marilyn Karlgaard
Endowed chair professor of electrical and computer
engineering at the George Washington University,
Washington, DC., which he joined in August 2015.
He is also the director of High Performance Com-
puting Architectures and Technologies Laboratory.
From 1988 to 2015, he was a professor of elec-
trical and computer engineering at the University

of Arizona, Tucson, Arizona, and during that time, he served six years
(2000 to 2006) as the chair of the Computer Engineering Program. From
2010 to 2013, he served as a program director in the National Science
Foundation’s (NSF) Directorate for Computer and Information Science and
Engineering. He directed the core computer architecture program and was
on the management team of several cross-cutting programs. He conducts
research in the broad area of computer architecture and parallel computing,
with emphasis on interconnection networks, optical interconnects for parallel
computing systems, reconfigurable computing systems, and power-efficient
and reliable Network-on-Chips (NoCs) for multicore architectures. Recently
he has been concentrating on energy-efficient, reliable, and high-performance
many-core architectures, accelerator-rich reconfigurable heterogeneous archi-
tectures, machine learning techniques for efficient computing, memory, and
interconnect systems, emerging interconnect technologies (photonic, wireless,
RF, hybrid) for NoCs, future parallel computing models and architectures
(including convolutional neural networks, deep neural networks, and approxi-
mate computing), and cloud-computing and data centers. He is the recipient of
2020 IEEE Computer Society Edward J. McCluskey Technical Achievement
Award for pioneering contributions to the solution of on-chip and off-chip
communication problems for parallel computing and many-core architectures.
For more information, please visit https://hpcat.seas. gwu.edu/Director.html.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3401543

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The George Washington University. Downloaded on August 30,2024 at 19:49:22 UTC from IEEE Xplore. Restrictions apply.

