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Abstract. Overparameterization in deep learning is powerful: Very large models fit the training data perfectly
and yet often generalize well. This realization brought back the study of linear models for regression,
including ordinary least squares (OLS), which, like deep learning, shows a “double-descent” behav-
ior: (1) The risk (expected out-of-sample prediction error) can grow arbitrarily when the number
of parameters p approaches the number of samples n, and (2) the risk decreases with p for p > n,
sometimes achieving a lower value than the lowest risk for p < n. The divergence of the risk for OLS
can be avoided with regularization. In this work, we show that for some data models it can also be
avoided with a PCA-based dimensionality reduction (PCA-OLS, also known as principal component
regression). We provide non-asymptotic bounds for the risk of PCA-OLS by considering the align-
ments of the population and empirical principal components. We show that dimensionality reduction
improves robustness while OLS is arbitrarily susceptible to adversarial attacks, particularly in the
overparameterized regime. We compare PCA-OLS theoretically and empirically with a wide range
of projection-based methods, including random projections, partial least squares (PLS), and certain
classes of linear two-layer neural networks. These comparisons are made for di↵erent data generation
models to assess the sensitivity to signal-to-noise and the alignment of regression coe�cients with
the features. We find that methods in which the projection depends on the training data can out-
perform methods where the projections are chosen independently of the training data, even those
with oracle knowledge of population quantities, another seemingly paradoxical phenomenon that has
been identified previously. This suggests that overparameterization may not be necessary for good
generalization.

1. Overparameterization and robustness in regression. One of the most remarkable
properties of contemporary machine-learning methods—and especially deep learning—is that
models with enormous capacity nonetheless generalize well. Overparameterized models have
the flexibility to perfectly fit any training data, but (in many cases) still make good, non-trivial
predictions on held-out or test data. Those good predictions contradict both our folklore and
our intuitions.

The realization that overparameterization is good for machine learning led to a reconsid-
eration of classical linear regressions. It turns out that even linear regressions can generalize
well in the overparameterized regime; that is, when the number of parameters p far exceeds
the number of training data points n (provided that the fitting is performed in a min-norm
or regularized way that limits the coe�cients in the unconstrained (p � n)-dimensional sub-
space). Both linear regressions and more complex machine-learning methods typically show a
“double-descent” phenomenon, recently identified by Belkin et al. [4]: (1) The underparam-
eterized and overparameterized regimes are separated by a “peaking” phenomenon [22], or
“jamming peak” [16, 52], in which the “risk”—the expected out-of-sample prediction error—
blows up when the model capacity just reaches overfitting (at p = n in the linear case); (2)
The risk further decreases with the number of parameters in the overparameterized regime,
sometimes achieving a lower value than the underparameterized regime.
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The double-descent behavior raises the following research questions: Can we avoid
the peaking phenomenon (RQ1)? Is overparameterization necessary for good generalization
(RQ2)? The understanding of this phenomenon in the context of linear regression has pro-
vided some perspective on deep learning. An important result common to both deep learning
and linear regression shows that regularization is important in or near the overparameterized
regime [17, 13, 29, 60, 36, 43, 39, 9, 57, 20].

To address RQ1, we study double-descent in the context of linear regression, where the
peaking phenomenon has a simple explanation that involves the (equivalent of the) condition
number of the training features (the ratio of the largest singular value to the smallest). Prior
work shows that the peaking phenomenon disappears with regularization using ridge pen-
alty [17]. In this work, we show that it also disappears with dimensionality reduction, another
canonical form of regularization.

In some sense—and in the attitude we will take here—the peaking phenomenon at p ⇡ n
is a kind of lack-of-robustness. Similarly, susceptibility to adversarial attacks is also a kind of
lack-of-robustness. These things ought to be related: In our view, a robust regression will not
have divergent risk nor be extremely susceptible to attack. We connect these ideas here, and
note that some models that generalize well nonetheless are extremely weak against adversarial
attacks. In the overparameterized regime the default linear model (ordinary least squares)
makes good predictions but is not robust in the sense that it is arbitrarily susceptible to
attack.

Regressions have been attacked adversarially in a few ways. We focus here on attacks
against the training features, but there are also attacks against the training labels [42], and
attacks against the test data at test time. We limit our discussion on the data-poisoning
attack—that is, adding one adversarial data point to the training data [8, 33]. We refer the
readers to the recent works in [32, 33, 24] for other forms of attacks including the Rank-1 (and
Rank-k) attacks or the adversarial perturbation attacks.

There are di↵erent ways to measure success for attacks against regressions, including
increases in the risk [24], distortion of the regression coe�cients [33], and other kinds of
distortions to the properties of the data, e.g., [46]. Here we are focused on robustness and
prediction, so we care most about the risk. Connected to our motivation and results, there is
also adversarial training, which has been developed as a kind of regularization for regressions;
it protects regressions from attack and also makes the peaking phenomenon disappear [24]. On
the other hand, deep generative classifiers—that produce a generative model for the training
data, similar to a low dimensional parameterization of the data distribution—are shown to
be more robust against adversarial attacks than deep discriminative classifiers [35, 25]. We
design a simple generative model for linear regression and demonstrate how it could act as an
implicit regularization and avoids the peaking phenomenon.

To investigate RQ2, we adopt the framework of projection-based methods, where the input
data can be projected to a higher-dimensional feature space (i.e., overparameterization), or a
lower-dimensional one (i.e., dimensionality reduction). This framework can be recast as a two-
layer (linear) neural networks [2], where the first layer performs the projection (not trained),
and the second layer performs linear regression (trained). We compare the risk behavior of
multiple projection-based methods, including ordinary least squares after a PCA-based di-
mensionality reduction (PCA-OLS; also sometimes known as principal component regression),
partial least squares, random projections, and classes of generative models and latent-variable
models. All projection methods we consider herein involve transforming the input X 2 Rn⇥p

linearly to some feature embeddings in Rn⇥k, followed by a linear regression on the transformed



DIMENSIONALITY REDUCTION AND REGULARIZATION 3

features. Since the regression takes the transformed features, the interpolation threshold (i.e.,
the peaking) appears at k ⇡ n (instead of p ⇡ n). In this setting, overparameterization (i.e.,
k > min{n, p}) is only possible when the projection matrix is independent of the training data
(recall PCA-OLS is only possible for k  min{n, p}). Previous work has shown that the (in-
dividual) risk of data-independent projection methods monotonically decreases with k when
k > n [62, 2, 59]. However, it is not clear whether these overparameterized projection methods
outperform their classic counterparts that choose the projection based on the training data,
such as PCA-OLS and partial least squares.

We summarize our motivations and our contributions in Section 3, after we give some
problem setup and define some forms for linear regression in Section 2. We follow that with
analytical results in dimensionality reduction in Section 4, and a comparison with other
projection-based regression models in Section 5. In Section 6 we discuss analytical results
for adversarial attacks in the context of robustness of OLS in comparison with PCA-OLS, and
in Section 7 we provide numerical experiments.

2. Linear regression: Problem setup and methods. Let {xi, yi}ni=1
where xi 2 Rp and

yi 2 R for i = 1, . . . , n. We imagine having n data points (x, y) that (unknown to us) were

generated from a joint Gaussian N (µ,⌃) where µ = (µx, µy) = (0p, 01) and ⌃ =

✓
Cxx Cxy

Cyx Cyy

◆
.

In other words p(x, y) = N (µ,⌃), and therefore

(2.1) Ey[y |x] = CyxC
�1

xx (x� µx) + µy

(see for instance [48] appendix A). In the case where µ = 0, this generative model is equivalent
to x ⇠ N (0, Cxx) and y = x>� + ✏ where ✏ ⇠ N (0,�2) and

(2.2) � := C�1

xx Cxy, �2 := Cyy � CyxC
�1

xx Cxy .

This is now the standard linear generative model from the literature, with standard parameters
� and �. Let X 2 Rn⇥p and Y 2 Rn⇥1 be training data in rectangular form.

We can consider several regression methods for finding an estimate �̂ for the linear pa-
rameters �. Di↵erent estimators are compared in terms of their risk, that for our purposes
will be defined as the expected squared error for out-of-sample predictions:

R(�̂) = EY,x⇤,y⇤ [kx>⇤ �̂ � y⇤k22 |X](2.3)

= EY,x⇤ [kx>⇤ (�̂ � �)||22 |X] + �2 ,(2.4)

where (x⇤, y⇤) are test points, fresh samples from the same distribution.
With this problem setup, there are many possible methods for performing linear regression:

Ordinary least squares (OLS): This finds the linear combination of features X that
best predict the labels Y in a least-square sense: �̂OLS = argmin� kX� � Y k2

2
. In the over-

parameterized regime it chooses from among equivalent alternatives the min-norm solution.
We obtain �̂OLS by computing X† Y , where X† denotes the pseudo-inverse of X (the inverse
that inverts only the non-zero eigenvalues of the matrix), namely:

�̂OLS = (X>X)�1X>Y if p < n(2.5)

�̂OLS = X>(XX>)�1Y if p > n ,(2.6)

assuming that rank(X) = min{p, n}.
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Ridge regression: This is a variant of least-squares, but with an l2 penalty on the regression
coe�cients, regularizing the fit: �̂� = argmin� kX��Y k2

2
+n�k�k2

2
. There are other kinds of

penalties by constraining the norm of the estimator, for instance l1 (the Lasso), elastic net.

PCA-OLS: In this case we perform OLS, but—before starting—reduce the rank of the train-
ing data by performing a PCA-based dimensionality reduction:

(2.7) �̂PCA,k = argmin
�

kXPCA,k � � Y k22 ,

where XPCA,k is the rank-k PCA approximation to X, with k < min {n, p}. There are other
equivalent formulations to PCA-OLS like the one in [14]. In our formulation,

(2.8) �̂PCA,k = (X>
PCA,kXPCA,k)

†X>
PCA,k Y.

We remark that PCA-OLS is also known as Principal Component Regression (PCR) in
the literature. In [62], Xu and Hsu studied the case where the true population covariance is
known and the projection is onto the k principal components of the population covariance.
We shall call this regression method oracle-PCR.

Partial least squares (PLS): This is a dimensionality-reduction based regression similar to
PCA-OLS. PLS not only maximizes the variance of the projected features as PCA-OLS, but
also the covariance of the projected responses and projected features. PLS is widely studied
in the chemometrics and statistics literature [58, 18, 12]. The general form of PLS can be
written as:

X ⇡ TP>; T 2 Rn⇥k, P 2 Rp⇥k.(2.9a)

Y ⇡ UQ>; U 2 Rn⇥k, Q 2 Rq⇥k.(2.9b)

When Y is an univariate response variable, as in our analysis, PLS can be formulated as
projecting the features to a Krylov space, followed by OLS [49]:

�̂PLS,k = argmin
�

k (X ⇧XPLS)� � Y k22 ,(2.10)

where ⇧XPLS = [sxy, Asxy, A2sxy, · · · , Ak�1sxy], sxy := X>Y,A := X>X, and [·] denotes col-
umn concatenation. Note that OLS, ridge regression, PCA-OLS and PLS can be unified under
the framework of continuum regression [53, 28].

Random projection methods: PCA and PLS project the original features X via a data-

dependent projection matrix ⇧ 2 Rp⇥k that is constructed from the training data. Other
classes of methods of interest use random projections ⇧, chosen independently of the training
data. All these projection methods can be written as

(2.11) �̂⇧ = (X⇧)†Y.

For example, the random orthogonal projection in [37] samples ⇧ uniformly over the set of
orthogonal matrices such that ⇧>⇧ = Ik for k  p (or ⇧⇧> = Ip for k � p); the random

Gaussian projection in [2] chooses ⇧ = [w1, · · · , wk], where wi

i.i.d⇠ N (0, p�1Ip).
Data-dependent projections enforce the rank of ⇧ be at most n, while random projection

allows rank(⇧) = min{p, k} to exceed n if p > n, k > n. In this case, instead of reducing feature
dimensions, random projection lifts the original features to a higher-dimensional space, which
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is key to kernel-based learning and deep neural networks. For example, [2] identifies this model
as a linear two-layer neural network where the first layer is random (untrained) and it performs
a random Gaussian projection and the network is optimized only through the second layer
parameters.

Generative and latent-variable models: In the classical machine learning literature, gen-
erative approaches are those that attempt to learn the joint distribution of the observable
variable X and the target variable Y [45], or the distribution of X conditioned on Y . We hint
towards this approach earlier in Section 2, where we construct the data from a joint distri-
bution p(x, y) and we show how the generative formulation translates to the more common—
discriminative—linear regression setting Y = X� + ✏.

The generative regression model we propose—at training time—generates the features X
and the targets Y as a linear function of latent variables Z 2 Rn⇥k. In particular we aim to
find Z,P,Q such that Y ⇡ ZP , and X ⇡ ZQ, where Z are the latent variables, and P 2 Rk⇥1,
Q 2 Rk⇥p are linear operators.

Note that if (Z,P,Q) is a generative model for (X,Y ), so is (ZS, S�1P, S�1Q) for any S
invertible k⇥ k matrix. Therefore we set P to be a k⇥ 1 projection matrix given by the user,
and we train the model to find Z and Q.

We define the generative linear regression as follows: �̂generative = Q̂>†P where P is a k⇥1
projection matrix given by the user, Q is a k ⇥ p operator, and Z is a n⇥ k matrix of latent
variables. Estimates for Q and Z are found by

(2.12) Q̂, Ẑ = argmin
Q,Z

kX � Z Qk22 subject to Z P = Y.

We train the model by solving (2.12) via alternately optimizing with respect to Q and Z.
Our generative model can be viewed as fitting PLS when choosing the same projection

matrix for both X and Y (i.e., T = U ⌘ Z in equation (2.9)). This is similar to the latent space
model in [17], where they relax the constraint to be ZP ⇡ Y . They provide an asymptotic
risk analysis by simplifying Q as an orthogonal projector and assuming the latent variables Z
from isotropic Gaussian distribution. Our generative model also reduces to PCA-OLS if the
constraints are removed.

3. Condition numbers, risk, and susceptibility to attack: Our contributions. Because
�̂OLS involves an inverse (or matrix solve or pseudo-inverse) of the X>X or XX> (which are
related closely to the empirical variance of the features), the risk—the expected out-of-sample
squared prediction error—will be strongly dependent on the condition number of the empirical
variance. In general, the risk will get large as the condition number gets large. And indeed, the
peaking phenomenon is related to the expectation of the condition number of this empirical
variance [17].

Ridge regression has been shown to avoid the peaking phenomenon [17], and it does so by
adding n� to the diagonal of the X>X or XX> matrix in the �̂� expression. This limits the
condition number, makes the inverse well behaved, and limits the risk.

We conjecture that any regression method that controls or limits the condition number
of the empirical covariance of the features will avoid or ameliorate the peaking phenomenon.
This leads us to consider the PCA-OLS method, which replaces X with a dimensionality-
reduced copy of X, which thereby formally has infinite condition number, but in the context
of a pseudo-inverse has a well-behaved e↵ective condition number, so long as the k-th largest
eigenvalue of empirical covariance matrix is well bounded away from 0. (The e↵ective condition
number here is the ratio of the largest eigenvalue of the matrix to the smallest non-zero
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eigenvalue.) We conjecture that generative-model regressions (described above) will avoid the
peaking for the same reasons. This also motivates us to analyze PCA-OLS under di↵erent
data generating process and compare it with other projection-based methods, some of which
do not control the condition number.

In what follows (Section 4), we provide matching upper and lower bounds on the risk for

PCA-OLS, in the setting where the “e↵ective rank” r0(Cxx) := tr(Cxx)

�1
= o(n). The notion

of e↵ective rank is particularly useful in the analysis of overparameterized models in linear
regression [3] and principal component analysis [31]. It is also closely related to the study of
basis expansion methods, which we further discuss in Section 5.3. Under the setting r0(Cxx) =
o(n), we show that PCA-OLS remains bounded for all k < n as long as the k-th largest
population eigenvalue is bounded su�ciently away from 0, whereas unregularized OLS further
requires the population covariance Cxx to have a heavy tail [3], otherwise the risk of OLS blows
up at n ⇡ p [17]. This answers RQ1: Dimensionality reduction as a form of regularization can
avoid the peaking phenomenon. We demonstrate our results in Section 7.1.

In Section 5, we consider various projection-based methods and discuss their theoreti-
cal properties. Our analysis is supported by extensive experiments in Section 7.2. Using our
framework introduced in Section 1, we vary the choice of projection dimension k to compare
the risk behaviors of these methods, where overparameterization occurs when k > n (given
p > n). Remarkably, we empirically observe that projection methods independent of the train-
ing data, like oracle-PCR and random projections that can overparameterize, perform worse
than projection methods based on the data, such as PCA-OLS. Although data-independent
projection methods show decreasing risk with further overparameterization, in practice, they
must be coupled with regularization to generalize well [63, 37] (and they do generalize well
when regularized, see Section 7.2). This answers RQ2: overparameterization is not necessary
for good generalization. For example, PCA-OLS always perform dimensionality reduction
where the optimal choice of k < min{n, p}, and it seems to outperform all (unregularized)
overparameterized methods.

Superficially, our result is in contrast with that of by Xu and Hsu [62], who perform a
principal component regression and observe a double-descent behavior. But in fact there is
no contradiction: That prior result is based not on an empirical PCA of the features; it is
based on an oracle version of principal component regression (oracle-PCR), a method that
(unrealistically) requires knowledge of the true (unobservable) generating distribution of the
features, that is widely studied in the statistics literature [41, 15] and amenable to exact
analysis using the Marchenko-Pastur distribution. Although oracle-PCR can sometimes yield
smaller risk at k > n (e.g. for isotropic covariance model), we empirically observe that it
is no better than min-norm OLS (which is PCA-OLS when k � min{n, p}, see Figure 7.4).
Moreover, with high probability, oracle-PCR su↵ers from the peaking phenomenon at k ! n
due to unbounded variance [62, 59], where PCA-OLS has a bounded variance given that the
k-th largest population eigenvalue �k is bounded away from 0. The fact that PCA-based
estimates are more robust than ones derived with oracle-PCR (at least in the regime n ⇡ k)
seems to be an instance where using the predictor of the covariance decreases the variance
of estimators with respect to using the true value. This sort of paradoxical phenomenon has
been identified in di↵erent contexts within the statistics literature [19, 55].

Going beyond benign training data, we consider “data-poisoning” attacks in Section 6,
in which the attacker is permitted to add one data point (x0, y0) to the training data prior
to training. We find that if that data point is carefully chosen to increase substantially the
condition number of the empirical covariance of the features (by, say, introducing a small
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but non-zero singular value), it also has a significant e↵ect on the risk. We show that, in the
OLS case, in the overparameterized regime p > n, the attack can be arbitrarily harmful to
the risk, because it can arbitrarily increase the condition number of the empirical variance.
This implies that overparameterized projection methods are also susceptible to attacks, unless
they are properly regularized. We show that PCA-OLS and ridge regression are not nearly as
susceptible to data-poisoning attacks, as expected, since they control the condition number of
the matrix being inverted (or e↵ective condition number of the matrix being pseudo-inverted).
We conjecture that other kinds of regularized regressions, and the generative model defined in
the previous section, will also be (at least partially) protected against such attacks. We show
empirical evidence of such claims in Section 7.1.

4. Generalization properties of PCA-OLS. In this Section we analyze the risk of the
estimator �̂PCA,k and we provide an upper bound: The risk is independent of the number of
parameters p and monotonically decreases with the number of samples n while number of
principal components k is fixed.

We define the expected value of an estimator �̂ of the form of (2.5) or (2.6) conditioned
on the training data as

(4.1) �̃ := EY [�̂ |X] = ⇧X C�1

xx Cxy = ⇧X � ,

where ⇧X is the p ⇥ p orthogonal projection onto the span of X. We note that when ⇧X is
the identity or when the span of X contains the span of �, the estimator �̂ is unbiased. Let
⇧X? be the projection to the space orthogonal to the span of X.

Following the notation from [17], the risk for the OLS case (where �̂ = �̂OLS) can be
decomposed as a quadratic sum of bias plus variance in the following way:

R(�̂ |X) = Ex⇤ [(x
>
⇤ (� � �̃))2 |X]| {z }
bias squared

+EY,x⇤ [(x
>
⇤ (�̂ � �̃))2 |X]

| {z }
variance

+�2(4.2)

= �>⇧X? Cxx⇧X? �| {z }
bias squared

+
�2

n
tr

✓
(
1

n
X>X)†Cxx

◆

| {z }
variance

+�2,(4.3)

Hastie et. al. [17] give an expectation for the risk as a function of p/n (in the limit
of n ! 1) making use of the Marchenko–Pastur distribution for eigenvalues of a random

matrix. The key step of their argument writes X = Z C1/2

xx , where Z is a standard spherical
Gaussian. With this substitution and the cyclical property of the trace, the variance term
becomes independent of Cxx and it reduces to the integral of the inverse of the singular
values of Z with respect to the Marchenko–Pastur measure. Unfortunately the transformation

X = ZC1/2

xx does not interact well with the PCA projection, which prevents us to use the
cyclic property of the trace to obtain a closed-form expression for the risk. However, we are
able to provide non-asymptotic bounds.

In order to analyze the risk of the PCA-OLS estimator �̂ = �̂PCA,k we write

�̃ = ⇧XPCA �,(4.4)

R(�̂ |X) = Ex⇤ [(x
>
⇤ (� � �̃))2 |X]| {z }
bias squared

+EY,x⇤ [(x
>
⇤ (�̂ � �̃))2 |X]

| {z }
variance

+�2(4.5)

= �>⇧XPCA? Cxx⇧XPCA? �| {z }
bias squared

+
�2

n
tr

✓
(
1

n
X>

PCAXPCA)
†Cxx

◆

| {z }
variance

+�2,(4.6)
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where XPCA, ⇧XPCA , and ⇧XPCA? are the equivalents of their non-PCA counterparts for the
rank-k PCA approximation to X. The proof of this statement is straightforward and we
include it in Supplementary A.

In Theorem 1 we provide a coarse upper bound for the risk of PCA-OLS. The proof of this
bound uses generic random matrix tools and makes no assumption on � nor the covariance
matrix Cxx. In Theorem 2 we provide more refined upper and lower bounds for the risk that
relies on the alignment of the top eigenspaces of empirical and population covariance matrices.
Theorem 2 assumes the population covariance matrix Cxx and empirical covariance 1

n
X>X

satisfy a certain set of spectral gap assumptions from [31] and [40]. These assumptions hold
when the number of samples is large enough, and the gap between distinct eigenvalues of the
population covariance is not too small. We give a complete discussion later on this Section.

Theorem 1. Let xi ⇠ N (0p, Cxx) i = 1, . . . , n, and

yi = x>i � + ✏

where ✏ ⇠ N (0,�2). Let c, t be some constants, �1 be the largest eigenvalue of Cxx, and

r0(Cxx) :=
tr(Cxx)

�1
be the e↵ective rank. Let M = c�1max

nq
r0(Cxx)

n
, r0(Cxx)

n
, t

n

o
, and assume

M < �k. Then with probability greater than 1� e�t
we have

R(�̂PCA-OLS�k | X) = B+ V+ �2,(4.7)

�pk⇧XPCA?�k
2  B  k�k2

⇣
M + �k+1

⌘
,(4.8)

�2

n

k�p

�1 +M
 V  �2

n

k�1

�k �M
,(4.9)

where k · k is the 2-norm for vectors, and k denotes the rank-k PCA with k < min {n, p}.
The proof of Theorem 1 is in Appendix A. The variance bound uses Von Neumann’s trace

inequality, and it can be quite loose when the eigenvalues of Cxx decay fast. However, the
lower bound and upper bound match when Cxx is the identity (the precise non-asymptotic
concentration statement is in Lemma 2, Appendix A). Yet in this case, the bias term can
go unbounded when p ! 1. The bias lower bound is trivial, but the estimator is trivially
unbiased if � is in the span of the data. A more refined lower bound can be computed if one
takes into consideration the alignment between the eigenspaces of the data and the eigenspaces
of the population covariance (see Theorem 3). The bias and variance upper bounds are mainly
based on Koltchinskii and Lounici’s concentration inequality [30], similar to Lemma 35 of [3].
Their theorem statements are reproduced in Appendix A for convenience.

The upper bound in Theorem 1 is well-controlled if: 1) The e↵ective rank r0(Cxx) =
tr(Cxx)

�1

grows slower than n when p increases, so M ! 0 as n ! 1, which implies bounded bias and
is necessary for bounded variance; 2) The k-th largest eigenvalue �k is bounded away from
zero and independent of p, and thus �1/�k is well-conditioned, yielding a small variance. This
dimensionless bound shows that PCA-OLS does not exhibit the peaking phenomenon under
mild conditions on the population covariance structure.

Tighter risk bounds using spectral gap assumptions

In order to use perturbation analysis to estimate the distance between empirical covari-
ance eigenvectors and their corresponding population covariance eigenvectors, we require a
minimum separation among the population covariance eigenvalues. A classical assumption
considers a population covariance with possibly repeated eigenvalues, but it requires all em-
pirical covariance eigenvalues corresponding to the same population eigenvalue to be tightly
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clustered. Let

(4.10) E := Cxx �
1

n
X>X

be the di↵erence between the empirical and population covariance (i.e., the perturbation).
Let �1 � . . . � �p be the eigenvalues of the population covariance matrix Cxx. Let �r =
{i : �i(Cxx) = �r} be the r-th eigenvalue cluster and mr := card (�r) be its multiplicity.
Define gr := �r��r+1 > 0, r � 1. Let ḡr be the spectral gap of eigenvalue �r, which is defined
as:

ḡr =

(
g1 r = 1

min (gr�1, gr) r � 2 .

The assumption used in the analysis [31] asks that the perturbation E is small, in the sense
that kEkop < ḡr

2
, such that all the empirical eigenvalues �̃j , j 2 �r are covered by an interval

(�r � kEkop,�r + kEkop) ⇢ (�r � ḡr/2,�r + ḡr/2)

and the rest of the empirical eigenvalues are outside of the interval

(�r � (ḡr � kEkop) ,�r + (ḡr � kEkop)) � [�r � ḡr/2,�r + ḡr/2] .

To correctly align the leading k clusters of empirical eigenvalues to their population counter-
parts, the diameter of each population eigenvalue cluster must be strictly smaller than the
distance between any two clusters. To this end, we assume

(4.11) kEkop <
1

4
min
1rk

ḡr,

which is the assumption we will use to apply the concentration results from [31] to the top k
eigenspace. In addition, we require

(4.12) sgn (�i > �j) 2e�i > sgn (�i > �j) (�i + �j) , 8i 2 {1, · · · , k}, j 2 {1, · · · , p}, j 6= i,

which is the condition for the top k eigenspace alignment results in [40].
We remark that the assumptions (4.11) and (4.12) hold when assuming the population

spectral gap for the top k eigenspaces, and the sample size n are su�ciently large. From
Theorem 9 in [30], there exists a constant c such that for any constant 1 < t < n, with
probability at least 1� e�t:

(4.13) kEkop  c�1max
nrr0(Cxx)

n
,
r0(Cxx)

n
,

r
t

n

o
.

Therefore if k is fixed, the assumptions may continue to hold even when p is large, as long
as the e↵ective rank r0(Cxx) :=

tr(Cxx)

�1
is o(n). Note that these assumption do not hold when

Cxx is the identity (i.e., isotropic case), nor for the spiked covariance model in [26] (where the
top eigenvalue is �1 > 1 and the rest are all 1).

Theorem 2. Let xi ⇠ N (0p, Cxx), i = 1, . . . , n, satisfying spectral gap assumptions (4.11)
and (4.12). Let

yi = x>i � + ✏
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where ✏ ⇠ N (0,�2). Let wij = �j

�̃i
, k2

j
= �j (�j + tr(Cxx)), and t be a constant. Then with

probability greater than 1�
P

k

i=1

P
p

j=1,j 6=i

4wijk
2
j

nt(�i��j)
2 we have

V  �2

n

kX

i=1

✓
�i

�i + kEkop
+ t

◆
.(4.14)

Furthermore, if we assume k is fixed and n � k, n ! 1, with probability greater than any

constant a 2 (0, 1) we have

(4.15) V � �2

n

kX

i=1

✓
�i

�i � kEkop
� o(1/n)

◆
.

The proof of Theorem 2 is in Appendix B. Finally, we produce a lower bound for the bias
by treating � as random, which provides an “average-case” analysis.

Theorem 3. Let xi ⇠ N (0p, Cxx), i = 1, . . . , n, satisfying spectral gap assumption (4.12).
Let

yi = x>i � + ✏

where ✏ ⇠ N (0,�2), and � is randomly drawn from an isotropic distribution, where E� [�] =
0, E� [� �>] = I. Let k2

j
= �j (�j + tr(Cxx)), and t be a constant. Then with probability at least

1�
P

k

i=1

P
p

j=1,j 6=i

4�jk
2
j

nt(�i��j)
2 we have

(4.16) E� [B] �
pX

i=k+1

�i � kt.

The proof of Theorem 3 is in Appendix C. Theorem 2 shows that the variance of PCA-
OLS depends on the spectral gap for the leading k eigenvalues: larger spectral gap yields
better control of the variance. Theorem 3 illustrates that choosing large k decreases the bias
on average; it also shows that the larger the spectral gap, the smaller the constant t can be
chosen, and thus the tighter the lower bound. As we shall see in Section 5.1, this risk bound
has the same leading order term as oracle-PCR.

We remark that for a non-vacuous probability bound, we require �i � �j ⇡ 0 for i =
1, · · · , k, j =, k+1, · · · , p (i.e., in the gapped covariance model, or exponential decay model),
such that the terms associated with j = k + 1, · · · , p vanish:

kX

i=1

X

j 6=i

4�jk2j

nt (�i � �j)
2
⇡

kX

i=1

kX

j=1

4�2
j
(�j + tr(Cxx))

nt (�i � �j)
2

.(4.17)

Since k is fixed, the numerator is dominated by tr(Cxx), which is o(n) given that r0(Cxx) = o(n)
and �1 is fixed. Thus, (4.17) tends to 0 (slowly) when n ! 1.

We note that [56] also provides a non-asymptotic upper bound for the risk of PCA-OLS
using perturbation analysis. However, they rely on the results from the upper bounds on the
excess risk of principal component analysis—the di↵erence between using the empirical eigen-
projectors and the population eigen-projectors. In addition to perturbation arguments, we
use the notion of e↵ective rank to characterize the data model, which is particularly useful in
analyzing the overparameterized setting.
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5. Comparison of PCA-OLS with other projection-based methods.

5.1. Oracle-PCR. Xu and Hsu [62] analyzed the double-descent phenomenon of perform-
ing principal component regression using the population covariance matrix (instead of the
empirical covariance as in PCA-OLS), which we call oracle-PCR. They considered � as ran-
dom to derive the asymptotic risk. Wu and Xu [59] extended the analysis of oracle-PCR to
more general setting of � (i.e., either fixed or random) and its alignment with the eigenvalues
of Cxx.

We sketch the risk for oracle-PCR, following equation (4.6) by replacing the empirical
principal components with their population counterparts. Since the data is generated from a
Gaussian distribution, we can assume Cxx = diag(�1, · · · ,�p) without loss of generality. Thus,
when Cxx is diagonal with �1 � · · · � �p, oracle-PCR essentially truncates the design matrix
X 2 Rn⇥p to its first k columns. In other words, X ⇧oracle-PCR = X[:k] 2 Rn⇥k, where X[:k]

denotes the submatrix of the first k columns of X. Let �̂k = X†
[:k]

Y 2 Rk and ~0 2 Rp�k. The
estimator is given by:

(5.1) �̂oracle-PCR-k = [�̂k,~0] 2 Rp.

Let Cxx,[k:] 2 R(p�k)⇥(p�k) be the principal submatrix of Cxx by deleting the first k rows
and columns. Let X[:k] be the submatrix of the first k columns of X. Recall that Cxx =P

p

j=1
�juju>j , and � = C�1

xx Cxy ⌘
P

p

j=1
bjuj . Let the empirical eigenvalues of 1

n
X>

[:k]
X[:k] be

�̃0
1
� · · · � �̃0

n, and ũ0
i
be the empirical eigenvectors �̃0

i
. We have

R(�̂oracle-PCR,k |X) = �>Cxx,[k:] � +
�2

n
tr

✓
(
1

n
X>

[:k]
X[:k])

†Cxx

◆
+ �2(5.2)

=
pX

i=k+1

b2i�i +
�2

n
tr

0

@
 

kX

i=1

1

�̃0
i

ũ0iũ
0>
i

!0

@
pX

j=1

�juju
>
j

1

A

1

A+ �2.(5.3)

Consider the model in Theorem 3 by treating � as random where E[b2
i
] = 1. The bias

of oracle-PCR (i.e., first term in (5.3)) has expected value
P

p

i=k+1
�i, similar to PCA-OLS

(see Theorem 3). The bias also illustrates the alignment between the coe�cients of � and the
principal components: if they are misaligned in the sense that bi is large for i = k + 1, · · · , n,
then the bias is large.

Moreover, oracle-PCR tends to have larger variance than PCA-OLS. Indeed, the submatrix
X[:k] 2 Rn⇥k has smaller empirical singular values than the original data X, �̃0

i
 �̃i for

i = 1, · · · , k. This is a consequence of the interlacing theorem of singular values [47].
However, it is possible that the empirical eigenvectors of oracle-PCR (i.e. ũ0

i
) have better

alignment with the population eigenvectors (i.e. ui) than those of PCA-OLS (i.e. ũi). Thus,
it is not clear whether PCA-OLS always has a smaller variance. Nevertheless, when k ⇡ n,
oracle-PCR works with an ill-conditioned X[:k], while PCA-OLS works with a rank-k matrix
XPCA,k that is well-conditioned, given that the e↵ective rank r0(Cxx) = o(n) and the k-th
largest population eigenvalue is bounded away from 0 (see Theorem 1).

Remarkably, even when the true population covariance is known, use of the empirical
covariance could yield better performance; we demonstrate this in Section 7.2.

5.2. Other projection methods. We briefly discuss a few other projection methods.

Parial Least Squares (PLS): Similar to PCA-OLS, PLS is a data-dependent dimension-
ality reduction method. Helland and Almøy in [18] compared the asymptotic performance
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of PCA-OLS versus PLS in the underparameterized regime where p is fixed and n ! 1 .
They analyzed the alignment of data features and the regression coe�cient via the notion of
eigenvalue relevance: an eigenvalue is irrelevant for the regression if it corresponds to the prin-
cipal component that has small correlation with the dependent variable Y . They showed that
PCA-OLS performs well when the irrelevant eigenvalues are extremely small or extremely
large, while PLS does well for intermediate irrelevant eigenvalue. In the overparamaterized
regime, Cook et al. analyzed PLS for various alignments of n, p in the asymptotic regime [12].
They showed that PLS achieves its best performance in data models with many weak features
(i.e., abundant regression).

Random orthogonal projection: Another feature extraction method is random orthogonal
projection. The recent work [37] provides a very thorough analysis of the risk in this case,
interpreting this model as a two-layer linear neural network, where the first layer is a random
orthogonal projection (not trained) and the second layer performs ridge regression.

In the isotropic case where Cxx is the identity, random orthogonal projections are equiv-
alent to performing oracle-PCR: Since all the population eigenvalues are the same, choosing
the first k principal components in oracle-PCR is equivalent to randomly select k orthogonal
directions in random orthogonal projection.

Random Gaussian projection:

In [2], Ba et al. analyzed the asymptotic risk of random Gaussian projections in the iso-
tropic covariance case, assuming that both the data X and the projection matrix ⇧ are gener-
ated from a Gaussian distribution with zero mean and identity covariance. More quantitative
comparisons with PCA-OLS can be found in Supplementary B.

5.3. Data models with increasing number of features and the choice of k. Increasing
number of input features can improve generalization for certain data models [3] and methods
(such as PLS in abundant regression), but this is not always true. There are some explicit
examples, like the one in Section 3 of [23] where an increasing number of features deteriorates
the performance.

In practice, the number of features can be made arbitrarily large when fitting the original
input features with a flexible functional form, such as a data-independent projection method,
or a basis-function expansion (for example, a polynomial or a Fourier series, like the model
analyzed in [60] and [20]). In the basis-function expansion setting, each data point yi is asso-
ciated with a (scalar or vector) location ti in some ambient space Rp, and the new features
[X]ij are created by basis-function evaluations gj(ti). The expansion of the locations ti into
the feature matrix X 2 Rn⇥k can be viewed as a feature embedding. Hence, the number of
functions gj(t) represents the number of features k; if the basis is infinite, k can be made ar-
bitrarily large. Another popular non-parametric method, Gaussian Processes (GPs), can also
have infinite number of parameters; any GP can be seen as the limit as k ! 1 of a specifically
created and regularized least-squares, with Mercer’s Theorem and the kernel trick converting
the k-sums in the outer product XX> into kernel-function evaluations [34, 20].

Choosing k is an active area of data science research: it appears in the context of projection-
based methods, basis-function expansion, and the architectural design of neural networks. In
practice, it is typically addressed using cross-validation. The choice of k in PCA-OLS has
been studied extensively: from a feature selection perspective, [27] reviewed some iterative
procedures to select variables; from a model selection perspective, [21] discussed an improved
Bayesian model evidence criteria to select the number of components in a high-dimensional,
small sample size setting.
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6. Adversarial attacks in linear regression. Adversarial attacks are a very interesting
phenomenon that was discovered in the context of deep learning, where imperceptible pertur-
bations of the data can produce huge changes in the predictions of classifiers [54].

Recent work proves that adversarial examples are ubiquitous for classification in the over-
parameterized regime [5]: Assuming non-zero label noise, the set of adversarial examples is
asymptotically dense in the support of data, so there is an adversarial example arbitrarily
close to any data point.

In the context of regressions, many kinds of adversarial attacks had been studied as well
[8, 32, 33, 24, 46]. In the robust regression literature, most studies rely on the assumption that
the feature vector � is sparse [61, 11, 38]. For example, [11] showed that data poisoning attacks
can completely change the support of � in sparse regression. Here, we provide straightforward
analysis that does not require sparsity assumptions, which is naturally hinted in our discussion
of data models with large number of weak features (see Section 5.3).

In what follows, we consider only a “data-poisoning” attack, in which the attacker adds a
single data point (x0, y0) to the training data with the goal of having it (dramatically) increase
the risk on test data.

Definition 1. (Data-poisoning attack). Let (X,Y ) be the original training data. Let us con-

sider an additional adversarial pair (x0, y0), and let:

X̃ =


X
x>
0

�
2 R(n+1)⇥p, Ỹ =


Y
y0

�
2 Rn+1.

The attacker’s goal is to maximize the empirical risk subject to the constraints on both x0 and

y0 (note that x, y might be in di↵erent units, so we shall apply the constraint separately).

(6.1) max
kx0k✏,ky0k✏

kỸ � X̃�k2.

We find that, for ordinary (unregularized) least squares, in the overparameterized regime,
data-poisoning attacks can be arbitrarily successful. The fundamental reason is that the new
p-dimensional data point x0 can lie very near (but not precisely in) the n-dimensional sub-
space spanned by the extant data X; it then increases dramatically the condition number
of the empirical covariance X>X and makes the ordinary least-squares regression arbitrarily
sensitive to the training labels Y and y0. This is in contrast to the underparameterized regime,
in which the e↵ect of the attack is limited [33]. The following propositions are very simple.
Their proofs are in the Supplementary Material.

Proposition 2. In the overparameterized regime, ordinary least squares is arbitrarily sen-

sitive to data-poisoning attacks. The risk tends to infinity when the additional adversary fea-

ture x0 is arbitrarily close to the column space of X. In other words, let X̃ = [X>;x0]>. If
x0 =

P
n

i=1
↵ivi + � where Col(X) = span{v1, · · · , vn}, then R(�̂ | X̃) ! 1 when � ! 0.

In contrast, to make successful data-poisoning attack in the underparameterized regime,
X>X has to be ill-conditioned.

Proposition 3. In the underparameterized regime, ordinary least squares is arbitrarily sen-

sitive to data-poisoning attack if the smallest eigenvalue of X>X is smaller than the attack

strength ✏.

Corollary 4. If the k-th largest eigenvalue of X>X is much greater than ✏, then PCA-OLS

is robust to data-poisoning attack.



14 HUANG, HOGG, & VILLAR

Proposition 3 and Corollary 4 show that PCA-OLS are robust to data-poisoning attack
in the natural PCA setting where the first k eigenvalues have high energy. In other words,
data-poisoning attack fails if the empirical covariance of the features is well-conditioned. The
same reasoning tells us that ridge regression will be robust to this specific attacks.

We conjecture, and our experiments suggest, that this particular attack will also become
bounded for the generative model.

We emphasise that the attacks described in this Section are specifically tailored to exploit
the vulnerability of unregularized ordinary least squares. It remains an open problem to study
attacks tailored to the other regressions that maximizes the risk. For instance, one could
presume an attack for PCA-OLS that imposes a structure in which y is predicted by the
low variance components of x. Nevertheless, PCA-OLS can easily detect such attack with
an outlier-based defense strategy: If the attack aims to change the k-th largest empirical
eigenvalue, then the adversarial pair must lie outside the rank-k principal component subspace,
and the magnitude of the attack must grow with n. Thus, the poison point will appear as
an outlier compared to the original data features, given that n is large and the population
covariance has most energies in the first k components.

Our results also suggest new insights of using PCA as a data preprocessing to defend
adversarial attacks in classification settings [7, 10, 1]. [1] showed that the e↵ectiveness of PCA
defense depends on choosing the correct number of principal components, in the sense that
it matches the intrinsic dimension of the data manifold. This is transparent in our Corollary
4: If PCA-OLS chooses a wrong k that corresponds to a low variance components, the attack
becomes considerably powerful.

7. Numerical experiments. We perform numerical experiments1 on data generated by
the model described in Section 2.

7.1. Generalization and robustness as a function of n, p. We consider two settings, one
in which the number of features p is fixed and the number of samples n vary, and another in
which the number of samples is fixed and the number of features vary. In order to define the
latter we consider a large (N + 1) ⇥ (N + 1) covariance matrix ⌃N for N = 512 constructed
as W W> where W is a random matrix with standard i.i.d Gaussian entries. We manipulate
the eigenvalues of ⌃N to produce a gap, where the top k = 32 eigenvalues are larger than the
rest (the manipulation is done by rescaling its top 32 eigenvalues to be 100 times larger). We
define Cp

xx to be the first p⇥ p block of ⌃N . Since the eigenvectors of ⌃N are incoherent with
the axis, we obtain that Cp

xx exhibits the same structure, as illustrated in Figure 7.1 (left).
In Figures 7.2 and 7.1 (right) we report the mean square prediction error (MSE), defined

as

(7.1) MSE(�̂, Xtest, Ytest) =
1

T

TX

t=1

X

(x⇤
i ,y

⇤
i )2(X⇤

t ,Y
⇤
t )

1

ntest

kx⇤i �̂t � y⇤i k2 ,

where Xtest, Ytest denote the test sets with T trials, and each trial (X⇤
t , Y

⇤
t ) consists of ntest of

data samples. We choose T = 16, ntest = 256 in our simulations.
For estimators �̂OLS, �̂generative, �̂� (where the ridge optimal regularization parameter � is

found with cross-validation), and �̂PCA,k for k = 32. We compare with the prediction error of

the true � and with the prediction error of the null estimator �̂ = 0.
In Figure 7.2 we fix number of samples n = 64 and vary the number of features p. We

observe that OLS exhibits the peaking phenomenon, whereas the other regularized methods do

1Code available at: https://github.com/nhuang37/dimensionality reduction

https://github.com/nhuang37/dimensionality_reduction
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Figure 7.1. (Left)Eigenvalues of the empirical and model covariance Cp
xx for p = 64, with a gap at com-

ponent number k = 32. (Right) MSE for prediction of y on test under data-poisoning attacks of magnitude
✏ = 1, with fixed n = 64 and varying p. The attacks in OLS for p > n are arbitrarily successful, while not so
e↵ective for other regularized methods.

Figure 7.2. (Left) MSE for prediction of y on test sets. We consider di↵erent regression methods, namely
OLS, ridge regression (with optimal ridge parameter found by cross-validation), the generative model described
in Section 2, and OLS performed on a PCA projection of the data to dimension k = 32. We also report the
performance of the null estimator �̂ = 0, and the true linear coe�cient � (delimiting the shaded region). In
these experiments we fix the number of samples n = 64, and we vary the number of features p generating the
data according to the model described in Section 7. (Right) MSE for prediction of y with fixed number of
features p = 128 and varying the number of samples n. We observe that OLS exhibits the peaking phenomenon,
whereas the other (regularized) estimators have practically the same, monotonically decreasing risk.

not. In the overparameterized regime, the risks of all the estimators coincide and consistently
decrease with p. The generative model fails to predict the data when the number of features is
less than k. This is expected as the latent space has too much freedom, or the latent variable
is too powerful such that the model doesn’t utilize the signals from the training labels.

In Figure 7.2 we fix the number of features p = 128 and vary the number of samples.
We observe that ordinary least squares exhibit the peaking phenomenon and the more data

can hurt behavior at around p ⇡ n, while the rest of the regularized estimators perform sim-
ilarly, with monotonically decreasing mean square prediction error as the number of samples
increases.

In Figure 7.1 (right) we consider the setting from Figure 7.2 (left), and we evaluate the
data-poisoning attack described in Section 6 with ✏ = 1. We observe the ordinary least squares
estimator is very susceptible to the attack, whereas the regularized methods are robust.

7.2. Comparison of projection-based methods and the choice of k. We compare the
performance of five di↵erent projection-based methods as a function of the projection dimen-
sion k: PCA-OLS; oracle-PCR from [62]; partial least squares from [12]; random Gaussian
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Figure 7.3. Di↵erent covariance structures in our experiments: isotropic covariance refers to Cxx being
the identity ; gapped covariance refers to a planted eigenvalue gap (at component 16); exponential(polynomial)
decay refers to the di↵erent decay patterns of the eigenvalues. All the largest eigenvalue is chosen to be 1.

Figure 7.4. High signal-to-noise (SNR=16) setting with di↵erent covariance structure. Random orthogonal
projection method is labeled as “orthogonal” for the case without regularization, and “ortho+ridge” for the case
with optimally-tuned ridge regularization (by leave-one-out-cross-validation).

projection from [2]; and orthogonal projection from [37] (including both the unregularized
case and optimally-tuned ridge regression case).

To understand the interaction between the method and the data generating process, we
consider four di↵erent population covariance structures, as illustrated in Figure 7.3. For each
covariance model, we fix the number of samples to n = 50 and the number of parameters
to p = 75, and vary the projection dimension k. We generate � ⇠ N (0, Ip), corresponding
to the condition in Theorem 3. The performance is evaluated by out of sample mean square
error (equation (7.1)) averaged over T = 10 trials with ntest = 256. For all random projection
methods, we also averaged over five experiments with random weights.
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Figure 7.4 illustrates the advantage of data-dependent dimensionality reduction, as com-
pared to those overparameterized projection methods that are independent of training data
and without regularization, especially when the population covariance exhibits eigenvalue de-
cay. Remarkably, oracle-PCR performs worse than PCA-OLS at almost all choices of k, as
analyzed in Section 5.1.

Similarly, random Gaussian projection and random orthogonal projection are inferior to
PCA-OLS due to the lack of proper regularization. Nevertheless, random orthogonal pro-
jection with ridge regularization achieves similar minimum risk as PCA-OLS, where further
overparameterization improves its performance for most cases.

In Supplementary D we provide further numerical experiments where we investigate di↵er-
ent signal-to-noise ratio (SNR = k�k

�
) and the setting where the coe�cients of � are misaligned

with the eigenvalues of Cxx.

8. Discussion. Regularization plays an important role in inference. Large-capacity models
that can perfectly fit the training data will also generalize well if appropriate regularization is
in play [50]. In this article we studied di↵erent regression models in the context of the double-
descent phenomenon [4], with di↵erent forms of regularization. We show that dimensionality
reduction is indeed a form of regularization, one that under certain assumptions avoids the
“peaking phenomenon” (avoids, in the sense that the risk is bounded when the number of
features equals the number of samples). Our di↵erence with previous work in [62] is that our
dimensionality reduction is based on the empirical singular values of the features (it is derived
from a standard principal components analysis); it is not based on the eigenvalues of the
unobservable (true) population covariance.

More precisely, we provide non-asymptotic bounds for the risk of PCA-OLS, which is
the ordinary least squares estimator following a projection of the features to their principal
components (also known in the literature as PCR or principal component regression). Our
main results hold in the overparameterized regime, where the number of samples n is smaller
than the number of parameters p, and the e↵ective rank of the data is o(n). A future research
direction is to analyze PCA-OLS in the asymptotic regime. A particularly interesting question
is under what data conditions can we prove that the risk of PCA-OLS decreases with p in the
asymptotic regime n

p
= � < 1.

Besides analyzing the generalization performance of a particular method, we compare
double-descent curves of various projection-based methods. Based on our empirical results,
we conjecture that data-dependent dimensionality reduction methods are superior to those
independent of training data that lack proper regularization. Alternatively, we can view dif-
ferent projection methods as feature selection procedure. For example: PCA-OLS chooses
features based on the maximum variance direction in the data; oracle-PCR chooses features
with the prior from the true data model; random projection selects feature randomly. Our
findings are connected with the discussion in [6] that the double-descent curve depends on the
feature selection procedure. Moreover, we show that it is also driven by the data models and
regularization.

We also show that unregularized least squares is extremely vulnerable to data-poisoning
attacks in the overparameterized regime, whereas other regularized methods are not vulner-
able. Our approach has the limitation that the attacks considered were tailored to ordinary
least squares and not the regularized methods. We conjecture, however, that it is much harder
to achieve arbitrarily large risk when attacking regularized methods.

Many di↵erent forms of regularization have similar flavors (for instance l2, l1 regulariza-
tion). We propose a generative model that is closely related to PCA-OLS and PLS as shown
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in Section 2. Intuitively, in the overparameterized regime, the generative model learns a low-
dimensional latent space that fits the data and labels as closely as possible, while PCA-OLS
projects the data into a low-dimensional space that is close to the original data space in terms
of the projection error.

Finally, we emphasize that the motivation behind the generative model comes from the
physical sciences, where many models used in practice have the generative structure, for
instance [44]. In this work, we have proved that its special case, PCA-OLS, does not exhibit
the “peaking phenomenon”. Our empirical results suggest that this may hold generally for
generative models. Analysis of these kinds of models is a good direction for future research.

9. Acknowledgments. We thank Joshua Agterberg, Edgar Dobriban, Liliana Forzani,
Daniel Hsu, Carey Priebe, Liza Rebrova, Bernhard Schölkopf and Rachel Ward for relevant
discussions. We also thank the anonymous reviewers for giving us constructive feedback that
helped us improve this manuscript significantly. SV is partially supported by NSF DMS
2044349, EOARD FA9550-18-1-7007, and the NSF-Simons Research Collaboration on the
Mathematical and Scientific Foundations of Deep Learning (MoDL) (NSF DMS 2031985).

Appendix A. Proof of Theorem 1.
A key ingredient for the proof of Theorem 1 is the concentration of the eigenvalues of the

empirical covariance matrix around the respective eigenvalues of the population covariance
matrix. In particular we use the following uniform concentration result by Koltchinskii and
Lounici [30].

Theorem 9 in [30]. Let x1, · · · , xn be the i.i.d. samples from a Gaussian distribution with

mean 0 and covariance Cxx. Let X be the sample matrix where the i-th row is given by xi.
There exists a constant c such that for any constant 1 < t < n, with probability at least 1�e�t

:

(A.1) kCxx �
1

n
X>Xkop  c�1max

nrr0(Cxx)

n
,
r0(Cxx)

n
,

r
t

n

o
,

where �1 is the largest eigenvalue of Cxx, and r0(Cxx) :=
tr(Cxx)

�1
is the e↵ective rank.

We first prove Lemmas 1 and 2, and Theorem 1 will follow.

Lemma 1. Let E := Cxx � 1

n
X>X. Then

(A.2) B  k�k2
⇣
2kEkop + �k+1

⌘
.

Proof. Let the spectral decomposition of the empirical covariance matrix be:

(A.3)
1

n
X>X =

min {n,p}X

i=1

�̃iũiũ
>
i , X>

PCA,kXPCA,k = n
kX

i=1

�̃iũiũ
>
i .

Thus:

⇧XPCA? = I � (X>
PCA,kXPCA,k)

†X>
PCA,kXPCA,k = I �

kX

i=1

ũiũ
>
i ,(A.4)

where I is the p⇥ p identity matrix. The bias term can be bounded by:

B = tr(�>⇧XPCA? Cxx⇧XPCA? �)(A.5)

 k⇧XPCA? Cxx⇧XPCA?kop k�k
2 ⌘ kCkop k�k2,(A.6)
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where (A.6) follows from Von Neumann’s trace inequality. k · kop is the operator-norm for
matrices. Note that:

C = (I �
kX

i=1

ũiũ
>
i )Cxx (I �

kX

i=1

ũiũ
>
i )(A.7)

= (I �
kX

i=1

ũiũ
>
i ) (Cxx �

kX

i=1

�̃iũiũ
>
i ) (I �

kX

i=1

ũiũ
>
i ).(A.8)

Equation (A.8) holds because (I�
P

k

i=1
ũiũ>i ) and

P
k

i=1
�̃iũiũ>i are orthogonal. If k = p < n,

then kI �
P

k

i=1
ũiũ>i kop = 0. So, the bias is trivially 0. Otherwise kI �

P
k

i=1
ũiũ>i kop = 1:

kCkop  kCxx �
kX

i=1

�̃iũiũ
>
i kop = kCxx �

nX

i=1

�̃iũiũ
>
i +

nX

i=k+1

�̃iũiũ
>
i kop(A.9)

 kCxx �
1

n
X>Xkop + k

nX

i=k+1

�̃iũiũ
>
i kop(A.10)

= kCxx �
1

n
X>Xkop + �̃k+1(A.11)

 2kCxx �
1

n
X>Xkop + �k+1,(A.12)

where the last inequality follows from observing that, for any 1  k < n:

(A.13) kCxx �
1

n
X>Xkop = max

i={1,··· ,n}

����i � �̃i

��� �
����k+1 � �̃k+1

��� .

Lemma 1 shows essentially the same bound that Theorem 4 of [3], with an extra term coming
from the k + 1-th eigenvalue of Cxx (that in practice should be small for the data models in
which PCA is suitable). Note that (A.10) can be quite loose. It could be refined by applying
the Davis-Kahan theorem under additional assumptions on the eigenvalue separation.

Lemma 2. Let E := Cxx � 1

n
X>X. Assume kEkop < �k, then

(A.14)
�2

n

k�p

�1 + kEkop
 V  �2

n

k�1

�k � kEkop
.

Proof. Recall from (A.3), �̃i denotes the i-th eigenvalue of (1/n)X>
PCA

XPCA, for i =
1, · · · , k. �i denotes the i-th eigenvalue of Cxx. Thus, 1/�̃1+k�i is the i-th largest eigenvalue
of ( 1

n
X>

PCA
XPCA)†. By Von Neumann’s trace inequality we have:

(A.15) tr

✓
(
1

n
X>

PCAXPCA)
†Cxx

◆


kX

i=1

�i

�̃1+k�i

 1

�̃k

kX

i=1

�i.

By (A.13), �̃k � �k � kEkop > 0, where the second inequality holds from assumption. So we
obtain:

(A.16) V =
�2

n
tr

✓
(
1

n
X>

PCAXPCA)
†Cxx

◆
 �2

n

k�1

�k � kEkop
.
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In order to get a lower bound we use Von Neumann’s trace inequality:

(A.17) tr

✓
(
1

n
X>

PCAXPCA)
†Cxx

◆
�

kX

i=1

�p�i+1

�̃1+k�i

� 1

�̃1

kX

i=1

�p�i+1.

By (A.13), �̃1  �1 + kEkop, so we obtain:

(A.18) V =
�2

n
tr

✓
(
1

n
X>

PCAXPCA)
†Cxx

◆
� �2

n

k�p

�1 + kEkop
.

Combining the upper with the lower bound gives us the result.

Proof of Theorem 1. From lemma 1 and lemma 2, we can control the bias and variance
simultaneously via kEkop. We complete the proof by using the upper bound of kEkop in (A.1).

Appendix B. Proof of Theorem 2 . In order to prove Theorem 2 we use the following
results from [40]:

Corollary 4.1 in [40]. For any weights wij and real t > 0 :

(B.1) P

0

@
X

i 6=j

wij heui, uji2 > t

1

A 
X

i 6=j

4wijk2j

nt (�i � �j)
2
,

where k2
j
= �j (�j + tr(Cxx)) for data generated from Gaussian distribution, and wij 6= 0 when

�i 6= �j.

Let Pr = uru>r , P̂r = ũrũ>r be the empirical and population eigen-projectors, respectively.
We need the following set of concentration results from [31]:

Equation 1.3 in [31].

(B.2) EkP̂r � Prk22 = (1 + o(1))
Ar(Cxx)

n
,

where Ar(Cxx) = 2 tr (PrCxxPr) tr (CrCxxCr) and the operator Cr is defined as Cr :=P
s 6=r

Ps
µr�µs

.

Equation 1.4 in [31].

(B.3) Var
⇣
kP̂r � Prk22

⌘
= (1 + o(1))

B2
r (Cxx)

n2
,

where Br(Cxx) := 2
p
2 kPrCxxPrk2 kCrCxxCrk2.

Note that under mild assumption, Ar(Cxx) and Br(Cxx) have the same order as the
e↵ective rank r0(Cxx). Thus, if r0(Cxx) = o(n), then the empirical eigen-projectors concentrate
on their population counterparts. This is the crucial assumption to the following asymptotic
normality result:

Equation 1.5 in [31]. Assume e↵ective rank r0(Cxx) = o(n):

(B.4)
kP̂r � Prk22 � EkP̂r � Prk22

Var1/2
⇣
kP̂r � Prk22

⌘ ⇠ N (0, 1).
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When stating our concentration results, we often build on the result for the i-th eigenspace,
and then use an intersection bound to conclude the probability for the leading k eigenspaces:

Let Ei be the i-th event. By union bound,

(B.5) P

 
k[

i=1

Ec

i

!


kX

i=1

P (Ec

i ) .

Using De Morgan’s Law,

(B.6) P

  
k\

i=1

Ei

!c!


kX

i=1

[1�P (Ei)] =) P

 
k\

i=1

Ei

!
�

kX

i=1

P(Ei) + 1� k.

Proof of Theorem 2. For the upper bound we write

tr

✓
(
1

n
X>

PCAXPCA)
†Cxx

◆
= tr

0

@(
kX

i=1

1

�̃i

ũiũ
>
i ) (

pX

j=1

�juju
>
j )

1

A =
kX

i=1

pX

j=1

�j

�̃i

hũi, uji2(B.7)

=
kX

i=1

0

@�i

�̃i

hũi, uii2 +
pX

j 6=i,j=1

�j

�̃i

hũi, uji2
1

A(B.8)


kX

i=1

0

@ �i

�i + kEkop
hũi, uii2 +

pX

j 6=i,j=1

�j

�̃i

hũi, uji2
1

A ,(B.9)

where the last inequality follows from (A.13). Now, using Corollary 4.1 from [40] (equation
(B.1)), for each i, the following event

(B.10)
X

j 6=i

�j

�̃i

hũi, uji2  t

holds with probability at least 1 �
P

j 6=i

4wijk
2
j

nt(�i��j)
2 , where wij = �j

�̃i
, k2

j
= �j (�j + tr(Cxx)).

Then the probability of all i = 1, · · · , k terms being upper bounded by t is at least 1 �
P

k

i=1

P
j 6=i

4wijk
2
j

nt(�i��j)
2 . Together with the fact that hũi, uji2  1, we have

(B.11) tr

✓
(
1

n
X>

PCAXPCA)
†Cxx

◆


kX

i=1

✓
�i

�i + kEkop
+ t

◆
,

with probability at least 1 �
P

k

i=1

P
j 6=i

4wijk
2
j

nt(�i��j)
2 . Note that this probability is valid when

ro(Cxx) :=
tr(Cxx)

�1
= o(n) when k is fixed while n, p ! 1.

For the lower bound we start from equation (B.8) and drop the second term where j 6= i:

tr

✓
(
1

n
X>

PCAXPCA)
†Cxx

◆
�

kX

i=1

�i

�̃i

hũi, uii2 �
kX

i=1

�i

�i � kEkop
hũi, uii2.(B.12)

Let �(a) denote the standard normal distribution. Assume the e↵ective rank r0(Cxx) = o(n)
and apply the asymptotic normality result by [30]:

P

0

@kP̂r � Prk22 � EkP̂r � Prk22
Var1/2

⇣
kP̂r � Prk22

⌘  a

1

A = �(a).(B.13)
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Now, observe that

(B.14) kP̂r � Prk22 = kP̂rk22 + kPk22 � 2hP̂r, Pri = 2� 2hũi, uii2.

Thus, with probability �(a) :

(B.15) hũi, uii2 � 1� 1

2

⇣
EkP̂r � Prk22 + aVar1/2

⇣
kP̂r � Prk22

⌘⌘
= 1� o(1/n),

where the expectation and the variance are given in equation (B.2) and (B.3). Recall that
both of them have the same order as r0(Cxx)/n. By assumption, the e↵ective rank r0(Cxx) is
o(n). Thus, both the expectation and the variance grow as o(n�1). Note that throughout our
proof of Theorem 2, k is fixed, and thus a is some constant.

Plugging back in equation (B.12) and combining with an intersection bound from equation
(B.6), with probability at least k�(a) + 1� k:

(B.16) tr

✓
(
1

n
X>

PCAXPCA)
†Cxx

◆
�

kX

i=1

�i

�i � kEkop
(1� o(1/n)).

We remark that as n ! 1, there exists a constant a large enough for the probability to
be positive.

To summarize, with high probability

(B.17)
�2

n

kX

i=1

✓
�i

�i � kEkop
� o(1/n)

◆
 V  �2

n

kX

i=1

✓
�i

�i + kEkop
+ t

◆
.

Appendix C. Proof of Theorem 3.

Proof. Assume � is randomly drawn from an isotropic distribution: E� [�] = 0, E� [� �>] =
I. Then we provide a lower bound by taking expectation over �:

E� [B] = E�

h
tr
⇣
�>⇧XPCA? Cxx⇧XPCA? �

⌘ i
= tr

⇣
⇧XPCA? Cxx⇧XPCA? E� [� �>]

⌘
(C.1)

= tr (Cxx (I �⇧XPCA)) =
pX

j=1

�j �
kX

i=1

pX

j=1

�jhuj , ũii2(C.2)

=
pX

j=1

�j �
kX

i=1

�ihui, ũii2 �
kX

i=1

pX

j 6=i

�jhuj , ũii2,(C.3)

where the last equation follows by splitting the inner products between population and em-
pirical eigenvectors into terms involving j = i (i.e., large) and j 6= i (i.e., small). The large
terms can be bounded by hui, ũii2  1. The small terms can be controlled using Corollary 4.1
from [40] (equation (B.1)), which states the following event Ei

(C.4)
X

j 6=i

�jhũi, uji2  t

holds with probability at least 1 �
P

j 6=i

4�jk
2
j

nt(�i��j)
2 , where k2

j
= �j (�j + tr(Cxx)). Then the

probability of all Ei, i = 1, · · · , k being upper bounded by t is at least 1�
P

k

i=1

P
j 6=i

4�jk
2
j

nt(�i��j)
2 .

Thus, with probability at least 1�
P

k

i=1

P
j 6=i

4�jk
2
j

nt(�i��j)
2 ,

(C.5) E� [B] �
pX

j=1

�j �
kX

i=1

�i � kt =
pX

i=k+1

�i � kt.
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Supplementary material.

Supplementary A. Bias-variance decomposition of the risk. In order to analyze the
risk of the PCA-OLS estimator �̂ = �̂PCA,k we use the standard decomposition of bias plus
variance. In this particular case it is

�̃ = ⇧XPCA �(A.1)

R(�̂ |X) = Ex⇤ [(x
>
⇤ (� � �̃))2 |X]| {z }
bias squared

+EY,x⇤ [(x
>
⇤ (�̂ � �̃))2 |X]

| {z }
variance

+�2(A.2)

= �>⇧XPCA? Cxx⇧XPCA? �| {z }
bias squared

+
�2

n
tr

✓
(
1

n
X>

PCAXPCA)
†Cxx

◆

| {z }
variance

+�2,(A.3)

where XPCA, ⇧XPCA , and ⇧XPCA? are the equivalents of their non-PCA counterparts for the
rank-k PCA approximation to X.

Proof. Let Xp := XPCA,k. We have:

�̂ = X†
p Y,(A.4)

Y = X� + ✏ = (Xp +X?
p )� + ✏,(A.5)

R(�̂ |X) = EY,x⇤ [(x
>
⇤ (� � �̂))2 |X] + �2(A.6)

= EY,x⇤ [(x
>
⇤ (� �X†

p (X� + ✏)))2 |X] + �2(A.7)

= EY,x⇤ [(x
>
⇤ (I �X†

pX)� � x>⇤ X
†
p ✏)

2 |X] + �2(A.8)

= EY,x⇤ [(x
>
⇤ (I �X†

pXp)�)
2 |X] + EY,x⇤ [(x

>
⇤ X

†
p ✏))

2 |X] + �2(A.9)

= �>⇧Xp? Cxx⇧Xp?� + tr(X†
p

>
⌃X†

p E
h
✏✏>|X

i
) + �2(A.10)

= �>⇧Xp? Cxx⇧Xp?� + �2 tr(X†
p X

†
p

>
⌃) + �2(A.11)

= �>⇧Xp? Cxx⇧Xp?� +
�2

n
tr

✓
(
1

n
X>

p Xp)
†Cxx

◆
+ �2.(A.12)

Note that the cross term in (A.9) does vanish since ✏ has zero mean conditioned on X, and
is independent of x⇤. Note that (A.11) follows from the assumption that noise is i.i.d. Finally,
(A.12) follows from the fact that:

(A.13) X†
p X

†
p

>
= (X>

p Xp)
†
,

which can be obtained by letting Xp =
P

k

i=1
siṽiũ>i and observing X†

p =
P

k

i=1

1

si
ũiṽ>i .

Supplementary B. Random Gaussian projections on isotropic data. Given the data
matrix X with rows xi ⇠ N (0p, Ip), i = 1, . . . , n and a random Gaussian projection matrix

⇧ = [w1, · · · , wk] 2 Rp⇥k, where wi

i.i.d.⇠ N
�
0p, p�1Ip

�
, [2] investigated three cases and

concluded the following:
• Case 1: rank (X ⇧) = p < min{n, k}: this e↵ectively reduced to the underparameter-
ized case studied in [17]. In the limit of n, p, k ! 1, the bias tends to zero and the
variance tends to p

n�p
�2.

• Case 2: rank (X ⇧) = k < n < p: this is similar to PCA-OLS in the overparameterized
regime. The bias is no longer zero, due to the dimensionality reduction, while the
variance tends to k

n�k
�2.
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• Case 3: rank (X ⇧) = n < k < p: in this overparameterized setting, the random pro-
jection lifts up the features to a higher-dimensional space. The risk decreases mono-
tonically with k.

We focus on comparing PCA-OLS with random Gaussian projection in the overparame-
terized setting where p > n (case 2, 3).

Let �̂R be the random Gaussian projection method estimator, which is computed by
�̂R = ⇧(X⇧)†Y . Let k�k2 = r2,Var (✏) = �2, �1 = p/n, �2 = k/n.

Case 2: When k < n, By Theorem 1 in [2],

(B.1) R(�̂R | X) ! �1 � �2
�1|�2 � 1|r

2 +
�2

|�2 � 1|�
2 =

p� k

p(1� k/n)
r2 +

k

n� k
�2.

From the bias upper bound of PCA-OLS in isotropic setting ([56] section 3.2.1) and our
variance bound in Theorem 1, with high probability, there exists a constant C > 1 such that:

(B.2) R(�̂PCA | X)  p� k

p
r2 + C

k

n
�2.

Comparing (B.1) and (B.2), PCA-OLS has a smaller bias and potentially a smaller variance
than random Gaussian projections.

Case 3: If �2 ! 1, by Theorem 1 in [2],

R(�̂R | X) ! �2|�1 � 1|
�1|�2 � 1|r

2 +
|�1 � 1|+ |�2 � 1|
|�1 � 1| |�2 � 1| �2(B.3)

�2!1! |�1 � 1|
�1

r2 +
1

|�1 � 1|�
2(B.4)

= R(�̂OLS | X).(B.5)

where the last equality follows from Theorem 2 in [17]. This shows that the risk of �̂R is
equivalent to the risk of OLS estimator. However, R(�̂R | X) monotonically decreases with k
(on both bias and variance term). This shows �̂R is strictly worse than OLS (i.e, PCA-OLS)
for all k when k > n, regardless of the signal-to-noise ratios.

We remark that there are many variants of random Gaussian projection. For exam-
ple, [51] showed that under stronger assumptions (i.e. the random projections are Johnson-
Lindenstrauss transforms), the performance of random Gaussian projections are of the same
order as PCA-OLS.

To conclude, the random Gaussian projections in [2] serve as a theoretical tool to analyze
the double-descent risk curve, while in practice, stronger assumption are needed to improve
its performance as a preprocessing method for regression.

Supplementary C. Adversarial attacks.

Proof of Proposition 2. Under the overparameterized regime where p > n, the �̂OLS is
given by equation (2.6). Thus:

�̂poison = X̃>(X̃X̃>)�1Ỹ(C.1)

= X̃>

XX> Xx0
x>
0
X> x>

0
x0

��1

Ỹ(C.2)

= X̃>

f1(

1

h
) f2(

1

h
)

f3(
1

h
) 1

h

�
Ỹ ,(C.3)

h := x>0 (I �X>(XX>)�1X)x0,(C.4)
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where h is the square of the projection of x0 onto the p-dimensional space orthogonal to the
span of X (i.e., the null space of X>), f1, f2, f3 are linear functions in 1

h
. We assume the block

matrix in equation (C.2) is invertible and thus h 6= 0.
Now, we choose

(C.5) x0 =
✏

k
P

n

i=1
↵ivi + �k

⇣ nX

i=1

↵ivi + �
⌘
,

such that kx0k  ✏. Let � ! 0, then (C.4) becomes

(C.6) h = x>0 (Ix0 �X>(XX>)�1Xx0) ! x>0 (x0 � x0) = 0.

Thus, h is arbitrarily small and the risk grows to infinity, and the attack is immensely
successful.

In practice, we choose x0 be a (random) linear combination of the columns of X plus a
small noise, and then normalize it to have kx0k = ✏. Meanwhile, y0 can be chosen arbitrarily
as x0 drives the success of the attack.

Proof of Proposition 3. In the underparameterized regime (p < n), the data-poisoning
attack becomes:

�̂poison = (X̃>X̃)�1X̃>Ỹ(C.7)

= (X>X + x0x
>
0 )

�1X̃>Ỹ .(C.8)

Here, X>X is full rank, in contrast to the low rank matrix XX> in the overparameterized
setting. The attack e↵ectively adds a rank-1 matrix x0x>0 with kx0k2  ✏2. If the smallest
eigenvalue of X>X is less than ✏, then the attack can push the smallest eigenvalue of X>X +
x0x>0 infinitely close to 0, making the risk of OLS grow arbitrarily.

Proof (sketch) of Corolary 4. PCA-OLS first projects the features X 2 Rn⇥p to a low-
dimensional space Rn⇥k, and then perform OLS on a rank-k approximation of the features,
XPCA,k. Given k < min {n, p}, PCA-OLS is e↵ectively in the underparameterized regime. The
smallest eigenvalue of XPCA,k is the k-th largest eigenvalue of X>X. Thus, if �k(X>X) � ✏,
the attack has minimal e↵ect in changing the smallest eigenvalue of XPCA,k, and the risk of
PCA-OLS under attack will not deviate much from the original risk.

Supplementary D. Further numerical experiments.
In a low SNR setting (Figure S1), all the methods perform worse, as expected. In particular,

the performance of PLS deteriorates drastically with larger k, under the isotropic covariance
model and gapped covariance model. This suggests the higher sensitivity of PLS to the signal-
to-noise e↵ect. In comparison, PCA-OLS seems to be more robust, as the shape of its risk
curves does not change significantly.

In Figure S2 we study the impact of the alignment of the signal of � and the principal
components in Cxx, by letting � = [1, 2, · · · , p � 1, p]. In other words, large coe�cients of �
are aligned with principal components of Cxx with small eigenvalues. In this case, we correct
the SNR ratio to keep the same noise variance �2 as in the high SNR setting (shown in Figure
7.4). In this misalignment setting, the results for the gapped covariance model changed the
most, compared to true � that distributes even weights to all PCs (i.e., Figure 7.4). As shown
in Figure S2, PCA-OLS achieves the lowest MSE at k = n. A much larger k is needed as
the signals concentrate in the principal components with small eigenvalues. Comparatively,
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PLS reaches the lowest MSE at a smaller k than PCA-OLS. This illuminates the choice of k
depends on both the data covariance as well as its alignment with signals on �.

Similar to [59], we also observe that the risk of oracle-PCR decreases with k in the over-
parameterized regime, for both the aligned and misaligned settings.

Finally, we analyze the bias and variance terms for di↵erent methods in Figure S3 2. The
bias term is computed by:

(D.1) B = �>⇧Xp? Cxx⇧Xp?�,

where ⇧Xp? = I�⇧(X⇧)†X, following the derivation in Supplementary A. Then we compute
the variance by subtracting B and �2 from MSE. Note that this is only an approximation of
the true bias and variance component (as the MSE is averaged over Monte-carlo simulations,
not the exact risk). As shown in Figure S3, for most cases: the bias-variance trade-o↵ appears
for k < n; while both bias and variance monotonically decrease for k > n. Note that the
bias of PCA-OLS is large with small k for the isotropic covariance model (but even larger for
other projection methods except PLS). On the other hand, with eigenvalue decays (row 2-4),
PCA-OLS achieves low bias, and does not su↵er from high variance.

2Excluding the ridge regularized orthogonal projection method, as the standard bias variance decomposition
of OLS does not apply.
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Figure S1. Low signal-to-noise (SNR=2) setting with di↵erent covariance structures.

Figure S2. Misalignment setting with the coe�cient of � is inversely related to the eigenvalues in Cxx.

Figure S3. High signal-to-noise (SNR=16) setting with di↵erent covariance structures and bias-variance
decomposition for selected methods.
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