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Over-parameterized models like deep nets and random forests have become very popular in ma-

chine learning. However, the natural goals of continuity and differentiability, common in regression

models, are now often ignored in modern overparametrized, locally-adaptive models. We propose a

general framework to construct a global continuous and differentiable model based on a weighted av-

erage of locally learned models in corresponding local regions. This model is competitive in dealing

with data with different densities or scales of function values in different local regions. We demon-

strate that when we mix kernel ridge and polynomial regression terms in the local models, and stitch

them together continuously, we achieve faster statistical convergence in theory and improved perfor-

mance in various practical settings.
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1. INTRODUCTION

Regression is one of the fundamental tasks within machine learning. Historically, most techniques

used polynomial or kernel models, and these had the advantage that they generalize well on noisy

data and are continuous and even differentiable. However, recently with the rise of enormous,

accurate data sets and abundant computational power, over-parameterized models like deep nets

and random forests have become very popular. Unfortunately, these complex and often opaque

models either eschew guarantees on continuity and differentiability to achieve highly accurate,

and/or are not really locally adaptive model as one may presume.

In this paper, we study regression models that achieve both (a) continuity in prediction and

(b) local adaptivity in the model. By continuity, we mean that as the point of prediction changes

infinitesimally, the output of that prediction also changes infinitesimally. At the minimum we

seek C
0-continuity so the value predicted is stable, but our methods will address C1-continuity

(and in general Ct-continuity) that can ensure properties like continuity in gradients as well.

Methods like decision trees or neural networks with ReLu activation do not achieve C
0 or C1

continuity, respectively; at decision thresholds there are jumps in prediction. By locally adaptivity,

we mean that a prediction at a query point only depends on nearby data points (for some notion

of nearby). In particular, the prediction for a query for a locally adaptive model should not be

affected by the modification of training data far away (e.g., an outlier, or an unrelated domain

adaptation). Such locally adaptive models are important when the scale of response values change

significantly outside of local regions. Discontinuous models like decision trees, random forests,

or ReLu-activated neural networks might achieve this, but models with global blending functions

or continuous sigmoid-activated neural networks do not. In general, a difficulty arises in that

locally-defined models typically have seams between regions which cause unintuitive jumps

between close predicted values, whereas continuous models typically do not actually ensure

locality.

In this paper we describe a highly effective and efficient regression model that is both

locally adaptive and C
t-continuous for any constant t. To achieve this, we adapt techniques

from interpolation theory to build highly adaptive and overparametrized models – but without
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relying on the necessity to interpolate the data at high precision. Our method starts by identifying

overlapping local neighborhoods of a dataset, and building a regression model for each region.

These local models allow the method to adapt to local variation in data scale and density. The

key step is to then “stitch” these local models together in a continuous way that forms a global

continuous model, maintaining local adaptivity.

Our approach towards stitching local models is based on a “partition of unity" (PU) perspec-

tive where each local region is defined by a Euclidean ball, and a weighting function from a

centrally symmetric radial-basis kernel. Then given a query point, the local regions which contain

this query points are averaged together proportional to their kernel weight. In the interior of these

regions, as long as the models are continuous and the kernels are continuous, then the global

model inherits that continuity. However, the boundary of a model region presents a challenge.

To address this we employ Wendland kernels which are compactly-supported, continuous, and

differentiable reproducing radial-basis kernels (over a finite dimensional space) defined over

a fixed radius. Critically, the function values go to zero and derivatives vanish at the model

boundary. While the implications of these remarkable kernels are well-known within the field of

interpolation theory and kriging, they seem mostly unknown within AI and machine learning.

Given this overall approach to continuously stitch together local models, we can use any

continuous and differentiable regression approach within each local region. We find that a method

which uses a combination of kernel and polynomial basis elements, which we call KRR-POLY,

does the best job of fitting local data and generalizing to held out data. Moreover, we formalize

how this method provides improved statistical convergence in comparison to the simpler kernel

ridge regression model. In fact, we observe that our overall method PU-KRR-POLY outperforms

in generalization in comparison to other powerful regression models on a variety of data sets,

especially when the data requires local adaptation.

Moreover, because our method is differentiable, we can also directly compute the partial

derivatives of our models. This is a critical step in many regression tasks such as those for

scientific simulation, and as a result our method does not need to rely on discrete differentiation

schemes, and does not suffer from spikes or discontinuities which can cause anomalous behavior.
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Due to this improved statistical convergence, guaranteed continuity, and direct calculation of

derivatives, our method is demonstrated to significantly improve in accuracy of derivatives with

more training data while others models do not.

2. PRELIMINARIES

We consider as input a set of n data points X ⇢ Rd, and for each xi 2 X a measured response

value yi 2 R. We assume that yi = f(xi) + "i where "i is a small independent noise term

and f is a continuous function f . In particular, we focus on data X that may not be uniformly

distributed over some domain, and functions f which may have different properties (e.g., in terms

of volatility or closeness to 0) in different local regions populated by X . And moreover, the

variance of the error distribution governing each "i might be smaller where the function value

f(xi) is closer to 0.

We use the term continuous to generically capture different degrees of continuity of a

function f . A C
0(Rd) continuous function ensures small changes in the argument in Rd result

in proportionally small changes in f . However, functions can be C
t(Rd)-continuous which also

ensures that the higher-order partial derivatives, up to the tth partial derivative in any direction is

well-defined. Our discussion and algorithms are applicable for Ct-continuous functions for any

finite t, but our experimental evaluations will mostly focus on C
1-continuous functions where we

can take derivatives.

Kernels

We will use kernel methods on Euclidean data, and this relies on a radial kernel K : Rd
⇥ Rd

!

R. Most such kernel methods use the Gaussian K(x, p) = exp
�
�kx� pk

2
/�2

�
or Laplace

K(x, p) = exp(�kx� pk/�) kernels; we employ Gaussians for our local models which are

Ct-continuous everywhere for any value t.
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Reproducing Kernels

Since the idea of KRR depends on reproducing kernel Hilbert space (RKHS), we give a brief

summary here. Any positive semidefinite kernel function K : X ⇥ X ! R can define a RKHS.

For any f in the Hilbert Space H, we can represent it by its inner product h·, ·iH in H with

K(x, ·), such that hf,K(x, ·)iH = f(x), f 2 H. We denote the norm of f in H, kfkH based on

inner product h·, ·iH as
p
hf, fiH. We define kfk2 as (

R
X
f

2(x)dP(x))1/2, where P is a (often

implicitly uniform) distribution of x. Expectation E is taken over all (xi, yi) pairs from (X,Y )

which are assumed drawn iid from P, since the estimator f̂ is trained from the data (xi, yi)
n

i=1.

For example, if f̂(x) = � · x then Ekf̂(x)k2
2 = E(�2

x
2dP(x)).

Wendland Kernels

For the weighting of local regions, we use Wendland kernels Dehnen and Aly (2012). The Wend-

land kernels �d,t(r) constitute a two-parameter family of compactly-supported and (strictly)

positive-definite radial kernels belonging to C
2t(Rd), and have widely been used for interpola-

tion Wendland (2005). Note that these are only positive-definite up to and including Rd, where

d is a fixed finite dimension; in contrast, more common kernels in machine learning like Gaus-

sians are positive-definite for all dimensions, but cannot be compactly-supported. In fact, it is

impossible to generate a radial kernel that is both positive-definite and compactly-supported for

all dimensions Wu (1995).

A variety of Wendland kernels exists for any finite values d, t > 0; see Fasshauer (2007);

Wendland (2005) for examples. In this work, we restrict ourselves to the C
2 Wendland kernel

in Rd given by �d,1(r), since our experimental evaluations mostly focus on C
1 functions. For

instance, when d = 3, this kernel, which is radially symmetric, is given by

�3,1(v) = (1 � v/r)4
+(1 + 4v/r),

where v = kx � pk for x, p 2 Rd, where r is the radius of a local region, and the term

(1 � v/r)4
+ = (1 � v/r)4 iff (1 � v/r) > 0, and is 0 otherwise. As a natural consequence of this
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choice of r, when regions overlap, multiple Wendland kernels are non-zero over the overlapping

volumes.

Locally Adaptive Regression

Parametric regression models, e.g., polynomials, treat all parts of the domain and all parts of

the data equally. Local regressions, which learn testing patterns only based on its vicinity in

training samples, can be dated back to Bottou and Vapnik (1992); Vapnik (1991). Such ideas

in local learning have two main advantages over global methods. First, local learning can be

computational efficient when dealing with large scale data Zhang et al. (2015). Second, local

learning can easily adjust to the properties of training data in each sub regions of the input space

Bottou and Vapnik (1992). Relevant algorithms and theoretical analysis in local regressions have

been proposed in, e.g.: Atkeson et al. (1997); Loader (2006); Xing et al. (2022); Zhang et al.

(2015). Kernel methods (e.g., kernel ridge regression or Nadaraya-Watson kernel regression)

typically enforce a fixed bandwidth globally, so while they can somewhat adapt to the local

regions, enforce a global notion of scale. There exists variants of kernel methods which (mostly

for scalability concerns) build local kernel regression models and then combine these together

(while not guaranteeing continuity), and include local-svm Meister and Steinwart (2016) and

knn-svm Hable (2013). We will compare against these.

Other approaches like decision trees are explicit in finding local regions for which simple

models can be fit, and this is inherited in random forests – although these do not attempt to

guarantee continuity. Neural networks can also represent local regions with different model prop-

erties – although implicitly. Using continuous and differentiable activation functions guarantees

continuity, but typically the chaining of such functions leads to very high derivatives in regions if

not carefully controlled.

3. THE PU-STITCHED REGRESSION MODEL

We describe next how to build and then evaluate the newly proposed PU-Stitched Regression

model.
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3.1 Building Models on Local Regions

Building our model involves two stages: (1) identifying the local regions, and (2) building a

model on each local region.

We model each local region as a Euclidean ball Bj ⇢ Rd with center cj . We choose the

centers as a subset of the data points in a method that allows it to adapt to the data. Given a center

point cj 2 X , we set the radius of Bj so that it contains h points; we set h = 100 as default in our

experiments. While h = 100 worked consistently well in our experiments, see for instance the

ablation study in Section 5.1, a user may need to tune this based on data distribution and need to

local adaptivity. We keep track of all points which are in no local regions, iteratively choose new

points cj+1 2 X (arbitrarily) among those in no regions, and create a new region Bj+1 around it

covering more points, until all points are covered. We then also add one large region (infinite ball

B0) that contains any query.

Next we build a local regression model f̂j : Bj ! R on the data in each region Xj = X\Bj .

As a baseline model for f̂j we consider building a kernel ridge regression model using a Gaussian

kernel. That is let K be the h⇥ h matrix where entry Ks,t = K(xs, xt) is the kernel similarity

between a pair of points. We build a model f̂j(q) =
P

xi2Xj
↵iK(xi, q) as ↵ = (K + ⌘I)�1

y

where y is the vector of response terms from Xj and ⌘ > 0 is a small ridge parameter. This

optimizes the expression

min↵2Rn (y �K↵)T (y �K↵) + ⌘↵T
K↵. (1)

By default, we can set the bandwidth � of the Gaussian kernel as the mean of all pairwise distances

in Xj , and set the ridge term ⌘ (at about 0.01% of the average response value), since on a small

local patch we should be able to fit data well, and this term serves mainly to well-condition

the K + ⌘I matrix. While there are many theoretical methods in the literature to determine

bandwidth and ridge parameters Caponnetto and Vito (2007); Cucker and Smale (2002); Eberts

and Steinwart (2011), it is common in practice to use cross-validation Gu and Ma (2005); Wahba

and Craven (1978); Xu and Huang (2012); Zhang and Yang (2015). In our experiments we do a
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small 5 ⇥ 5 grid search over ⌘ and � on a held-out set.

However, any local model could be built on a local region’s data. We find that a model that

combines kernel and polynomial terms performs exceptionally well, and discuss it in more detail

in Section 4

3.2 Partition of Unity Combination of Local Models

To evaluate the PU-regression model at a query point q 2 Rd, we first need to determine all of

the regions Bj which contain q. Let J(q) = {j1, j2, . . .} be the set of indices of regions which

contain q. For each region j 2 J(q), we evaluate the Wendland kernel at q and obtain a weight

wj = �d,t(kq � cjk). Recall that each query falls in the B0 region, and in this region we set

w0 = 1e-5 as a small constant weight.

We then employ the partition of unity (PU) approach to normalize these weights. Set W (q) =
P

j2J(q) wj and then w
0

j
= wj/W (q); thus each w

0

j
> 0 and

P
j2J(q) w

0

j
= 1. Since w0 > 0,

then W (q) > 0 and we do not divide by 0. Now to evaluate the global regression function f̂ at a

point q we compute the PU-weighted average of function values from each region q falls in as

f̂(q) =
X

j2J(q)

w
0

j
f̂j(q).

Continuous, Differentiable

To guarantee C
t-continuity of the regression function f̂ we can leverage the PU-framework,

as long as the local functions f̂j and the choice of Wendland kernels also satisfy that property.

Building on the PU-framework using Wendland kernels Dehnen and Aly (2012), to achieve global

continuous and differentiable we only need to make sure the local models are continuous and

differentiable.

As a simple example of the usefulness of this, we can directly calculate all partial derivatives

and the gradient of the modeled function f̂ . This works as long as the local model f̂j(q) and the

normalized Wendland kernel weight w0(kcj � qk) are at least C1(Rd) with respect to q 2 Rd

(recalling that cj is the center of the model f̂j and kernel weight function wj). For any coordinate
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qi of q the partial derivative of f̂ is

f̂
0

i
(q) =

d

dqi
f̂(q) =

X

j2Jq

dw0

j

dqi
f̂j(q) +

df̂j
dqi

w
0

j
(kcj � qk). (2)

Due to both the compact-support and smoothness of the C2(Rd) Wendland kernels, when q is

on the boundary of its support, wj(q) = 0 and all partial derivatives are 0 at q also. Consequently,

the stitching does not introduce boundary effects at the support boundaries, and the gradient of f̂

at q is simply [f̂ 0

1, . . . , f̂
0

d
]>. On the other hand, if one were to instead use a truncated Gaussian,

the derivatives measured from different support regions at q would not match, since the truncated

Gaussian is neither smooth nor exactly zero at its boundary.

Any local model which satisfies continuity and differentiability can be combined to a global

model using the PU-method we proposed. In this paper, we investigate KRR and KRR-POLY,

which is explained in the next section.

3.3 Related Work on Locally Adaptive and Continuous Regression

The most common weighting strategy of smaller models is to simply take the uniform average of

all predictions Xu et al. (2018); Zhang et al. (2015), but in these works those are not localized.

Other weighting strategies depend on the nearest neighbor or decisions trees which are not C0

continuous between local models.

While there are many approaches that give rise to either continuous or locally adaptive

regression models, we know of only one that achieves both. This is a recently introduced method

dubbed localKRR Han et al. (2022). Similar to our work, it starts by building a set of local models;

for each it uses a KRR model, but again could use any continuous regression model. Then on a

query q it identifies the h nearest points at the center of each model (for h > d+1), and combines

them together in a weighted average. The weighted average is devised as a function of the distance

between q and the center point of each region, and ensures C0-continuity.

Compared to our results, this localKRR has a few short-comings. First, it requires each model
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formed at query q is devised based on the h closest models, so effectively requires the space to

be covered everywhere by h > d + 1 models, not by only 1 model as in ours. Also each local

model does not have a self-define region for which it is used, it depends on the distribution of

other models; in particular it is determined by the hth order Voronoi diagram of model centers.

For our method, as models are formed they determine a fixed ball subset of Rd for which it

is used; each and every query q in that ball invokes that model. Second, localKRR can only

guarantee C0-continuity, where as our approach can attain C
t-continuity for any constant t. Thus

for localKRR, one cannot everywhere compute gradients on the learned regression function.

Finally, as we will see, our approach PU-KRR-POLY outperforms localKRR empirically in each

experiment.

Another approach by Belkin et.al. Belkin et al. (2018) considers a variant of Nadaraya-

Watson kernel regression (NWKR) that nearly achieves these locally adaptive and continuous

properties. It uses a singular kernel with NWKR which interpolates points (as localKRR nearly

does), and achieves C0 continuity, but in practices achieves local adaptivity by truncating the

kernels, which actually destroys the continuity at these truncation thresholds.

4. KRR-POLY

We borrow the idea of RBF interpolation augmented with polynomials (see Fasshauer (2007) for

an example) to propose a new variant of kernel ridge regression: KRR-POLY. We also provide new

statistical analysis of this model under the noisy (non-interpolation) setting. Consider again eq(1).

Instead of estimating f solely with a kernel expansion, we now also augment the kernel expansion

with polynomials of total degree ` in Rd. Letting pi : Rd
! R, i = 1, . . . ,

�
`+d

d

�
be a basis for

this space of polynomials, we now build a model f̂j(q) =
P

xi2Xj
↵iK(xi, q) +

(`+d
d )P

i=1
�ipi(q).

To find the coefficients ↵i and �i, we solve the following minimization problem:

min↵2Rn (y �K↵� P�)T (y �K↵� P�) + ⌘↵T
K↵,

s.t. P
T↵ = 0 (3)
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where Pij = pj(xi), � is the unknown vector of polynomial coefficients, but also a Lagrange

multiplier that enforces the constraint PT↵ = 0. In this work, we choose pj to be the set of d-

variate monomials up to degree `; we find ` = 2 is sufficient to induce significant advantage over

regular KRR models. This additional constraint forces the kernel expansion
P

xi2Xj
↵iK(xi, q)

to be orthogonal to the polynomial terms, thereby ensuring that the overall approximant reproduces

polynomials up to degree ` Bayona (2019). In addition, this constraint regularizes the far field

of the RBF expansion Fornberg et al. (2002). The above constraints can be collected into the

following block linear system:

2

4K + ⌘In P

P
T 0

3

5

2

4↵

�

3

5 =

2

4y

0

3

5.

This linear system has a unique solution provided the data locations are distinct, and if P is

of full-rank (see Fasshauer (2007) for proof). However, if the data locations lie on a locally

algebraic submanifold of Rd, P is likely to be rank-deficient. Thus, to ensure the generality of our

technique, we solve the above linear system using the singular value decomposition (SVD) with

thresholding of the singular values; we set the threshold at 10�10. This is equivalent to enforcing

the constraint PT↵ = 0 in a least-squares sense. In the deterministic interpolation setting, the

above approach leads to a convergence rate controlled by the polynomial terms Davydov and

Schaback (2018). Below, we discuss how to generalize these results to the statistical setting. It is

important to note in the discussion above that the overall approximant stays the same regardless

of the choice of the polynomial basis. In our proof below, for instance, we find it more convenient

to use an orthonormal polynomial basis.

Statistical Convergence

We next show a statistical convergence rate for this new KRR-POLY model. We do so in a

similar form as Zhang et al. (2015)’s bound for kernel regression. For KRR, one can show that

Ekf̂ � fk
2
2 = O((⌘ + 1

⌘n ) · kfk
2
H
). In contrast we can show that this can be improved for

KRR-POLY to Ekf̂ � fk
2
2 = O((⌘+ 1

⌘n )n
�(`+1)/d

· kfk
2
H
), under the mild assumptions listed
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below.

Define g(x) = f(x)�
P

s

k=1 pk(x)�
⇤

k
, the projection of the generating function f(x) on to

the space orthogonal to the polynomial basis p1(x), ..., ps(x). Given this fixed polynomial basis,

the statistical convergence then only needs to learn the residual (captured in g) via kernel ridge

regression. As Bayona (2019) implies the kgk
2
H

 n
�(`+1)/d

kfk
2
H

, so our task is reduced. We

can then apply existing bounds, and in this paper we choose to employ that of Zhang et al. (2015).

Combining these insights together yields the following simplified form of our statistical

convergence rate, after stating two assumptions.

Assumption 1.

The unknown data generating function f 2 H, where Y = f(X) + ", for all xi 2 X , we have

E[(yi � f(xi))2
| xi]  �2 for some � > 0.

Assumption 2.

For some k � 2, there is a constant ⇢ < 1, s.t. Ep2k
j
(X)  ⇢2k for all j 2 N, where ⇢ is a

uniform upper bound for the moment.

This condition, in Assumption 2, regulates the tail behavior of the polynomial basis in the

RKHS. The number of moments, k, depends on the choice of kernel K; for Gaussians it holds for

k = 2.

Theorem 3. Under Assumption 1 and 2, for f 2 H, estimator f̂ of KRR-POLY on n training

data points in Rd
, ridge parameter ⌘, and polynomials of degree ` has mean square error:

Ekf̂ � fk
2
2 = O((⌘+ r(⌘)/n)n�(`+1)/d

· kfk
2
H
).

Theorem 3 is a consequence of the below lemma with a more detailed upper bound, and the

simplifications described in the remark that follows. However, that more precise bound is nuanced

and technical, and we need some additional notation. Let 1/uj = kpj(x)k2
H

be the norm of each

polynomial basis. Let r(⌘) =
P

1

j=1
1

1+ ⌘
uj

be the effective dimensionality Zhang (2005) of the

kernel. Let u1 =
P

1

j=1 uj be the kernel trace, which is assumed to be finite and provides a

Journal of Machine Learning for Modeling and Computing



13

rough estimate of the size of the kernel. Then �d =
P

1

j=d+1 uj describes the decay of the tail of

the eigenvalues of K. The quantity b(n, s, k) = max{
p

max(k, log s), max(k,log s)

n
1
2 � 1

k
} is a function

of the number of moments k, where s is the number of the of polynomial basis {pi(x)} for the

multivariate polynomial space ⇧d

`
.

Lemma 1. Under assumption 1 and 2, for f 2 H, estimator f̂ of KRR-POLY has mean square

error bound as:

Ekf̂ � fk
2
2  12⌘kgk2

H
+

12�2

n
r(⌘) + s · Ekpkk

2
2 · o(h

2(l+1))

+

✓
2�2

⌘
+ 4kgk2

H

◆
·

✓
us+1 +

12⇢4
u1�s

⌘
+ (C1 · b(n, s, k)

⇢2
r(⌘)
p
n

)kgk2
2

◆
.

Proof. For the minimization problem (3), the solution is

f̂ =
nX

i=1

ĉiK(x, xi) +
sX

k=1

�̂kpk(x),

with kernel coefficients ĉ = (ĉ1, . . . , ĉn) = (K + ⌘I)�1(Y � P �̂) and polynomial coefficients

�̂ = (�̂1, . . . , �̂s) = (PT (K + ⌘I)�1
P )�1

P
T (K + ⌘I)�1

Y . Then

Ekf̂ � fk
2
2 = Ek

nX

i=1

ĉiK(x, xi)� g(x) +
sX

k=1

pk(�̂k � �⇤
k
)k2

2,

where g(x) = f(x) �
P

s

k=1 pk(x)�
⇤

k
. Write the Taylor expansion of f(x) at 0 as f(x) =

P
1

k=1 Lk(f(0))pk(x), we have �⇤
k
= Lk(f(0)) and g(x) =

P
1

k=s+1 Lk(f(0))pk(x), where Lk

is the differential operator. Then we have

Ekf̂ � fk
2
2  Ek

nX

i=1

ĉiK(x, xi)� g(x)k2
2 + Ek

sX

k=1

pk(�̂k � �⇤
k
)k2

2.

The term
P

n

i=1 ĉiK(x, xi) can be treated as a solution to the KRR problem with data

{(xi, zi = yi �
P

s

j=1 �
⇤

j
pj(xi))}ni=1 from the model Z = Y �

P
s

k=1 pk(X)�⇤
k
= f(X) + "�
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P
s

k=1 pk(X)�⇤
k
= g(X)+". By Assumption 1, we have E[(zi�g(xi))2

| xi] = E[(yi�f(xi))2
|

xi]  �2 for some � > 0. Together with Assumption 2, by Lemma 7 in Zhang et al. (2015), we

have the KRR solution
P

n

i=1 ĉiK(x, xi) satisfies

Ek
nX

i=1

ĉiK(x, xi)� g(x)k2
2  12⌘kgk2

H
+

12�2

n
r(⌘)

+

✓
2�2

⌘
+4kgk2

H

◆
·

✓
us+1 +

12⇢4
u1�s

⌘
+(C1· b(n, s, k)

⇢2
r(⌘)
p
n

)kgk2
2

◆
.

From the paper Bayona (2019), we know that |�̂k � �⇤
k
| = o(hl+1). So

Ek
sX

k=1

pk(�̂k � �⇤
k
)k2

2  s · Ekpkk
2
2 · o(h

2(l+1)).

So the desired result of Lemma 1 holds.

Remark

The term us+1 and �s are decreasing functions of d. The term b(n, s, k) is increasing in s. By

carefully picking s, the first two terms in the theorem are dominant. Then the theorem indicates

that the mean squared error of our estimator, Ekf̂ � fk
2
2, is upper bounded by a function of

⌘, n and s. In fact, it indicates that Ekf̂ � fk
2
2 = O((⌘ + r(⌘)/n) · kgk2

H
). This is a common

bias-variance trade-off inequality in non-parametric regression problems, where the first term

(⌘) is increasing in ⌘ and the second term r(⌘)/n is deceasing in ⌘. Note that the usual KRR

estimator has the bound O((⌘+r(⌘)/n)·kfk2
H
), and r(⌘) can be bounded by 1/⌘. Thus Theorem

3 follows.

5. EXPERIMENTS

We compare PU-KRR and PU-KRR-POLY with global KRR and other stitched kernel regression

methods – specifically, KNN SVM Hable (2013), local SVM Meister and Steinwart (2016), and

local KRR Han et al. (2022) – as well as neural nets and random forests. In some cases, for

completion, we also ran PU-POLY which uses PU-stitched regression with a degree-2 polynomial
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model used locally. We measure on a 2D synthetic dataset, a 3D data set from the solution of

a PDE on the sphere Shankar and Wright (2018), and several real-world datasets. The results

from some generic and higher-dimensional datasets from the UCI repo Dua and Graff (2017)

are deferred to the Appendix. The error metrics we employ to compare experimental results

include: RMSE and relative error, which is rel-erri = kyi�f̂(xi)k
kyik

. For all experiments, we do

train/validation/test split, and for all the kernel related methods we tune the bandwidth � and

ridge parameter ⌘ by grid search. We select ⌘ from {1e-1, 1e-2, 1e-3, 1e-4, 1e-5} and � from

{0.25 ⇤ b, 0.5 ⇤ b, b, 2b, 5b} where b is the average pairwise distance in each local/global model(s).

For the tree method XGBoost Chen and Guestrin (2016), we also tune hyper-parameters e.g:

number of subtrees, learning rate, etc. by grid search. Finally for the neural network, we have

tried 2-5 hidden layers with different number of neurons varied in {8, 16, 32, 64, 128, 256}, and

report the best results found. All the experiment results are reported based on a held-out test set.

5.1 2D Tests

To demonstrate that our method can adapt to different scales of response values in different

regions, we design a 2D dataset where the underlying function values y are generated by x1, x2 2

[�6, 30]⇥ [�6, 30], z1 = 1
1+exp(�x1)

· (1 + 9
1+exp(12�x1)

) · (1 + 10
1+exp(24�x1)

), z2 = sin(x2) +

cos(x1), y = z1 · z2. As seen in the "True y" plot in Figure 1, the function values are much closer

to zero when x1 is small x1 2 [�6, 6], moderate variance in x1 2 [6, 18], and large variation in

x1 2 [18, 30]. We randomly selected 20000 points from [�6, 30]⇥ [�6, 30] as training dataset,

then choosing test set based a fine grid with a data point (x1, x2) 2 [�6, 30]⇥ [�6, 30] every 0.2.

We tune the parameters based on the performance in training set and report the test set errors in

Figure 1 and Table 1. Note how by design the response value y becomes larger on the right where

additive error tends to be larger, and smaller on the left where relative error tends to be larger.

PU-KRR-POLY has the least RMSE (by almost an order of magnitude) and the best or

near-best max and mean relative error. The other KRR-based models all achieve similar RMSE

(between 0.25 and 0.35) and also similar relative error. However, Figure 1 shows several artifacts.

For instance, global KRR exhibits a banding effect in the error, which can be seen at a much
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smaller scale in the other KRR models; this is an example of a boundary or far-field effect Fornberg

et al. (2002) that adding the polynomial terms is designed to remove. Also, a visible discontinuity

is apparent in Local SVM. The XGBoost and Neural Network models do not at all perform well

on this data set as apparent visually and quantitatively. Especially for the neural network, since

the input features is with only 2 dimension, we use a 2-layer MLP (multiple layer perceptron)

with sigmoid activation function (it performed worse with 3 or 4 layers); the network structure is

tuned by AX package using Monte Carlo Bayesian Optimization Balandat et al. (2020).

FIG. 1: Error plots for 2D simulation result on data in True y plot; summarized in Table 1.

Ablation Study

To verify the choice of parameters and design decisions, we perform an ablation study. We focus

on the simulated 2D dataset discussed in Table 1 and Figure 1.
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RMSE max relative error mean relative error
PU-KRR-POLY 0.041 50.392 0.021

PU-KRR 0.249 49.928 0.026
PU-POLY 0.239 46.052 0.037

KNN SVM 0.337 47.284 0.027
Local SVM 0.321 44.421 0.026
Local KRR 0.089 53.420 0.023

Global KRR 0.354 327.301 0.531
XGBoost 2.729 1170.34 3.359

Neural Network 7.525 3042.82 14.185
TABLE 1: RMSE & Relative errors comparison for 2D simulation

First, we try an additional regression model, and show the results in Table 1. PU-POLY

uses PU-stitched regression, but with only a degree-2 polynomial model as the local model. It

performs similar, but a bit worse than PU-KRR and worse in RMSE and mean-relative-error than

PU-KRR-POLY.

Second, recall we selected the centers of the regions arbitrarily, so long as they were not yet

covered. We implement this by just scanning all data points in the order they are stored until we

find one not yet covered or all are covered. To assess the stability of this process, we randomized

the order of the points 3 times, and re-reran PU-KRR-POLY on the new sets of regions. The

average RMSE was 0.045 with standard deviation 0.005. So about the same as the intial run. The

average (std.dev) for max relative error 41.36(15.82) and mean relative error 0.025(0.0002); also

similar to the results for the input order PU-KRR-POLY. Note the high standard deviation of

15.82, which indicates while the maximum relative error is a useful goal, it is not a very stable

measure compared to RMSE and mean relative error.

Third, we experimented with the value h describing the number of points to include in a

region. We compare to a default of h = 100, and tried h = {50, 75, 125, 150}. We see in Table 2

that there is not much change, but that, relative to h = 100, as h increases the RMSE increases,

and as h decreases mean relative error also increases. Hence h = 100 appears a good choice, and

varying this within 50% should not change things too much, although increasing it can cause

error to increase since the local models may not fit the data as well anymore.

Fourth, we check how the algorithm varies with the choice of kernel used to provide weights
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h RMSE max relative error mean relative error
PU-KRR-POLY 100 0.041 50.392 0.021
PU-KRR-POLY 50 0.038 40.371 0.037
PU-KRR-POLY 75 0.043 94.477 0.029
PU-KRR-POLY 125 0.067 95.709 0.055
PU-KRR-POLY 150 0.110 65.705 0.064

TABLE 2: Ablation study for PU-KRR-POLY on h, the number of points in a local region.

to guide how local regions are stitched together. In our experiments we use the Wendland �2,1

kernel, which provides C2-continuity. For the algorithm to build local models, we require kernels

with bounded support. In Table 3 we also consider the Gaussian (truncated), which does not

ensure continuity, and the Wendland �2,0 kernel which only provides C0-continuity. We see in

Table 3 that this change results in a very small effect in the error measures, so it is worth using

the Wendland �2,1 kernel which has stronger gaurantees.

stitching kernel RMSE max relative error mean relative error
PU-KRR-POLY Wendland �2,1 0.041 50.392 0.021
PU-KRR-POLY Wendland �2,0 0.048 30.590 0.024
PU-KRR-POLY trunc-Gaussian 0.041 51.691 0.024

TABLE 3: Ablation study for stitching kernel in PU-KRR-POLY. Default is Wendland3,1.

5.2 Simulation Data on the Sphere S2

In this experiment, we generate the training data by numerically solving the spherical advection

equation @q

@t
+ u · rS2 = 0 in 3D Cartesian coordinates using a fourth-order accurate semi-

Lagrangian local RBF method Shankar and Wright (2018), where q(x, t) is a scalar-valued

function; here, rS2 = (I � xx
T )r is the surface gradient. The initial condition to this problem

is a pair of C1(S2) cosine bells given by q(x, 0) = 0.1 + 0.9(q1(x, 0) + q2(x, 0)), where for

j = 1, 2

qj(x, 0) =

8
>><

>>:

1
2

�
1 + cos

�
2⇡ cos�1(x · pj)

��
if cos�1(x · pj) <

1
2 ,

0 otherwise.
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The components of the velocity field u = (u, v) for this test are given in Eqns. 16 and 17

in Shankar and Wright (2018). This flow field is designed to deform the initial condition and

reverse it back at time t = 5. The RBF-FD solution q was computed at 92k equal-area icosahedral

Cartesian points on the sphere. To illustrate the ability of our method to handle concentrated

features with values close to 0, we shift the solution to be q̂ = max(q)� q. The resulting function

values are shown in Figure 2. We then sampled from the original set based on Bernoulli trials

with the probability proportional to the inverse of distance to the centers of two bump regions; the

details of this sampling strategy are described in Appendix APPENDIX B.

We plot the average of five trials of RMSE, mean relative error, max relative error on a fixed

number of random sampled test observations (20,000), versus different training sample sizes

{3065, 5377, 11504, 21545} for different methods in Figure 3. For the global KRR, we were

only able to use training sizes less than 15000 due to memory limitations. At every training size,

PU-KRR-POLY provides the best result, with PU-KRR typically second or near-second best,

especially on larger training sets. KNN SVM and local SVM are similar to PU-KRR, but plateau

in relative error for larger training set size, likely because of lack of continuity.

FIG. 2: Function values on S2

As we discuss in Sec 3.2, our proposed PU-Stitched scheme can directly provide derivatives.

We now test the ability of our scheme to compute surface gradients, despite the use of Cartesian

coordinates. As our ground truth, we use a fourth-order accurate RBF-FD method from Shankar

et al. (2018) to compute the surface gradient on the 92k icosahedral points. We then compute the

surface gradient using PU-KRR-POLY by applying the surface gradient operator in Cartesian
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FIG. 3: Error vs. Training size on PDE-on-sphere data

FIG. 4: Average of `2 norm difference in Gradient
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RMSE max rel.er mean rel.er
PU-KRR 0.554 0.303 0.007

PU-KRR-POLY 0.542 0.287 0.007
XGBoost 1.223 0.354 0.017

Neural Network 1.756 0.744 0.028
KNN SVM 0.611 0.291 0.008
Local SVM 0.729 0.332 0.010
Local KRR 0.548 0.312 0.007

FIG. 5: Spatial Ozone Data, and error in recovery by methods

coordinates in place of the regular derivative operator in (2). We show the average of the difference

in pointwise `2 norms between the RBF-FD gradient and the PU-KRR-POLY gradient in Figure 4.

For comparison, we also computed surface gradients using forward differencing with the nearest

Cartesian neighbor for both KNN-SVM and PU-KRR-POLY, and compared them to the RBF-FD

surface gradient. The PU-KRR-POLY direct method is orders of magnitudes more accurate.

5.3 Spatial Ozone Data

We compare PU-KRR-POLY with other methods on the Ozone levels from Di et al. (2019), which

are recorded on 1km by 1km grids in a lat-long bounding box of [36.3, 42.6]⇥ [�114.6,�108.4]

over a mountainous part of the U.S.; they are plotted on the left in Figure 5. The prediction

error yi � f̂(xi) for PU-KRR-POLY is plotted to its right. In all error measures, PU-KRR-POLY

performs the best, with PU-KRR typically second, followed by the other stitched KRR models.

Relative error is less pertinent here as values are not close to 0.

The Appendix provides results on other generic UCI data sets designated for regression tasks,

including ones in higher dimensions. PU-KRR-POLY is typically, but not always the best – unlike

the data sets explored here, these generic data sets do not have a large benefit from local models

in local regions that have different density of response variance.

5.4 Combustion Data

To further illustrate motivations of PU-KRR-POLY, we consider a setting with data generated

from an unknown PDE; that is the data is experimentally observed, and one knows it should be

governed by an underlying system, but that system is not known. We experiment in this setting on
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combustion data Frenklach et al. (2021) generated from a PDE of the form S(�)+ �(Z)
2 + @

2�
@Z2 = 0,

with S(�) is complicated and assumed not to be known (here the values of S(�) are generated with

a dimension-compressed solver Sutherland and Parente (2009)). In particular, for the experimental

set-up, our training variables are � and response variables are S(�). The main goal is try to give

a continuous, differentiable, and accurate predictions to S(�) based on �. In such cases, most

neural ODE/PDE solvers Brandstetter et al. (2022); Chen et al. (2018) need an explicit form of

PDE equations and thus cannot be directly applied here. We show the comparison results in Table

4, including against SIREN Sitzmann et al. (2020). Again PU-KRR-POLY outperforms all other

methods by 1-2 orders of magnitude in RMSE, max relative error, and mean relative error.

RMSE max relative error mean relative error
PU-KRR 3.335e-4 1.033e-2 1.807e-4

PU-KRR-POLY 9.303e-6 6.827e-3 1.041e-5
KNN SVM 5.561e-2 3.223e-1 6.372e-3
Local SVM 3.948e-2 9.844e-1 4.566e-2
Local KRR 7.639e-4 1.279e-2 1.994e-4

XGBoost 1.931e-3 1.086e0 4.569e-3
Neural Network 5.516e-3 4.586e0 2.450e-2

SIREN 6.470e-2 4.336e0 3.571e-2
TABLE 4: Combustion Data Results

6. DISCUSSION

We describe new locally-adaptable regression model which can ensure C
t-continuity for any

finite t, and for which derivatives can be automatically computed. It leverages a partition-of-unity

stitching of local models. We also propose and analyze a regression model that orthogonally

mixes polynomial and kernel ridge terms with improved statistical convergence and empirical

performance. We find the PU-KRR-POLY regression model is efficient and outperforms other

advanced regression models, especially on data which benefit from locally-adaptable continuous

models.
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Efficiency and Runtime

Our method is reliant on nearest neighbor searching to both determine the points within a local

neighborhood and also determine which local models cover a query point. Fortuitously, similarity

search on vector data, has somewhat recently become extremely efficient Andoni et al. (2015);

Johnson et al. (2021); Li et al. (2019); Ram and Sinha (2019).

Let T (n, d) be the time it takes to perform a nearest neighbor query on n data points in Rd.

While the best theoretical bounds are either mediocre or nuanced, in practice it is quite efficient.

When each model region is set to have a constant number of points, so h = O(1), then we can

determine and build all local models in O(n · T (n, d)) time.

To query the model at a single location q 2 Rd, we need to perform a reverse metric range

query – find all region balls Bj which contain q. To bound the complexity of this we introduce

two common data-dependent parameters: the spread ⇤ (measuring precision) and the doubling

dimension dd (measuring intrinsic dimensionality). Specifically, define ⇤ as the ratio between the

largest and smallest radius of the model-containing balls. We group balls into levels depending on

their radius, so within a level all radii are within a factor of 2; there are at most log⇤ such levels.

For a point set M , the doubling dimension dd is defined as the maximum of the log of a quantity

over all balls B of radius r; the quantity is the minimum number of balls or radius r/2 needed to

cover M \B. Note that dd  d and typically much smaller for real high-dimensional data. Now

within each level at most O(2dd) balls can contain a query q since in the creation process, each

new ball must contain a point not in any previous balls. So we query each level, and retrieve at

most O(2dd) balls with centers within the largest radius of that level. Evaluating a local model is

O(1) time for h = O(1). Hence, a query takes O((2dd + T (n, d)) log⇤) time. In our settings,

2dd and log⇤ are small constants (typically not more than 10), and this is quite efficient.

The bottom line is that the model building step runs in time roughly linearly in n, and the

model evaluation time runs in time significantly sublinear in n. For the experiments we ran,

PU-KRR-POLY had similar (or much faster) runtime to all other competing methods, and so

scalability was not a concern relative to any other standard regression method.

Moreover, when a gradient is needed in Rd, one simply needs to differentiate the PU-stitched
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model analytically, which in turn only requires derivatives of the Wendland functions, the kernel,

and the polynomial terms. In contrast, typical approaches compute a discrete gradient with d+�uj

for a small � at each of d orthogonal basis vectors uj . By not requiring these extra evaluations,

our PU-stitched methods can save a factor of d, and as observed, improve accuracy.
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APPENDIX A. REAL DATA EXPERIMENTS FROM UCI REPOSITORY

Here we provide results on other generic UCI data sets designated for regression tasks, including

ones in higher dimensions. PU-KRR-POLY is typically, but not always the best – unlike the data

sets explored here, these generic data sets do not have a large benefit from local models in local

regions that has difference density of response variance.

Skillcraft data has 3395 observations and 19 features in total. See in http://archive.

ics.uci.edu/ml/datasets/skillcraft1+master+table+dataset.

RMSE max relative error mean relative error
PU KRR poly 0.246 33.179 1.290

PU KRR 0.283 47.603 1.693
Global KRR 0.252 44.866 1.304

XGBoost 0.257 57.889 1.492
Neural Network 0.249 37.656 1.293

KNN SVM 0.248 65.457 1.295
Local SVM 0.256 34.865 1.315
Local KRR 0.249 40.879 1.391

TABLE A1: rmse & relative errors: skillcraft data

Airfoil data has 1503 observations and 6 features. See in https://archive.ics.uci.

edu/ml/datasets/airfoil+self-noise.

RMSE max relative error mean relative error
PU KRR poly 1.702 13.114 0.601

PU KRR 1.749 15.856 0.615
Global KRR 2.677 14.619 0.833

XGBoost 1.588 15.023 0.554
Neural Network 1.826 15.926 0.791

KNN SVM 1.687 10.717 0.665
Local SVM 2.357 13.817 0.956
Local KRR 1.499 15.856 0.615

TABLE A2: rmse & relative errors: air-foil data

Kin40k has 40000 observations and 8 features in total. See in https://github.com/

treforevans/uci_datasets.
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RMSE max relative error mean relative error
PU KRR poly 0.143 384.125 0.556

PU KRR 0.124 306.742 0.364
Global KRR 0.146 418.279 0.585

XGBoost 0.316 1134.082 1.445
Neural Network 0.139 227.806 0.494

KNN SVM 0.141 218.083 0.459
Local SVM 0.145 384.432 0.557
Local KRR 0.124 106.743 0.364

TABLE A3: rmse & relative errors: kin40k data

APPENDIX B. SAMPLING STRATEGY IN 3D EXPERIMENTS

Let’s denote the centers of bumpers in Figure 2 as c1 and c2. For each point x, we run two

independent Bernoulli trials to determine it would be selected as a training data point or not. In

the 1st Bernoulli trial, the probability it would be selected as training data is 1 �
kx�c1k

r1
, where

r1 is distance between c1 and its furthest point. In the 2nd Bernoulli trial, the probability it would

be selected as training data is 1 �
kx�c2k

r2
, where r2 is distance between c2 and its furthest point.

A point is selected only if it was selected in either 1st or 2nd trial, so equivalent the probability it

would be selected as training point with probability equal to 1 � (kx�c2k

r2
) · (kx�c1k

r1
).
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