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Ower-parameterized models like deep nets and random forests have become very popular in ma-
chine learning. However, the natural goals of continuity and differentiability, common in regression
models, are now often ignored in modern overparametrized, locally-adaptive models. We propose a
general framework to construct a global continuous and differentiable model based on a weighted av-
erage of locally learned models in corresponding local regions. This model is competitive in dealing
with data with different densities or scales of function values in different local regions. We demon-
strate that when we mix kernel ridge and polynomial regression terms in the local models, and stitch
them together continuously, we achieve faster statistical convergence in theory and improved perfor-

mance in various practical settings.
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1. INTRODUCTION

Regression is one of the fundamental tasks within machine learning. Historically, most techniques
used polynomial or kernel models, and these had the advantage that they generalize well on noisy
data and are continuous and even differentiable. However, recently with the rise of enormous,
accurate data sets and abundant computational power, over-parameterized models like deep nets
and random forests have become very popular. Unfortunately, these complex and often opaque
models either eschew guarantees on continuity and differentiability to achieve highly accurate,
and/or are not really locally adaptive model as one may presume.

In this paper, we study regression models that achieve both (a) continuity in prediction and
(b) local adaptivity in the model. By continuity, we mean that as the point of prediction changes
infinitesimally, the output of that prediction also changes infinitesimally. At the minimum we
seek C°-continuity so the value predicted is stable, but our methods will address C'-continuity
(and in general C*-continuity) that can ensure properties like continuity in gradients as well.
Methods like decision trees or neural networks with ReLu activation do not achieve C° or C'!
continuity, respectively; at decision thresholds there are jumps in prediction. By locally adaptivity,
we mean that a prediction at a query point only depends on nearby data points (for some notion
of nearby). In particular, the prediction for a query for a locally adaptive model should not be
affected by the modification of training data far away (e.g., an outlier, or an unrelated domain
adaptation). Such locally adaptive models are important when the scale of response values change
significantly outside of local regions. Discontinuous models like decision trees, random forests,
or ReLu-activated neural networks might achieve this, but models with global blending functions
or continuous sigmoid-activated neural networks do not. In general, a difficulty arises in that
locally-defined models typically have seams between regions which cause unintuitive jumps
between close predicted values, whereas continuous models typically do not actually ensure

locality.

In this paper we describe a highly effective and efficient regression model that is both
locally adaptive and C*-continuous for any constant t. To achieve this, we adapt techniques

from interpolation theory to build highly adaptive and overparametrized models — but without
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relying on the necessity to interpolate the data at high precision. Our method starts by identifying
overlapping local neighborhoods of a dataset, and building a regression model for each region.
These local models allow the method to adapt to local variation in data scale and density. The
key step is to then “stitch” these local models together in a continuous way that forms a global

continuous model, maintaining local adaptivity.

Our approach towards stitching local models is based on a “partition of unity" (PU) perspec-
tive where each local region is defined by a Euclidean ball, and a weighting function from a
centrally symmetric radial-basis kernel. Then given a query point, the local regions which contain
this query points are averaged together proportional to their kernel weight. In the interior of these
regions, as long as the models are continuous and the kernels are continuous, then the global
model inherits that continuity. However, the boundary of a model region presents a challenge.
To address this we employ Wendland kernels which are compactly-supported, continuous, and
differentiable reproducing radial-basis kernels (over a finite dimensional space) defined over
a fixed radius. Critically, the function values go to zero and derivatives vanish at the model
boundary. While the implications of these remarkable kernels are well-known within the field of

interpolation theory and kriging, they seem mostly unknown within AI and machine learning.

Given this overall approach to continuously stitch together local models, we can use any
continuous and differentiable regression approach within each local region. We find that a method
which uses a combination of kernel and polynomial basis elements, which we call KRR-POLY,
does the best job of fitting local data and generalizing to held out data. Moreover, we formalize
how this method provides improved statistical convergence in comparison to the simpler kernel
ridge regression model. In fact, we observe that our overall method PU-KRR-POLY outperforms
in generalization in comparison to other powerful regression models on a variety of data sets,

especially when the data requires local adaptation.

Moreover, because our method is differentiable, we can also directly compute the partial
derivatives of our models. This is a critical step in many regression tasks such as those for
scientific simulation, and as a result our method does not need to rely on discrete differentiation

schemes, and does not suffer from spikes or discontinuities which can cause anomalous behavior.
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Due to this improved statistical convergence, guaranteed continuity, and direct calculation of
derivatives, our method is demonstrated to significantly improve in accuracy of derivatives with

more training data while others models do not.

2. PRELIMINARIES

We consider as input a set of n data points X C RY, and for each 2; € X a measured response
value y; € R. We assume that y; = f(z;) + ¢; where ¢; is a small independent noise term
and f is a continuous function f. In particular, we focus on data X that may not be uniformly
distributed over some domain, and functions f which may have different properties (e.g., in terms
of volatility or closeness to 0) in different local regions populated by X. And moreover, the
variance of the error distribution governing each ¢; might be smaller where the function value

f(z;) is closer to 0.

We use the term continuous to generically capture different degrees of continuity of a
function f. A C°(R%) continuous function ensures small changes in the argument in R? result
in proportionally small changes in f. However, functions can be C*(R%)-continuous which also
ensures that the higher-order partial derivatives, up to the ¢th partial derivative in any direction is
well-defined. Our discussion and algorithms are applicable for C*-continuous functions for any
finite ¢, but our experimental evaluations will mostly focus on C''-continuous functions where we

can take derivatives.

Kernels

We will use kernel methods on Euclidean data, and this relies on a radial kernel K : R? x R% —
R. Most such kernel methods use the Gaussian K (z,p) = exp(fo - sz/O.z) or Laplace
K(x,p) = exp(—||x — p||/0) kernels; we employ Gaussians for our local models which are

C}-continuous everywhere for any value ¢.
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Reproducing Kernels

Since the idea of KRR depends on reproducing kernel Hilbert space (RKHS), we give a brief
summary here. Any positive semidefinite kernel function K : X x X — R can define a RKHS.
For any f in the Hilbert Space #, we can represent it by its inner product (-, -)% in H with
K(z,-), such that (f, K (z,-)) = f(z), f € H. We denote the norm of f in H, || f|| based on
inner product (-, )3 as \/{f, f). We define || f|» as ([, f*(z)dP(z))"/?, where P is a (often
implicitly uniform) distribution of x. Expectation E is taken over all (z;, y;) pairs from (X,Y)
which are assumed drawn iid from P, since the estimator f is trained from the data (@i, yi)7y-

For example, if f(z) = f - z then E[| f(z)|] = E(B2z2dP(z)).

Wendland Kernels

For the weighting of local regions, we use Wendland kernels \Dehnen and Aly|(2012). The Wend-
land kernels ¢4 +(r) constitute a two-parameter family of compactly-supported and (strictly)
positive-definite radial kernels belonging to C%*(R?), and have widely been used for interpola-
tion[Wendland (2005). Note that these are only positive-definite up to and including R¢, where
d is a fixed finite dimension; in contrast, more common kernels in machine learning like Gaus-
sians are positive-definite for all dimensions, but cannot be compactly-supported. In fact, it is
impossible to generate a radial kernel that is both positive-definite and compactly-supported for
all dimensions Wu| (1995)).

A variety of Wendland kernels exists for any finite values d,¢ > 0; see Fasshauer| (2007);
Wendland (2005) for examples. In this work, we restrict ourselves to the C? Wendland kernel
in R? given by ¢4.1(r), since our experimental evaluations mostly focus on C'! functions. For

instance, when d = 3, this kernel, which is radially symmetric, is given by

b31(v) = (1 — v/r)i(l +4dv/r),

where v = ||z — p|| for z,p € R? where r is the radius of a local region, and the term

(1—v/r)4 = (1 —wv/r)*iff (1 —v/r) > 0, and is 0 otherwise. As a natural consequence of this
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choice of r, when regions overlap, multiple Wendland kernels are non-zero over the overlapping

volumes.

Locally Adaptive Regression

Parametric regression models, e.g., polynomials, treat all parts of the domain and all parts of
the data equally. Local regressions, which learn testing patterns only based on its vicinity in
training samples, can be dated back to [Bottou and Vapnik (1992); |Vapnik| (1991). Such ideas
in local learning have two main advantages over global methods. First, local learning can be
computational efficient when dealing with large scale data|Zhang et al. (2015). Second, local
learning can easily adjust to the properties of training data in each sub regions of the input space
Bottou and Vapnik (1992). Relevant algorithms and theoretical analysis in local regressions have
been proposed in, e.g.: |Atkeson et al. (1997); Loader| (2006); Xing et al.|(2022); |[Zhang et al.
(2015). Kernel methods (e.g., kernel ridge regression or Nadaraya-Watson kernel regression)
typically enforce a fixed bandwidth globally, so while they can somewhat adapt to the local
regions, enforce a global notion of scale. There exists variants of kernel methods which (mostly
for scalability concerns) build local kernel regression models and then combine these together
(while not guaranteeing continuity), and include local-svm [Meister and Steinwart| (2016) and
knn-svm |Hable| (2013). We will compare against these.

Other approaches like decision trees are explicit in finding local regions for which simple
models can be fit, and this is inherited in random forests — although these do not attempt to
guarantee continuity. Neural networks can also represent local regions with different model prop-
erties — although implicitly. Using continuous and differentiable activation functions guarantees
continuity, but typically the chaining of such functions leads to very high derivatives in regions if

not carefully controlled.

3. THE PU-STITCHED REGRESSION MODEL

We describe next how to build and then evaluate the newly proposed PU-Stitched Regression

model.
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3.1 Building Models on Local Regions

Building our model involves two stages: (1) identifying the local regions, and (2) building a
model on each local region.

We model each local region as a Euclidean ball B; C R? with center c;j. We choose the
centers as a subset of the data points in a method that allows it to adapt to the data. Given a center
point ¢; € X, we set the radius of B; so that it contains i points; we set 1 = 100 as default in our
experiments. While - = 100 worked consistently well in our experiments, see for instance the
ablation study in Section[5.1] a user may need to tune this based on data distribution and need to
local adaptivity. We keep track of all points which are in no local regions, iteratively choose new
points ¢;; € X (arbitrarily) among those in no regions, and create a new region I3; | around it
covering more points, until all points are covered. We then also add one large region (infinite ball
By) that contains any query.

Next we build a local regression model fj : B; — Ron the data in each region X; = X N B;.
As a baseline model for fj we consider building a kernel ridge regression model using a Gaussian
kernel. That is let K be the h x h matrix where entry K ; = K (x5, z;) is the kernel similarity
between a pair of points. We build a model f;(q) = Dmex, %l (2 q) as o = (K + nl)~ly
where y is the vector of response terms from X; and 1 > 0 is a small ridge parameter. This

optimizes the expression
mingepn (¥ — Ka)T (y — Ka&) +nad Ko (1)

By default, we can set the bandwidth o of the Gaussian kernel as the mean of all pairwise distances
in X;, and set the ridge term 11 (at about 0.01% of the average response value), since on a small
local patch we should be able to fit data well, and this term serves mainly to well-condition
the K + n/ matrix. While there are many theoretical methods in the literature to determine
bandwidth and ridge parameters (Caponnetto and Vito (2007); Cucker and Smale|(2002); |[Eberts
and Steinwart (2011), it is common in practice to use cross-validation (Gu and Ma (2005); [Wahba

and Craven| (1978); Xu and Huang (2012);[Zhang and Yang (2015). In our experiments we do a
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small 5 x 5 grid search over 1 and o on a held-out set.
However, any local model could be built on a local region’s data. We find that a model that
combines kernel and polynomial terms performs exceptionally well, and discuss it in more detail

in Section [

3.2 Partition of Unity Combination of Local Models

To evaluate the PU-regression model at a query point ¢ € R?, we first need to determine all of
the regions B; which contain ¢. Let J(q) = {j1, j2, ...} be the set of indices of regions which
contain q. For each region j € J(q), we evaluate the Wendland kernel at ¢ and obtain a weight
wj = bat(]lg — ¢j]|). Recall that each query falls in the By region, and in this region we set
wp = le-5 as a small constant weight.

We then employ the partition of unity (PU) approach to normalize these weights. Set W (q) =
> jeu(q w; and then w = w;/W(q); thus each w}; > 0and 3, 5, wj = 1. Since wy > 0,
then W(q) > 0 and we do not divide by 0. Now to evaluate the global regression function f ata

point ¢ we compute the PU-weighted average of function values from each region ¢ falls in as

flo= > wifie).

Jj€J(q)

Continuous, Differentiable

To guarantee C*-continuity of the regression function f we can leverage the PU-framework,
as long as the local functions fj and the choice of Wendland kernels also satisfy that property.
Building on the PU-framework using Wendland kernels|Dehnen and Aly|(2012), to achieve global
continuous and differentiable we only need to make sure the local models are continuous and
differentiable.

As a simple example of the usefulness of this, we can directly calculate all partial derivatives
and the gradient of the modeled function f . This works as long as the local model fj (¢) and the
normalized Wendland kernel weight w’(|[c; — ¢||) are at least C'!(R?) with respect to ¢ € R?

(recalling that ¢; is the center of the model fj and kernel weight function w;). For any coordinate
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q; of g the partial derivative of f is

1(q)

, N
- )= py i@ + Ll les - al) @

Due to both the compact-support and smoothness of the C?(R¢) Wendland kernels, when g is
on the boundary of its support, w;(g) = 0 and all partial derivatives are 0 at ¢ also. Consequently,
the stitching does not introduce boundary effects at the support boundaries, and the gradient of f
at ¢ is simply | fl’ e fé]T. On the other hand, if one were to instead use a truncated Gaussian,
the derivatives measured from different support regions at ¢ would not match, since the truncated
Gaussian is neither smooth nor exactly zero at its boundary.

Any local model which satisfies continuity and differentiability can be combined to a global
model using the PU-method we proposed. In this paper, we investigate KRR and KRR-POLY,

which is explained in the next section.

3.3 Related Work on Locally Adaptive and Continuous Regression

The most common weighting strategy of smaller models is to simply take the uniform average of
all predictions Xu et al.|(2018); Zhang et al. (2015), but in these works those are not localized.
Other weighting strategies depend on the nearest neighbor or decisions trees which are not C°
continuous between local models.

While there are many approaches that give rise to either continuous or locally adaptive
regression models, we know of only one that achieves both. This is a recently introduced method
dubbed localKRR Han et al. (2022). Similar to our work, it starts by building a set of local models;
for each it uses a KRR model, but again could use any continuous regression model. Then on a
query q it identifies the h nearest points at the center of each model (for h > d + 1), and combines
them together in a weighted average. The weighted average is devised as a function of the distance
between ¢ and the center point of each region, and ensures C*-continuity.

Compared to our results, this localKRR has a few short-comings. First, it requires each model
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formed at query q is devised based on the h closest models, so effectively requires the space to
be covered everywhere by h > d 4+ 1 models, not by only 1 model as in ours. Also each local
model does not have a self-define region for which it is used, it depends on the distribution of
other models; in particular it is determined by the hth order Voronoi diagram of model centers.
For our method, as models are formed they determine a fixed ball subset of R? for which it
is used; each and every query ¢ in that ball invokes that model. Second, localKRR can only
guarantee C-continuity, where as our approach can attain C*-continuity for any constant ¢. Thus
for localKRR, one cannot everywhere compute gradients on the learned regression function.
Finally, as we will see, our approach PU-KRR-POLY outperforms localKRR empirically in each

experiment.

Another approach by Belkin et.al. |Belkin et al.| (2018) considers a variant of Nadaraya-
Watson kernel regression (NWKR) that nearly achieves these locally adaptive and continuous
properties. It uses a singular kernel with NWKR which interpolates points (as localKRR nearly
does), and achieves C continuity, but in practices achieves local adaptivity by truncating the

kernels, which actually destroys the continuity at these truncation thresholds.

4. KRR-POLY

We borrow the idea of RBF interpolation augmented with polynomials (see [Fasshauer|(2007) for
an example) to propose a new variant of kernel ridge regression: KRR-POLY. We also provide new
statistical analysis of this model under the noisy (non-interpolation) setting. Consider again eq(T).

Instead of estimating f solely with a kernel expansion, we now also augment the kernel expansion

with polynomials of total degree ¢ in R?. Letting p; : R - R,i=1,..., (e-gd) be a basis for

. (‘2%

this space of polynomials, we now build a model f;(q) = > , cx. oK (i, q) + > Aipi(q)-
’ i=1

To find the coefficients «; and A;, we solve the following minimization problem:

mingegn (y — Koo — PA)T(y — Koo — PA) + nal K «,

s.t. PTao=0 3)
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where P;; = p;(z;), A is the unknown vector of polynomial coefficients, but also a Lagrange
multiplier that enforces the constraint P7 oc = 0. In this work, we choose p; to be the set of d-
variate monomials up to degree ¢; we find ¢ = 2 is sufficient to induce significant advantage over
regular KRR models. This additional constraint forces the kernel expansion v & K (i, q)
to be orthogonal to the polynomial terms, thereby ensuring that the overall approximant reproduces
polynomials up to degree ¢|Bayona (2019). In addition, this constraint regularizes the far field

of the RBF expansion [Fornberg et al. (2002). The above constraints can be collected into the

following block linear system:

K+nl, P| |« Y
pPT 0] [A 0

This linear system has a unique solution provided the data locations are distinct, and if P is
of full-rank (see Fasshauer| (2007) for proof). However, if the data locations lie on a locally
algebraic submanifold of R?, P is likely to be rank-deficient. Thus, to ensure the generality of our
technique, we solve the above linear system using the singular value decomposition (SVD) with
thresholding of the singular values; we set the threshold at 10~'°. This is equivalent to enforcing
the constraint PToc = 0 in a least-squares sense. In the deterministic interpolation setting, the
above approach leads to a convergence rate controlled by the polynomial terms |Davydov and
Schaback| (2018)). Below, we discuss how to generalize these results to the statistical setting. It is
important to note in the discussion above that the overall approximant stays the same regardless
of the choice of the polynomial basis. In our proof below, for instance, we find it more convenient

to use an orthonormal polynomial basis.

Statistical Convergence

We next show a statistical convergence rate for this new KRR-POLY model. We do so in a
similar form as|Zhang et al. (2015)’s bound for kernel regression. For KRR, one can show that
E|f - fI3 = O((n + aw) - [I£1[3,)- In contrast we can show that this can be improved for

KRR-POLY to E||f — f[3 = O((n + a)n = CED/4 | £13,), under the mild assumptions listed

Volume x, Issue x, 2020



12 Mingxuan Han, Varun Shankar, Chenglong Ye, Jeff M. Phillips

below.

Define g(z) = f(z) — >_;_, pr(z)A;, the projection of the generating function f(z) on to
the space orthogonal to the polynomial basis p;(z), ..., ps(z). Given this fixed polynomial basis,
the statistical convergence then only needs to learn the residual (captured in g) via kernel ridge
regression. As|Bayona (2019) implies the ||g[|2, < n~¢+D/4|| f|13,, so our task is reduced. We
can then apply existing bounds, and in this paper we choose to employ that of [Zhang et al.|(2015).

Combining these insights together yields the following simplified form of our statistical

convergence rate, after stating two assumptions.

Assumption 1.
The unknown data generating function f € H, where Y = f(X) + ¢, for all z; € X, we have

E[(y; — f(z:))? | z;] < 82 for some & > 0.

Assumption 2.
For some k& > 2, there is a constant p < o0, s.t. Ep?k (X) < p* forall j € N, where p is a

uniform upper bound for the moment.

This condition, in Assumption |2, regulates the tail behavior of the polynomial basis in the
RKHS. The number of moments, &k, depends on the choice of kernel K; for Gaussians it holds for

k=2.

Theorem 3. Under AssumptioanandlZ, for f € H, estimator f of KRR-POLY on n training

data points in RY, ridge parameter v, and polynomials of degree { has mean square error:

E|lf = flI5 = O((+r(m)/m)n~ V| £I15)).

Theorem |3|is a consequence of the below lemma with a more detailed upper bound, and the
simplifications described in the remark that follows. However, that more precise bound is nuanced

and technical, and we need some additional notation. Let 1/u; = ||p;(z)||%; be the norm of each

o 1

polynomial basis. Let r(n) = >, ;== be the effective dimensionality Zhang|(2005) of the

kernel. Let uo, = Z;’C: | u; be the kernel trace, which is assumed to be finite and provides a

Journal of Machine Learning for Modeling and Computing



13

rough estimate of the size of the kernel. Then 34 = Zj’; 441 Uj describes the decay of the tail of

the eigenvalues of K. The quantity b(n, s, k) = max{,/max(k, log s), %_lofs)} is a function
n2 k

of the number of moments &, where s is the number of the of polynomial basis {p;(x)} for the

multivariate polynomial space Hg.
Lemma 1. Under assumptioanand lz, for f € H, estimator f of KRR-POLY has mean square
error bound as:

1282 Bl - of B20HD
2% )+ 5~ Elpel - o(r2+)

E||f - £II5 < 12nllgll5 +

262 12p* oo P s 2y
(B 1ol ) (w4 2P 04 s 2 g )

n Vn

Proof. For the minimization problem (E]), the solution is

f: ZézK(xa$z) + Zi\kpk(x)a
i=1

k=1
with kernel coefficients ¢ = (¢1,...,¢&,) = (K +nI)~'(Y — PA) and polynomial coefficients

A=(AL,...,As) = (PT(K +nI)~'P)"'PT(K +nI)"'Y. Then

Ellf - fI5 =E| Z@‘K(fﬁ z;) —g(x) + Zpk(f\k - A3,
i

k=1

where g(z) = f(z) — >_;_, pr(x)A}. Write the Taylor expansion of f(z) at 0 as f(z) =

> et L (f(0))pr (), we have Ny = Ly (f(0)) and g(z) = 3207 1| Li(f(0))pk (). where Ly

is the differential operator. Then we have

E|lf — fI5 <EI)_ &k (e z:) — g(@)l3 +EI Y pe (e = A5
i=1 k=1

The term )", ¢; K (x,z;) can be treated as a solution to the KRR problem with data

{(@iszi = yi = 35 Njpj (i) }ie,y from the model Z =Y — 370 pr(X)A; = f(X) + e —
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S aey Pe(X)A; = g(X)+e. By Assumption we have E[(z;—g(2;))? | i) = E[(yi— f(2:))* |
x;] < 82 for some & > 0. Together with Assumption |Z by Lemma 7 in |Zhang et al.[{(2015), we
have the KRR solution )" | ¢ K (z, z;) satisfies

BIY ek (o) — o)l < 12nllglB + 2 rm)
i=1
(2 gl ) (s + 220 0,0 T2,
From the paper Bayona (2019), we know that [A,, — AL| = o(h!*"). So
Ef ipk(f\k =N < s+ Bllprl3 - o).
k=1
So the desired result of Lemma [T holds. 0

Remark

The term usy; and B, are decreasing functions of d. The term b(n, s, k) is increasing in s. By
carefully picking s, the first two terms in the theorem are dominant. Then the theorem indicates
that the mean squared error of our estimator, E|f — f|2, is upper bounded by a function of
n, n and s. In fact, it indicates that E||f — f]|3 = O(( +7(n)/n) - ||g]|3,). This is a common
bias-variance trade-off inequality in non-parametric regression problems, where the first term
(n) is increasing in 1 and the second term r(n)/n is deceasing in 1. Note that the usual KRR
estimator has the bound O((n+r(n)/n)-| f||3,), and 7(n) can be bounded by 1/m. Thus Theorem

[Blfollows.

5. EXPERIMENTS

We compare PU-KRR and PU-KRR-POLY with global KRR and other stitched kernel regression
methods — specifically, KNN SVM [Hable| (2013), local SVM Meister and Steinwart (2016)), and
local KRR Han et al. (2022) — as well as neural nets and random forests. In some cases, for

completion, we also ran PU-POLY which uses PU-stitched regression with a degree-2 polynomial
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model used locally. We measure on a 2D synthetic dataset, a 3D data set from the solution of
a PDE on the sphere [Shankar and Wright| (2018), and several real-world datasets. The results
from some generic and higher-dimensional datasets from the UCI repo [Dua and Graff (2017)

are deferred to the Appendix. The error metrics we employ to compare experimental results

include: RMSE and relative error, which is rel-err; = W For all experiments, we do

train/validation/test split, and for all the kernel related methods we tune the bandwidth ¢ and
ridge parameter 1 by grid search. We select 1 from {le-1, le-2, 1e-3, le-4, le-5} and o from
{0.25%b,0.5 x b, b, 2b, 5b} where b is the average pairwise distance in each local/global model(s).
For the tree method XGBoost |Chen and Guestrin| (2016), we also tune hyper-parameters e.g:
number of subtrees, learning rate, etc. by grid search. Finally for the neural network, we have
tried 2-5 hidden layers with different number of neurons varied in {8, 16,32, 64, 128,256}, and

report the best results found. All the experiment results are reported based on a held-out test set.

5.1 2D Tests

To demonstrate that our method can adapt to different scales of response values in different
regions, we design a 2D dataset where the underlying function values ¥ are generated by x;, x, €
[~6,30] x [~6,30], 21 = ez - (1 + rapim=sy) (1 + mremp@a—ay)> 22 = sin(z2) +
cos(x1), y = 21 - z2. As seen in the "True y" plot in Figure the function values are much closer
to zero when x; is small x; € [—6, 6], moderate variance in x; € [6, 18], and large variation in
x; € [18,30]. We randomly selected 20000 points from [—6,30] x [—6, 30] as training dataset,
then choosing test set based a fine grid with a data point (1, z2) € [—6,30] x [—6, 30] every 0.2.
We tune the parameters based on the performance in training set and report the test set errors in
Figure[T]and Table[I} Note how by design the response value y becomes larger on the right where
additive error tends to be larger, and smaller on the left where relative error tends to be larger.
PU-KRR-POLY has the least RMSE (by almost an order of magnitude) and the best or
near-best max and mean relative error. The other KRR-based models all achieve similar RMSE
(between 0.25 and 0.35) and also similar relative error. However, Figure [I| shows several artifacts.

For instance, global KRR exhibits a banding effect in the error, which can be seen at a much
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smaller scale in the other KRR models; this is an example of a boundary or far-field effect[Fornberg|
et al. (2002) that adding the polynomial terms is designed to remove. Also, a visible discontinuity
is apparent in Local SVM. The XGBoost and Neural Network models do not at all perform well
on this data set as apparent visually and quantitatively. Especially for the neural network, since
the input features is with only 2 dimension, we use a 2-layer MLP (multiple layer perceptron)

with sigmoid activation function (it performed worse with 3 or 4 layers); the network structure is

tuned by AX package using Monte Carlo Bayesian OptimizationBalandat et al.| (2020).

30 True Y 30 Global KRR 30 PU KRR POLY
20 20
100
10 10
0
|
0 0
10 20 30 0 10 20 I 30 0 10 20 30 -100
30 Local SVM 30 PU KRR 10 KNN SVM
L] / « B—-200
20 ¥ 20 20
10 B 10 10
0 g 0 0 4 4
0 10 20 30 0 10 20 30 0 10 20 30 2
30 Local KRR Neural Network (MLP 30 Xgboost
0
20 20
-2
10 10 -4
0 0

0 10 20 30

0 10 20 30

FIG. 1: Error plots for 2D simulation result on data in True y plot; summarized in Table

Ablation Study

To verify the choice of parameters and design decisions, we perform an ablation study. We focus

on the simulated 2D dataset discussed in Table[I]and Figure [T}
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RMSE max relative error mean relative error

PU-KRR-POLY 0.041 50.392 0.021
PU-KRR 0.249 49.928 0.026
PU-POLY 0.239 46.052 0.037

KNN SVM  0.337 47.284 0.027
Local SVM  0.321 44.421 0.026
Local KRR  0.089 53.420 0.023
Global KRR 0.354 327.301 0.531
XGBoost  2.729 1170.34 3.359
Neural Network  7.525 3042.82 14.185

TABLE 1: RMSE & Relative errors comparison for 2D simulation

First, we try an additional regression model, and show the results in Table [I. PU-POLY
uses PU-stitched regression, but with only a degree-2 polynomial model as the local model. It
performs similar, but a bit worse than PU-KRR and worse in RMSE and mean-relative-error than

PU-KRR-POLY.

Second, recall we selected the centers of the regions arbitrarily, so long as they were not yet
covered. We implement this by just scanning all data points in the order they are stored until we
find one not yet covered or all are covered. To assess the stability of this process, we randomized
the order of the points 3 times, and re-reran PU-KRR-POLY on the new sets of regions. The
average RMSE was 0.045 with standard deviation 0.005. So about the same as the intial run. The
average (std.dev) for max relative error 41.36(15.82) and mean relative error 0.025(0.0002); also
similar to the results for the input order PU-KRR-POLY. Note the high standard deviation of
15.82, which indicates while the maximum relative error is a useful goal, it is not a very stable
measure compared to RMSE and mean relative error.

Third, we experimented with the value h describing the number of points to include in a
region. We compare to a default of h = 100, and tried h = {50, 75, 125, 150}. We see in Table
that there is not much change, but that, relative to o = 100, as h increases the RMSE increases,
and as h decreases mean relative error also increases. Hence h = 100 appears a good choice, and
varying this within 50% should not change things too much, although increasing it can cause

error to increase since the local models may not fit the data as well anymore.

Fourth, we check how the algorithm varies with the choice of kernel used to provide weights
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h RMSE max relative error  mean relative error

PU-KRR-POLY 100 0.041 50.392 0.021
PU-KRR-POLY 50 0.038 40.371 0.037
PU-KRR-POLY 75 0.043 94.477 0.029
PU-KRR-POLY 125 0.067 95.709 0.055
PU-KRR-POLY 150 0.110 65.705 0.064

TABLE 2: Ablation study for PU-KRR-POLY on £, the number of points in a local region.

to guide how local regions are stitched together. In our experiments we use the Wendland ¢, ;
kernel, which provides C2-continuity. For the algorithm to build local models, we require kernels
with bounded support. In Table [J we also consider the Gaussian (truncated), which does not
ensure continuity, and the Wendland ¢, o kernel which only provides C°-continuity. We see in
Table [3]that this change results in a very small effect in the error measures, so it is worth using

the Wendland ¢, ; kernel which has stronger gaurantees.

stitching kernel RMSE max relative error  mean relative error

PU-KRR-POLY  Wendland ¢, ;  0.041 50.392 0.021
PU-KRR-POLY  Wendland ¢,  0.048 30.590 0.024
PU-KRR-POLY trunc-Gaussian 0.041 51.691 0.024

TABLE 3: Ablation study for stitching kernel in PU-KRR-POLY. Default is Wendlands ;.

5.2 Simulation Data on the Sphere S?

In this experiment, we generate the training data by numerically solving the spherical advection
equation % + u - Vg = 0in 3D Cartesian coordinates using a fourth-order accurate semi-
Lagrangian local RBF method |[Shankar and Wright (2018), where ¢(x,t) is a scalar-valued
function; here, Vo = (I — x27)V is the surface gradient. The initial condition to this problem
is a pair of C'!'(S?) cosine bells given by g(x,0) = 0.1 + 0.9(qi(z,0) + ¢z, 0)), where for
ji=12

1 1

(1+ cos(2mcos™!(z - p;))) if cos™'(z-p;) < 3,

(S}

qj(;c,O) -

(e}

otherwise.

Journal of Machine Learning for Modeling and Computing



19

The components of the velocity field u = (u,v) for this test are given in Eqns. 16 and 17
in Shankar and Wright| (2018). This flow field is designed to deform the initial condition and
reverse it back at time ¢ = 5. The RBF-FD solution ¢ was computed at 92k equal-area icosahedral
Cartesian points on the sphere. To illustrate the ability of our method to handle concentrated
features with values close to 0, we shift the solution to be § = max(q) — g. The resulting function
values are shown in Figure 2. We then sampled from the original set based on Bernoulli trials
with the probability proportional to the inverse of distance to the centers of two bump regions; the
details of this sampling strategy are described in Appendix

We plot the average of five trials of RMSE, mean relative error, max relative error on a fixed
number of random sampled test observations (20,000), versus different training sample sizes
{3065,5377,11504,21545} for different methods in Figure E For the global KRR, we were
only able to use training sizes less than 15000 due to memory limitations. At every training size,
PU-KRR-POLY provides the best result, with PU-KRR typically second or near-second best,
especially on larger training sets. KNN SVM and local SVM are similar to PU-KRR, but plateau

in relative error for larger training set size, likely because of lack of continuity.

1

08

0.5
086

0
-1 0.2

FIG. 2: Function values on S?

As we discuss in Sec[3.2] our proposed PU-Stitched scheme can directly provide derivatives.
We now test the ability of our scheme to compute surface gradients, despite the use of Cartesian
coordinates. As our ground truth, we use a fourth-order accurate RBF-FD method from |[Shankar
et al. (2018)) to compute the surface gradient on the 92k icosahedral points. We then compute the

surface gradient using PU-KRR-POLY by applying the surface gradient operator in Cartesian
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RMSE maxrel.er mean rel.er

I“‘ PU-KRR 0554 0303 0.007
PU-KRR-POLY 0542  0.287 0.007
XGBoost 1223 0354 0.017

Neural Network 1.756 0.744 0.028

. KNNSVM 0611 0291 0.008
I Local SVM 0729  0.332 0.010
Local KRR 0.548 0312 0.007

FIG. 5: Spatial Ozone Data, and error in recovery by methods

coordinates in place of the regular derivative operator in (2). We show the average of the difference
in pointwise ¢, norms between the RBF-FD gradient and the PU-KRR-POLY gradient in Figure |4}
For comparison, we also computed surface gradients using forward differencing with the nearest
Cartesian neighbor for both KNN-SVM and PU-KRR-POLY, and compared them to the RBF-FD

surface gradient. The PU-KRR-POLY direct method is orders of magnitudes more accurate.

5.3 Spatial Ozone Data

We compare PU-KRR-POLY with other methods on the Ozone levels from|[Di et al.| (2019), which
are recorded on 1km by 1km grids in a lat-long bounding box of [36.3,42.6] x [—114.6, —108.4]
over a mountainous part of the U.S.; they are plotted on the left in Figure [5. The prediction
error y; — f (z;) for PU-KRR-POLY is plotted to its right. In all error measures, PU-KRR-POLY
performs the best, with PU-KRR typically second, followed by the other stitched KRR models.
Relative error is less pertinent here as values are not close to 0.

The Appendix provides results on other generic UCI data sets designated for regression tasks,
including ones in higher dimensions. PU-KRR-POLY is typically, but not always the best — unlike

the data sets explored here, these generic data sets do not have a large benefit from local models

in local regions that have different density of response variance.

5.4 Combustion Data

To further illustrate motivations of PU-KRR-POLY, we consider a setting with data generated
from an unknown PDE; that is the data is experimentally observed, and one knows it should be

governed by an underlying system, but that system is not known. We experiment in this setting on
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combustion data|Frenklach et al.{(2021) generated from a PDE of the form S(8)+ @ + % =0,
with S(8) is complicated and assumed not to be known (here the values of S(0) are generated with
a dimension-compressed solver|Sutherland and Parente (2009)). In particular, for the experimental
set-up, our training variables are 6 and response variables are S(5). The main goal is try to give
a continuous, differentiable, and accurate predictions to S(8) based on 4. In such cases, most
neural ODE/PDE solvers Brandstetter et al.|(2022);|Chen et al.|(2018) need an explicit form of
PDE equations and thus cannot be directly applied here. We show the comparison results in Table
M] including against SIREN [Sitzmann et al. (2020). Again PU-KRR-POLY outperforms all other

methods by 1-2 orders of magnitude in RMSE, max relative error, and mean relative error.

RMSE max relative error  mean relative error

PU-KRR 3.335e-4 1.033e-2 1.807e-4
PU-KRR-POLY 9.303e-6 6.827e-3 1.041e-5
KNN SVM  5.561e-2 3.223e-1 6.372e-3
Local SVM  3.948e-2 9.844e-1 4.566e-2
Local KRR  7.639e-4 1.279e-2 1.994e-4
XGBoost 1.931e-3 1.086e0 4.569¢-3
Neural Network 5.516e-3 4.586e0 2.450e-2
SIREN  6.470e-2 4.336e0 3.571e-2

TABLE 4: Combustion Data Results

6. DISCUSSION

We describe new locally-adaptable regression model which can ensure C*-continuity for any
finite ¢, and for which derivatives can be automatically computed. It leverages a partition-of-unity
stitching of local models. We also propose and analyze a regression model that orthogonally
mixes polynomial and kernel ridge terms with improved statistical convergence and empirical
performance. We find the PU-KRR-POLY regression model is efficient and outperforms other
advanced regression models, especially on data which benefit from locally-adaptable continuous

models.
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Efficiency and Runtime

Our method is reliant on nearest neighbor searching to both determine the points within a local
neighborhood and also determine which local models cover a query point. Fortuitously, similarity
search on vector data, has somewhat recently become extremely efficient|Andoni et al.|(2015);
Johnson et al. (2021)); [Li et al.|(2019);/Ram and Sinha (2019).

Let T'(n, d) be the time it takes to perform a nearest neighbor query on n data points in R?.
While the best theoretical bounds are either mediocre or nuanced, in practice it is quite efficient.
When each model region is set to have a constant number of points, so h = O(1), then we can
determine and build all local models in O(n - T'(n, d)) time.

To query the model at a single location ¢ € R%, we need to perform a reverse metric range
query — find all region balls B; which contain g. To bound the complexity of this we introduce
two common data-dependent parameters: the spread A (measuring precision) and the doubling
dimension dd (measuring intrinsic dimensionality). Specifically, define A as the ratio between the
largest and smallest radius of the model-containing balls. We group balls into levels depending on
their radius, so within a level all radii are within a factor of 2; there are at most log A such levels.
For a point set M, the doubling dimension dd is defined as the maximum of the log of a quantity
over all balls B of radius r; the quantity is the minimum number of balls or radius r /2 needed to
cover M N B. Note that dd < d and typically much smaller for real high-dimensional data. Now
within each level at most O(29¢) balls can contain a query ¢ since in the creation process, each
new ball must contain a point not in any previous balls. So we query each level, and retrieve at
most O(24¢) balls with centers within the largest radius of that level. Evaluating a local model is
O(1) time for h = O(1). Hence, a query takes O((2% + T'(n,d))log A) time. In our settings,
299 and log A are small constants (typically not more than 10), and this is quite efficient.

The bottom line is that the model building step runs in time roughly linearly in n, and the
model evaluation time runs in time significantly sublinear in n. For the experiments we ran,
PU-KRR-POLY had similar (or much faster) runtime to all other competing methods, and so

scalability was not a concern relative to any other standard regression method.

Moreover, when a gradient is needed in R?, one simply needs to differentiate the PU-stitched
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model analytically, which in turn only requires derivatives of the Wendland functions, the kernel,
and the polynomial terms. In contrast, typical approaches compute a discrete gradient with d-+6u,;
for a small 6 at each of d orthogonal basis vectors ;. By not requiring these extra evaluations,

our PU-stitched methods can save a factor of d, and as observed, improve accuracy.
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APPENDIX A. REAL DATA EXPERIMENTS FROM UCI REPOSITORY

Here we provide results on other generic UCI data sets designated for regression tasks, including
ones in higher dimensions. PU-KRR-POLY is typically, but not always the best — unlike the data
sets explored here, these generic data sets do not have a large benefit from local models in local

regions that has difference density of response variance.

Skillcraft data has 3395 observations and 19 features in total. See in http://archive,

ics.uci.edu/ml/datasets/skillcraftl+master+table+dataset.

RMSE max relative error mean relative error

PU KRR poly  0.246 33.179 1.290
PU KRR 0.283 47.603 1.693

Global KRR 0.252 44.866 1.304
XGBoost  0.257 57.889 1.492
Neural Network  0.249 37.656 1.293
KNN SVM  0.248 65.457 1.295
Local SVM  0.256 34.865 1.315
Local KRR  0.249 40.879 1.391

TABLE A1: rmse & relative errors: skillcraft data

Airfoil data has 1503 observations and 6 features. See in https://archive.ics.ucil

edu/ml/datasets/airfoil+self—-noise.

RMSE max relative error mean relative error

PU KRR poly 1.702 13.114 0.601
PU KRR 1.749 15.856 0.615

Global KRR 2.677 14.619 0.833
XGBoost  1.588 15.023 0.554
Neural Network  1.826 15.926 0.791
KNN SVM  1.687 10.717 0.665
Local SVM  2.357 13.817 0.956
Local KRR  1.499 15.856 0.615

TABLE A2: rmse & relative errors: air-foil data

Kin40k has 40000 observations and 8 features in total. See inhttps://github.com/

treforevans/uci_datasets.
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RMSE max relative error mean relative error

PU KRR poly 0.143 384.125 0.556
PUKRR 0.124 306.742 0.364

Global KRR  0.146 418.279 0.585
XGBoost  0.316 1134.082 1.445
Neural Network  0.139 227.806 0.494
KNN SVM  0.141 218.083 0.459
Local SVM  0.145 384.432 0.557
Local KRR 0.124 106.743 0.364

TABLE A3: rmse & relative errors: kin40k data

APPENDIX B. SAMPLING STRATEGY IN 3D EXPERIMENTS

Let’s denote the centers of bumpers in Figure [2 as ¢; and ¢,. For each point =, we run two

independent Bernoulli trials to determine it would be selected as a training data point or not. In

[z=cll

the 14; Bernoulli trial, the probability it would be selected as training data is 1 — , Where

ry is distance between c; and its furthest point. In the 2,,4 Bernoulli trial, the probability it would

[z=call

be selected as training data is 1 — ===,

where r; is distance between ¢, and its furthest point.
A point is selected only if it was selected in either 1 or 2,4 trial, so equivalent the probability it

would be selected as training point with probability equal to 1 — (@) - (le=ally,
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