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A Compositional Theory of Linearizability
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Compositionality is at the core of programming languages research and has become an important goal toward
scalable verification of large systems. Despite that, there is no compositional account of linearizability, the
gold standard of correctness for concurrent objects.

In this article, we develop a compositional semantics for linearizable concurrent objects. We start by show-
casing a common issue, which is independent of linearizability, in the construction of compositional models
of concurrent computation: interaction with the neutral element for composition can lead to emergent be-
haviors, a hindrance to compositionality. Category theory provides a solution for the issue in the form of the
Karoubi envelope. Surprisingly, and this is the main discovery of our work, this abstract construction is deeply
related to linearizability and leads to a novel formulation of it. Notably, this new formulation neither relies
on atomicity nor directly upon happens-before ordering and is only possible because of compositionality,
revealing that linearizability and compositionality are intrinsically related to each other.

We use this new, and compositional, understanding of linearizability to revisit much of the theory of
linearizability, providing novel, simple, algebraic proofs of the locality property and of an analogue of
the equivalence with observational refinement. We show our techniques can be used in practice by con-
necting our semantics with a simple program logic that is nonetheless sound concerning this generalized
linearizability.
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1 INTRODUCTION

Linearizability is a notion of correctness for concurrent objects introduced in the 90s by Herlihy
and Wing [1990]. Since then, it has become the gold standard for correctness of concurrent objects:
it is taught in university courses, known by programmers in industry, and commonly used in
academia. Its success can be justified by a myriad of factors: it is a safety property in a variety
of settings [Guerraoui and Ruppert 2014]; it appears to capture a large class of useful concurrent
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objects; it allows for linearizable concurrent objects to be horizontally composed together while
preserving linearizability, which Herlihy and Wing [1990] call locality; it aids in the derivation of
other safety properties [Herlihy and Wing 1990]; it is intuitive: a linearizable concurrent object
essentially behaves as if its operations happened atomically under any concurrent execution, a
property that has been formalized by the notion of linearization point by Herlihy and Wing [1990],
and by an observational refinement property by Filipovic et al. [2010].

1.1 The State of the Theory of Linearizability

Linearizability is commonly used to define correctness of concurrent objects and to aid in
verification of concurrent code. We believe that the current theory of linearizability suffers from
a few biases.

Atomicity: Because the classic definition of linearizability is based on linearizing to an atomic
specification, most of the subsequent work on it has focused on atomicity. Even though Filipovic
etal. [2010] have noticed that the insight of linearizability lies not in atomicity, but rather in preser-
vation of the happens-before order, most of the subsequent work still focuses on atomicity. This is
true even though many useful concurrent objects do not linearize, leading to numerous variations
on the theme [Castafieda et al. 2015; Goubault et al. 2018; Haas et al. 2016; Neiger 1994]. When
aiming for compositionality, atomicity becomes a hindrance, as often even if an object linearizes
to an atomic specification, it can happen that the components used to implement that object are
not themselves atomically linearizable.

Compositionality: The typical approach to assembling verified concurrent objects into
a larger system relies on a refinement property in the style of Filipovic et al. [2010]. Usu-
ally, there is a syntactically defined programming language for expressing concurrent code
and often specifications as well. The code is verified by linking a library L}, with an

implementation N = Njp || - -+ || N, specified in the programming language, to form N
a syntactic term Link L;; N. A trace semantics [[-] allows one to obtain the traces T
for the resulting interface [Link L’;; N, and an observational refinement property "B
allows to consider instead a linearized library Lg linked with N to reason about the M

linearizability of the library that N implements. Now, suppose one is given an imple-
mentation M relying on alibrary L’,, that is Link L’,;; M, to implement L},. There is no
obvious way to compose M and N so to re-use their proofs of linearizability to obtain
a linearizable object Link L’,; (N o M). At best, one has to either syntactically link them together,
and re-do the proofs, or inline M in N and re-verify the code obtained through this process.

Syntax: As outlined in Compositionality, there is also a bias towards syntax, even in Filipovic
et al. [2010], one of the foundational articles on linearizability. This becomes an issue when differ-
ent components are modeled by different computational models but need to be connected nonethe-
less (such as when one wants to model both hardware and software components, or when compo-
nents are written in different programming languages). This situation occurs in real systems. For
instance, Gu et al. [2015, 2016, 2018]’s verified OS contains components in both C and Asm. The
way they manage to make the two interact is by only composing components after compiling C
code into Asm using CompCert [Leroy 2009], a solution which is yet again reliant on syntactic
linking. Less optimistically, there would be no compiler to aid with this. In this context, an entire
metatheory for the interaction between the two languages would need to be developed, together
with a theory of observational refinement across programming languages. In a large heterogeneous
system, this becomes unwieldy, as there could be several computational models involved. Mean-
while, a compositional abstract model could embed each heterogeneous component and reason
about them at a more coarse-grained level.
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Theory: Overall, the theory of linearizability is rather underdeveloped. There are essentially
two characterizations: the original happens-before order one from Herlihy and Wing [1990], and
the observational refinement one from Filipovic et al. [2010]. Guerraoui and Ruppert [2014] ad-
dressed the folklore that linearizability is a safety property, while Goubault et al. [2018] gave a
novel formulation of linearizability in terms of local rewrite rules and showed that linearizability
may be seen as an approximation operation by proving a certain Galois connection. Otherwise,
there isn’t a clean theory that addresses the semantic and computational content of linearizability,
providing foundations for properties such as locality and observational refinement. As a side-effect
of this, the proofs of these properties are rather complicated.

A more general and abstract theory of linearizability could not only simplify these issues but
also be more easily adapted to novel settings
where there is no obvious happens-before ordering.

Verification: The issues outlined above are even more relevant in formal verification, espe-
cially when targeting large heterogenous systems. A recent line of work [Koenig and Shao 2020;
Oliveira Vale et al. 2022] maintains that compositional semantics is essential for the scalable ver-
ification of such systems. The idea is that individual components are verified in domain specific
semantic models appropriate for the verification task, which target fine-grained aspects of com-
putation. This is necessary as semantic models for verification are tailored to make the verifica-
tion task tractable. But then, these components are embedded into a general compositional model,
shifting the granularity of computation to the coarse-grained behavior of components. This gen-
eral model acts as the compositional glue, connecting the system together. As linearizability is
the main correctness criterion for concurrent objects, a compositional model of linearizable ob-
jects is necessary to provide that glue for large, heterogeneous, potentially distributed, concurrent
systems.

1.2 Summary and Main Contributions

— In this article,! we develop a compositional model of linearizable concurrent objects. We
cover some background, motivation, and main results informally in Section 2.

We first construct a concurrent game semantics model (Section 3). For the sake of clar-
ity, we strive for the simplest game model expressive enough to discuss linearizability: a
bare-bones sequential game model interleaved to form a sequentially consistent model of
concurrent computation.

— As with other models of concurrent computation, the model in Section 3 fails to have a neu-
tral (or identity) element for composition. We remedy this in Section 4 by using a category-
theoretical construction called the Karoubi envelope. We argue that this construction comes
with two transformations Kconc— and Embconc— converting between the models from
Sections 3 and 4.

— Surprisingly, the process of constructing the model in Section 4 reveals that linearizability
is at the heart of compositionality, and in particular we do not need to define linearizability:
it emerges out of the abstract construction of a concurrent model of computation, as we
discuss in Section 5. We show this by giving a generalized definition of linearizability and
then by showing its tight connection to Kconc—, leading to a novel abstract definition of
linearizability.

— We then give a computational interpretation of linearizability in Section 5.4 by showing that
proofs of linearizability correspond to traces of a certain program ccopy.

I This article is an extended and improved version of Oliveira Vale et al. [2023].
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— Simultaneously, these new foundations reveal that compositionality is also at the heart of
linearizability. In Section 5.5, we give an analogue of the usual contextual refinement result
around linearizability which admits an extremely simple proof because of our formalism.

— In Section 5.6, we revisit Herlihy-Wing’s locality result and provide a novel proof of locality
based on our computational interpretation and abstract formulation of linearizability, lead-
ing to a more structured and algebraic proof of a generalized locality property.

— In Section 6, we revisit our construction from the point of view of category theory, showing
that it can be generalized to other settings with similar structure. We establish a notion of
abstract linearizability, and provide sufficient conditions on a category for the interaction
refinement property and locality results of Section 5 to hold. We also give an abstract proof
of the Galois connection from Goubault et al. [2018].

— In Section 7, we use the construction and tools developed in Section 6 to recount classical
Herlihy-Wing linearizability, and show that our methods faithfully specialize to Herlihy-
Wing linearizability when constructing a category of atomic games.

— In the brief Section 8, we compare our definition of linearizability with interval-sequential
linearizability [Castafieda et al. 2015], showing that they are equivalent.

— In Sections 9 and 10, we carefully analyze the notion of possibilities of Herlihy and Wing
[1990], providing a novel proof of the equivalence of linearizability with linearization points,
and develop a generalization of their notion to our setting. This culminates in establishing
the basic principles to develop a program logic for our notion of linearizability.

— In Section 11, we provide a brief interlude to develop a concurrent object-based semantics,
inspired in Reddy [1996] and Oliveira Vale et al. [2022], which will be the model of code for
our program logic.

— In Section 12, we showcase our model is practical by connecting our semantics with a con-
crete program logic, and showing how the theory can be used to compose concurrent objects
and their implementations together to build larger objects.

2 BACKGROUND AND OVERVIEW
2.1 Background

2.1.1  Game Semantics. Since Herlihy and Wing [1990] was published, many techniques have
been developed by the programming languages and the distributed systems communities to model
concurrent computation. One technique that has risen to prominence, mostly because of its suc-
cess in proving full abstraction results for a variety of programming languages, is game seman-
tics [Abramsky et al. 2000; Blass 1992; Hyland and Ong 2000]. Its essence lies in adding more
structure to traces, which are called plays in the paradigm. These plays describe well-formed in-
teractions between two parties, historically called Proponent (P) and Opponent (O). A game A (or
B) provides the rules of the game by describing which plays are valid; types are interpreted as
games. As one typically takes the point of view of the Proponent, and models the environment as
Opponent, programs of type A —o B (an affine program that produces a play from B by interacting
with A) are interpreted as strategies o : A — B for the Proponent to “play” this game against
the Opponent. A strategy is essentially a description of how the Proponent reacts to any move by
the Opponent in any context that may arise in their interaction. The standard way of composing
strategies informally goes by the motto of “interaction + hiding”: given strategies 0 : A —o B
and 7 : B —o C the strategy o;7 : A — C is constructed by letting ¢ and 7 interact through
their common game B, obtaining a well-formed interaction across A, B, and C, and then hiding the
interaction in B to obtain a play that appears to happen only in A and C.
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2.1.2 A Surprising Coincidence. Ghica and Murawski [2004] constructed a concurrent game
semantics to give a fully abstract model of Idealized Concurrent Algol (ICA). In attempting to
construct their model of ICA, they faced a problem: the naive definition of concurrent strategy
does not construct a category for lack of an identity strategy. In other words, there is no strategy
idg : A — A such that o;id4 = o holds for any strategy o : A, a basic property of a compositional
model. Their solution was to consider strategies that are “saturated” under a certain rewrite system,
an approach they inherited from Laird [2001]’s work on the semantics of CSP.

Interestingly, the same rewrite system appears in Goubault et al. [2018]’s work on linearizabil-
ity. There, they gave an alternative definition of linearizability based on a certain string rewrite
system over traces.” Denoting an operation m (either an invocation or a response) made by a com-
putational agent @ by a:m, the key rule of this rewrite system is given by

h-ama’:m’ -h" ~> h-a":m" a:m-h
if and only if @ # &’ and m is an invocation or m’ is a return. That is, two events a:m and a’:m’ in
atrace h-a:m a’:m’ - i’ may be swapped when they are events by different threads, « and a’, and
the swap makes an invocation occur later or a return occur earlier. These swaps precisely encode
happens-before order preservation.

The coincidence between the two rewrite systems is unexpected. Ghica and Murawski [2004] are
simply attempting to construct a compositional model of concurrent computation, without regard
for linearizability. They make their model compositional by considering only strategies saturated
under a rewrite relation which happens to encode preservation of happens-before order.

So why should this rewrite system appear as a result of obtaining an identity for strategy com-
position?

2.1.3 Compositional Refinement-Based Verification. Consider a model of computation C defin-
ing what it means to be an object of type A, B,C as well as a way to represent computation
o : A — B that uses an object of type A to implement an object of type B. To be compositional,
this model should moreover come with a few operations:

— a notion of refinement formalizing when ¢ : A — B is refined by ¢’ : A — B, written
ocCo’;

— a vertical composition operation —; —, which takes 0 : A — B and 7 : B — C and constructs
0;7 : A — C. Intuitively, it takes a piece of computation that implements objects of type C
using objects of type B, and one that implements objects of type B using objects of type A,
and produces one that implements objects of type C using objects of type A directly;

— a horizontal composition operation — ® — defined on both objects and code. Intuitively, it
takes independent objects of type A and B and composes them into an object of type A ® B
which allows for both objects to be used simultaneously as if they were a single object.

These operations are required to satisfy many compositionality properties, like associativity and
existence of neutral elements. They are also required to interact well with each other. For instance,
both vertical and horizontal composition need to be monotonic with respect to refinement, so
individual components can be refined individually and still imply a corresponding refinement for
the composed system. Another set of important properties enforce that horizontal and vertical
composition interact well with each other, providing flexibility when composing components.

Ultimately, one finds that these requirements naturally lead to the idea that this model should
assemble into an enriched symmetric monoidal category. This collects the desired properties as
discussed above and provides a robust algebra to reason about verified components. In the end,

%The idea of using rewriting to define linearizability already appears in Aguilera and Frelund [2003]’s work on linearizabil-
ity in the context of crashes and abortions.
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one obtains a model that makes it easier to assemble verified components into larger systems, but
also to reason about them through refinement. This does come at a cost, as one must design the
framework to guarantee it satisfies these properties.

2.2 An Example on Compositionality

Compositionality is not only important for providing semantics to programming languages, but
also for the sake of scalability in formal verification. We now provide a few examples of how
compositionality helps profitably organize a verification effort.

2.2.1 Coarse-Grained Locking. We model an object Lock with acq and rel operations which take
no arguments and return the value ok. We can encapsulate this information as the signature:

Lock := {acq: 1,rel : 1}

meaning that 1 = {ok} is the set of return values for both the acq and rel operations. We denote
by fLock the type of traces using operations of Lock and by Piiock the set of traces of type fLock.
An example of a concurrent trace in Py ok is (the arrows keep track of the individual threads of
computation, and are merely a visual aid):

—_—
s = aj:acq az:acq — ap:ok as:acq w as:ok

this trace s linearizes to the following atomic trace ¢, also in P ok, called atomic because every
invocation immediately receives its response:

t= az:acq — az:ok — apirel — ap:ok as:acq — as:ok

In particular, linearizability enforces that any operation that “happens before” some other op-
eration in s (an operation happens before another if the return of the first happens before the
invocation of the later), still happens before that operation in ¢. This is usually formalized by defin-
ing a partial order on the events of a trace, called the happens-before order. We call this aspect of
linearizability “preservation of happens-before order”.

As usual, concurrent objects are specified by sets of traces. In this way, a concurrent lock object
is specified as a prefix-closed set of traces v | € PyLock- To be correct this specification v/ , should
linearize to the atomic specification vioek © Piock given by the set of traces s € Py ock such that

if S =81 -@A1:M1 - A2:My - A3:M3 * A4:My - Sy then

—If my; = acq then a@; = a; = a3 = a4 and my = my = ok and m3 = rel;
—If my = rel then a; = a2, a3 = a4, m3 = acq and my; = my = ok;
and, if s is non-empty, then its first invocation is acq. We take the convention that a primed speci-
fication (like v/ ) is more concurrent than its un-primed counterpart (like viock).
A typical application of a lock is synchronizing accesses to a resource shared by several asyn-
chronous computational agents. For instance, suppose we have a sequential queue with signature:

Queue := {enq: N — 1,deq: N + {o}}

Its concurrent specification vg,e,. can be specified as the largest set of traces s € Piqueve such
that
if s = p-a:deq - a:k - s” and p is atomic then either gstate(p) = k :: ¢’ or gstate(p) = [ | and k = @,
where gstate is an inductively defined function taking an atomic trace p and returning the state
gstate(p) of the queue after executing the trace p from the empty queue [ ]. Note that as soon as any
non-atomic interleaving happens in a trace of vg,., the behaviors of enq and deq are unspecified
and therefore completely non-deterministic. This reflects the assumption that this Queue object is
a sequential implementation that is not resilient to concurrent execution.
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Miock :
M K Import F:FAIl
I;g“;l;et' Q: Queue Import C:Counter
Import L:Lock Import Y:Yield
acq() { rel() {
e”‘z(';z E). def(lc{()_ my_tick <- F.fai(); C.incO);
acall; acald; while (cur_tick # my_tick) { ret ok
r <- Q.enq(k); r <- Q.deq(); Y.yield(): 3
L.relO; L.relO; cur_tick <- C:get()
ret r ret r }
) ) ret ok
3

Fig. 1. Shared Queue implementation (left), and Lock implementation (right).

Such a Queue object can be shared across several agents by locking around all the operations
of Queue, as demonstrated in the following implementation Msqueue : Lock ® Queue — Queue
implementing a shared queue using a lock and a sequential queue implementation (see Figure 1).
Note that when several independent objects must be used together, we use the linear logic tensor
— ® — to compose them horizontally into a new object, such as in the source type of Msqueue-

The queue object Vg, implemented by Msqueue is linearizable to the usual atomic specification

, . . . .
Vsqueue Of @ Queue. But observe that Vqueue 1S 11Ot linearizable to Vsqueue. This means that the com-

position of v, and v, into an object of type Lock ® Queue specified as v, ® Vg,eye (the set

of all sequentially consistent interleavings of v , and vg,e,) is also not linearizable to an atomic
specification. This is enough for approaches which are over-reliant on atomicity to be unable to
handle this situation cleanly. A solution there is to remove the dependence on the non-linearizable
queue by inlining its implementation in terms of programming language primitives. This solution
is unfortunate, as intuitively what Msqueue does is turning a non-linearizable queue into a lineariz-
able one. Inlining its implementation removes the connection between the sequential implementa-
tion and the code implementing this sharing pattern. Instead, what one would like to do is to use
off-the-shelf sequential components freely, like in the code in Figure 1. Meanwhile, by divorcing
linearizability from atomicity, we will still have that v | ® V{ ey is linearizable to viock ® Viyeue
according to a generalized notion of linearizability. We connect our model with a program logic

to show that the code in Figure 1 does implement a linearizable Queue object correctly.

2.2.2 Implementing a Lock. A typical implementation for Lock is the ticket lock implementation
(see Figure 1), relying on a sequential counter and a fetch-and-increment object with signatures

Counter := {inc : 1, get : N} FAl := {fai : N}

The FAI object comprises a single operation fai which both returns the current value of the fetch-
and-increment object and increments it. It is well known that the concurrent v/, object specifica-
tion is linearizable to an atomic one vg;.

The Counter object v/, ... has a subtler specification. It models a semi-racy sequential counter
implementation similarly to the queue from Section 2.2.1. But different from the racy queue, the
counter must be slightly more defined, as the lock implementation requires that the sequential
implementation be resilient to concurrent get calls, and with respect to concurrent get and inc
calls. However, if inc calls happen concurrently, the behavior is undefined. This is not an issue
for the lock implementation because it never happens in a valid execution of a lock. We model

this by assuming that the concurrent specification of the Counter, v/ ..., is linearizable (in our
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generalized sense) with respect to a less concurrent one, Veounter, given by the largest set of traces
s € Picounter satisfying:

If s = p - a:get - m - s’ then m = a:k and if moreover p | (inc.ok} is atomic and even-length then

k = #inc(p),

where #inc(—) is an inductively defined function returning the number #inc(p) of inc calls in p.
Note that we do not bother defining what v/ .. actually is, as our proofs, using a refinement
property a la Filipovic et al. [2010], will only rely on the linearized specification vVeounter-

Occasionally, one implements the ticket lock so that it yields while spinning so as to let other
agents get access to the underlying computational resource (such as processor time). For some
purposes, this is crucial to obtain better liveness properties. For this, we define a signature

Yield := {yield : 1}
with concurrent specification v}’]iel 4 given by
v}’,ield = {s € Pivield | $ = 51 - azyield - s; - a:0k - s3 = there is a pending yield in s; - 52}

that is to say, a call by « to yield is only allowed to return if another agent calls yield concurrently
with a. A typical trace of v}’,iel 4 looks like

ay:yield w

Now, observe that by definition, v}’,ie1 4 contains no atomic traces, as yield only returns if another

ozlzokN W as:ok

yield happens concurrently with it. That means that no atomic linearized specification for V),/iel g will
be faithful to its actual behaviors. Despite that, its traces can always be simplified, while preserving
happens-before-order, so that between a yield invocation and its return ok the only events that
appear are the ok for the agent who took over the computational resource and the yield call for
the agent who yielded, like so

ay:yield W as:ok
That is to say, Yield is linearizable (in our sense) to a non-atomic specification, and we can still use
our observational refinement property to simplify the reasoning on the side of the client of Yield.
With the Yield object at hand, we verify that the implementation in Figure 1 for the ticket lock is
linearizable using a program logic. Once Mjock and Msqueue are individually verified, we can use
a vertical composition operation —; — to compose them into a program implementing the shared
Queue directly on top of FAI, Counter and Yield while preserving the fact that this composed
implementation implements a linearizable Queue object. We depict this example in Figure 2.

2.3 Overview

Our work will address the question raised at Section 2.1.2 by showing that linearizability is already
baked in a compositional model of computation. Crucially, our goal is to show that a model of con-
current computation with enough structure naturally gives rise to its own notion of linearizability,
and that linearizability is intrinsically connected to the compositional structure of the model.

For this, we define a model of sequentially consistent, potentially blocking, concurrent compu-
tation Conc, inspired by Ghica and Murawski [2004]. Similarly to their model, this model fails to
have a neutral element for composition —; —. An abstract construction called the Karoubi envelope
allows us to construct from Conc a compositional model Conc which does have neutral elements.
This new model Conc differs from Conc in that its strategies o of type A —o B are strategies of
Conc that moreover are invariant upon composition with a certain strategy called ccopy_. This

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.
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’ /
Vlock ‘ ‘ Vsqueue
Véqueue nd Vsqueue
Mgk quueue
‘ ! 4 4 4 Msqueue
‘ Vfai ‘ ® ‘vcounter‘ ® ‘ Vyield ‘ ‘ Vlock ‘ ® ‘ uneue ‘ q
7 /
”_l ”_l ‘ vlock ‘ ‘ uneue ‘
, lin. v v
Vlock ﬁ Viock squeue > Vsqueue Miock ® ccopy
’ ’ / ’
Mo quueue ‘ Vhai ‘ ® ‘Vcnunter ® ‘ 1/yield ‘ ‘ uneue ‘
‘ Vfai ‘ ® ‘Vcounter‘ ® ‘ Vyield ‘ ‘ Vlock ‘ ® ‘ Vélueue ‘

Fig. 2. In our compositional model, off-the-shelf components can be composed horizontally by using the
linear logic tensor — ® —. Each component’s implementation is verified against its linearized specification
individually (left). Refinement and generalized linearizability allow to use the simpler specifications v¢,;, and
Vyield to prove that Vllock’ implemented by M| is linearizable to vjoci. By assuming v/ . linearizable to the
specification veounter, it is unnecessary to know the actual concurrent behavior of the racy counter. Vertical
composition (right) allows one to compose the two implementations together to obtain a fully concurrent
description of the composed system while maintaining that after the composition v;queue is still linearizable

to vsqueue. We use ccopy to denote the neutral (or identity) element for composition, discussed in Section 3.2.

Import F Import F
KConc
fa) { fa) {
r <- F.f(a); r <- F.f(a); Conc Conc
ret r ret r —
3 3 ~_
Embconc

Fig. 3. Code corresponding to ccopy_ (left); Diagram depicting the operations Kconec and Embconc (right).

strategy corresponds to the traces of a program where each agent in the concurrent system runs
the code in Figure 3 in parallel, which implements f by importing an implementation of f itself, or
alternatively to an n-redex Ax. f x. This construction comes with some infrastructure: a saturation
operation Kconc and a forgetful operation Embconc, depicted in Figure 3. Importantly, Kcone 0 is
defined to be ccopy, ; 0; ccopyy while Embcone 0 is by definition just o itself. The central but simple
result of this article is that

PROPOSITION 2.1 (ABSTRACT LINEARIZABILITY). A strategy ¢ : A € Conc is linearizable to a
strategy T : A € Conc if and only if
o C KConc T

By linearizability we mean a generalized, but concrete, definition of linearizability which
nonetheless faithfully generalizes Herlihy-Wing linearizability when 7 is an atomic strategy. It
is important to emphasize that because Kconc arises from the Karoubi envelope construction, not
only it does not involve happens-before ordering but also it immediately suggests an abstract def-
inition of linearizability which could be sensible anywhere this abstract construction is used.

We give a novel characterization of linearizability by showing that the strategy ccopy_, corre-
sponds to proofs of linearizability, giving a computational interpretation to proofs of linearizability
(where s[4 denotes the projection of the trace s to events of A). We call this a computational inter-
pretation because ccopy_ is the denotation of the concrete program in Figure 3.
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PROPOSITION 2.2 (COMPUTATIONAL INTERPRETATION). s linearizes to s, both plays of type A, if
and only if there exists a play s € ccopy, : A —o A such that

sTA, = S0 sTa, = $1
where Ay and A denote the source and target components of A —o A.

Then, we show a property analogous to the usual contextual refinement property, admitting a
very simple proof due to the abstract formalism we develop.

PROPOSITION 2.3 (INTERACTION REFINEMENT). V), : A € Conc is linearizable to v, : A € Conc if
and only if for all concurrent games B and o : A — B it holds that

’
V40 S Va0

After that, we define a tensor A®B amounting to all the sequentially consistent interleavings of
traces of type A with traces of type B, that is, interleavings such that each agent behaves sequen-
tially locally. We then use the insight given by the computational interpretation of linearizability
proofs and show that for any A and B:

CCOpPYpgp = CCOPY, ® cCOpYg

This equation can be interpreted to say that proofs of linearizability for objects of type A ® B
correspond to a pair of a proof of linearizability for the A part and a separate proof of linearizability
for the B part. We use this insight to give a more general account of the locality property originally
appearing in Herlihy and Wing [1990], obtaining as a corollary the following locality property:

ProPoSITION 2.4 (LocALITY). Letv), : A, vy : B andvs : A, vp : B. Then

v/ =V}, ® vy is linearizable wrt. v = v4 ® vp

if and only if
v, is linearizable w.r.t. va and vy is linearizable w.r.t. vg

Perhaps more important than the property itself is the methodology we use to establish it. Rather
than the usual argument using partial orders, originally from Herlihy and Wing [1990] and also
appearing in a setting closer to ours in Castafieda et al. [2015], we give an algebraic proof relying
on the abstract definition of linearizability from Proposition 2.1.

This success in developing the fundamental theory of linearizability from this angle motivates
a straight-forward categorification of the notion of linearizability in models based on this kind of
Karoubinization. We also closely compare our definition with other well-established notions of lin-
earizability in locally sequential models: the original formulation in terms of atomic specifications
[Herlihy and Wing 1990], and the more recent and expressive interval-sequential linearizability
[Castarieda et al. 2015].

We then build an axiomatic approach for formulating linearizability proofs that unifies the pos-
sibilities approach by Herlihy and Wing [1990] with our methodology. In the process, we use the
computational interpretation angle to show that each possibility axiom corresponds to a differ-
ent kind of move that the copycat strategy might make in a valid execution. We refine this into
a principled way to annotate an implementation strategy with proofs of linearizability, which ul-
timately results in our own framework for possibility-based axiomatic proofs and an alternative
way to characterize linearization points (and their generalization to linearization intervals). We
then elaborate our axiomatic approach into a rely-guarantee program logic inspired by Khyzha
et al. [2017].

At this point, we will have all the ingredients to compose concurrent objects into larger
systems, such as in the example in Figure 2. We showecase this by using our program logic to
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verify individual components. Vertical composition corresponds to strategy composition —;—.
Horizontal composition is provided by the tensor — ® — which is well-behaved with respect to
linearizability due to the locality property. As our model is enriched over a simple notion of refine-
ment, we will also have that these constructions are harmonious with refinement. The interaction
refinement property allows us to leverage the linearized specification of components to ease
reasoning.

3 CONCURRENT GAMES

In this section, we define our model of concurrent games, built by interleaving several copies of a
sequential game model. We start by defining a simple model of sequential games Seq in Section 3.1.
Then, we define a multi-threaded interleaved model Conc in Section 3.2 and observe that it defines
a semicategory.

3.1 Sequential Games

Before we proceed, we briefly define a sequential game model. Similar models appear elsewhere in
the literature. See, for instance Abramsky and McCusker [1999] and Hyland [1997], which we sug-
gest for the reader who seeks a detailed treatment. Our concurrent model amounts to interleaving
several sequential agents which behave as in the sequential game model we define now.

The reader familiar with game semantics will note that, unlike the aforementioned references,
we do not make use of justification pointers. This greatly simplifies the presentation, and is enough
to discuss standard notions of linearizability, giving hope that our treatment is amenable to mecha-
nization. This means, however, that our development does not handle programs written in higher-
order languages well, as we briefly discuss in Section 13. Our presentation is also unusual in that
we do not require O-receptivity initially. The benefits of this approach will be clear later once we
note that this is the natural setting to handle linearizability.

As we outlined in Section 2.1.2, types are interpreted as games. In the following definitions
Alt(S, S’) is the set of sequences of S + S’ that alternate between S and S’, C is the prefix relation,
and Ceyen is the even-length prefix relation.

Definition 3.1. A (sequential) game A is a pair (My, P4) of a set of polarized moves My = Mg +M§
and a non-empty, prefix-closed set of alternating sequences P4 C Alt(M9, M}Z) of M4, called plays,
such that every non-empty play s € P4 starts with a move in Mg.

The moves in Mg are the Opponent moves, and those in Mf; the Proponent moves. Every se-
quential game A defines a labeling map A4 : My — {O, P} by the universal property of the sum.

An example of a game is the unit game ¥ in which Opponent may ask a question g which
Proponent may answer with a response a. In this way, Mg = {q} and Mg = {a}, and X admits
exactly the following three plays:

Ps:={ ¢ , q , q——a }

corresponding to the empty play, the play where Opponent has asked g and awaits a response
from the Proponent, and a play where Proponent has replied.

Games can be composed together to form new games. Of particular importance for us will
be the tensor A ® B of two games A and B, and the linear implication A — B. In the following,
we denote by s[4 the projection of s to its largest subsequence containing only moves of the
game A.
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Definition 3.2. Let A and B be (sequential) games. The tensor of A and B is the game A® B =
(MA®B, PA®B) defined by

O ._ 0 0 P _ AP P
Myep == My + Mg Myep == My + My

Pagp = {s € AltMS 5. ML) | sTa € PA Aslp € Py}
The game A —o B = (Ma—p, Pa—p) is defined by

O ._ AP 0 P ._ 0 P
My _ =M, + Mg M, _ g =My + Myg

Paop = {s € A(MG_ 5, M} _ ) | sTa € Pa Aslp € Pg}
The game 1 is given by the following data:
M? =0 Mf =0 Py = {e}

The plays of A® B are essentially plays of A and B interleaved in a sequential play, so that A® B
corresponds to independent horizontal composition. The game A — B meanwhile corresponds to
switching the roles of Opponent and Proponent in A and then taking the tensor with B.

As a matter of illustration, the maximal plays (under prefix ordering) for the games X ® ¥; (the
two plays on the left) and 3y — ¥; (the two plays on the right) are depicted below. We denote
by %, 2 the two components of these types, both of which are instances of the game X. We will
similarly add an index to the moves of each component.

21 q — ai q1 ax

% G — a qlﬁal\l
® i
/\ \}qo%ao/

20 qo — ao q0 —r ao | 2o

Observe that in the game X ® ¥ Opponent can choose to start in either component, while in the
game X — X Opponent must start in the target component (X;) due to the flip of polarity in the
source component (%y). In ¥ ® ¥ only Opponent may switch components, while in ¥ — ¥ only
Proponent may switch components because of alternation (these are typically called the switching
conditions of sequential games).

Continuing along what we outlined in Section 2.1.2, programs are interpreted as strategies.

Definition 3.3. A (sequential) strategy o over the game A, denoted o : A, consists of a non-empty,
prefix-closed set of plays in Py.

A morphism between sequential games A and B will then be defined as a strategy for the game
A —o B. Strategy composition is defined as usual by “interaction + hiding”. Formally,

Definition 3.4. Given games A, B, C we define the set int(A, B, C) of finite sequences of moves
from M4 + Mg + Mc as follows:

s €int(A,B,C) & slap € Pasp AslB.c € Ppc
The interaction int(o, 7) of two strategies 0 : A —o B and 7 : B —o C is given by the set
int(o,7) = {s € int(A,B,C) | stap € 0 Aslpc € 1}
And finally, the composition o; 7 is defined as
;7 :={slac|s€int(o,1)}

PROPOSITION 3.5. Strategy composition is well-defined and associative.
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This means that sequential games and sequential strategies assemble into a semicategory, which
we denote by Seq. Recall that a semicategory is a category without the requirement of neutral
elements for composition. In order to upgrade Seq into a category, it is usual to add an extra
requirement to strategies. o

Definition 3.6. A sequential strategy o : A is O-receptive when:

If s € o, Opponent to move at sand s - m € P4, thens-m € o.
Then, the neutral element for strategy composition is the (sequential) copycat strategy.
Definition 3.7. The (sequential) copycat strategy copy, : A —o A is defined as
copyy :={s € Paoa | VP Ceven s-pTa, = pla,}
It is folklore in game semantics that

PROPOSITION 3.8. For a sequential strategy o : A — B, copy 4;0;copyy = o if and only if o is
O-receptive.

which gives as a corollary that:

COROLLARY 3.9. The copycat strategy is the neutral element for strategy composition of O-receptive
strategies.

We collect these results as the category Seq of sequential games defined in the following.

Definition 3.10. The category Seq of sequential games and O-receptive sequential strategies is
the category whose objects are sequential games A, B, C and whose morphisms are O-receptive
strategies 0 : A —o B, 7 : B — C. Strategy composition is given by o;7 : A — C and the neutral
elements for strategy composition are given by the copycat strategies copy , : A — A.

A useful class of examples of sequential games to keep in mind are games associated with effect
signatures.

Definition 3.11. An effect signature is given by a collection of operations, or effects, E = (e;);er
together with an assignment ar(—) : E — Set of a set for each operation in E. This is conveniently
described by the following notation:

E={e;:ar(e;) | i eI}

Cursorily, we can define a game Seq(E) associated with an effect signature E as the game which
has as O moves the set of effects e € E and as P moves the set U.cgar(e) of arities in E. We take
the freedom of writing E for Seq(E). The typical plays of E appear below in the left and consist of
an invocation of an effect e € E followed by a response v € ar(e).

E: e ——> v TE : e —> UV —> e —> Uy —> ... —> €, —> Uy
We can lift such a game E to a game TE that allows several effects of E to be invoked in sequence.
Its plays, depicted above on the right, consist of sequences of invocations e; € E alternating with
their responses v; € ar(e;). The examples in Section 2.2 were all specified using effect signatures.
It is easy to observe that TE accurately captures the type of sequential traces of an object with E
as its interface.

For example, the game corresponding to the Counter signature defined in Section 2.2 has as
maximal plays the plays depicted below on the left. fCounter allows for several plays of Counter
to be played in sequence. Note, however, that it merely specifies the shape of the interactions with
tCounter. Two plays of ¥Counter are displayed on the right.
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inc — ok get — 3 —> inc —> ok — get — 7 — get —> 2 — inc
Vn € N. get —> n inc — ok —> get —> 1 — get — 1 —> inc — ok

This minimal treatment of §— will suffice for now. We discuss it in more detail later in Section 11.
Effect signatures, when allied with the replay modality, provide a compact way to represent the
traces that are usually considered in imperative programs, and will figure prominently in the pro-
gramming language we consider in Section 12.

3.2 Concurrent Games

We assume as a parameter a countable set of agent names Y. These names will be used to distin-
guish different agents playing a concurrent game A. We are now ready to define concurrent games.

Definition 3.12. A concurrent game A = (Mja, Pa) is defined in terms of an underlying sequential
game A = (Mg, P4) in the following way:
— Its set of moves My is given by the disjoint sum My := ),y Ma. That is to say, its moves
are of the form a:m € My for any agent € Y and move m € M4.
— Its set of plays Py is the set P4 := ®(P,4) of self-interleaving of plays of the sequential game A.
Formally, denote by s || t the set of interleavings of the finite sequences s and t, defined
inductively by

ells=slle=s xoslly-t=x-(slly-)Vy-(x-sll )

Given sets of finite sequences S, T, we define the set of interleavings S || T and the set of
self-interleavings ®(S):

sit=|J sl @)= U @® 1 lw®)
seS,teT neN {ay, ..., a, }€P(Y)
where P"(Y) denotes the set of subsets of T of size n, and 1,(s) labels every move m in s, of every
sequence s € S with the label « denoted by a:m.

The sequential game A is the game that each agent @ € Y plays locally. We denote by r,(s)
the projection of a concurrent play s € P4 to the local play 7,(s) by agent a. In particular, for
any play s € Pa, 74(s) € Pa. Observe that a concurrent game A with underlying sequential
game A = (M, P4) is completely determined by its underlying sequential game A per the formula
A = (X ger Ma, ®(P4)). Because of this, it is convenient to write A = (Ma, P4) when specifying a
concurrent game, as we will do for the rest of the article.

Along the lines of our sequential game model Seq we now define the notion of a (concurrent)
strategy over a (concurrent) game A.

Definition 3.13. Let A = (Ma, P4) be a concurrent game. A (concurrent) strategy o over A, de-
noted o : A, is a non-empty, prefix-closed subset of P4.

The definition of a concurrent strategy is mostly analogous to that of a sequential strategy. In
fact, 7, (o) is a sequential strategy over the sequential game A for every a € Y. We again defined
morphisms by first defining an implication game A — B, which simply instantiates the underlying
sequential game as the sequential implication game. This should be understood as having each
agent play the sequential arrow game A — B.

Definition 3.14. Given concurrent games A = (Ma, P4) and B = (Mg, Pg),where A = (My, Py)
and B = (Mg, Pp) are sequential games, we define the concurrent game A — B as

A — B:=(Msp,PsoB)
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Strategy composition is defined analogously to the sequential case.

Definition 3.15. Given concurrent games A = (Ma, P4),B = (M, Pg),C = (Mc, Pc) we define
the set int(A, B, C) of finite sequences of moves from Mp + Mg + Mc as follows:

s €int(A,B,C) & slap € PaoB AS[B.Cc € PB—C
Then, the parallel interaction int(c, 7) of two strategies o : A —o B and 7 : B —o C is the set
int(o,7) := {s € int(A,B,C) | slap €0 AslBc € 7}
And finally, the composition o; 7 is defined as
o;7:={sfac|s €int(o,7)}
PROPOSITION 3.16. Strategy composition is well-defined and associative.
Proposition 3.16 establishes a semicategorical structure to concurrent games and strategies.

Definition 3.17. The semicategory Conc has concurrent games A,B as objects and concurrent
strategies o : A —o B as morphisms. Composition is given by —; —.

We define the game TE of concurrent traces over the signature E by first defining E := (Mg, Pg)
and then {E := (M;g, Pg). So the game fE has each agent playing the corresponding sequential
game TE concurrently. This justifies all the notation used in Section 2.2, and in particular all the
traces depicted serve as examples of plays of games TE for the respective effect signatures. Effect
signatures as games and the replay modality {— admit a rich theory. We remind the reader that
we will treat it in more detail in Section 11.

4 CONCURRENT GAMES AND SYNCHRONIZATION

In Section 3.2, we defined a concurrent game semantics modeling potentially blocking sequentially
consistent computation, and we noted that we obtain a semicategorical structure. In this section we
discuss the issue with neutral elements (Section 4.1) and present a solution by constructing from
the semicategory Conc a category Conc of concurrent games (Section 4.2), presented abstractly,
and discuss some infrastructure around it (Sections 4.3 and 4.4). We finalize by adapting a result of
Ghica and Murawski [2004] which allows us to give a concrete characterization of this category
(Section 4.5).

4.1 The Copycat Strategy

In order to appreciate the difficulty with neutral elements in concurrent models, one must first un-
derstand what such a neutral element looks like. So let us first ground the discussion on sequential
computation. As we saw in Section 3.1, the neutral element in Seq is the copycat strategy copy_.
The name comes from the fact that it replicates O moves from the target component to the source
component and replicates P moves from the source component to the target component. In the
case of copyy : X —o X there is only one possible interaction (displayed on the left): All other
plays of copysy are prefixes of this play. This strategy corresponds to the implementation displayed
on the right of Figure 4, for the method ¢ using a library that already implements the method gq.
Suppose we compose the copycat strategy with itself, that is, we build the strategy copysy;copysy,
and recall the motto “interaction + hiding”. The resulting interaction prior to hiding is: The middle
row of the interaction is the one that is then hidden. It simultaneously plays the role of the source
of the play in the top two rows, and the target in the play in the bottom two rows. The resulting
interaction, after hiding, is the interaction from Figure 4, as expected. In terms of the correspond-
ing implementations composing the two strategies amounts to inlining the code of one into the
other, as depicted in the right of Figure 5.
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Import X
% a
a <-q
b \> q > a ret a
3

Fig. 4. Maximal play of copyy, (left) and corresponding pseudocode (right).

> q \ /> a Import X

a qg O {

q a <- (a' <- q; ret a')
\} _/\ ret a
> q—a }

Fig. 5. Maximal play of int(copysy, copysy) (left) and corresponding pseudocode (right).

In the concurrent version X € Conc of ¥, each agent of Y locally plays 2. The obvious neutral
element in this situation would be to have each agent a,a’ € Y locally run copyy, a strategy
we call ccopyy : ¥ — X, which is akin to linking the code from Figure 4 for each agent in Y.
ccopyy, therefore, comprises all plays which are interleavings of copys. One such play is the play
t displayed below:

hX a:xq a’yq a’:a
? IS ™\ /7 € ccopyy,
> a:zq a:q — a’a
Now, consider a strategy o : £ — X consisting only of the play s below (and its prefixes):

x axq a’yq a’a

o [S

The plays s and ¢ can interact in the following two ways (among others) when considering the
composition o; ccopysy:

Y ay a’yq a’:a
Y Y /7
> axq a’yq a’:a
b WL/\/) a:q
Y ayg a’q /—9 a’:a
\/ ™~
> axq a’yq a’:a

S TN e

Each of these interactions results in a different ordering of the last two moves: @”:a and a:q.
Therefore, the strategy o; ccopyy includes both of the following plays:

aq-aq-a’:q-aa-a’a-a:q, a:q-a’:q-a’:q-a’a--a:q-a’:a € o;ccopyy
This is despite the fact that the second play is not in ¢. Therefore, ccopyy, is not a neutral element.

This issue is not due to a bad choice of candidate for a neutral element, it turns out that there
is no strategy that behaves like the neutral element for every concurrent strategy. This is the
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issue that Ghica and Murawski [2004] faced and is a common issue in compositional models of
concurrent computation. Now, if strategies were required to be saturated under the rewrite system
from Section 2.1.2 (where we interpret invocation as O move and return as P move), then o would
not be a valid strategy, as it must include both orderings to be saturated.

4.2 Concurrent Games and Saturated Strategies

We start by formally defining the concurrent copycat strategy ccopy:

Definition 4.1. The concurrent copycat strategy ccopy, : A — A is defined as the self-
interleaving of the sequential copycat strategy copy, : A — A:

ccopy, = P(copy )
PROPOSITION 4.2. ccopy, is idempotent.

This observation is all it takes to make use of an abstract construction called the Karoubi en-
velope to construct a model of concurrent games where ccopy_ does act as the neutral element
for strategy composition, as we will treat in detail in Section 6. This construction allows us to con-
struct a category Conc that specializes Conc to strategies that are well-behaved upon composition
with the family of idempotents ccopy_. Concretely, Conc is defined as follows:

Definition 4.3. The category Conc has as objects concurrent games A, B and as morphisms
strategies o : A —o B € Conc saturated in that

CCOpYps0;CCOPYg = O

Composition is given by strategy composition —; — with the concurrent copycat ccopy_ as identity.

4.3 Refinement for Concurrent Strategies

We endow the semicategory of concurrent strategies with an order enrichment, which also gives
our notion of refinement. We order strategies 0,7 € Conc(A, B) by set containment o C 7. This
assembles the hom-set Conc(A, B) into a join-semilattice. Joins are given by union of strategies,
which are well-defined as prefix-closure, non-emptiness and receptivity are all preserved by unions.

Composition is well-behaved with respect to this ordering in the following sense:
PROPOSITION 4.4. Strategy composition is monotonic and join-preserving.

Refinement is a pesky issue in the context of concurrency, non-determinism, and undefined
behavior [Laird 2001; Liang et al. 2014]. We do not purport to address this issue in this article.
Instead, we choose trace set containment to remain faithful with linearizability, where this notion
of refinement is prevalent. Interestingly, strategy containment is a standard notion of refinement
in game semantics as well.

4.4 The Semifunctors Kcone and Embcgne

The abstract treatment in Section 6 will also show that the abstract construction giving rise to
Conc comes with some infrastructure around it for free. For instance, it readily gives a forgetful
semifunctor from Conc (seen here as a semicategory Semi Conc by forgetting the fact it has neutral
elements) to Conc
Embconc : Semi Conc — Conc

acting as the identity semifunctor. We will omit applications of Embcene When it causes no harm.

There is also a transformation which takes a not necessarily saturated concurrent strategy o
and constructs the smallest strategy that is saturated and contains ¢, which we name

Kcone : Conc — Semi Conc
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as defined in Section 6, and explicitly given by

Kc Kc
A A 0 : A - B——"— ccopy,;J;ccopyg

Unfortunately, this mapping does not assemble into a semifunctor. Despite that, Kcone is an oplax
semifunctor, in the sense described in the following proposition.

PROPOSITION 4.5. Foranyo : A — Band7r:B — C:
KConc(GQ T) c KConc(O-);KCOnC(T)

It is straight-forward to check that Kconc is continuous, that is, it is monotonic and join-
preserving. It is important to emphasize that while we give concrete definitions for these oper-
ations, they come from the abstract construction we describe for an arbitrary semicategory in
Section 6.

4.5 Fine-Grained Synchronization in Concurrent Games

In Section 4.2, we gave a rather abstract definition for the strategies in Conc. Ghica [2023], in
a slightly different setting, observed that this abstract definition is equivalent to a concrete one,
originally appearing in Ghica and Murawski [2004], involving the rewrite system we discussed in
Section 2.1.2, which we now adapt to our setting.

Definition 4.6. Let A = (Ma, P4) be a concurrent game. We define an abstract rewrite system
(Pa, > 4) with local rewrite rules:
—Vm,m' € MaNa,a’ € Y.a # a’ A Aa(m) = Aa(m’) = a:m - a’:m’ ~oq a’:m’ - a:m
—Vo,pe MaVa,a’ €eY.a #a’ ANAa(0) = O AAa(p) =P = a:0-a’:p w4 a’:p - a0

The main result of this section is the following alternative characterization of saturation.

PROPOSITION 4.7. A strategy o : A — B is saturated if and only if it is:

O-receptive: Ifs € o, 0 an Opponent move ands - 0 € Py, thens-o € o.
~»-closed: Vs € 0.Vt € Ppo_g.t ™ ap S =1 € 0, and

The key lemma to show this alternative characterization is the synchronization lemma, as coined
by Ghica [2023]. It essentially establishes that there is still synchronization happening under this
liberal setting, all enabled by the fact that each agent is still synchronizing with itself.

It is useful to define a closure operator over sets of plays. Given a set of plays S C Py we
call strat(S) : A the least O-receptive strategy containing S, obtained as the prefix and receptive
closure of S.

PROPOSITION 4.8 (SYNCHRONIZATION LEMMA). Lets = p-a:m-a’:m’-p’ be a play of A — B. Let
o = strat(p - a:m - a’:m’ - p’). Then,

p-a’im’-a:m-p’ € ccopy,;o;ccopyy & a’im’ - a:m wop_op a:m - a’':m’

The core of the proof of Proposition 4.8 lies in the dynamics of ccopy_. If we focus on an agent
a €Y, a typical play in ccopyy behaves as displayed below on the left.

a:q a’a

a:q\ o s e /t\x:a w
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Observe that no matter what the other agents are doing it is always the case that the copy of
an O move in the target appears later in the source, and a copy of a P move in the target appears
earlier in the source. So if we have a play s € Pp such thats = p-a:q-a”:a-p’ any of its interactions
with ccopyg, such as in strat(s); ccopyy, look something like the play displayed above on the right.

After hiding the interaction in the source, the resulting play can at most make a:q appear earlier
and a’:a appear later, so it cannot change their order. For any of the other cases for the polarities
of those two moves, there is always a case where they can appear swapped as the result of the
interaction. So the proof of Proposition 4.8 is a case analysis of the polarities of @:m and a’:m’.

5 LINEARIZABILITY

In this section, we argue that linearizability emerges from the Karoubi construction used to define
Conc and establish several of the main results of this article. In Section 5.1, we establish that Kcone
exactly corresponds to a general notion of linearizability which is improved in Section 5.2, while in
Section 5.4, we observe that plays of ccopy_ correspond to proofs of linearizability. In Section 5.5,
we show a property analogous to the usual observational refinement property, and in Section 5.6,
we show the locality property.

5.1 Linearizability
We start by defining linearizability.

Definition 5.1. We say a play s € P, is linearizable to a play ¢ € P4 if there exists a sequence of
Opponent moves sp € (Mg)* and a sequence of Proponent moves sp € (Mf:)* such that

S-Spwa l-So

A play s € Py is linearizable with respect to a strategy 7 : A € Conc if there exists ¢ in 7 such
that s is linearizable to t. If every play of a strategy o : A is linearizable with respect to 7 : A then
we say o is linearizable with respect to 7.

In this general definition of linearizability, sp completes some pending O moves with a response
by P while the sequence sp plays the role of the pending invocations that are removed from s. Note
that ¢ need not be atomic and may still have pending Opponent moves. The rewrite relation s
plays the role of preservation of happens-before order. In this sequentially consistent formulation
of concurrent games, this generalized definition of linearizability is closely related to interval-
sequential linearizability [Castaneda et al. 2015], which we address in more detail in Section 8.
When the linearized strategy is specialized to atomic strategies only, we obtain Herlihy-Wing
linearizability. In Section 7, we give a thorough account of the specialization to atomic games.

The central result of this article is a characterization of K¢ in terms of linearizability.

ProrosiTION 5.2. Foranyt : A € Conc
Kcone T = {s € Pa | s is linearizable with respect to T}

PRrOOF. Suppose s € Kcone 7. By Proposition 4.7 it follows that there exists t € 7 such that
s map - s for some sequence of O moves sp (coming from receptivity) and, therefore, by setting
sp = € we are done.

Suppose there are sp and sp such that s - sp ~ms4 t - so. By Proposition 4.7 t - so € Kcone 7, and
then again by Proposition 4.7 s - sp € Kconc 7. By prefix-closure, s € Kconc 7, as desired. O

A lot of this proposition is taken for by Proposition 4.7. Observe that O-receptivity explains why
some Opponent moves sp may be removed, while the fact that the play can be completed with Pro-
ponent moves sp arises from prefix-closure. We also find it important to remind the reader that

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.



14:20 A. Oliveira Vale et al.

Kconc is defined in terms of its role in the relationship between a semicategory and its Karoubi enve-
lope, as will be treated in detail in Section 6. In this way, Proposition 5.2 shows that linearizability
arises as a result of an abstract construction solving the problem of lack of neutral elements in
our concurrent model of computation. An immediate corollary of Proposition 5.2 is an alternative
definition of linearizability.

COROLLARY 5.3 (ABSTRACT LINEARIZABILITY). A strategy o : A € Conc is linearizable to a strat-

egy 7 : A if and only if
0 C Kcone T

As Kconc appears as a result of an abstract construction, this alternative definition may be used
even in situations where there is no candidate for a happens-before-ordering or a rewrite relation
such as — ~» —. As matter of example, Ghica [2013] defines a compositional model of delay-
insensitive circuits. There, the Karoubi envelope is used to turn a model of asynchronous circuits,
which is not physically realizable into one that is. This abstract definition of linearizability implied
by Proposition 5.3 and developed in detail in Section 6 could be adapted to that setting to give a
notion of linearizability for delay-insensitive circuits.

This abstract construction will also allow us to give a more general but simple proof of the
refinement property in Section 5.5 and locality in Section 5.6.

5.2 Strong Linearizability
This alternative and abstract characterization also suggests the following variation of
linearizability:

Definition 5.4. We say o : A € Conc is strongly linearizable to 7 : A when o is linearizable with
respecttorand 7 C 0.

We call this strong because it implies the conventional notion of linearizability as defined in Def-
inition 5.1. As the restriction of that notion of linearizability to atomic plays implies linearizability,
it immediately follows that atomic strong linearizability implies Herlihy-Wing linearizability. Note
that when o is strongly linearizable with respect to 7 we obtain that

Kcone T € Kconc 0 =0

Together with Corollary 5.3 it follows that ¢ = Kcone 7 so that o is fully characterized by its
linearization. Therefore, a strongly linearizable o is a strategy which is in the image of Kconc.

Concretely, strong linearizability matches the intuitive understanding of usual linearizability.
Indeed, in works based on operational semantics, there is always the possibility that by chance the
scheduler schedules the threads in such a way that it generates an atomic execution for the system.
Those atomic executions turn out to be exactly the linearization of the objects that are studied in
that context.

When an object is non-strongly linearizable to a specification, it means that the specification is
not accurate: it is an over-approximation. For example, it is easy to prove that every concurrent
strategy is linearizable to some atomic strategy. This is quite striking, as the reader knowledgeable
about linearizability will note that often in the literature objects are deemed “not linearizable”.

The classical example of such an object is an exchanger. We can model an exchanger object
which exchanges natural numbers by the following signature:

Exch := {exch : N — N}

Intuitively, exch allows two agents to synchronously exchange a value, so that the following is a
prototypical trace of an exchanger:

azexch(n) - a’:exch(n’) - a:n’ - a’:n
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where we see that ¢ and a’ receive as returns the values that each other passed as argument. A
more complex trace of the exchanger is

s = ag:exch(n;) - ag:exch(ny) - az:exch(ns) - az:n, - ag:exch(ng) - ay:ny

Note that in s agents «; and a4, have already committed to exchange values with each other, and
so have a; and a3 (even though a; and a4 have not returned yet). We refrain from giving a formal
specification veych for conciseness, as the intuition will suffice for our argument here. Now, observe
that s is linearizable (in fact, Herlihy-Wing linearizable) to

ay:exch(ny) - ay:ng - az:exch(ns) - az:n,

In fact, we may always remove all pending invocations from a trace, and then appeal to the fact
that every partial order has a total order that extends it, to obtain that every trace is Herlihy-Wing
linearizable to some trace. This implies that any concurrent object is Herlihy-Wing linearizable to
some atomic specification.

Standard linearizability does not rule out such bad specifications, while strong linearizabil-
ity does. Our formalism shows exactly in which sense non-strong linearizability yields an over-
approximation: If o is strongly linearizable to 7 then 0 = Kconc 7, as we showed above. Meanwhile,
when o is linearizable to 7 but not strongly linearizable, we have a strict containment o C Kconc 7.

A critic to this argument may say that instead, when one says that an object is “not linearizable”
they mean that for a specific atomic specification. Note though that no atomic specification for
the exchanger object makes sense, as its behaviors are, at least intuitively, intrinsically concurrent.
But again, strong linearizability makes this precise: it requires that the linearized specification be
a “sub-object” of the concurrent object, in that all the linearized behaviors were already possible
concretely.

Strong linearizability, therefore, clarifies in which sense objects are “not linearizable”. The ex-
changer object is not Herlihy-Wing linearizable bfecause no atomic strategy vgitc";“ic of type TExch
satisfying v{, . € Kconc vgiﬁﬂ“c will satisfy véi‘é?‘c C V{cp It is important to stress that as our
framework subsumes set-linearizability, it is possible to characterize v{ , as strongly linearizable
to a less concurrent (in fact, set-sequential) strategy. We will see later on that strong linearizabil-
ity also helps clarify an apparent fault with the usual refinement theorem around linearizablity
(Section 5.5).

5.3 Linearizable Objects

At this point, we find it useful to fix our notion of object and linearizable object.
Definition 5.5. An object of type A is a strategy v4 : 1 —o TA.

Note that a strategy v4 : 1 —o TA is the same thing as a strategy v4 : TA (recall that 1 = (2, {€})).
Then, we define a linearizable object simply as

Definition 5.6. A linearizable concurrent object of type A consists of a pair of objects
(v}, : TA € Conc, v4 : TA € Conc) such that vy € Kcone Va-
It is called a strongly linearizable concurrent object when, moreover,
va C V).
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5.4 Computational Interpretation of Linearizability

We just saw that linearizability can be characterized by the transformation Kconc. We now offer yet
another perspective on linearizability by providing a computational interpretation of linearizabil-
ity proofs. Recall that in our discussion in Section 4.1 we observed that ccopy_ is the denotation
of a concrete program. Interestingly, the plays of ccopy_ correspond to proofs of linearizability.

PROPOSITION 5.7. s; € Py linearizes to sy € Pa if and only if there is a play s € ccopy, such that
STAO =30 STAI =31

Proor. For this, one first proves that every play s € ccopy, whose projections to the target and
source components are sequentially consistent to each other (their projection to each agent is the
same) satisfies sTo, ~>a sTa,. Then, prefix-closure and receptivity of ccopy, allow for linearizabil-
ity to be used instead of — ~m»_ —, similarly to the proof of Proposition 5.2. See Appendix E for a
detailed proof. ]

What Proposition 5.7 essentially establishes is that proofs of linearizability encode executions
of the code in Figure 3, and that executions of the code in Figure 3 encode proofs of linearizability.
Intuitively, the reason for this is that in a play of ccopy, an O move followed by a P move in the
target component forms an interval around their corresponding moves in the source component.
So if we have two such pairs by different agents, one happening entirely before the other, then
their corresponding moves in the source must happen in the same order. This means that happens-
before order is preserved from the target component to the source component. See the figure below
depicting a play of ccopyy:

’

a:xq aa a’yq a’:a
\\_> a:q — a:a ~/\ \\_> a'q — a’:a ‘/\

5.5 Interaction Refinement

One is often interested in implementing an interface of type B making use of some other interface
of type A by using an implementation specified as a saturated strategy of type o : A —o B. Now, the
game A appears in a negative position in the type A — B. Because of this there is a contravariant
effect to linearizability on —o in that if s ~»a_.p t then, while s[g is “more concurrent” than ¢ g,
sTa is “less concurrent” than ¢[4. This intuition leads to the following result, analogous to the
observational refinement equivalence of Filipovic et al. [2010].

PROPOSITION 5.8 (INTERACTION REFINEMENT). v/, : A € Conc is linearizable tova : A € Conc if
and only if for all concurrent games B and o : A — B € Conc it holds that

Vi;0 Cvaso
Proor. By Corollary 5.3, monotonicity of composition, and saturation of o:
VA; 0 C Kcone Va; 0 = (ccopyy; va; ccopyy); o = (ccopyy; va); (ccopya; o) = vas o
For the reverse direction, simply observe that
VA c vA;ccopyA C va;ccopy, = ccopyy; vasccopy, = Kcone Va |

An interesting remark at this point is that the direction of the refinement in Proposition 5.8 is not
intuitive. Usually, one would believe that having a client interact with less concurrent traces should
lead to fewer behaviors, not more, as Proposition 5.8 leads one to believe by the direction of the
refinement. Note that this artifact is already present in the original result by Filipovic et al. [2010].
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Again, our treatment clarifies the source for this. As we have discussed in Section 5.2, linearizability
provides only an over-approximation. This means that by substituting v/, by v4 one may introduce
behaviors that are not included in v, (consider replacing a concurrent specification such as vf, .
which has no atomic traces, by one with only atomic traces as per our argument in Section 5.2). This
discussion suggests that the more precise criterion given by strong linearizability should guarantee

a stronger result. Indeed, the following is a straight-forward corollary of Proposition 5.8:

CoROLLARY 5.9. V), : A € Conc is strongly linearizable w.r.t. tova : A € Conc if and only for all
Bando : A — B € Conc:

Vi;0 = Va0
5.6 Locality

We revisit the locality property from Herlihy and Wing [1990] by reformulating the notion of an
object system with several independent objects as the linear logic tensor ®. For this we start with
a faux definition of tensor.

Definition 5.10. If A = (Ma,Ps) and B = (Mp, Pp) are games in Conc, we define the game
A ®B € Conc as A ® B = (Magp, Pagn). We denote by 1 the game 1 = (M, Py).

Given strategies 04 : A and op : B we define the strategy o4 ® o : A ® B as the set
(o4 || 0B) N Pagp, the set of sequentially consistent interleavings of o4 and op.

We call this a faux tensor because there is no reasonable definition of a monoidal semicategory
for lack of neutral elements with which to express the coherence conditions. Despite that, the —®—
operation does define a bi-semifunctor in Conc, which becomes a proper tensor when specialized
to Conc.

PropPosITION 5.11. (Conc, — ® —, 1) assembles into a symmetric monoidal closed category.

This structure is obtained by mapping the corresponding structural maps in Seq through an
interleaving functor. In particular, Proposition 5.11 says that — ® — is a bifunctor in Conc, so that

PROPOSITION 5.12. For all concurrent games A, B:

CCOPYAgp = CCOPYA ® CCOPYp

This rather simple result is auspicious given the computational interpretation of ccopy_ in terms
of linearizability proofs seen in Section 5.4. This property, together with the fact that - ® —is a
bi-semifunctor, readily implies that Kconc distributes over the tensor.

PROPOSITION 5.13. Letos : A —o A’ and og : B —o B’. Then:

Kconc (O.A ® O'B) = Kconc 04 ® Kconc 0B

Proor.
Kcone (04 ® 0B) = ccopypgp:(0a ® 0B); ccopyargp (Def.)
= (ccopy, ® ccopyp); (04 ® 0B); (ccopy,r ® ccopypr) (Proposition 5.12)
= (ccopyp; 0a;ccopyar) ® (ccopyg; oB; cCopypr) (bi-semifunctoriality of — ® —)
= Kconc 04 ® Kconc 0B (Def)
which gives as corollary a generalization of Herlihy and Wing [1990]’s locality theorem. o

COROLLARY 5.14 (LocALITY). Let V:«; DA, VI/S :B € Concandvy : A, vg : B € Conc. Then

v = v/, ® vy is linearizable wr.t. v = v4 ® vp
if and only if

v}, is linearizable w.r.t. va and vy is linearizable w.r.t. vg
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Proor. By Propositions 5.13 and 5.2
v =v, ® vy € Kcone (Va ® vB) = Kcone Va ® Kcone VB
in particular,
vy = (v ®vp)Ta S (Kcone Va4 ® Kcone vB)TA = Kcone Va
v = (v, @ vp)IB € (Kcone V4 ® Kcone VB) B = Kconc VB
For the reverse direction, we have:

’ ’ ’
Vi=v,Qvp C Kcone va ® Kcone VB = Kcone (VA ® VB) a

We would like to observe that not only does our methodology yields a stronger result in Propo-
sitions 5.13 and 5.14, but also that it supports simpler, mostly algebraic proofs. Meanwhile, even
in the simpler case of atomic linearizability, Herlihy and Wing [1990]’s original proof is rather ad
hoc. Our result is also stronger in another way. The usual statement of locality relies on a projec-
tion: one assumes an object with many independent sub-objects and says that this large object is
linearizable if and only if the sub-objects are as well. Our treatment instead relies on a pre-defined
operation for composition objects together into larger objects (the tensor) and states the locality
theorem in terms of this operation. This biases the statement toward composing objects together
rather than decomposing them. The benefits of this become evident when one notes that, because
we show that the tensor makes our model into an enriched symmetric monoidal category, our lo-
cality theorem smoothly interacts with vertical composition and refinement, essentially extending
the symmetric monoidal structure of the model to linearizable objects.

6 KAROUBI ENVELOPE

In this section, we establish the main abstract tools we use to construct models of concurrent
computation, and sometimes compare them with each other. Most of it requires only basic knowl-
edge of enriched category theory (or merely the basic definitions around 2-categories), as well as
knowing the definition of a semicategory.

6.1 The Karoubi Envelope

Typically, given a semicategory C we can construct its Karoubi envelope as the category Kar C
which has as objects pairs

(CeC,e:C— Q)

of an object C and an idempotent e of C. Recall that an idempotent of an object is simply an
idempotent endomorphism of that object, in the sense that

eoe=¢e

A morphism

f:(C,e) > (C,¢)
in Kar C is a morphism f : C — C’ of the underlying semicategory C that is invariant upon the
idempotents involved in the sense that

foe=f=¢of
or equivalently:
eofoe=f
which we call a saturated morphism of C. Observe that by construction the Karoubi envelope Kar C
is indeed a category by defining the neutral elements by the equation idc ¢) = e.
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The following is folklore in the theory of semicategories. There is a forgetful functor
Semi : Cat — SemiCat

which given a category C assigns a semicategory Semi C by forgetting the data about the neutral
elements in C, which also determines its action of transforming functors into semifunctors by
similarly forgetting the fact that it maps neutral elements to neutral elements. Interestingly Semi
admits a right adjoint

Kar : SemiCat — Cat

which maps a semicategory C to its Karoubi envelope Kar C. Its action on a semifunctor

F:CoD—  KarF:KarC — KarD
is defined by
Kar F ;7 Kar F ’ ’
(C,e) ———— (FC,Fe) f:(Cec) > (C',e')—> Ff:(FC,Fe) > (FC',Fe’)

Typically in the literature, one studies the Karoubi envelope from the perspective of categories
by considering the monad associated to the adjunction. Instead, we put special focus on the
comonad associated to the adjunction, so that we may study the Karoubi envelope from the per-
spective of semicategories:

SemiKar : SemiCat — SemiCat

Note that this comonad assigns to a semicategory C the semicategory Semi Kar C, and acts as the
identity on semifunctors.

When C has neutral elements, so that it actually assembles into a category, one obtains a fully
faithful functor (of categories) into the Karoubi envelope by

C ——KarC Cr+— (C,idc)

which immediately makes any morphism f : C — C’ into a morphism f : (C,id¢) — (C’,id¢)
due to the unital laws. Note that this functor corresponds to selecting a family (ec : C — C)cec
of idempotents ec for each object C € C, in this case ec = id¢. The mapping of morphisms should
saturate any morphism f : C — D. Hence, it must be given by

fr——epofoec

Unfortunately, for lack of neutral elements in the semicategory case, there is no obvious choice of
idempotents to construct such a functor. Worse yet, this mapping assembles into a functor if and
only if forany f : C — Dandg: D — E we have

egogoepo foec=egogo foec

While this condition is trivial when C is a category and we take ec = id¢, in the semicategory case,
given a family of idempotents (ec : C — C)cec there is no canonical such semifunctor. Despite
that, there is always a forgetful semifunctor:

Emb : SemiKar C — C
given by the mapping

(€ e) —0 Fi(Ce)— (D) —™ L f.cHD
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6.2 Slivers of the Karoubi Envelope

We just saw that the canonical functor embedding a category inside its Karoubi envelope amounts
to a choice of an idempotent for each object of the category and that with semicategories there is
no canonical family we can choose. Intuitively, the Karoubi envelope “splits” an object C € C into
various versions of itself: one for each idempotent e of C. Meanwhile, morphisms f : C — D are
“classified” as morphisms f : (C,e) — (C’,e’) when they tolerate e and e’ as neutral elements. So
choosing an idempotent for each object of C amounts to choosing a version of each object C € C
to obtain a category. We take the intuition we get from these remarks to define the following
construction.
Let C be a semicategory enriched over Cat (in the sense of Moens et al. [2002]) and let

e. ={ec:C — C}cec

be a family of idempotents. Any such family defines a full subcategory C, of the Karoubi envelope
Kar C of C, obtained by restricting the objects to precisely the idempotents in e_. We call such a
subcategory of Kar C a sliver of the Karoubi envelope of C.

It is immediate that for any sliver C,, the restriction

Emb, : Semi C, —» C

of the forgetful functor Emb defines an embedding. There is also a candidate for a semifunctor in
the reverse direction:

K, : C — Semi C,
given by
K. K.
Cr——(C,ec) f:C—>D+———epofoec

K. often fails to be a semifunctor, as we have noted. Despite that, semifunctoriality, even weak, is
not required for our purposes.

We are now ready to define abstract linearizability. For this, we will assume that C is an enriched
semicategory whose enrichment is cartesian. We denote the existence of a 2-morphism between
f,g9:C — Dby as f = g. Note that the enrichment means that 1-morphism composition defines
a functor between hom-categories, a fact we frequently make use of

—o0—-:C(C,D)xC(D,E) — C(C,E)
The same holds for the tensor.
Definition 6.1. Let C be an enriched semicategory equipped with a bi-semifunctor
-®-:CxC—-C

and an object 1 such that (C,, ®, 1) is a symmetric monoidal category.
We say a morphism f : 1 — C € C, is linearizable to a morphism g : 1 — C € C when

f=Keg
When the above 2-morphism is moreover an isomorphism, we say f is strongly linearizable to 7.

Since our proofs of locality and interaction refinement on Conc were abstract, relying on Propo-
sition 5.3, we can collect the necessary assumptions to obtain those results.

PRrRoOPOSITION 6.2. In the following let C and C, satisfy the conditions of Definition 6.1.
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Interaction Refinement Suppose for allC € C and f : 1 — C € C it holds that

feoea=f
Then f : 1 — C is linearizable tog : 1 — C iff and only if forallD € Candh : C — D € C,
it holds that
hof = hog

Locality K, distributes over — ® — in the sense that forall f : C — C' andg : D — D’
K. (f®g) =Kef®Keg
and if moreover, for allC,C’,D,D’ € C
Ce(la C) ® Ce(la D) = Ce(la C) X Ce(l’D)

then f/:1 — Cand f} : 1 — D are linearizable to fc : 1 — C and fp : 1 — D if and only if
& ® f}, is linearizable to fc ® fp.

Proor. These are essentially the same proofs as the corresponding proofs we presented in Sec-
tions 5.5 and 5.6.

Interaction Refinement
hof=hoKcg=ho(ecogoe)=(hoec)o(goer)=hog
For the reverse direction, simply observe that
f=ecof=ecog=ecogoes=Kcg

Locality For the first claim:

Ke(f®9g) =ecep o(f ®g)oecep (Def)
=(ec®ep)o(f®g)o(ec ®ep) (- ® — is a bifunctor in C,)
=(eco foec)®(ep ogoep) (bi-semifunctoriality of — ® —)
=K. f®K.g (Def))

For the second claim observe first that

fé® fp = Ke fe ®Ke fp = Ke(fc ® fp)
for the reverse direction, observe that

1 ® fp = Ke (fc ® fp) = Ke fc ® Ke fp
by assumption we have that

C.(1,0)® C.(1,D) = C.(1,C) x C.(1,D)
and hence we obtain that

fE =K. fe fb=Ke fp O

Note that Proposition 6.2 does not require that K, be functorial in any way. In practice, K, is
often a(n) (op)lax semifunctor in that there is either a 2-morphism

KegoKe f= K. (go f)

satisfying certain coherence conditions, in which case K, is called lax, or, satisfying opposite co-
herence conditions, a 2-morphism

Ke(gof)=KegoKe f

in which case K, is oplax.
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We now discuss a few examples of abstract linearizability.

Example 6.3 (The Degenerate Case). When the underlying semicategory C is a category already,
computing the sliver (C);q yields an equivalent category to C, as, by definition of a category, every
morphism is saturated under the identity morphisms. Abstract linearizability then amounts to

f=Kag=9
so that abstract linearizability coincides with the underlying enrichment.

Example 6.4 (Sequential Games). Consider our model of sequential computation, Seq. Although
we did not emphasize that there, we defined it as the sliver (Seq)copy. As is well known, and as we
discussed in Section 3.1, strategies saturated with respect to copy are characterized precisely as
the O-receptive strategies. We can enrich Seq with subset containment C which yields as abstract
linearizability that o : A € Seq is linearizable to 7 : A € Seq when

0 C Keopy T

As before. It is not hard to see that in this context, given a (not necessarily O-receptive) strategy
7:A — B € Seq,

Keopy T = recep(r)

that is, the receptive closure of 7. Moreover, abstract linearizability states that o : A is linearizable
to 7 : A when

o C recep(r)

It is folklore in game semantics that receptivity can be largely disregarded in the theory, which is
precisely what our abstract linearizability formalism retrieves, as we obtain locality and interaction
refinement between O-receptive sequential strategies, and not necessarily receptive sequential
strategies. It is also easy to see that the compatible notion of linearizability on traces is that a
sequential play s is linearizable to t when either: (1) s = t, or (2) s = t - mo for some O-move mo, or
(3) there is a P move mp such that t = s- mp. That is to say, sequential linearizability allows a trace
s with a pending operation (necessarily unique when it exists) to be either removed or completed.

Example 6.5 (Concurrent Games). The core of this article, through sections Sections 3, 4, and 5
provide our main example of abstract linearizability. In the language of abstract linearizability we
have introduced in Section 6 so far, we started by defining a concurrent game model Conc encod-
ing sequentially consistent concurrent computation, and then showed it defines a semicategory
(Proposition 3.16) and enriched it with a notion of refinement (Section 4.3). Then, we proved that
ccopy, is an idempotent for every game A (Proposition 4.2). This enabled us to define the category
Conc as the sliver (Conc)ccopy, Which comes with a forgetful semifunctor Embcone := Embecopy and
a saturation operation Kconc := Kccopy- After showing that there is a bi-semifunctor

—® — : Conc X Conc — Conc

whose lift defines a symmetric monoidal category (Conc, — ® —, 1) we obtain a notion of abstract
linearizability by Definition 6.1, which supports interaction refinement and a locality property by
Proposition 6.2. These abstract notions were shown to agree with the usual conception of lineariz-
ability in Section 5, a matter we discuss further in Sections 7 and 8.
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6.3 The Linearizability Galois Connection

The main result of Goubault et al. [2018] is that if Lin — is the operation taking some atomic
object specification S to the set of traces Lin S linearizable w.r.t. S, and U — is the operation taking
concurrent object specifications S’ (in particular, ~»-closed) to the set of atomic traces U §* C S’
contained in it, then Lin 4 U is a Galois connection (in fact, an insertion). In this section, we show
how our treatment accommodates this result at the level of abstract linearizability, which we will
later instantiate in Section 7 to obtain the result between our concurrent games and a notion of
atomic games.

For the sake of this section, we assume that our Cat-enriched semicategory C is such that every
hom-category C(A, B) is a thin category (it is posetal), and will write f < g for the unique 2-
morphism _ : f — g, when it exists. We are then interested in comparing two slivers C, and
C¢ of the same semicategory C. A particular example of this will be when C, corresponds to
concurrent games and C,/ corresponds to atomic games. For the sake of brevity, we will call these
two categories K = C, and K’ = C, and the corresponding mappings Emb, K and Emb’, K’. Note
that we can readily consider the square:

KI
V‘ Qb’
C C
E’nk %
K
This suggests that we may define a pair of operations L and R defined as
L:K— K =K oEmb R:K' — K:=KoEmb’

Which should be interpreted as canonical conversions from one concurrency model to the other.
Our key claim is that whenever it holds that for all A € C, eq4 < 6:4, the operations L and R
assemble into a pair of adjoint functors L 4 R : K(A, B) — K’(A, B), which in the context of the
assumed posetal enrichment essentially says they form a Galois connection. In addition, under
the same assumption, we also obtain that L : K — K’ is an oplax semifunctor and that R : K’ — K
is a lax semifunctor.

PROPOSITION 6.6. If
e- = {ea}aec e ={e,}acc

are families of idempotents such that there are 2-morphisms:
ea < ej
for every A € C, then the mappings L and R defined by
L:C,—>Cy:=K oEmb R:Cy —» C,:=KoEmb’

define an oplax functor and a lax functor, respectively.
Moreover, for every pair of A, B € C, the associated functors of hom-categories:

L: Co(A, B) — Cu(A, B) R: Cu(A, B) — Co(A, B)
form an adjunction.

PRroOF. See Section A.2. O
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This might seem like a rather weak result, but it readily gives as a corollary the main result of
Goubault et al. [2018], as we will see in Section 7, moreover refining it by providing an account
of the effect of linearizability on composition. Note also that in the above proposition, we do not
require K and K’ to be even (op)lax semifunctors. Indeed, although in all our models they will be,
this is not required to show Proposition 6.6.

7 ATOMICITY

In this section, we show that our framework provides a conservative generalization of the the-
ory surrounding Herlihy-Wing linearizability, which always assumes the linearized specification
is atomic. In the process, we generalize the result by Goubault et al. [2018] that Herlihy-Wing lin-
earizability forms a Galois connection between concurrent and atomic specifications. We start by
defining a category of sequential atomic games Atomic in Section 7.1. Then, we show it can be seen
as a sliver of the Karoubi envelope Section 7.2 which exhibits linearizability as an approximation
of concurrent specifications. We then specialize the theory of linearizability developed in Section 5
to Herlihy-Wing linearizability. Proofs for this section can be found in Appendixes E.8 and E.9.

7.1 Sequential Atomic Games
To set the stage for atomicity, we start by defining a notion of atomic game.

Definition 7.1. Let A = (Mg, P4) € Seq be a sequential game. We define its associated atomic
game !A = (M4, P4) as follows:

M9 = Z Me  ME = Z ME P = {s € AMG, ME,) | Var € Y.ra(s) € Pa}
aeY aeY
These games are atomic in that an O move by « is always followed by a P move by the same
agent «, so that a typical play looks like:

a;im; —p 01:ny —» QaiMy — QaiNy — QA3:M3 — A3iN3 —» ... —p QM — OiNg
where the m; are O moves and the n; are P moves. We may take !A as an alternating version of A,
as any play of A may be seen as an alternating play of A, a fact we frequently make use of. The
notation !— comes from the similarity of the definition with the exponential modality defined in
Hyland [1997], which is closely related to our definition.

Note that a strategy o : !A —o !B does not need to respect the names of the agents. For instance,
the following play is a valid play of I¥ — I3

a.q

\} a’yq

even when a # o’. This disagrees with our agent naming discipline on the concurrent games
setting, as there the names of the agents must be preserved across components. Because of this,
we must restrict the strategies o : !A — !B so that they only allow agents to play moves that are
labeled by their names in both components. We call such a strategy an atomic strategy and write
the condition succinctly as
on P!(A—oB) =0

by identifying plays of !(A — B) with plays of !A — !B in the obvious way. In a play of an atomic
strategy ¢ : !A —o !B, if an « calls an O move in B then it cannot be preempted by another agent
until it responds to that O move. That is to say, the typical play of an atomic strategy looks like

ay:my aying » Qa:my ay:ng > ...

\01"1-) > avn /\ \a'zm-) -)azn /\
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we call plays of this form atomic plays.
It is important to note that the copycat strategy
copy4 1A —o A
is atomic. Furthermore, it is easy to see that composition of atomic strategies is well-defined.

Definition 7.2. The category Atomic has atomic games !A, !B as objects and O-receptive atomic
strategies as morphisms. Composition is given by usual sequential strategy composition and the
identity is the sequential copycat copy, ,.

7.2 Concurrent Atomic Games

Interestingly, Atomic can be seen as a sliver of the Karoubi envelope of Conc. Let
atocopy, : A — A := copy,,

that is, atocopy, is the concurrent strategy obtained by identifying the plays in copy, 4 as plays of
type A — A as discussed in Section 7.1. It is straight-forward to check that

PROPOSITION 7.3. atocopy, : A —o A is idempotent.
This means we can construct the sliver
Katom = (M)atocopy
with associated (strict) semifunctors
Embatom : Semi Katom — Conc Katom : Conc — Semi Katom
by following the construction in Section 6. Now, as
atocopy, C ccopy,
it immediately follows by Proposition 6.6 that if we define
Linatom : Katom — Conc := Kcone © Embatom

Uatom : Conc — Katom := Katom © Embconc
then we obtain a family of Galois connections:

Linatom

Conc(A, B) o Katom(A, B)

~_

Uatom
Note that, explicitly:
L' om U om
T:A o B—2m CCOpY 5; T; CCOPYR c:A—oB—" atocopy,; 0; atocopyg

By the results in Section 4.5, Linatom is a closure operator computing the receptive-closure, and
then the ~»-closure. Meanwhile, Uatom, it turns out, is equivalent to taking the largest substrategy
of ¢ that plays only atomic plays:

Uatom 0 = 0 N Pap)
We can establish that Atomic is equivalent to Katom-
PROPOSITION 7.4. There is an equivalence of categories:

Atomic = Katom
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The equivalence is witnessed essentially by the identity functors, up to the conversion from
atomic plays in A —o B to plays in !A —o !B, and the reverse conversion.

So we have established a Galois connection (in fact, insertion) between atomic strategies and
saturated concurrent strategies:

Linatom

/\

Conc(A,B) T  Atomic(!A, !B)

\/

Uatom
This faithfully enhances the results of Goubault et al. [2018]. There, they showed linearizability
may be seen as an approximation operation by proving a certain Galois connection between speci-
fications of concurrent objects. Here, we provide a compositional variant of their result. Note that,
explicitly, this means that for any saturated strategy o : A — B and atomic strategy 7 : !A — !B
the following equivalence holds:

Linpatom T C 0 &= 17 C Uatom ©
and moreover
Uatom Linatom 7 =7
Note that we have established this result by completely abstract means using our formalism in
Section 6. Meanwhile, Goubault et al. [2018]’s original argument is based on the concrete formu-

lation of linearizability in terms of their version of the rewrite relation — ~» —.
We find it useful to depict the results of this section along the lines of Section 6:

Conc

KV xﬁleonc

Conc  Linatom Uhtom Conc

Embk %Amm

KAtom

Atomic

We note that in particular, Linatom decomposes as an embedding of atomic games into the semi-
category of concurrent games followed by closure under self-synchronization. An interesting fact
is that the forgetful functor

Uatom : Conc — Atomic

admits a characterization in terms of the rewrite system ~.
ProprosITION 7.5. The irreducibles of ~»4 are precisely the alternating plays of Pa
This justifies the following definition.
Definition 7.6. Given a concurrent strategy o : A we denote by || o : A its set of irreducibles:
J o :={s € o | sis alternating}
With which we obtain the desired characterization of Uatom.

ProposITION 7.7. For any saturated o : A — B:

Ustomo ={s€o|slp €| (o)}
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namely, the set of all s € o such that it plays an irreducible play in B.

Developing a characterization of Linatm along these lines is what we endeavor in Section 7.3.

7.3 Atomic Linearizability

We now endeavor to show that our definition of linearizability is equivalent to Herlihy-Wing lin-
earizability. Parts of our proof of this equivalence are adapted from Goubault et al. [2018] and
Ghica and Murawski [2004]. In order to define Herlihy-Wing linearizability, we must exhibit the
happens-before ordering in our setting. We follow the approach of Goubault et al. [2018], which
readily generalizes to our stronger setting. The key idea is that local sequentiality allows us to pair
every Opponent move with a corresponding Proponent move by the same agent.

Definition 7.8. Indeed, we define an operation of a play s = my - ... - my € P4 as a pair (p,q?)
such that m,, is an O move, and, moreover, either q? = g, Y(my) = Y(m,) and

ny(mp)(s) =51-mp Mg - S
or q? = co and
”Y(mp)(s) =S1-my
In particular, g? is an element of the total order (N + oo, <) ordered in the obvious way. We say an
operation (p, g?) is by a € Y when Y(m,,) = a. We denote the set of operations of a play s by op(s).

With a notion of operation defined, we may define a partial order, the happens-before order,
associated with a play.

Definition 7.9. We define the happens-before order associated to a play s as the pair (op(s), <s)
where

.9 <5 (0'.q) &= q<p
Definition 7.10. We say two plays s,s” € Pa are compatible when
Va € Y.y (s) = ma(s’)
Any two compatible plays have an associated bijection associating the ith operation by « in s

with the ith operation by « in s’, so we may implicitly apply it whenever needed and therefore as-
sume that op(s) = op(s”) when convenient. We are now able to define Herlihy-Wing linearizability.

Definition 7.11. For a play s € Ps we call complete(s) the largest subsequence of s such that
Va € Y.ry,(complete(s)) =p-m = Aa(m) =P

that is, the largest subsequence of s with no pending Opponent moves.
We say a play s € Py is Herlihy-Wing linearizable to a play t € P4 if there exists a sequence of
Proponent moves sp such that s’ = complete(s - sp) is compatible with ¢ and moreover

<y €<y
Now, we define an equivalence relation on plays based on — ~» —.
Definition 7.12. The relation — =4 — on plays Py is the smallest relation satisfying:
s=at &= s ~w4 tusing only OO and PP swaps

Observe that by Proposition 4.7 if ¢ : A is saturated and s € ¢ then [s]-, C o, where [s]=, is
the equivalence class of s under =4.

The equivalence of our definition with their definition is predicated on the following two useful
facts.
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PROPOSITION 7.13. If's,t € Pa thens = t if and only if s and t are compatible and <5 = <;.

PROPOSITION 7.14. For playss,t € Py, there is a derivation
S vl

if and only if s is compatible with t and
<s €<y

These give the following important corollary.

COROLLARY 7.15. A play s € Py is linearizable to a play t € P4 if and only if s is Herlihy-Wing
linearizable to t.

Our characterization of Kconc in terms of general linearizability also yields a characterization of
the functor Linatom-

COROLLARY 7.16. For any atomic strategy t : A

Linatom T = {s € Pa | s is Herlihy-Wing linearizable with respect to t}

Note that we arrived at the functor Linatom through the abstract construction of the Karoubi
envelope, which can be understood as closing a computational model, represented by the semi-
category Conc, by a synchronization pattern, represented by the choice of ccopy_ or atocopy_
as the unit. In this way, formally, Herlihy-Wing presents a solution to the problem of finding a
concurrent strategy in Conc matching a certain atomic strategy in Atomic.

Proposition 7.16 also gives an alternative definition for Herlihy-Wing Linearizability in terms
of the image of the functor Linatom.

COROLLARY 7.17. A strategy o : A is Herlihy-Wing linearizable to an atomic strategy t : |A if and
only if
o C Linatom T
7.4 Interaction Refinement and Locality
Herlihy-Wing linearizability admits its own computational interpretation of linearizability proofs,
as a corollary of Section 5.4. Proposition 5.7 suggests defining a strategy
intcopy, : A — A := {s € ccopy, | sTa, € | Pa}

That is, intcopy, is the substrategy of ccopy, that plays atomically in the source component of
A —o A. By Propositions 5.7 and 7.16 the plays of intcopy, correspond to proofs of Herlihy-Wing
linearizability. Interestingly, intcopy_ is idempotent, so that it admits its own theory along the
lines of Section 6. In Section 9, we make use of the angle provided by Proposition 5.7 to analyze
possibilities and other proof methodologies for linearizability.

COROLLARY 7.18 (COMPUTATIONAL INTERPRETATION OF HERLIHY-WING LINEARIZABILITY). $; €
Py is Herlihy-Wing linearizable to sy € Py if and only if there exists a play s € intcopy, such that

sTA, = S0 sTa, =51

It is easy to see that the conditions of Proposition 6.2 are met by Atomic. In particular, we have
that

PropPosITION 7.19. (Atomic, Katom © (— ® —), 1) assembles into a symmetric monoidal category.

which we discuss in Appendix B. We take the freedom of overloading —® — for the atomic tensor
as well (in particular omitting the use of Katom). It should be obvious which tensor we mean from
context, as it will always be clear that the strategies involved are atomic. This readily gives that
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PROPOSITION 7.20 (INTERACTION REFINEMENT). v/, : A € Conc is Herlihy-Wing linearizable to
va : A € Atomic if and only if for all concurrent games B and o : A —o B € Conc it holds that
Vi;0 Cvaso
Locality is also obtained by the same method as in Section 5.6, except that the source category
is now Atomic and the oplax functor Linatom plays the role of Kconc-
ProrosITION 7.21 (LOCALITY). Let V;‘ T A, 1/1’3 :BinConc andva : A, vg : B in Atomic. Then

v = v/, ® vy is linearizable wr.t. v = v4 ® vp
if and only if

v/, is linearizable w.r.t. va and v} is linearizable w.r.t. vg

8 INTERVAL-SEQUENTIAL LINEARIZABILITY

In this section, we compare interval-sequential linearizability with our notion of linearizability.
Goubault et al. [2018] noted, without proof, that their definition of linearizability is equivalent to
interval-sequential linearizability (although it is the restriction of interval-sequential linearizabil-
ity to total objects, in addition requiring strong linearizability). Here, we show that our definition of
linearizability in the context of our model of sequentially consistent concurrent computation cor-
responds to a generalization of interval-sequential linearization to handle blocking objects, which
the original definition cannot [Castafieda et al. 2015].
In Castarieda et al. [2015], a trace is called interval-sequential if it is of the form

<117R17 e 9In9Rn>
where the I; are non-empty sets of invocations and the R; are non-empty sets of responses, such
that

— Any two invocations in I; are by different agents;

— Any two responses in R; are by different agents;

—If r € R; is a response by agent «, then there is ¢ € I; by the same agent for some i < j such
that for all k such that i < k < j, I has no invocations by « and Ry has no responses by «.

Interpreting O moves as invocations and P moves as responses we immediately see that the
equivalence classes of plays s € P4 under — =4 — correspond precisely to plays of the form

<OlaPl9""On9Pn>

where similarly to before the O; are sets of Opponent moves and the P; are sets of proponent moves.
Otherwise, the same kind of happens-before order preservation is used to define linearizability to
an interval-sequential trace.

Definition 8.1. A play s € P, is interval-sequential linearizable to an equivalence class [t]= of
— =4 — if for every t’ € [t]=, s is linearizable to t’.

The discussion above promptly lets us prove that

PROPOSITION 8.2. s € Py is linearizable tot € Py if and only if s is interval-sequential linearizable
to [t]=, the equivalence class of t under =x.

PRroOF. Suppose first that s is linearizable with respect to t. Then, there is sp a sequence of
Proponent moves and sp a sequence of Opponent moves such that.

S-Spwal-So
So let ¢’ € [t]=. Then, note that in particular

taop t!
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and, therefore,
’
S-Spwa lt-So WAl -So

Now, suppose s is interval-sequential linearizable to [¢]=. Then, s is linearizable to every ¢’ € [t]=
and in particular to ¢.

Observe that we already showed the equivalence with happens-before order formulations of
linearizability in Section 7.3. The key difference between our formulation of interval-sequential
linearizability and the original one is that we do not require that the linearization remove all
uncompleted pending invocations. This essentially means that our definition of linearizability can
handle blocking objects, while typical linearizability only handles non-blocking objects. This is
vital. Consider our yield example. The trace

acyield - a’:yield - a:0k

linearizes to itself in our example. Now, suppose we were forced to either complete the pending
invocation @”:yield or remove it to linearize the trace. Then we have to use one of the following
traces as the linearization:

(1) a:yield - a’:yield - a:ok - @’:0k or any equivalent trace under =:vielq;

(2) a:yield - a:0k;

(3) a:yield - a:ok - a”:yield - @”:0k  or a’:yield - a":0k - @:yield - @:0k

Trace (1) does not make sense. Assume, without loss of generality, that « is the one that yielded
first. Then, « is able to return because &’ yielded after. But now there is no call to yield that justifies
the return by «’. Traces in (2) and (3) do not make sense because no one yielded to « (or ¢’ in (3)).

To state it more broadly, when all pending invocations are required to be removed, the only way
to signal that an invocation has already taken effect is by adding a return. Meanwhile, with our
formulation, an invocation may be effectful by itself, even when it is impossible to choose a return
value for it.

9 AN ANALYSIS OF HERLIHY-WING POSSIBILITIES

Herlihy and Wing [1990] present a methodology for showing objects are Herlihy-Wing lineariz-
able, inspired by ideas from abstract interpretation. Their methodology has been influential in
later approaches for verifying linearizable objects, notably Khyzha et al. [2016, 2017]. The key
idea behind possibilities is to associate to a concurrent object v’ : A an abstraction function
a: v’ — P(S4) which assigns to a play s € v’ a corresponding set of possible linearized val-
ues taken from a set S4. These values may be understood as an approximation for the set of states
that the object v’ can reach by executing the play s.

A possibility for a play s is then defined as a triple (v, I, R) such that v € a(s), R is a set of
responses to some of the pending invocations of s, and I are all the pending invocations in s that
would not be completed by any of the responses in R. The proof methodology then consists of
four axioms that allow one to derive that (v, I, R) is a possibility for a play s € v’ by induction on
the play s.

These axioms are justified by showing that there exists a derivation that (v, I, R) is a valid pos-
sibility for a play s if and only if v € a(s).> In particular, when v is the desired linearized specifi-
cation, then one can define S4 = v4 and a(s) as the set of plays ¢t € v4 such that s is linearizable
to . In this case, one obtains that s is linearizable with respect to v, if and only if there exists a

3More work is needed to justify why © being a linearized value is enough to obtain a linearizability proof, which we do
not go in detail here and refer the reader to the source for the full account.
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derivation that s admits some possibility. That is to say, there is an equivalence between possibility
derivations and proofs of linearizability.

The computational interpretation angle from Section 5.4 provides an alternative equivalence
of linearizability proofs with plays of ccopy ,. This motivates analyzing Herlihy-Wing’s possibil-
ity methodology from the computational interpretation angle. To that end, we derive a transition
system encapsulating the behaviors of ccopy_ using a notion of positions familiar in game seman-
tics. We then show that Herlihy-Wing possibilities correspond to the positions of ccopy_ and that
the axioms of possibility derivations by Herlihy and Wing [1990] correspond to moves of ccopy_.
Later, in Section 12, this analysis motivates the design of our verification methodology: a program
logic inspired in the correspondence we develop here.

9.1 Positions

We are finally ready to define our generalization of the original notion of possibility. We start by
defining a notion of position, which, informally, allows to associate a canonical notion of state to
a strategy.

Definition 9.1. Given a concurrent game A € Conc, we define a position of A as a non-empty
~s-closed set o C Pa, that is

Vs,s" €EPas€pAs wpas=5s €p
We denote by Pos(A) the set of positions associated to A. We take the freedom to write € for the
position {e} € Pos(A).
Given a position g € Pos(A) and a move m € Ma, we denote by o x m the position
s'€pxm & Tdse€ps wars-m
Every game A defines a transition system
T (A) = (Pos(A), A< Pos(A) X Mp X Pos(A))
whose transitions m : o — o’ are moves m € My such that o’ = o x m.
Note that every play s = mq - my - ... - my € Pa corresponds to a path in 7 (A) in the following
way:
my my ms my
E—>EH M — €EhkMy *kMy —> -+ —> €KXk My kMg k- kMg

and that, moreover, every play of A corresponds to such a path starting at the position {¢} € Pos(A).
Because of this, we call a path whose source is € a play of 7(A). We denote by s : o » o’ a path
from position p to o’ in 7 (A).

Definition 9.2. Given a strategy o : A € Conc, we define a position of ¢ as a position o € Pos(A)
such that there exists s € o satisfying s : € - o in Pos(A).

We denote by Pos(o) C Pos(A) the set of positions of . The associated transition system 7 (o)
has as state Pos(o) and transitions the restriction of 7 (A) to the states Pos(a) C Pos(A).

At this point, we emphasize that we can partition transitions in 7 (A — B) into four kinds
depending on the polarities and components of the corresponding moves. Namely, we identify a
transition a:m : o — o’ with one of the following four labels:

a:0q a:P; a:0; a:P;
depending on, respectively, whether m is an O move in the source component, a P move in the

source component, an O move in the target component, or a P move in the target component.
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9.2 Possibilities

Consider a play s € P5. We call a triple
(p€Paso:Y— {e}+ M, sp: Y — {e} +M£)
a possibility for s when it satisfies that
s+ (sp) wa p-(so)
where (sp) is any sequence such that a:m appears in (sp) if and only if so(«) = m, and similarly for
sp (note that all such sequences are equivalent up to =4 ). We denote the set of all such possibilities
by Poss(s). We also define
Poss(A) := U Poss(s)
SEPA

A possibility (p, so,sp) € Poss(s) should be understood as a representation of a situation where s
is a concrete play of an object (i.e., the moves as they actually occurred) and p a valid linearization
of s. sp represents those invocations that have happened concretely but that are removed in the
linearization, while sp represents those responses that have been added to obtain the linearization
but do not appear in the concrete play s.

We assemble Poss(A) into a transition system with states the possibilities of A and with transi-
tions given by

invoke,(m) : (p,50,5p) = (s34, 5p) &= me MY AP =pAs), =solar> m]Ash=sp
commitQ(m) : (p,s0,5p) = (.5}, 5p) &= me ML Ap' =p-a:mAshla > m]=soAsp=sp
commit? (m) : (p,s0,sp) — (P, SHsSp) &= mE€ Mi AP =p-amAs, =soAsp=spla > m]

returng (m) : (p, so, sp) = (p',$5.5p) & me Mf: AP =pAsy, =50 Asplam]=sp
Intuitively, each of these rules should be understood in the following way.

invoke,(m) models an invocation being made in the concrete play, but not committed to the
linearized play.

commit9(m) models an invocation that already exists in the concrete play being committed to
the linearized play.

commit? (m) models adding a response to the linearization that does not yet occur in the con-
crete play.

return,(m) models the point where a response concretely happens, while requiring that the
linearization already features a matching response.

Note that Herlihy and Wing [1990] possibilities only have one commit rule, which simultane-
ously performs the action of commit and commit? in sequence. Our more general setting, to-
gether with the factoring of complete operations into two separate steps (one played by Opponent
the other by Proponent) in the structure of game semantics plays, exposes that in reality there are
two different but similar steps that accomplish the atomic commit rule. It is easy to see that

invokey(m) : (p, so,sp) = (9,55, 5p) A (P, 50, sp) € Poss(s) = (p', s, sp) € Poss(s - a:m)
returng(m) : (p, so,sp) = (', s5.$p) A (P, so, sp) € Poss(s) = (p’, s(), sp) € Poss(s - a:m)
commitS(m) : (p, 50, 5p) = (505 5p) A (ps50,5p) € Poss(s) = (p', 55, sp) € Poss(s)
commith (m) : (p,50,5p) = (P55, 5p) A (P50, 5p) € Poss(s) = (p’, s}, 5p) € Poss(s)
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and, therefore, as {(e, @, @)} = Poss(e€), paths:
S:(e,2,2) > (p.so.sp)

in Poss(A) may be seen as derivations that (p, sp, sp) is a possibility of some play s.

Interestingly, the graph Poss(A) faithfully captures the possible behaviors of ccopy,. The corre-
spondence is in essence given by identifying the different kinds of moves in ccopy, with each of
the possible edges in Poss(A) in the following way:

a:0; & invoke,(-) a:P; & returngy(-) a:0; & commitg(—) a:P; & commiti(—)
We formalize this intuition as the following result.
PROPOSITION 9.3. There is a bisimulation between Poss(A) and T (ccopy ).

This bisimulation result gives a novel formulation, and a generalization, of the fact that possi-
bility derivations correspond to proofs of linearizability, only possible because of the relationship
between linearizability proofs and ccopy_.

COROLLARY 9.4. t is a linearization fors if and only if there exists a path S : (e, @, @) —» (t, so, Sp)
showing that (t, so, sp) € Poss(s).

This provides a complete and forward axiomatic proof method, like Herlihy and Wing [1990]’s
original approach, to write proofs of linearizability. In the remaining sections, we will develop a
more practical formalism for writing such proofs by means of a program logic which encodes the
possibility axioms conveniently.

10 LINEARIZATION POINTS

The possibilities of Herlihy and Wing [1990] are likely where the intuition for linearization points
originally came from. In the original possibilities framework, the commit rule is applied precisely
when the operation takes effect in the linearization of the concrete trace, which is then called a lin-
earization point. It is folklore that a trace can be linearized if and only if one can find linearization
points happening in the interval of each operation which, moreover, can be totally ordered.

Despite this understanding of linearization points which relates to the commit rule for possibil-
ities, the apocryphal formalization of the concept relies on showing that a trace is linearizable if
and only if there is a monotonic mapping from the operations of a play ordered by happens-before
ordering (as formalized in Section 7) to a dense total order such as R or Q. While this does provide
a sort of real time-based understanding of linearization points, it does not characterize them in
terms of the computational model itself.

In fact, there are other issues with the notion of linearization point. On one hand, a single trace
often admits many choices of linearization points. Once one considers a set of prefix-closed traces
that need to be annotated with their linearization points, there is no choice of linearization points
for p that guarantees that it is consistent with any s extending that trace (p C s). This is because the
new operations in s may invalidate the choice of linearization points made for p. This fact is noted
in a different form by Herlihy and Wing [1990] and justifies the use of sets of linearized values
in their proof methodology. Another issue comes when generalizing from atomicity. It turns out
that the point intuition is intrinsic to atomicity. In generalized linearizability, one has to settle for
a linearization interval instead, which may overlap with other linearization intervals.

The realization that ccopy_ corresponds to linearizability proofs (Section 5.4) allows us to give
a straight-forward characterization of linearization intervals. The key idea is that given a strategy
o : A — B we can annotate it with the linearization intervals by adding to its source the ability
to perform the operation from B in the source, obtaining, therefore, a strategy oy, : A® B — B
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which behaves as o when projected to A —o B, but behaves as ccopyy when projected to B — B.
The equivalence between plays of ccopyy and linearizability proofs then allows us to see such
extended strategies oy, as a form of proof-carrying strategy.

This idea works just fine in the atomic case, where we are only allowed to annotate with plays
of intcopyy. In the general linearizability case, sequential consistency becomes a hindrance: some-
times an agent has to both perform a move in A and B of the same polarity, thus breaking sequential
consistency. So we cannot obtain a proper strategy oj, in general. We can, however, use labeled
transition systems over positions instead of formalizing this idea. We moreover specialize our con-
struction to the assumption that ¢ : A —o B will be running on top of specification v4 : A in an
attempt to implement a specification vg : B, which models the typical verification problem for
linearizability and is of importance later in justifying some of the choices in Section 12.

10.1 Punctual Extensions under Atomicity

Definition 10.1. A punctual extension of a strategy o : (A, atocopy,) — (B, ccopyy) € Kar Conc
is a strategy

op:A®B —oB
such that

oplas, =0 Olp I'B,,B, C intcopyy

The key idea behind a punctual extension is that ¢ marks in its source component the lineariza-
tion point of the current target operation by atomically reproducing the corresponding O move
(which has already happened in the target) and the P move (that will happen later in the target).
The following two results give a novel formulation of the usual equivalence between Herlihy-
Wing linearizability and linearization points. Notably, differently from typical approaches, we do
not have to introduce a notion of time (such as by considering intervals in the reals) to characterize
linearization points.

PRrROPOSITION 10.2. Letvs : A € Katom and vg : B € Katom and
0:A — B e Conc

Then,
va;0 C Linatom VB

if and only if there exists a punctual extension oy, of atocopy ;o such that

((va ® ccopyg); aip) s, € VB

The following corollary provides the usual equivalence of linearization points with atomic lin-
earizability. It states that a concurrent strategy v/, is linearizable to an atomic specification v4 if
and only if one can find a certain punctual extension p. By the definition of punctual extension,
by necessity, it must be that p is in fact a substrategy of intcopy.

CoRrOLLARY 10.3. A strategy v}, : A € Conc is linearizable to a strategy va : A € Katom if and
only if v, supports a punctual extension

p:1®A oA
such that

pla, € va
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10.2 Linearization Intervals and Punctual Extensions

As discussed earlier in this section, it proves necessary to generalize to intervals instead of points.
This makes it necessary to loosen the requirements on extensions, so that they no longer form
strategies.

Definition 10.4. Given a strategy ¢ : A — B and a strategy v4 : A we define the strategy
valo : A — B by
valo:={s€o|sfa €va}
Given strategies v4 : A, vg : B,and 0 : A — B we define its punctual graph 7,(v4, o, vg) obtained
as the pullback (in the category of labeled quivers):

7|-p(VAvo'9 VB) ____> 7.(VA|O.)

| l
| o
4,
T (vB|ccopyg) TOW) 7 (B)
where p,; and pecopy are the corresponding projections from the target component B of v4|o and
vp|ccopyy, respectively.
A punctual extension %, of o over v4 implementing v is any subgraph of 7),(va, o, vp) such
that its canonical projection, obtained from the pullback diagram, is equal to 7 (v4|o) and the set
of plays (in the sense of Section 9) of its projection to 7 (vg|ccopyy) is a substrategy of vg|ccopyg.

The central result around punctual extensions is the following characterization of linearizable
implementations.

PRrROPOSITION 10.5. Letva : A, vg : B, and o : A — B. Then,
va;0 € Kcone VB
if and only if there exists a punctual extension X, of o over v4 implementing vg.

Let us briefly revisit what we saw in Section 10.1. In the atomic case we can in fact obtain actual
strategies oy, (as opposed to position graphs), as under atomicity the issue caused by sequential
consistency can be solved by choosing to perform the linearization point right after the operation
triggering it. Moreover, by taking o to be the identity, we can obtain the folklore result that the
existence of totally ordered linearization points is equivalent to linearizability. Although we did
not discuss that there, punctual extensions for the atomic case compose.

We now give a concrete characterization of punctual extensions. It is not hard to see that if %,
is a punctual extension of a strategy ¢ : A — B over v4 implementing vp then the states of X,
are pairs

(0 € Pos(valo). p € Pos(vslccopy))
such that p[g = pI,, and thus by Proposition 5.7 this means that o[ is linearizable with respect
to vg.

But note that similarly to what happens with possibilities, there can be many such pairs for a
single p € Pos(va|o). Because of this, we will take a kind of quotient and construct a transition
system Xinstr(va, 0, vB) (a version of o instrumented with possibility axiom applications) which has
as states pairs

(0 € Pos(valo), p € Pos(Kconc vB))
the idea here is that o g should be linearizable with respect to p, which itself is linearizable with
respect to vg. So in effect, (o, p) corresponds to several positions of %j,. The edges of Finstr(va, o, vB)
fall into one of the following cases:

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.



14:42 A. Oliveira Vale et al.

invoke,(m) : (0, p) = (¢',p)) & meMg/\g’ =oxmAp =pkm
returng(m) : (0, p) = (0',p') & me Mé’ AN =pxmAp =pANVt€p.TpePpayt) =
p-m)
commity,(m) : (0, p) = (0',p)) & meMaAp =pxmAp->p
where
p->p & Ttpe(Mp).pxtpCp’

The intuition is that invoke and return perform the “real-time” moves of B. invoke performs an
O move in B and automatically adds it to the possibilities p. return performs P moves in B, at
which point it must be that the possibility has already seen that return. The commit transitions
both perform the moves of v4|o in A (also in “real-time”) and also allows p to be updated by either
adding an early return, or performing some rewrites on the possibilities.

The relationship between punctual extensions and the transition system Tins,(va, 0, V) is cap-
tured by the following proposition.

ProrosiTION 10.6. There is a bisimulation between Tinstr(va, 0, vg) and 71,(va, o, vp).

In Section 12, we use these ideas to construct an abstract program logic for layered games,
which we show is sound for general linearizability. This program logic is a generalization, and
an improvement over, Khyzha et al. [2017]. We also show that the program logic of Khyzha et al.
[2017] is not complete, and show how our program logic resolves the counterexample we give.

11 CONCURRENT OBJECT-BASED SEMANTICS AND LINEARIZABLE CONCURRENT
OBJECTS

In the next section, we present a programming language described by an operational semantics
together with a program logic for reasoning about linearizability. In order to state the soundness
theorem of our program logic using the formalism from our article, we find it useful to provide
a denotation for our programs. In particular, we find it convenient to develop a separate formal-
ism for code (as opposed to specifications). This has the benefit of providing a game semantics
which is more adequate to handle code, as proposed by Koenig and Shao [2020] and Oliveira Vale
et al. [2022], and amenable to mechanization. The formalism is based on a semantics framework
originally developed by Reddy [1996] called object-based semantics.

11.1 The Replay Modality
We start by recalling the definition of the replay modality on sequential games, which originally
appears in Oliveira Vale et al. [2022].

Definition 11.1. Let A be a game. We define the replay of the game A, the game A as TA =
(Mya, Py o) where

MO, := ZMg M, = ZM}; Pin = {s1"... su € ARME, M{,) | Vi.s; € 1; Pa}
ieN ieN
where, for a play s, i; s labels all the moves m € s as 1; m, and for a set of plays S the set of plays
1; S is obtained by applying ¢; s to every play s € S.

The key intuition for the replay modality is that it allows the game A to be replayed sequentially.
By sequentially, we mean that once a new instance of the game starts, the previous instance cannot
be returned to. A key property of the sequential ¥— modality is that it is a comonad over Seq.

ProrosITION 11.2. f—: Seq — Seq defines a comonad.
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Similarly to our approach to other operators on concurrent games, we define the concurrent ¥—
as the lifting of the sequential one.

Definition 11.3. For a concurrent game A = (Mya, P4) we define the concurrent game fA as
TA = (Msa, Pia).

While it is possible to define a comonad 1 — directly on Conc, we have found that it leads to
an awkward notion of Kleisli morphism that does not provide a straight-forward calculus for our
notion of code. We instead take a different approach, and specialize the T — to the subcategory of
Conc obtained by restricting morphisms to parallel strategies, in the following sense:

Definition 11.4. We say a strategy 0 : A —o B € Conc is a parallel strategy when there is a
collection (o, : A —0 B)yey of strategies o, : A —o B € Seq such that 0 = ||yey to(0g)-
We call Parallel the subcategory of Conc obtained by restricting it to parallel strategies.

Some of the practical convenience with parallel strategies comes from the fact that composition
of parallel strategies can be computed agent-wise, in that
(leer ta(0a)); (laer ta(ta)) = llaer ta(0as Ta)
which reduces concurrent strategy composition to sequential strategy composition. This benefit

is amplified once we focus on the Kleisli category of 1 —, which we now define over parallel.

Definition 11.5. Given a parallel strategy o = ||yer 1a(0y) over A — B, we define fo : A — B
by the formula:

70 = |laer T ta(0a)
It is easy to show that {— inherits the structure of the sequential dagger.
ProposiTION 11.6.
t— : Parallel — Parallel

defines a comonad.

We take this chance to define effect signature games formally, which we have used throughout
in our examples.

Definition 11.7. An effect signature is given by a collection of operations, or effects, E = (e;);er
together with an assignment ar(—) : E — Set of a set for each operation in E. This is conveniently
described by the following notation:

E={e;:ar(e;) | i eI}
Every effect signature defines a very simple sequential game Seq(E) with moves given by
Mg :=F Mg := Ugcgar(e)
and plays
Prp:=|{e-v]|e€EAvEar(e)}
We will often denote Seq(E) simply as E.

We define its associated concurrent game Conc(E) as (Mg, Pg) which we often will denote simply
by E.

Let us mull over what an effect signature game entails. In the sequential case, the game E has
plays of the form:

e —— v
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consisting of an invocation of an effect e € E followed by a response v € ar(e). Its replay TE merely
allows for several such interactions to be performed in sequence, like so

el > U1 > € > Vs > ... > en > Un

where each e; € E and each v; € ar(ey). Its concurrent version allows each thread to play 1E locally.
Most objects appearing in concrete systems can be modeled by an effect signature, and we have
already provided many such examples in Section 2.2.

11.2 Concurrent Object Implementations
Typically, in the sequential case, we would use as object implementations strategies
M:tA— 1B

which are moreover regular in the sense that they are f-coalgebra morphisms between the free
t-coalgebras associated with A and B:

M : (A, 84) — (1B, 8p)

We emphasize the = on M because as M lives in the co-Kleisli category of {— it may instead be
described as a strategy
M:fA — B

and composition is as in the co-Kleisli category. This gives a minimal description of the associ-
ated coalgebra morphism M and simplifies the process of specifying implementations. See any of
Oliveira Vale et al. [2022] and Reddy [1993, 1996] for more details on the framework.

We extend that formulation to model concurrent object implementations as morphisms of the
form

RS

”ocEY la(M[a]) :TA — B
or, equivalently,

@ strat(i,(M[a])) : 1A — 1B
aeY

where each M[a] is a sequential strategy of type TA — B. Alternatively, we may characterize
concurrent implementations as collections

(M[a] : A — B)aer

which define a concurrent implementation by the formula above. The intuition here is that each
agent a € Y locally runs a sequential object implementation. In practice, it is often the case that
all agents run the same sequential implementation M in which case we can use

Conc M : tA — TB.

We note that

ProrosITION 11.8. Concurrent object implementations are free co-algebra morphisms of T —.

We now observe that for effect signatures E and F, any sequential object implementation:

M:7E o F
decomposes as a collection of implementations (M : 1E — {f : ar(f )} fer where
M i=eU{f-seM|feF}

that is, M/ is the set of plays of M starting with the operation f. Then

M:UMf

feF
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Moreover, any collection of strategies (M/ : 1E — {f : ar(f )}rer defines an implementation
M : ¥E —o F by the formula above.

The computational interpretation is quite simple here. Along the lines of Oliveira Vale et al.
[2022], every implementation M[a]/ corresponds to some code implementing the effect f using
the effects in E. A full sequential implementation M[«] corresponds to all of the implementations
for each f € F bundled together, such as in a file containing the code for all of those methods. The
concurrent object implementation then is analogous to the usual syntactic linking appearing in
the syntactic approaches to concurrent computation.

Again, let us consider what an implementation for an object with type given by an effect signa-
ture consists of. Locally, the implementation M{a}f : E — {f : ar(f)} of an effect f € F using
events in E by @ € Y is a strategy consisting of plays of the following shape:

f v

\\el S v S e S Uy S S en > Up

the implementation M[a] : ¥E — F of F using E by « is simply the collection of the implemen-
tations M[a] for each f € F by a, so that it is able to issue the right implementation on an

environment request for any effect from F. Its regular extension M[a] replays the implementation
M][a] in order to be able to handle several requests for effects in F by the environment. In this way,
its plays are of the following shape:

where each sequence f; - s; - v; is a play of M[a], and in particular a play of M[a}/i. The concurrent
implementation M : E —o F is simply the result of having each « € Y playing their corresponding
implementations M[«] in parallel. All the implementations discussed in Section 2.2 can be encoded
as layer implementations.

It remains to give an account of when an implementation correctly implements an object. This
is captured by the following definition.

Definition 11.9. A certified linearizable object implementation M : (v,,va) — (vg,vp) is an im-
plementation M : 1A —o 1B which moreover satisfies:

’ .
vg Cv M

It’s immediate to see that linearizable concurrent objects, together with certified linearizable
object implementations, assemble into a category. This definition is readily adapted to strong lin-
earizability. Such linearizable objects, together with certified linearizable object implementations,
provide the denotational account of the programming language and program logic that we will
now define.

12 PRAGMATICS

Now that we have established the core results of the article, we revisit the example in Section 2.2.
We start by outlining a program logic for showing that certain concurrent programs implement
linearizable objects. Then, we outline how the theory we develop can be used to reason about the
example from Section 2.2. Our program logic is adapted from Khyzha et al. [2017], but contains
significant modifications. Proofs for this section are found in Appendix C.
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12.1 Programming Language

12.1.1 Syntax. For our language we find it useful to slightly generalize effect signatures to be
of the form:

E = {e: par(e) — ar(e) | e € E}

here, par(e) is some finite product of sets and stands as the parameter set of e, and ar(e) € Set is
its arity, as usual. These are interpreted as standard effect signatures of the form:

E = {e(p) : ar(e) | e € E A p € par(e)}

namely, e : par(e) — ar(e) stands for a par(e)-indexed family of effects all with arity ar(e).
We start by defining a language Com for commands over an effect signature E:

Prim := x « e(a) | assert(¢) | ret v Com := Prim | Com;Com | Com + Com | Com™ | skip

Prim stands for primitive commands while Com is the grammar of commands. The most important
commands work as follows:

— x « e(a) executes the effect e € E with argument a € par(e), which might contain variables
defined in a local environment.

— ret v stores in a reserved variable the value v, and may only be called once in a program.

— assert(¢) takes a Boolean function over the local environment and terminates computation
if ¢ evaluates to False. assert(—) can be used to implement a while loop and if conditionals
in the usual way.

The remaining commands are per usual in a Kleene algebra.

An implementation M[a] of type E — F, where E and F are effect signatures, is then given by
a collection M[«] = (M[C(]f)fEF indexed by F, so that for each f € F we have M[a}/ € Com; we
denote the set of implementations by Mod.

Meanwhile, a concurrent module M[A] is given by a collection of implementations M[A] =
(M[a])qea indexed by a set A C Y of active agents, so that M[a] € Mod is an implementation for
each active agent a € A; we denote the set of concurrent modules by CMod.

12.1.2  Operational Semantics. Each primitive command B receives an interpretation as a state
transformer

[B] : UndState — P(UndState)
over a set of states
UndState := Env X P;g

and returning a new set of states. A state (A, s) € UndState contains a local environment A € Env
(a partial map from a set of variable names Var to the set of possible values) and a state represented
canonically as a play of s € TE. Concretely, s is the history of operations on the underlying object.
The state transformer [[B]), depends on « only in that it tags the events it adds to the underlying
state with an identifier for a.

The interpretation [B], of B € Prim must satisfy moreover that for all (A,s) € UndState, if
(A’,s") € [B]l«(A,s) then

Jt.s' =s-t Ampa(t) =€

That is to say, a language primitive may only advance the state further, and only by adding events
for the corresponding agent. Notice that we can split the interpretation function [B], into [B]<,
which is defined only on states where ’s next move is an invocation, and [[B]]g, which is defined
only on states where « has a pending invocation (the remaining states).
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—> C (Com X UndState) X Y X (Com x UndState)

(N,s') € [Blg(As)  Crg C
(C.A5) —q (C'N,5")

> C Com X Prim x {O, P} X Com

B >—>f3’ B B )_)g skip —» C (Cont x UndStateconc) X (Cone(1,E) x
CMaod) X (Cont X ModState
st gy ) ( )
C1:Cy >—>§ C};C skip; C Hﬁ(ipc feF a € par(f) A =Ala: [arg : a]]
(cla:idle], A,s) —M (cla: M[a) ], A',s - a:f)
cr X e C* X ski
skip skip P (C, A, s) —g (C’,A’,S’) s’ € Vg
—_— —_— (c[a:CL,A, sy —M (c[a:C"],A",s")
C1+Cy >—>§dp C1 C1+Cy >—>§dp Cy Ve

ma(stp)=p- f
A(a)(res) = v € ar(f) AN =Ala: 2]

(c[a : skip], A, s) —»% (c[e : idle], A, s - a:0)

Fig. 6. Command Reduction Rules (>), Local Operational Semantics (—), and Concurrent Module Opera-
tional Semantics (—»).

We lift this interpretation function to a local small-step operational semantics
(C,A,s) —4 (C’,A,s") encoding how a steps on commands in a mostly standard way fol-
lowing the Kleene algebra structure of commands. The key difference is that, as we do not assume
the underlying object of type E is atomic, primitive commands execute in two separate steps,
one for the invocation and the other for the return. This can be seen in the definition of the
command reduction relation (>>) which reduces a command by executing a primitive command.
See Figure 6 for the operational semantics rules. There, skip stands for a primitive command that
behaves just like skip but is used exclusively to define the operational semantics.

This small step operational semantics can be lifted to a concurrent module operational semantics

— —»~ — C (Cont x ModState) x CMod x (Cont x ModState)

Here a continuation ¢ € Cont consists of a mapping ¢ : Y — {idle} + {skip} + Com and a module
state ModState := (Y — Env)XP;g_+¢r containing the local environments for all the agents, as well
as the global trace of the system (see Figure 6). The concurrent semantics models all the agents
running their local implementations concurrently under a non-deterministic scheduler. The three
rules correspond, in order, to a target component invocation, a step in the source component, and
a return in the target component.

It is important to note that in our operational semantics, following the object-based semantics
approach, which we develop in detail in Section 11, all shared state is encapsulated in the under-
lying object of type E. One of the many consequences of this is that the local environments can
only be modified by their corresponding agents, and are initialized on a call on F and emptied on
a return. This limits the lifetime of variables to a single execution of the body of a method.

A program M can be linked with a specification vg for its source component given by a strategy
vg : TE, which we denote by Link vg; M. The operational semantics of Link vg; M is given in
Figure 6. Observe that

__»M_ = __»]}’/I -
TE
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12.1.3  Semantics. We give a concurrent module a denotation by the formula
[M] = {s | 3c € Cont.3A € (Y — Env).{co, Ao, €) —M (¢, A, s)}

where the initial continuation ¢, is the mapping such that co(«r) = idle for all @ € Y. The initial
environment A is defined as the empty mapping A, = @ for every agent € Y. The interpretation
[M] essentially collects all traces that the implementation M might generate. Note that these traces
include events of both the source component E and the target component F, as well as events by
several agents.

From a linked program Link vg; M we can obtain a corresponding strategy [Link vg; M] : {F
similarly to before

[Link vg; M]| = {s | 3c € Cont.3A € (Y — Env).{cy, Ay, €) —»{,Vé (e, \,s)}

The interpretation of the linked library merely specializes the semantics of [M]| to only the traces
that execute according to vg in the source component. This is done by using the operational se-
mantics specialized to follow the specification vg (defined in Figure 6).

The following result allows us to connect the programming language back with the theory we
have developed so far.

ProprosITION 12.1. For any M € CMod, [M]| : ¥E —o {F is a strategy (in fact, a concurrent object
implementation) and given vg : TE,

[Link vg; M] = vg; [M]]

12.1.4  Language Primitives. We now introduce the language primitives we will use for our pur-
poses. First, we have a command skip with interpretation given by

[skiplla(A,s) = {(A.5)}

which makes no modification to the state.
A command ret — with interpretation:

(Afret : v],s), A(ret) = L
@, A(ret) # L

[ret 0]« (A,s) = {

ret — reserves a location for returns to be written to. Observe that a return may only be called once
in any execution.

A more interesting primitive is a primitive of the form x < e(a) where e € E and a € Var+par(e)
and x € Var with interpretation [[x « e(a)]4(A, s) given by

{(A,s - aze(a))}, a € par(e)

—If even(my(s)) then [x «— e(a)](A,s) = {(A,s - a:e(A(a)))}, a € Var A A(a) € par(e)
@, otherwise

—If mo(s) = p - e(a’) where either a’ = a or a’ = A(a) then

[x « e(a)]«(A,s) = {(A]lx : v],s - a:v) | v € ar(e)}

— Otherwise, [x < e(a)]l(A,s) := @.

This models the fact that the implementation may call effects from its source component E. x <
e(a) executes the effect e € E with argument a, which might contain variables defined in a local
environment A € Env.
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Finally, to implement branching, we have a command assert(¢), where ¢ : Env. — Bool,
interpreted by

{(A,5)}, p(A) = True

@, Otherwise

[assert(P)](A,s) := {

assert(—) can be used to implement a while loop and if conditionals in the usual way.

12.2 Program Logic

Our program logic is motivated by a careful analysis of proof methodologies for linearizability
developed in Section 10. There we show that possibilities, and the inner workings of program logics
such as Khyzha et al. [2017], can be seen to be simulating moves of ccopy_ in their proof steps,
and that the proof states correspond to positions of ccopy_. In particular, we define a notion called
punctual extension which provides the theoretical ground for our program logic. Here, we present
the resulting simple, bare bones, program logic. Despite its simplicity, it is expressive enough to
reason about our notion of linearizability, and we believe it to be extensible.

Recall (from Section 5.3) that we encapsulate the information necessary to define a linearizable
concurrent object in a pair

v TA, v : TA) s.t. v C Kcone V

Throughout, we assume the following situation. We have a linearizable concurrent object
(vi : TE,ve : TE) and would like to show that an implementation M : E — F is correct in that
when it runs on top of v}, it linearizes to a specification vr : F. When reasoning about Link vz; M
it will be useful to restrict it with some invariants about its client. For example, usually when us-
ing a lock, one assumes that every lock user strictly alternates between calling acq and rel. So if
all clients to the lock politely follow the lock policy, it is enough to verify only those traces. This
policy of strict alternation is encoded in a strategy & : F in our approach.?

All in all, the program logic establishes that (vi;[M] N &r,vr) is a linearizable con-
current object. For this purpose our program logic uses as proof configurations triples
(A, s, p) € Config := ModState X Poss where Poss is a set of possibilities. While Herlihy and Wing
[1990] use sets of, so-called, linearized values, as possibilities, and Khyzha et al. [2017] uses an in-
terval partial order, we use a play of Poss := Kconc Vr. This means that our program logic rules are
designed to enforce that, if (A, s, p) is a configuration, s [ is linearizable to p and p is linearizable to
vr. Pre-conditions P are given by sets of configurations, while post-conditions Q, rely conditions
R, guarantee conditions G are specified as relations over the configurations. We define stability
requirements on pre-conditions P and post-conditions Q:

stable(R,P) =RoPCP stable(R,Q) =RoQ CQAQoRCQ

There are three ways through which a configuration can be modified: through a relational pred-
icate invoke, (—) which makes an invocation in F, and simultaneously adds it to the state and the
possibility; a commit rule G +, {P} B {Q}, where B € Prim, which allows one to modify the
state by executing primitive commands over E, but also to add early returns to p and to rewrite it
according to — ~» —; and a pair of post-conditions returned,(—) and return,(—) that check if at
the end of execution there is a valid return in the possibility, and then adds it to the state.

4Note that such a client specification should be P-receptive, in that if s € &, n € Ungar(f), and s - n € Ps;p, then

s-n € ép.
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stable(R, P) stable(R, Q) G to {P} B{O}
Prim
R.G Fa {P} B{Q}

KIP

R.GEa {PYC{Q} R.GFEa«{QoP}C {Q'} S50 S
R, G Fa {P}C:C"{Q'} T,ID o {T} € {ID}

R.GFa{P}C{Q}  QoPCP — R.GFa {P}C1{Q} RG Fa {P}C2{Q}
R.G Ea {P}C" {0} R.G Fa {P} C1+C2 {Q}

CHOICE

stable(R’, P’)
PPcP R CcR R,G Eq {P} C{0O} Gcg Qcy stable(R’, Q")

R'.G" Fa {P'}C{Q"}

Fig. 7. Program logic rules for commands.

WEAKEN

Formally, the commit rule, which is the crux of the verification task, is defined below:

Gra {P}B{Q} &=
Y(A,s,p). Y(A',s). (A,s,p) e PAA,s") € [Bla(A,s)As'[E€vE=
3pl'(A’ S, P) Q (A,’S/’ P’) A (A9 S’p) g (A,’Sls P,) Ap - pl

p->p & Ttpe (Mg)*p - tp wasp p’

The rule considers every state (A’,s”) reachable by executing the primitive command B on be-
half of « from a proof state (A, s, p) satisfying: the pre-condition P and the source component’s
linearized specification vg. The proof obligation is then to choose a new possibility p’ and show
that the step into the new proof configuration (A’,s’, p’) satisfies the post-condition Q and the
guarantee G. This new possibility p” must be shown to satisfy p --> p’, which enforces that p’
only differs from p by adding some returns tp to p, and potentially linearizing the trace more
by performing some rewrites (p - t, ~r p’). PRim merely adds typical stability requirements on
the operation. Lifting this rule to a Hoare-style judgment R, G |=, {P} C {Q} over any command
C € Com is straight-forward (See Figure 7), which will be the program logic judgment for function
bodies such as M[a}.

Meanwhile, invoke, (—), returned,(—) and return,(—) are formally defined below, where idle,
is a predicate that checks if « is idle in a given state.

(A, s, p) cidley, & Ay =2 Aeven(ry(s|r)) Aeven(rg(p))

(A, s, p) invokey (f(a) (A, s, p') =

(A, s, p) €idleg As"TF € Ep A (A (@) = [arg: a] AV # a.N(a) =AM )As' =s-a:f ANp' =p-a:f

(A, s, p) returnedy (f) (A, 87, p')

(A, s", p') = (A, s, p) A(Tv € ar(f).Ala)(ret) = v A (Fp.ma(p’) = p - V)
(A, s, p) returng (F) (A, s, p) =
N=pAp ' =pATvear(f).Tp.na(p)=p-vAs =5 -awv

Now, given a concurrent module M = (M[a])yer where the local implementations are given by
Mla] = M[a} )rer Verification is finalized by the following two rules:
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Vf € F.(Ag, 6, €) € Plaf  Vf e F.Pla} Cidles
Rlal, Gla] Ea {invokeq(f) o Pla} } M} {returnedq(f) o Qla}}
Vf, f € F.returng(f’) o returned o (f”) o Q|rx|f/ o invoke, (') o I’[a]f/ c Pla)f

LocaL ImpL
Rla), Gla] Fa {NfepPlal } Mla] {UrepQlal '}

Va € A.R[a], Gla] Fa {Pla]} Mla] {Q[a]}
Va,a' € A.a # o’ = Gla]Uinvokey(—) U returng () € R[a’]

R[AL G[A] [Fa {NaeaPlal} M[A] {UgcaQlal}

Conc ImpL

where
invoke,(-) = U invoke,(f) returny (=) := U returny(f)
feF feF

and given relies R[] and guarantees G[«] for every a € A, we define

R[A] = (] Rla] glal = | Glal

a€cA acA

Several of the premises of Locat ImpL and Conc Impr are typical of rely-guarantee reasoning, and
the remaining ones are very similar to those found in Khyzha et al. [2016, 2017]. Of note, is the
premise highlighted in blue in Locatlmpr, which makes sure that the pre and post-conditions
are defined in such a way that after executing a method f’ € F the system satisfies all the
requirements to safely execute any other method f € F. Meanwhile, the premise highlighted in
blue in ConcImpr makes sure that the rely condition is stable not only under the guarantee but
also under invocations and returns by other agents. These two program logic rules are justified
by the following soundness theorem.

PrOPOSITION 12.2 (SOUNDNESS). If R[A], G[A] Fa {P[A]l} M[A] {Q[A]} and (v : TE,vg : TE)
is a linearizable concurrent object then

v [M[A]] N &F € Kconc vF
It is worthy noting that this program logic supports the usual parallel composition rule:

ANB=o2  R[ALGIA] Fa {PIA]} M[A] {Q[A]}  GIA] U invokea(=) U returna(=) C R[B]
R[B].G[B] Ep {P[B]} M[B] {Q[B]}  G[B] U invokeg(~) U returng(~) C R[A]
]

R[A] N R[B], G[A] U G[B] Faw {P[A] N P[B]} M[AW B] {Q[A] U Q[B]}

PCowmp

The program logic can be extended with quality-of-life features like ghost state, and fancier
notions of possibilities such as using a set of plays of Kcone Vr, instead of a single play, for
added flexibility. Another point is that, other than paradigmatic modifications, our programming
language and program logic are close to those of Khyzha et al. [2017]. There are two major differ-
ences. First, our program logic is built to reason about our notion of linearizability (Definition 5.1),
while theirs focuses on Herlihy-Wing linearizability. In particular, their operational semantics
can assume that operations in the source component are atomic, while we cannot. The second
is that we maintain that there exists a valid linearization of the possibility, while they maintain
that every linearization is valid. There are linearizable concurrent objects for which the stronger
invariant on possibilities cannot be maintained, see Appendix C. This means that our program
logic is strictly more expressive, and therefore any proof achievable with theirs should admit a
straight-forward adaption to ours.
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12.3 Example Revisited

We now revisit the example of Section 2.2. We start by assuming we have concurrent objects

Vit TFAL v inter + TCounter and v}’]iel 4 ¢ TYield assembling into linearizable objects
(Vi TFAL v 2 TFAD)  (Wgunter : TCounter, vegunter : TCounter) (v}’,ield : TYield, vyielq : TYield)

where vg,; is the atomic FAI object specification, Veoynter i the semi-racy counter specification, and
Vyield is the less concurrent Yield specification, all as described in Section 2.2. Using the locality
property, we can combine these linearizable objects into a composed linearizable object, written
as (vg, Vg):

(Vé, VE) = (Vf/ai ® Vclounter ® V}’/ield’ Vfai ® Veounter ® Vyield)

Observe that the code for M,k appearing in Figure 1 can be encoded in the programming lan-
guage of Section 12.1. We wish therefore to show that M, correctly implements a linearizable
object (v, : TF, viock : TF) as described in Section 2.2 except for one extra assumption: that locally
in v/ ., each agent alternates between invoking acq and rel. This extra assumption becomes avail-
able in our program logic. Because of the interaction refinement property, we need only consider
linearized traces, those in vg, for the source component. Because of that, it does not really matter
what the actual concurrent object v, is! It only matters that it linearizes to vg. For example, v/ cr
could very well be an atomic Counter provided by hardware somehow, or a Counter implementa-
tion that misbehaves when two increments occur at the same time. Even then, it still linearizes to
the semi-racy counter specification, so the proof of correctness of Mjoci will remain valid.

Verification with the program logic is straight-forward. The main invariant maintains that the
possibility p satisfies p = p - po where p € vk is an atomic trace representing the already
linearized operations, while po is a sequence of pending invocations yet to be linearized. When
an agent leaves the while loop in the code of acq, or executes the inc command in the body of rel
we add the corresponding return ok and linearize the operation to the end of p, like so

assert(cur_tick = my_tick)

p=p-pr-@acq-py ——-———-—----—"-= ¥ p - aacq - azok - py - py = p’
p=p-p1-arel-py ——————- O > p - acrel a0k - p1 - py = p’
Please check Appendix D for details. We denote the fact that M is correct as
[[Mlock]] : (Vé’ VE) — (VI B Vlock)
lock
Along the same lines, we can verify that

[[quueue]] : (Vl,ock ® Véueue’ Viock ® V(;ueue) - (Vs,queue’ Vsqueue)

At this point, the two implementations can be composed together by using the tensor of concur-
rent games, the locality property and strategy composition. First, we use ccopyqueye : TQueue —
tQueue to “pass-through” the queue object to Mjock, obtaining therefore an implementation
Mok ® ccopy by using the code for ccopy_ shown in Section 4.1. This implementation satisfies
that [Mjock ® ccopy] = [Mioek]] ® CCOPY+queue @nd, therefore, that

[Miock ® CCOpy]] : (Vé ® V(;ueue’ VE ® Vz;ueue) - (Vl/ock ® V(iueue’ Viock ® V(;ueue)
By composing the two implementations together, we obtain that
[Miock ® CCOPY]]; |[quueue]] : (V]:: ® V(;ueue’ VE® Véueue) — (Vs/queuw Vsqueue)

immediately from the fact that each of the two implementations is known to be correct.
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13 RELATED WORK AND CONCLUSION

Herlihy and Wing [1990]. We revisit many, if not all, of the major points of their now classical
article. In particular, we generalize their definition and provide a new proof of locality. Overall, we
present new foundations to their original definition of linearizability.

Ghica [2023], Ghica and Murawski [2004], and Murawski and Tzevelekos [2019]. Our concurrent
game model is heavily inspired by the model appearing in Ghica and Murawski [2004] and Ghica
[2023], and the genesis of our key result lies in the observation we outlined in Section 2.1.2. Despite
that, our game model both simplifies and modifies the one appearing there. It simplifies it in that
they use arena-based games, relying on justification pointers. They also have more structure on
their plays around a second classification of moves into questions or answers, in order to model
ICA precisely. We believe that our formulation of linearizability readily extends to other, more
sophisticated formulations of concurrent games, including theirs. Our choice of this simple game
semantics is justified in Section 1.2. We also make a significant modification to their game model
in that we change the strategy composition operation. Theirs always applies a non-linear self-
interleaving operation on the left strategy so to obtain a Cartesian category. We instead use a
linear composition operation that leaves the left strategy as is, and fits our purposes better. Another
difference is that theirs is single-threaded (a single opening O move) while ours is multi-threaded.
They do use a multi-threaded model to explain the categorical structure of their model, but they
do not use the multi-threaded model as extensively as we do.

The fact that the category defined in Ghica and Murawski [2004] is a Karoubi envelope was
observed in a manuscript by Ghica [2023], but was not explored in detail. In particular, none of the
material in Section 6 appears in their work. Neither of these works deal with linearizability in any
way, nor observe the relationship between their rewrite relation and happens-before preservation.

The authors likely noticed that the rewrite relation in Ghica [2023] and Ghica and Murawski
[2004] is related to linearizability, as a variation of it appears in Murawski and Tzevelekos [2019]. In
this article, they revisit a higher-order variation of linearizability originally introduced in Cerone
etal. [2014] and strengthen the results from there. Meanwhile, we only address the more traditional
first-order linearizability, though we believe it could be generalized to a higher-order setting. De-
spite that, they use a trace semantics, which, though inspired by game semantics, still relies on
syntactic linking operations and lacks a notion of composition beyond syntactic linking at the sin-
gle layer level. The approach fits into the typical approach we outline in Section 1. None of these
works observe the relationship between ccopy_ and the Karoubi envelope with linearizability.

Goubault et al. [2018]. As we described in Section 2.1.2, Goubault et al. [2018] is another major
reference for our work. Many of our results are significant generalizations of theirs. They focus
just on concurrent object specifications, and use untyped specifications. We go beyond that by
considering a compositional model, featuring linear logic types, and strategy composition. Given
the definition of concurrent specification they use, and the background of the authors, they were
likely inspired by game semantics, and leave for future work a compositional variant of their re-
sults, which our work addresses. Moreover, they only model non-blocking total objects, while we
assume neither restriction on our objects. Some of our results are generalizations of their results
along several lines, as our model is compositional, typed and does not assume totality (this last
one is explicitly used to simplify several of their proofs). Several of these generalizations are estab-
lished using our novel techniques, such as the algebraic characterization in terms of the Karoubi
envelope, as opposed to proofs involving the rewrite system. In particular, they establish a Ga-
lois connection related to linearizability, which we reproduce using our abstract formulation, as
opposed to their proofs, which used a concrete formulation of linearizability. They also do not
discuss horizontal composition and locality.
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Other Works. There are other approaches to concurrent game semantics such as Abramsky and
Mellies [1999] and Melliés and Mimram [2007] (this later one also involving a rewrite system), and
Castellan et al. [2017] and Rideau and Winskel [2011]. The notion of saturation in games traces
back to Laird [2001]. Our treatment of concurrent objects, appearing in Section 2.2, in Section 12.3
and in Section 11 traces back to Reddy [1993, 1996], which has been recently brought back to
attention by Oliveira Vale et al. [2022]. More broadly, our motivations seem to fit into a program
started by Koenig and Shao [2020]. Game semantics has been used to analyze concurrent program
logics in Mellies and Stefanesco [2020] to a much larger extent than what we endeavor in Section 12
and Appendix C.

Semicategories have been studied extensively in the context of theory of computation in order to
provide category theoretical formulations for models of the A-calculus, notably in Hayashi [1985]
and Hyland et al. [2006]. Our notions of semi-biadjunction and enriched semicategories trace back
to Hayashi [1985] and Moens et al. [2002] respectively. Semifunctors have been thoroughly studied
in Hoofman and Moerdijk [1995]. The Karoubi envelope often appears in the context of concurrent
models of computation beyond the already mentioned Ghica and Murawski [2004]; for instance in
Ghica [2013] to model delay insensitive circuits, in Gaucher [2020] on the flow model of concurrent
computation, in Piedeleu [2019] to give a graphical language to distributed systems, or in Castellan
et al. [2017] and Rideau and Winskel [2011] (though not explicitly mentioned).

As we noted in Section 2.2 there are numerous works that discuss variations of linearizability
[Castafieda et al. 2015; Haas et al. 2016; Hemed et al. 2015; Neiger 1994]. Notable is that in defin-
ing a criterion for linearizability in the context of crashes and abortions, Aguilera and Frelund
[2003] make use of a rewrite system not unlike the one used by us and [Goubault et al. 2018]. Cru-
cially, our methodology and formulation differ widely from previous works. In particular, we do
not propose a notion of linearizability. Instead, we define a model of concurrent computation and
derive the appropriate definition of linearizability intrinsic to the model. As far as we are aware,
the only work that has developed a relationship between the copycat and linearizability is Lesani
et al. [2022], which likely happened concurrently with our own discovery. Despite that, they only
discuss atomic linearizability, and do not explore the theory surrounding their definition of lin-
earizability. In particular, they do not prove the equivalence of their definition to original Herlihy-
Wing linearizability, which we address in depth in Section 7. In this way, our work generalizes
their development around linearizability and, moreover, formally explains why their definition of
linearizability is appropriate. In terms of methodology, our work still differs widely and subsumes
their model of computation, especially when considering the object-based semantics model ap-
pearing in Section 11. The main contribution of their article is in showing how linearizability can
elegantly model transactional objects, a matter which is orthogonal to our development and read-
ily adaptable to our setting. All the works cited supra are strictly less expressive than the notion of
linearizability we derive. Our notion of linearizability corresponds to a generalization of interval-
sequential linearizability [Castafieda et al. 2015] (the most expressive notion of linearizability prior
to our work) to potentially blocking concurrent objects (while they only model non-blocking ob-
jects, as is typical in the linearizability literature). See Section 8 for a detailed comparison.

For our results on proof methods for proving linearizability, we must mention Herlihy and
Wing [1990], Khyzha et al. [2017], and Schellhorn et al. [2014]. In particular, our program logic
and programming language are adapted from Khyzha et al. [2017, 2016], but with some substantial
modifications: instead of interval partial orders, we use just a concurrent trace as our notion of
possibility; we follow the object-based semantics paradigm and, therefore, encapsulate all state
in objects instead of having programming language constructs that directly modify the shared
state; while they maintain as an invariant that every linearization of their possibility is valid,
we only maintain that there exists at least one valid linearization. We speculate that this last
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modification should make our program logic complete, while theirs is not (see Appendix C for a
counterexample). Since our program logic strictly generalizes theirs, we can translate to our pro-
gram logic any proof using Khyzha et al. [2017]. Although we use the particular program logic in
Section 12, we do not see our program logic as a major contribution of our work. Rather, it serves
the purpose of illustrating the interaction of the theory with a concrete verification methodology
and that objects linearizable under our notion of linearizability are verifiable. We believe that
other program logics, and other proof methodologies can be connected with our framework.

There has been much work in building program logics for reasoning about concurrent programs
[da Rocha Pinto et al. 2014; Dinsdale-Young et al. 2010; Feng et al. 2007; Fu et al. 2010; Jung et al.
2018; Nanevski et al. 2014; Svendsen and Birkedal 2014; Turon et al. 2013; Vafeiadis et al. 2006;
Vafeiadis and Parkinson 2007]. Most of these works only prove soundness with respect to the
particular combination of Rely/Guarantee, Separation Logic and/or Concurrent Separation Logic
involved, but not against linearizability. This sometimes happens even when a proof method
for establishing linearizability is presented, which they justify by citing Filipovic et al. [2010]
and by claiming that they can show observational refinement. This is despite the fact that their
programming language, and hence their notion of refinement, differs from that in Filipovic et al.
[2010]. Notable exceptions in this matter are Birkedal et al. [2021], Khyzha et al. [2017], and Liang
and Feng [2016].

A close relative to linearizability is logical atomicity [da Rocha Pinto et al. 2014; Jung et al. 2019,
2015]. Logical atomicity does address some of the biases delineated in Section 1, and Jung et al.
[2015]’s framework, Iris, is compositional, although only within the confines of Iris. In fact, logi-
cal atomicity is intimately tied to a program logic. Strictly speaking, it only characterizes objects
realizable in a particular operational semantics, and expressible in a particular program logic. It
was invented to make it easier to prove linearizability in Hoare logics. Until recently, there was
no formal account of the relationship between the two. It has been recently shown [Birkedal et al.
2021] that logical atomicity implies Herlihy-Wing linearizability. There is no reason to believe
the reverse implication is provable. It is, moreover, tied to atomicity. Meanwhile, linearizability
(both in our treatment and in the original Herlihy-Wing article) is not tied to a particular logical
framework, or to realizability under a programming language. In the original Herlihy-Wing arti-
cle, it characterizes any non-blocking sequentially consistent concurrent object that behaves as if
their operations happened atomically. The concrete part of our article characterizes sequentially
consistent concurrent objects whose operations behave as if they had linearization intervals.

Conclusion. We believe that linearizability beyond atomicity is currently underdeveloped in the
theory, and hope that our analysis contributes to divorcing linearizability from atomicity as it
presents a strong argument that preservation of happens-before order is the core insight of lin-
earizability. Along these lines, there are both practical (relaxed memory models and architectures)
and theoretical (characterizing concurrent objects under weak consistency) reasons to consider
models that are not sequentially consistent. We believe the framework presented here readily gen-
eralizes to many contexts, which we intend to explore in the future.

APPENDICES
SUMMARY OF THE APPENDICES

A includes a few omitted proofs from Section 6.

B gives a detailed account of the symmetric monoidal closed structure on concurrent games,
and provides the proof of the key results (Proposition 5.12 and bi-semifunctoriality) required
to show the generalized locality property.

C contains the proof of soundness of the program logic from Section 12 and an example to
help compare with the program logic of Khyzha et al. [2017].
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D gives detailed proofs of the examples on Section 2 using the program logic presented in
Section 12.
E collects proofs omitted elsewhere in the text.

A KAROUBI ENVELOPE
A.1 2-Karoubinization

In Section 6, in order to categorify linearizability, we found it necessary to work with enriched
semicategories. In particular, we assumed we have a (strict) 2-semicategory (a Cat-enriched semi-
category in the sense of Moens et al. [2002]). While it is certainly the case that the Karoubi envelope
of an ordinary semicategory is a category, one might wonder if the Karoubi envelope of a (strict)
2-semicategory is a (strict) 2-category. We briefly discuss the situation, and start by clarifying what
we mean by the Karoubi envelope of an enriched semicategory.

Definition A.1. Let C be a 2-semicategory. We define its Karoubi envelope Kar C to be the 2-
semicategory described by

Objects Pairs (C € C,e : C — C) of an object C € C and a 1-morphism e € C(C, C) which is
moreover idempotent in that e o e = e.

Hom-Categories For (C,ec) and (D, ep) we define the category Kar C((C, ec), (D, ep)) to
be the subcategory of C(C, D) obtained by restricting its objects (1-morphisms) to those
1-morphisms f € C(C, D) stable under composition with ec and ep in thatep o f oec = f.

Composition Composition is obtained as the restriction of —o— : C(D, E)XC(C, D) — C(C,E)
to the relevant subcategories, as per the definition of the Hom-Categories.

Identity Morphisms For an object (C, ec) its identity is the 1-morphism ec € C(C, C).

It is straight-forward to see that 1-morphism composition is well-defined, that is to say, that
1-morphisms in its image are always stable under the relevant idempotents making it a functor
between the Hom-Categories involved. Associativity, therefore, must still hold. The unital laws
hold by essentially the same argument as in the ordinary category theory case.

A.2  Proof of Proposition 6.6
ProrosiTION A.2. If
e- = {ea}aec e/ ={e}aec
are families of idempotents such that there are 2-morphisms:
ea < ey
for every A € C, then the mappings L and R defined by
L:C, > Cy:=K' oEmb R:Cy — C,:=KoEmb’

define an oplax functor and a lax functor, respectively.
Moreover, for every pair of A, B € C, the associated functors of hom-categories:

Lap:Ce(A B) = Co(A B) R p:Ce(A B) — C.(A B)
form an adjunction.
Proor. For convenience we let
K=C, K =C.
and

K=K, Emb = Emb, K' =Ko Emb’ = Emb,/
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We also find that it causes no confusion to refer to the objects
eqs €K ey €K

as simply A, since there is a single object of K and K’ that corresponds to an idempotent of A € C.
First, we show the weak functoriality results. We start with L. Note first that

Le=e¢'ceoe’ <e'oe’oe’ =¢

moreover
L(gof) = e’ogofoe' = e'ogoeofoe' < e'ogoe'ofoe' = e’ogoe'oe'ofoe' =LgoLf

For R, we have

e=eoeoe<eoe’ oe=Re

moreover

RgoRf:eogoeoeofoe:eogoeofoegeogoe'ofoe:eogofoe:R(gof)

The enrichment of R and L follows from the fact that they are defined as formulas involving
only composition.

Now, for the adjunction result, we simply note that that for any f : A — B € K and any
f’:A—> BeK"

f=epofoes=epoegofoesoes<epoegofoe,oea=RLf
and
LRf':eBoegof'oe;‘oeASegoegof'oegoeg:eéof’oe;l:f'

the naturality squares, and triangle identities follow simply from being well-typed as K(A, B) and
K’(A, B) are both posetal. O
B TENSORS

In Section 5.6, we briefly discussed a notion of tensor on Conc. We noted there that this notion
of tensor lifts to a symmetric monoidal closed structure in Conc, what we develop in detail here.
Moreover, we gave most, but omitted the proof of Proposition 5.12.

ProrosiTioN B.1.
CCOPYpgp = CCOPYA ® CCOPYg
Proor. Observe first that
ccopypgp = P(copy 4qp) = P((copy 4 ® copyp))

Now, assuming that s is sequentially consistent, observe that

s € ccopypgp = P((copy 4 ® copyp))
if and only if for every a € Y:
7o (sTA) € copy s 7a(sIB) € copyy
which is the case if and only if
sTa € ccopy, sTB € ccopyg
if and only if (as we have assumed sequential consistency):
S € ccopy, @ ccopyp

Now, if s € ccopy, 4 then s is sequentially consistent, and if s € ccopy, ® ccopyy the same holds.
Hence, the assumption is justified. O

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.



14:58 A. Oliveira Vale et al.

ProrosITION B.2.
—® — : Conc ® Conc — Conc

is a bi-semifunctor.

Proor. Let
O'ZA1—0A2 O'/ZAZ—OA3

7:B; < By 7’ : By — B
Suppose first that
s € ((a507) | (737)) N P, A5)@(B,Bs)
then
$A4 = STA,—n; € 0307 SB = S|B,—B, € T5T
Hence, there are t4 € int(o,0’) and tg € int(z, t”) such that

talALAs = SA tgIB,,B; = SB
But then, notice that
sesallss
it is straight-forward to check that we can construct an interleaving
tetall ts
such that
tTA,®B;,A;®B; = S
and moreover
ETALALA; = tA 1B,,B,.B; = IB
so that
se(@ ) )
Now, suppose
s =tla,eB,As0B, € (0 || 7); (0" || )

Then,
tlA,@B,.A0B, €0 || T tlA,®B, 08, €0 || 7
hence,
tla,A, €0 tla,a, €0
and
tlB.B, €T  tlB,B, €T’
Hence,
tlALAA; € 0307 t1B,B,Bs € T;T
therefore,

te(o;0) | (r;7))
The enrichment is obvious. First,if 0 C ¢’ and 7 C 7’ it follows immediately from the definition
that

clltca |t

Unions are handled in the same way. O
ProrosiTiON B.3. (Conc, ®, 1) is symmetric monoidal.

Proor. We’ve already proven bi-semifunctoriality in Proposition B.2.
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To obtain bifunctoriality, note that

ccopy, || ccopy, = ®(copy ) || @(copy,) = ®(copy ) = ccopy,

We now move to the monoidal structure.
LeEmMA B.4. (Conc, Kcone © — ® —, 1) is a symmetric monoidal closed categorie.

Proor. We start by showing that the structural morphisms assemble into natural isomorphisms:

A®(B®C) — (A®B)®C 18A 23 A Asg1- A
UA®(O-B®O-C)\L = \L(GA‘@UB)@O-C 1®0-\L = \LO' 0’®1\L = \LO'
A'®(B ®C) 7 (A ®B) e C 19B—>B  B®1— 5B

The left and right unital are straight-forward. Indeed, they are simply the identity on the corre-
sponding sequential games so that
Aa = ®(1a) = P(copy,) = ccopy,
pa = P(pa) = ®(copy,) = ccopy,
Meanwhile,
1®@0=A{e}||o=0
Therefore, we easily check that
(1®0);Ap = 0;ccopyg = 0 = CCOPY,p; 0 = Aps0
(0 ® 1); pp = 0;CCOPYR = 0 = CCOPYA; 0 = PA; O
Now, for the associator, the equation essentially follows from the fact that
7q(04 ® (0B ® 0c)); aw,p,c = (ma(04) ® (14(0B) ® mal0C))); aar, B,
QA,B,Cs ((”a(O'A) ® 7 (0B)) ® ma(0C))

aa,B,c; Ta((0a ® 0B) ® 0C)

this is the key step to establish that the naturality square commutes. The reverse direction follows
similarly.

The coherence diagrams follow from functoriality of Conc, the fact that the structural mor-
phisms are defined by lifting the sequential ones through Conc. Moreover,

Conc o ® Conc 7 = Conc (o ® 1)

as is easily checked.
The same argument shows that the braiding morphism is a natural transformation, that it is
invertible and the functoriality of Conc implies that the hexagonal diagram commutes. O

Finally, we establish that Conc is closed.
LEMMA B.5. The symmetric monoidal category (Conc, ®, 1) is closed.

Proor. We start by noting that there is an isomorphism:
A®B o C=A o (B—-C)
Indeed, it immediately follows from the fact that the underlying sequential arenas are
A®B—-oC=A—o (B ()
which induces the necessary natural isomorphism of hom-sets. O
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The argument for (Atomic, Katom © — ® —, 1) is analogous except that we construct an atomic
interleaving functor

Atom : Seq —— Atomic

that plays the same role as Conc plays in the proof of B.3.

C PROGRAM LOGIC
C.1 The Middle Queue Concurrent Object

Consider a concurrent object with signature
MidQueue := {middeq : N,enq : N — 1}

Its semantics is similar to a regular queue. An enq(n) adds n to the end of the queue, like the usual
enq in a queue object. middeq(), on the other hand, instead of dequeuing the front element of the
queue, dequeues the center element of the queue (if the queue is even-length, it returns the nearest
of the two elements to front of the queue).

We argue now that Khyzha et al. [2017]’s methodology cannot prove the middle queue object
is linearizable. The issue is in that they keep as invariant that every linearization of their possi-
bility, represented as an interval partial order, is valid (in the sense that it satisfies the linearized
specification). Consider the trace:

s = ag:enq(1) - ap:enq(2) - aztenq(3) - ag:ok - az:0k - a3:0k - ag:middeq - a4:2
We will write:
tyy,z = @x:eng(x) - ax:ok - ayzenq(y) - ay:ok - az:enq(z) - az:ok - ag:middeq - ay:2

The only two valid linearizations of s are t;, 5 3 and t3 5 1. Because of happens-before ordering, the
least ordered interval partial order that can be kept at this point is

aj:enq(l) <— aj:ok \

az:eng(2) < ay:0k < agmiddeq ¢—— ay4:2

as:enq(3) <— as:ok /

This partial order does not satisfy their invariant as t;,1 3, 23,1, t1,3.2, £3,1,2 are not valid lineariza-
tions but are a linearization of this partial order. We must, therefore, use a more ordered partial
order that orders the enq(2) between the enq(1) and the enq(3) to rule out these linearizations. So
we must choose between

ar:enq(1l) <— ag:ok <— azienq(2) <— ax:ok <— as:enq(3) <— as:ok {— ag:middeq <— ay:2

and
az:enq(3) <— az:ok <— azienq(2) <— ag:ok <— ajienqg(1l) <— ag:0k <— ag:middeq <— ay:2

But no choice is sound at this point, as we can invalidate each choice by extending the trace with
ag:middeq - a4:2 or ag:middeq - ay4:1, respectively. As our invariant merely requires us to guarantee
that there exists a valid linearization for our possibility, we are able to keep the least ordered
interval partial order we showed without harm. We believe our program logic to be complete due
to its relationship with the development in Section 10, but we do not give a proof of this.
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C.2 Soundness Proof

We briefly outline the key reasons why the operational semantics agrees with the denotation.
ProrosITION C.1. For any M € CMod, [M] is a strategy of type tE — +F and given vg : TE,
[Link vg; M] = vg; [M]]

Proor. The proof for this is straight-forward, but tedious, and therefore we merely give the
outline. [M] is well-defined, as by definition of ModState, the play in the state is a play of Pig—+F.
Moreover, it is prefix-closed and receptive by definition. Now, that

[M] =llxer ta(re [[M]])

follows from the fact that in the concurrent semantics, in any state, any agent can take a step. More-
over, a step either does not modify the underlying state s (in the case of skip, ret — or assert(—)),
or, in the case of x « e(a) it either adds the move a:e (O-position case) or some response @:v
(P-position case). Hence, any (sequentially consistent) interleaving of the projections can be pro-
duced. So it remains to prove that z,([M]) is always a sequential implementation. Was it not for
the local environment, this would be immediate, as between an O-move f € F and its response the
executed code is generated from the same command M[a}. Now, the local environment is emp-
tied on every response in F, hence on every O move in F it is empty prior to the invocation. Hence,
under the same arguments, the same traces are produced by M[a}/ every time, which implies
regularity. That
[Link vg; M| = vg; [M]]

can be observed from the fact that the operational semantics merely restricts steps to those that
play as vg in the source component, which is the same as composing with vg. O

Our proof of soundness is adapted from that from Khyzha et al. [2017]. Define rely(R, P) of a
pre-condition P by a rely R:

rely(R,P)=PURoP
Given a unary predicate P and a binary predicate R, we define the binary predicate:
x(P|R)y &< xe€PAxRy
Then, we define the judgment
safe,(R, G, P,C,0Q)
inductively as follows:
rely(R,P) | ID € Q
safe, (R, G, P, skip, Q)

DoNE

VC'.C oy €' = 3P R, G o {rely(R,P)} B{P'}  safe,(R,G,P orely(R,P),C’,Q) S
safe, (R, G, P,C, Q) '

EP

A straight-forward proof by induction shows that.

Lemma C.2. If
R.G Fa {P} C{Q}
then
safe,(R, G, P,C, Q)
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ProrosITION C.3 (SOUNDNESS). If R[A], G[A] Fa {P[A]} M[A] {Q[A]} and (v}, : E, vg : TE) is
a linearizable concurrent object then
vis IMIA]] N &F € Kcone VF
Proor. Start by noting that by assumption and Proposition 5.8 it follows that if
ves [M[A] N &F € Kcone VF

then
v IMIA]] N & € ves IMIA]D N éF € Kcone VE
so it is enough to show
ves [M[A]] N &F € Kcone VF
By definition
PlAl= (| Plel Q=] Qla]

a€A a€A
where for each a € A

Plal = ()Pl Qlal = JQlal

f€eF fEeF
moreover, for every a € A such that

Rlal, Gla] Fa {Pla]} Mla] {Qla]}
and hence for every f € F:
Rlal.Gle] Fo {Pla) } Mlal {Qlal}
We prove the result by induction on the length of
(co, Ao, €) =y (¢, A,'s)
for which we maintain the invariant that
sIF € v
and that there is a position pr such that
sIF - pr
and that there are pre-conditions P, for every a € A such that
(A, s, pr) € Py stable(R[«], Py)
and moreover:
c(a) = idle = P, C idley A P, C Pla]
-idleg(h) = 3f € F.safeq(R[a], G[a], P, c(a), returnedq(f) o O[a})
We note at this point that if this invariant holds about p = s then in particular
sTF - pr
and by the definition of possibility and Proposition 5.3 it follows that
sIr € Kconc VF

We now start the proof proper. We will not bother with the invariant s[r € v}, from the defini-
tions of invoke, return and Prim. In the case where

(c, A, s) = {co, Ao, €)
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we set P, = P[a] and pp = €. Most of the invariants are easily established. We stress the invariants
around P, . Note that in this case c(«) = idle. Now note that (A, p, pr) € idle, for every a € A by
definition. Moreover

P, = Pla] = ﬂfeFP[a]f C idle,
by assumption that ConcImer holds. By definition:
P, = Pla] C Pla]
Furthermore,
(A, p, pr) € Py stable(R[«], Py)

by Conclmrr, and P[«] is stable by ConcImpr.
For the inductive step we have that

<007 A09 €> _»]\g <C’ A’ S> _»{/V)[; <C/9 A,’ S’)
Moreover, we have
sTF -> pF
and a pre-condition P, for each agent @ € A such that
(A,s,pr) € Py stable(R[a], Py)

and moreover:
c(a) = idle = P, Cidley A P, C Pla]

—idle,(h) = 3f € F.safe,(R[a], Glal,invoke,(f) o Pla), Py, c(a), returned,(f) o Q[al))
We split the proof into cases depending on the continuation for the agent « that modifies the
state in the last step.

c¢(a) = idle Note that in this case, ¢/ = c[a : M[a]/] for some f € F,s’ = s - a:f. By the
invariant, P, C idley, and in particular (A, s, pr) € idle,. Let (A’,s”, p;.) be such that py is
any pr. such that

(s, pr) invokeq (f) (#", p)
Note that as (A, s, pr) € idle, it immediately follows that there is exactly one such p7. (given

by just appending a: f to pr). We argue that

{s"Te} - pp
By definition,

Pr = pr - a:f
Now, by induction there is tp such that

STF - tp ~iF PF
but then
stp-a:f - tp wop slp - tp-a:f ~ovp pp-a:f = pr

it follows that

{s"Te} - pr
Note moreover that as (A, s, pr) € Pg, by induction

(A, p, pr) € Py C Pla] C Pla)

and by construction

(A, p, pr) invokey(f) (A',p", pF)
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so that
(A, p’, pr) € invokey (f) o Pla’Y

In addition, by assumption

Rla), Gla] =, {invokey(f) o Pla}/} M[a} {returned,(f) o Qa}'}
By Lemma C.2 it follows that
safeq(R[al, Glal, invokey(f) o Plal, Mla}, returned,(f) o Qla})
and
stable(R[a], invoke,(f) o Pla})
so if we let

P/, = rely(R, invoke, (f) o Pla})

o
Then it is almost immediate from the definition of safe that

safeq(R[a], Glal, P, M[a), returned,(f) o Q[a})

Moreover, by definition P}, is stable. Hence, P,, satisfies all the necessary invariants.

Now, for &’ € A such that a # a’ we set P/, = P,s. We must show that (A’, s’, p}) € P,. For
that, note that by induction P, is stable and by assumption R[a’] contains invoke,(f) C
invoke, (=) so that Py is stable under invoke, (f). Now, (A’,s", p;.) € idle, & (A,s, pr) €
idle, by definition. It is obvious that if (A’, s, p},) € idle, then all the conditions are still
satisfied by induction. Finally, if (A’, s, p},) ¢ idle, then there is an operation f” for which
it holds that

safe, (R[a'], Gla'], Py, c(@’), returned, (f') o ol«'Y")
But then, it is immediate that ¢’(«¢”) = c(a’) so that

safe, (R[a'], Gla], Py, ¢’ ('), returned o/ (f) o ola’V")

c(a) = skip In this case it must be that ¢’ = c[a : idle], s” = s - @:v for some v € ar(f) and

A’ = Al : @]. By induction there exists f € F such that
safe, (R[], Gla], Py, c(@), returned, (f) o Ola})

In this case safe, consists of a DonE rule, and, therefore,

rely(R, P,) C returny(f) o Q[a}
In particular

(A,s,pr) € Py Crely(R, Py) C returnedy(f) o Ola}
Therefore, pr already has the return v to f for a. Then, we have that if we let p}, = pr then
(A5, pr) returng(f) (A',5', p})

Moreover, by induction

sTF > prF
and therefore there is tp proving the above derivation. Now,
sS'Tp=sly-aw
Hence
S'T > Pp = PF
by choosing ¢}, = tp \ a:v. So, we set
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Then, by construction and by LocaLImepL:
(A", p’, py) € returny(f) o returnedy(f) o Ola) oinvokey(f) o Pla} c P,
stable(R[a], P,)
Moreover,
P!, = Pla] C idle,
and
P!, = Pla] C Pla]
For the other agents o’ € A the invariants all hold by induction by setting P/, = P,-. Indeed,
the point of pressure is showing that (A’,s’, p;.) € P/, but P/, is stable under return,(-) by

o

assumption (A, p, pr) € Py so that (A", p’, p1.) € P,,.

c(a) = C and C # skip In this case, we have that C >—>§ C’ and (A’,s”) € [[Bll«(A,s). The
interesting case is when B is an command issuing an effect from E, so we assume s’ = s-a:m
where m is the move resulting from B. Moreover, there is some f € F

safe, (R[], Gla], Py, C, returned(f) o Ola})
Now, notice that it follows by safe, that
3P'R,G [ {rely(Rla], Po)} B{P"}
and
safe, (R[], G[a], P’ o rely(R, P,),C’, returned,(f) o Qla])
Now, by assumption (A, p, pr) € P, and s|g - a@:m € vg. Therefore, by

Rla], Gla] Fa {rely(R[al, Po)} m {P}

it follows that there is some pj such that

(A, p, pr) P' (A',s - a:m, pr) (A, s,pp) G (A, s - a:m, pr) PF > P
by assumption
slF > prF
so that
s"TF = sTF > pr > Pr
Moreover, if we set P/, = P’ then
safeq (R[], Glal, P, C’, returned,(f) o Qla})

and moreover

(05" pp) € P,
which meets all of the necessary invariants.
For agents @’ € A such that @ # «’, the invariants all still hold by induction, except for
perhaps (A’,p’, p}.) € Por. But as

(A, p, pr) Gla'] (A, p’, pF)

and

(A, p, pF) € P
it follows from assumption that

Gla] € R[]

and by stability that

(A, p', pf) € Py
as desired. o
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D VERIFICATION OF A TICKET LOCK AND SHARED QUEUE IMPLEMENTATIONS

In this section, we give detailed proofs, using the program logic from Section 12, that the compo-
nents in Section 2 assemble into certified linearizable object implementations. In D.1, we show the
proof for the ticket lock implementation Mi,ck, and in D.2 for Msqueue-

For practical purposes it is often useful to assume v}, is not receptive. This does not affect the
result as if v, € Kconc vr then strat(vy) € Kconce Vr, and similarly for vg; [M]).

D.1 Ticket Lock

Here, we assume that
(Vi TFAL v 2 TFAD)  (Wgunter : TCounter, vegunter : TCounter) (v}’,ield : TYield, vyielq : TYield)
are linearizable objects. Therefore, by locality
(V]/E, VE) = (Vf,ai ® Vc/ounter ® V,ield’ Vhai @ Veounter @ Vyield)
y
is a linearizable object. We, therefore, seek to show that
[Mioekll = (vig, vi) — (strat(v ), Viock)

by using our program logic. By the remarks at the beginning of this section, here v/ , is the set of
plays s € Piock such that

Va € Y.3t € (acq - ok - rel - ok)™.7,(s) C ¢

we are allowed to take this vl’o & which is not receptive, because of the remarks in the beginning
of this section. With the proof setup explained, we proceed to the proof proper.

We apply the program logic developed in Section C on the ticket lock implementation discussed
in Section 2.2.2. In particular, we concern ourselves to the adapted implementation in Figure 8,
written in the language introduced in Section 12.1, and already de-sugared.

1 acq() {

2 my_tick <- fai();

3 ( assert (cur_tick # my_tick);

4 yield();

5 cur_tick <- get() )* ; 1 rel() {
6 assert (cur_tick = my_tick); 2 inc();
7 ret ok 3 ret ok
8 3 4 3

Fig. 8. Ticket lock implementation in language developed in Section 12.1.

Before go into details, we briefly describe the intuition behind ticket locks. Each agent tries to
acquire a lock first by atomically fetching a ticket number and incrementing its value, making sure
the next agent will get a greater ticket number. Afterward, each agent waits for the “now serving”
counter to become its ticket number, at which point they are granted access to the shared resource
protected by the lock. When the lock holder tries to release the lock, it simply (non-atomically)
increments the counter value. Part of the correctness proof is to establish that write-write will
never happen on the counter, otherwise, it would lead to undefined behavior.

Formally, we need to prove the following judgment,

R[YL GIY] =y {P[A]} Miock[YT{Q[A]}

according to the Conc ImpL and LocaL IMpL rule and symmetry, in addition to other obligations,
we need to find a definition of P[a]/ and Q[a} for f € {acq, rel}, R[], and G[a] (same for every

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.



A Compositional Theory of Linearizability 14:67

a € Y) such that the following three judgments holds,

Rlal, Gla] Ea {Pla]*9} Miock[a]* {Q[a]*9}
Rlal, Gla] Fo {Pla]™} Mioala]™ {Q[a]™'}

Va,a' € Y.a #+ a’ = G[a] Uinvoke, (=) U return,(—, —) € R[a’]

To define preconditions and postconditions of acquire and release and rely/guarantee conditions,
it would be helpful to have access to the current counter value, ticket value, lock owner, and so
on in addition to the history. To this end, we define a set of functions that take different types of
plays to calculate these state values.

We first define three functions over lock events,

linowner : Py ok = Y+ {@}+{L} lin: Piock = Piiock owner: Piock = ¥ + {2} + {L}

@ p=¢€
linowner(p) = a p=p -aacq-a:ok A linowner(p’) = @
@ p=p' -aacq-aok-arel - a:ok A linowner(p’) = @
1

otherwise
lin(p) :=p” s.t.p” € Piock A p” € p A linowner(p”) # L A (Vp”.p” C p A linowner(p”) # L = p” Cp’)

owner(p) := linowner(lin(p))

linowner takes an atomic play of Lock as input. It checks for the lock invariant (acquire is always
followed by release of the same thread) and returns the current owner agent. The function lin takes
a concurrent play of Lock and returns the longest prefix of it that is atomic and satisfies the lock
invariant. Finally, the function owner takes any concurrent play of Lock and returns the owner
calculated by linowner o lin.

We then define three functions over underlay events ctrval : Picounterairaioiyield — N + {L},
mytkt : Picounteratfalotvield — N + {@}, and newtkt : PicountereiFaleivield — N.

( f oun er)r inc:
"w] (P rC()unter) r{inczl} € P!{inc:l}

1 otherwise

ctrval(p) = {

ctrval accepts any trace that contains only atomic {inc : 1} sequences for the Counter object. It
returns the number of inc calls in the trace, which is also the return value of get if invoked at the
time, according to vcounter-

', p . wa(p) =p' -fai-n-p” Ap” C (yield - ok - get - n')* - i
Y= {n thor fT(P) p’-fai-n-p” Ap” C (yield - ok - get - n’)* - inc
@ otherwise

mytkt,, returns the current ticket for a particular agent. It will only return if the ticket is still active,
i.e., the agent has already acquired a ticket in acq but haven’t reached the linearization point in
the matching rel. On the other hand, newtkt always returns the next ticket to be issued.
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With the helper functions defined, we can now state the preconditions and postconditions as
follows:
acqed[a](A,s, p) & I(A,s,p) A owner(p) # «
reled[a](A,s, p) & I(A,s,p) A owner(p) = a
Pla]*9 := reled[a] N idle,
(A,s,p) Qla]* (A',s",p") & acqed[a](A",s", p")
Pla]™ := acqed[a] N idle,
(A5,p) Qlal™ (N5, p) = reled[al(A,s',p')
One may notice that postconditions, while being an relation, is only predicated over the post-
state. This is true for most of the reasoning except for the linearization point as we shall see later.
All predicates (relations) are composed of a shared invariant I and an ownership assertion. The
definition of I is given below:
mytick[a](A,s) &  A(a)my_tick) # L = A(a)(my_tick) = mytkt,(s)
curtick[a](A,s) &=  A(a)(cur_tick) # L = 3s’.s’ C s A ctrval(s’) = A(a)(cur_tick)
owner(p) # L Actrval(s) # L A
mytkt,(s) # @ = ctrval(s) < mytkt,(s) A
ctrval(s) < newtkt(s) A
I[a](A,s, p) & | mytkt,(s) = ctrval(s) = owner(p) € {@,a} A
newtkt(s) = ctrval(s) = owner(p) =@ A
owner(p) =« = mytkt,(s) = ctrval(s) A
mytick[a](A, s) A curtick[a](A, s)

The invariant I not only relates the local environment to the shared objects, it also specify the
expected behavior of shared objects, such as the current value of the counter object is never greater
than the next ticket to be dispensed. As we shall describe later, we also maintain I during execution
inside the functions.

To prove Rlal,Gla] Fo {Plal} Mialal {Qlal'}, we need such a R[a] that both
stable(R, P[a]/) and stable(R, Q[a]) holds. We define R[a] in such a way that the stability is
trivial to prove,

(A, s, p) invoke g\ () (A, 8", p')V
(A, s, p) return o (=) (A, 87, p')V
owner(p’) # L Actrval(s’) # L A
(mytkt,(s) # @ = ctrval(s) < mytkt,(s)) =
( (mytkt,(s") # @ = ctrval(s’) < mytkta(s’)))
(A, s, p) Rla] (A, s, p') ctrval(s’) < newtkt(s”) A
(mytkt,(s) = ctrval(s) = owner(p) € {@,a}) =
( (mytkt,(s") = ctrval(s") = owner(p’) € {@,a}))
newtkt(s”) = ctrval(s’) = owner(p’) =2 A
owner(p) = a = (lin(p) = lin(p”) A ctrval(s) = ctrval(s’)) A

owner(p) # @ = owner(p’) # «
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while the stability of the invariant I is mostly self-evident, we will present the stability argument
for the ownership assertions below:

—If owner(p) = a, we can rely on that lin(p) = lin(p’), through the definition of owner we can
deduce that owner(p’) = owner(p) = a. With a similar argument we can also deduce that
mytkt, (s”) = ctrval(s”) assuming ownership of the lock,

—If owner(p) # a, the last conjunct of R[«] enforces that we won’t become the owner by any
other agent’s action.

In addition to R[«a], we also need to define G[a] such that G[a] U invoke,(—) U return,(—, —) C
R[e] holds. Similar to the design of R[«], we define G[«] in such a way that the subset relation is
trivial,

owner(p’) # L Actrval(s’) # L A
, (mytkt, (s) # @ = ctrval(s) < mytkt,(s)) =
(mytkt, (s") # @ = ctrval(s’) < mytkt,,(s"))
ctrval(s’) < newtkt(s’) A
mytkt ,(s) = ctrval(s) = owner(p) € {@,a'}) =
(0.5.9) Gla] (A.5'p7) = | v TVl = ctrvalls) =5 owner(p) € {2.))
(mytkt, (s") = ctrval(s’) = owner(p’) € {2,a'})
newtkt(s”) = ctrval(s’) = owner(p’) =@ A
owner(p) ¢ {?,a} = lin(p) =lin(p’) A

owner(p) # @ = ctrval(s) = ctrval(s’) A

owner(p’) € {@, a,owner(p)}}
Most conjuncts in R have direct correspondence in G, and we will present a short argument for
those doesn’t. Assuming « is the rely agent and «’ is the actor (guarantee) agent,

—if owner(p) = a and therefore owner(p) # o, by the second and third last conjuncts in
Gla’], we know that lin(p) = lin(p’) and ctrval(s) = ctrval(s’),

—if owner(p) # @, we know from the last conjunct that owner(p) can only be @, ', or
owner(p), none of which is a.

Even though the R[a] and G[«a] are defined in such a way that the stability and subset relation
are easy to verify, it remains to be proven that G[«] is correct with respect to the implementation,
though G[a] is held trivially at steps that don’t update s or p.

Now that we have all the proof obligations defined, we will prove that

Rlal. Gla] o {Plal } Mioalal {Qlal}

using the primitive rule and structure rules. The general idea is to prove that, in the case for acquire
and symmetric for release, reled[a} is maintained at every step, in the form of

{reled[a](A,s, p)} B {reled[a](A’,s’, p")}
before linearization. While acqed[«] is maintained at every step after linearization in the form of
{acqed[a](A, s, p)} B {acqed[a](A",s", p)}

At linearization points (line 6 for acq and line 2 for rel), the precondition is transformed into
corresponding postcondition while updating the possibility p according to the commit functions
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defined below:

lin(p) - azacq - a:ok - p1 - p2  p = lin(p) - p1 - azacq - p2
1 otherwise

commit[a](p)*9 := {
G o {reled[a](A,s, p)} assert(cur_tick = my_tick) {acqed[a](A’,s’, p’) A commit[a]*“(p) C p’}
lin(p) - acrel - a:ok - py - p2  p =lin(p) - py - azrel - p;

€L otherwise

commit[a]"!(p) := {

G +o {acqed[a](A, s, p)} inc() {reled(A’,s’, p’) A commit[a]™(p) C p'}

notice we can only obtain a prefix relation in the postcondition, this is due to stability requirement
as other agents might changes p’ after linearization, but at least the linearized prefix is kept the
same. while the commit functions may return L, the invariant I and concurrent specification v/
makes sure that this won’t happen during execution.

Figure 9 provides a more detailed proof sketch of acq. The green component in each assertions
are already complete for the reasoning, we highlight the crucial conjuncts inside the invariant in
the blue component to better illustrate the reasoning. We also discuss in details the crucial steps
below

(1) on line 2, the local variable my_tick is updated to be the value of newtkt(s) while simultane-
ously increasing the value of newtkt(s”) by 1. In case of newtkt(s) = ctrval(s), the invariant
in the precondition implies empty ownership of the lock maintaining itself. This operation
also increment newtkt, but all guarantee conditions and invariants are justified after the
update,

on line 5, the local variable cur_tick is updated to be the value of ctrval(s). While the trace
s will grow in the future, we have the knowledge that there exists a prefix s’ of s such that
ctrval(s”) = A(cur_tick). On the other hand, since ctrval(s) is non-decreasing w.r.t. s, we
know a lower bound of the value for the future ctrval(s),

on line 6, we compare the value of my_tick and cur_tick, which is equal to the current
value of mytkt ,(s) and a lower bound of the current value ctrval(s) respectively. If the val-
ues coincides, we can deduce that mytkt (s) = ctrval(s). According to the invariant in the
precondition, it implies the lock is either owned by « or nobody. On the other hand, we
know that « is not the owner at the beginning of the function, and it is maintained by R[«].
Therefore, we know the lock is free. We then linearize the acq event at this point by updat-
ing p with commit[a]*“9. G[«a] is justified at this step since the only change is owner(p”)
becoming a, which doesn’t fit in any premises of G[«].

@

~

(3

~

Similarly, Figure 10 provides a proof sketch of rel and we highlight the crucial steps below,

(1) on line 2, we know that we currently holds the lock, and that currently ctrval(s) =
mytkt,(s) < newtkt(s) from the invariant, which also implies the invariant between
newtkt(s”) and ctrval(s”) will be maintained after incrementing the counter. Furthermore,
we can linearize the rel event by updating p with commit[a]™. G[«] may be easily verified
except for the second conjunct, whose proof would benefit from the following lemma,

Va,a' € Y.mytkt,(s) # @ A mytkt,(s) # @ = mytkt,(s) # mytkt,(s)

in other words, no two agents share the same ticket. This is provable by the underlay spec.
vral. Combined with the fact that ctrval(s) = mytkt,(s), we know ctrval(s) # mytkt.(s)
for all other agent o’ in the system. Assuming the premise of the second conjunct, we can
derive that for any other agent @’ such that mytkt,(s) # @, it must be that ctrval(s) <
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{invokey (acq) o P[ar]*9}
11 acq(){
2: my_tick « fai();
{reled[a] (A, s, p) A A(my_tick) = mytkta(s)}
{reled[a](A,s, p) A mytick[a] (A, s)}

3: (
{reled[a](A,s, p) A curtick(A,s)}

4: assert(cur_tick # my_tick);
{reled[a](A,s,p)}

5: yield();
{reled[a](A,s,p)}

6: cur_tick « get();
{reled[a](A,s, p) A A(cur_tick) = ctrval(s)}
{reled[a](A,s, p) A curtick(A,s)}

7: )

reled[a] (A, s, p) A| mytkt, (s) = ctrval(s) = owner(p) € {@,a}A
A(cur_tick) < ctrval(s) A A(my_tick) = mytkt, (s)
{reled[a](A, s, p) A (A(cur_tick) = A(my_tick) = owner(p) = @ A ctrval(s) = mytkta(s))}
8: assert(cur_tick = my_tick);

ctrval(s) < mytkt, (s)A )]

H acq ’
reled[a] (A, s, p) A commit[a]*Y(p) T p" A ctrval(s’) = mytkt, (") A (A,s) = (A, s)

{acqed[a](A',s", p") A commit[a]*%(p) C p’}
9: ret ok
10: }
{returnedy (acq) o Q[a ]9}

owner(p) = @ A owner(p’) = an )}

Fig. 9. Proof for acq.

mytkt,.(s) = mytkt,, (s"). After the increment, we would still have ctrval(s”) < mytkt,,(s"),
therefore maintaining the same assertion.

{invokea(re[) o P[a]re]}

1: rel
Y iacqed(A, s,p) Aowner(p) = a A mytkt,, (s) = ctrval(s) < newtkt(s)}
2: inc();
mytkt, (s") < ctrval(s’) < newtkt(s")A
acqed(A, s, p) A commite(p) C p’ A owner(p) = aA )]
A=A AsTraLyield = 8" TFALYield

{reled(A’,s”, p") A commit,ei(p) E p'}
3: ret ok
4: }
{returneda(rel) o Q[a]'d}

Fig. 10. Proof for rel.

Gathering together all the resources we have collected so far, we have proven,

— (Mg, €,€) € Plalf for f € {acq, rel}, since ctrval(e) = newtkt(e) = 0, mytkt,(e) = @, and
owner(p) = @,

— stable(R[a], P[a}) A stable(R[a], Q[a}) for f € {acq, rel} by construction,

—R[a], Gla] Eq {invokey(f)oPla} } Mioalal {returng(f)oQ[al '} verified using the logic,
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— V£, f" € F.returng(f’) o returned,(f’) o Qa}f" o invoke,(f’) o Pla}" C Pla}f for f, f’ €
{acq, rel}, since the only traces that doesn’t satisfy the subset relation will be rejected by the
Vliock'
With the LocaL ImPL rule, we can derive the following judgment
F={acq,rel}  VfeF.(Apee)ePla  VfeF.Pa) Cidle,  stable(R[a], P[z})
stable(R[al, Qlal))  Rlal.Gla] Eq {invokeq(f) o Plal'} Mioalal {returng(f) o Qlal/}
V., f" € Freturng(f') o returned, (f) o Q[a}" o invoke, (f') o Pla} C Pla}
Rlal.Glal Fa {NperPlal} Mowlal {UperQlal}
We furthermore have G[a] U invoke,(—) U returny,(—=) € R[a’] for a,@’ € Y and @ # «’ by
construction. We then can obtain the top level theorem by invoking Conc ImpL rule,

Va € Y.R[a],Gla] Fa {Pla]} Miockla] {Qlal}
Va,a' € Y.a # a’ = Gla] U invoke, (=) U return, (=) C R[a’]
R[Y], G[Y] Fx {NaerPlal} Miock[ Y] {UnerQlal}

In other words, we have proven that M, is a linearizable lock object w.r.t. v ok for the entire
system.

D.2 Concurrent Queue
In this subsection, we present a short proof that the concurrent queue implementation is correct
using the same program logic. The intuition behind the correctness is that the sequential queue is
protected by the lock. Formally, we will relate the history of the sequential queue to the ownership
of the lock. The set up is as follows. We have linearizable concurrent objects

(Vioer * TLock, Mok = TLock) (Vqueue * TQUeUE, Veye : TQuUeue)

by locality we can construct the linearizable object

’ ’ ’
(vlock ® Vqueue> Vlock ® uneue)

We therefore seek to show that

|[quueue]] : (Vllock ® V(;ueue’ Viock ® V(;ueue) - (Vs/queue’ 1/squeue)
is a linearizable object implementation. Similar to verification of the lock, we will define several
helper functions.
We first define a function
owner : Pyl ocketQuene = 1 + {1} + {2}
to denote the ownership of the lock object, defined as follows:

@ pllock = € - a:acq?
a  Ppliock =p - a:acq - a:ok - a:rel? A owner(p’) = @
owner(p) := , ,
@  pliock =p - a:acq - a:ok - a:rel - a:ok - @”:acq? A owner(p’) = @
1 otherwise
while this owner function looks similar to the other owner function defined in the proof for the
lock, there is a major differences between them: we can now assume Lock is linearized to an atomic
specification, we no longer need to reason about interleaving between acquires and releases.

We also define a function lin : Piqueue — Piqueue to denote the longest linearized prefix of p,

lin(p) =po <= po € Pqueue APo EPAVYD' € Pquenep’ Ep = p' T po
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Finally, we define a function queue : Piqueye — list N + {1} + {@}, which is the functional
specification for both the sequential queue and shared queue.

[] p=c¢€-e?

q++[n] p=p’ -enqg(n)-ok-e? A queue(p’) =gq
queue(p) := {q p=p’ -deq-n-e? Aqueue(p’)=n:u:q

[] p=p’ -deq-2@-e? A queue(p’) =[]

1 otherwise

We can now prove the correctness using the program logic. We start by defining the shared
invariant I, rely condition R[«], and guarantee condition G[«],

( owner(s) # L A queue(lin(p)) # L A )
I(A,s,p) &

(owner(s) = = (lin(p)=s [‘Queueo))
invoke g\ o (=) V returng\ (=) v
(A,s,p) Rla] (A, s, p") = owner(s’) # L A queue(lin(p’)) # L A
(owner(s) =a = (slqueue, = " TQueue, A lin(p) = Iin(p’)))
owner(s’) # L A queue(lin(p’)) # L A
owner(s) # @ = (sTqueue, = 5’ TQueue, A lin(p) = lin(p')))

We can then give the same precondition and postcondition to enq and deq,

(A,s,p) Gla] (A,s",p") (

PlaY (A,s,p) = idle, AI(A,s, p) A owner(s) # a
(A,s,p) Ola¥ (A, s',p) = I(N',s',p’) Aowner(s’) # «

Finally, we can define the commit functions to linearize the enq and deq events,

commit[a]"(p) = {lJi_“(P) ~enq(n) - ok - py - po Ip1.pa.p = lin(p) - p1 - @:enq(n) - po

otherwise

T 1deq _ Jlin(p) -deq-n-py-py 3p1,pz.p = lin(p) - p1 - a:deq - py
commit[a]™(p, n) := n otherwise

The proof for deq is sketched in Figure 11. The proof for enq is ommited as it’s symmetric to
deq. We highlight the crucial steps below:

(1) when the agent successfully acquires the lock, we know from v, that the pre-state of
L.acq() must satisfy that owner(s) = 0, which allows us to open the invariant and infer that
lin(p) = sTQueue,- We also know that owner(s’) = «, which allows us to temporarily break
the lock invariant while holding the lock,

(2) while holding the lock, we can safely access the sequential queue. This is justified by R[],
specifically owner(s) = @ = (slqueue, = ' Tqueue, A lin(p) = lin(p")),

(3) when it’s time to release the lock, we linearize the lock with commit[a]9¢9. This is justified
because commit[a]deq(p, A(a)(r)) = slqueue,» and we also know that queue(s [queue,) # L by
véueue and the fact that s[queue, = p - deq - A(@)(r) € Piqueues

(4) Gla] is easily justified since the agent only modifies the sequential queue or the linearized
shared queue while holding the lock.
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{invokea(rel) o P[zx]re]}

1: deq(){
{I(A,s,p) Aowner(s) # a}
2: acq();

{I(A,s,p) Aowner(s) =@ A owner(s') = a A (A(@), sIQueuegs P) = (A" (), s" Tqueueys P') }
{I(A, s,p) Aowner(s) =a Alin(p) = s[QueueU}
3: r « deq();
{I(A, s,p) Aowner(s) =a Alin(p) - deq- A(a)(r) = s[“Queueo}
4: rel();
{I(A, s, p) Aowner(s’) # a A commit[a]%9(p, A(a)(r)) C p’ AA(a) = A’(a)}

retr

P

}
{returneda(rel) o Q[a]rel}

Fig. 11. Proof for degq.

E PROOF COMPENDIUM
E.1 Proofof 3.5

ProrosiTION E.1. Strategy composition is well-defined and associative.

Proor. = Well-Defined Indeed, suppose 0 : A o Band7:B — C.Sincee € s and € € 7 it
follows that taking

€ € int(A,B,C)
we have that
efap=€¢  €lpc=¢€
And, therefore,
eflac=€€o;T

from which it follows that o; 7 is non-empty.
Now, suppose s € o;7 and that p C s. Then, there exists s” € int(o, ) such that s'Tac = s.
In particular p E s’ c. Hence, there is prefix p” £ s’ such that p’[a,c = p. Now, consider
p’. Since s'Tap € o and o is prefix-closed it follows that because p’lap E s'[ap € 0 we
have that p’ [ s € 0. Similarly, p’[s.c € 7. Hence, it follows that p’ € int(o, ) and therefore
pEo;T.
Suppose s € o; 7 and that s-0 € Po_c and ois an Opponent move. Then, thereiss” € int(o, 1)
such that s’ [a,c = s.If 0 is a move in A then note that since s” € int(A, B, C) it is such that
s'Ta.B € 0 C Pa_p. Now, suppose o is a move by agent « € Y and consider s, = 7,(s"[a.B)-
By the switching condition of the sequential game A = (My, P4) and the fact that s, [4 -0 €
1o(Py) it follows that s, had its last move in A. But then, s"[a p - 0 € Pa_op and hence, since o
isreceptive and s’ o g € o it follows thats’ [ g-0 € 0. Again, by switching, 7,(s”) must have
had its last move in A. Hence, s” - 0 € int(A, B, C) from which it follows that s’ - 0 € int(o, 7)
and, therefore, s - 0 € ;7 as desired. The argument for 0o a move in C is dual appealing to
the receptivity of r.

Associative Indeed, suppose 0 : A - B,7: B — C,andv : C — D.Let s[ap € (0;7);v
where s € int((o; 7), v). Then, there is t € int(co, 7) such that s[a.c = tla.c € ;7.
Then, because sTa,c = ta,c we can define v a sequence of moves such that v[s c.p = s and
vlas.c = t. Finally, since v[g c = t[p,c it follows that v g c € 7. Similarly, v[cp = slc.p
implies v[¢c,p € v. Hence, v[p,cp € int(r,v) and v[gp € 7;v. Now, v[ap = t[ap € 0, it

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.



A Compositional Theory of Linearizability 14:75

follows then that v p.p € int(o, (r;v)) and hence
stap =vlaDp € 0;(7;v)

The other inclusion is symmetric. O

E.2 Order Enrichment
LEMMA E.2. Let A = (Mg, Pa),B = (Mg, Pg) and C = (Mc, Pc) be concurrent games and o : A —o
B and 7 : B — C be concurrent strategies. Then, for every a € Y:
7a(057) C 7o (0); 70 (7)

ProOOF. Suppose s[4 c € o;7 where s € int(o, 7). Then

Ta(s)TaB = ma(sTaB) € 7ma(0)
and similarly
Ta(s)IB,c = Ta(slB,c) € ma(r)
and hence
7o (s) € int(74(0), 7o (7))
so that
71'0,(8) rA,C € ”a(g)Qﬂ'a(T) O
ProrosiTiON E.3.
Conc : Semi Seq — Conc
defines a semifunctor.

ProoF. Let 0 : A — B.Itis straight-forward to see that Conc ¢ is well-defined. Indeed, as € € ¢
it follows that e € Conc o. Now, suppose s € Conc ¢ and p E s. Then, p is still an interleaving of
plays of o as o is prefix-closed. For receptivity note that if s € Conc o and s - 0 € P5_.p where o
is an Opponent move then 74(,)(s) - 0 € P4_p by definition and by receptivity of ¢ it follows that
Ta(0)(s) - 0 € 0 and, therefore, s - 0 is still an interleaving of o plays. Therefore, Conc o is indeed a
concurrent strategy of the appropriate type.

It remains to show that Conc (o;7) = Conc o; Conc 7. By definition and Lemma E.2

Va € Y.r,(Conc o; Conc 7) C m,(Conc 0); 7,(Conc 7) = 037

and hence
Conc o;Conc t C Conc (0;7)

Now suppose s € Conc (o; 7). This means that
Ya € Y.m,(s) € 057
In particular, for all @ € Y there is a a play s, € int(o, 7) such that
Sa rA,C = TTa(s)
while
SalaB €0 SalBCc €T
It is straight-forward to show that one can construct a sequence s’ € int(Conc o, Conc 7) by
interleaving the s, such that
S’ rA,C =S O
ProprosITION E.4. ccopy, is idempotent for every A.
Proor. By Proposition E.3

ccopy; ccopy, = Conc copy 4; Conc copy 4 = Conc (copy 4; copy ) = Conc copy 4 = ccopy, O
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E.3 Proposition 4.4

ProrosiTION E.5. For strategies

c:A—oB 7:B—-oC
the following all hold:
) If
cCo :A—oB 7tC7:B—-oC
then
o;t Cost!
(2) Given a family
ogi:A—oB
it holds that
(U Ui) T = U(Ui;f)
iel iel
(3) Given a family
7;:B—oC
it holds that
o; U Ti = U(U; 7;)
iel iel

Proor. (1) Suppose sfa.c € o;7. Then
sfap €0 =slap€ad’
slpc €T = slpcer
hence
s€int(c’,7’) = slaceo’st’
(2) One direction is simple as we have that

o QUO'I‘

i€l

0T C (Uai);r

so that

by monotonicity and hence

| Jein) < (U cr) ;T

i€l i€l

For the other direction, suppose

sTa,c € (Uo);r

i€l
then
srA,BEUO' SrB,CGT
iel
so there is j € I such that
SrA,B € aj
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and, therefore,

sfa,c €oj5T
so that
sTAB € U(Gj;‘[)
i€l
(3) One direction is simple as we have that
7; C U Ti
iel
so that
0;7; C 0} U T
iel
by monotonicity and hence
@ col n
iel iel
For the other direction, suppose
sfac € 03 U Ti
iel
then
sfaB €O srB,CEUTi
i€l
so there is j € I such that
N rB,C S Tj
and, therefore,
sTa,c € 037
so that
sTa.c € U(ff?Ti) O
iel
E.4 The strat(—) Embedding
ProrosiTiON E.6.
strat(—)

is a closure operator on sets of plays.

PROOF. Let S € Pa_.p and recall that
strat(S) = {s - so € Pa—n | so is a sequence of O moves and s € |S}

extensive Note that S C |S. Hence, by always taking sp = € it follows that S C strat(S).

monotone Suppose S C T. Then |[S € |T. Now, suppose s € [Sands-sp € Paop. Itis
immediate that s € |T and hence s € strat(T).

idempotent By extensiveness and monotonicity:

S C strat(S) = strat(S) C strat(strat(S))

So we show that strat(strat(S)) C strat(S). Indeed, let p - sp € strat(strat(S)). Then, there is
p’ s, € strat(S) such that p C p’ s/, and p” € S.If p C p” then p - sp € strat(S) by definition.
Otherwise, p decomposes as p’ - so”. But then, as p’ € S it follows that p - so = p’ - sp €
strat(S). O

LEmMA E.7. The closure operator strat(—) is join-preserving.
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Proor. Let
{Si € Patier

We show that

strat(U;crS;) = Ujerstrat(S;)
One direction follows from monotonicity (recall that strat(—) is a closure operator), as if

s € Ujegstrat(S;)
then there exists j for which
s € strat(S;)

and hence

s € strat(S;) C strat(U;¢;S;)
)

strat(U;erS;) 2 Ujerstrat(S;)

On the other hand, suppose
s € strat(U;¢1S;)

Then, there exists t € U;¢;S; and a sequence of O moves sp and a prefix p E s such that

s=p-So and pCt
in particular, there is j for which

teS;

and hence

s € strat(S;) C strat(U;e;S;)
and, therefore,

strat(U;¢rS;) C Ujerstrat(S;) O

LemMma E8. If
$-S0 € Paop
is such that
sfa € Pia

and so only contains Opponent moves then there is at most one move from so in A. In particular,
s - sola is alternating.

PRrROOF. If s - so € Pa_p and m is a move in sp played in A then by local sequentiality, there
must be a pending P move by a(m) in s. But in the alternating play sl there can only be at most
one pending P move, and the result follows. ]
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E.5 Kconc is an oplax semifunctor

ProrosITION E.9. Foranyo :A —-Band7:B — C:
KConc(o'; T) < KConC(G);KConC(T)

Proor. The argument is quite simple, we just verify the following sequence of equalities and
inclusions taking note of the use of Lemma E.15, Proposition 4.4, Proposition 4.2 and associativity
of interaction:

Kconc(0;T) = ccopy,; 0; 7; ccopy e
C ccopy,; 0; CCOpyg; T; CCOPY
= CCOpY4; 0 CCOPYy; CCOPYR; T; CCOPY
= KConc(o')Q KConc(T) ]

PrOPOSITION E.10. Kconc is monotonic and join-preserving.
Proor. Suppose o C ¢’. Then

Kcone 0 = ccopyy; o5 ccopyp € ccopya; 0; ccopyy = Keone 07

by Proposition 4.4.
Similarly, if we have a collection
{oitier
we have
Kcone U oi) = CCOPY,p; (U cr,-) ;ccopyg = U CCOPY,; 0j; CCOPYR = UKCO,,C oj
iel iel iel iel
by Proposition 4.4. O

CoRroLLARY E.11.
Kconce : Conc — Semi Conc

defines an oplax semifunctor.

Lemma E.12. If
e = {ea}aes e/ ={e}}aes

are families of idempotents such that there are 2-morphisms:
e = ey
for every A € S, then the mappings L and R defined by
L:C,—>Cy:=K' oEmb R:Cp — C,:=KoEmb’
define an oplax functor and a lax functor, respectively.

E.6 Proofs for Section 4.5

PROPOSITION E.13 (SYNCHRONIZATION LEMMA). Lets = p - a:m - a’:m’ - p’ be a play of A — B.
Let o = strat(p - m-m’ - p’). Then,

p-m’ -m-p’ € ccopyy;o;ccopyy & m’-m~wspop m-m’
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ProoFr. We need to consider all possibilities for the polarity and components of the moves m
and m’, between O and P and A or B respectively. A lot of cases are very similar to each other, so
we will reference previous cases when that happens.

Just so we take another component of variation out of the way, note that if a(m) = a(m’) then it
is immediate that p-m’-m-p’ cannot be in ccopy »; 0; ccopyg as p-m’-m-p’ is not locally alternating
and hence is not in Py_.g. On the other hand, in that case no rewrite rule applies, as all of them
assume the agents are distinct. Therefore, assume in the remaining cases that a(m) # a(m’).

The key idea is to consider how the copying is happening in ccopy, : Ag — A; and ccopyy :
By — B;. If m is a move in A then it appears in a play of ccopy,;o;ccopyy as a result of the
projection to Ay. It has a corresponding copy in A; which is the move that actually appeared in
some play of o. The key point is that the fact that a(m) is locally alternating and running the
sequential copycat strategy means that if Ax(m) = O then its copy appeared earlier in A;, while
if it was a P move then its copy will appear later in A;. Meanwhile, if m is a move in B then it
appears as a result of the projection to B;. Hence, if Ag(m) = O its copy will appear later in By,
while if it is a P move then its copy has already appeared earlier in By.

m,m’ € Mg
Aa—p(m) = O and Ap_g(m’) = O Note that in this case we have that

ABO—OBl (m) = ABO—OBl (m,) =P

so that by the reasoning above their copy appeared earlier in By as O moves. Since ccopypg
allows for both orderings. In particular,

p-m -m-p’ € ccopy,;o;ccopyy

Aa—p(m) = P and Aa_g(m’) = P The reasoning here is analogous to the previous case, ex-
cept that in this case the corresponding moves appear later in ccopyg but both orderings
are still allowed.

Aa—p(m) = O and Ap_p(m’) = P In this case Ap,—p,(m) = P and Ap,-p,(m’) = O. Hence, m
is the copy of an earlier move in ccopyg and m’ is copied later in ccopyg. But m already
occurs before m’ so that so will their copies in B;. Hence, the only order possible is m before
m’, giving the only negative case. But notice that it does not hold that m’ - m ~a_g m-m’
in this case either.

Aa—p(m) = P and Ap_p(m”) = O In this case, In this case Ap,—p,(m) = O and Ap,—p,(Mm’) =
P. So that the copy of m in B; appears later while the copy of m’ appears earlier. In par-
ticular, there is a play of ccopyy where the copy of m” appears earlier then the copy of m
and therefore

p-m’-m-p’ € ccopyy;o;ccopyy
m,m’ € My
Aa—p(m) = O and A5 _.g(m’) = O Similarly to before, the polarities are dualized once we
consider the move within the game Ay —o A; so that

Ao, (M) = Apgon,(m) = P
and their respective copies in A; therefore appear earlier in the ccopy, play. Other than
that, ccopy, does not prescribe any particular ordering between them, so both are allowed.
Aa—op(m) = P and Ap_.g(m’) = P As before the polarities switch so that

/1A0—0A1 (m) = AAO—OAl(m/) =0

and hence their copies in Ay appear later with no particular order required.
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Aa—p(m) = O and Ap_og(m’) = P In this case
AAO_QAl(m) =P and AAo_oAl(m’) =0

in this case the copy of m in A, appears earlier in ccopy, while the copy of m’ appears
later. Hence their order cannot be changed, and this is precisely the only case in this group
where it does not hold that m’ - m ~p_p m - m’.

Aa—p(m) = P and Ap_p(m’) = O In this case we have

AAO_oAl(m) =0 and AAO_oAl(m’) =P

So that the copy of m in A, appears later than m in ccopy 4 while the copy of m’ appears
earlier. In particular, both orders are allowed.
me€ Mg and m’ € My
Aa—p(m) = O and Ap_g(m’) = O In this case

ABO_oBI(m) =P and AAO_oAl(m’) =P

but as m occurs in By while m” occurs in A; the copy of m in By so that both copies appear
earlier in the respective plays of ccopyy and ccopy, so that both orderings are possible.
Aa—p(m) = P and As_g(m’) = P The situation in this case is analogous to the previous case
except that the copies of m and m’ appear later.
Aa—p(m) = O and Ap_.p(m’) = P In this case we are in a situation where

ABy—B,(m) = P and  Ap,-a,(m) =0

so that m’s copy appears earlier while m”’s copy appears later. Hence, the ordering must
still be m preceded by m’ in ccopy,; 0; ccopyg so that

p-m' -m-p’ & ccopyy;o;ccopyg
but this is the only case where it does not hold m’ - m ~sp_g m - m’.
Aa—p(m) = P and Ap_.g(m’) = O In this case
ABO_oBl(m) =0 and /1A0—0A1 (m') =P

that means that the copy of m in B; appears later in ccopyg as well as the copy of m’ in
Ay, and, therefore, no order is imposed on them.
m e My and m’ € Mg
Aa—p(m) = O and Ap_p(m’) = O We have the polarities:

/1A0~:>A1 (m) =P and ABO{,Bl(m’) =P

so that the copy of m in Ay happens earlier as does the copy of m’ in B;. No order is
required between them and, therefore, both orderings is possible.

Aa—p(m) = P and As_g(m’) = P This case works as before, except that the corresponding
copies into Ay and By happen later, but still no particular order is required.

Aa—p(m) = O and Ap_.p(m’) = P We have the polarities

AAo_oAl(m) =P and ABO_oBl(m') =0

which means that the copy of m in A, happens earlier while the copy of m’ in B; happens
later. Hence, the only possible order allowed is for m to precede m’. But this is the only
negative case, where m’ - m ~»5_g m - m’ does not hold.
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Aa—p(m) = P and Ap_.g(m’) = O In this case
/1A0_0A1(m) =0 and /IBo—OBl(m’) =P
so that m’s copy in Aj happens later while m”’s copy in B; happens earlier. No order is

required between them. ]

CoroLLARY E.14. Lets € Pp_op and thatt is a play such that
Va € Y.y (t) = my(s)
and moreover
t € ccopy,; strat(s); ccopyy
then,

I vaA_oB S

Proor. Note that as s is the only play of strat(s) satisfying the sequential consistency condition
on t. By the Synchronization Lemma (Proposition 4.8) it follows that any play that can be obtained
by a single move swap from s is in ccopy,; strat(s); ccopyy if and only if that swap is allowed by
MIA _oB- So let

oo = strat(s)
and
0i ={t' €Pap | 35’ € 0.t oy g s’ VI =5}
Then, note that by the Synchronization Lemma (Proposition 4.8) t" € o; if and only if there is a
derivation of length at most i such that
t, Wj&wB S’
where s’ € 0y. Note moreover that if ¢’ is sequentially consistent with s then
t ol oS
Now, we argue that there exists k such that
Ok+1 = Ok
Indeed, it is easy to observe that
0i C i1
As strategies form a complete partial order it follows that there is ¢’ such that
0’ = Ujeno;
but note that there are finitely many plays ¢’ such that
s’ € strat(s).t’ o _op s
as there are finitely many permutations for any play in strat(s). Therefore, there must be a k such
that
or =0’
but note that, by the Synchronization Lemma (Proposition 4.8), ccopy ,; strat(s); ccopyy is a fixed
point of the chain and, therefore,

o’ = ccopy,; strat(s); ccopyy
from which the result follows. O
LeEMMA E.15. For every strategy o : A — B:

0 C CCOpYp; 0; CCOPYR
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ProoF. Suppose s € 0. We inductively construct a play of t € int(Ag, A1, By, By) such that

tl Ay A, € CCOPYp tfaBEC tIB,,B, € ccopyg tlA,B, =5
Indeed, if s = € we simply take t = €. Otherwise, let ¢ be the current play satisfying the invariants
above with the last one modified to
If[‘AU,B1 Cs
If t = s we are done. Otherwise, there is a move m such that

trA0,31 -mLCs

Suppose m is a move in A in s. If it is an O move we simply append to ¢ a copy of m in Ag and m
as a move in A as in that case the last move by a(m) in ¢ was a P move in component Ay. If it is
a P move then the last move by a(m) was in By. In that case we append the move m in A; and its
copy in Ay.

Otherwise, m is a move in B in s. In that case if it is an O move we add a B; copy to it and the
move m in By. If it is a P move then we add the move m in B; and a copy in By.

It is straight-forward to check that this builds a play with all the desired conditions. O

LemMA E.16. For every strategy o : A it holds that

o= U strat(s)

seo

PROOF. Since strat(s) contains {s} by definition it follows that if s € o then s € strat(s) and

hence
s€ U strat(s”)
s'ec
proving one containment.
For the other direction if
s€ U strat(s’)
s'€c
then either s is in strat(t) for some ¢ € o. But then, either s C ¢ or s is obtained from some prefix
p C t by appending Opponent moves. In the first case s € ¢ because ¢ is prefix-closed, and in the
later we simply apply prefix-closure and receptivity of ¢ to obtain that s € o. O

ProrosiTION E.17. A strategy o : A —o B is saturated if and only if it is:

O-receptive: Ifs € 0, 0 an Opponent move and s - 0 € Pa, thens-o € o.
~»-closed: Vs € 0.Vt € Ppo_op.t ™waps=1E€Eo,and

ProoF. Suppose o is saturated.

Note that if 0 is an O-move and s € o is such that s - 0 € Pp_op then it is easy to construct by
induction plays s4 € ccopy, and sg € ccopyy such that s € s4;s;sp. But then, as s - 0 € Pp_.p then
it is readily seen that either s - 0 € (s4 - 0);$;S Or s - 0 € s4;; (sp - 0) depending on whether o is a
move in A or B.

Now, for ~»-closure, note that it follows that if s € o = ccopy,; o; ccopyg and t wa_p s then
there is a sequence of single steps:

L =1p “™AoB 1 ™WAoB """ "™WAB =5
then by applying the Sychronization Lemma (Proposition 4.8) starting with
tn-1 ™A—B S

to conclude that
tn-1 € ccopy;strat(s); ccopyg € o
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in a finite number of applications we obtain that
t =ty € ccopy,; strat(ty); ccopy, C ccopy,; strat(s); ccopyg C o

as desired.
Now, assume o is O-receptive and ~s-closed. Note that for every strategy o : A — B it holds

that
o= U strat(s)

Seo

by Lemma E.16. Then
CCOpY,; 0; CCOPYR = U ccopy ,; strat(s); ccopyg
seo

by the fact that composition is join-preserving. Hence,
t € ccopy,;0;ccopyg &= Is € 0.t € ccopy,; strat(s); ccopyg
moreover, by the definition of ccopy_, s can be chosen so that
Va € Y.my(t) = my(s)

by corollary to the Synchronization Lemma (Proposition 4.8) it follows that

t € ccopy,; strat(s); ccopyy &= t wa B S
And hence

t € ccopy,;0;ccopyy & ds € 0.t WA B S

So, suppose t € ccopy,;o;ccopyy. Then, there is some s € o such that t w5 _.p s and hence by
assumption t € o. Hence,

CCOpYy;0;CCOpyg € O
the reverse containment is exactly Lemma E.15 so that it follows that

CCOpPYp; 0;CCOPYR = O

and hence o is saturated. O

E.7 Computational Interpretation Proof

LEMMA E.18. Lets € Pa. Then, there exists t an alternating play and so a sequence of Opponent
moves such that
s~ t-So

Proor. We prove the result by induction. If s = € we let t = sp = € and the result follows.
Otherwise, let
s=p-m

by induction there is an alternating play p” and sequence of Opponent moves po such that

p~ap'-po
Hence,
s=p-mawspap -po-m

Note that without loss of generality we may assume that the last move in p’ is a Proponent move,
as otherwise we can add that last O move to pp without harm. We now split into cases depending
on whether m is an Opponent or Proponent move. If m is an Opponent move. then we let sp =
po - mand t = p’ and the result follows immediately. Otherwise, m is a Proponent move. By local
sequentiality, ti follows that the last move by a(m) is an Opponent move, and moreover, as p’ is
alternating and its last move is a P move it follows that the last O move m’ by a(m) is in po. So
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welett =p’-m’-m,and if po = p; - m’ - p, then we let so = p; - ps, that is, the subsequence of
po obtained by removing the move m’. Note that there is a single move by a(m) in pp because of
local sequentiality. This, together with the inductive hypothesis justifies the following derivation.

S :p.m»vv)Ap,.po.m :p’.pl.m,.pz.mWAP’.m,.pl.pz.mWAP,.m’.m.pl.pz = t.so O

LEMMA E.19. Lets € Pap. Then, for any s/, € Px and sy € Pp such that

Sp “B SIB sTa ~wa sy
then there exists an
s’ e Pa_B
such that
7 ’ ’ ’ ’
s"~mA B S s'Ta = sy s'Ip = sp

PrOOF. We let sy = s[a and sg = s ['g.

Suppose first that s4 w4 s/,. We construct by induction on the length of the derivation s4 s
s’ an s’ such that s'T4 = s/, and s’ g = sp. If the length of the derivation is 0 then s4 = s/, and the
result is immediate by taking s” = s. Now, Suppose

SAVIA S TN Sy WA Sy M-Sy =Sy

By induction we have s” ~wsa_op s such that s[4 = sy -m-n-s; and s’ g = sg. Then, we have that

s'=t1~m-t2-n~t3

where t, only has moves in B and t; [o = s; and 374 = s;. We split into cases depending on the
polarity of m, n in A. Note that since we can swap m and n in A it follows that either A5 (m) = Aa(n)
or Aa(m) = O and A5(n) = P.
mis O and nis P Then, in A —o B mis P and n is O. Now, since m is P the next move by its
agent is O and therefore must also happen in A. Hence, there is no move by the same agent
as m in t,. Therefore

”»

S =t1~t2-n-m~t3~v>AA,Btl‘tz'm-n~t3'w>AA,Btl-m~t2-n-t3=s'

mis O and nis O Then, in A — B mis P and n is P. Then, as before, there is no move by the
same agent as m in ¢, justifying the sequence of derivations below

»

S =t1~t2-n-m~t3~v>A_oBt1~t2-m-n-t3'vv>A_oBtl-m~t2-n-t3=s'

mis P and nis P Then, in A — B m is O and n is O. Now, the previous move by the same
agent as n must have been a P move in the same component as n. But there is no A move
between m and n so must be that there is no move in t, by the same agent as n. Then

S =t -n-m-ty-t3vaA Bt -M-N-ly-t3 A Bl -M-ty-n-t3=5"

in all cases, since s” ~»a_op s” ~» s. Furthermore, in all cases

sSta=tila-n-m-tsla=si-n-m-s;=s; s p=sTp=sp

as desired.
Now, suppose s, ~p sg. We construct by induction on the length of the derivation s;; ~p sp

an s’ wp_op s such that s'Ta = s4 and s’[p = sj. If the length of the derivation is o then sp = s},

and the result is immediate by taking s” = s. Now, suppose

SE=S1 M- M-S~ S N M-Sy~ S
By induction we have s” ~»a_op s such that s'[4 = s4 and s’ [g = s; - n- m - s;. Then, we have that

sS=t-n-ty-m-ts
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where ¢, only has A moves and #;[g = s; and t3[g = s2. We split into cases depending on the
polarity of m, n in B. Note that since we can swap m and n in B we have that Ag(m) = Ag(n) or
Ag(m) = O and Ag(n) = P. In all cases the polarity is preserved as B is positive in A — B.

mis O and n is P Since m is an O move there can’t be any moves by the same agent as m in
;. Hence

»

S =t1-m~n~t2-t3'w>A_oBtl-n~m~t2-t3~v>A_0]3tl-n-t2~m-t3=s'

mis O and n is O This goes the same as the previous case. Since m is an O move there can’t
be any moves by the same agent as m in t,. Hence
»

S =t1-m-n-tz-tgwA_oBt1-n-m-tz-tgwA_oBtl-n-tz-m-tg=s'

mis P and n is P In this case, as n is a Proponent move there can’t be any moves by the same
agent as n in t,. Hence, the following derivation is justified
"=t -ty M- -N-t3 A gl -ly-N-M-t3vpa gty -N-ty-Mm-tz3=5"
In all cases, since s’ w»p_op § it follows that s” »»p_p s’ w>a_op 5. Furthermore, in all cases
sta=s"Ta=sa  s"lB=tilp-m-n-tslp=s1-m-n-s;=sg

as desired.
The claim follows from applying the two arguments above in sequence. ]

LemmMma E.20. If
S WA B I

then

sl ~p t1B tfa ~wa sfa

Proor. We prove the result by induction on the length of the derivation
S mWAoB t
If the derivation has length 0 then s = ¢ and hence
sfa=tla sls =18

and in particular

sl ~p t1B tfa ~oa sTa
Otherwise, suppose

S§=S1-m-n-s wz_ole-n-m~52 A oB
By induction there are derivations
(s1-n-m-s2)[p~p tlp tfa o (s1-n-m-s2)la
We split into cases depending on the components in which m and n are played:
m is a move in B and n is a move in B In this case
sl =s1lg-m-n-s;lgp~psifg-n-m-slg=s-n-m-s;[g~~ptlp
and
tTa wa (s1-n-m-s2)fa = (s1-52)[a =sla
m is a move in B and n is a move in A Note that in this case
stB=silp-m-s2fB=(s1-n-m-s3)lpwptlp

tha ~a (s1-n-m-sp)fa=sifa-n-safa=sla
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m is amove in A and n is a move in B
sfB=sifB-n-sp=(sy-n-m-sy)[p~ptlp
tTa~wa (s1-n-m-sp)fa=sifa-m-syfa=sla

m is a move in A and n is a move in A In this case we have that as m and n have the opposite
polarity in A — B than they have in A, so that

n-m~vsam-n
This justifies that
sfB=s1lB-s2[B=$1-n-m-s;[g~ptlp

and
tfa oA (sion-m-s)fa =sifa-n-m-s3fa wa sifa-m-n-s3fa(si-s2)fa = (s1-m-n-s2)[a = sTa
In all cases we obtain derivations

slB g tlB tfa ~a sTa mi
Lemma E.21. For plays sy, s; € Pa such that
Va € Y.ry(sy) = my(s1)

there is a derivation
S1 YA So

if and only if there is a play s € ccopy, such that
STAI =351 Ser=So

Proor. For the forward direction, note that by the definition of ccopy, there is at least one play
s’ € ccopy, such that

s"Tag = S0 s'Ta;, = S0
By Lemma E.19 it follows that there is a play s such that
sTa, = so sfa, =s1 swaon s
and then, by Proposition 4.7 it follows that
$ € ccopyy

For the reverse direction, we prove the result by induction. Let p be the largest even-length
prefix of s such that p is alternating and

per =PFA1

If p = s then, In particular,
so =sla, =slTa, =81

Otherwise,
For the reverse direction, first note that if a play t € ccopy, is alternating then

tTa, = tla,
Indeed, by Lemma E.30, it follows that if

t=ti-my-my- -1y
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and Apoa(m;) = O then a(m;) = a(m;). But as every agent plays according to copy, that it
follows that m; is the counterpart for m; in the other component. A simple argument by induction
on the even-length prefixes of t shows that then

tTa, = tla,
Now, note that by Lemma E.18 there exists ¢ an alternating play and sp a sequence of Opponent
moves such that
S WA oA LSO
We start by arguing that we can take sp = €. Indeed, note that as ~»»>_ never swaps moves by the
same agent we have that
7o (t - 50) = 7a(s) € copy,

Note that in particular, ¢ can be taken to be an even-length play, as

Va € Y.ry(sg) = mg(s1)

_ ’

But then, suppose so = m - s;,. As

Va € Y.my(so) = me(s1)
it follows that m has a counterpart m’ that appears after m in ¢ - so. Hence, m’ must appear in s,.

But s, only has Opponent moves, and m’ is a Proponent move, a contradiction. Hence, so = €. But
now, note that we have that

S WA A T
In particular, by Lemma E.20,
sTa, ™A tla, tTa, A STa,
but then
s1=5la, wa tla, =tla, ™A sTa, = So
as desired. O

ProrosiTION E.22. s1 linearizes to s if and only if there exists a play s € ccopy, such that
sTa, = o sTa, =1
Proor. If's; linearizes to sy then there are sequences of Opponent and Proponent moves, respec-
tively, so and sp, such that
S1+Sp A So - SO
But then, note that
$1/50 * SP ~A S0
by Lemma E.36. Hence, there is a play s of ccopy, such that
sTa, = s1/s0 - sp sfa, = o
Now, notice that as sp only has Proponent moves, by the switching condition, if m is a move in sp
then there are no moves by a(m) after m in s. Hence,
S/Sp - Sp MA oA S
so that s/sp (the subsequence of s where the moves in sp have been removed) is in ccopy, by
Proposition 4.7 and prefix-closure. Note that
(s/sp)la, = s1/s0 (s/sp)Ta, = 50
Now, let m be a move in sp. Because,

S1°Sp YA So - SO
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it follows that m does not appear in sy. Moreover, the last move by a(m) in s must be a P move
in A1, and, therefore, by the switching condition the last move by a(m) is that P move. Therefore,
there must be s” such that
s" ~A oA S/Sp - SO
and moreover
s Tay = $1

constructed by reversing the swaps involving so up to the swaps with Ay moves and the removal of
the swaps that involve sp, which is possible by the remarks above. By Proposition 4.7 s” € ccopy,.
Moreover, as the derivation above does not involve swaps between two moves of A it follows that

s"Ta, = (s/sP)TA, = So

And, therefore, s’ is the desired play.
Conversely, suppose there exists such a play s € ccopy,. Then, note that for any « € Y,

7q(s) € copyy

so that in particular there is a sequence of at most one Opponent move s, such that either

Ta(s) A, * Sa = e (S) TA,
or

Ta($) Ay = Ta($)A, * Sa
Let then

32) = aeYSa

that is, the concatenation of all the s,. Notice that this is a finite sequence as there are at most
finitely many & € Y for which s, # €. Then, we note that the play s/s/, satisfies

Va € Y.ra((s/so)a,) = ma((s/50)Ta,)
so let p = s/s(, and note that by Lemma E.21 it follows that

Pla, B pla
Now, note that s, I'a, is a sequence of P moves in A while s, s, is a sequence of O moves in A.
We claim that
(0 so)TA 50 Tag ™A (P 50) A, SO TA,
Indeed, note that
@ sp)Ta soTa, = Play 5o Tay - SoTA A PIA, = SHTA, ~SoTA = Plag = so Ay 5o Ta, = (P Sp)TA, * 56 TA,
is valid as long as
SoTA; - SO Tag A SHTAy - SO A,

As s’o l'a, only contains O moves and sé) I'a, only contains P moves the reduction is valid as long
as no agent that appears in s(, [4,, appears in s, [,. But note that in s, all of the moves in s/, are

Opponent, and as agents are locally sequential no two moves can be by the same agent. So the
derivation is indeed valid. Now, notice that

s1=sla, wa (8/sp)Ta, - soTa, = (/55 -sp)Ta, = (- sp) A,
and that
@ s6)Tay = (/55 - SO TA, = (/55 Tay = 5O Tay ™A sTa, = So
Hence, by finally taking
sp =S5 A, S0 =S4 A,
s1=5Ta, - Sp A (P-SH)TA, - SOTA, ™A (P -So)TA, - SO TA, = STA, - SO ™A So - SO
so that s; linearizes to s,. |
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E.8 Proofs for Section 7

ProrosiTION E.23. Composition of atomic strategies is well-defined.

Proor. Suppose o : !1A — !Band 7t : !B —o !C are atomic. It follows from sequential composition
that ;7 : 1A —o !C. It remains to show that it is atomic. So let s[a ¢ € int(o, 7). First, let s[¢ =
p1-m-m’-p; where a(m) = a(m’) and Ac(m) = O. Then, since 7 is atomic, s'g,c = p;-m-s"-m’-p,
is such that every move in s’ is by a(m). By the same reasoning, every move between two moves in
s’ is by a(m). Hence, if s[a,c = p1”-m-s”-m’ - p,” then every move in s” is by a(m). The argument
is analogous for s[¢c = p - m with Ac(m) = O. |

LEMMA E.24. Lets € Pa_.g. Then l'fS g € Pig thens € Pia_1B.

Proor. We argue by induction by keeping track of a prefix p Ceven s such that p € P45 and
such that every agents last move was in B. For the base case we note that if s = € then we are done
(we also consider this case as a case where every agents last move is B). Otherwise, let p Ceyen s be
such that p € Pig_oip. If p = s we are also done. Otherwise, there is m a move in B (by the switching
condition and the inductive hypothesis) such that p - m C s. Suppose first that

p-m-s’ =s

is such that every move in s” happens in A. As at p every agent had its last move in B at p - m only
a(m) can move in A, and since a(m) plays as in A —o B it follows then thats = p-m-s” € Pia_ip
as desired. Otherwise, there are s’ a sequence of moves in A and a move m’ in B such that

p-m-s"-m'Cs
By alternation in B it follows that m’ is a move by a(m). By the same reasoning as above, it follows
that s’ only involves moves by a(m) and since every agent behaves sequentially it follows that
p-m-s’-m’ € Pia_op. Itis easy to check that all the other invariants still hold. |
LemmMa E.25. For sets of plays
S C Paop T C Pgc
and
(SN Pa-B); (TN PBoic) =(S;T) N Pasic
Proor. For simplicity we will use the following notation:
U=(-NP-_o)
First, suppose s € U(S); U(T). Then, there is
teint(US,UT)
such that
thap €US)  thpic €UT)  thaic=s
in particular, seen as a play of int(S, T), we have
tfaB €S tlec €T  tlac=s
and hence
seS;T
so that
US):U(T) c U(S:T)
Now, for the reverse inclusion let s[141c € U(S;T). Then, sl¢c € Pic so that by Lemma E.24 it
follows that sp,c € Pip—ic and therefore s'p ¢ € U(T). In addition, we now have that s[g € P3.
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Another application of Lemma E.24 then gives that s[o p € Pia—1p and hence s[a s € Embatom(S).
Hence, sTa,c € U(S); U(T). Therefore,

U(S;T) = U(S); U(T) o
For the remainder of this section, let recep(—) be the receptive closure operation in Atomic.
LeEmMmA E.26.
recep(—) : Semi Atomic — Conc

defines a semifunctor.

Proor. Let 7 : 1A — !B and o : !B —o !C be atomic strategies. It is easy to see that
recep(t; o) C recep(recep(r); recep(o)) = recep(r); recep(o)

For the reverse direction, let ¢ - 0 € recep(r) and s - 0o’ € recep(c) where o, o’ are either € or an
Opponent move, such that moreover they are composable. Notice that by the switching condition,
either

—o=misamovein!Aand o’ =,

—o0=¢€and o = misamove in !C,

—o=misaPmovein!Bando =e¢,

— 0o =misan O move in !B and o0 = ¢,

The first two cases are easily handled as in both cases the added O-move must appear at the end of
the interaction sequence (by the switching condition) so that (¢;s) - m € recep(r; o). For the third
case, observe that if the matching move to m appears in the middle of ¢, then the following move
must be in !B as well. But then, that move must also appear in s, a contradiction. Therefore, m is
the last move of t so that t = t’ - m and hence t’;(s - m) = t’;s € ;0 C recep(r; o) already. The
last case is handled similarly. O

LEmMmA E.27. Foranyo : A — B
Katom 0 = recep(c N Pia_1B)
Proor. It is straight-forward to see that by E.24
Katom 0 = atocopy,; 0; atocopyy = atocopy,; (0 N Pia—1B); atocopyy
But (6 N Pig—1p) is just an atomic strategy, and atocopy is just the sequential copycat, so
atocopy; (0 N Pia—1p); atocopyg = recep(o N Pia—o1B) O

ProrosiTioN E.28.
Katom : Conc > Katom

defines an enriched semifunctor.
Proor. By monotonicity of composition, Lemmas E.27 and E.25 and Proposition E.26

Katom(0); Katom(7) = recep(c N Pia_1p); recep(r N Pig_o1c)

= recep(O' N PyA_o!B); (7.' N P!B_ogc))

= recep((0;7) N Pla—1B)

LinAtom(o-Q T)

Now, suppose o C ¢’, then
Katom(0) = atocopy,; 0; atocopyy C atocopy,; o’; atocopyp = Katom(0”)

by monotonicity of composition.
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Similarly,
Katom(Uiero;) = atocopy s ; Uieoi; atocopyy = Ujeratocopy,; oy; atocopyg = UierKatom(0) O
ProprosITION E.29. There is an equivalence of categories:

Atomic = Katom

ProOF. The fact that both E and E™! are semifunctors is immediate, both are essentially the
identity functor.
It is immediate to see that

EE'A=A ET'EIA=1A
moreover, let
7:!A— !B
be an atomic strategy. Then,
E'Er=E'r=tNPaap=r1

that
El'Ec=c

follows similarly.

LEMMA E.30. Ifs € Py is alternating then ifs = p-m-m’-p’ is such that Aa(m) = O and Aa(m’) = P
then a(m) = a(m’).

Proor. We prove the result by induction over the size of the play s, where we also maintain
that if p Ceven s then for every @ € Y, 7,(p) is even-length. If s = € the result is vacuously true.
So suppose p Ceyen $ satisfies the lemma. If p = s we are done. Otherwise there are is at least
one move m such that p - m C s. Since s is alternating and p is even it follows that Ax(m) = O.
If p- m = s we are done, as the move preceding m is by Proponent (so that the claim does not
apply) and p already satisfies it. Otherwise, there is another move m’ such that p - m - m’ C s.
Again, by alternation, A5(m’) = P. So we must show that a(m) = a(m’). But notice that for every
a € X, m,(p) is even-length, by induction. Therefore, by local alternation it follows that in every
a Opponent is to move. Hence, it must be that a(m’) = a(m). In particular, it is still the case that
every agent’s play is even-length. O

ProrosiTION E.31. The irreducibles of ~»4 are precisely the alternating plays of Pa

ProOF. Let s € Pa. Note that by definition the projection 7, (s) is alternating for every a € Y.

So suppose
s:p.m.m'.p'WAP.m’.m.p’

and m # m’. Then, note that if Aa(m) = Aa(m’) then the play is not alternating. Otherwise, the
only rule that applies is when a(m) # a(m’) and Aa(m) = O and Ap(m’) = P. By Lemma E.30 it
follows that s is not alternating.

This shows that every alternating play is irreducible. We now argue that every irreducible s is
alternating. Indeed, suppose that no rule can be applied. It follows then that if

s:p.m.m'.p’

then either a(m) = a(m’) or Aa(m) = P and Aa(m’) = O. We argue by induction that s is alternating.
€ is trivially alternating, so let p Ceyen $ be such that p is alternating. If p = s we are done. Otherwise,
there is some m such that p-m C s. Since p is alternating and s is locally alternating by Lemma E.30
it follows that A(m) = O (otherwise it breaks local alternation for a(m)) and in particular p - m is
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alternating. If p - m = s we are done, otherwise there is some m’ such thatp - m - m’ C s. As no
rule applies either a(m) = a(m’) or Aa(m) = P and Aa(m’) = O. In the first case, again, by local
alternation, Ap(m’) = P and alternation follows for p - m - m’. The second case can’t apply as we
already argued that Ax(m) = O. O

ProrositionN E.32. For any saturated o : A —o B:
Uatom 0 = {s € o | sfa € | (c7a)}
ProOF. After unrolling the definition of || (6 [a) and Uatom this follows from Lemma E.24 to-

gether with Proposition 7.5. O

E.9 Proofs for Section 7.3

ProprosITION E.33. Ifs,t € Py thens = t if and only if s and t are compatible and <5 = <;.

PROOF. (=) Since all the swaps allowed by ~» 4 are between agents, it immediately follows that
s and t are compatible. Moreover, no swap OO ~» OO or PP ~» PP swap modifies the happens
before order as the happens before order is defined by comparing the position of a P move with
the position of an O move.

(&) For the reverse direction, suppose s and t are compatible but s #4 t. Then, there must be
moves m, and Opponent move, and n a Proponent move such that

S=8§-m-Sy-n-S3

but

t=ti-n-ty-m-1s
or

t=ti;-m-ty-n-is
and

S=S81-n-S-m-S3
Without loss of generality, we assume the first situation (otherwise, reverse the roles of s and ?).
Let o be the operation corresponding to m and o’ the operation corresponding to n. Then,

o <0

by definition. Meanwhile, in s either e and e’ are not comparable, or 0 <5 0’, which contradicts
that <,=<;. O

ProrosITION E.34. For playss,t € Pa, there is a derivation

S val
if and only if s is compatible with t and
<g Cc <t
Proor. (=) Note that if
S w‘k t

then either <;=<; by Proposition 7.13 or the derivation is a OP ~» PO swap. We argue that
<sC<
in that case. Indeed, suppose

s:sl-m~n~szw>11§sl-n~m~szzt
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Let o be the operation associated to m and o’ the operation associated to n. Note first that for any
01,02 where at least one of 0; and o0, are distinct from o and o’ it is the case that
01 <5 0 & p(o1) <; p(02)

where p is the associated bijection. Indeed, if they are both distinct from o and o’ then in fact

plo1) = o1 p(0z) = 02
and the equivalence holds. Otherwise, consider the four possible cases:
0; = o Then, we have that
on=@p.q 02=0@".q)
moreover
plo) = (p+1,9) plo2) = (0. q")
hence
01 <500 = q<p = plo1) <: ploz)
01 = 0’ Then, we have that
on=@p.q 0=0".q)
moreover
plo1) = (p.q—1) plo2) = (p'.q")
hence
01<500 & q<p & q-1<qg<p = plo) < pl02)

where the middle equivalence holds because o, is not o.
0, = 0 Then, we have that

on=@p.q 02=0".q)
moreover
plo1) = (p,q) ploz) = (p" +1.9")
hence
01<500 & q<p & q<p' <p'+1 & p(o1) <; p(02)

where the second equivalence holds because o, is not o’.
0, = 0’ Then, we have that

o1=(.q 0=(/".q)
moreover
plo1) = (p.q) plo2) = (p',q' = 1)
hence
01 <50, &= q<p & ploy) <: p(oz)

Finally, note that o0 and o’ are not comparable in <;. Meanwhile, in <; we have o’ <; o.

(&) By Proposition 7.13, if <;=<; we are done, so suppose <s#<;. We construct a play s’ such
that <;C<yC<; and s w4 s’. Because <; is strictly contained in <, there is a pair 0 <; o’ but o
and o’ are incomparable in s. Hence, if

0= (p.q) o' =(".q")
in s, we may choose the pair of 0 and 0" incomparable in s such that g — p’ is minimal. Let m be the
O move associated to o’ and n the P move associated to o. Then

S=8-m-S2-n-S3
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Note that by minimality, s, decomposes as
S =50 Sp

where sp is a sequence of P moves and sp a sequence of O moves. Indeed, otherwise we have

sp=s7-n"-sy-m’ 5]

where n’ is a P move and m’ an O move. Let 0; be the operation associated to m’ and o, the
operation associated to n’. Then note that

s=sp-m-s;-n’-s;-m’-syon-s;
Note that if

01 = (p1,q1) 02 = (p2,92)
then,

Pr<q<p<q
Note then that
q=pg=p <q-p'

So as long as either the pair o, 0; is incomparable or 0z, 0" is incomparable then it breaks minimality.
Hence,

q <p and q < p2
But then
I <p<@<p<q<p

and, therefore,

0 <50
a contradiction. Hence, it must be that

S=S-m-So-Sp-n-Ss;
and, therefore:
S$=81 " M-SO Sp-N-S3=A81"SO " M- -Sp-N-83=AS81"SO "M -N-Sp-*83 ™A SO "N-M-Sp-3S3
So we let
s’ =so-n-m-sp-s3

By the argument from the forward direction we have that

< C<y
Moreover, by our choice of 0 and 0’

<y C=<;

We may continue this procedure until s” = ¢, which must happen as there are finitely many

partial orders over the finite set op(s). O

The following couple of lemmas are straight-forward.
Lemma E.35. If
s m-t-~ps -m
then
st~ s
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LEmMMA E.36. Let s,s” € Pa, sp a sequence of Proponent moves and so a sequence of Opponent
moves. If
s-Sp A s’ so
then let (s \ so) € P be the subsequence of s obtained by removing the pending Opponent moves that
appear in so, then
s+sp~a (s\so)-sp-so~was’ so

ProrosiTION E.37. A play s € Py is linearizable to an atomic play t € P4 if and only if s is
Herlihy-Wing linearizable to t.

Proor. (=) By assumption there is a sequence of Opponent moves so and a sequence of Pro-
ponent moves sp such that

S-Spwa l-So

If there are no pending O moves in t then, so contains all pending moves in s - sp so that by
Lemma E.36

s - sp w complete(s - sp) - so W t - 50
and then by Lemma E.35 we have that
complete(s - sp) > t

so that by Proposition 7.14 the result follows. Now, suppose there is a pending Opponent move o
in t. Then, o must be the last move of ¢. Indeed, suppose otherwise. Then, t = u-0-v for non-empty
v. Since o is pending, no move in v is by the same agent as that of 0. But since t is sequential, the
first move of v must be a Proponent move by the same agent as o, a contradiction. Hence, t = t" -0
for some pending Opponent move o. We argue that complete(s - sp) ~» t’. By Lemma E.36 we have
that there is s” such that

s-sp~mp S -sprsgwal-so
but then, by the reasoning above, there is at most one pending Opponent move in s’ so that
s so-spwas sp-somwat-so=t-(0-s0)
implies by E.36 that there is s” € P4 such that
s" =50 sp~wa s sp-(0-50) wat' - (0-50)

But, s” is s” with o removed, and s’ is s with all moves in sp removed. Moreover, s” has no pending
Opponent moves, as t" does not. Therefore, s” - sp = complete(s - sp). By the previous reasoning,
the result follows.

(&) By Proposition 7.14 it follows that there is a reduction complete(s - sp) w4 t. Now, let sp
be a sequence containing all the Opponent moves removed by complete(—). Note that there is at
most one move per agent in sp, and, moreover, that any agent that appears in sp does not appear
in sp. Then

s - sp ~p complete(s - sp) - sp WA L S0

proving that s is linearizable to ¢. ]
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E.10 Proof of 10.2
ProrosiTioN E.38. Let
va:1l—oA vg:1—B
and
c:A—oB

Then, if there exists a punctual extension oy, of o such that

((va ® Pg);01p) B, S VB
then
va;0 C Kcone VB
ProoF. Suppose that
((va® Pg);oip)Te, € vB
and let sy p € va;0. Now, as
oplap =0
it follows that for any play s” € o there is a play s” € oy, such that
s"lap, =5

So let s” be the play in oy, corresponding to sl p, in particular

s'lap, =5 s'Ta=sla€va
By assumption,
s’ rBo € VB
Moreover, because o, is punctual,
olp B, B, < CCOPYg
so that
s'IB,.B, € ccopyp

by Proposition 5.7 it follows that s’ I'g, = s[4, is linearizable to s’ [g,. Hence, by Proposition 5.2,

sT1,B € Kconc VB i
ProrosiTiON E.39. Let
va : 1 —o (A, atocopy,) vg : 1 —o (B, atocopyy)
and
o : (A, atocopy,) —o (B, ccopyg)
Then,

va;0 C Linatom VB

if and only if there exists a punctual extension oy, of o such that
A
(va ® Pg*™); 01p) I8, C VB
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Proor. The reverse direction is immediate from Proposition 10.2. Hence, we only prove the
forward direction.
Suppose that
va;0 C Linatom VB
we will construct a punctual extension oy, of o such that
((VA ® PB); G|p) rBo C vp
We will do this by assigning a play Ip(s) € Pagp—.p for every play s € ¢ such that

Ip(s)faB, = Ip(s) sy, B, € ccopyp
and moreover, if s[p € v4 then
Ip(s)T's, € vB
and then we will finish by defining
oyp = strat({lp(s) | s € o})
First, note that if s € o and sTa ¢ v4 then there is no constraint on how we may construct the
corresponding play of oy, other than that the projection to the B components must play as ccopyy.
Now, by definition of ccopyyg there is a play ccopyg(s) of ccopyg such that
ccopyg(s) s, = sIB
Now, if sTA € v4 we must ensure that Ip(s) [s, € vg. By assumption,
sIB € Linatom VB
therefore, there is t € vg such that s is linearizable to vg by Proposition 5.2. By Proposition 5.7 it
follows that there is a play ccopyg(s) such that
ccopyg(s)[s, = slB ccopyg ', = ¢
Either way, we proceed by constructing Ip(s) by using s and ccopyg(s). We do so inductively and
keep track of suffixes s4 and sg of s and ccopyg(s) with moreover the invariant that
sals = sB[s,
and that the first move in s4 is in B, and the first move in sp is the same move in B;. Initially we
let sy = s and sg = ccopyg(s), and at any point we have s = pa - s4 and ccopyg(s) = pp - sp. This
justifies the last invariant in that we keep track of a play Ip(pa) satisfying:
Ip(pa)laB, =pa Ip(pa) BB, = PB Ip(pa)Ta,B, is atomic
Moreover, we will maintain that for every a € Y, the last move by « in pp is a P move in By, if it
exists, and that no agent’s next move in sg ', is a Proponent move. If s4 = € or sg = € then in fact
SA =Sp =€ as
salp =splB, =€
and the first move in both is in B and By, respectively. In this case, we let
Ip(s) = Ip(s - sa) = Ip(pa) - €
which serves as our base case. Otherwise,
SA=m-sy Sg=m-sg

Suppose first that there are no more moves in B in s/,. Then, there are also no more moves in B;
in 31’4. Hence, all the moves in sz'4 are moves in A and all the moves in 51’3 are in By. Then, we let

Ip(pa - s4) = Ip(pa) - m- s,
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Note that at this is a terminal case for the induction as we have
Ip(s)Ta,B, = Ip(pa - sa)taB, = Ip(pa)-m-sylas, =Ip(Pa)lap, -m-sylap, =pa-m-s,=s

Ip(s) 1By, B, = Ip(Pa - 54)TB,B, = Ip(pa) - M - S/ IB,,B, = IP(Pa) IB,,B, - M - 54 By, B,
=pp-mLC pp - s = ccopyg(s)
In particular, by prefix-closure,
Ip(s)'B,.B, € ccopyg
and in the case where s € v
Ip(s) I's,,B, C ccopyg(s) € ccopyg

so that by prefix-closure again

Ip(s)iB, Et € vB
Now, suppose there is some move n in component B in s/, and let moreover n be the first such
move. Then

SA =M SA1°"N-SA2 SB=mM-Sp1 N"SB2

If there is a pending Opponent move in sg; I, = Sp,1, it can’t be by the same agent as n. Hence,
in case there is such an Opponent move, so that

SB1 = s]'g,1 -mo
Then, either a(mo) has no further moves in n - sg 3, in which case we modify sp to no harm as

g =m-s,’3’1-n-sB,2-mo

Or there is a response mp (and by atomicity that is at most one such pending Opponent move with
a later response) so that

’ »
SB,2 = Spp *Mp " SB,2
we modify sp to no harm as

4 = . 4 . . . - / . »
Sp=M-Sp MO Mp-N-Sp,-SB2

these changes cause no trouble as all the invariants are still satisfied with this modified sg, and the
modifications are essential to maintain that for every agent the next move is Opponent in B, for
our next suffix. We, therefore, assume from now on that there are no pending Opponent moves in
sB,1- Moreover, s4 1 [ has at most one pending O move. If there is no such move, we let

p(pa-m-sa1-n)=Ilp(pa) -m-sa1-sp1
which is a valid play by the modifications to sg made above and from the fact that sp ; is atomic.
Otherwise,

SA1 = SAY - Mo
for some move mp, Opponent in A. In that case, we let

Ip(pa-m-sa1)=Ip(pa)-m-sj,sp1-mo
We know show the invariants are maintained. In the first case, we have
Ip(pa-m-sa1)laB, = Ip(a)-m-saq1-spi1laB, = IpPa)laB, - M- Sa1=pa-m-sa;

[p(pa - m - sA,1)B.,B, = Ip(Pa) - m - sa1-5B,11By,B, = Ip(PA) BB, * M - SB1 = pPB M-S
while in the second case we have

Ip(pa-m-sai)lap, = Ip(pa) -m-sj,-sp1-mo-nlas, =Ip(pa)las, ~m:-sy, -mo=pa-m-sai

Ip(pa - m-sa1)B,B, = Ip(pa) - m-sy - sp1-mols,s, = p(Pa)lB,B, M Sp1=pp-m-sp1
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At this point, it is justified to define the new instances pl’q,pg, s/’q, sl’3 of pa, pB, Sa, SB as
Py =pA-m-sal Sy =Mn-San

P =pB-m-Sp1 Sp =N-Sp2
the remaining invariants follow readily from this definitions and the remarks above.
Finally, at the end of this inductive procedure we note that we obtain Ip(s) satisfying all the
desired claims. Finally, we let
oyp = strat({lp(s) | s € })
which is our desired punctual extension. ]

E.11 Proof of 9.3
Proor. We starting by defining the bisimulation relation L. On nodes, it is given by

oL (p,so,sp) &= 3s € ccopy,.0 = Pos(s) A (p,so,sp) € Poss(sTa,) Ap =sla,
and on edges by the correspondence we just saw:

—If @:m is a move of type a:O, then a:m L invoke,(m)
—If @:m is a move of type a:P; then a:m L return,(m)
—If @:m is a move of type @:O; then a:m L commitS (m)
—If @:m is a move of type a:P; then a:m L commit? (m)

Note that in particular,
eL (e,2,0)

In both cases we observe that since o L (p, so, sp) there is s € ccopy, such that
0 = Pos(s) A (p,so,sp) € Poss(sTa,) Ap =sla,
and in particular
sla, - {sp) wa p - (so)
Without loss of generality suppose a:m : o — o’ is the edge under consideration.
— Note that, as
o =oxam
it follows that if s” € o’ then there is s” € p such that
7 ap 8T aim mwop s - acm

where the last derivation follows from the fact that o = Pos(s). In particular, o’ = Pos(s-a:m).
Now we consider each possible case for the type of the move a:m.
a:0; In this case the last move by « in s is a P; move. As

sTa, - {sp) wa p - (s0)
it follows that sp(a) = € and sp(«) = €. So let
P =p so = sola — m] sp = sp
we show that
o' L' sp.sp)
We already saw that o’ = Pos(s - @:m). Notice moreover that (p’, s, sp) € Poss(s - a:m[4,).
Indeed:

(s-a:m)la, - (sp) = sTa, - @:m-(sp) =a s, -@:m-(sp) ~a sTa, - (sp)-m ~a p-(s0)-m =a p-{(s,)
and hence (p’, s, sp) € Poss((s - @:m)[4, ). Finally:

(s-am)la, =sla, =p=p
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It is readily seen that
invokey(m) : (p,so,sp) = (b, 55, Sp)

a:P, In this case the last move by « in s is a P; move. But then, as s € ccopy, it follows that
the last move by « in s[4, is an O move. Therefore, as

sla, - (sp) »a p- (so)
and s[a, = p it must be that sp(a) = m and moreover sp(a) = €. So let
p'=p So = SO spla > m] = sp
we argue that
o' L(p',50,5p)
We have already seen that o’ = Pos(s - @:m). Moreover:
(s-am)la, - (sp) = sla, -@:m-(sp) =a sla, - (sp) wa~a p-(s0) =a p - (s5)
and hence (p’, s, sp) € Poss((s - @:m)[4, ). Moreover,
(s-am)la, =sta, =p=p’
Finally, it is readily seen that
returng(m) : (p, so, sp) = (', $5. Sp)
a:0; In this case the last move by « in s is an O, move. As
sTa, - (sp) wa p-(so)
and sla, = p it must be that sp(a) = a:m and sp(a) = €. So let
p =p-am spla — m] =so Sp = Sp
Then, we show that
" L(p'.s0,5p)
We already saw that o’ = Pos(s-a:m). Notice moreover that (p’, s, s;,) € Poss((s-a:m)[a,).
Indeed:

(s-am)la, - (sp) = sTa, - (sp) =a s, - (sp) wa p-(so) =ap-am-(s;) =p"-(s,)
so that (p’, s(),s},) € Poss((s - @:m)[4,). And finally:
(s-a:m)la, = sla, -@:m=p-a:m=p’
Finally, it is readily seen that
commitg(m) (P, so.sp) = (0,555 Sp)

a:P; In this case the last move by « in s must be an O; move and the last move by « in s[4,
is an O move.

sTa, * (sp) wa p - (so)
and s[a, = p it follows then that so(a) = € and that sp(a) = €. So let
p=p-a:m SH = SO sp = spla — m]
Then, we show that
o' L(p',s0.5p)
We already saw that o’ = Pos(s-a:m). Notice moreover that (p’, s;,, s;,) € Poss((s-a:m)[a,).
Indeed:

(s-am)a, - (sp) = sTa, * (sp) =a sTa, - (sp) - @:m ~op p - (s0) - @:m ~op p-a:m-(so) =p' - (so) =a p’ - (s5)
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so that (p’, s(), sp) € Poss((s - @:m)[a,). And finally:
(s-a:m)ta, = sTa, -@:m=p-a:m=p’
Finally, it is readily seen that
commit? (m) : (p,s0,sp) — @', 50, 5p)
this covers all cases for a:m.
— Again, we consider all cases of the edge e.
invoke,(m) In this case so(«) = € and s/, () = m and
p'=p sp = s
Moreover, as (p’, G sl’[,) € Poss(A) there is some s; € P such that
s (sp) wa p’ - (so)
but note that
s1 - (sp) =a sy (sp) wap' - (sp) =p - (sp)
In particular, as s;,(«) = m it must be that the last move by « in p is a P move and that
sp(a) = sp(a) = €. But, as
sTa, « (sp) wa p-(so)

we obtain that the last move by « in s[4, is a P move. So define o’ = p % a:m. By the
argument in the previous case we obtain that o’ = Pos(s - @:m). By construction

am:p— o

moreover, as @:m is an O; move in s - a:m it follows that a:m L invoke,(m). It remains to
argue that

o' L(p',s5,5%)
By construction s - @:m € ccopy, and ¢’ = Pos(s - @:m). Then, notice that
(s-am)la, - (sp) = sla, @m - (sp) wa sTa, - (Sp) - @m =4 54, - (sp) - @:m ~p p-(so) - taxm =p - (s;) =p" - (s(,)
moreover
(s-am)la, =sla, =p=p’
and the claim follows.
return,(m) In this case s,(a) = € and sp(a) = m and
Fep  sh=s0
Now, as (p’, s’o, sl’[,) € Poss(A)s there must be some s; € P such that
s (sp) wa p’ - (so)
but observe that
s (sp) -am =p sy (sp) wa p’ - (sp) =p - (sp) =ap - (s0)
Now, it follows that both p and p’ end with a P move by a. We also observe that it must
be that so(a) = s,(a) = €. But then, as
sTa, « (sp) wa p-(so)

and sp(a) = m, the last move by « in s[4, must be an O move. Moreover, as s[a, = p, the
next move in s must by o must be a @:P; move and it follows that s - a:m € ccopy,. So let
p’ = p x a:m so that in particular p” = Pos(s - @:m). By construction

am:p—p'
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and a:m L return,(m). It remains to argue that
P L(p',50,5p)
for which we observe that
(s-am)la, - (sp) = sTa, ~@:m - (sp) =a sTa, - (sp) wa p-(so) =p" - (so) =ap" (so)
and moreover
(s-am)la, =sta, =p=p’
commit{(m) In this case we have so(a) = €, so(a) = m and
p=p-a:m Sp = Sp
Now, there is s; such that (p’, s, s,) € Poss(s]) so that
s1 - {(sp) =a sy (sp) woap’ - (sp) =p-am-(sp) =a p-(s0)
In particular, sp(a) = sp(a) = €. But then, as
sTa, - (sp) wa p- (s0)
Then, note that
Ta(sTa,) = ma(sTa, - (sp)) = ma(p - (s0)) = malp) - m
and

Ta(sTa,) = 7a(p)

Meaning that that target component in s is ahead of the source component. So for a, O
is to move in s € ccopy,. So we are justified in letting o’ = o * a:m, and in particular
o’ = Pos(s - a:m). By the above argument, s - a@:m € ccopy, and by construction

am:p— o amlL commitg(m)
So to argue
P L (P 50:5p)
we note that as we saw before:
(s-am)la, - (sp) =sTa, - (sp) =a sa, - (sp) ™A p-(so) =ap-am-(sp) =p" - (s5)
and
(s-a:m)ta, =sla, -@:m=p-a:m=p’

and the result follows:
commit? (m) In this case sp(a) = €, sp(a) = m and

p'=p-am So = So
Now, there is s; € P;a such that
s1 -+ (sp) -am =5 57 (sp) wa p' - (sp) =p-am-(sp) =ap-am-(so0)
and in particular, so(a) = s;,(a) = €. But then, as
sfa, - (sp) »a p- (so)
then, observe that
Ta(sTa,) = Ta(sTa, - (sp) = 7a(p - (s0)) = ma(p)

and of course

o (sTAy) = Ta(p)

J. ACM, Vol. 71, No. 2, Article 14. Publication date: April 2024.



14:104 A. Oliveira Vale et al.

As in addition we know that the last move in p must be an O move, it follows that s is a P
position for . So we are justified in defining p” = p *x a:m, so that p’ = Pos(s - a:m). As
we just saw, s - @:m € ccopy, and by construction

am:p—p’ a:m L commit? (m)
Finally, note that
(s-am)la, - (sp) =sla, - (sp) =a sTa, * (sp) - @m ~p p-(so) - @:m ~op p-a:m-(so) =p’ - (so) =a p’ - (s,)
and moreover
(s-a:m)ta, = sTa, -@:m=p-a:m=p’

and the result follows. O
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