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Abstract: We propose and study a data-driven method that can interpolate between a classical and a
modern approach to classification for a class of linear models. The class is the convex combinations
of an average of the source task classifiers and a classifier trained on the limited data available for
the target task. We derive the expected loss of an element in the class with respect to the target
distribution for a specific generative model, propose a computable approximation of the loss, and
demonstrate that the element of the proposed class that minimizes the approximated risk is able to
exploit a natural bias–variance trade-off in task space in both simulated and real-data settings. We
conclude by discussing further applications, limitations, and potential future research directions.

Keywords: statistical learning; domain adaptation; transfer learning; physiological prediction;
linear classifiers
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1. Introduction
For problems with limited task-specific data, supervised machine learning models

often fail to generalize well. Classically, practitioners operating in these settings will
choose a model that is appropriately expressive given the amount of data available. That
is, they use a model that effectively exploits the “bias–variance” trade-off [1]. Modern
machine learning approaches such as transfer learning [2,3], domain adaptation [4], meta-
learning [5–8], and continual learning [9–12] attempt to mitigate the lack of task-specific
data by leveraging information from a collection of available source tasks. These approaches
are ineffective when the task of interest is sufficiently different from the source tasks.

In this paper we study a data-adaptive method that can interpolate between the
classical and modern approaches for a specific set of classifiers: when the amount of
available task-specific data is large and the available source tasks are sufficiently different
then the method is equivalent to the classical single task approach; conversely, when the
amount of available task-specific data is small and the available source tasks are similar to
the task of interest then the method is equivalent to the modern approach.

At a high level, our proposed method is designed in the context of a set of classifiers
based on Fisher’s Linear Discriminant (“FLD”) [13,14]. Each element in the class is a
convex combination of (i) an average of linear classifiers trained on source tasks and
(ii) a classifier trained only on data from a new target task. Given the set of classifiers,
we derive the expected risk (under 0–1 loss) of an element in the class under particular
generative assumptions, approximate the risk using the appropriate limit theory, and
select the classifier that minimizes this approximated expected risk. By approximating the
expected risk, we are able to simultaneously take advantage of the relationship between the
source tasks and the target task and the new information available related to the target task.
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We focus on FLD, as opposed to more complicated classification techniques, due to its
popularity in low resource settings. For example, our setting of interest is the physiological
prediction problem—broadly defined as any setting that uses biometric or physiological
data (e.g., EEG, ECG, breathing rate, etc.) or any derivative thereof to make predictions
related to the state of a person—where polynomial classifiers and regressors with expert-
crafted features are still the preferred performance baselines [15].

The rest of the paper is organized as follows: We first review relevant aspects of
the domain adaptation, physiological prediction, and task similarity literature. We then
describe our problem setting formally, introduce notation, and review the distributional
assumptions for which FLD is optimal under 0–1 classification loss. We subsequently
make the relationship between the source distributions and target distribution explicit by
leveraging the sufficiency of the FLD projection vector. We define the set of classifiers based
on this relationship, derive an expression for the expected risk of a general element in this
set, and propose a computable approximation to it that can be used to find the optimal
classifier in the set. Finally, we study the effect of different hyperparameters of the data
generation process on the performance of the approximated optimal classifier relative to
model (i) and model (ii) before applying it to three physiological prediction settings.

1.1. Related Works
1.1.1. Connection to Domain Adaptation Theory

The problem we address in this work can be framed as a domain adaptation problem
with multiple sources. While a rich body of literature [4,16–22] has studied this setting,
our work shares the most resemblance with the theoretical analysis discussed in [17]. They
study the combination of the source classifiers and derive a hypothesis that achieves a
small error with respect to the target task. In their work, they assume the target distribution
is a mixture of the source distributions. Our work, on the other hand, combines the
average source classifier with the target classifier under the assumption that the classifiers
originate from the same distribution on the task level. Indeed, the explicit relationship that
we place on the source and target projection classifiers allows us to derive an analytical
expression of the target risk that does not rely on the target distribution being a mixture of
source distributions.

1.1.2. Domain Adaptation for Physiological Prediction Problems
Domain adaptation and transfer learning are ubiquitous in the physiological pre-

diction literature due to large context variability and small in-context sample sizes. See,
for example, a review of EEG-inspired methods [15] and a review of ECG-inspired meth-
ods [23]. Most similar to our work are methods that combine general-context data and
personalized data [24], or weigh individual classifiers or samples from the source task
based on similarities to the target distribution [25,26]. Our work differs from [24], for
example, by explicitly modeling the relationship between the source and target tasks. This
allows us to derive an optimal combination of the models as opposed to relying strictly on
empirical measures.

1.1.3. Measures of Task Similarity
Capturing the difference between the target task and the source tasks is imperative

for data-driven methods that attempt to interpolate between different representations or
decision rules. We refer to attempts to capture the differences as measures of task similarity
measures. Generally, measures of task similarity can be used to determine how relevant
a pre-trained model is for a particular target task [22,27–29] or to define a taxonomy of
tasks [30].

In our work, the convex coefficient a parameterizing the proposed class of models
can be thought of as a measure of model-based task dissimilarity between the target task
and the average-source task—the farther the distribution of the target projection vector
is from the distribution of the source projection vector the larger the convex coefficient.
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Popular task similarity measures utilize information theoretic quantities to evaluate the
effectiveness of a pre-trained source model for a particular target task such as H-score [27],
NCE [28], or LEEP [29]. This collection of work is mainly empirical and does not place
explicit generative relationships on the source and target tasks. Other statistically inspired
task similarity measures, like ours, rely on the representations induced by the source and
target classifiers such as partitions [31] and other model artifacts [32–34]. Similar ideas
have been used to leverage the presence of multiple tasks for ranking [35].

1.2. Problem Setting
The classification problem discussed herein is an instance of a more general statis-

tical pattern recognition problem ([14], Chapter 1): Given training data {(Xi, Yi)}
n
i=1 2

(X ⇥ {1, . . . , K})n assumed to be i.i.d. samples from a classification distribution P , con-
struct a function hn that takes as input an element of X and outputs an element of {1, . . . , K}
such that the expected loss of hn with respect to P is small. With a sufficient amount of data
and suitably defined loss, there exists a classifier hn that has statistically minimal expected
loss for any given P . In the prediction problems like the physiological prediction problem,
however, there is often not enough data from the target task to adequately train classifiers
and we assume, instead, that there are auxiliary data (or derivatives thereof) from different
contexts available that can be used to improve the expected loss [2].

In particular, given {(X(j)
i , Y(j)

i )}n
i=1 assumed to be i.i.d. samples from the classification

distribution P
(j) for j 2 {0, . . . , J}, we want to construct a classifier h(0) that minimizes

the expected loss with respect to the target distribution P
(0). We refer to the classification

distribution P
(j) as a source distribution for j 2 {1, . . . , J}. Note that for other modern

machine learning settings the classifier h(0) is constructed to optimize joint loss functions
with respect to P

(0), . . . ,P (J) [36].
Generally, for the classifier h(0) to improve upon the task-specific classifier hn, the

source distributions need to be related to the target distribution such that the information
learned when constructing the mappings from the input space to the label space in the
context of the source distributions can be “transferred” or “adapted” to the context of the
target distribution [32].

2. Method
Our goal is to develop a classifier that can leverage information from data from both the

target and source distributions. For this purpose, we first make distributional assumptions
on the data from a single task and then explicitly describe the assumed relationship between
the target and source tasks.

2.1. Distributional Assumptions

In particular, we assume that P (j) is a binary classification distribution that can be
described as follows:

P
(j) = p(j)

N

⇣
n(j), S(j)

⌘
+ (1� p(j)) N

⇣
(�1)n(j), S(j)

⌘
; for j 2 {0, . . . , J}. (1)

To be explicit, P (j) is a mixture of two Gaussians such that the midpoint of the class
conditional means is the origin and that the class conditional covariance structures are
equivalent. Note that P (j) is uniquely parameterized by n(j), S(j), and p(j) and that the
shared conditional covariance is a standard assumption when using linear models.

Let {s} be the indicator function that returns 1 if s is true and 0 otherwise. Recall that
under the generative assumptions described above the linear classifier

hFLD(x) =
n

w>x > c
o

,
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where

w = (S0 + S1)
�1(n1 � n0) and c = w>(n0 + n1) + log

p0
p1

(2)

is optimal under 0–1 loss for distributions of the form described in Equation (1).
We further restrict our analysis to settings with p = 0.5 where the definitions in

Equation (2) reduce to w = 1
2 S�1(n1 � n0) and c = 0. With this restriction, hFLD depends

only on the projection vector w. Since the optimal classifier for a task is parameterized
solely by its projection vector, we consider the projection vector as the sole parameter for
the task itself. Thus, to describe a relationship between classification tasks in our setting we
need only to describe a relationship on their optimal projection vectors.

Recall that the von Mises–Fisher (vMF) distribution [37], denoted by V(µ, k), has
realizations on the d-sphere and is completely characterized by a mean direction vector
µ 2 Rd and a concentration parameter k 2 R�0. When the concentration parameter is
close to 0 the vMF distribution is close to a uniform distribution on the d-sphere. When
the concentration parameter is large, the vMF distribution resembles a normal distribution
with mean µ and a scaled isotropic variance proportional to the inverse of k.

For our analysis we assume that the optimal projection vectors w(0), w(1), . . . , w(J) iid
⇠

V(µ, k) for unspecified µ and k. Given the assumed equality of the class conditional
covariance structures and that the class conditional means are additive inverses, w(j) being
a unit vector forces an additional constraint on the relationship between n(j) and S(j) in the
context of Equation (1)—namely that ||(S(j))�1n(j)

||2 = 1. In the simulation settings below,
the generative models adhere to this constraint. In practical applications we can use the
(little) training data that we have access to force our estimates of n and S to be conformant.

2.2. A Class of Linear Classifiers
With the generative assumptions described above, we define a class of classifiers

H that can leverage both the information in the source projection vectors and the target
projection vector:

H :=

8
>>>>><

>>>>>:

ha(x) =

8
>>>>><

>>>>>:

0

BBBB@
aw(0) + (1� a)

J

Â
j=1

w(j)

| {z }
wa

1

CCCCA

>

x > 0

9
>>>>>=

>>>>>;

: a 2 [0, 1]

9
>>>>>=

>>>>>;

.

The set H is exactly the classifiers parameterized by the convex combinations of the
target projection vector and the sum of the source projection vectors. We refer to this convex
combination as wa. Letting w̄ := 1

J ÂJ
j=1 w(j), we note that wa can be reparameterized in

the context of the vMF distribution with the observation that

(1� a)
J

Â
j=1

w(j) = (1� a)
J||w̄||

J||w̄||

J

Â
j=1

w(j) = (1� a)J||w̄||
w̄

||w̄||
= J(1� a)||w̄|| µ̂, (3)

where µ̂ = w̄/||w̄|| is the maximum likelihood estimate for the mean direction vector of
the vMF distribution. By letting a  a

a+J(1�a)||w̄||
we maintain the same set H but make

the individual classifiers more amenable to analysis. Figure 1 illustrates the geometry of H
for d = 3.
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Figure 1. A geometric illustration of the generative assumptions, information constraints, and the
model class under study. All vectors are unit vectors. The red dots represent the data from the target
distribution, the red arrow represents an estimate of the projection vector for the target distribution,
the grey arrows represent source projection vectors, the blue arrow represents the average-source
projection vector, and the green line interpolating between the blue and red arrows represents the
possible end points of a convex combination of the red and blue arrows.

With the parameterization implied by the right-most expression of Equation (3), we
view different decision rules in H as elements along a classical bias–variance trade-off curve
in task space parameterized by a [38]. In particular, when the amount of data available
from the target distribution is small, the projection induced by an a value closer to 1
can be interpreted as a high variance, low bias estimate of the target projection vector.
Conversely, an a value of 0 can be interpreted as a low variance, high bias estimate. In
situations where the concentration parameter k is relatively large, for example, we expect
to prefer combinations that favor the average-source vector. We discuss this in more detail
in Section 3.

2.3. Approximating Optimality
We define the optimal classifier ha⇤ 2 H as the classifier that minimizes the expected

risk with respect to the target distribution P
(0). Given the projection vectors {w(j)

}
J
j=1 and

the target class conditional mean and covariance, n(0) and S(0), the risk (under 0–1 loss) of
a classifier ha 2 H is

R
⇣

ha | {w(j)
}

J
j=1, n(0), S(0)

⌘
= F

0

@ �w>a n(0)q
w>a S(0)wa

1

A

for P (0) of the form described in Equation (1) and where F is the cumulative distribution
function of the standard normal distribution. The derivation is given in Appendix A. In
practice, the source projection vectors, and target class conditional mean and covariance
structure are all estimated.

We define the expected risk of ha as

E(ha) = Ewa

h
R
⇣

ha | {w(j), }J
j=1, n(0), S(0)

⌘i
. (4)

Despite the strong distributional assumptions we have in place, the expected risk is
still too complicated to analyze entirely. Instead, we can approximate E(ha) by sampling
from the distribution of wa (derived in Section 2.4) using the plug-in estimates for n(0)

and S(0).
The entire procedure for calculating the optimal a with the approximated risk function

is outlined in Algorithm 1. For the remainder of this section, we use t̂ to denote an estimate
of the parameter t.
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Algorithm 1 Calculating the optimal convex coefficient

Require: target task class conditional mean n̂
(0)
0 and n̂

(0)
1 , target task class conditional

covariance Ŝ(0), normalized source proj. vectors {ŵ(j)
}

J
j=1, grid step size h, the number

of bootstrap samples B.
1: ŵ(0)

 NORMALIZE
⇣

1
2 (Ŝ

(0))�1(n̂(0)1 � n̂
(0)
0 )
⌘

. Estimate the target proj. vector

2: µ̂ NORMALIZE
⇣

1
J ÂJ

j=1 ŵ(j)
⌘

. Estimate vMF mean direction vector

3: Ŷ APPROX-COV
⇣
{µ̂(j)

}
J
j=1

⌘
. Covariance of µ̂ (see Equation (5))

4: Ŝw  COVARIANCE
⇣

ŵ(0)
⌘

. Covariance of the target proj. vector (see Section 2.4)
5: for each a 2 {0, h, 2h, . . . , 1� h, 1} do
6: ŵa  

⇣
a ŵ(0) + (1� a) µ̂

⌘
. Average convex combination

7: Ŝa  a2Ŝw + (1� a)2Ŷ . Covariance of average convex combination
8: for each b in {1, . . . , B} do
9: wb  N

�
ŵa, Ŝa

�
. Sample from appropriate normal distribution

10: rb  F

 
�

w>b n̂(0)q
w>b Ŝ(0) wb

!
. Calculate error for sample

11: end for
12: Ê(a) 1

B ÂB
b=1 rb . Calculate risk

13: end for
14: a⇤  argmina Ê(a) . Select optimal alpha

2.4. Deriving the Asymptotic Distribution of ŵa

We are interested in deriving a data-driven method for finding the element of H that
performs the best on the target task. For this, we rely on the asymptotic distribution of
ŵa = aŵ(0) + (1� a)µ̂.

First, we consider the estimated target projection vector ŵ(0) = 1
2 (Ŝ

(0))�1(n̂(0)1 � n̂
(0)
0 )

as a product of the independent random variables, A := n(Ŝ(0))�1 and t := 1
2 (n̂

(0)
1 � n̂

(0)
0 ).

We next note that A ⇠Wd(n, S(0)) is distributed according to a Wishart distribution with
n degrees of freedom and scatter matrix S(0). Further, t ⇠ Nd(n

(0), S(0)/n) is normally
distributed. Thus, for large n the random vector nA�1t has the asymptotic distribution
given by

p
n
⇣

nA�1t � (S(0))�1n
⌘

d
�! Nd(0, S̃)

where S̃ = (1 + (n(0))>(S(0))�1n(0))(S(0))�1
� (S(0))�1n(0)(n(0))>(S(0))�1 [39]. It fol-

lows that ŵ(0) is aymptotically distributed according to a normal distribution with mean
w(0) = (S(0))�1n(0) and covariance matrix Sw := S̃/n.

Next, we observe that µ̂ is the sample mean direction computed from J i.i.d. samples
drawn from a V(µ, k). For large J we have µ̂ asymptotically distributed as a normal
distribution with mean µ and covariance Y given by

Y =

0

@
1� 1

J ÂJ
j=1(µ

>w(j))2

Jkw̄k

1

A
1/2

Id, (5)

where Id is the d⇥ d identity matrix [37].
Finally, since ŵ and µ̂ are independent and asymptotically normally distributed, for

large n and J, we have

ŵa ⇠ N

0

B@aw(0) + (1� a)µ
| {z }

wa

, a2Sw + (1� a)2Y| {z }
Sa

1

CA.
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We use samples from this asymptotic distribution when evaluating the risk function
described in Equation (4) and use the a that minimizes it to choose the classifier in H

to deploy. We describe the exact procedure for calculating the optimal classifier ha⇤ in
Algorithm 1, where Approx-Cov returns Y as described in Equation (5).

3. Simulations
In this section we first validate our method by comparing our approximation to the

true-but-analytically-intractable risk to the empirical risk under a fixed set of generative
model parameters. We then study the effect of different generative model parameters on
the relative risks of the target classifier, the average-source classifier, and the approximately
optimal classifier. For each simulation setting we report the expected accuracy (i.e., 1 minus
the expected risk) and the optimal convex coefficient a⇤.

For the purposes of our simulations, we let d be the dimensionality of the data and n be
the number of samples from the target distribution. Without loss of generality, we consider
a von Mises–Fisher distribution with mean direction µ = [1, 0d�1]

> and concentration
parameter k. We fix the mixing coefficient p(j) = 0.5 and the class-conditional covariance
S(j) = Id for all task distributions for all simulation settings. For each Monte Carlo replicate
and for each simulation setting, we sample n(0) and {w(j)

}
J
j=1 from V(µ, k). Finally, for

each simulation setting we report the mean accuracy over 1000 iterations and, hence, the
standard error of each estimate is effectively zero.

3.1. Validating the Approximation
To validate our approximation we assume that the target class covariance and class 1

mean are known and fix d = 10, k = 10. We vary the amount of data available from the
target task n 2 {10, 20, 50, 100} and the number of source tasks J 2 {10, 100, 1000}. For
each setting we report the average accuracy and average optimal a from 1000 different
(n(0), {w(j)

}
J
j=1) samples. We report the approximated expected accuracy and optimal a

as calculated using the expression derived in Section 2.3, referred to as the “analytical”
methods in Figure 2. We also report the accuracy of each classifier on 10,000 samples from
the target task and the corresponding optimal a, referred to as the “empirical” methods.
The empirical accuracies represent the true-but-analytically-intractable accuracy. For the
analytical combined method we use 100 samples from N (µwa , Swa) to calculate the risk for
each a 2 {0, 0.1, 0.2, . . . , 1.0}.

Figure 2. Validating our proposed approximation by comparing the approximated analytical accura-
cies and empirical accuracies and optimal convex coefficients for different amounts of target training
data n and number of source tasks J.
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The gap between the analytical and empirical accuracies associated with the target
classifier decreases as the number of samples from the target distribution increases, as seen
in each figure in the top row of Figure 2. This gap in the early part of the regime is caused
by the mismatch between asymptotic approximation of the variance associated with the
target data. Unsurprisingly, the approximation is better for larger n. Even with the low
quality of the approximation for small n, the optimal classifier is able to outperform the
target classifier for all n and the analytical and empirical accuracies are indistinguishable
for large n.

Now looking from the left to the right of Figure 2, we see that the gap between the
analytical and empirical risks associated with the average-source and optimal classifiers
decreases as we increase the number of source tasks. For example, the difference between
the empirical and analytical accuracies associated with the average-source task for J = 10 is
quite noticeable whereas the difference for J = 1000 is negligible. As with the discrepancy
for the performance of the target classifier, this is caused by the normal distribution poorly
approximating the distribution of the average-source vector for small J.

The validity of our approximation as n gets large and J gets large is apparent when
evaluating the differences between the optimal convex coefficients (bottom row)—for
J = 10 the coefficients are separated for the entire regime, for J = 100 there is meaningful
separating for small n that goes away for larger n, and for J = 1000 the separation is
negligible nearly immediately. While simulation studies designed to evaluate the proposed
method in settings with more complicated covariance structures and in the presence
of model misspecifications, among other things, are required to fully understand the
appropriateness of the proposed approximation, we consider the results in Figure 2 as
evidence of the appropriateness in the settings studied here. We leave additional simulation
studies to future work.

3.2. The Effect of Plug-in Estimates, Concentration, and Dimensionality
Figure 3 shows the effect of estimating the covariance structure (left column), the effect

of different vMF concentration parameters (middle column), and the effect of dimensional-
ity (right column) on the accuracies of the average-source, target, and optimal classifiers,
and the calculated optimal convex coefficients. Unless otherwise stated, we fix the d = 10,
J = 100, k = 10, and n = 20. The classifiers are evaluated using 10,000 samples from the
target distribution.

Figure 3. Studying the effect of using plug-in estimates (left) and the effect of varying different
generative model parameters (center, right) on the expected accuracy of the average-source, target,
and optimal classifiers, and on the optimal convex coefficient.
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The left column of Figure 3 illustrates the effect of estimating the target task’s class
conditional covariance structure S(0) and class 1 conditional mean n(0) and using these
estimates as plug-ins for their population values when approximating the risk described in
Equation (4). In particular, we compare the expected accuracy and optimal coefficient when
using the plug-in estimates (solid lines) Ŝ(0) and n̂(0) to using the population covariance
S(0) and n(0) (dashed lines). We note that the difference between the performance of
the optimal classifiers in the two paradigms is smaller than the difference between the
performance of the optimal classifier and the target classifier for small n. This behavior
is expected, as the optimal classifier has access to more information through the average-
source projection vector. Finally, we note that the difference between the two optimal
coefficients is smaller for the poles of the regime and larger in the middle. We think that
this is due to higher entropy states between wanting to use the “high bias, low variance”
average-source classifier and the “low bias, high variance” target classifier.

For both the middle and right columns of Figure 3 we study only the plug-in classifiers.
The middle column of Figure 3 investigates the effect of the vMF concentration parameter
k. Recall that as k gets larger the expected cosine distance between samples from the
vMF distribution gets smaller. This means that the expected cosine distance between the
average-source projection vector and the true-but-unknown target projection gets smaller.
Indeed, through the expected accuracies of the average-source and target classifiers we
see that the average-source classifier dominates the target classifier in the latter part of
the studied regime due to the average-source vector providing good bias. Notably, the
combined classifier is always as effective and sometimes better than the target classifier
but is slightly less effective than the average-source classifier when k is large. This, again,
is due to the appropriateness of modeling the average-source vector as Gaussian. The
optimal convex coefficient is close to 1 when the vMF distribution is close to the uniform
distribution on the unit sphere (k small) and closer to 0 when the vMF distribution is closer
to a point mass (k large).

The right column of Figure 3 shows the effect of the dimensionality of the classification
problem on the expected accuracies and optimal coefficient. The top figure demonstrates
that the optimal classifier is always as good as and sometimes better than both the average-
source and target classifiers, with the margin being small when the dimensionality is both
small and large. The reason the margin between the accuracies starts small, gets larger,
and then becomes small again is likely due to the interplay between the estimation error
associated with covariance structure and the relative concentration of the source vectors.
We do not investigate this complicated interplay further. The optimal coefficient gets
progressively larger as the dimensionality increases with the exception of a dip at d = 20.
We think this dip is due to a regime change in the interplay mentioned previously.

4. Applications to Physiological Prediction Problems
We next study the proposed class of classifiers in the context of three physiological pre-

diction problems: EEG-based cognitive load classification, EEG-based stress classification,
and ECG-based social stress classification. Each of these problems has large distributional
variability across persons, devices, sessions, and tasks. Moreover, labeled data in these tasks
is expensive—non-overlapping feature vectors can require up to 45 s of recording to obtain.
That is, large improvements in classification metrics near the beginning of the in-task data
regime is important in mitigating the amount of time required for a Human–Computer
Interface to produce relevant predictions and is thus necessary for making these types of
devices usable.

The dataset related to EEG-based cognitive load classification task is proprietary. We
include the results because there is a (relatively) large number of participants with multiple
sessions per participant and the cognitive load task is a representative high-level cognitive
state classification problem. Both the EEG-based [40] and ECG-based stress [41] classifi-
cation are publicly available. Given the complicated nature of physiological prediction
problems, previous works that use these datasets typically choose an arbitrary amount of
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training data for each session, train a model, and report classification metrics related to a
held-out test set (e.g., [42] (EEG) and [43] (ECG)) or held-out participants (e.g., [44] (EEG)
and [45,46] (ECG)). Our focus, while similar, is fundamentally different: we are interested
in classification metrics as a function of the amount of training data seen.

In each setting we have access to a small amount of data from a target study participant
and the projection vectors from other participants. The data for each subject are processed
such that the assumptions of Equation (1) are matched as closely as possible. For example,
we use the available training data from the target participant to force the class conditional
means to be on the unit sphere and for their midpoint to cross through the origin. Further,
we normalize the learned projection vectors so that the assumption that the vectors come
from a von Mises–Fisher distribution is sensible.

The descriptions of the cognitive load and stress datasets are altered versions of the
descriptions found in Chen et al. [47]. Unless otherwise stated, the balanced accuracy and
the convex coefficient corresponding to each method are calculated using 100 different
train–test splits for each participant. Conditioned on the class type, the windowed data
used for training are consecutive windows. A grid search in {0, 0.1, 0.2, . . . , 1.0} was used
when calculating convex coefficients.

4.1. Cognitive Load (EEG)
The first dataset we consider was collected under NASA’s Multi-Attribute Task Battery

II (MATB-II) protocol. MATB-II is used to understand a pilot’s ability to perform under
various cognitive load requirements [48] by attempting to induce four different levels of
cognitive load—no (passive), low, medium, and high—that are a function of how many
tasks the participant must actively tend to.

The data includes 50 healthy subjects with normal or corrected-to-normal vision. There
were 29 female and 21 male participants and each participant was between the ages of
18 and 39 (mean 25.9, std 5.4 years). Each participant was familiarized with MATB-II
and then participated in two sessions containing three segments. The three segments
were further divided into blocks with the four different levels of cognitive requirements.
The sessions lasted around 50 min and were separated by a 10 min break. We focus our
analysis on a per-subject basis, meaning there will be two sessions per subject for a total of
100 different sessions.

The EEG data was recorded using a 24-channel Smarting MOBI device and was
processed using high pass (0.5 Hz) and low pass (30 Hz) filters and segmented in ten-
second, non-overlapping windows. Once the EEG data was windowed, we calculated
the mass in the frequency domain for the theta (4–8 Hz), alpha (8–12 Hz), and lower beta
(12–20 Hz) bands. We then normalized the mass of each band on a per channel basis. In our
analysis we consider only the frontal channels {Fp1, Fp2, F3 F4, F7, F8, Fz, aFz}. Our choice
in channels and bands is an attempt to mitigate the number of features while maintaining
the presence of known cognitive load indicators [49]. The results reported in Figure 4 are
for this (3⇥ 8) = 24-dimensional two-class problem {no and low cognitive load, medium
and high cognitive load}.

For a fixed session we randomly sample a continuous proportion of the participant’s
windowed data p 2 {0.05, 0.1, 0.2, 0.5} and also have access to the projection vectors
corresponding to all sessions except for the target participant’s other session (i.e., we have
100 � 1 � 1 = 98 source projection vectors). As mentioned above, we use the training data
to learn a translation and scaling to best match the model assumptions of Section 2.

The top left figure of Figure 4 shows the mean balanced accuracy on the non-sampled
windows of four different classifiers: the average-source classifier, the target classifier,
the optimal classifier, and the oracle classifier. The average-source, target, and optimal
classifiers are as described in Section 3. The oracle classifier is the convex combination of the
average-source and target projection vectors that performs the best on the held-out test set.
The median balanced accuracy of each classifier is the median (across sessions) calculated
from the mean balanced accuracy of 100 different train–test samplings for each session.
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Figure 4. Balanced accuracy and estimated optimal convex coefficients a⇤(top) and relative perfor-
mance of the optimal and target classifiers (bottom) for the MATB-II cognitive load classification task.

The relative behaviors of the average-source, target, and optimal classifiers in this
experiment are similar to what we observe when varying the amount of target data in the
simulations for large k—the average-source classifier outperforms the target classifier in
small data regimes, the target classifier outperforms the average-source classifier in large
data regimes, and the optimal classifier is able to outperform or match the performance of
both classifiers throughout the regime. Indeed, in this experiment the empirical value of k
when estimating the projection vectors using all of each session’s data is approximately 17.2.

The top right part of Figure 4 shows scatter plots of the convex coefficients for the
optimal and oracle methods. Each dot represents the average of 100 coefficients for a
particular session for a given proportion of training data from the target task (i.e., one dot
per session). The median coefficient is represented by a short line segment. The median
coefficient for both the oracle and the optimal classifiers get closer to 1 as more target data
is available. This behavior is intuitive, as we would expect the optimal algorithm to favor
the in-distribution data when the estimated variance of the target classifier is “small”.

The bottom row of Figure 4 is the set of histograms of the difference between the
optimal classifier’s balanced accuracy and the target classifier’s balanced accuracy where
each count represents a single session. These histograms give us a better sense of the
relative performance of the two classifiers—a distribution centered around 0 would mean
that we have no reason to prefer the optimal classifier over the target classifier and where
a distribution shifted to the right of 0 it would mean that we would prefer the optimal
classifier to the target classifier.

For p = 0.05, the optimal classifier outperforms the target classifier for 92 of the
100 sessions with differences as large as 19.2% and a median absolute accuracy improvement
of about 9.3%. The story is similarly dramatic for p = 0.10 with the optimal classifier
outperforming the target classifier for 92 of the 100 sessions, with a maximum difference of
about 19.2% and a median difference of 7.8%. For p = 0.2, the distribution of the differences
is still shifted to the right of 0 with a non-trivial median absolute improvement of about
3.7%, a maximum improvement of 12%, and an improvement for 81 of the sessions. For
p = 0.5, the optimal classifier outperforms the target classifier for 76 of the 100 sessions,
though the distribution is only slightly shifted to the right of 0. The p-values, up to three
decimal places, from the one-sided Wilcoxon’s rank-sum test for the hypothesis that the
distribution of the paired differences is symmetric and centered around 0 are less than 0.001
for each proportion of available target data that we considered.
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4.2. Stress from Mental Math (EEG)
In the next study we consider there are two recordings for each session—one corre-

sponding to a resting state and one corresponding to a stressed state. For the resting state,
participants counted mentally (i.e., without speaking or moving their fingers) with their
eyes closed for three minutes. For the stressful state, participants were given a four digit
number (e.g., 1253) and a two digit number (e.g., 43) and asked to recursively subtract the
two digit number from the four digit number for 4 min. This type of mental arithmetic is
known to induce stress [50].

There were initially 66 participants (47 women and 19 men) of matched age in the
study. Thirty of the participants were excluded from the released data due to poor EEG
quality. Thus, we consider the provided set of 36 participants first analyzed by the study’s
authors [40]. The released EEG data were preprocessed via a high-pass filter and a power
line notch filter (50 Hz). Artifacts such as eye movements and muscle tension were removed
via ICA. We windowed the data into two-and-a-half-second chunks with no overlap, and
consider the two-class classification task {stressed, not stressed} with access only to the
channels along the centerline {Fz, Cz, Pz}, and the theta, alpha, and lower beta bands
described above. The results of this experiment are displayed in Figure 5 and are structured
in the same way as the cognitive load results.

Figure 5. Balanced accuracy and estimated optimal convex coefficients a⇤ (top) and relative perfor-
mance of the optimal and target classifiers on a per-participant basis (bottom) for the Mental Math
EEG-based stress classification task.

For this study, we see relative parity between the target and average-source classifiers
when p = 0.05. In this case, the optimal classifier is able to leverage the discriminative
information in both sets of information and improve the balanced accuracy. This win is
maintained until the target classifier performance matches the optimal classifier perfor-
mance for p = 0.5. The poor performance of the average-source classifier is likely due to
the empirical value for k being less than 3.

Interestingly, we do not see as clear a trend for the median convex coefficients in the
top right figure. They are relatively stagnant between p = 0.05, 0.1, and 0.2 before jumping
considerably closer to 1 for p = 0.5.

When comparing the optimal classifier to the target classifier on a per-participant basis
directly (bottom row), it is clear that the optimal classifier is favorable: for p = 0.05, 0.10,
and p = 0.2 the optimal classifier outperforms the target classifier for 25, 24, and 24 of the
36 participants, respectively, and the median absolute difference of these wins is in the
1.8–2.6% range for all three settings with maximum improvements of 19.2 for p = 0.05,
19.2 for p = 0.1, and 12.1 for p = 0.2. As with the cognitive load task, this narrative shifts



Mathematics 2024, 12, 746 13 of 20

for p = 0.5 as the distribution of the differences is approximately centered around 0. The
p-values from the one-sided rank-sum test reflect these observations: 0.001, 0.01, 0.007, and
0.896 for p = 0.05, 0.1, 0.2, and 0.5, respectively.

4.3. Stress in Social Settings (ECG)
The last dataset we consider is the WEarable Stress and Affect Detection (WESAD)

dataset [41]. For WESAD, the researchers collected multi-modal data while participants
underwent a neutral baseline condition, an amusement condition, and a stress condition.
The participants meditated between conditions. For our purposes, we will only consider the
baseline condition where participants passively read a neutral magazine for approximately
20 min and the stress condition where participants went through a combination of the Trier
Social Stress Test and a mental arithmetic task for a total of 10 min.

For our analysis, we consider 14 of the 15 participants and only work with their
corresponding ECG data recorded at 700 Hz. Before featurizing the data, we first down-
sampled to 100 Hz and split the time series into 15 s, non-overlapping windows. We used
Hamilton’s peak detection algorithm [51] to find the time between heartbeats for a given
window. We then calculated the proportion of intervals larger than 20 ms, the normalized
standard deviation of the interval length, and the ratio of the high (between 15 and 40 Hz)
and low (between 4 and 15 Hz) frequencies of the interval waveform after applying a
Lomb–Scargle correction for waves with uneven sampling. These three features are known
to have discriminative power in the context of stress prediction [52], though typically for
larger time windows.

We report the same metrics for this dataset in Figure 6 as we do for the two EEG
studies above: the mean balanced accuracies are given in the top left figure, the convex
coefficients for the optimal and oracle classifiers are given in the top right, and the paired
difference histograms between the optimal classifier’s balanced accuracy and the target
classifier’s balanced accuracy are given in the bottom row.

Figure 6. Balanced accuracy and estimated optimal convex coefficients a⇤ (top) and relative perfor-
mance of the optimal and target classifiers on a per-participant basis (bottom) for the social stress,
ECG-based classification task.

The relative behaviors of the classifiers in this study is similar to the behaviors in the
EEG-based stress study above. The optimal classifier is able to outperform the other two
classifiers for p = 0.05 and is matched by the target classifier for the rest of the regime. The
average-source classifier is never preferred and the empirical value of k is approximately
1.5. The distributions of the optimal coefficients get closer to 1 as p increases but are
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considerably higher compared to the MATB study for each value of p—likely due to the
large difference between the empirical values of k across the two problems.

Lastly, the paired difference histograms for p = 0.05 favor the optimal classifier. The
histograms for p = 0.1, 0.2, and 0.5 are inconclusive. The p-values for Wilcoxon’s rank-sum
test are 0.029, 0.313, 0.620 and 0.700 for p = 0.05, 0.1, 0.2, and 0.5, respectively.

4.4. Visualizing the Projection Vectors
The classification results above provide evidence that our proposed approximation

to the optimal combination of the average-source and target projection vectors is useful
from the perspective of improving the balanced accuracy. There is, however, a consistent
gap that remains between the performance of the optimal classifier and the performance of
the oracle classifier. To begin to diagnose potential issues with our model, we visualize the
projection vectors from each of the tasks.

The three subfigures of Figure 7 show representations of the projection vectors for
each task. The dots in the top row correspond to projection vectors from sessions from the
MATB dataset (left) and the Mental Math dataset (right). The arrows with endpoints on
the sphere in the bottom row correspond to projection vectors from sessions from WESAD.
For these visualizations, the entire dataset was used to estimate the projection vectors. The
two-dimensional representations for MATB and Mental Math are the first two components
of the spectral embedding [53] of the affinity matrix A with entries aij = (w(i)>w(j) + 1)/2
and aii = 0. The projection vectors for the WESAD task are three-dimensional and are thus
amenable to visualization.

For each task we clustered the representations of the projection vectors using a Gaus-
sian mixture model where the number of components was automatically selected via
minimization of the Bayesian Information Criterion (BIC). The colors of the dots and ar-
rows reflect this cluster membership. The BIC objective function prefers a model with
at least two components to a model with a single component for all of the classification
problems—meaning that modeling the distribution of the source vectors as a uni-modal
von Mises–Fisher distribution is likely wrong and that a multi-modal von Mises–Fisher
distribution may be more appropriate. We do not pursue this idea further but do think that
it is could be a fruitful future research direction if trying to mitigate the gap between the
performances of the optimal and oracle classifiers.

4.5. The Effect of the Number of Samples Used to Calculate a⇤

In the simulation experiments described in Section 3 and the applications to different
physiological prediction problems in Sections 4.1–4.3, we used 100 samples from the
distribution of wa to estimate the risk for a given a. There is no way to know a priori
how many samples are sufficient for estimating the optimal coefficient. We can, however,
study how different amounts of samples effect the absolute error of the optimal coefficient
compared to an coefficient calculated using an unrealistic amount of samples. For this
analysis we focus on a single session from the Mental Math dataset described in Section 4.2.
The dataset choice was a bit arbitrary. The session was chosen because it is the session
where the optimal classifier performs closest to the median balanced accuracy for p = 0.1.

Figure 8 shows the effect of B, the number of samples from the distribution of wa

used to calculate the risk for a given a, on the mean absolute error when compared to a
convex coefficient calculated using B⇤ = 10,000 samples. The mean absolute errors shown
are calculated for p 2 {0.05, 0.1, 0.2} by first sampling a proportion of data p from the target
task, training the target classifier using the sampled data, and then estimating the optimal
coefficient using B⇤ = 10,000 samples from the distribution of wa. We then compare this
optimal coefficient to coefficient found using B 2 {5, 10, 20, 50, 100, 200, 500, 1000} samples
from the distribution of wa 30 different times, calculate the absolute difference, and record
the mean. The lines shown in Figure 8 are the average of 100 different training sets. In this
experiment the coefficients a 2 {0, 0.1, . . . , 1.0} were evaluated.
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Figure 7. Visualizations of the projection vectors for each of the three datasets under study where
each dot or arrow corresponds to a session. The projection vectors were estimated using the entire
data from each session and the cluster labels were learned via Gaussian Mixture Modeling. For
the MATB (top left) and Mental Math (top right) visualizations we show the first two principal
components scaled by their corresponding eigenvalues of the J ⇥ J cosine similarity matrix. The
WESAD visualization (bottom) shows the three-dimensional projection vectors. Colors denote the
component of a Gaussian mixture model fitted to the projection vectors.

There are a few things of note. First, when there is more target data available, fewer
samples from the distribution of wa are needed to obtain a specific value of the mean
absolute error. Second, the mean absolute error curves appear to be a negative exponential
function of B and, for this subject, it seems that the benefit of more samples decays quite
quickly after B = 500. Lastly, though the closer the convex coefficients are to the coefficient
calculated using B⇤ samples the more closely the classifier will perform to the analytically
derived optimal classifier, the gap between the performance of the oracle classifier and the
optimal classifier in the real-data sections above indicates that there may be some benefit
from a non-zero mean absolute error.
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Figure 8. The effect of the number samples sampled from the distribution of wa on the abso-
lute error between the optimal a calculated using B samples and the optimal a calculated using
B⇤ = 10,000 samples for subject 6 of the Mental Math dataset.

4.6. Computational Complexity

Assuming that we have access to the source projection vectors w(1), . . . , w(J) and
target data {X(0)

i , Y(0)
i }

n
i=1, and letting B be the number of bootstrap samples and h be the

number of evaluated classifiers in H, the computational complexities for obtaining the
projection vectors associated with the three algorithms studied above are as follows: the
average-source classifier is O(J · d); the target classifier is O(n · d · min(n, d) + min(n, d)3);
and the approximately optimal classifier is O(J · d + n · d · min(n, d) + min(n, d)3 + B2

· h).
That is, using the approximately optimal classifier incurs an additional computational cost
that is quadratic in B and linear in h when assuming that sampling from a multivariate
Gaussian and evaluating the error for each random sample are both O(1).

4.7. Privacy Considerations
As presented in Algorithm 1, the process for calculating the optimal convex coefficient

a⇤ requires access to the normalized source projection vectors {w(j)
}

J
j=1. This requirement

can be prohibitive in applications where the data (or derivatives thereof) from a source
task are required to stay local to a single device or are otherwise unable to be shared. For
example, it is common for researchers to collect data in a lab setting, deploy a similar data
collection protocol in a more realistic setting, and to use the in-lab data as a source task and
the real-world data as a target task. Depending on the privacy agreements between the
researchers and the subjects, it may be impossible to use the source data directly.

The requirements for Algorithm 1 can be changed to address these privacy concerns
by calculating the average source vector µ̂ and its corresponding standard error Y in the
lab setting and only sharing these two parameters. Indeed, given µ̂ and Y, the algorithm is
independent of the normalized source vectors and can be the only thing stored and shared
with devices and systems collecting data from the target task.

5. Discussion
The approximation to the optimal convex combination of the target and average-

source projection vector proposed in Section 2 is effective in improving the classification
performance in simulation and, more importantly, across different physiological prediction
settings. The improvement is both operationally significant and statistically significant in
settings where very little training data from the target distribution is available. In most
Human–Computer Interface (HCI) systems, an improvement in this part of the regime is the
most critical as manufacturers want to mitigate the amount of configuration time (i.e., the
time spent collecting labeled data) the users endure and, more generally, make the systems
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easier to use. We think that our proposed method, along with its privacy-preserving
properties inherent to parameter estimation, is helpful towards that goal.

With that said, there are limitations in our work. For example, the derivation of the
optimal convex coefficient and, subsequently, our proposed approximation is only valid
for the two-class problem. We do not think that an extension to the multi-class problem is
trivial, though treating a multi-class problem as multiple instances of the two-class problem
is a potential way forward [54,55].

Similarly, our choice to use a single coefficient on the average-source projection vector,
as opposed to one coefficient per source task, may be limiting in situations where the source
vectors are not well concentrated. In the WESAD analysis where k ⇡ 1.5, for example,
it may be possible to maintain an advantage over the target classifier for a larger section
of the regime with a more flexible class of hypotheses. The flexibility, however, comes
at the cost of privacy and computational resources. A potential middle ground between
maximal flexibility and the combination of privacy preservation and computational costs
is modeling the distribution of the source projection vectors as a multi-modal vMF where
the algorithm would only need access to the mean direction vector and standard errors
associated with each constituent distribution. The visualizations in Section 4.4 provide
evidence that this model may be more appropriate than the one studied here.
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Appendix A. Derivation of the Analytical Expression for Classification Error with
Respect to Target Distribution

Suppose the target distribution is given by P = p0P0 + p1P1 where pi is the prior
probability and Pi is the class conditional density of the i-th class. The generative model
in the main text specifies that Pi = Nd

�
(�1)i+1n, S

�
. For simplicity, we only consider the

case where p0 = p1 = 1
2 but we note that the analysis can be easily extended to unequal

priors. Under the 0–1 loss, the risk of an FLD hypothesis ĥ(x) = 1{ŵ>x > 0} with respect
to the target distribution P is given by

R(ĥ | ŵ) = PX⇠P [h(X) 6= Y | ŵ]

=
1
2
PX⇠P0

h
ŵ>X > 0

i
+

1
2
PX⇠P1

h
ŵ>X < 0

i

=
1
2
�

1
2
PX⇠P0

h
ŵ>X < 0

i
+

1
2
PX⇠P1

h
ŵ>X < 0

i
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Since ŵ>X ⇠ N1
�
ŵ>E[X], ŵ>S ŵ

�
, we have

R(ĥ | ŵ) =
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where Z is a standard normal random variable. Therefore,

R(ĥ | ŵ) =
1
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Using the fact that F(�x) = 1�F(x), we arrive at the desired expression:

R(ĥ | ŵ) = F

 
�ŵ>n
p

ŵ>S ŵ

!
.
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