

pubs.acs.org/OrgLett Letter

Synthesis of a Near-Infrared Fluorescent Probe for Imaging Catecholamines via a Tandem Nucleophilic Aromatic Substitution

Le Zhang, Xin A. Liu, Kevin D. Gillis,* and Timothy E. Glass*

ABSTRACT: A near-infrared (NIR) fluorescent probe NS667 was developed using a novel synthetic strategy by integrating an electron-rich 1,2,3,4-tetrahydroquinoxaline (THQ) into the scaffold from NS510, which binds to catecholamines with high affinity. The fluorophore core was constructed with a tandem nucleophilic aromatic substitution. Upon binding to catecholamines, the fluorescence of this probe shifted, with the emission in the NIR region. Live cell imaging results demonstrate that NS667 can effectively image norepinephrine in chromaffin cells with shifted fluorescence, which highlights the potential of the probe for neuroimaging in tissues.

atecholamines (epinephrine, norepinephrine, and dopamine), serving as major neurotransmitters, play an important role in regulating brain function and are of central importance for communication between neurons in the sympathetic nervous system. They are chemical messengers that transmit electrical signals across synapses and are implicated in critical functions that include movement, learning, memory, emotion, sleep, and attention. Irregular levels of catecholamine neurotransmitters are associated with various neurological diseases. Therefore, measurements of the distribution, uptake, storage, release, and utilization of catecholamine neurotransmitters are of substantial significance.

Fluorescent imaging for the detection of catecholamine neurotransmitters offers clear advantages compared to other methods like chromatography and electrochemistry. Fluorescence is less invasive and provides better spatial resolution. For this reason, a number of fluorescent probes for imaging catecholamines were developed, some of which contribute to the exploration of the norepinephrine signaling pathway and its connection to various disease states. Additionally, due to their structural similarity to neurotransmitters, fluorescent false neurotransmitters can be loaded into secretory vesicles with genuine neurotransmitters to effectively monitor the fluorescence loss associated with the release of neurotransmitters.

In our research group, we have been dedicated to the development of fluorescent probes for imaging neurotransmitters, with the achievement of creating a toolbox of such probes (Figure 1). Most of these probes fluoresce in the green, except for NS715, which is a NIR probe. Unfortunately, NS715 is not selective for any particular amine. Thus, this toolbox lacks a high-affinity NIR fluorescent probe capable of sufficiently imaging neurotransmitters in tissue samples. Inspired by our previous work (NS715 and NS510), herein we present a high-affinity NIR fluorescent probe NS667 for imaging catecholamines in live cells, with a potential application in tissues.

During the development of probe NS510 (Figure 1), a boronic acid group is the predominant factor contributing to significantly high affinity of NS510 for catecholamines. Additionally, NS510 possesses the scaffold that aligns favorably with catecholamines due to the well-suited geometry.

Received: October 11, 2023 Revised: November 30, 2023 Accepted: December 12, 2023 Published: December 18, 2023

Figure 1. Tool box of fluorescent probes developed in our lab.

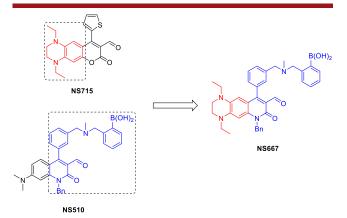


Figure 2. Design of near-infrared fluorescent probe NS667.

Furthermore, the incorporation of electron-rich diethyl-substituted THQ (1,2,3,4-tetrahydroquinoxaline) leads to the emission of NS715 (Figure 1) in the NIR region. For these reasons, we decided to incorporate both the scaffold of NS510 (highlighted in blue) and the diethyl-substituted THQ (highlighted in red) from NS715 to develop our NIR high-affinity fluorescent probe NS667 for imaging catecholamines (Figure 2).

We first sought to synthesize NS667 in the same manner as NS715 (Scheme 1a). However, the quinolone fluorophore could not be prepared using this method. Therefore, we conducted tests and screenings of various synthetic pathways in the pursuit of successfully synthesizing NS667. Among these approaches, the one presented in Scheme 1b proved to be the most effective.

To begin, the commercially available starting material 4 was subjected to reductive amination, resulting in the formation of the substituted aniline compound 5. The quinolone core compound 7 was furnished via a Pechmann cyclization after the reaction with compound 6. Next, the benzyl alcohol substituent 9 was appended on tosylated compound 8 using a Suzuki coupling reaction to produce compound 10 in a high yield. The next step is the key to achieve this synthesis: the dimethoxy substituent compound 10 underwent a tandem nucleophilic aromatic substitution with the dilithium amide intermediate generated by deprotonation of compound 11 with *n*-butyllithium, leading to the production of the diaminesubstituted compound 12 in a moderate yield. 11 Furthermore, fomylated compound 14 was produced with brominated compound 13 using a Vilsmeier-Haack reaction. The phenylboronic acid moiety 15 was appended on compound 14 to complete the synthesis of target probe NS667.

Scheme 1. Syntheses of NS715 and NS667

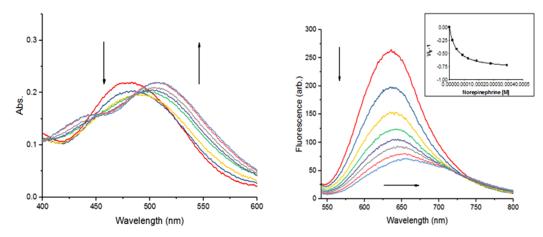


Figure 3. UV–vis and fluorescence titration of NIR probe NS667 (20 μ M) with 10 mM norepinephrine in buffer (25 mM HEPES, 50 mM Na₂S₂O₃, pH 7.4, 2% DMSO). λ_{ex} = 532 nm, λ_{ex} = 654 nm. Inset is the fit of the fluorescence to a binding isotherm.

Table 1. Association Constants (K_a) and Spectroscopic Parameters for the Binding of NS667 and NS510 9 to Several Neurotransmitters

	NS667 ^d			NS510°		
neurotransmitter	$K_a(\mathbf{M}^{-1})^a$	$I_{sat}/I_0^{ m b}$	$\Delta\lambda_{em}$ (nm)	$K_a(\mathbf{M}^{-1})^a$	$I_{sat}/I_0^{ m b}$	λ _{em} (nm)
HO OH H	16,906	0.58	637 → 638	35,900°	0.80	510
epinephrine OH HO NH ₂	20,186	0.15	636 → 654	13,500	1.9	510
norepinephrine HO NH ₂	17,428	0.23	635 → 667	17,900	0.88	510
dopamine NH ₂ HO N H	2,619	0.23	635 → 659	N/A	N/A	N/A
serotonin NH2 O O O	109	0.31	634 → 640	32	26	510

glutamate

 $^aK_{\rm a}$ measured by fluorescence spectroscopy. Errors in $K_{\rm a}$ values are $\pm 10\%$ based on triplicate titrations. $^bI_{\rm sat}$ is the fluorescence intensity at saturation taken from the theoretical fit to the binding. $^cK_{\rm a}$ measured by UV–vis spectroscopy. dT his work. eR eference 9.

NS667 was screened with a number of relevant neuro-transmitters using both absorption and fluorescence spectroscopy. As observed with the probe NS510 developed by our research group, NS667 bound to catecholamines bearing a primary amine (dopamine and norepinephrine) via the formation of an iminium ion as well as a boronate ester, which produced a red shift in absorption from approximately 480 to 520 nm upon the addition of catecholamine. Excitation at 532 nm afforded a fluorescence shift from 636 to 654 nm for

norepinephrine (Figure 3) and that from 635 to 667 nm for dopamine (Figure S1). Remarkably, NS667 produced a large Stokes shift (160 nm) and fluorescence, which is well in the NIR spectral region. However, the probe binding to epinephrine produced a negligible shift (from 637 to 638 nm) in fluorescence upon excitation at 532 nm due to the absence of an interaction between the secondary amine of epinephrine and the aldehyde of the probe (Figure S3). Although the fluorescence of the probe is reduced upon

Figure 4. Structure of NS667 bound to norepinephrine and confocal image of norepinephrine-enriched chromaffin cells incubated with NS667 (0.5 μ M NS667; $\lambda_{\rm ex}$ = 515 nm).

binding analytes, the high binding affinity for catecholamines and the substantial Stokes shift are distinctive features, allowing the differentiation of fluorescence upon the interaction of catecholamine with NS667 as compared to other biogenic amines. Moreover, the significant decrease in background autofluorescence within the NIR region ensures that NS667 remains functional even though its fluorescence is reduced.

Table 1 summarizes the binding and spectroscopic data for the association of NS667 and NS510 with relevant vesicular neurotransmitters that include the monoamine catecholamines (dopamine, norepinephrine, and epinephrine), serotonin, and the amino acid glutamate. NS667 showed a weak affinity for glutamate along with a modest fluorescence reduction. NS667 exhibited a much higher affinity (\sim 6.4-fold) for serotonin (2,619 M $^{-1}$), compared to the binding affinity for serotonin with NS715 (409 M $^{-1}$), which is presumably attributed to the primary interaction between the hydroxyl of serotonin and the boronic acid of the probe besides the secondary interaction between the primary amine and the aldehyde via iminium formation. Notably, NS510 is completely quenched by serotonin, making NS667 the best serotonin sensor in the series.

More importantly, NS667 exhibited a remarkable binding affinity for catecholamines. Norepinephrine and dopamine bound to NS667 with high affinity due to the interaction of the boronic acid and the catechol via boronate ester formation, leading to moderate fluorescence quenching. The binding of epinephrine to NS667 produced a milder fluorescence quenching, as anticipated, owing to the single interaction between catechol and boronic acid. This high binding affinity toward catecholamines is very similar to that of NS510. In the pursuit of achieving a high affinity, a significantly large Stokes shift, and NIR-region emission for NS667, there is a trade-off with a considerable reduction in fluorescence intensity. Hence, based on our reasoning, NS667 is adept at sufficiently imaging catecholamines. Consequently, we opted to validate the utility of NS667 using norepinephrine-enriched chromaffin cells.

We isolated norepinephrine-enriched chromaffin cells from bovine adrenal glands. ¹² Next, norepinephrine-enriched population chromaffin cells were plated and incubated with a 0.5 μ M solution of NS667 at 37 °C for 30 min, then the excess probe was washed off. The cells were examined by confocal fluorescence microscopy using 515 nm excitation. The norepinephrine-enriched cells were brightly stained with NS667 (Figure 4). Punctate staining of the chromaffin cells suggested that the probe labels the secretory vesicles found throughout the cell. The cell imaging data also indicate this

NIR fluorescent probe NS667 could label catecholamines in the secretory vesicles in live cells.

In conclusion, a near-infrared fluorescent probe was designed and synthesized with exceptionally high affinity and notable selectivity. Upon association with catecholamines, it exhibits a reduced fluorescence intensity in the near-infrared region, along with a significant Stokes shift. NS667 gave punctate staining of secretory vesicles in norepinephrine-enriched chromaffin cells using a confocal microscope. Our initial findings in norepinephrine-enriched chromaffin cells show great promise for potential applications in live biological systems, and we expect to further explore the practical utility of this probe in live cells and tissue.

ASSOCIATED CONTENT

Data Availability Statement

The data underlying this study are available in the published article and its Supporting Information.

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.3c03343.

UV-vis and fluorescence spectra, cell studies, synthetic procedures, and ¹H NMR and ¹³C NMR spectra (PDF)

AUTHOR INFORMATION

Corresponding Authors

Kevin D. Gillis – Dalton Cardiovascular Research Center and Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, Missouri 65211, United States; Email: gillisk@missouri.edu

Timothy E. Glass — Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States; orcid.org/0000-0002-5064-3341; Email: GlassT@missouri.edu

Authors

Le Zhang – Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States

Xin A. Liu – Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211, United States

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.orglett.3c03343

Note

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work is supported by the National Institutes of Health (R01 EB020415) and the National Science Foundation (CHE-2203359).

REFERENCES

(1) (a) Marc, D. T.; Ailts, J. W.; Campeau, D. C. A.; Bull, M. J.; Olson, K. L. Neurotransmitters excreted in the urine as biomarkers of nervous system activity: Validity and clinical applicability. *Neurosci. Biobehav. Rev.* **2011**, *35*, 635–644. (b) Chen, Y.; Zhang, K.; Wen, G.; Rao, F.; Sanchez, A. P.; Wang, L.; Rodriguez-Flores, J. L.; Mahata, M.; Mahata, S. K.; Waalen, J.; Ziegler, M. G.; Hamilton, B. A.; O'Connor, D. T. Human dopamine β -hydroxylase promoter variant alters transcription in chromaffin cells, enzyme secretion, and blood

- pressure. Am. J. Hypertens. 2011, 24, 24–32. (c) Omiatek, D. M.; Dong, Y.; Heien, M. L.; Ewing, A. G. Only a fraction of quantal content is released during exocytosis as revealed by electrochemical cytometry of secretory vesicles. ACS Chem. Neurosci. 2010, 1, 234–245.
- (2) (a) Boyd, B. W.; Witowski, S. R.; Kennedy, R. T. Trace-level amino acid analysis by capillary liquid chromatography and application to in vivo micro dialysis sampling with 10-s temporal resolution. *Anal. Chem.* **2000**, 72, 865–871. (b) Deng, Y.-H.; Wang, H.; Zhang, H.-S. Determination of amino acid neurotransmitters in human cerebrospinal fluid and saliva by capillary electrophoresis with laser-induced fluorescence detection. *J. Sep. Sci.* **2008**, 31, 3088–3097.
- (3) Ng, J.; Papandreou, A.; Heales, S. J.; Kurian, M. A. Monoamine neurotransmitter disorders-clinical advances and future perspective. *Nat. Rev. Neurol.* **2015**, *11*, 567–584.
- (4) (a) Liu, Y.; Li, M.; Zhang, F.; Zhu, A.; Shi, G. Development of Au disk nanoelectrode down to 3 nm in radius for detection of dopamine release from a single cell. *Anal. Chem.* **2015**, 87, 5531–5538. (b) Jin, S.; Li, M.; Zhu, C.; Tran, V.; Wang, B. Computer-based de novo design, synthesis, and evaluation of boronic acid-based artificial receptors for selective recognition of dopamine. *Chem-BioChem.* **2008**, 9, 1431–1438. (c) Orwar, O.; Jardemark, K.; Jacobson, I.; Moscho, A.; Fishman, H. A.; Scheller, R. H.; Zare, R. N. Patch-clamp detection of neurotransmitters in capillary electrophoresis. *Science* **1996**, 272, 1779–1782. (d) Ge, S.; Koseoglu, S.; Haynes, C. L. Bioanalytical tools for single-cell study of exocytosis. *Anal. Bioanal. Chem.* **2010**, 397, 3281–3304.
- (5) (a) Jang, Y.-J.; Jun, J.-H.; Swamy, K. M. K.; Nakamura, K.; Koh, H.-S.; Yoon, Y.-J.; Yoon, J.-Y. Fluorescence sensing of dopamine. *Bull. Korean Chem. Soc.* **2005**, *26*, 2041–2043. (b) Secor, K. E.; Glass, T. E. Selective amine recognition: development of a chemosensor for dopamine and norepinephrine. *Org. Lett.* **2004**, *6*, 3727–3730. (c) Maue, M.; Schrader, T. A color sensor for catecholamines. *Angew. Chem., Int. Ed.* **2005**, *44*, 2265–2270.
- (6) (a) Yan, H.; Wang, Y.; Huo, F.; Yin, C. Fast-specific fluorescent probes to visualize norepinephrine signaling pathways and its flux in the epileptic mice brain. *J. Am. Chem. Soc.* **2023**, *145*, 3229–3237. (b) Zhou, N.; Huo, F.; Yue, Y.; Yin, C. Specific fluorescent probe based on "protect-deprotect" to visualize the norepinephrine signaling pathway and drug intervention tracers. *J. Am. Chem. Soc.* **2020**, *142*, 17751–17755. (c) Yue, Y.; Huo, F.; Yin, C. Noradrenaline-specific, efficient visualization in brain tissue triggered by unique cascade nucleophilic substitution. *Anal. Chem.* **2019**, *91*, 2255–2259.
- (7) (a) Gubernator, N. G.; Zhang, H.; Staal, R. G. W.; Mosharov, E. V.; Pereira, D. B.; Yue, M.; Balsanek, V.; Vadola, P. A.; Mukherjee, B.; Edwards, R. H.; Sulzer, D.; Sames, D. Fluorescent false neurotransmitters visualize dopamine release from individual presynaptic terminals. *Science* 2009, 324, 1441–1444. (b) Rodriguez, P. C.; Pereira, D. B.; Borgkvist, A.; Wong, M. Y.; Barnard, C.; Sonders, M. S.; Zhang, H.; Sames, D.; Sulzer, D. Fluorescent dopamine tracer resolves individual dopaminergic synapses and their activity in the brain. *Proc. Natl. Acad. Sci. U S A* 2013, 110, 870–875. (c) Pereira, D. B.; Schmitz, Y.; Mészáros, J.; Merchant, P.; Hu, G.; Li, S.; Henke, A.; Lizardi-Ortiz, J. E.; Karpowicz Jr, R. J.; Morgenstern, T. J.; Sonders, M. S.; Kanter, E.; Rodriguez, P. C.; Mosharov, E. V.; Sames, D.; Sulzer, D. Fluorescent false neurotransmitter reveals functionally silent dopamine vesicle clusters in the striatum. *Nat. Neurosci.* 2016, 19, 578–586.
- (8) (a) Hettie, K. S.; Liu, X.; Gillis, K. D.; Glass, T. E. Selective catecholamine recognition with Neurosensor 521: a fluorescent sensor for the visualization of norepinephrine in fixed and live cells. ACS. Chem. Neurosci. 2013, 4, 918–923. (b) Klockow, J. L.; Hettie, K. S.; Glass, T. E. ExoSensor 517: a dual-analyte fluorescent chemosensor for visualizing neurotransmitter exocytosis. ACS Chem. Neurosci. 2013, 4, 1334–1338. (c) Hettie, K. S.; Klockow, J. L.; Glass, T. E. Three-input logic gates with potential application for neuronal imaging. J. Am. Chem. Soc. 2014, 136, 4877–4880. (d) Smith, M. R.; Zhang, L.; Jin, Y.; Yang, M.; Bade, A.; Gillis, K. D.; Jana, S.; Bypaneni, R. N.; Glass, T. E.; Lin, H. A turn-on

- fluorescent amino acid sensor reveals chloroquine's effect on cellular amino acids via inhibiting Cathepsin L. ACS Cent. Sci. **2023**, *9*, 980–991.
- (9) Zhang, L.; Liu, X. A.; Gillis, K. D.; Glass, T. E. A high-affinity fluorescent probe for catecholamine: application to monitor norepinephrine exocytosis. *Angew. Chem. Int.* **2019**, *58*, 7611–7614.
- (10) Hettie, K. S.; Glass, T. E. Turn-on near-infrared fluorescent sensor for selectively imaging serotonin. *ACS Chem. Neurosci.* **2016**, 7, 21–25.
- (11) ten Hoeve, W.; Kruse, C. G.; Luteyn, J. M.; Thiecke, J. R. G.; Wynberg, H. Direct substitution of aromatic ethers by lithium amides. A new aromatic amination reaction. *J. Org. Chem.* **1993**, *58*, 5101–5106
- (12) (a) Yang, Y.; Craig, T. J.; Chen, X.; Ciufo, L. F.; Takahashi, M.; Morgan, A.; Gillis, K. D. Phosphomimetic mutation of Ser-187 of SNAP-25 increases both syntaxin binding and highly Ca²⁺-sensitive exocytosis. *J. Gen. Physiol.* **2007**, *129*, 233–244. (b) Moro, M. A.; López, M. G.; Gandía, L.; Michelena, P.; García, G. Seperation and culture of living adrenaline- and noradrenaline-containing cells from bovine adrenal medullae. *Anal. Biochem.* **1990**, *185*, 243–248.