
Soil Sci. Soc. Am. J. 2024;88:905–920. wileyonlinelibrary.com/journal/saj2 905

Received: 20 November 2023 Accepted: 4 March 2024 Published online: 11 April 2024

DOI: 10.1002/saj2.20665

O R I G I N A L A R T I C L E

S o i l a n d E c o s y s t e m P r o c e s s e s

Improving a nitrogen mineralization model for predicting
unfertilized corn yield

Kathleen E. Arrington1 Raziel A. Ordóñez2 Zoelie Rivera-Ocasio1

Madeline Luthard1 Sarah Tierney1 John Spargo2 Denise Finney3

Jason Kaye1 Charles White2

1Department of Ecosystem Science and
Management, The Pennsylvania State
University, University Park, Pennsylvania,
USA
2Department of Plant Science, The
Pennsylvania State University, University
Park, Pennsylvania, USA
3Department of Biology, Ursinus College,
Collegeville, Pennsylvania, USA

Correspondence
Kathleen E. Arrington, Department of
Ecosystem Science and Management, The
Pennsylvania State University, University
Park, PA, USA.
Email: kea106@psu.edu

Assigned to Associate Editor Steve Culman.

Funding information
Natural Resources Conversation Service,
Grant/Award Number: NR20-08G010;
USDA National Institute of Food and
Agriculture Hatch Appropriations,
Grant/Award Numbers:
PEN04764A,1025969, PEN04977,7006665;
USDA National Institute of Food and
Agriculture Sustainable Agricultural
Systems, Grant/Award Number:
2019-68012-29904; USDA National
Institute of Food and Agriculture,
Grant/Award Number: 2020- 51300-32178

Abstract
Crop N decision support tools are typically based on either empirical relationships

that lack mechanistic underpinnings or simulation models that are too complex to use

on farms with limited input data. We developed an N mineralization model for corn

that lies between these endpoints; it includes a mechanistic model structure reflect-

ing microbial and texture controls on N mineralization but requires just a few simple

inputs: soil texture soil C and N concentration and cover crop N content and carbon

to nitgrogen ratio (C/N). We evaluated a previous version of the model with an inde-

pendent dataset to determine the accuracy in predictions of unfertilized corn (Zea
mays L.) yield across a wider range of soil texture, cover crop, and growing season

precipitation conditions. We tested three assumptions used in the original model: (1)

soil C/N is equal to 10, (2) yield does not need to be adjusted for growing season

precipitation, and (3) sand content controls humification efficiency (ε). The best new
model used measured values for soil C/N, had a summertime precipitation adjust-

ment, and included both sand and clay content as predictors of ε (root mean square

error [RMSE] = 1.43 Mg ha−1; r2 = 0.69). In the new model, clay has a stronger

influence than sand on ε, corresponding to lower predicted mineralization rates on

fine-textured soils. The newmodel had a reasonable validation fit (RMSE= 1.71 Mg

ha−1; r2 = 0.56) using an independent dataset. Our results indicate the new model is

an improvement over the previous version because it predicts unfertilized corn yield

for a wider range of conditions.

Abbreviations: CUE, carbon use efficiency; dY, delta yield; GDD,
growing degree days; SOM, soil organic matter.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited and is not used for commercial purposes.
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1 INTRODUCTION

Microbial decomposition of soil organic matter (SOM) and
plant residues can provide a source of N for crops, yet quanti-
fying this resource requires a model that includes interactions
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among plants, microbes, environmental conditions, and soil
minerals (Daly et al., 2021). There has been a widespread call
to include microorganisms more explicitly in biogeochemi-
cal models (Schimel, 2023) and in fertilizer recommendations
for crops (Franzluebbers et al., 2022), but with no consensus
on which microbial attributes might be required in different
modeling contexts. At the same time, there has been a call to
consider the role of mineral-associated nutrient pools in mod-
eling SOM decomposition, including agricultural N fertility
(Daly et al., 2021). In agroecosystems, a substantial portion of
N uptake can come from indigenous nutrient pools (Cassman
et al., 2002; Griesheim et al., 2023; Yan et al., 2020); thus, the
ability to estimate N from organic sources (SOM and plant
residues) offers an opportunity to improve fertilizer recom-
mendations, providing economic and environmental benefits.
In this paper, we advance efforts to include microbial pro-
cesses and their interaction with soil minerals in a simple
biogeochemical model that is the basis for an N fertilizer
decision support tool for corn (Zea mays L.). Incorporating
microbes and minerals in decision support tool models is a
distinct challenge compared to mechanistic simulation mod-
els because decision support tools must be effective at a wide
variety of sites with just a few inputs that are accessible to
users such as farmers and agronomists.
A variety of approaches have been used to estimate the

N contributions of SOM and cover crops to the follow-
ing cash crop. Some of these include empirical equations
based on laboratory incubations (Quemada & Cabrera, 1995;
Sullivan et al., 2019; Franzluebbers et al., 2022), the pre-
sidedress soil nitrate test (White et al., 2023), and detailed
crop-soil simulation models (Thapa et al., 2022; Woodruff
et al., 2018). Here we focus on improving an Nmineralization
model (White et al., 2020) that uses simple biogeochemical
equations to explicitly represent microbial decomposition and
mineral-associated SOM. This model is neither an empirical
relationship nor a simulation; it lies between these endpoints.
It includes a system of equations based on biogeochemical
theory, but with parameter and coefficient values estimated
by fitting the theoretical equations to regional field data. The
strengths of this model are that (1) the required inputs are
accessible to many farmers and agronomists through existing
commercial laboratory services, (2) it combines N mineral-
ization and yield response to directly predict unfertilized corn
yield, and (3) it can be adapted to a wide variety of sites and
growing seasons, as we demonstrate here.
Our N mineralization model (White et al., 2020) includes

microbial physiology based on the biogeochemical theory
that N mineralization is a function of microbial carbon use
efficiency (CUE) and the difference in C/N between microor-
ganisms and their consumed substrates (Manzoni et al., 2012).
CUE, the ratio of C used for growth (new microbial biomass)
over C uptake from the soil, is an important control onwhether
N mineralization or immobilization will occur in the soil
environment (Manzoni et al., 2012). The key microbial phys-

Core Ideas
∙ An improved N mineralization model predicts
unfertilized corn yield for a wide variety of con-
ditions.

∙ The new model provides realistic estimates of
microbial humification efficiency across a range of
soil textures.

∙ Humification efficiency is affected more by soil
clay content than sand content.

∙ The updated coefficients account for the influence
of precipitation on corn yield.

∙ The improvedmodel provides a foundation for site-
specific N fertilizer recommendations.

iology term in our model is the humification efficiency (ε),
a parameter representing the average CUE over a growing
season, which can cover multiple generations of microbial
decomposition (White et al., 2020). The ε term is modified
by soil texture in the model, providing a link between byprod-
ucts of microbial decomposition and their preservation in
soil via association with clay. In the previous calibration, the
model-calculated values for ε led to good agreement between
measured and predicted unfertilized corn yield, however if
these equations are extrapolated to coarser-textured soils, the
predicted value for ε would be negative for soils with more
than 49% sand, possibly overestimating N mineralization and
unfertilized corn yield (White et al., 2020). The focus of
this study was to improve our N mineralization model so
that it could be applied to sites with a broad range of soil
textures.
The original dataset used to calibrate these equations had a

moderate range of soil textures, cover crop C/N and growing
season precipitation (White et al., 2020). Using experiments
from both research station and commercial farms across Penn-
sylvania, we compiled a new dataset that includes a broader
range of soil textures, a more uniform distribution of obser-
vations across the range of winterhardy cover crop C/N,
and a wider range of summertime precipitation compared to
the original dataset. With the new dataset, we tested three
assumptions in the original model: (1) soil C/N can be set
at fixed value of 10, (2) corn yield predictions do not need
to be adjusted for growing season precipitation, and (3) sand
content controls ε. Thus, the objectives of this studywere to:

1. Assess the accuracy of the N mineralization model cali-
brated by White et al. (2020) to predict unfertilized corn
yield using a robust new dataset for validation.

2. Reformulate and recalibrate the N mineralization model
to include site-specific soil C/N and growing season
precipitation using the new dataset.
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ARRINGTON ET AL. 907

T A B L E 1 Experimental site-years in the new dataset, including number of observations, soil pH (1:1 in water), sand and clay content, soil C
content, soil C/N, and unfertilized corn grain yield (dry basis) within each site.

Site Year Observations pH Sand (%) Clay (%) Soil C (%) Soil C/N
Unfertilized corn
yielda (Mg ha−1)

A 2021 4 6.8 18 32 1.59 9.5 11.1

B 2021 4 7.3 33 27 1.63 10.0 9.3

C 2019 16 6.8 14 45 1.57 9.2 5.7

D 2020 20 6.5 30 28 1.37 10.7 2.8

E1 2021 4 6.8 18 33 1.37 10.9 4.4

E2 2021 4 6.4 20 31 1.50 11.2 8.7

F 2021 4 6.7 17 30 1.82 8.8 11.6

G1 2021 4 6.9 67 12 1.43 11.1 8.1

G2 2021 4 7.2 47 19 2.35 10.9 8.0

5-N 2012 52 6.3 25 28 1.37 9.6 6.5

aAverage unfertilized corn yield across all observations in each experiment.

3. Assess the new model accuracy using the original dataset
(White et al., 2020) for validation.

As part of objectives 2 and 3, we tested the following
hypotheses:
(H1) Incorporating measured soil C/N values into the recal-

ibrated equations will improve the model fit compared to
assuming soil C/N is equal to 10.
(H2) Incorporating summertime precipitation will improve

the model fit.
(H3) Sand content will remain the best regulator of ε,

consistent with White et al. (2020).

2 MATERIALS AND METHODS

2.1 Experimental sites

The new dataset was generated from 10 experimental site-
years conducted over four growing seasons (2012 and 2019–
2021) in central and southeastern Pennsylvania (Table 1).
Sites E andG each included two fields, whichwere subdivided
into two experiments based on differences in management
(Site E) and contrasting soil textures (site G). Experiments
E1 and E2 were adjacent fields at a research station, with
similar soil properties but different crop rotation histories:
E1 had a corn–soy (Glycine max L.) rotation with no cover
cropping and occasional tillage, whereas E2 has been man-
aged in a corn–soy–wheat (Triticum aestivumL.) rotationwith
no-tillage and a hairy vetch (Vicia villosa Roth) cover crop
planted between wheat and corn since 2004. Site G included
two fields at the same farm managed similarly but with dif-
ferent soil textures, indicated as G1 and G2 in Table 1. The
long-term crop rotation history among the sites involved corn,
soybean, and wheat in various frequencies. The long-term

manure history varied across sites from none to annual appli-
cations depending on the location, but no manure was applied
in the year of the corn yield response experiment at any site.
At Site 5, some of the cover crop treatments were included
in the original dataset (5-O) and the rest were included in the
new dataset (5-N). Soil taxonomic classes were fine, mixed,
semiactive, mesic Typic Hapludalfs (Sites A, C, E, F, and 5-
N); fine-loamy, mixed, semiactive, mesic Typic Hapludults
(Site B); fine-loamy, mixed, mesic Typic Hapludults (Site
D); coarse-loamy, mixed, mesic Fluventic Dystrochrepts (Site
G1); and coarse-loamy over sandy or sandy-skeletal, mixed,
mesic Fluventic Dystrochrepts (Site G2). The original dataset
was based on nine experimental site-years during three grow-
ing seasons (2012–2014) with details reported in White et al.
(2020).

2.2 Weather variables

Average air temperature, cumulative growing degree days
(GDD), and cumulative precipitation for the month of April
to September (the time frame when most corn crops are
growing within the state of Pennsylvania) were calculated for
each experimental site in both the new and original datasets
(Table 2). The GDD variable was calculated using the typical
equation, GDD= (Tmax+ Tmin) × 0.5− Tbase, where Tmax
corresponds to maximum temperature, Tmin is equal to mini-
mum temperature, and Tbase represents the base temperature
of 8˚C for corn growth. The precipitation difference from
the long-term monthly average (1980–2021) across sites for
June, July, and August (101.5 mm month−1) was calculated
for each experimental site. In a few cases, fields were located
near each other, in which case historical weather records were
shared across these sites (see coordinates in Table 2). The
historical weather data (1980–2021) was derived from the
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North America Land Data Assimilation System 2 (Xia et al.,
2012).

2.3 Field management

Cover crops were planted in late summer and fall prior to
the corn year of each experiment. Cover crops included both
monocultures and mixtures of species made up primarily of
winterhardy species, which were terminated in late spring
prior to planting corn as a summer cash crop. Some sites had
a single cover crop management practice present, while other
sites, particularly research station sites, had multiple cover
crop treatments established in randomized complete block
designs, such as different species or different termination tim-
ings. Each cover crop treatment had four or five replicates,
leading to a total of 116 observations (Table 3). At sites with
tillage-based crop production (Table 3), prior to cover crop
planting, fields were tilled with a chisel plow and seedbeds
prepared with a cultimulcher. At tilled sites, cover crops were
terminatedwith a chisel plow or high speed disk, and seedbeds
for corn planting were prepared with a cultimulcher. At no-
till sites, weeds were controlled with herbicides prior to cover
crop planting in the fall and cover crops were terminated in the
spring with herbicides and residues were left to decompose on
the soil surface.
Corn was planted in May with populations ranging from

74,000 to 84,000 plants ha−1. Most sites used herbicides to
control weeds during the growing season, except for Sites F
and G, which were organic production systems on commer-
cial farms that used three–five passes of field cultivators for
weed control. All sites were nonirrigated. Each site had a
range of N fertilizer levels applied in a randomized complete
block design with three–five replications, however our anal-
ysis here only utilizes corn yields from the unfertilized plots,
which were randomly assigned within each block. Corn grain
was harvested in the fall using various methods depending
on the resources available at each site, including production
scale combines, small plot combines, and by hand. Harvested
plot sizes ranged from 6 m × 0.76 m at the smallest to 91 m
× 9.1 m at the largest. Grain from each plot was weighed at
harvest, the grain moisture content was measured, and yields
were adjusted to 0% moisture for data analysis. For grain har-
vested by the small plot combine, moisture was measured by
an on-board moisture sensor in the weighing bin of the com-
bine (Almaco). Grain subsamples from plots harvested with
commercial combines were measured for moisture content
using a benchtop moisture tester (GAC 2100, DICKEY-john).
Moisture content on grain harvested by hand was measured
gravimetrically by drying five representative ears in an oven
at 65˚C until a constant weight was achieved (approximately
2weeks) andmeasuring themass lost during drying. The aver-
age unfertilized corn yield for each experiment is listed in
Table 1.

2.4 Field sampling and laboratory analyses

Soil samples were collected at the start of each experiment
in spring, either by plot or block, depending on the site. Soil
samples were composited from six to 12 soil cores (1.8-cm
diameter, 0- to 20-cm depth) and submitted to the Penn State
Agricultural Analytical Services Laboratory for analysis of
sand, silt, and clay fractions using the hydrometer sedimenta-
tion method (Gee & Bauder, 1986). For soil C and N analysis,
samples were dried, ground, and analyzed with a dry combus-
tion elemental analyzer, as described by White et al. (2020).
Table 1 shows the soil properties for the experiments in the
new dataset.
Cover crop biomass was sampled in the late fall (prior to

the first frost) for winterkilled species or in the spring prior to
termination of winterhardy species. For each treatment plot,
aboveground biomass was clipped from two randomly placed
0.5 m × 0.5 m quadrats, separated by species, dried, weighed,
ground, and analyzed for C and N content, as described by
White et al. (2020). Cover crop biomass N was measured
separately for winterkilled and winterhardy species, based
on respective samples collected before fall frost or before
spring termination (Table 3). Site 5-N included mixtures
of winterkilled and winterhardy species, reflecting separate
sampling of species with different growth periods.

2.5 Model description

We recalibrated the biogeochemical equations with the new
dataset using the process described in White et al. (2020),
except that instead of using fivefold cross-validation, we val-
idated the new model with the original dataset of White et al.
(2020). The recalibration process not only allowed for changes
in the coefficients of the equations but also repeated the test-
ing of which parameters were significant in the system of
equations, allowing for the possibility of a new model struc-
ture. The system of equations included in the recalibration
process is presented below:
Equation (1) calculates ε, allowing both sand and clay

content as possible predictors:

𝜀 = int + 𝑏sand %sand + 𝑏clay%clay. (1)

The cover crop yield credit Ycc was calculated with Equa-
tion (2) (White et al., 2016), where Nwk is the N content (kg
N ha−1) of winterkilled cover crops (measured in fall before
termination by frost), Nwhcc is the N content (kg N ha−1) of
winterhardy cover crops (measured in spring just before ter-
mination), (C/N)whcc is the C/N of winterhardy cover crops,
measured in spring, and αwh is the slope of the yield response
to N that is potentially mineralized from winterhardy cover
crop residues.
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910 ARRINGTON ET AL.

T A B L E 3 Cover crop biomass N content (kg N ha−1) for winterkilled species (fall) and winterhardy species (spring just prior to termination)
and spring C/N for winterhardy species.

Cover crop Cover crops
Site Speciesa Plots Biomass N (kg N ha−1) C/N (g g−1) Corn
(tillage) (Termination)b n Winterkilledc Winterhardyc Winterhardy Yield (unfertilized) (Mg ha−1)
A (NT) RY 4 – 35 16 11.1

B (NT) CC 4 – 96 15 9.3

C (NT) No covera 4 – 5 16 7.3

RY (Early)b 4 – 28 19 6.5

RY (Medium)b 4 – 36 28 5.3

RY (Late)b 4 – 45 33 3.9

D (NT) No covera 5 – 5 16 3.5

RY (Early)b 5 – 44 23 3.5

RY (Medium)b 5 – 59 33 2.6

RY (Late)b 5 – 62 43 1.5

E1 (NT) No cover 4 – 0 0 4.4

E2 (NT) HV 4 – 152 13 8.7

F (T) RG + CC 4 – 89 15 11.6

G1, G2 (T) OA 4 – 21 17 8.1

5-N (T) CA 4 – 109 24 6.2

CA + RY + BA + RG 4 – 63 43 5.0

CA + RY + FR + OA 4 19 60 34 5.7

CA + RY + RC + HV 4 – 159 16 7.8

CA + RY + SH + SB 4 5 68 38 4.9

FR 4 30 37 19 6.8

FR + OA + RC + HV 4 32 162 10 8.7

FR + OA + SH + SB 4 31 8 26 6.5

FR + OA + SS + FM 4 29 7 23 6.5

OA 4 30 8 28 6.8

SB 4 16 30 28 5.6

SH 4 3 41 27 5.8

8-MIX 4 27 162 15 8.4

Abbreviations: 8-MIX, all 8 species at Site 5-N; BA, barley (Hordeum vulgare L.); CA, canola (Brassica napus L.); CC, crimson clover (Trifolium incarnatum L. ‘Dixie’);
FM, foxtail millet (Setaria italica L. P. Beauv.); FR, forage radish (Raphanus sativus L.); HV, hairy vetch (Vicia villosa Roth); NT, no-till; OA, oat (Avena sativa L.), RC,
red clover (Trifolium pratense L.); RG, ryegrass (Lolium perenne L.); RY, cereal rye (Secale cereale L.); SB, soybean (Glycine max L.); SH, sunn hemp (Crotalaria juncea
L.); SS, sorghum sudangrass (Sorghum bicolor var. bicolor × bicolor var. sudanense); T, tillage.
aWeeds in the no cover treatments were sampled and treated as winterhardy biomass.
bEarly, medium, and late refer to termination times for RY.
cAt Site 5-N, winterkilled species were sampled in fall before frost and winterhardy species were sampled in spring before termination.

𝑌cc = 0.0078𝑁wk + 𝛼wh𝑁whcc +
(
1 −

𝜀(𝐶∕𝑁)whcc
10

)
.

(2)
Winterkilled and winterhardy cover crops are treated sepa-

rately in Equation (2) due to differences in decomposition time
before the corn growing season and the potential for losses of
nitrogen fromwinterkilled cover crops through denitrification
and leaching (Dean & Weil, 2009). Microbial decomposi-
tion of winterhardy cover crop residues is expected to result
in N mineralization if (C/N)whcc < 10/ε, and N immobiliza-

tion otherwise, where ε is calculated from Equation (1). In
Equation (2), αwh = 0.026 when N mineralization is expected
and αwh = 0.085 when N immobilization is expected, based
on a previous calibration of Equation (2) using a wide range
of different winterkilled and winterhardy cover crop species
planted in monocultures and mixtures (White et al., 2016).
During the previous calibration of Equation (2), the ε term
for winterkilled cover crops was zero, indicating no potential
for microbial N immobilization, therefore only a single coef-
ficient for Nwk (0.0078) is used and the C/N of winterkilled
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ARRINGTON ET AL. 911

cover crops is not required. For winterhardy cover crops,
however, separate values of αwk for N mineralizing and N
immobilizing residues were identified, with N immobilization
having a stronger impact on the yield response than N min-
eralization. The original calibration of Equation (2) also had
separate values of αwk for N mineralizing residues depending
on tillage, with tillage-incorporated residues having a slightly
greater value (0.026) than no-till residues (0.022). However,
there were no observations in the calibration dataset of immo-
bilizing residues in no-till sites, so a value of αwk for that
condition could not be estimated. Because differences in αwk
between tillage and no-tillage for mineralizing residues were
slight, and because values of αwk for both mineralizing and
immobilizing residues were available for tillage systems, we
adopted the tillage-based coefficients for use in the current
study.
The yield credit from soil organic matter (Ys) is calculated

with Equation (3), where αs is a calibrated coefficient selected
for the best-fit model (representing the yield response due to
mineralization of SOM), Cs is the total soil C (percent), and
(C/N)s is the soil C/N.

𝑌s = 𝛼s𝐶s(1 −
𝜀 (𝐶∕𝑁) s

10
). (3)

In White et al. (2020), soil C/N and microbial C/N were
both assumed to be 10, which cancelled them out of the equa-
tion for the SOM yield credit. Here we tested the measured
(C/N)s at each site as an input parameter in the recalibration
process while maintaining the assumption that microbial C/N
is equal to 10.
Equation (4) calculates the predicted unfertilized corn yield

(Yt) from Ys and Ycc, assuming a quadratic response to N
additions. The gYield coefficient is calibrated to the training
dataset. We included no intercept in this equation because
the intercept term was found to be not significant in White
et al. (2020) and had a high covariance with other model
parameters.

𝑌t =
(
𝑌s + 𝑌cc

)
+ 𝑔Yield

(
𝑌s + 𝑌cc

)2
. (4)

Since the new dataset had a wider range of precipita-
tion (compared to the long-term average for June, July, and
August), we tested adding a precipitation adjustment to Equa-
tion (4), allowing for summertime precipitation to influence
the predicted unfertilized corn yield:

𝑌t =
(
𝑌s + 𝑌cc

)
+ 𝑔Yield

(
𝑌s + 𝑌cc

)2 + 𝑏rain × PrecipDev,
(5)

where brain is the coefficient for the precipitation adjustment
term and PrecipDev is the difference between the monthly
average precipitation for June, July, and August at a site in
the year of the experiment and the long-term monthly average
precipitation for June, July, and August across sites and span-

ning from 1980 to 2021, which was 101.5 mm month−1. The
rationale for adding the precipitation adjustment is to ensure
that when PrecipDev is set to zero, the model is calibrated to
average rainfall conditions.

2.6 Statistical analyses

We assessed the accuracy of the original N mineralization
model developed by White et al. (2020) by comparing its
predictions to measured unfertilized corn yield for the new
dataset. Model fit was evaluated by calculating its root mean
square error (RMSE) and the coefficient of determination (r2)
and comparing these statistics to those presented in White
et al. (2020). Testing our three hypotheses required assessing
12 potential new model structures developed from a factorial
of the various model inputs (Table 4). Four groups of models
were developed to test the factorial of soil C/N = 10 versus
measured soil C/N in Equation (3) (Hypothesis 1) and sum-
mertime rainfall adjustment in Equation (5) versus no rainfall
adjustment in Equation (4) (Hypothesis 2). Within each group
of soil C/N and rainfall adjustment levels, three potential mod-
els were tested, where ε in Equation (1) was regulated by
sand alone, clay alone, or sand and clay together (Hypothe-
sis 3). For each of the 12 potential models, we evaluated the
model fit based on the Akaike information criterion (AIC) of
the calibration dataset and the RMSE of both the calibration
and validation datasets (White et al., 2020). Coefficients for
the system of equations in each of the 12 potential models
were fitted in the NLMIXED procedure of SAS 9.4, which
also calculates the AIC statistic. The RMSE of each fitted
model was calculated based on a tabulation of the residuals
between predicted and observed unfertilized yields. Although
testing for effects of tillage versus no-tillage soil management
on the model performance was not the primary objective of
this study, after identifying the best model from the testing
described above, we evaluated how fitting separate coeffi-
cients for αs based on tillage or no-tillage in Equation (3)
of the best model affected the coefficients and prediction
accuracy.

3 RESULTS

3.1 Characteristics of the new and original
calibration datasets

The experimental sites and cover crop treatments included in
the new calibration dataset contain a wide range of soil and
cover crop properties that are well suited to calibrating Nmin-
eralization models to predict unfertilized corn yield. The new
dataset had a similar range of soil C content and unfertilized
corn yield as the original dataset of White et al. (2020) but
included some sites with coarser textured soils (Figure 1a).
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ARRINGTON ET AL. 913

F I G U R E 1 Comparison of (a) soil textures and (b) cover crop C/N for the observations in the original and new datasets. Data are shown at the
plot level here, whereas in Table 1, % sand and % clay are averages for each experiment.

The new dataset also has a more uniform distribution of win-
terhardy cover crop C/N than the original dataset (Figure 1b).
The original dataset included several species of winterhardy
legumes (hairy vetch and several species of clover), resulting
in most observations with cover crops (88%) having winter-
hardy C/N less than 20 (Figure 1b). In contrast, only 42%
of observations with cover crops in the new dataset had a
winterhardy C/N less than 20. In part, this difference in win-
terhardy C/N is due to fewer plots in the new dataset with
winterhardy legumes. In addition, Sites C and D in the new
dataset included three different termination dates for cereal
rye, resulting in a wide range of winterhardy C/N within each
experiment.
Table 3 illustrates the variability in unfertilized corn yield

within sites that have similar soils but differences in cover
crop species or cover crop management practices. Although
soil properties were similar for the two fields in Site E
(Table 1), the unfertilized corn yield for E2was approximately
twice that of E1 (8.7 vs. 4.4 Mg ha−1; Table 1). Experiment
E2 had a high winterhardy cover crop N content along with
a low C/N from the hairy vetch cover crop, which would
likely result in N mineralization as the cover crop residues
decompose. Thus, the higher unfertilized corn yield in Exper-
iment E2 potentially reflects N supplied to corn by the cover
crop residues compared to Experiment E1, which had no N
contribution from cover crops.
Sites C and D provide another example of the potential

effects of management on unfertilized corn yield. Both exper-
iments included a treatment with no cover crop and treatments
with a cereal rye cover crop terminated at three different times
in the spring, corresponding to increasing cover crop matu-
rity and C/N. In these experiments, the average unfertilized
corn yield declined with later termination dates (Table 3). The
higher C/N (28–43) of the medium and late-terminated rye
most likely caused N immobilization, resulting in reduced N

availability to corn compared to plots with early-terminated
rye or no cover crop.
Across sites and years, the average growing season tem-

peratures ranged from 17.7 ± 6.1 to 20.2 ± 5.3˚C (Table 2).
The temperature variation between the hottest and coldest
environment was only 2.5˚C, a magnitude consistent with the
typical temperature differential observed between the eastern
and central regions in Pennsylvania. The cumulative growing
season GDDs had a wide range across sites, from 1504 to
2244 GDDs. The cumulative precipitation during the grow-
ing season exhibited a wide range across both years and sites
(Table 2), spanning from 415 to 875 mm. The driest year
(2020) accumulated only half of the rainfall compared to the
long-term normal precipitation. Across the six geographic
locations where experiments were conducted, the long-term
(1980–2021) average monthly precipitation in June, July, and
August was 101.5 mm month−1. The precipitation difference
from the long-termmonthly average for June, July, andAugust
exhibited a broader range of variation in the new dataset as
compared to the original dataset. This variation ranged from
38.1 mm month−1 higher (Site A) to 42.1 mm month−1 lower
(Site D) than the long-term monthly average (Table 2).

3.2 Mineralization models to predict
unfertilized corn yield

When the original N mineralization model structure (White
et al., 2020) was used to predict unfertilized corn yield for
the new dataset, predictions had relatively poor accuracy
(Figure 2, RMSE = 2.65 Mg ha−1; r2 = 0.14). This contrasts
with the accuracy of the model calibration to the original
dataset (RMSE = 1.58 Mg ha−1; r2 = 0.62) reported in
White et al. (2020), which was assessed using fivefold cross-
validation, rather than with an independent validation dataset.
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914 ARRINGTON ET AL.

F I G U R E 2 Comparison of observed and predicted unfertilized
corn yield for the new dataset using the original model structure and
calibration (White et al., 2020). Dashed line is the 1:1 relationship and
symbols correspond to the experiment codes listed in Table 1. Site 5
plots were divided between the original and new datasets (5-O and 5-N,
respectively). The accuracy of the original model assessed with this
independent dataset was RMSE = 2.65 Mg ha−1, r2 = 0.14.

While many observations in the new dataset were close to
the 1:1 relationship between predicted and observed values,
unfertilized yields at several sites were consistently either
over- or underpredicted. The original model overpredicted
unfertilized corn yield at most plots in Site D, which had
the greatest monthly precipitation deficit in the new dataset
(Table 2). The original model similarly overpredicted yield at
Experiments G1 andG2, which had coarser textured soils than
the sites included in the original dataset. In contrast, the orig-
inal model underpredicted the unfertilized corn yield for Site
A, which had the greatest monthly precipitation surplus in the
new dataset (Table 2). These examples illustrate how the orig-
inal model, which was developed from experiments during
average growing seasons and a moderate range of soil tex-
tures did not perform as well for growing seasons with higher
or lower precipitation than average or for sites with coarser
textured soils.
Our three hypotheses can be evaluated based on the AIC

and RMSE values for each of the 12 potential models in
Table 4. For Hypothesis 1 (that using measured soil C/N will
improve the model accuracy), we compared these statistics for
models within Groups 1 and 3 (measured soil C/N) against the
models within Groups 2 and 4 (soil C/N assumed to be equal
to 10). For all three combinations of predictors of ε (submod-
els a, b, and c), the calibration fit was improved by including
measured soil C/N in the model, as indicated by lower AIC
and RMSE values (Table 4). While the incorporation of mea-
sured soil C/N did not always improve the validation fit, when
the accuracy of calibration and validation data were assessed
together, there was a consistent pattern that including mea-

sured soil C/N in the model improved the overall accuracy
across the two datasets. Therefore, Hypothesis 1 is supported:
using measured soil C/N improves model fit and accuracy as
compared to assuming soil C/N is equal to 10.
Hypothesis 2, that accounting for summertime precipita-

tion will improve the model fit, was tested by comparing the
AIC and RMSE values for two sets of models. These statistics
for Group 2 models compared to Group 4 models indicate the
effect of incorporating a precipitation adjustment while using
an assumed soil C/N. Similarly, comparing these statistics for
the Group 1 and Group 3 models shows how the precipita-
tion adjustment affects the model fit when measured values
are used for soil C/N. The AIC and RMSE values were lower
for Group 4 compared to Group 2 models and for Group 3
compared to Group 1 models for the calibration and valida-
tion datasets individually and combined (Table 4). Therefore,
Hypothesis 2 is supported: incorporating the precipitation
adjustment (Equation 5 compared to Equation 4) improved the
model fit.
Hypothesis 3, that sand content will remain the best regu-

lator of ε, was tested by comparing the three submodels (a,
b, and c) within each group. For the calibration dataset, sub-
model a, which used both sand and clay content to regulate
ε, had lower AIC and RMSE values (Table 4) indicating a
better model fit. In addition, the “a” submodels consistently
had the lowest AIC values, indicating the improvement in
model fit outweighed the complexity of an additional pre-
dictor. However, for the validation dataset, the lowest RMSE
values within each group were for submodel b, which used
clay content to regulate ε. When the accuracy of calibration
and validation datasets combined was assessed, the lowest
RMSE values were submodel b (Groups 1 and 2) and sub-
model a in Groups 3 and 4. Because the models in Groups 3
and 4 were more accurate due to the precipitation adjustment,
we conclude that the texture submodel a (including both sand
and clay content) is the preferred regulator of ε across the two
datasets. Therefore, Hypothesis 3 was incorrect: sand content
alone was not the best predictor of ε.
The best model emerging from the various hypothesis tests

was model 3a, which included both clay and sand content,
measured soil C/N, and summertime precipitation (Table 4).
This model structure had the lowest AIC (426.4) and the
lowest RMSE for the calibration dataset and the combined cal-
ibration and validation datasets (1.43 and 1.55, respectively,
Table 4). The ΔAIC values in Table 4 show the difference
between each candidate model and model 3a. Models with
a ΔAIC value greater than 10 do not have support as the
best model to approximate the dataset (Burnham&Anderson,
2004). The second-best model (according to the calibration
dataset) is model 3b, with a ΔAIC value of 6.7. The only
difference between model 3a and 3b is whether to include the
% sand to calculate ε in Equation (1). Similarly, the primary
difference between model 3a and the original calibration was
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ARRINGTON ET AL. 915

T A B L E 5 Comparison of parameters and coefficients for Equations (1), (3), and (4) in the original calibration and in the new calibration of the
best performing model (3a).

Equation Parameter

Estimate 95% Confidence interval
Original New New
(White et al., 2020) (Model 3a) (Model 3a)

Equation (1) (ε) Intercept 0.774 0.0136 −0.2023 0.2294

bclay Removeda 0.0111 0.0072 0.0150

bsand −0.0157 0.0053 0.0022 0.0085

Equation (3) (Ys) αS 9.85 12.76 9.88 15.66

Equations (4) and (5) (Yt) gYield −0.0217 −0.0240 −0.0290 −0.0191
bRain Not usedb 0.0478 0.0331 0.0625

Note: Humification efficiency (ε) is predicted with Equation (1), the yield credit due to soil organic matter (Ys) is predicted with Equation (3), and unfertilized corn yield
(Yt) is predicted without a precipitation adjustment (original model; Equation 4) or with a precipitation adjustment (new model 3a; Equation 5).
aNot statistically significant.
bbRain was not included as a potential predictor in White et al. (2020).

in Equation (1), which calculates ε using % sand (Table 5). A
comparison of the parameter estimates for all 12 candidate
models (Table S1) highlights the importance of the choice
of soil texture components in the parameter estimates for
Equation (1).
The influence of clay content relative to sand content on

ε is illustrated by comparing the calculated values for ε with
both calibrations across the soil textures in both the new and
original datasets (Table 6). Across both datasets, the values for
ε calculated with the new calibration range from 0.34 to 0.73
with the new calibration, compared to a range of−0.28 to 0.55
with the original calibration. Site 2 in the original dataset has
the highest clay content (55%) and has the highest value for ε
(0.73) with the new calibration. With the original calibration,
which was based only on sand content, Site 2 had a moderate
value for ε of 0.47. Experiments G1 and G2 had the highest
sand content in the new dataset (67% and 47%, respectively)
and had calculated ε values of−0.28 and 0.03with the original
calibration. Under the new calibration, model 3a calculates ε
for these experiments as 0.50 and 0.48.
Figure 3 shows the recalibrated model fit (Model 3a) using

the calibration (new) and validation (original) datasets. Model
3a had a slightly better calibration fit (RMSE= 1.43Mg ha−1;
r2 = 0.69 in Figure 3a) compared to the model in White et al.
(2020) (RMSE = 1.58 Mg ha−1; r2 = 0.62). Model 3a also
performed much better on an independent validation dataset:
RMSE = 1.71 Mg ha−1; r2 = 0.56 in Figure 3b compared to
RMSE = 2.65 Mg ha−1; r2 = 0.14 in Figure 2.
To assess the effect of tillage system on the coefficients

and performance of Model 3a, we calculated the mean bias
error (MBE) of the predicted unfertilized yield for the cali-
bration data separated by tillage type. Tilled observations had
an MBE of −0.28 Mg ha−1, while no-till observations had
an MBE of 0.36 Mg ha−1. The biases suggest the model was
slightly underpredicting the yield in tilled cases and overpre-

dicting the yield in no-till cases. However, the bias for each
tillage type was small compared to the overall RMSE of 1.43
Mg ha−1. Fitting separate values of αs (Equation 3) by tillage
type resulted in an αs of 14.03 for tillage and 11.63 for no-
tillage, reduced the AIC by 7.6 units and slightly reduced the
RMSE to 1.37 Mg ha−1 (Table S2). However, the confidence
intervals for the separate estimates of αs were overlapping,
indicating the differences were not statistically significant.
Furthermore, all refitted parameter estimates of the tillage-
specific Model 3a were within the confidence limits of the
parameter estimates of the original Model 3a, suggesting that
variations due to tillage effects are insignificant compared
to the overall uncertainty in model coefficients. Finally, the
tillage-specific Model 3a had reduced accuracy on the val-
idation dataset (RMSE = 1.72 Mg ha−1) compared to the
original model 3a (RMSE = 1.71 Mg ha−1). Therefore, the
bulk of evidence suggests that the original model 3a is suf-
ficient to predict unfertilized yield in both tilled and no-till
systems using a single value of αs.

4 DISCUSSION

4.1 Interpretation of model improvements

While our model does not fully simulate the processes
affecting N mineralization/immobilization of soil and plant
residues, it is consistent with frameworks that propose inte-
grating plant, soil, and microbe interactions in C and N
cycling models (Cotrufo et al., 2013; Daly et al., 2021). Our
model captures several important controls on the decom-
position of plant residues and SOM, including microbial ε
(Equation 1) and the C/N of both cover crops and SOM (Equa-
tions 2 and 3). Some models of plant residue decomposition
assume a fixed CUE, and hence a single critical C/N value
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916 ARRINGTON ET AL.

T A B L E 6 Calculated humification efficiency (ε) for sites in the new and original datasets using the coefficients for Equation (1) in the original
and new calibrations (Table 5).

ε (Calculated with Equation 1)

Site Sand (%) Clay (%)
Original calibration
(White et al., 2020)

New calibration
(Model 3a)

New dataset
A 18 32 0.49 0.46

B 33 27 0.26 0.49

C 14 45 0.55 0.59

D 30 28 0.30 0.48

E 19 32 0.48 0.47

F 17 30 0.51 0.43

G1 67 12 -0.28 0.50

G2 47 19 0.03 0.48

5-N 25 28 0.39 0.46

Original dataset
1 26 25 0.37 0.43

2 20 55 0.47 0.73

3 15 33 0.53 0.47

4 15 33 0.54 0.46

5-O 25 28 0.39 0.46

6 18 21 0.49 0.34

7 28 27 0.33 0.47

8 29 23 0.31 0.43

9 35 23 0.23 0.46

F I G U R E 3 Comparison of the new model applied to (a) the new dataset (calibration fit) and (b) the original dataset (validation fit). Dashed
line is the 1:1 relationship, and symbols correspond to the experiment codes listed in Table 1 for the new dataset and White et al. (2020) for the
original dataset. Observations from experiment 5 were divided between the new and original datasets (5-N and 5-O, respectively). The accuracy of
model 3a using the new dataset for calibration was RMSE = 1.43 Mg ha−1; r2 = 0.69 (panel a, calibration) and RMSE = 1.71 Mg ha−1; r2 = 0.56
using the original dataset for validation (panel b, validation).

for the division between N mineralization and immobiliza-
tion (Thapa et al., 2022; Woodruff et al., 2018). However, our
model allows ε (average CUE over the growing season) and
the critical C/N to vary as a function of soil texture, explicitly

accounting for the interactions amongmicrobes, minerals, and
substrates in the soil environment. The original model calibra-
tion (White et al., 2020) advanced the previous equations for
predicting the N mineralization of cover crop residues (White
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ARRINGTON ET AL. 917

et al., 2016), both by adding a yield credit for SOM (Equa-
tion 3) and by allowing ε to vary as a function of soil texture
(Equation 1). This study improves the original model calibra-
tion (White et al., 2020) by (1) testing the incorporation of
measured soil C/N (Equation 3), (2) testing the addition of
a precipitation adjustment (Equation 5), and (3) recalibrating
Equation (1) using sites with a broader range of soil textures.
While we found that measured soil C/N provided an

improvement in model fit for the calibration dataset and the
combined datasets (Table 4), the new dataset had a relatively
narrow range of soil C/N values (8.8–11.1; Table 1), which
was also true of the original dataset (White et al., 2020).
Our results support using a measured value of soil C/N in
Equation (3), however if this information is not available,
an assumed value of 10 may be used, as in White et al.
(2020). Further research could perform similar testing using
datasets with a broader range of soil C/N values as well as
test incorporating measured values for microbial C/N based
on the equation in White et al. (2020). Also, further develop-
ment of the model presented here could test subdividing SOM
into particulate organic matter (POM) and mineral-associated
organic matter (MAOM), which are distinct components of
SOM (Lavallee et al., 2020). Daly et al. (2021) present a con-
ceptual model in which the supply of bioavailable organic N
comes from a combination of POM and MAOM, depending
on the POM N supply relative to the soil mineral sorption
potential of organic N.
We found that the addition of the precipitation adjustment

consistently improved the model fit, as measured by lower
AIC and RMSE values (Table 4). For each corresponding
set of models, adding a precipitation adjustment provided
a greater improvement in model fit compared to adding a
measured soil C/N value (Table 4). Also, a comparison of
Figure 2 and Figure 3a indicates an improvement in the pre-
diction of unfertilized yield with the new model for sites A
and D, which had the greatest differences above and below
normal monthly summer precipitation (Table 2). Including
the precipitation adjustment ensures that our calibration of
the N mineralization model to predict unfertilized yield was
not biased by high or low rainfall at certain sites. Since the
new model coefficients reflect the influence of precipitation,
when a precipitation adjustment of zero is used, the model is
truly calibrated to predict unfertilized yield for average rainfall
conditions.
In the new calibration (Model 3a), both sand and clay

content are significant predictors of ε, both with positive coef-
ficients. This contrasts with the original calibration in which
sand was the only significant soil texture predictor of ε, with
an inverse relationship between sand content and ε (Table 5).
However, the coefficient for percent sand is less than half the
value of the coefficient for percent clay in Model 3a (Table 4).
So, as the soil texture components sand, silt, and clay vary, if
a percentage point of clay is replaced by a percentage point

of sand, ε will decrease for both calibrations, although the
decrease will be smaller for the new calibration. The positive
relationship between clay content and ε reflects the ability of
clay particles to protect organic matter from biological attack
through adsorption and encapsulation within aggregates (Bal-
dock & Skjemstad, 2000). It is also consistent with other
studies that report positive relationships between clay con-
tent and soil organic N content (Ge et al., 2019; Hassink,
1994).
For soils with greater than 49% sand, the original model

predicts negative values for ε (White et al., 2020). In Table 6,
the two lowest ε values (−0.28 and 0.03) for site G are due to
the high sand content being outside the range of soil textures
included in the dataset used to calibrate the original model.
Negative values of ε are biologically implausible and prevent
Equation (2) from ever predicting N immobilization. Values
of ε that are still positive but approach zero could also inflate
predictions of N mineralization from SOM and cover crop
residues. Overestimating N mineralization can lead to over-
prediction of unfertilized corn yield, which was the case when
applying the original model (White et al., 2020) to most of the
fields at site G (Figure 2). In contrast, the ε values calculated
for site G with the new calibration (Table 6) resulted in a bal-
ance between fields where yield was overpredicted and fields
where yield was underpredicted (Figure 3a).
Across the broad range of soil textures in both datasets, the

estimates of ε by Model 3a (Table 6) fall roughly within the
interquartile range of typical values for CUE in soil (∼0.4–0.7;
Manzoni et al., 2012). With the original calibration (White
et al., 2020), the estimates of ε for both datasets (Table 6) are
mostly below the median CUE values for soil (∼0.55; Man-
zoni et al., 2012). However, considering that the best model
to regulate ε has varied within this study (Table 4) and across
others (White et al., 2020, 2016), potential refinements of this
component of the model should be pursued through further
mechanistic research.
Tillage is a factor that affects N mineralization of cover

crops (Drinkwater et al., 2000; Rodriguez et al., 2023; Sainju
& Singh, 2001) but does not appear to be a factor that needs to
be explicitly accounted for with separate parameter estimates
in our N mineralization model. Primary tillage at the time of
cover crop termination as well as cultivation for weed control
during the growing season can increase Nmineralization rates
due to disruption of soil aggregates, soil aeration, and mixing
of cover crop residues into the soil where the microclimate is
more conducive to decomposition (Finney et al., 2015; Pof-
fenbarger et al., 2015). However, tillage also leaves soil bare,
making it prone to greater evaporation losses and larger tem-
perature swings later in the growing season (Clark et al., 2007;
Tollner et al., 1984), factors that may reduce decomposi-
tion rates. Over an entire growing season, the period for
which our model is calibrated, differences in early-season
decomposition and N mineralization rates due to tillage
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918 ARRINGTON ET AL.

practices may even out by the end of the growing season. For
instance, Poffenbarger et al. (2015) found that the N miner-
alization or immobilization from hairy vetch and rye cover
crop residues was initially faster when residues were incorpo-
rated into the soil with tillage, but by the end of the growing
season, decomposition and N loss from the residues were
similar between tillage and no-tillage treatments. Although
calibrating our Model 3a with separate values for αS-tillage and
αS-no-tillage resulted in a slightly greater coefficient value for
tilled observations, which supports the concept of greater N
mineralization due to tillage, the difference between tillage
types was not statistically significant and was both within
the current uncertainty of the original model estimate. These
results suggest that parameterizing separate coefficients based
on tillage type would be overfitting the model given the
currently available data.
While the improved model can be applied to fields across

Pennsylvania, the equations would need to be recalibrated
before using in other regions. Our work highlights the impor-
tance of a calibration dataset that is diverse in terms of
soil textures, growing season precipitation, and cover crop
C/N. The original and new datasets had a similar number of
experiments (nine and 10, respectively), while the latter had
more cover crop treatments within some experiments leading
to more observations: 116 (new) compared to 73 (original;
White et al., 2020). The greater variety of cover crops in the
new dataset led to a more even distribution of cover crop C/N
over the range of typical values (Figure 1b) and a greater vari-
ety of sites expanded the range of soil textures in the new
dataset compared to the original dataset (Figure 1a). It should
also be noted that coefficients in Equation (2) were derived
from a previous calibration (White et al., 2016) with a dataset
of 199 unfertilized corn yield observations in experiments
where the yield following cover crops could be compared to
the yield in a fallow plot in the same field. In that dataset,
there was a high degree of redundancy in cover crop N content
and C/N among treatments, so efficiently designed experi-
ments could reduce the number of observations needed to
calibrate such a model in the future. For instance, small plot
experiments that compare a legume monoculture, a grass
monoculture, a grass-legume mixture and a fallow treatment
could efficiently generate a dataset with a broad range of cover
crop N and C/N. Similarly, experiments that manipulate the
termination timing of cover crops, such as C and D in our
calibration dataset, can efficiently produce a dataset with a
wide range of cover crop N contents and C/N.Multi-treatment
experiments such as these paired with simple on-farm trials
that strategically sample the variety of soil textures and soil C
concentrations expected in a region could develop a calibra-
tion dataset with a minimum of observations required. Thus,
for others interested in calibrating these equations for another
region, we recommend strategically designing experiments to
obtain a calibration dataset that represents the range of soil

textures, growing season conditions, and cover crops present
across the region.

4.2 Potential uses

The N mineralization model was developed to predict unfer-
tilized corn yield as part of a nitrogen decision support tool
for corn in Pennsylvania that is based on inputs that can
be measured through commercial lab services (White et al.,
2023). This tool allows users to visualize the corn yield credits
from decomposing cover crop residues (Equation 2) and SOM
(Equation 3) under current conditions and possible future sce-
narios. The improved model presented here will allow the
tool to be applied to fields across Pennsylvania with a wide
range of soil textures and cover crops. The inclusion of an
explicit precipitation adjustment would allow users to predict
the range of unfertilized corn yields that could be expected
at a site under various summertime precipitation scenarios
ranging from below to above the long-term average.
The ability to predict unfertilized corn yield based on a few

accessible inputs represents progress toward developing site-
specific fertilizer recommendations. In the United States, N
fertilizer recommendations for corn usually start with a gener-
alized base recommendation (using either the yield goal or the
maximum return to N approach), with some adjustments for
site-specific management factors, which vary by state (Mor-
ris et al., 2018). An alternative site-specific approach is based
on the concept of delta yield (dY), which is the difference
between unfertilized corn yield and yield without N limita-
tion (Janovicek et al., 2020; Lory & Scharf, 2003). Although
dY can be determined for a site based on a comparison of
unfertilized and fertilized areas of a field, several years of
data are needed. The unfertilized corn yield predicted by the
updated model could be combined with existing yield records
to estimate dY. However, for the dY approach to becomemore
widely used, further work is needed to establish relationships
between dY and optimum N application rates (both agro-
nomic and economic) across a wide geographic range. Also,
future research could examine the relative effects of summer-
time precipitation on fertilized and unfertilized yields. This
information would determine whether dY-based N fertilizer
recommendations would be appropriate for a range of pre-
cipitation conditions or if they would need to be adjusted for
expected rainfall.

5 CONCLUSIONS

Overall, this work suggests that a system of biogeochem-
ical equations that are mechanistically based, but cali-
brated with regional data, reflects a viable “middle ground”
toward developing N decisions support tools. Our new N
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ARRINGTON ET AL. 919

mineralization model provides a robust prediction of unfer-
tilized corn yields across a range of conditions. Adding
a precipitation adjustment and calibrating across a broader
range of soil textures were key steps to improving the
model, while including measured soil C/N was less impor-
tant. Our results point to the need for careful consideration of
calibration datasets for developing these types of models.
A feature of the model is that it is based on site-specific

inputs that can be measured through commercial lab services:
soil texture and C and N content along with cover crop C and
N content. The updated model presented here can be applied
to a broad range of sites and is calibrated to average sum-
mertime precipitation in Pennsylvania. The cover crop credit
(Equation 2) and the SOM credit (Equation 3) provide a com-
parison of the relative contributions of each to unfertilized
corn yield. This information will allow farmers to consider
how selection and management of cover crops and strate-
gies to build SOM can contribute to soil fertility. The ability
to predict unfertilized corn yield based on a few measured
properties of soils and cover crops represents an advance
toward developing site-specific fertilizer N recommendations
for corn.
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