©SHUTTERSTOCK/ BCLASS

Chiplet-GAN: Chiplet-
Based Accelerator Design
for Scalable Generative
Adversarial Network
Inference

Yuechen Chen, Member, IEEE, Ahmed Louri, Fellow, IEEE, Fabrizio Lombardi, Fellow, IEEE, and
Shanshan Liu, Senior Member, IEEE

Digital Object Identifier 10.1109/MCAS.2024.3359571
Date of current version: 15 August 2024

THIRD QUARTER 2024 1531-636X/24©2024|EEE IEEE CIRCUITS AND SYSTEMS MAGAZINE 19
Authorized licensed use limited to: The George Washington University. Downloaded on August 30,2024 at 19:52:51 UTC from IEEE Xplore. Restrictions apply.

20

 Abst R

Generative adversarial networks (GANs) have emerged as a pow-
erful solution for generating synthetic data when the availability of
large, labeled training datasets is limited or costly in large-scale
machine learning systems. Recent advancements in GAN models
have extended their applications across diverse domains, includ-
ing medicine, robotics, and content synthesis. These advanced
GAN models have gained recognition for their excellent accuracy
by scaling the model. However, existing accelerators face scal-
ability challenges when dealing with large-scale GAN models.
As the size of GAN models increases, the demand for compu-
tation and communication resources during inference continues
to grow. To address this scalability issue, this article proposes
Chiplet-GAN, a chiplet-based accelerator design for GAN infer-
ence. Chiplet-GAN enables scalability by adding more chiplets
to the system, thereby supporting the scaling of computation ca-
pabilities. To handle the increasing communication demand as
the system and model scale, a novel interconnection network
with adaptive topology and passive/active network links is de-
veloped to provide adequate communication support for Chiplet-
GAN. Coupled with workload partition and allocation algorithms,
Chiplet-GAN reduces execution time and energy consumption
for GAN inference workloads as both model and chiplet-system
scales. Evaluation results using various GAN models show the
effectiveness of Chiplet-GAN. On average, compared to GANAX,
SpAtten, and Simba, the Chiplet-GAN reduces execution time
and energy consumption by 34% and 21%, respectively. Further-
more, as the system scales for large-scale GAN model inference,
Chiplet-GAN achieves reductions in execution time of up to 63%
compared to the Simba, a chiplet-based accelerator.

Index Terms—GAN inference, chiplet, scalability, intercon-
nection network, machine learning.

l. Introduction

enerative Adversarial Networks (GANs) have ex-

cellent performance in content generation, such

as image synthesis and natural language pro-
cessing (NLP) tasks [1], [2], [3], [4]. With the most recent
advancement in training algorithms and models, the
latest large-scale GAN models have achieved very good
performance [5], [6], [7], [8], [9], [10], [11]. For example,
TransGAN [6] has shown excellent accuracy on image
synthesis tasks by incorporating transformers into the
model. To deploy these GAN models, inference is a quint-
essential step for the model to generate content with re-
duced delay [12]. The increasing complexity and size of
the large-scale GAN model for capturing more complex
patterns and generating higher-quality outputs present
challenges in architectural design when it comes to han-
dling the demanding computational and communication
workloads associated with model inference.

Existing research has proposed several architectures
to accelerate GAN inference [12], [13], [14], [15], [16].
Different from convolutional neural networks, a GAN
contains transposed convolution operations (TC) and
transformers [17], which demand a significant amount
of computation and communication resources. Thus,
specialized accelerators are developed to handle these
workloads. In GANAX [12], a SIMD-MIMD mixed architec-
ture is developed to handle TC. In SpAtten [13], a special-
ized unit is designed to accelerate the computation of
attention mechanisms in transformers. Existing architec-
tures primarily excel in improving efficiency for specific
functionalities, such as TC or the attention mechanism.
However, as the parameters and the number of layers
increase to expand the widespread usage and accuracy
of GAN models, the task of scaling these architectures
to meet the growing computational and communication
demands becomes an increasingly pressing concern. All
existing accelerators [12], [13], [14], [15] are implemented
with a global controller and global buffer, which are not
scalable to support more computation units for the infer-
ence of large-scale GAN models.

Recent research has provided compelling evidence of
the advantages of chiplet systems in terms of computation
performance and scalability [18], [19], [20], [21]. A chiplet
system provides a modular approach to semiconductor
design and manufacturing, in which multiple smaller chip
components (i.e., chiplets) are integrated into a single sys-
tem. The chiplets are interconnected via network-on-pack-
et (NoP) with either active or passive links on a common
interposer [22], [23], [24]. Within each chiplet, a multi-core
system is implemented by using network-on-chip (NoC)
to connect cores, caches, and memory interfaces. Pack-
ets are used to carry data in NoCs, and routers are imple-
mented to direct packets to their destination. With such a
design, the system offers scalability by allowing users to
scale their systems by adding chiplets as needed. Exist-
ing research and commercial products have proven that
these systems can integrate a large number of computa-
tion units at a lower cost and higher flexibility compared
to conventional single-chip designs [20], [22], [24], [25].
The flexibility and scalability are particularly useful in
GAN model inference, in which varying levels of perfor-
mance and functionality are required.

To the best of the authors' knowledge, there has been
no prior research conducted on designing a scalable

Yuechen Chen is with the Department of Computer Science and Information Technologies, Frost-
burg State University, Frostburg, MD 21532 USA (e-mail: ychen@frostburg.edu).

Ahmed Louri is with the Department of Electrical and Computer Engineering, The George Washing-
ton University, Washington, DC 20052 USA (e-mail: louri@gwu.edu).

Fabrizio Lombardi is with the Department of Electrical and Computer Engineering, Northeastern
University, Boston, MA 02115 USA (e-mail: lombardi@ece.neu.edu).

Shanshan Liu is with the School of Information and Communication Engineering, University of
Electronic Science and Technology of China, Chengdu 611731, China (e-mail: ssliu@uestc.edu.cn).

IEEE CIRCUITS AND SYSTEMS MAGAZINE

THIRD QUARTER 2024

Authorized licensed use limited to: The George Washington University. Downloaded on August 30,2024 at 19:52:51 UTC from IEEE Xplore. Restrictions apply.

GAN inference accelerator by employing a chiplet design
approach. Existing research has proposed the use of a
chiplet system for deep convolutional neural networks
(DCNN), which mainly consists of convolutional layers
[18], [19]. Different from DCNN models, TC and trans-
formers require more computation resources with vastly
different communication patterns. Compared to existing
single-chip accelerator designs [12], [13], [14], [15] for
GAN inference that can efficiently process only one type
of layer (e.g., matrix multiplication or attention mecha-
nism), a chiplet system excels at efficiently processing
multiple layers in parallel. Furthermore, the scalability
inherent to a chiplet design approach ensures efficient
inference not only for existing large-scale GAN models
but also for future models with increasingly demanding
computation and communication requirements.
This article presents Chiplet-GAN, a chiplet-based
accelerator designed specifically for scalable and ef-
ficient GAN inference. Through a detailed analysis of
the computation and communication requirements in-
volved in GAN inference, it is observed that operations
such as matrix multiplication, reduction operations,
up-sampling, and matrix reshape operations consume
a significant portion of the inference time and incur in-
tensive communication and computation. Recognizing
the distinct communication patterns exhibited by these
operations, an adaptive network topology is developed
to effectively address the communication demands of
the workload. This adaptive interconnection network is
implemented in each chiplet, enabling dynamic switch-
ing between a concentrated mesh (C-Mesh) and a mesh
topology based on the functionality of the layer. For ef-
ficient communication between chiplets as Chiplet-GAN
scales, NoP is implemented with both passive and ac-
tive network links on the interposer to efficiently handle
both short-distance and long-distance communications.
Together with the NoP design and adaptive intercon-
nection network, the efficiency of traffic forwarding
is improved during GAN inference, specifically for the
aforementioned operations. To complement the adap-
tive network topology and passive/active network links,
the workload partitioning and allocation algorithms are
developed. These algorithms partition the workload
and strategically distribute the workloads to ensure low
communication latency, which further reduces the over-
all execution time. The key contributions of this article
are then summarized as follows.
B This article proposes Chiplet-GAN, a scalable and
efficient GAN inference accelerator, by employing
a chiplet design approach.

® Chiplet-GAN includes an adaptive interconnection
network in chiplet to ensure low communication
latency during inference as the GAN model scales.

THIRD QUARTER 2024

B Network-on-packet (NoP) is designed with both
active and passive network links on the interposer
with a workload partitioning and allocation algo-
rithm to ensure low communication latency be-
tween chiplets as the system scales.

B Simulation results show that compared to GA-
NAX, SpAtten, and Simba, Chiplet-GAN reduces
execution time and energy consumption by 34%
and 21%, respectively. Furthermore, as the system
scales for large-scale GAN inference, Chiplet-GAN
achieves reductions in execution time of up to
63% compared to the existing chiplet-based accel-
erator (Simba).

Il. Motivation and Challenges

A. GAN Inference

The recent large-scale GAN model for inference poses
challenges mainly due to the deep model architecture
with a large number of parameters and activations. The
main challenges of the scaling of the layers that are
widely used in GAN models are listed as follows.

H Fully Connected/Linear/Convolution Layer: These
layers involve matrix multiplications between the
input activations and the learned weight matrices.
These matrix multiplication operations are compu-
tationally expensive, especially when large input ac-
tivations and weights are used in the model.

B Attention Mechanism: The attention mecha-
nism, commonly used in transformer-based
GANSs, requires pairwise computations between
all positions in the input activations. This in-
volves computing attention weights for each
position, which entails a significant amount of
computation due to many matrix multiplica-
tions. Also, the transformer involves matrix
reshape operations, such as matrix transpose,
and incurring extensive communication traffic
between computation units.

m Up-Sampling Operations: GAN models utilize up-
sampling operations, such as zero insertion or
nearest-neighbor up-sampling. Up-sampling op-
erations involve interpolating or expanding input
activations to increase the spatial resolution, so
requiring extensive data communication between
computation units.

B Activation Functions: The application of non-
linear activation functions, such as ReLU (Recti-
fied Linear Unit), and linear activation functions,
such as SoftMax and normalization in the model,
also contributes to the complexity of computation
and communication. These activation functions

IEEE CIRCUITS AND SYSTEMS MAGAZINE

Authorized licensed use limited to: The George Washington University. Downloaded on August 30,2024 at 19:52:51 UTC from IEEE Xplore. Restrictions apply.

21

22

are applied elementwise to the activations and re-
quire additional computation. The normalization
and SoftMax functions need to survey the inputs
before an element-wise operation, that requires
a reduction operation prior to an elementwise
operation.

As the GAN model keeps scaling to capture more
complex patterns and generate higher-quality outputs,
efficient inference in such a model requires more com-
munication and computation capabilities for storing,
accessing, and processing input activations and param-
eters. Thus, a scalable system is needed to handle the
increasing demand in both computation and communi-
cation for GAN inference.

B. Chiplet Design Approach

Chiplet systems offer significant advantages in terms of
performance and scalability for architecture design and
semiconductor manufacturing [18], [19], [20], [21], [25].
By integrating specialized chip components, known as
chiplets, into a unified system, designers can better uti-
lize each chiplet for specific tasks, resulting in enhanced
performance. The modular nature of chiplet systems
further enables scalability, allowing for nearly effortless
addition or removal of chiplets as required. This flexibil-
ity allows system upgrades for large-scale GAN model
inference workloads.

To support easy system upgrade and scaling, a
network-on-packet (NoP) is implemented to connect
chiplets. As shown in Fig. 1, the connection between
chiplets is accomplished with a passive or active net-
work link via micro-bump (pbump). Recent work [24]
has studied both designs by analyzing the positive and
negative of the two designs. Active network links enable
better scalability compared to passive network links
with larger throughput for long-distance communica-
tion. However, implementing active network links needs
routers being implemented in the interposer, which
requires the packet to traverse routers in both chiplet
and interposer. On the other hand, passive network

links achieve lower network latency by only relying on
the router in the chiplet, even though the link has lower
bandwidth.

Within each chiplets, processing elements (PEs),
caches, and memory interfaces are connected using
NoC. All the data is transmitted using packets in both
NoC and NoP. Overall, chiplet systems present a prom-
ising approach to improve performance, efficiency, and
scalability in GAN inference accelerator designs.

As chiplet systems rely heavily on the interconnec-
tion network to connect and communicate between dif-
ferent computation units and memories, designing an
efficient interconnection network poses a major chal-
lenge for efficient and scalable GAN inference. Energy
and latency represent two vital aspects when designing
interconnect solutions for efficient GAN inference. With
the addition of more chiplets to accommodate the ex-
panding GAN model, the NoP inevitably becomes larger;
consequently, the traversal of packets through the ex-
panded network incurs higher time and energy costs. Ac-
cording to the existing research [18], [19], [20], [24], [25],
network latency and energy consumption significantly
impact inference efficiency with longer execution time
and high energy consumption. Thus, reducing latency
and energy consumption for interconnection networks
is crucial for GAN inference on a chiplet system, which
often requires real-time responsiveness during deploy-
ment. Specifically, the main challenges for designing a
chiplet system for GAN inference are listed below.

B Diverse Communication Pattern: Inference in-
volving various layers in GAN models results in
markedly diverse communication patterns. Given
the significant effects of latency and power con-
sumption when a packet is redirected by the rout-
ers, there's a pressing need for innovative NoC
designs, which should efficiently address the dis-
tinct communication patterns observed during
GAN inference within a chiplet.

H Scalable and Efficient NoP: The communication
between chiplets is a major bottleneck for chiplet-

based design as the system scales. One
major challenge in NoP design is the us-

Chiplet

Router

Chiplet

Chiplet
Router

Router
Active Network LinkI
nterpose|

Passive Network Link
Interposer

(a) (b)

sive network link. (b) NoP with active netwrok link.

Figure 1. NoP design with a passive or active network link. (a) NoP with pas-

age of passive and active network links.
Existing research [24] indicates that pas-
sive links can handle high data through-
put over short distances. However, their
scalability is constrained by limited com-
munication range. Conversely, active
links facilitate long-distance communi-
cation, but their bandwidth is restricted
due to the incorporation of routers on the
interposer. Considering the benefits and
limitations of both active and passive

Chiplet

Router

IEEE CIRCUITS AND SYSTEMS MAGAZINE

Authorized licensed use limited to: The George Washington University. Downloaded on August 30,2024 at 19:52:51 UTC from IEEE Xplore. Restrictions apply.

THIRD QUARTER 2024

links, a novel NoP design, grounded in a strategic
analysis of GAN inference workloads, is crucial for
the efficiency of the chiplet-based accelerator. Ad-
ditionally, the network-on-package (NoP) should
be synergistically designed alongside workload
partitioning and allocation algorithms, aiming to
harness the strengths of both interposer types.

I1l. Chiplet-GAN Design

A. Overview

The goal of the proposed accelerator design is to attain
both improvements in efficiency and scalability for GAN
inference workloads by employing a chiplet design ap-
proach. This is mainly accomplished through the follow-
ing steps.

B A thorough analysis of the computation and com-
munication requirements specific to the GAN mod-
el is conducted. This analysis involves examining
the architecture of various GAN models used for
image synthesis workloads and meticulously as-
sessing the computation and communication de-
mands of each layer as well as the overall model.

B Chiplet-GAN is proposed, featuring an adaptive
network topology design for the interconnec-
tion network to facilitate the scaling of individual
layers.

B Workload partition and allocation algorithms are
introduced to effectively utilize the benefits of
the adaptive topology design when dealing with
large-scale GAN models.

B. Layer Analysis

Table 1 shows the list of large-scale GAN models used
in this article. These models contain tens of millions of

Table 1.
GAN models.

GAN Basic Number of Task
Models Structure Parameters
BigGAN- TC 50 million Image
deep [9] synthesis
VIiTGAN- Transformer 38 million Image
Base [11] synthesis
TransGAN- Transformer 85 million Image
Base [6] synthesis
StyleGAN2 TC 24 million Text-to-
[5] Image
CycleGAN TC 35 million Image-
[7] to-lmage
Translation

THIRD QUARTER 2024

parameters and multiple layers to generate high-resolu-
tion images depending on the configuration. Addition-
ally, newer variations of these models contain more pa-
rameters to achieve better image resolution. The basic
structure of these models includes both transposed
convolution (TC) and transformers, which are the two
design trends for the GAN model. The TC-based model
includes convolution, up-sampling functions, normaliza-
tion functions, and activation functions. The transform-
er-based model contains attention mechanisms, linear
layers, up-sampling functions, normalization functions,
and activation functions. The functionality of these
layers consists of several basic operations, including
matrix multiplication, reduction operation, and up-sam-
pling/matrix reshape operations. Communication and
computation are needed when computation units exe-
cute these basic operations. The analysis of the compu-
tation and communication requirements for these basic
operations is presented next.

1. Matrix Multiplication

Fully connected, linear, and convolution layers are wide-
ly used in both transformer and TC-based GANSs. In a
transformer, the linear layers are widely used before
the attention mechanism. Also, the transformer utilizes
matrix multiplication to calculate attention values. In
TC-based GANs, the linear layer is used at the end of
each processing block to capture the complex relation-
ship between input and output data. Eq. (1) shows the
basic operation for a fully connected layer and linear
layer, i.e., matrix multiplication. The convolution layer
can also be accomplished using matrix multiplication by
reshaping the input activation and weight matrices.

Omp =Amn* Bnp (1)

Eq. (1) shows two input matrices (i.e., A, B) and one
output matrices (i.e., O). m, n denotes the number of
rows and columns of matrix A, and n, p denotes the
number of rows and columns of matrix B. To perform
matrix multiplication, the computation unit needs to
load matrices A and B, which requires data communica-
tion of m * n + n * p elements. Then, the matrix multi-
plication requires n * m * p multiplications followed by
(n- 1) * m * p addition operations. After the computa-
tion, the computation unit generates and sends out the
matrix O with m * n elements.

2. Reduction Operation

Both SoftMax and the normalization layer scale the in-
put matrix into a specific format based on the statistics
of the input activations. Since these layers improve the
accuracy of the model, they are widely used in both

IEEE CIRCUITS AND SYSTEMS MAGAZINE

Authorized licensed use limited to: The George Washington University. Downloaded on August 30,2024 at 19:52:51 UTC from IEEE Xplore. Restrictions apply.

23

24

transformer and TC-based GANs. These layers typically
contain two steps. The first step calculates the statistics
of the input, which involves a reduction operation. Egs.
(2) and (3) show the function for statistic computation
for SoftMax and normalization operations.

— i Xj
- ®
1~—i
:fzj':le

RS all Y
) IR IR

In Egs. (2) and (3), the input matrix x contains a total of i
elements. Both functions need to access all elements in
the input matrix to get the statistics. Assume the input
matrix has a size of m * n. SoftMax needs data communi-
cation of m * n elements to gather all inputs, so m * n ex-
ponent computations and m * n - 1 additions to get the
variable s. For the normalization layer, m * n elements
are gathered to calculate the mean value of the inputs
through m * n - 1 addition and 1 division operations.
Then, the variance is calculated through m * n subtrac-
tion and square operations, followed by m * n - 1 addi-
tions and one division. Both of these layers require a re-
duction operation, which requires data communication,
to gather the input activation and calculate the statis-
tics. After the calculation, the element-wise operations
are applied to the input matrix.

©)

3. Up-Sampling/Matrix Reshape Operation
Up-sampling operations are widely used in GANs to in-
crease the size of the output matrix, such as zero inser-
tion and nearest neighbor. These layers require a ma-
trix with m * n elements as the input and upscale it a
time, which requires m * n + a * m * n communication.
The matrix reshape operations, such as transpose, take
a matrix with m * n elements as the input and output
a matrix with n * m elements. Both up-sampling and
matrix reshape operations typically do not require any
computation on the input activation, but they require
communications to send data to the correct destination.
Table 2 summarizes the layer analysis with the computa-
tion and communication ratio (R.¢) as defined in

B Number of Computation
Size of Input and Output Matrice

Regc @
In Eq. (4), the amount of communication is estimated by
adding the size of both input and output matrices. The
layer requires more computation when the R ;. value is
higher. However, a layer requires more communication
with a low R_¢. value. By comparing the R, value for
different layers, it can be seen that except for the fully

IEEE CIRCUITS AND SYSTEMS MAGAZINE

connected/linear layer, in which computation is signifi-
cantly higher than communication, the remaining layers
require significantly more communication compared to
the fully connected/linear layer.

C. Static GAN Model Analysis

Fig. 2 shows the breakdown of the communication re-
quirements by statically analyzing the GAN models
layer by layer in Table 1. The analysis assumes the infer-
ence of the GAN model is executed on sixteen chiplets,
which contain multiplication and addition arrays for ma-
trix multiplication and computation units for activation
functions and up-sampling operations. The workload is
evenly divided and distributed by the size of the acti-
vation for each layer. Based on the analysis, the reduc-
tion operations and up-sampling/reshape operations
occupy more than 72% of the total communication. 36%
of the communication is due to the reduction operation
to calculate the statistics for the SoftMax/normalization
layer. Thus, the challenges for the inference of large-
scale GAN models on a scalable chiplet system are listed
below.

1) Scaling Reduction Operation. The wide usage of
the normalization layer results in significant com-
munication. Most of these communications are
due to the reduction operation for statistics calcu-
lation and element-wise operation. Moreover, as
the size of activation increases for high-resolution
image generation, supporting a large-scale reduc-
tion operation on chiplet systems becomes a chal-
lenge.

2) Scaling Matrix Multiplication. As the GAN mod-
els scale, the matrix multiplication workloads
increase dramatically. To handle the increasing
demand in computation for large matrix multipli-
cation, a scalable chiplet system is needed.

3) Distributed Up-Sampling/Matrix Reshape. As the
GAN models generate high-resolution data, these
operations need to process a large activation ma-
trix during inference, which involves significant
communication traffic. Since existing accelerators
use a scratch pad memory, both operations re-
quire a centralized global controller to reorganize

Table 2.
Summary of layer analysis.

Layer Name Resc
Fully Connected/Linear (n?-n)mp/mn+np+mp
Layer Normalization 3mn/2mn=1.5

SoftMax (3mn-1)/2mn=~1.5
Upscaling/Matrix Reshape 0

THIRD QUARTER 2024

Authorized licensed use limited to: The George Washington University. Downloaded on August 30,2024 at 19:52:51 UTC from IEEE Xplore. Restrictions apply.

the data mapping in the memory, which is not
scalable for a chiplet system. For a chiplet sys-
tem, these operations must be distributed rather
than centralized, which incurs a large amount of
communication between chiplets for transmitting
activations. This communication incurs a high
latency, especially when the packet must travel a
long distance.

D. Architecture Design
To solve the three challenges for scalable and efficient [|
GAN inference on a chiplet system, the architecture of
Chiplet-GAN includes the following features.
® Adaptive NoC Topology: To satisfy the communi-
cation requirement for the reduction operation,
designing a concentrated network allows an ef-
ficient gathering of data for the operation. How-
ever, such a network has low efficiency for scaling

matrix multiplication operations, as matrix multi-
plication needs frequent data exchange between
neighbors. To support both reduction and matrix
multiplication operations, Chiplet-GAN utilizes an
adaptive network topology design, which dynami-
cally switches between mesh and concentrated
mesh (C-Mesh) topologies for efficient on-chip
communication. This design ensures the efficien-
cy of the execution of both reduction and matrix
multiplication operations.
NoP With Both Active and Passive Network
Links: To efficiently handle both long-distance
and short-distance communication between
chiplets as the system scales, both active and
passive network links are implemented in the
NoP. Specifically, active network links are imple-
mented for efficient long-distance communica-
tion between chiplets and passive network links
for low latency communication between two
chiplets.

d

on Br

100%
3 80%
60%
£ 40%
5 a0%
S 0%

ViTGAN StyleGAN2 TransGAN BigGAN CycleGAN Average
= Matrix Multiplication m Upsampling/Reshape = Reduction Operation

Figure 2. Communication breakdown through static GAN model analysis.

® Workload Partitioning and Allocation:
To reduce the communication latency for
GAN inference, specialized workload par-
tition and allocation algorithms are devel-
oped based on static model analysis. The
proposed partition and allocation algo-
rithm utilizes the characteristics of both
the proposed NoP design and adaptive
network topology in NoC for efficient and
scalable GAN inference on Chiplet-GAN.

Interposer

Chiplet Tile

(a) (b)

Figure 3. Architecture of Chiplet-GAN. The system package is scalable

Processing element (PE).

of four chiplets and is connected to a router (R) on the interposer. The active link is implemented to connect routers for chiplet
groups. The passive link is implemented to connect two chiplets. Within each chiplet, an adaptive network is implemented with
routers (R) to connect the processing element (PE), the memory interface (MEM), and the active/passive interposer. The passive
interposer connects the corner routers of the two adjacent chiplets. Each PE contains a PE controller, SRAMs for storing input
and output matrices, a crossbar to forward the product of the multiplier array, and an activation computation unit for processing
RelLU, activation statistics (Stats.) calculation, and up-sampling/matrix reshape operations. (a) System package. (b) Chiplet. (c)

Network Interface

RelLU || Upsample

Stats. || Reshape
Activation
Computation Unit

Accumulation

+
= Buffer
+ (SRAM)
+

(c)

to include more chiplets tiles. Each chiplet tile consists

THIRD QUARTER 2024

Authorized licensed use limited to: The George Washington University. Downloaded on August 30,2024 at 19:52:51 UTC from IEEE Xplore. Restrictions apply.

IEEE CIRCUITS AND SYSTEMS MAGAZINE

25

26

Fig. 3 shows the architecture of Chiplet-GAN. The
system package (Fig. 3(a)) contains multiple chiplets,
which is scalable for the inference of large GAN models.
As shown in Fig. 3(a), each chiplet group contains four
chiplets, which are connected to a router via pbumps.
This design handles long-distance communication be-
tween chiplets by connecting the corner router on each
chiplet and the NoP router in a chiplet group using ac-
tive network links. These active network links connect
chiplets tiles, which not only enables the scaling of
the chiplet system with additional tiles but also allows
high bandwidth data exchange between tiles. For short-
distance communication between adjacent chiplets,
passive network links are implemented to enable quick
data exchange between the corner routers of the two
chiplets.

Fig. 3(b) shows the detailed design of the chiplet. The
chiplet includes an adaptive network to efficiently pro-
cess both reduction operation and matrix multiplication
operation by switching between C-mesh and mesh to-
pology. This is achieved by controlling the multiplexers
and demultiplexers. By switching to the C-mesh topol-
ogy, the latency of communication between chiplets is
reduced by skipping routers and network links.

Fig. 3(c) illustrates the detailed design of each pro-
cessing element (PE). Each PE contains an array of mul-
tipliers and an accumulative buffer for multiplication
and addition operations. The activation computation
unit is designed to execute several functions, includ-
ing ReLU, activation statistics computation, and matrix
up-sampling/reshape. Each PE contains a PE controller,
which controls the computation process and activation

Route Calculation

|V|rtua| Channel|

VC Allocation

Qwiteh All

Interposer

Jasodiaqu|

Jasodiayu|
Interposer

Interposer Interposer

(a)

ogy. (b) C-Mesh topology.

Figure 4. Adaptive network design in Chiplet. All the routers (R) in NoC have the same design with different multiplexer and
demultiplexer connections. The dotted line indicates skipped links or routers for communication latency reduction. (a) Mesh topol-

Interposer
MEM |

Interposer

Jasodiayu|
Interposer

Interposer Interposer

(b)

IEEE CIRCUITS AND SYSTEMS MAGAZINE

Authorized licensed use limited to: The George Washington University. Downloaded on August 30,2024 at 19:52:51 UTC from IEEE Xplore. Restrictions apply.

THIRD QUARTER 2024

computation unit. The proposed PE utilizes an output-
stationary data flow to reduce the frequent exchange of
partial sum during the matrix multiplication. With this
data flow, the GAN inference workload is partitioned by
the size of the output activation of a layer. Section IIl.LE
discusses the details of workload partitioning and
allocation.

Fig. 4 shows the detailed design of the routers and
the two configurations of the topology of NoC in each
chiplet. Each chiplet consists of 16 PEs, which can be
configured into a 4 * 4 mesh topology (Fig. 4(a)) or into
a 2 * 2 C-Mesh topology (Fig. 4(b)). The PEs on each
chiplet are partitioned into 4 concentration regions with
4 PEs for each region. The corner router of each chiplet
is connected to one memory interface and the interpos-
er to communicate with the neighbor chiplet. The router
in Fig. 4 transmits a packet with a five-stage pipeline,
which includes route calculation, virtual channel (VC)
allocation, switch allocation, switch traversal, and link
traversal. The multiplexers and demultiplexers are add-
ed between the router and network interface to allow
each region to switch to a concentrated topology (i.e., C-
Mesh) for efficient data gathering and scattering for PEs
in the region. Each region is independently controlled
by the regional topology controller, and the topology is
changed dynamically during the GAN inference.

To prevent the loss of in-flight packets when switch-
ing between the two topologies, the following process
is developed in the regional topology controller. After
the chiplet completes the inference of one layer, the to-
pology controller prepares to switch topology by moni-
toring the flits in VC. When the controller observes the
last flit in VC is the tail flit, the multiplexers and demul-
tiplexers for that VC are switched immediately. Other-
wise, switching of topology is delayed until the tail flit
enters the VC. With this switching process, there will be
no information in the network link when the controller
switches network topology, as the multiplexers and de-
multiplexers are implemented before the VC. Also, this
process ensures the packet is intact when it is traversed
through the router.

Compared to the NoP and NoC designs in Simba
[18], the Chiplet-GAN facilitates not only efficient com-
munication for reduction and matrix multiplication op-
erations but also low latency communication between
chiplets. This is mainly due to the implementation of an
active interposer with both active and passive network
links and the implementation of the adaptive network to
skip excessive links and routers for communication by
utilizing the C-Mesh topology. Compared to the passive-
only interposer and network link for the NoP in Simba,
the proposed NoP design utilizes chiplet tiles and ac-
tive links for long-distance communication as systems

THIRD QUARTER 2024

scale and passive links for low latency communica-
tion between the adjacent chiplets. Moreover, within
each chiplet, the C-Mesh topology also enables quick
DRAM access through the NoC as well as easy adapt-
ing to mesh topology by only adding several multiplex-
ers and demultiplexers to the conventional NoC routers.
Section IIL.F discusses the configuration process of the
adaptive network during the GAN inference.

E. Workload Partitioning and Allocation
Long-distance communication between chiplet im-
pacts the execution time of GAN inference. Although
the long-distance between
chiplets can be reduced by utilizing active network
links and routers in NoP, the GAN inference workload
must be carefully partitioned to fully utilize this fea-
ture. Moreover, for layers that require a large amount
of data movement (e.g., Matrix Up-Sampling/Reshape)
within a short distance, the communication cost be-
tween chiplet can be reduced by utilizing the C-Mesh
topology in each chiplet and the passive network link
between chiplets. Thus, the proposed workload par-
titioning and workload allocation algorithms are de-
signed to utilize these network features to reduce the
communication cost for GAN inference.

communication cost

1) Workload Partitioning

Since each PE contains an activation computation unit,
the workload is first partitioned by the layer functions.
Specifically, the GAN model is partitioned by groups,
which contain multiple layers with matrix multiplica-
tion operations and one layer for activation computa-
tion units. Then, the workload for each group is divid-
ed and allocated to a set of chiplet tiles depending on
the size of the largest activation and the size of the
accumulative buffer in each chiplet tile due to the im-
plementation of output-stationary dataflow in each PE.

Chiplettile # :{ max activation size in the group "

accumulative buffer size / chiplet tile

)

Eq. (5) illustrates the calculation of the number of chiplet
tiles needed for the inference of each layer group, which
is the ceiling of the maximum activation size divided by
the size of the accumulative buffer in each chiplet tile.

With the proposed workload partitioning method, the
inference of each group is allocated to a set number of
chiplet tiles. As the last layer of each group is an activa-
tion layer, which involves reduction operation or matrix
up sampling and reshape, the NoP router at the center
of each chiplet tile is utilized for low latency communi-
cation, specifically, for a single chiplet tile, the router in

IEEE CIRCUITS AND SYSTEMS MAGAZINE

Authorized licensed use limited to: The George Washington University. Downloaded on August 30,2024 at 19:52:51 UTC from IEEE Xplore. Restrictions apply.

27

28

NoP along with the C-Mesh topology in the four chiplet
forms a concentrated network for efficient exchange of
the activation statistics during reduction operation. For
the group that requires more than one chiplet tile, the
active network link in NoP provides low-latency commu-
nication between the adjacent chiplet tiles. Moreover,
after the inference of the activation layer, the NoP is
utilized to transmit the activations to the next chiplet
tiles for the inference of the next layer. To reduce the
communication distance between the layer groups, an
effective workload allocation algorithm is essential for
the efficiency of Chiplet-GAN.

2) Workload Allocation

With the number of chiplet needed for each group, Al-
gorithm 1 is developed to allocate the workloads on the
chiplet system. The greedy algorithm is used in the al-
location process to reduce the communication latency
between chiplets. According to the workload partition,
each layer group is assigned more than one chiplet tile.
Thus, the allocation algorithm first calculates the com-
munication cost for all the possible allocations for each
layer group, then allocation with the minimal communi-
cation cost is selected.

As shown in Algorithm 1, suppose the GAN model M
is partitioned into x groups (i.e., M = [group_1, group_2,
..., group_x]J) and the system C has n chiplets tiles (i.e.,
C = [chiplet_tile_1, chiplet_tile_2, ..., chiplet_tile_n]). The
Allocated_Group stores the results of the workload al-
location. In the map_groups_to_chiplets function, the
function selects and allocates the inference workload to
the chiplet tiles group by group. The set for the chiplets
is selected by the find_best_chiplet function, where the
minimal communication cost for all the possible alloca-
tions is found by evaluating the communication cost for
all the possible workload allocations. The calculate_com-
munication_cost function calculates the time needed for
transmitting data through the network. According to the
static workload analysis, the two types of data that oc-
cupy the majority of the traffic are input activations and
temporary data, which include activation statistics and
partial sums. These data are transmitted through either
NoP or NoC during the inference. Thus, the communica-
tion cost (C) includes the network latency of input (C)
and the network latency of temporary data (C,, and C,).
Considering the communication for temporary data can
go through NoC and NoP, the C,, and C, represent the
communication latency for NoP and NoC, respectively.

Specifically, after the allocation of the group, the
input activation is transmitted from another chiplet
tile, which relies on the active links in NoP to transmit
activation. The network latency of input activation (C)
is calculated based on the physical delay of the NoP

IEEE CIRCUITS AND SYSTEMS MAGAZINE

Algorithm 1
Workload Allocation

1 def calculate_communication_cost(placed_group):

2 H; = # of NoP routers traversed for input
activations of a group

3 S; = the size of input activations

4 Hy, = # of NoP routers traversed for temporary data

5 Sip = the size of temporary data traversed through
the active NoP link

6 N, = # of traversed passive NoP link for
temporary data

7 H,. = # of NoC routers traversed for temporary
data

8 S = the size of temporary data traversed through
NoC

9 Ci=Top_tare"Hi + (Si/S9)" Ty

10 Ctp = rpflate*Htp + (Stp/sf)*Tfp

11 Cic = Tre_sate "Hie + (Ste/Se)*(Tre + Lpi*Np)

12 C =G +Cyp +Gy,

13 return C

14 def find_best_chiplet(group, available_chiplets):

15 min_cost = infinity

16 best_chiplet = None

17 for chiplet in available_chiplets:

18 Place group to chiplet

19 for placed_group in available_allocation:

20 cost = calculate_communication_
cost(placed_group)

21 if cost < min_cost:

22 min_cost = cost

23 best_chiplet = chiplet

24 return best_chiplet

25 def map_groups_to_chiplets(groups, chiplet_tiles):

26 mapped_groups = {}

27 available_chiplets = chiplet_tiles

28 for group in groups:

29 best_chiplet = find_best_chiplet(group,
available_chiplets)

30 mapped_groups[group] = best_chiplet

31 available_chiplets.remove(best_chiplet)

32 return mapped_groups

33 GAN Model M = [group_1,group_2, ..., group_x]

34 Chiplet System C = [chiplet_tile_1, chiplet_tile_2, ...,
chiplet_tile_n]

35 Allocated_Group = map_group_to_chiplets(M,C)

through the active link (7},), the number of NoP
routers traversed (H), the size of one flit in a packet
(Sp, the size of input activations (S,), and transmission
time for one flit in NoP (77,). In this function, T;, /. is
the physical delay caused by the network's physical as-
pects, which include switch and link delays. Notability,
the latency for NoC communication is constant regard-
less of the allocation of the workload in the function
for the network latency calculation of input activation
(C), as all the activation data have to traverse the NoC
in that chiplet to reach the PEs for inference. Thus, it
is assumed that the communication latency in NoC is

THIRD QUARTER 2024

Authorized licensed use limited to: The George Washington University. Downloaded on August 30,2024 at 19:52:51 UTC from IEEE Xplore. Restrictions apply.

the same, and only the communication cost for NoP is
calculated.

Considering the difference in design for the links in
NoC and NoP, the T, ;o and T, ;4. represent the physi-
cal delay for active links in NoP and NoC, respectively,
for the calculation of C,, and C,.. The calculation of C,,
includes the network latency for the data traversed
through the active link in the NoP, where T, .. is used.
In terms of the calculation of C,., the network latency
includes two parts, namely, the latency of traversing
NoC and passive NoP links. When a layer group is al-
located on more than one chiplet, the communication in
the NoC is short-distance communication; thus, passive
NoP links are utilized to transmit temporary data. As
the change in workload allocation affects the number of
passive NoP links traversed during the transmission of
temporary data, the network latency of traversing both
NoC and passive NoP links has to be counted. In the cal-
culation of the network latency for NoC, T;. represents
the transmission time for one flit in NoC. In the calcula-
tion of the network latency for traversing passive NoP
links, the L, represents the transmission time for one
flit in passive NoP links. Notability, for the NoC commu-
nication cost, the algorithm calculates the communica-
tion latency under the C-mesh topology configuration,
which is lower compared to mesh topology. The follow-
ing section illustrates the configuration of the adaptive
network in chiplet, which maintains low latency commu-
nications during GAN inference.

F. Adaptive Network Configuration
The network topology in each chiplet is dynamically
changed depending on the function and the allocation
of the layers to the accelerator. The regional topology
controller for each concentration region changes the
network topology to support the partitioned and placed
workload for efficient communication between PEs and
between chiplet. The controller selects C-Mesh topol-
ogy for DRAM access, chiplet-to-chiplet communica-
tion, and reduction communication. Thus, the commu-
nication latency for chiplet-to-chiplet communication is
calculated for the C-Mesh topology in each chiplet. For
PE-to-PE communication, the mesh topology is select-
ed. The controller monitors the computation process
of four PEs in the concentration region. When the PEs
in the region finish one layer, the controller selects the
next topology based on the communication requirement
for the next layer. The configuration process for matrix
multiplication, reduction operation, and up-sampling/
matrix reshape operations are listed as follows.
1) Matrix Multiplication. The NoC is configured into
the C-Mesh topology when loading the SRAM in
each PE. Then, the network is configured into

THIRD QUARTER 2024

mesh for efficient exchange of data during the ma-
trix multiplication. For the matrix multiplication
workloads, which are allocated to more than two
chiplets, the network is configured into a C-Mesh
topology for efficient chiplet-to-chiplet communi-
cation or DRAM access after the calculation of the
local partial sum.

2) Reduction Operation. The NoC is configured into
C-Mesh topology for reduction operation. For re-
duction operation on a single chiplet, the parame-
ter is calculated at the four corner PEs. For reduc-
tion operation across multiple chiplets, the corner
PEs in each chiplet with the most connection to
the neighbor in the previous layer are selected
for calculating the parameter. Then, the param-
eters are sent back to PEs for the next operation
through the concentrated network.

3) Up-Sampling/Matrix Reshape. For the matrix re-
shape operation, which needs to either store the
activation to DRAM or communication between
chiplets, the NoC is configured into the C-Mesh
topology for efficient communication.

IV. Evaluation

A. Simulation Setup

In this section, the performance of Chiplet-GAN is evalu-
ated by using the SMAUG [26] simulator. The cycle-ac-
curate SMAUG simulation model is modified to support

Table 3.
Simulation setup.

PE Parameter Value
Multiplier 32 bits FLOAT
Accumulator 32 bits FLOAT
Number of Multiplier 16

Number of Adder 16
Accumulation Buffer 144*32 bit
Activation/Weight SRAM Size 24432 bit
Chiplet Parameter Value
Number of PE 4*4

Link width 512 bit
Packet Size 4 flit * 512 bit
Payload/Packet 3 flit * 512 bit
Accelerator Parameters Value

Number of Chiplets 4%4

DRAM Bandwidth 1024 GB/s
DRAM Size 32 GB DDR4
Frequency 2 GHz

IEEE CIRCUITS AND SYSTEMS MAGAZINE
Authorized licensed use limited to: The George Washington University. Downloaded on August 30,2024 at 19:52:51 UTC from IEEE Xplore. Restrictions apply.

29

30

Chiplet-GAN. Table 3 shows the settings for the SMAUG
simulator for the Chiplet-GAN. PyTorch is used with the
SMAUG simulator to control the entire GAN inference
process. The accelerators are synthesized using Synop-
sys Design Compiler with TSMC 16nm to obtain power
dissipation during GAN inference and area consumption
of the system.

Chiplet-GAN is compared against GANAX [12], SpAt-
ten [13], and Simba [18] on execution time, communica-
tion latency, energy consumption, area, and scalability.
GANAX is a GAN inference accelerator for TC accelera-
tion with a single-chip design. SpAtten is an accelerator
designed to accelerate the inference of transformers,
which also incorporates a single-chip design. Simba is
a chiplet-based accelerator that focuses on the DCNN
model inference. All accelerators are implemented with
the same number of computation units as well as the
same size of SRAM, DRAM, and DRAM bandwidth. The
inference of the models listed in Table 1 is executed

on these accelerators to generate two images during
evaluation.

B. Execution Time
Fig. 5 shows the execution time reduction normalized
to Chiplet-GAN. The proposed design reduces execu-
tion time by 27%, 29%, and 45% on average, compared to
GANAX, SpAtten, and Simba, respectively. Compared to
Chiplet-GAN, SpAtten enhanced the efficiency of inference
attention mechanism, but it takes a longer time to process
up-sampling operations. Thus, Chiplet-GAN achieves a
16% execution time reduction on average for transformer-
based GANs (i.e., VITGAN and TransGAN). For TC-based
models (i.e., StyleGAN2, BigGAN, and CycleGAN), which
require more frequent up-sampling operations, Chiplet-
GAN reduces 38% in execution time on average compared
to the SpAtten. Compared to GANAX, which is optimized
for up-sampling and matrix reshaping, the Chiplet-GAN
achieves a 21% execution time reduction on average.

The main reason for execution
time reduction is the implementation

15
qg, 14
=13
§ 12
511
o

ViTGAN StyleGAN2 TransGAN

m GANAX mSpAtten mSimba

BigGAN
Chiplet-GAN

[}
0.9

CycleGAN

Figure 5. Execution time. Results are normalized to Chiplet-GAN.

of the adaptive interconnection net-
work design, active/passive network
link in NoP, and workload allocation
strategy. These design features not
only reduce the communication la-
tency but also increase the utilization
of computation units with fewer idle
cycles. The reduction in communica-
tion latency is shown in Fig. 6, which

Average

is measured by the time elapsed
between the access of the data and

CycleGAN

1.8
c 17
.g 1.6
s > 1.5
c € 14
3313
g 312
£ 1a
© 1.0
0.9
ViTGAN StyleGAN2 TransGAN BigGAN
m GANAX mSpAtten mSimba Chiplet-GAN

Figure 6. Communication latency. Results are normalized to Chiplet-GAN.

the beginning of the computation.
Chiplet-GAN reduces communication
latency by 46%, 52%, and 68% on av-
erage, compared to GANAX, SpAtten,
and Simba, respectively.

Since both Simba and GANAX
mainly focus on accelerating con-
volutional operations, the up-sam-
pling/reshape and reduction opera-
tions are not fully accelerated when

Average

executing GAN inference. Specifi-

ViTGAN StyleGAN2 TransGAN

m GANAX mSpAtten mSimba

BigGAN
Chiplet-GAN

2 .

S 1.1
%10
2

£ 09

CycleGAN

Figure 7. Energy consumption. Results are normalized to Chiplet-GAN.

cally, TC acceleration, which con-
tains zero insertion optimization, is
incorporated in GANAX design. How-
ever, a notable drawback in GANAX
is the lack of support for reduction
operations. This limitation leads to
the need for temporary storage of
activations in both the DRAM and
global buffer, resulting in a consider-
able increase in data communication

Average

IEEE CIRCUITS AND SYSTEMS MAGAZINE

THIRD QUARTER 2024

Authorized licensed use limited to: The George Washington University. Downloaded on August 30,2024 at 19:52:51 UTC from IEEE Xplore. Restrictions apply.

Chiplet-GAN features an adaptive topology design for the interconnection network and
incorporates workload partition and allocation algorithms to efficiently
handle large-scale GAN models.

and communication latency for GANAX, especially
for the models that require frequent reduction opera-
tions (e.g., VITGAN and TransGAN). As shown in Fig.
6, the GANAX and Simba achieve similar communi-
cation latency compared to Chiplet-GAN for VIiTGAN
and TransGAN.

On the other hand, Simba only focuses on the accel-
eration of DCNN inference. Thus, the lack of communica-
tion latency reduction techniques for both up-sampling/
reshape and reduction operations incurs more commu-
nication delays and longer execution time. As shown in
Fig. 6, Simba incurs 23% and 17% more communication
latency compared to GANAX and SpAtten, respectively.
Apart from lacking support for the operations during
GAN inference, the long-distance communication be-
tween chiplets is another issue for Simba. This is mainly
caused by the close placement of routers and passive
links only NoP design, which further increases the com-
munication latency. As a result, compared to Chiplet-
GAN, the Simba incurs significantly longer execution
times during GAN inference.

C. Energy Consumption
Fig. 7 shows the evaluation re-
sults for the energy consumption of

networks with the predetermined data flow; however,
fixed data flow in existing designs results in an uns-
calable architecture, which significantly impacts ex-
ecution time as the system scales.

D. Area Evaluation

Table 4 summarizes the area required for the accelera-
tors with the configuration given in Table 3. The results
are from the synthesis report of the Synopsys Design
Compiler.

Overall, Chiplet-GAN occupies less area compared
to SpAtten despite the additional area needed for the
connection between chiplets and interposer. This is
mainly due to the implementation of a crossbar for
on-chip communication, which incurs a large on-chip
area in SpAtten. Compared to SpAtten, the proposed

Table 4.

Area.

GANAX SpAtten Simba Chiplet-GAN
5.98 748 6.03 6.34

Area
(mm2)

Chiplet-GAN, GANAX, SpAtten, and 19
Simba. All results are normalized to
Chiplet-GAN. The energy is the prod-
uct of execution time and power dis-
sipation. Power dissipation includes
two parts: static power and dynamic
power.

Chiplet-GAN reduces energy con-
sumption by 20% on average com-
pared to the existing accelerators.

1.7

Execution Time

Chiplet-GAN.

15
13
- A
0.9

Figure 8. Execution time as the systems scales. Results are normalized to

64*64

[] GANAX I SpAtten m Slmba [| Chlplet-GAN

Specifically, compared to GANAX,

SpAtten, and Simba, Chiplet-GAN
reduces energy consumption by i:g

14%, 19%, and 30% on average, re- géi;
spectively. Compared to the reduc- | & §'1'z
tion in execution time, the energy | & £'7
reduction is less; this is mostly due ? %09

to the extra power consumed by the
adaptive interconnection network
in Chiplet-GAN and the active links
implemented in the interposer. The

03 -II III III III III

4*4 16*16

Figure 9. Static power consumption as the systems scales. Results are normal-
ized to Chiplet-GAN.

32*32
B GANAX = SpAtten mSimba m Chiplet-GAN

64*64

GANAX and SpAtten have simplified

THIRD QUARTER 2024

IEEE CIRCUITS AND SYSTEMS MAGAZINE

Authorized licensed use limited to: The George Washington University. Downloaded on August 30,2024 at 19:52:51 UTC from IEEE Xplore. Restrictions apply.

31

32

accelerator reduces the area by 15%. Compared to Sim-
ba and GANAX, Chiplet-GAN requires 5% and 6% more
area, respectively. This is mainly due to the additional
hardware needed to support adaptive interconnection
networks and active/passive network links. However,
when considering the significant reduction in execu-
tion time and energy consumption, the increase in
area is rather marginal for implementing the proposed
accelerator.

E. Scalability

To demonstrate the scalability of the system, the GAN
models are scaled by increasing the size of both activa-
tion and weights as Chiplet-GAN scales to 8 * 8, 16 * 16,
32 * 32, and 64 * 64 chiplets. For example, a layer in a
model with a weights size of 4 * 4 * 3 and activations
size of 128 * 128 * 3 is executed on the system with
4 * 4 chiplets. The weights and activations are scaled
to sizes of 8 * 8 * 3 and 256 * 256 * 3, respectively,
as the system scales from 4 * 4 to 8 * 8. The DRAM
size and DRAM bandwidth are scaled accordingly by
doubling the size and bandwidth to handle the signifi-
cant increase in memory port and memory traffic. The
SpAtten, GANAX, and Simba are also scaled accord-
ingly with the same amount of computation units and
on-chip SRAM.

Figs. 8 and 9 show the comparison of average execu-
tion time for all the GAN inference workloads and static
power consumption under these configurations. Com-
pared to a chiplet-based design (Simba), the Chiplet-
GAN achieves up to a 63% reduction in execution time
as the system scales to 64 * 64 chiplets. Compared to
GANAX and SpAtten, the Chiplet-GAN reduces execu-
tion time by up to 93% as the system scales. Simba
achieves better scalability compared to single-chip
designs (i.e., GANAX and SpAtten) due to the chiplet
design. However, compared to Chiplet-GAN, Simba still
requires more execution time. This is mainly due to
the high latency communication between chiplets dur-
ing inference. In terms of static power consumption,
both chiplet systems show an advantage in scalability
as the number of components and power consumption
linearly increases. Due to the simplicity of GANAX and
SpAtten, they consume less power when the system
is small (i.e., 4 * 4). However, the power consumption
for GANAX and GANPU increases dramatically as the
complexity of the global controller must be increased
significantly to handle the increase in the computa-
tion units. Specifically, compared to Chiplet-GAN, the
chiplet-based design (i.e., Simba) consumes up to 10%
more power, whereas GANAX and SpAtten consume up
to 49% and 59% more static power, respectively, as the
system scales.

IEEE CIRCUITS AND SYSTEMS MAGAZINE

V. Conclusion

In this article, we analyzed the communication and
computation requirements for large-scale GAN model
inference and identified three major challenges. Ad-
dressing these challenges, we proposed Chiplet-GAN,
a chiplet-based accelerator for scaling reduction op-
eration, scaling matrix multiplication, and distrib-
uted up-sampling/matrix reshape operations. To the
best of our knowledge, this is the first work that pro-
poses a chiplet-based design approach for GANs. The
proposed design introduces a novel interconnection
fabric with adaptive topology, active/passive network
links in NoP, and a workload partition and allocation
algorithm. The novel interconnection fabric enables
low communication latency during GAN inference.
The workload partition and allocation algorithms fur-
ther reduce communication latency with a greedy al-
gorithm. We conducted extensive simulation studies
to demonstrate the effectiveness of Chiplet-GAN. Our
detailed evaluation shows that Chiplet-GAN reduces
the execution time by 34% and the energy consump-
tion by 21% on average compared to GANAX, SpAtten,
and Simba. As the accelerator scales to enhance com-
putation capability for large-scale GAN inference, the
proposed design reduces the execution time by up to
63% compared to the existing chiplet-based accelera-
tor (Simba).

Acknowledgment
This work was supported by NSF under Grant CCF-
1953961, Grant CCF-1812467, Grant CCF-1812495, Grant
CCF-1953980, Grant CCF-1702980, and Grant CCF-1901165.

Yuechen Chen (Member, IEEE), re-
ceived the Ph.D. degree in computer
engineering from George Washington

|

Y= University, Washington, DC, in 2024. He
is currently an Assistant Professor

¢

with the Department of Computer Sci-
ence and Information Technologies, Frostburg State Uni-
versity, Maryland, USA. His research interests include
parallel computing systems, network-on-chip (NoC),
machine learning algorithms, applications, and

accelerators.

Ahmed Louri (Fellow, IEEE) received
the Ph.D. degree in computer engineer-
ing from the University of Southern
| - California, Los Angeles, CA, in 1988.
‘ From 1988 to 2015, he was a Professor
RN ‘ of electrical and computer engineer-

ing at the University of Arizona. From 2010 to 2013, he

THIRD QUARTER 2024

Authorized licensed use limited to: The George Washington University. Downloaded on August 30,2024 at 19:52:51 UTC from IEEE Xplore. Restrictions apply.

served as a Program Director of the National Science
Foundation's (NSF) Directorate for Computer and In-
formation Science and Engineering. He is currently the
David and the Marilyn Karlgaard Endowed Chair Profes-
sor of electrical and computer engineering with George
Washington University, Washington, DC, USA, which he
joined in August 2015. His research interests include in-
terconnection networks and network on chips for multi-
cores, and the use of machine learning techniques for
energy-efficient, reliable, high-performance and secure
many-core architectures and accelerators. He was the
Editor-in-Chief of IEEE Transactions oN COMPUTERS from
2019 to 2023. In 2024, he is serving on the Computer So-
ciety Publication Board Executive Committee. He is also
the Chair of the Transactions Operations Committee.

Fabrizio Lombardi (Fellow, IEEE), re-
ceived the B.Sc. degree (Hons)) in elec-
tronic engineering from the University
of Essex, UK., in 1977, the master’s de-
gree in microwaves and modern optics
and the Diploma degree in microwave
engineering from the Microwave Research Unit, University
College London, in 1978, and the Ph.D. degree from the
University of London in 1982. He is currently the Interna-
tional Test Conference (ITC) Endowed Chair Professor-
ship with Northeastern University, Boston, USA. His re-
search interests include bio-inspired and nano
manufacturing/computing, VLSI design, testing, and fault/
defect tolerance of digital systems. He was the President of
the IEEE Nanotechnology Council in 2022-2023.

Shanshan Liu (Senior Member, IEEE)
received the Ph.D. degree in micro-
electronics and solid-state electronics
from the Harbin Institute of Technol-
ogy, Harbin, China, in 2018. She was
a Post-Doctoral Researcher at North-
eastern University, Boston, USA, from 2018 to 2021, and
an Assistant Professor with New Mexico State University,
Las Cruces, from 2021 to 2023. She is currently a Profes-
sor with the University of Electronic Science and Tech-
nology of China, Chengdu, China. Her research interests
include fault tolerance design in high performance com-
puter systems, VLSI design, dependable machine learn-
ing, stochastic computing, and error correction codes.

References
[1] T. Karras et al., “Training generative adversarial networks with lim-
ited data,” in Advances in Neural Information Processing Systems. Red
Hook, NY, USA: Curran Associates, 2020, pp. 12104-12114.

THIRD QUARTER 2024

[2] M. Chen et al., “Generative pretraining from pixels,” in Proc. 37th Int.
Conf. Mach. Learn., Nov. 2020, pp. 1691-1703.

[3] P. Esser, R. Rombach, and B. Ommer, “Taming transformers for high-
resolution image synthesis,” presented at the Proc. IEEE/CVF Conf. Com-
put. Vis. Pattern Recognit. (CVPR), Jun. 2021, pp. 12868-12878.

[4] H. Abdelaziz et al., “Rethinking floating point overheads for mixed
precision DNN accelerators,” Proc. Mach. Learn. Syst., vol. 3, pp. 223-
239, Mar. 2021.

[5] E. Richardson et al., “Encoding in style: A styleGAN encoder for im-
age-to-image translation,” in Proc. I[EEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2021, pp. 2287-2296.

[6] Y. Jiang, S. Chang, and Z. Wang, “TransGAN: Two pure transformers
can make one strong GAN, and that can scale up,” in Advances in Neural
Information Processing Systems. Red Hook, NY, USA: Curran Associates,
2021, pp. 14745-14758.

[7] J.-Y. Zhu et al., “Unpaired image-to-image translation using cycle-
consistent adversarial networks,” 2020, arXiv:1703.10593.

[8] J. Park and Y. Kim, “Styleformer: Transformer based generative ad-
versarial networks with style vector,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2022, pp. 8973-8982.

[9] A. Brock, J. Donahue, and K. Simonyan, “Large scale GAN training
for high fidelity natural image synthesis,” 2018, arXiv:1809.11096.

[10] H. Zhang et al., “Self-attention generative adversarial networks,” in
Proc. 36th Int. Conf. Mach. Learn., May 2019, pp. 7354-7363.

[11] K. Lee et al., “ViTGAN: Training GANs with vision transformers,”
2021, arXiv:2107.04589.

[12] A. Yazdanbakhsh et al., “GANAX: A unified MIMD-SIMD accelera-
tion for generative adversarial networks,” in Proc. ACM/IEEE 45th Annu.
Int. Symp. Comput. Archit. (ISCA), Jun. 2018, pp. 650-661.

[13] H. Wang, Z. Zhang, and S. Han, “SpAtten: Efficient sparse attention
architecture with cascade token and head pruning,” in Proc. IEEE Int.
Symp. High-Perform. Comput. Archit. (HPCA), Feb. 2021, pp. 97-110.

[14] S. Kang et al., “GANPU: An energy-efficient multi-DNN training pro-
cessor for GANs with speculative dual-sparsity exploitation,” IEEE J.
Solid-State Circuits, vol. 56, no. 9, pp. 2845-2857, Sep. 2021.

[15] T. J. Ham et al., “A*3: Accelerating attention mechanisms in neural
networks with approximation,” in Proc. IEEE Int. Symp. High Perform.
Comput. Archit. (HPCA), Feb. 2020, pp. 328-341.

[16] W. Luo et al., “Rethinking motivation of deep neural architectures,”
IEEE Circuits Syst. Mag., vol. 20, no. 4, pp. 65-76, 4th Quart., 2020, doi:
10.1109/MCAS.2020.3027222.

[17] A. Vaswani et al., “Attention is all you need,” 2017, arXiv:1706.03762.
[18]Y.S. Shao et al., “Simba: Scaling deep-learning inference with multi-
chip-module-based architecture,” in Proc. 52nd Annu. IEEE/ACM Int.
Symp. Microarchitecture (MICRO). New York, NY, USA: Assoc. Comput.
Machinery, Oct. 2019, pp. 14-27.

[19] R. Hwang et al., “Centaur: A chiplet-based, hybrid sparse-dense ac-
celerator for personalized recommendations,” in Proc. ACM/IEEE 47th
Annu. Int. Symp. Comput. Archit. (ISCA), May 2020, pp. 968-981.

[20] M.-S. Lin et al., “A 7-nm 4-GHz arm'-core-based CoWoS' chiplet
design for high-performance computing,” I[EEE J. Solid-State Circuits,
vol. 55, no. 4, pp. 956-966, Apr. 2020.

[21] J.-F. Zhang and Z. Zhang, “Machine learning hardware design for
efficiency, flexibility, and scalability,” IEEE Circuits Syst. Mag., vol. 23,
no. 3, pp. 35-53, 2023.

[22] N. E. Jerger et al., “NoC architectures for silicon interposer sys-
tems: Why pay for more wires when you can get them (from your inter-
poser) for free?” in Proc. 47th Annu. IEEE/ACM Int. Symp. Microarchitec-
ture, Dec. 2014, pp. 458-470.

[23] A. Kannan, N. E. Jerger, and G. H. Loh, “Enabling interposer-based
disintegration of multi-core processors,” in Proc. 48th Annu. IEEE/ACM
Int. Symp. Microarchitecture (MICRO), Dec. 2015, pp. 546-558.

[24] D. Stow et al., “Cost-effective design of scalable high-performance
systems using active and passive interposers,” in Proc. IEEE/ACM Int.
Conf. Comput.-Aided Design (ICCAD), Nov. 2017, pp. 728-735.

[25] G. Shan et al., “Architecture of computing system based on chiplet,”
Micromachines, vol. 13, no. 2, p. 205, Jan. 2022.

[26] S. L. Xi et al., “SMAUG: End-to-end full-stack simulation infrastruc-
ture for deep learning workloads,” ACM Trans. Archit. Code Optim.,
vol. 17, no. 4, pp. 39:1-39:26, Nov. 2020.

IEEE CIRCUITS AND SYSTEMS MAGAZINE

Authorized licensed use limited to: The George Washington University. Downloaded on August 30,2024 at 19:52:51 UTC from IEEE Xplore. Restrictions apply.

33

