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Generative adversarial networks (GANs) have emerged as a pow-
erful solution for generating synthetic data when the availability of 
large, labeled training datasets is limited or costly in large-scale 
machine learning systems. Recent advancements in GAN models 
have extended their applications across diverse domains, includ-
ing medicine, robotics, and content synthesis. These advanced 
GAN models have gained recognition for their excellent accuracy 
by scaling the model. However, existing accelerators face scal-
ability challenges when dealing with large-scale GAN models. 
As the size of GAN models increases, the demand for compu-
tation and communication resources during inference continues 
to grow. To address this scalability issue, this article proposes 
Chiplet-GAN, a chiplet-based accelerator design for GAN infer-
ence. Chiplet-GAN enables scalability by adding more chiplets 
to the system, thereby supporting the scaling of computation ca-
pabilities. To handle the increasing communication demand as 
the system and model scale, a novel interconnection network 
with adaptive topology and passive/active network links is de-
veloped to provide adequate communication support for Chiplet-
GAN. Coupled with workload partition and allocation algorithms, 
Chiplet-GAN reduces execution time and energy consumption 
for GAN inference workloads as both model and chiplet-system 
scales. Evaluation results using various GAN models show the 
effectiveness of Chiplet-GAN. On average, compared to GANAX, 
SpAtten, and Simba, the Chiplet-GAN reduces execution time 
and energy consumption by 34% and 21%, respectively. Further-
more, as the system scales for large-scale GAN model inference, 
Chiplet-GAN achieves reductions in execution time of up to 63% 
compared to the Simba, a chiplet-based accelerator.

Index Terms—GAN inference, chiplet, scalability, intercon-
nection network, machine learning. 

I. Introduction 

Generative Adversarial Networks (GANs) have ex-
cellent performance in content generation, such 
as image synthesis and natural language pro-

cessing (NLP) tasks [1], [2], [3], [4]. With the most recent 
advancement in training algorithms and models, the 
latest large-scale GAN models have achieved very good 
performance [5], [6], [7], [8], [9], [10], [11]. For example, 
TransGAN [6] has shown excellent accuracy on image 
synthesis tasks by incorporating transformers into the 
model. To deploy these GAN models, inference is a quint-
essential step for the model to generate content with re-
duced delay [12]. The increasing complexity and size of 
the large-scale GAN model for capturing more complex 
patterns and generating higher-quality outputs present 
challenges in architectural design when it comes to han-
dling the demanding computational and communication 
workloads associated with model inference. 

Existing research has proposed several architectures 
to accelerate GAN inference [12], [13], [14], [15], [16]. 
Different from convolutional neural networks, a GAN 
contains transposed convolution operations (TC) and 
transformers [17], which demand a significant amount 
of computation and communication resources. Thus, 
specialized accelerators are developed to handle these 
workloads. In GANAX [12], a SIMD-MIMD mixed architec-
ture is developed to handle TC. In SpAtten [13], a special-
ized unit is designed to accelerate the computation of 
attention mechanisms in transformers. Existing architec-
tures primarily excel in improving efficiency for specific 
functionalities, such as TC or the attention mechanism. 
However, as the parameters and the number of layers 
increase to expand the widespread usage and accuracy 
of GAN models, the task of scaling these architectures 
to meet the growing computational and communication 
demands becomes an increasingly pressing concern. All 
existing accelerators [12], [13], [14], [15] are implemented 
with a global controller and global buffer, which are not 
scalable to support more computation units for the infer-
ence of large-scale GAN models.

Recent research has provided compelling evidence of 
the advantages of chiplet systems in terms of computation 
performance and scalability [18], [19], [20], [21]. A chiplet 
system provides a modular approach to semiconductor 
design and manufacturing, in which multiple smaller chip 
components (i.e., chiplets) are integrated into a single sys-
tem. The chiplets are interconnected via network-on-pack-
et (NoP) with either active or passive links on a common 
interposer [22], [23], [24]. Within each chiplet, a multi-core 
system is implemented by using network-on-chip (NoC) 
to connect cores, caches, and memory interfaces. Pack-
ets are used to carry data in NoCs, and routers are imple-
mented to direct packets to their destination. With such a 
design, the system offers scalability by allowing users to 
scale their systems by adding chiplets as needed. Exist-
ing research and commercial products have proven that 
these systems can integrate a large number of computa-
tion units at a lower cost and higher flexibility compared 
to conventional single-chip designs [20], [22], [24], [25]. 
The flexibility and scalability are particularly useful in 
GAN model inference, in which varying levels of perfor-
mance and functionality are required. 

To the best of the authors' knowledge, there has been 
no prior research conducted on designing a scalable 

Abstract

Yuechen Chen is with the Department of Computer Science and Information Technologies, Frost-
burg State University, Frostburg, MD 21532 USA (e-mail: ychen@frostburg.edu).
Ahmed Louri is with the Department of Electrical and Computer Engineering, The George Washing-
ton University, Washington, DC 20052 USA (e-mail: louri@gwu.edu).
Fabrizio Lombardi is with the Department of Electrical and Computer Engineering, Northeastern 
University, Boston, MA 02115 USA (e-mail: lombardi@ece.neu.edu).
Shanshan Liu is with the School of Information and Communication Engineering, University of 
Electronic Science and Technology of China, Chengdu 611731, China (e-mail: ssliu@uestc.edu.cn).

Authorized licensed use limited to: The George Washington University. Downloaded on August 30,2024 at 19:52:51 UTC from IEEE Xplore.  Restrictions apply. 



THIRD QUARTER 2024   IEEE CIRCUITS AND SYSTEMS MAGAZINE 21

GAN inference accelerator by employing a chiplet design 
approach. Existing research has proposed the use of a 
chiplet system for deep convolutional neural networks 
(DCNN), which mainly consists of convolutional layers 
[18], [19]. Different from DCNN models, TC and trans-
formers require more computation resources with vastly 
different communication patterns. Compared to existing 
single-chip accelerator designs [12], [13], [14], [15] for 
GAN inference that can efficiently process only one type 
of layer (e.g., matrix multiplication or attention mecha-
nism), a chiplet system excels at efficiently processing 
multiple layers in parallel. Furthermore, the scalability 
inherent to a chiplet design approach ensures efficient 
inference not only for existing large-scale GAN models 
but also for future models with increasingly demanding 
computation and communication requirements.

This article presents Chiplet-GAN, a chiplet-based 
accelerator designed specifically for scalable and ef-
ficient GAN inference. Through a detailed analysis of 
the computation and communication requirements in-
volved in GAN inference, it is observed that operations 
such as matrix multiplication, reduction operations, 
up-sampling, and matrix reshape operations consume 
a significant portion of the inference time and incur in-
tensive communication and computation. Recognizing 
the distinct communication patterns exhibited by these 
operations, an adaptive network topology is developed 
to effectively address the communication demands of 
the workload. This adaptive interconnection network is 
implemented in each chiplet, enabling dynamic switch-
ing between a concentrated mesh (C-Mesh) and a mesh 
topology based on the functionality of the layer. For ef-
ficient communication between chiplets as Chiplet-GAN 
scales, NoP is implemented with both passive and ac-
tive network links on the interposer to efficiently handle 
both short-distance and long-distance communications. 
Together with the NoP design and adaptive intercon-
nection network, the efficiency of traffic forwarding 
is improved during GAN inference, specifically for the 
aforementioned operations. To complement the adap-
tive network topology and passive/active network links, 
the workload partitioning and allocation algorithms are 
developed. These algorithms partition the workload 
and strategically distribute the workloads to ensure low 
communication latency, which further reduces the over-
all execution time. The key contributions of this article 
are then summarized as follows.

 ■ This article proposes Chiplet-GAN, a scalable and 
efficient GAN inference accelerator, by employing 
a chiplet design approach.

 ■ Chiplet-GAN includes an adaptive interconnection 
network in chiplet to ensure low communication 
latency during inference as the GAN model scales.

 ■ Network-on-packet (NoP) is designed with both 
active and passive network links on the interposer 
with a workload partitioning and allocation algo-
rithm to ensure low communication latency be-
tween chiplets as the system scales.

 ■ Simulation results show that compared to GA-
NAX, SpAtten, and Simba, Chiplet-GAN reduces 
execution time and energy consumption by 34% 
and 21%, respectively. Furthermore, as the system 
scales for large-scale GAN inference, Chiplet-GAN 
achieves reductions in execution time of up to 
63% compared to the existing chiplet-based accel-
erator (Simba).

II. Motivation and Challenges

A. GAN Inference
The recent large-scale GAN model for inference poses 
challenges mainly due to the deep model architecture 
with a large number of parameters and activations. The 
main challenges of the scaling of the layers that are 
widely used in GAN models are listed as follows. 

 ■ Fully Connected/Linear/Convolution Layer: These 
layers involve matrix multiplications between the 
input activations and the learned weight matrices. 
These matrix multiplication operations are compu-
tationally expensive, especially when large input ac-
tivations and weights are used in the model.

 ■ Attention Mechanism: The attention mecha-
nism, commonly used in transformer-based 
GANs, requires pairwise computations between 
all positions in the input activations. This in-
volves computing attention weights for each 
position, which entails a significant amount of 
computation due to many matrix multiplica-
tions. Also, the transformer involves matrix 
reshape operations, such as matrix transpose, 
and incurring extensive communication traffic 
between computation units.

 ■ Up-Sampling Operations: GAN models utilize up-
sampling operations, such as zero insertion or 
nearest-neighbor up-sampling. Up-sampling op-
erations involve interpolating or expanding input 
activations to increase the spatial resolution, so 
requiring extensive data communication between 
computation units. 

 ■ Activation Functions: The application of non-
linear activation functions, such as ReLU (Recti-
fied Linear Unit), and linear activation functions, 
such as SoftMax and normalization in the model, 
also contributes to the complexity of computation 
and communication. These activation functions 
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are applied elementwise to the activations and re-
quire additional computation. The normalization 
and SoftMax functions need to survey the inputs 
before an element-wise operation, that requires 
a reduction operation prior to an elementwise 
operation.

As the GAN model keeps scaling to capture more 
complex patterns and generate higher-quality outputs, 
efficient inference in such a model requires more com-
munication and computation capabilities for storing, 
accessing, and processing input activations and param-
eters. Thus, a scalable system is needed to handle the 
increasing demand in both computation and communi-
cation for GAN inference.

B. Chiplet Design Approach
Chiplet systems offer significant advantages in terms of 
performance and scalability for architecture design and 
semiconductor manufacturing [18], [19], [20], [21], [25]. 
By integrating specialized chip components, known as 
chiplets, into a unified system, designers can better uti-
lize each chiplet for specific tasks, resulting in enhanced 
performance. The modular nature of chiplet systems 
further enables scalability, allowing for nearly effortless 
addition or removal of chiplets as required. This flexibil-
ity allows system upgrades for large-scale GAN model 
inference workloads. 

To support easy system upgrade and scaling, a 
network-on-packet (NoP) is implemented to connect 
chiplets. As shown in Fig. 1, the connection between 
chiplets is accomplished with a passive or active net-
work link via micro-bump (µbump). Recent work [24] 
has studied both designs by analyzing the positive and 
negative of the two designs. Active network links enable 
better scalability compared to passive network links 
with larger throughput for long-distance communica-
tion. However, implementing active network links needs 
routers being implemented in the interposer, which 
requires the packet to traverse routers in both chiplet 
and interposer. On the other hand, passive network 

links achieve lower network latency by only relying on 
the router in the chiplet, even though the link has lower 
bandwidth. 

Within each chiplets, processing elements (PEs), 
caches, and memory interfaces are connected using 
NoC. All the data is transmitted using packets in both 
NoC and NoP. Overall, chiplet systems present a prom-
ising approach to improve performance, efficiency, and 
scalability in GAN inference accelerator designs. 

As chiplet systems rely heavily on the interconnec-
tion network to connect and communicate between dif-
ferent computation units and memories, designing an 
efficient interconnection network poses a major chal-
lenge for efficient and scalable GAN inference. Energy 
and latency represent two vital aspects when designing 
interconnect solutions for efficient GAN inference. With 
the addition of more chiplets to accommodate the ex-
panding GAN model, the NoP inevitably becomes larger; 
consequently, the traversal of packets through the ex-
panded network incurs higher time and energy costs. Ac-
cording to the existing research [18], [19], [20], [24], [25], 
network latency and energy consumption significantly 
impact inference efficiency with longer execution time 
and high energy consumption. Thus, reducing latency 
and energy consumption for interconnection networks 
is crucial for GAN inference on a chiplet system, which 
often requires real-time responsiveness during deploy-
ment. Specifically, the main challenges for designing a 
chiplet system for GAN inference are listed below.

 ■ Diverse Communication Pattern: Inference in-
volving various layers in GAN models results in 
markedly diverse communication patterns. Given 
the significant effects of latency and power con-
sumption when a packet is redirected by the rout-
ers, there's a pressing need for innovative NoC 
designs, which should efficiently address the dis-
tinct communication patterns observed during 
GAN inference within a chiplet. 

 ■ Scalable and Efficient NoP: The communication 
between chiplets is a major bottleneck for chiplet-

based design as the system scales. One 
major challenge in NoP design is the us-
age of passive and active network links. 
Existing research [24] indicates that pas-
sive links can handle high data through-
put over short distances. However, their 
scalability is constrained by limited com-
munication range. Conversely, active 
links facilitate long-distance communi-
cation, but their bandwidth is restricted 
due to the incorporation of routers on the 
interposer. Considering the benefits and 
limitations of both active and passive 

Figure 1. NoP design with a passive or active network link. (a) NoP with pas-
sive network link. (b) NoP with active netwrok link.
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links, a novel NoP design, grounded in a strategic 
analysis of GAN inference workloads, is crucial for 
the efficiency of the chiplet-based accelerator. Ad-
ditionally, the network-on-package (NoP) should 
be synergistically designed alongside workload 
partitioning and allocation algorithms, aiming to 
harness the strengths of both interposer types.

III. Chiplet-GAN Design

A. Overview
The goal of the proposed accelerator design is to attain 
both improvements in efficiency and scalability for GAN 
inference workloads by employing a chiplet design ap-
proach. This is mainly accomplished through the follow-
ing steps.

 ■ A thorough analysis of the computation and com-
munication requirements specific to the GAN mod-
el is conducted. This analysis involves examining 
the architecture of various GAN models used for 
image synthesis workloads and meticulously as-
sessing the computation and communication de-
mands of each layer as well as the overall model. 

 ■ Chiplet-GAN is proposed, featuring an adaptive 
network topology design for the interconnec-
tion network to facilitate the scaling of individual 
layers. 

 ■ Workload partition and allocation algorithms are 
introduced to effectively utilize the benefits of 
the adaptive topology design when dealing with 
large-scale GAN models.

B. Layer Analysis
Table 1 shows the list of large-scale GAN models used 
in this article. These models contain tens of millions of 

parameters and multiple layers to generate high-resolu-
tion images depending on the configuration. Addition-
ally, newer variations of these models contain more pa-
rameters to achieve better image resolution. The basic 
structure of these models includes both transposed 
convolution (TC) and transformers, which are the two 
design trends for the GAN model. The TC-based model 
includes convolution, up-sampling functions, normaliza-
tion functions, and activation functions. The transform-
er-based model contains attention mechanisms, linear 
layers, up-sampling functions, normalization functions, 
and activation functions. The functionality of these 
layers consists of several basic operations, including 
matrix multiplication, reduction operation, and up-sam-
pling/matrix reshape operations. Communication and 
computation are needed when computation units exe-
cute these basic operations. The analysis of the compu-
tation and communication requirements for these basic 
operations is presented next. 

1. Matrix Multiplication 
Fully connected, linear, and convolution layers are wide-
ly used in both transformer and TC-based GANs. In a 
transformer, the linear layers are widely used before 
the attention mechanism. Also, the transformer utilizes 
matrix multiplication to calculate attention values. In 
TC-based GANs, the linear layer is used at the end of 
each processing block to capture the complex relation-
ship between input and output data. Eq. (1) shows the 
basic operation for a fully connected layer and linear 
layer, i.e., matrix multiplication. The convolution layer 
can also be accomplished using matrix multiplication by 
reshaping the input activation and weight matrices. 

 O A Bmp mn np= *  (1)

Eq. (1) shows two input matrices (i.e., A, B) and one 
output matrices (i.e., O). m, n denotes the number of 
rows and columns of matrix A, and n, p denotes the 
number of rows and columns of matrix B. To perform 
matrix multiplication, the computation unit needs to 
load matrices A and B, which requires data communica-
tion of m * n + n * p elements. Then, the matrix multi-
plication requires n * m * p multiplications followed by 
(n− 1) * m * p addition operations. After the computa-
tion, the computation unit generates and sends out the 
matrix O with m * n elements. 

2. Reduction Operation
Both SoftMax and the normalization layer scale the in-
put matrix into a specific format based on the statistics 
of the input activations. Since these layers improve the 
accuracy of the model, they are widely used in both 

Table 1. 
GAN models.
GAN 
Models

Basic 
Structure

Number of 
Parameters

Task

BigGAN-
deep [9]

TC 50 million Image 
synthesis

ViTGAN-
Base [11]

Transformer 38 million Image 
synthesis

TransGAN-
Base [6]

Transformer 85 million Image 
synthesis

StyleGAN2 
[5]

TC 24 million Text-to-
Image

CycleGAN 
[7]

TC 35 million Image-
to-Image 
Translation
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transformer and TC-based GANs. These layers typically 
contain two steps. The first step calculates the statistics 
of the input, which involves a reduction operation. Eqs. 
(2) and (3) show the function for statistic computation 
for SoftMax and normalization operations.
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In Eqs. (2) and (3), the input matrix x contains a total of i 
elements. Both functions need to access all elements in 
the input matrix to get the statistics. Assume the input 
matrix has a size of m * n. SoftMax needs data communi-
cation of m * n elements to gather all inputs, so m * n ex-
ponent computations and m * n − 1 additions to get the 
variable s. For the normalization layer, m * n elements 
are gathered to calculate the mean value of the inputs 
through m * n − 1 addition and 1 division operations. 
Then, the variance is calculated through m * n subtrac-
tion and square operations, followed by m * n − 1 addi-
tions and one division. Both of these layers require a re-
duction operation, which requires data communication, 
to gather the input activation and calculate the statis-
tics. After the calculation, the element-wise operations 
are applied to the input matrix.

3. Up-Sampling/Matrix Reshape Operation
Up-sampling operations are widely used in GANs to in-
crease the size of the output matrix, such as zero inser-
tion and nearest neighbor. These layers require a ma-
trix with m * n elements as the input and upscale it a 
time, which requires m * n + a * m * n communication. 
The matrix reshape operations, such as transpose, take 
a matrix with m * n elements as the input and output 
a matrix with n * m elements. Both up-sampling and 
matrix reshape operations typically do not require any 
computation on the input activation, but they require 
communications to send data to the correct destination.
Table 2 summarizes the layer analysis with the computa-
tion and communication ratio (Rc&c) as defined in

 Rc c& =
Number of Computation

Size of Input and Output Matrice
 (4)

In Eq. (4), the amount of communication is estimated by 
adding the size of both input and output matrices. The 
layer requires more computation when the Rc&c value is 
higher. However, a layer requires more communication 
with a low Rc&c value. By comparing the Rc&c value for 
different layers, it can be seen that except for the fully 

connected/linear layer, in which computation is signifi-
cantly higher than communication, the remaining layers 
require significantly more communication compared to 
the fully connected/linear layer.

C. Static GAN Model Analysis
Fig. 2 shows the breakdown of the communication re-
quirements by statically analyzing the GAN models 
layer by layer in Table 1. The analysis assumes the infer-
ence of the GAN model is executed on sixteen chiplets, 
which contain multiplication and addition arrays for ma-
trix multiplication and computation units for activation 
functions and up-sampling operations. The workload is 
evenly divided and distributed by the size of the acti-
vation for each layer. Based on the analysis, the reduc-
tion operations and up-sampling/reshape operations 
occupy more than 72% of the total communication. 36% 
of the communication is due to the reduction operation 
to calculate the statistics for the SoftMax/normalization 
layer. Thus, the challenges for the inference of large-
scale GAN models on a scalable chiplet system are listed 
below.

1) Scaling Reduction Operation. The wide usage of 
the normalization layer results in significant com-
munication. Most of these communications are 
due to the reduction operation for statistics calcu-
lation and element-wise operation. Moreover, as 
the size of activation increases for high-resolution 
image generation, supporting a large-scale reduc-
tion operation on chiplet systems becomes a chal-
lenge.

2) Scaling Matrix Multiplication. As the GAN mod-
els scale, the matrix multiplication workloads 
increase dramatically. To handle the increasing 
demand in computation for large matrix multipli-
cation, a scalable chiplet system is needed. 

3) Distributed Up-Sampling/Matrix Reshape. As the 
GAN models generate high-resolution data, these 
operations need to process a large activation ma-
trix during inference, which involves significant 
communication traffic. Since existing accelerators 
use a scratch pad memory, both operations re-
quire a centralized global controller to reorganize 

Table 2. 
Summary of layer analysis.
Layer Name Rc&c

Fully Connected/Linear (n2-n)mp/mn+np+mp
Layer Normalization 3mn/2mn = 1.5
SoftMax (3mn-1)/2mn≈1.5
Upscaling/Matrix Reshape 0
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the data mapping in the memory, which is not 
scalable for a chiplet system. For a chiplet sys-
tem, these operations must be distributed rather 
than centralized, which incurs a large amount of 
communication between chiplets for transmitting 
activations. This communication incurs a high 
latency, especially when the packet must travel a 
long distance. 

D. Architecture Design
To solve the three challenges for scalable and efficient 
GAN inference on a chiplet system, the architecture of 
Chiplet-GAN includes the following features.

 ■ Adaptive NoC Topology: To satisfy the communi-
cation requirement for the reduction operation, 
designing a concentrated network allows an ef-
ficient gathering of data for the operation. How-
ever, such a network has low efficiency for scaling 

matrix multiplication operations, as matrix multi-
plication needs frequent data exchange between 
neighbors. To support both reduction and matrix 
multiplication operations, Chiplet-GAN utilizes an 
adaptive network topology design, which dynami-
cally switches between mesh and concentrated 
mesh (C-Mesh) topologies for efficient on-chip 
communication. This design ensures the efficien-
cy of the execution of both reduction and matrix 
multiplication operations.

 ■ NoP With Both Active and Passive Network 
Links: To efficiently handle both long-distance 
and short-distance communication between 
chiplets as the system scales, both active and 
passive network links are implemented in the 
NoP. Specifically, active network links are imple-
mented for efficient long-distance communica-
tion between chiplets and passive network links 

for low latency communication between two 
chiplets. 

 ■ Workload Partitioning and Allocation: 
To reduce the communication latency for 
GAN inference, specialized workload par-
tition and allocation algorithms are devel-
oped based on static model analysis. The 
proposed partition and allocation algo-
rithm utilizes the characteristics of both 
the proposed NoP design and adaptive 
network topology in NoC for efficient and 
scalable GAN inference on Chiplet-GAN.

Figure 3. Architecture of Chiplet-GAN. The system package is scalable to include more chiplets tiles. Each chiplet tile consists 
of four chiplets and is connected to a router (R) on the interposer. The active link is implemented to connect routers for chiplet 
groups. The passive link is implemented to connect two chiplets. Within each chiplet, an adaptive network is implemented with 
routers (R) to connect the processing element (PE), the memory interface (MEM), and the active/passive interposer. The passive 
interposer connects the corner routers of the two adjacent chiplets. Each PE contains a PE controller, SRAMs for storing input 
and output matrices, a crossbar to forward the product of the multiplier array, and an activation computation unit for processing 
ReLU, activation statistics (Stats.) calculation, and up-sampling/matrix reshape operations. (a) System package. (b) Chiplet. (c) 
Processing element (PE).

Figure 2. Communication breakdown through static GAN model analysis.
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Fig. 3 shows the architecture of Chiplet-GAN. The 
system package (Fig. 3(a)) contains multiple chiplets, 
which is scalable for the inference of large GAN models. 
As shown in Fig. 3(a), each chiplet group contains four 
chiplets, which are connected to a router via µbumps. 
This design handles long-distance communication be-
tween chiplets by connecting the corner router on each 
chiplet and the NoP router in a chiplet group using ac-
tive network links. These active network links connect 
chiplets tiles, which not only enables the scaling of 
the chiplet system with additional tiles but also allows 
high bandwidth data exchange between tiles. For short-
distance communication between adjacent chiplets, 
passive network links are implemented to enable quick 
data exchange between the corner routers of the two 
chiplets. 

Fig. 3(b) shows the detailed design of the chiplet. The 
chiplet includes an adaptive network to efficiently pro-
cess both reduction operation and matrix multiplication 
operation by switching between C-mesh and mesh to-
pology. This is achieved by controlling the multiplexers 
and demultiplexers. By switching to the C-mesh topol-
ogy, the latency of communication between chiplets is 
reduced by skipping routers and network links. 

Fig. 3(c) illustrates the detailed design of each pro-
cessing element (PE). Each PE contains an array of mul-
tipliers and an accumulative buffer for multiplication 
and addition operations. The activation computation 
unit is designed to execute several functions, includ-
ing ReLU, activation statistics computation, and matrix 
up-sampling/reshape. Each PE contains a PE controller, 
which controls the computation process and activation 

Figure 4. Adaptive network design in Chiplet. All the routers (R) in NoC have the same design with different multiplexer and 
demultiplexer connections. The dotted line indicates skipped links or routers for communication latency reduction. (a) Mesh topol-
ogy. (b) C-Mesh topology.
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computation unit. The proposed PE utilizes an output-
stationary data flow to reduce the frequent exchange of 
partial sum during the matrix multiplication. With this 
data flow, the GAN inference workload is partitioned by 
the size of the output activation of a layer. Section III.E 
discusses the details of workload partitioning and 
allocation.

Fig. 4 shows the detailed design of the routers and 
the two configurations of the topology of NoC in each 
chiplet. Each chiplet consists of 16 PEs, which can be 
configured into a 4 * 4 mesh topology (Fig. 4(a)) or into 
a 2 * 2 C-Mesh topology (Fig. 4(b)). The PEs on each 
chiplet are partitioned into 4 concentration regions with 
4 PEs for each region. The corner router of each chiplet 
is connected to one memory interface and the interpos-
er to communicate with the neighbor chiplet. The router 
in Fig. 4 transmits a packet with a five-stage pipeline, 
which includes route calculation, virtual channel (VC) 
allocation, switch allocation, switch traversal, and link 
traversal. The multiplexers and demultiplexers are add-
ed between the router and network interface to allow 
each region to switch to a concentrated topology (i.e., C-
Mesh) for efficient data gathering and scattering for PEs 
in the region. Each region is independently controlled 
by the regional topology controller, and the topology is 
changed dynamically during the GAN inference. 

To prevent the loss of in-flight packets when switch-
ing between the two topologies, the following process 
is developed in the regional topology controller. After 
the chiplet completes the inference of one layer, the to-
pology controller prepares to switch topology by moni-
toring the flits in VC. When the controller observes the 
last flit in VC is the tail flit, the multiplexers and demul-
tiplexers for that VC are switched immediately. Other-
wise, switching of topology is delayed until the tail flit 
enters the VC. With this switching process, there will be 
no information in the network link when the controller 
switches network topology, as the multiplexers and de-
multiplexers are implemented before the VC. Also, this 
process ensures the packet is intact when it is traversed 
through the router.

Compared to the NoP and NoC designs in Simba 
[18], the Chiplet-GAN facilitates not only efficient com-
munication for reduction and matrix multiplication op-
erations but also low latency communication between 
chiplets. This is mainly due to the implementation of an 
active interposer with both active and passive network 
links and the implementation of the adaptive network to 
skip excessive links and routers for communication by 
utilizing the C-Mesh topology. Compared to the passive-
only interposer and network link for the NoP in Simba, 
the proposed NoP design utilizes chiplet tiles and ac-
tive links for long-distance communication as systems 

scale and passive links for low latency communica-
tion between the adjacent chiplets. Moreover, within 
each chiplet, the C-Mesh topology also enables quick 
DRAM access through the NoC as well as easy adapt-
ing to mesh topology by only adding several multiplex-
ers and demultiplexers to the conventional NoC routers. 
Section III.F discusses the configuration process of the 
adaptive network during the GAN inference. 

E. Workload Partitioning and Allocation
Long-distance communication between chiplet im-
pacts the execution time of GAN inference. Although 
the long-distance communication cost between 
chiplets can be reduced by utilizing active network 
links and routers in NoP, the GAN inference workload 
must be carefully partitioned to fully utilize this fea-
ture. Moreover, for layers that require a large amount 
of data movement (e.g., Matrix Up-Sampling/Reshape) 
within a short distance, the communication cost be-
tween chiplet can be reduced by utilizing the C-Mesh 
topology in each chiplet and the passive network link 
between chiplets. Thus, the proposed workload par-
titioning and workload allocation algorithms are de-
signed to utilize these network features to reduce the 
communication cost for GAN inference.

1) Workload Partitioning
Since each PE contains an activation computation unit, 
the workload is first partitioned by the layer functions. 
Specifically, the GAN model is partitioned by groups, 
which contain multiple layers with matrix multiplica-
tion operations and one layer for activation computa-
tion units. Then, the workload for each group is divid-
ed and allocated to a set of chiplet tiles depending on 
the size of the largest activation and the size of the 
accumulative buffer in each chiplet tile due to the im-
plementation of output-stationary dataflow in each PE. 

 
Chiplet tile # =

max activation size in the group
accumulativee buffer size / chiplet tile
⎡

⎢
⎢

⎤

⎥
⎥

 (5)

Eq. (5) illustrates the calculation of the number of chiplet 
tiles needed for the inference of each layer group, which 
is the ceiling of the maximum activation size divided by 
the size of the accumulative buffer in each chiplet tile. 
With the proposed workload partitioning method, the 
inference of each group is allocated to a set number of 
chiplet tiles. As the last layer of each group is an activa-
tion layer, which involves reduction operation or matrix 
up sampling and reshape, the NoP router at the center 
of each chiplet tile is utilized for low latency communi-
cation, specifically, for a single chiplet tile, the router in 
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NoP along with the C-Mesh topology in the four chiplet 
forms a concentrated network for efficient exchange of 
the activation statistics during reduction operation. For 
the group that requires more than one chiplet tile, the 
active network link in NoP provides low-latency commu-
nication between the adjacent chiplet tiles. Moreover, 
after the inference of the activation layer, the NoP is 
utilized to transmit the activations to the next chiplet 
tiles for the inference of the next layer. To reduce the 
communication distance between the layer groups, an 
effective workload allocation algorithm is essential for 
the efficiency of Chiplet-GAN. 

2) Workload Allocation 
With the number of chiplet needed for each group, Al-
gorithm 1 is developed to allocate the workloads on the 
chiplet system. The greedy algorithm is used in the al-
location process to reduce the communication latency 
between chiplets. According to the workload partition, 
each layer group is assigned more than one chiplet tile. 
Thus, the allocation algorithm first calculates the com-
munication cost for all the possible allocations for each 
layer group, then allocation with the minimal communi-
cation cost is selected. 

As shown in Algorithm 1, suppose the GAN model M 
is partitioned into x groups (i.e., M = [group_1, group_2, 
…, group_x]) and the system C has n chiplets tiles (i.e., 
C = [chiplet_tile_1, chiplet_tile_2, …, chiplet_tile_n]). The 
Allocated_Group stores the results of the workload al-
location. In the map_groups_to_chiplets function, the 
function selects and allocates the inference workload to 
the chiplet tiles group by group. The set for the chiplets 
is selected by the find_best_chiplet function, where the 
minimal communication cost for all the possible alloca-
tions is found by evaluating the communication cost for 
all the possible workload allocations. The calculate_com-
munication_cost function calculates the time needed for 
transmitting data through the network. According to the 
static workload analysis, the two types of data that oc-
cupy the majority of the traffic are input activations and 
temporary data, which include activation statistics and 
partial sums. These data are transmitted through either 
NoP or NoC during the inference. Thus, the communica-
tion cost (C) includes the network latency of input (Ci) 
and the network latency of temporary data (Ctp and Ctc). 
Considering the communication for temporary data can 
go through NoC and NoP, the Ctp and Ctc represent the 
communication latency for NoP and NoC, respectively. 

Specifically, after the allocation of the group, the 
input activation is transmitted from another chiplet 
tile, which relies on the active links in NoP to transmit 
activation. The network latency of input activation (Ci) 
is calculated based on the physical delay of the NoP 

through the active link (Trp_late), the number of NoP 
routers traversed (Hi), the size of one flit in a packet 
(Sf), the size of input activations (Si), and transmission 
time for one flit in NoP (Tfp). In this function, Trp_late is 
the physical delay caused by the network's physical as-
pects, which include switch and link delays. Notability, 
the latency for NoC communication is constant regard-
less of the allocation of the workload in the function 
for the network latency calculation of input activation 
(Ci), as all the activation data have to traverse the NoC 
in that chiplet to reach the PEs for inference. Thus, it 
is assumed that the communication latency in NoC is 

Algorithm 1
Workload Allocation
1  def calculate_communication_cost(placed_group):
2     Hi = # of NoP routers traversed for input 

activations of a group
3     Si = the size of input activations
4     Htp = # of NoP routers traversed for temporary data
5     Stp = the size of temporary data traversed through 

the active NoP link
6     Npl = # of traversed passive NoP link for 

temporary data
7     Htc = # of NoC routers traversed for temporary 

data
8     Stc = the size of temporary data traversed through 

NoC
9     Ci = Trp_late*Hi + (Si/Sf)*Tfp
10 Ctp = Trp_late*Htp + (Stp/Sf)*Tfp
11 Ctc = Trc_late*Htc + (Stc/Sf)*(Tfc + Lpl*Npl)
12 C = Ci +Ctp +Ctc
13 return C
14 def find_best_chiplet(group, available_chiplets):
15 min_cost = infinity
16 best_chiplet = None
17 for chiplet in available_chiplets:
18 Place group to chiplet
19 for placed_group in available_allocation:
20 cost = calculate_communication_

cost(placed_group)
21 if cost < min_cost:
22 min_cost = cost
23 best_chiplet = chiplet
24 return best_chiplet
25 def map_groups_to_chiplets(groups, chiplet_tiles):
26 mapped_groups = {}
27 available_chiplets = chiplet_tiles
28 for group in groups:
29        best_chiplet = find_best_chiplet(group, 

available_chiplets)
30 mapped_groups[group] = best_chiplet
31 available_chiplets.remove(best_chiplet)
32 return mapped_groups
33 GAN Model M = [group_1,group_2, … , group_x]
34  Chiplet System C = [chiplet_tile_1, chiplet_tile_2, …, 

chiplet_tile_n]
35 Allocated_Group = map_group_to_chiplets(M,C)
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the same, and only the communication cost for NoP is 
calculated. 

Considering the difference in design for the links in 
NoC and NoP, the Trp_late and Trc_late represent the physi-
cal delay for active links in NoP and NoC, respectively, 
for the calculation of Ctp and Ctc. The calculation of Ctp 
includes the network latency for the data traversed 
through the active link in the NoP, where Trp_late is used. 
In terms of the calculation of Ctc, the network latency 
includes two parts, namely, the latency of traversing 
NoC and passive NoP links. When a layer group is al-
located on more than one chiplet, the communication in 
the NoC is short-distance communication; thus, passive 
NoP links are utilized to transmit temporary data. As 
the change in workload allocation affects the number of 
passive NoP links traversed during the transmission of 
temporary data, the network latency of traversing both 
NoC and passive NoP links has to be counted. In the cal-
culation of the network latency for NoC, Tfc represents 
the transmission time for one flit in NoC. In the calcula-
tion of the network latency for traversing passive NoP 
links, the Lpl represents the transmission time for one 
flit in passive NoP links. Notability, for the NoC commu-
nication cost, the algorithm calculates the communica-
tion latency under the C-mesh topology configuration, 
which is lower compared to mesh topology. The follow-
ing section illustrates the configuration of the adaptive 
network in chiplet, which maintains low latency commu-
nications during GAN inference.

F. Adaptive Network Configuration
The network topology in each chiplet is dynamically 
changed depending on the function and the allocation 
of the layers to the accelerator. The regional topology 
controller for each concentration region changes the 
network topology to support the partitioned and placed 
workload for efficient communication between PEs and 
between chiplet. The controller selects C-Mesh topol-
ogy for DRAM access, chiplet-to-chiplet communica-
tion, and reduction communication. Thus, the commu-
nication latency for chiplet-to-chiplet communication is 
calculated for the C-Mesh topology in each chiplet. For 
PE-to-PE communication, the mesh topology is select-
ed. The controller monitors the computation process 
of four PEs in the concentration region. When the PEs 
in the region finish one layer, the controller selects the 
next topology based on the communication requirement 
for the next layer. The configuration process for matrix 
multiplication, reduction operation, and up-sampling/
matrix reshape operations are listed as follows.

1) Matrix Multiplication. The NoC is configured into 
the C-Mesh topology when loading the SRAM in 
each PE. Then, the network is configured into 

mesh for efficient exchange of data during the ma-
trix multiplication. For the matrix multiplication 
workloads, which are allocated to more than two 
chiplets, the network is configured into a C-Mesh 
topology for efficient chiplet-to-chiplet communi-
cation or DRAM access after the calculation of the 
local partial sum. 

2) Reduction Operation. The NoC is configured into 
C-Mesh topology for reduction operation. For re-
duction operation on a single chiplet, the parame-
ter is calculated at the four corner PEs. For reduc-
tion operation across multiple chiplets, the corner 
PEs in each chiplet with the most connection to 
the neighbor in the previous layer are selected 
for calculating the parameter. Then, the param-
eters are sent back to PEs for the next operation 
through the concentrated network.

3) Up-Sampling/Matrix Reshape. For the matrix re-
shape operation, which needs to either store the 
activation to DRAM or communication between 
chiplets, the NoC is configured into the C-Mesh 
topology for efficient communication. 

IV. Evaluation

A. Simulation Setup
In this section, the performance of Chiplet-GAN is evalu-
ated by using the SMAUG [26] simulator. The cycle-ac-
curate SMAUG simulation model is modified to support 

Table 3. 
Simulation setup.
PE Parameter Value
Multiplier 32 bits FLOAT
Accumulator 32 bits FLOAT
Number of Multiplier 16 
Number of Adder 16
Accumulation Buffer 144*32 bit
Activation/Weight SRAM Size 244*32 bit
Chiplet Parameter Value
Number of PE 4*4
Link width 512 bit
Packet Size 4 flit * 512 bit
Payload/Packet 3 flit * 512 bit
Accelerator Parameters Value
Number of Chiplets 4*4
DRAM Bandwidth 1024 GB/s
DRAM Size 32 GB DDR4
Frequency 2 GHz
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Chiplet-GAN. Table 3 shows the settings for the SMAUG 
simulator for the Chiplet-GAN. PyTorch is used with the 
SMAUG simulator to control the entire GAN inference 
process. The accelerators are synthesized using Synop-
sys Design Compiler with TSMC 16nm to obtain power 
dissipation during GAN inference and area consumption 
of the system. 

Chiplet-GAN is compared against GANAX [12], SpAt-
ten [13], and Simba [18] on execution time, communica-
tion latency, energy consumption, area, and scalability. 
GANAX is a GAN inference accelerator for TC accelera-
tion with a single-chip design. SpAtten is an accelerator 
designed to accelerate the inference of transformers, 
which also incorporates a single-chip design. Simba is 
a chiplet-based accelerator that focuses on the DCNN 
model inference. All accelerators are implemented with 
the same number of computation units as well as the 
same size of SRAM, DRAM, and DRAM bandwidth. The 
inference of the models listed in Table 1 is executed 

on these accelerators to generate two images during 
evaluation. 

B. Execution Time
Fig. 5 shows the execution time reduction normalized 
to Chiplet-GAN. The proposed design reduces execu-
tion time by 27%, 29%, and 45% on average, compared to 
GANAX, SpAtten, and Simba, respectively. Compared to 
Chiplet-GAN, SpAtten enhanced the efficiency of inference 
attention mechanism, but it takes a longer time to process 
up-sampling operations. Thus, Chiplet-GAN achieves a 
16% execution time reduction on average for transformer-
based GANs (i.e., ViTGAN and TransGAN). For TC-based 
models (i.e., StyleGAN2, BigGAN, and CycleGAN), which 
require more frequent up-sampling operations, Chiplet-
GAN reduces 38% in execution time on average compared 
to the SpAtten. Compared to GANAX, which is optimized 
for up-sampling and matrix reshaping, the Chiplet-GAN 
achieves a 21% execution time reduction on average. 

The main reason for execution 
time reduction is the implementation 
of the adaptive interconnection net-
work design, active/passive network 
link in NoP, and workload allocation 
strategy. These design features not 
only reduce the communication la-
tency but also increase the utilization 
of computation units with fewer idle 
cycles. The reduction in communica-
tion latency is shown in Fig. 6, which 
is measured by the time elapsed 
between the access of the data and 
the beginning of the computation. 
Chiplet-GAN reduces communication 
latency by 46%, 52%, and 68% on av-
erage, compared to GANAX, SpAtten, 
and Simba, respectively. 

Since both Simba and GANAX 
mainly focus on accelerating con-
volutional operations, the up-sam-
pling/reshape and reduction opera-
tions are not fully accelerated when 
executing GAN inference. Specifi-
cally, TC acceleration, which con-
tains zero insertion optimization, is 
incorporated in GANAX design. How-
ever, a notable drawback in GANAX 
is the lack of support for reduction 
operations. This limitation leads to 
the need for temporary storage of 
activations in both the DRAM and 
global buffer, resulting in a consider-
able increase in data communication Figure 7. Energy consumption. Results are normalized to Chiplet-GAN.

Figure 6. Communication latency. Results are normalized to Chiplet-GAN.

Figure 5. Execution time. Results are normalized to Chiplet-GAN.
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and communication latency for GANAX, especially 
for the models that require frequent reduction opera-
tions (e.g., ViTGAN and TransGAN). As shown in Fig. 
6, the GANAX and Simba achieve similar communi-
cation latency compared to Chiplet-GAN for ViTGAN 
and TransGAN. 

On the other hand, Simba only focuses on the accel-
eration of DCNN inference. Thus, the lack of communica-
tion latency reduction techniques for both up-sampling/
reshape and reduction operations incurs more commu-
nication delays and longer execution time. As shown in 
Fig. 6, Simba incurs 23% and 17% more communication 
latency compared to GANAX and SpAtten, respectively. 
Apart from lacking support for the operations during 
GAN inference, the long-distance communication be-
tween chiplets is another issue for Simba. This is mainly 
caused by the close placement of routers and passive 
links only NoP design, which further increases the com-
munication latency. As a result, compared to Chiplet-
GAN, the Simba incurs significantly longer execution 
times during GAN inference.

C. Energy Consumption
Fig. 7 shows the evaluation re-

sults for the energy consumption of 
Chiplet-GAN, GANAX, SpAtten, and 
Simba. All results are normalized to 
Chiplet-GAN. The energy is the prod-
uct of execution time and power dis-
sipation. Power dissipation includes 
two parts: static power and dynamic 
power. 
Chiplet-GAN reduces energy con-
sumption by 20% on average com-
pared to the existing accelerators. 
Specifically, compared to GANAX, 
SpAtten, and Simba, Chiplet-GAN 
reduces energy consumption by 
14%, 19%, and 30% on average, re-
spectively. Compared to the reduc-
tion in execution time, the energy 
reduction is less; this is mostly due 
to the extra power consumed by the 
adaptive interconnection network 
in Chiplet-GAN and the active links 
implemented in the interposer. The 
GANAX and SpAtten have simplified 

networks with the predetermined data flow; however, 
fixed data flow in existing designs results in an uns-
calable architecture, which significantly impacts ex-
ecution time as the system scales.

D. Area Evaluation
Table 4 summarizes the area required for the accelera-
tors with the configuration given in Table 3. The results 
are from the synthesis report of the Synopsys Design 
Compiler.

Overall, Chiplet-GAN occupies less area compared 
to SpAtten despite the additional area needed for the 
connection between chiplets and interposer. This is 
mainly due to the implementation of a crossbar for 
on-chip communication, which incurs a large on-chip 
area in SpAtten. Compared to SpAtten, the proposed 

Table 4. 
Area. 

GANAX SpAtten Simba Chiplet-GAN
Area 
(mm2)

5.98 7.48 6.03 6.34

Figure 9. Static power consumption as the systems scales. Results are normal-
ized to Chiplet-GAN.

Figure 8. Execution time as the systems scales. Results are normalized to 
Chiplet-GAN.

Chiplet-GAN features an adaptive topology design for the interconnection network and 
incorporates workload partition and allocation algorithms to efficiently  

handle large-scale GAN models.
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accelerator reduces the area by 15%. Compared to Sim-
ba and GANAX, Chiplet-GAN requires 5% and 6% more 
area, respectively. This is mainly due to the additional 
hardware needed to support adaptive interconnection 
networks and active/passive network links. However, 
when considering the significant reduction in execu-
tion time and energy consumption, the increase in 
area is rather marginal for implementing the proposed 
accelerator.

E. Scalability
To demonstrate the scalability of the system, the GAN 
models are scaled by increasing the size of both activa-
tion and weights as Chiplet-GAN scales to 8 * 8, 16 * 16, 
32 * 32, and 64 * 64 chiplets. For example, a layer in a 
model with a weights size of 4 * 4 * 3 and activations 
size of 128 * 128 * 3 is executed on the system with 
4 * 4 chiplets. The weights and activations are scaled 
to sizes of 8 * 8 * 3 and 256 * 256 * 3, respectively, 
as the system scales from 4 * 4 to 8 * 8. The DRAM 
size and DRAM bandwidth are scaled accordingly by 
doubling the size and bandwidth to handle the signifi-
cant increase in memory port and memory traffic. The 
SpAtten, GANAX, and Simba are also scaled accord-
ingly with the same amount of computation units and 
on-chip SRAM. 

Figs. 8 and 9 show the comparison of average execu-
tion time for all the GAN inference workloads and static 
power consumption under these configurations. Com-
pared to a chiplet-based design (Simba), the Chiplet-
GAN achieves up to a 63% reduction in execution time 
as the system scales to 64 * 64 chiplets. Compared to 
GANAX and SpAtten, the Chiplet-GAN reduces execu-
tion time by up to 93% as the system scales. Simba 
achieves better scalability compared to single-chip 
designs (i.e., GANAX and SpAtten) due to the chiplet 
design. However, compared to Chiplet-GAN, Simba still 
requires more execution time. This is mainly due to 
the high latency communication between chiplets dur-
ing inference. In terms of static power consumption, 
both chiplet systems show an advantage in scalability 
as the number of components and power consumption 
linearly increases. Due to the simplicity of GANAX and 
SpAtten, they consume less power when the system 
is small (i.e., 4 * 4). However, the power consumption 
for GANAX and GANPU increases dramatically as the 
complexity of the global controller must be increased 
significantly to handle the increase in the computa-
tion units. Specifically, compared to Chiplet-GAN, the 
chiplet-based design (i.e., Simba) consumes up to 10% 
more power, whereas GANAX and SpAtten consume up 
to 49% and 59% more static power, respectively, as the 
system scales. 

V. Conclusion
In this article, we analyzed the communication and 
computation requirements for large-scale GAN model 
inference and identified three major challenges. Ad-
dressing these challenges, we proposed Chiplet-GAN, 
a chiplet-based accelerator for scaling reduction op-
eration, scaling matrix multiplication, and distrib-
uted up-sampling/matrix reshape operations. To the 
best of our knowledge, this is the first work that pro-
poses a chiplet-based design approach for GANs. The 
proposed design introduces a novel interconnection 
fabric with adaptive topology, active/passive network 
links in NoP, and a workload partition and allocation 
algorithm. The novel interconnection fabric enables 
low communication latency during GAN inference. 
The workload partition and allocation algorithms fur-
ther reduce communication latency with a greedy al-
gorithm. We conducted extensive simulation studies 
to demonstrate the effectiveness of Chiplet-GAN. Our 
detailed evaluation shows that Chiplet-GAN reduces 
the execution time by 34% and the energy consump-
tion by 21% on average compared to GANAX, SpAtten, 
and Simba. As the accelerator scales to enhance com-
putation capability for large-scale GAN inference, the 
proposed design reduces the execution time by up to 
63% compared to the existing chiplet-based accelera-
tor (Simba).
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