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ABSTRACT

All fluids exhibit large property-variations near the critical point in a region identified as the anomalous state. The anomaly starts in the lig-
uid and extends well into the supercritical state, which can be identified thermodynamically using the Gibbs free energy (g). The specific heat,
isobaric expansion, and isothermal compressibility parameters governing the transitions are: (c,/T), (vf), and (v«), rather c,, f§, and «. They
are essentially the second-order derivatives of g and have two extrema (minimum, maximum); only maxima reported ever. When applied to
the van der Waals fluid, these extrema exhibit closed loops on the phase-diagram to satisfy d*°g =0 and map the anomalous region. The pre-
dicted liquid-like to gas-like transitions are related to the ridges reported earlier, and the Widom delta falls between these loops. Evidently, in
the anomalous region, both the liquid and the supercritical fluid need to be treated differently. Beyond the anomalous states, the supercritical
fluids show monotonic, gradual changes in their properties. The analysis for argon, methane, nitrogen, carbon dioxide, and water validates
the thermodynamic model, supports the stated observations, and identifies their delimiting pressures and temperatures for the anomalous
states. It also demonstrates the applicability of the law of corresponding states. Notably, the critical point is a state where d°g = 0, the anomaly
in the fluid’s properties/behavior is maximal, and the governing parameters approach infinity. Also the following are presented: (a) the trajec-
tory of the liquid—vapor line toward the melt-solid boundary and (b) a modified phase diagram (for water) exhibiting the anomalous region.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0179651

I. INTRODUCTION

All fluids exhibit large-scale property variations near the criti-
cal point (CP). For example, the density, dynamic viscosity, and
thermal conductivity drop sharply near the CP whereas the specific

to supercritical state via the anomalous region becomes extremely
important.

In a series of papers published in 1997-2004,"" ' Nishikawa
and co-workers have emphasized that inhomogeneity is the most
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heat first increases with temperature, achieves a peak, and then
decreases to a monotonic behavior, the peak being highest at the CP.
Ultimately, the properties revert to monotonic behavior at high SC
pressures and temperatures. This anomalous behavior in the SC
region close to CP, also referred to as the pseudo-critical region,’
may offer advantages in some applications but is highly complex.
Indeed, as the applications of supercritical fluids expand in turbu-
lent flow sys'[ems,l‘3 nano-channels,” heat and mass transfer,” ther-
mal power plants,” energy systems,” atomization and jets,” mixing
and extraction,'” supersonic shocks,'' carbon capture and storage,'”
and so on, the understanding of fluids moving from the subcritical

fundamental concept of the states of SC fluids, and the density fluc-
tuation as a measure of this inhomogeneity is one of the fundamen-
tal parameters that determine their physico-chemical properties.
They have shown that when the contour map of specific maximum
of isothermal changes in density fluctuations of van der Waals
(vdW) fluid is drawn on its phase diagram, there exists a ridge,
referred to as the Nishikawa ridge.”” The ridge separates the SC
region in two parts and is the locus of the points where the
third derivatives of the Gibbs free energy become zero. Their
results also demonstrate the extension of the ridge to the subcritical
region.
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Later, Sato et al.'” observed that the ridge can be interpreted as
the boundary by which the supercritical state is divided into “liquid-
like” (SCLL) and “gas-like” (SCGL) states. Evidently, the SC fluids do
not have a homogenous phase as thought previously. Instead, it can be
roughly divided into two states, and there is a transition from the
liquid-like to gas-like state as the temperature increases isobarically, or
the pressure increases isothermally. Many attempts have been made to
identify such transitions on the P-T'and T-v phase diagrams.

Xu et al.' investigating a two-water model found a correlation
between the dynamic crossover and the locus of the specific heat max-
ima and called it the “Widom line.” They believed that locations of
maxima of different SC properties may not lie far from each other, and
one line may be sufficient to determine the crossover from the SCLL to
SCGL behavior; the Widom line based on c;, 4, has also been referred
to as the pseudo-critical line." The data presented by Simeoni et al.'”
for neon, oxygen, argon, and nitrogen do show liquid-like and gas-like
regions for the reduced pressure, P, > 1 and temperature, T, > 1.

Surprisingly, Brazhkin et al.*’ found that even in the case of sim-
plest Lennard-Jones fluid, the lines for maxima of various properties
may lie away from each other, as also shown by other authors. These
properties may include density; isobaric, isochoric, and isentropic spe-
cific heats; isothermal and isentropic compressibility; coefficient of vol-
umetric expansion; speed of sound; and transport properties such as
thermal conductivity, viscosity, and mass diffusivity. Indeed, the lines
of maxima diverge significantly in a P-T plane,”’* but the ridge for
specific heat approaches close to the critical isochore.”' This raises the
question, do we need to consider all of these properties to prescribe the
behavior of a SC fluid in the anomalous region?

Recently, Banuti et al,” through an extensive thermodynamic
analysis, molecular dynamics (MD) simulation, and experiments, have
proposed a new interpretation of the Widom line based on the curva-
ture of the Gibbs free energy. They have argued that the SC crossover
can be evaluated as a projection of the subcritical phase transition
from liquid to vapor. Their results demonstrate that the crossover
from SCLL to SCGL across the Widom line is not instantaneous but
over a finite temperature interval; referred to as the Widom Delta™**”
or transitional region associated with the pool boiling.””** They have
shown that thermodynamically the importance of the Widom line
goes down at P, ~ 3 and disappears at P, ~ 10. Some authors, includ-
ing Banuti,” have argued that there is a supercritical analog to the sub-
critical phase-change when crossing the line of demarcation, and
named it pseudo-boiling. It occurs in the phase equilibrium over a
finite temperature interval. An excellent review of the literature on
transitions in the SC states of matter, including experimental evidence,
has been presented recently by Cockrell et al.”’

Surprisingly, most of the above works and their discussions focus
on the conditions beyond the critical point, except the works of
Nishikawa et al.,'” Brazhkin et al,”* Banuti ef al.,”” and a few others
who have mentioned the ridges in the subcritical phase. Indeed, the
anomalous behavior, that is characterized by large-scale changes in
fluid properties and even reversal, continues to exist below the critical
pressure and/or the critical temperature. As argued recently by Prasad
et al.,”” the subcritical liquid should also be divided into two states: (a)
one the “regular liquid” as we know and (b) the other where the liquid
properties are anomalous and may exhibit similar behavior as the
SCLL. Apparently, the second state of the subcritical liquid and the
first state of the SC fluid (liquid-like) ought to be continuous.”” A
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similar concept of two states of liquid as “Rigid” and “Non-rigid” was
presented by Brazhkin et al.”* in the supercritical region, also see Ref.
29. Referring to the second state of subcritical liquid as the non-rigid
liquid may be justified since the density drops significantly even in the
region below P. and T, (evident from the plots using REFPROP™).
Prasad et al.”’ have shown schematically (Fig. 1) the anomalous
region bounded by PLQ and PGQ. It consists of the non-rigid liquid
and vapor in the subcritical region, and the SCLL and SCGL states in
the supercritical region. The SCGL state ends at the line PGQ, beyond
which (on the right) the SC state with no large-scale variations and
inversions in thermophysical properties would exist. Similarly, on the
subcritical side, the gas would not exhibit any anomalous behavior on
the right of PGQ. Note that on a traditional phase-diagram, point P is
directly connected to CP through the liquid-vapor phase change line
(black solid line in Fig. 1). However, the shape and extent of anoma-
lous region (between PLQ and PGQ) may vary based on the fluid and

Melting Line

Pressure, P (MPa)

Temperature, T (K)

SC liquid-like Q
(SCLL) o
7

/ ‘\\ SC gas-like

Non-rigid
o (SCGL)
G

liquid

W .
. Subcritical
“vapor

FIG. 1. Schematic of the phase-diagram depicting the anomalous state, which con-
sists of the non-rigid liquid and vapor phases in the subcritical region and the liquid-
like and gas-like states in the supercritical region; the shape and extent of this
region may depend on the fluid and its properties. Modified Fig. 6, with permission
from Prasad et al.,” “Existence of supercritical ‘liquid-like’ state in subcritical region,
optimal heat transfer enhancement, and argon as a non-reacting, non-corroding SC
heat transfer fluid,” Heat Transfer Res. 53(9), 1-27 (2022). Copyright 2022 Begell
House, Inc.
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its properties. Evidently, on the left of line PLQ, the fluid is in the
(rigid) liquid state.

We present here a unified thermodynamic analysis of the entire
anomalous region by examining the variations in thermodynamic
properties from the subcritical to supercritical states. Note that in the
SC region, this model is restricted to the states dominated by thermo-
dynamics rather than by the dynamics.”’ We follow the Gibbs free
energy approach as proposed by Nishikawa et al.'” in 2003. The analy-
sis reveals that it is the modified thermodynamic parameters, (cp/ 1),
(vp), and (vk), that need to be considered instead of o p, and K, to
analyze the thermodynamic phase transitions and study the behavior
of the anomalous states. They are essentially the second-order deriva-
tives of the Gibbs free energy. Banuti et al.*” have obtained the thermo-
dynamic response function, c¢,/T=—(d’¢/dT*), based on the
curvature of Gibbs surface to identify the distinct liquid-like and gas-
like regions, divided by a crossover line.

In this paper, we introduce six third-order derivatives of Gibbs
free energy and equate them to zero (d>g=0)""'° to identify the loci
of extrema that can map the anomalous region in both the subcritical
and supercritical regions. A detailed analysis is carried out by using the
simple van der Waals (vdW) fluid and then applied to five real fluids:
argon, methane, nitrogen, carbon dioxide, and water. The analysis also
leads to an expanded definition of the critical point. Finally, the impor-
tance of the delimitation of anomalous region is discussed, and an
important practical application is presented.

Il. THERMODYNAMIC ANALYSIS BASED ON GIBBS
FREE ENERGY

For a pure substance, the Gibbs free energy, ¢ (T, P) can be writ-
ten as

g=h—Ts=u+Pv—Ts. (1)

Differentiation of which leads to

dg = (%) ar + (a—i dP = —sdT + vdP, ()
P T
o o 0
dg = (ang) dr? + ( 8T§P) dTdpP + ( ap%) P, (3)

3 3
dg = (0g> dT3+3< ¢ )dTZdP+3( O’ )dePZ

oT3 IT20P OTOP?
&g ) 3
+ (ﬁ TdP . (4)
Using
og\ _ 3g) _
(OT)p = —s and (8P - v, (5)
we obtain

82g>
‘T(ﬁ )

(6)
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. . , 1 fov 1|0 (0g
Isobaric coefficient of expansion, = (8T) ” L?T (8P> }
(aTap) @
ov 0 (0g
Isothermal compressibility, kK = — — (ﬁ) [{“)P <8P) }
1 a2g)
-y (ﬁ : ®
that leads to the three thermodynamic parameters, as follows:
. o 32g ) cp
Isobaric specific heatparameter, — (W - T (9a)
Isobaric volumetric expansion parameter < g ) =vfB, (9b)
p p ) (9T(9P - )
- 0%
and, Isothermal compressibility parameter, — ap2) .. = Ve (9¢)
Note that Banuti et al.”” had introduced Eq. (92) earlier.
Substituting them into Eq. (3) yields
dg = f%’de + 2vBdTdP — vicdP>. (10)

Correspondingly, the third-order derivatives of the Gibbs free
energy are related to the first-order derivatives of the above parameters

[Eq. (9)]
63g) 0 <82g) [0 [(e\]
(ﬁ , OT\ar? P’_{ﬁ(T)L*C“ (11)

()~ 32 (38),) ()], e 0
(T28P) { (8T8P} {

g (vp)
(0P8T8P> { <8T(‘)P)} {8})} =G (13a)

g ) _ a(v;c -
(8T8P2 - { apz } P =G (13b)

a3g) . (82g> - [a(wc)} 7
(ﬁ AV =Y M - P

In Egs. (11)-(14), we have introduced six parameters, {; with i=1, 2,
3, and 4, to represent the corresponding third-order derivatives of g
with respect to T and P.

In the case of cross-derivatives, Egs. (12) and (13), a second sub-
script, P or T, is used to denote the isobaric or isothermal process,
respectively. If the function g is continuous in the third-order, as
assumed in Eq. (3) also, we can write

] =Gps (12b)
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OLr =zp=0, and Gr=0p = (. (15)

In that case, the negative isothermal derivative of (c,/T) with respect
to P is equal to the isobaric derivative of (vf) with T [Egs. (12a)
and (12b)]. Similarly, the isothermal derivative of (v/}) with respect to
P is equal to the isobaric derivative of (vk) with T [Eqgs. (13a) and
(13b)]. Although switching the order of differentiation may not be
valid at the critical as well as the liquid-vapor points, Eq. (15) should
be applicable to all other (P, T) states as shown by the equation of state
(EOS) for vdW fluid in Sec. I1T A. Substituting Eqs. (11)-(15) in Eq. (4)
leads to

d*g = (dT? 4 30,dT?dP + 3(3dTdP* + {,dP>. (16)

Following Refs. 15 and 16, the anomalous behavior and ridges of
the thermodynamic properties should be related to the consequences
of d*g =0, which needs to satisfy the following four conditions:

B -
ST
(= {agpﬂ)} = [ag]'f)L —0, and (17¢)

ly= Pgﬂ =0 (17d)

It should be pointed out that zeros of the above four third-order deriv-
atives will lead to the loci of the extrema of three modified thermody-
namic parameters, (c,/T), (vf), and (vk). In the literature, however, the
Widom lines are the loci of the maxima of the traditional thermody-
namic properties ¢,, f, , and so on.

These conditions [Egs. (17a)-(17d)] can also be rewritten in
terms of the measurable properties, ¢, and v as

_ 83g> _ 8 Cp _
- % p—‘[a—f (7)L‘°’ (152

o= (ore) = [57), = [ (30, - (7).

¢

—

(18b)
N I REAR
*=\ogrorz) | op |y |op 7PT_ oTop) —
(18¢)

(:_(63g) _{a(wc)} B 8(81/) _ (821/) .
to\op)r o Lop lr o |op\op)r| . \oP2)r T
(18d)

The loci of the extrema of (c,/T), (vf3), and (vk), then correspond
to the zero values of the first derivative of the parameter, (¢! T), and
the second derivatives of the specific volume, v, with either tempera-
ture, or pressure, or both [Eqgs. (18a)-(18d)]. Although (c,/T) has been
used by Banuti and co-workers,”*”” (vf) and (vk) have never been
considered in the literature.

pubs.aip.org/aip/pof

11l. APPLICATION TO THE VAN DER WAALS AND
OTHER FLUIDS

A. van der Waals fluid

We first consider the van der Waals (vdW) fluid to apply the
above model and seek the loci of {;=0 on a P-T phase-diagram. The
vdW equation of state (EOS) is usually written as™*

RT a
pP= S 19

v—b 2 (19)
where R is the gas constant and a4 and b are constants, characteristics
of the specific fluid. These two constants can be determined by the crit-
ical pressure, P, temperature, T,, and specific volume, v,, with the con-
dition of the zeros of the first and second derivatives of pressure with
specific volume along the isotherms

9 c
a=—-RT.v, and b= V—7 (20a)
8 3
which lead to
a 8a
Po=— and T, = ——. 20b
76 27Rb (200)

Therefore, the corresponding critical compressibility constant (Z.) of
the vdW fluid is

Pv., 3
= =—. 20
“=RT. 8 (20¢)

It should be noted that the vdW EOS is a representative example of
the mean field theory and would not fit well in places where the fluctu-
ation effects are large such as near the critical point. Some of the pre-
dicted characteristics may, therefore, deviate in the case of real fluids.

Using the reduced pressure, P,, specific volume, v,, and tempera-
ture T,, as

b= @1

P T
p.’ Ve T,
Equation (19) reduces to

8T, 3

= —-—. 22
v, —1 2 (22)

r

The properties, o p, and k can then be written in the dimensionless
reduced form as

[ 3 32Z°T,
2>+ e (23)
R 2 12v3T, —3(3v, — 1)
1/0 4v*(3y, — 1
ﬂTC:—( Vr) _ Vr( Vr ) = (24)
vr \OT:)p,  12Tw3 —3(3v, — 1)
2
P, — 1 (81/,) _ (3v, — 1)7v? N
vr \OP; ) 1, 24Tv3 —6(3v, — 1)
For the vdW fluid, the isochoric specific heat, c,, is given as 3R/2.

Then, the three modified properties [Egs. (9a)—(9¢)] in the dimension-
less reduced form are

(25)

¢ 3 327

RT, 2T, A

(26)

Phys. Fluids 36, 026105 (2024); doi: 10.1063/5.0179651
Published under an exclusive license by AIP Publishing

36, 026105-4

€511€:G) ¥20z Aenigad 90


pubs.aip.org/aip/phf

Physics of Fluids ARTICLE

v, 43 (3v, — 1)
BT) = =", 2
e @)
ovy (Bv, — )%
r Pc = - = _7r7 2
(vkFo) (BP,)T 24 28)
where A is a function of v, and T,
A=12vT, — 3(3v, — 1)°. (29)

The dimensionless, reduced forms of the four new parameters, {;,
{5 (5 and {, as defined in Eqs. (11)-(15) can be derived as follows:

),

2 3
:_i+962v (5)1/,) 32Zv? (E)A) ’ (302)
P,

|C1| =

22 A \D A2 \oT,
b VrﬁT
2 = v €2p
12v 4v, —1) (0v, 3(3v, — 1) 0A
(8T,) a2 (8_7",) . (30b)

¢ TP, % ov:pT)| ( v, )
BT o, |, \arap,
24y 303, _
_ 12vi(4v, — 1) (Ov,\  4;(3v, —1) (DA (300
A P, ), A2 p,)
¢ _Pig _(0nkP)\ 0%,
Tyt op, )y \op? .

_ 3Bw = D)(Bv —1) (v, N (3v, — 1)*? (DA
B 24 P, ) . 242 P, )’

(30d)

where the derivatives of A are given by

0A 5 ) vy
—12 T, — 18(3v, — 1 1
(QT,) , v, + [361/, 8(3v, )] (3Tr)p, (31a)

and

0A B ) ov,
(8_P,) = [36v2T, — 18(3v, — 1)] (8P7) . (31b)

Note that Eqgs. (30a)-(30d) for {,; depend on only v, and T,. The first
derivatives of v, to T, and P, are given in Egs. (27) and (28), respectively.
In Eq. (30a), the negative sign of the original definition is dropped.

For the simple vdW EOS, the following analytical expressions can
be obtained:

(=0 v, =1, (32)
3v, —1)*(2y, — 1
C73:0 Tr:%vgr)7 (33)
r
3v, —1)°
(u=0 Tr:% (34)
r

In the case of {,; = 0, a root-finding scheme needs to be used to locate
the reduced temperatures at any given reduced pressure from
Eq. (30a).

pubs.aip.org/aip/pof

For a given state (P,, T,), one can solve for v, from the cubic vdW
equation as

3P} — (P, + 8T, )v2 +9v, — 3 = 0. (35)

Note that there exists only one real solution to Eq. (35) in the SC state,
P, > 1. However, under the subcritical conditions (P, < 1), there exist
three real roots, selection of which depends on the phase of the state.
The smallest root is selected for the liquid phase while the largest root
is for the vapor phase; the saturation temperature, T, ,, for a given pres-
sure, P,, is known for the vdW fluid.”* Indeed, it is a liquid phase if T,
< T,,, otherwise it is the vapor phase. Therefore, the three property
functions, c,/TR, v,fT,, and v,kP. can be obtained from Egs. (26)-
(28), together with Egs. (29) and (35).

B. Other fluids

The benefit of vdW EOS being differentiable with respect to the
basic thermodynamic properties, P and T, is not readily available in
the case of real fluids. Their equations of states are complex and
change with the regimes. Many times they are either empirical or based
on the empirical parameters, obtained from the experiments.
Therefore, we have used REFPROP* to calculate (cp/T), (vf), and
(vi). For the required pressure (P) and temperature (T) of a given
fluid, the values for c, are directly read from REFPROP"’ and divided
by the corresponding temperatures to obtain c,/T. For vf and vk, we
use Egs. (7) and (8), which require the first-order partial derivatives of
the specific volume with T and P, respectively. They are obtained
directly from the REFPROP"’ at given P and T. The partial derivatives
of ¢,/ T with temperature, i.e., {; [Eq. (11)], are then calculated and the
locations of extrema ({; =0) are identified. Similarly, the locations of
extrema of other three derivatives, {,=0, {3=0, and {,=0 [Egs.
(18b)-(18d)], can be calculated using the REFPROP;”” which gives the
second-order partial derivatives of specific volume with either temper-
ature, pressure, or both.

Note that the NIST’s REFPROP™ provides the most accurate val-
ues of thermophysical properties for a large number of fluids.
REFPROP data have either been obtained experimentally or from the
correlations based on the experimental data. Whenever an equation of
state has been used to calculate the properties in any particular range
of pressure and temperature, the EOS has already been validated in
this range. Detailed discussions on the accuracy of these data are read-
ily avallable in the hterature, for example, argon,” nitrogen,”® meth-
ane,”” carbon dioxide,” and water.” In this sense, our results for all
five real fluids can be considered as good as that can be obtained
directly from the experimental data, as also stated by Gallo et al.”’
They have used the NIST’s Chemistry WebBook to obtain the experi-
mental data on water (TAPWS-95/IAPS-EOS) to compare their molec-
ular dynamics predictions for the Widom lines and the dynamical
Crossover.

It is also important to note that the results presented here are
independent of the values of the thermophysical properties at (P, T,),
whose accuracy is often questioned. What we require for the present
analysis to be exact are that (a) the locations of the critical point be pre-
cise and (b) the trends of the property curves be accurate. Indeed, since
the locations of the critical point of various fluids reported in the litera-
ture have been obtained through carefully-designed experiments, their
reliability should be acceptable.
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IV. RESULTS AND DISCUSSION

First, we examine the variations in three modified parameters,
(¢,/RT,), (v, T,), and (v,xcP;) with P, and T, and identify the possible
extrema along the curve, for the vdW fluid. In each case, we compare
the behavior of the modified parameter with the original property and
examine the implications of the modifications. We also examine the
variations in the associated third-order parameter, (,;, and identify the
zero points. The contour map for each modified parameter is then
drawn, which shows that the condition of {,;=0 encloses a region of
anomalous variation in the corresponding property, except for (..
Subsequently, we consider five real fluids—argon, nitrogen, methane,
carbon dioxide, and water, to examine the universality of the trends
and phenomena predicted by the vdW fluid [note that (c,/T,R),
(»BT), and (v, kP,) are directly proportional to (c,/T), (vf8), and (vk)
since P, T,, v, and R are all constants for a given fluid].
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A. Isobaric specific heat parameter (c,/RT,)

First, we consider the variations in the isobaric specific heat
parameter, ¢,/RT,, with T, and P,, respectively. It is interesting to
note that the isobaric variation of ¢, with temperature has been
extensively studied in the literature, but rarely the isothermal varia-
tions. Figure 2(a) for ¢,/R and ¢,/RT, for P,=1.5 reveals that there
exist two extrema, one local maximum and the other local minimum
for ¢,/ TR (black line), whereas c,/R (blue line) has only one extre-
mum, the local maximum but not the local minimum.
Correspondingly, there exist two locations for {,; =0 [Fig. 2(b)].
Similarly, for a subcritical pressure, P, = 0.6, there exist two extrema
rather than one as shown by ¢,/R [Fig. 2(c)]. Below the critical point,
both curves show a discontinuity at the point where the phase
change from the liquid to vapor occurs; this discontinuity is much
better exhibited in Fig. 2(d) for (.
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FIG. 2. Variations of (a) ¢,/RT, (black line, left axis) and c,/R (blue line, right axis), and (b) {4 with reduced temperature, T, at P,= 1.5 of supercritical vdW fluid; (c) c,/RT;
(black line, left axis) and c,/R (blue line, right axis) and (d) 4 vs reduced temperature, T, at P,= 0.6 for the subcritical van der Waals fluid.
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The above behavior of two extrema of ¢,/RT, is further elaborated
in Fig. 3(a) against T, for a range of reduced pressure, P,, within the SC
state. Again, it is the local maximum that has attracted all attention in
the literature, and to our knowledge, the local minimum is being
revealed here for the first time. The region bounded by the two
extrema, their loci connected by the dashed red line [Fig. 3(a)], shows
an inverse change and a ridge, instead of the monotonic behavior on
both the inside and outside regions (T, < 1 and T, > 1). ¢,/RT, inside
the region, bounded by the two extrema, continuously increases, which
reminds us of the reverse variation of the volume with pressure within

102 : T T T T

Supercritical
van der Waals fluid

P =1.05
r

Local
minimum

Local /

extrema
disappeared
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the spinodal region. It is, therefore, believed that such a region relates
to a thermodynamically important variation. As expected, the peak is
highest at the critical point. The local extremum disappears at P, ~
3.227, beyond which the isobaric curve for ¢y/RT, shows a monotonic
behavior from low to high values of T, [Fig. 3(a)]. This agrees well
with the finding of Banuti et al.””

Evidently, the two extrema of ¢,/RT, in the subcritical state
[Fig. 3(b)] support the existence of the anomalous states below the crit-
ical point (Fig. 1). As noted earlier, there exists discontinuity of the
function at the point of the liquid-vapor phase change, the point of
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FIG. 3. Variations of (a) ¢,/RT, with temperature at P, > 1, (b) ¢,/RT, at subcritical pressure, P,=0.2, 0.6, and 0.8, for reference, the supercritical curve for P,= 1.05 is also
included, and (c) ¢,/R at P,.=0.4, 0.8, 1.05, 1.2, 2, and 3.2, from subcritical to supercritical conditions for the vdW fluid.
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local maximum. However, the local maximum as shown for P, & 0.6
disappears as P, decreases, non-existent at P, ~ 0.155 [Fig. 3(b)].
Figure 3(c), in agreement with Figs. 2(a) and 2(c), shows convincingly
that there exist only maxima but no minima for ¢,/R, in contrast to ¢,/
RT,, for the entire range of pressure from the subcritical to supercritical
state. Note also that the peaks of the two specific heat functions, ¢,/R
and ¢,/RT,, do not occur at the same pressures and temperatures,
except for the CP.

Figures 4(a) and 4(c) present the isothermal variation of ¢,/RT,
and c,/R with P, for the supercritical and subcritical conditions, respec-
tively. Figures 4(b) and 4(d) show the corresponding variation of {, 1.
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Interestingly, one notices that {,, is the isothermal derivative of c,/
RT, with respect to pressure [Eq. (12a)] as opposed to {,; which is the
isobaric derivative with respect to temperature [Eq. (11)]. In this case,
;2,7 shows only one zero location in Fig. 4(b), as opposed to the two
zero locations for {,; in Fig. 2(b), and none in Fig. 4(d) for the subcriti-
cal condition. The discontinuity within the subcritical state, at the point
of liquid-vapor phase change, is again shown in Fig. 4(c). The two sets
of curves are similar and since they are discontinued at the point of
phase change, there is no additional local extremum, and hence, no
zero slopes are expected in the case of {,, 7 [Fig. 4(d)]. This is true only
for the vdW fluid but not for the real fluids, as shown in Sec. [V F.
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FIG. 4. Variations of (a) ¢,/RT, and ¢,/R, (b) {;, with reduced pressure P, for T,=1.05, 1.1, and 1.2, under SC conditions (T, > 1), and (c) ¢,/RT, and ¢,/R and (d) ¢, (=
—{rp.7) with reduced pressure P, for T.=0.8, 0.9, and 0.95, under subcritical conditions, for the vdW fluid. Black lines are for ¢,/RT, (left axis) and blue lines for ¢,/R (right
axis).
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In Fig. 5, the contours of ¢,/RT, show its variation with pressure
and temperature; the value being the highest at CP (see the color bar).
As depicted in Fig. 3(a), c,/RT, decreases as the pressure and/or tem-
perature increase beyond the critical point whereas in the subcritical
state, the behavior is quite complex and depends on which side of the
liquid-vapor line the fluid is. Figure 5 also shows that the effect of
pressure on ¢,/RT, is weak only at low reduced temperatures, say T, <
0.5. Furthermore, Fig. 5 does reveal the discontinuity in ¢,/RT, at the
liquid-vapor line. Another aspect of this figure is the region below the
critical pressure and beyond the liquid-vapor line, the subcritical gas
region. Can this state be considered a typical gas state when the prop-
erty of c,/RT, changes significantly? Indeed, as depicted in Fig. 1 the
anomalous region does extend to T > T; yand P, < 1.

Superposed in Fig. 5 are also the curves for the loci of {;,r =0
(in magenta) and {,; = 0, red representing (c,/RT,)pmin and blue (c,/
RT,)pmax- [Throughout this paper, subscript p to the governing param-
eters indicates that the extrema are obtained following an isobaric pro-
cess while subscript T indicates that they are obtained following an
isothermal process.] The curve for {,; = 0 forms a closed loop with
the liquid-vapor line as part of its boundary, while the curve for
{27 = 0 extends without any bound, starting from the CP, to be dis-
cussed in Sec. I'V F. The curve for {,; = 0 starts in the subcritical state
at P, ~ 0.155 and T, =~ 0.664 and has an inflexion point (peak) at P, ~
3.227 and T, ~ 1.140, with the slope being zero there; the maximum
temperature to which this loop extends is T, ~ 1.22.

The contour map of ¢,/RT, in Fig. 5 identifies the possible region
where the anomalous behavior of thermodynamic properties may
occur. The loop of zero {,; encloses a region where an inversed varia-
tion of the isobaric slope of ¢,/RT, exists, as also indicated in Figs. 3

ARTICLE pubs.aip.org/aip/pof

(a)-3(c). Within this loop, the contour lines increase with T, instead
of decreasing outside of the loop. The region is bounded on the left by
(¢p/RT})p,min and on the right by (c,/RT,)p,max- Such abnormal shape of
curves disappears at high pressure, P, > 3.2. The anomalous behavior
of ¢,/RT, continues further outside of the right boundary and finally
reaches the maximum points of the isothermal slope of ¢,/RT,, see the
line (c,/RT,)1,max along isobaric lines in the supercritical region (P, >
1). In the subcritical region, however, the loop is bounded by the L-V
line. The dense contours appearing in the vicinity of the critical point,
however, indicate that the anomalous behavior extends well into the
gas phase (P, < 1) and the supercritical gas-like state when P, > 1.

The behavior of ¢,/RT, in Fig. 5 can be better visualized in Fig. 6
where its three-dimensionality with respect to P, and T, are presented;
each color band represents values in a range of ¢,/RT,. Note that Imre
et al' and Wagner and Kruse'' had presented black and white 3D
plots of o for water but, to the authors knowledge, no other 3D plots
are reported in the literature. From Figs. 5 and 6, it is evident that the
highest value of ¢,/RT, exists at P,=1 and T, = 1. The spread is clearly
from the deep into the subcritical region to much beyond the CP, in
the SC region. This demonstrates convincingly that the liquid-like
(SCLL) behavior in the supercritical region, which many authors have
demonstrated in the last 25 years, does not start uniquely at the critical
point, but far below it. Indeed, it begins between the triple point and
the critical point; at P, ~ 0.155 and T, ~ 0.664 in the case of vdW
fluid. This is the point P, shown hypothetically in Fig. 1.

These 3D plots (Fig. 6) display extremely well the complex behav-
ior of the fluid in the region around CP, in both the supercritical and
subcritical regions. The parallel lines with almost equal gap in between
[Figs. 6(b)-6(d)] exhibit splendidly the monotonous behavior of
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FIG. 6. Three-dimensional images of isobaric specific heat parameter ¢, /(RT,) for the vdW fluid, with respect to P, and T, (a) view from the corner of P, and T, axes, (b) trun-
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p/RT, far away from the CP on both sides. The most revealing aspect
of these 3D images is presented in Fig. 6(e), where the blue color
encompassing (¢,/RT))max shows a close to the elliptical shape, as
hypothesized in Fig. 1.

B. Isobaric volumetric expansion parameter (v,T,)

When v,fT, is plotted against the reduced pressure, P,, we again
find the existence of two extrema, minima on the left, P, < 1, and max-
ima on the right, P, > 1 [Fig. 7(a)], which disappear at the high
reduced temperatures, T,. Interestingly, the (7,) again misses to show
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2 25
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this behavior and exhibit only one maximum at P, > 1. As can be
expected, (,; reveals two zero points [Fig. 7(b)]. Furthermore, the
curves for T, in subcritical state [Fig. 7(c)] exhibit only a local maxi-
mum at the point of phase change whereas v, ST shows both a local
maximum at the phase change and a local minimum left to it; this local
minimum disappears at low T,. Corresponding to the cases in
Fig. 7(c), {5 shows only one zero location, for the local minimum of
v,fT, [Fig. 7(d)], and exhibits discontinuity at the phase change.
Although not shown here, the plots for both (fT,) and (v, T,) against
reduced temperature, T, (isobaric lines), and consequently, {,,-curve
show only one zero location when plotted against T,.
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FIG. 7. Variations in (a) v, ST, (black line on left axis) and ST, (blue line on right axis), and (b) ;3 vs P, at T, = 1.05 (blank circle), 1.1 (red square), and 1.2 (blank diamond),
under SC conditions, (c) v, T, and T, and (d) {3 vs P, at T,=0.85, 0.9, and 0.96, under subcritical conditions, for the vdW fluid.
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The contours of v, T, are presented in Fig. 8(a) together with the
loci of {5, = 0 and {3 1 = 0, representing the extrema of the curves
of v, T, along both isobaric and isothermal lines. The line for {,, , =
0 (v, =1 and P, = 4T, — 3), extending beyond any bound on the
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upper side, is the same as that for {,, =0 in Fig. 5 for (c,/
T,R) fsmax- On the other hand, the curve for {,; = 0 forms a loop
on the right side of the L-V/{,, =0line. Similar to that observed in
Fig. 5, the lines for constant v, T, show discontinuity at the L-V
line. However, the peaks along an isobaric line in the present case
are given by

v, _ 2 _ 8
(BT = (a_T)m BEA T R

which lies on the isochoric line, v, = 1 and {,, = 0. The inflexion
point of the loop for {,3 7 = 0 is at P, ~ 1.494, and the maximum
temperature to which the loop extends to is T, ~ 1.21, a value almost
identical to what was observed for c,/T,R.

This (v, BT¢)p.max line defines a phase transition from a liquid-like
to a gas-like phase in the SC state (P > P,), with both the specific vol-
ume and entropy changing continuously and smoothly. This phase
transition is represented by the loci of the zeros of third-order cross-
derivative of the Gibbs free energy, (0°g/0T*0P) =0, or {,,=0,
which together with the liquid-vapor curve, gives a unified view of the
liquid-to-gas transition. Below the critical point, the liquid-to-gas
phase change is the phase-transition with distinct changes in all ther-
modynamic properties including the specific volume and entropy.
However, above the critical point, it is a phase transition from the
liquid-like to gas-like states. Indeed, the (v, BT.)pmax line divides the
entire fluid region (above the triple point) into two regions, liquid (or
liquid-like) and gas (or gas like).

Similar to Fig. 5, Fig. 8(a) reveals the region of highly
deformed contours of v,fT, near the critical point, but major
changes occur in the gas phase (P, < 1) or SCGL (P, > 1), i.e., on
the right-hand side of the L-V line and the line of {,,,=0, con-
trary to the loop for ¢,/RT,. The top view of (v,T,) in the 3D plot
[Fig. 8(b)] exhibits the spread of this parameter; the changes are
large in the red-yellow region and weaker outside of it. However,
from Figs. 8(a) and 8(b), it is evident that the change in this param-
eter is appreciable until T, ~ 1.15.

C. Isothermal compressibility parameter (v,xP.)

Figure 9(a) presents the variations in v,xP, and kP, against the
reduced temperature, for P,=1.05, 1.2, and 1.4. Here again, we
observe that kP, has only one local extremum, the maxima, whereas
v,KP,, have both local minimum and local maximum; however, both
extrema eventually disappear at high pressures. Consequently, {5 in
Figs. 9(b) and 9(c) exhibit two zero locations.

The variations in v,kP. and kP, against P, are presented in
Fig. 10(a) for T,=1.01, 1.05, 1.15. We observe two extrema (on the
isothermal line) in the case of v,kP., one minimum in the subcriti-
cal state and the other maximum in the SC state. Both local
extrema eventually disappear at high temperatures. Corresponding
to the case of T,=1.05 in Fig. 10(a), the curve for {,, in Fig. 10(b)
shows two zero locations. Note that v,kP, exhibit two extrema and
two zero points on both isothermal and isobaric plots like the c,/
RT,, but unlike v, i T..

The contours of v,kP. are presented in Fig. 11 together with the
loci of {,3=0 and {,;,=0, representing the extrema of v,xP, along
both isobaric and isothermal lines; the loop for {,; =0 is similar to that
in Fig. 8. Again, {,;=0 forms a loop only on the right side of L-V/
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FIG. 9. Variations of (a) v;xP; (black line on left axis) and xP, (blue line on right axis) with reduced temperature T, at P,=1.05, 1.2, and 1.4, under SC conditions, (b) {3 vs
reduced temperature T,=1.05, and (c) T,= 1.2 and 1.4, under SC conditions for the vdW fluid.

{;>=0line. Similar to what we observed in Figs. 5 and 8, the lines for
constant v, kP, show discontinuity at the L-V line. The peak pressure
for {,4=0loop is P, ~ 1.18, and the maximum temperature to which
this loop extends to is T, ~ 1.07. The general trend of the variation in
v,kP. in Fig. 11 is that it decreases as the pressure increases, in both
the subcritical and supercritical regions. It shows the peak at {,,=0
(red) and then inflexion to lower values, before it again starts increas-
ing at high T,. Interestingly, the loop of {,, = 0 is completely subsumed
by the loop of {,3=0.

D. The complete phase diagram for vdW fluid and the
anomalous region

Finally, we can track the extrema of (c,/RT;), (v, fT), and (v,xP,)
for the van der Waals fluid by plotting the loci of {,;=0,i=1, 2, 3, and
4 (Fig. 12) and summarize the overall behavior. For simplicity and better
understanding, we have used the dimensional parameters, i.e., ¢,/ T, vf3,
and vk, in Fig. 12. As noted earlier, the (v/3),max line, which is also the
line of (¢,/T)1;max follows exactly the critical isochoric line, v, = 1 for
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FIG. 10. Variations of (a) v,xP; (black line, left axis) and «P; (blue line, right axis)
with P, at T,=1.01, 1.05, and 1.15, under SC conditions, and (b) (.4 vs reduced
pressure P, at T,= 1.05, for the vdW fluid.

{;2="0.1Tt passes through the critical point, and separates the liquid-like
and gas-like states. On the left side of this line is (c,/T)p,min in red
and (¢p/T)p,max in blue for {;; = 0. Note that most part of (c,/T),,
min 18 in the region of T, < 1 even though the pressure goes much
beyond the critical pressure, P, > 1. As noted earlier, the SCLL
behavior starts quite early in the subcritical regime, at P, ~ 0.155
and T, ~ 0.664. When we consider the loops of (vf5) and (vk), i.e.,
{,3=0and {,;, =0, we find that the effect of (vk) starts much later,
it is highly localized, and the loop of {,;=0 is completely sub-
sumed by the loop of {,;=0. The loop of {,; =0 starts at P, ~ 0.4
and T,~ 0.8 and ends at P, ~ 1.5and T, ~ 1.23.

In Fig. 12, the Widom lines for the dimensional properties, Cps
f, and k, are superposed over the plots for {,;=0. Interestingly,
these lines for ¢, max Pmax aNd Kmay, all lie between the loops for
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FIG. 11. Contours of the function v,xP; in the (P, T,) plane from 1 to 15 for the
vdW fluid. The maximum values are collapsed to the L-V line in the subcritical state.
Two loops are formed, one is the loci of {3, = 0 and one for {4, = 0. For the loop
of {3, = 0, red dashed line for (v;xPc), ., and blue dashed line for (v,xPc)
The loop of {4 = 0'is totally within the loop of {3, = 0.

P.max*

{;1=0and {,;=0 and the line for {,, =0 passes through this zone.
The region between the loops for (c,/T)p,min,max and (V) 7, min,max i
where the Widom delta starts, originating from the critical point.
As noted by Imre et al.,”” the Widom lines for all thermophysical
properties may lie within the Widom delta. Here, it may be worth-
while to note that an analogous, maximum and sigmodal-like
change with inflection was reported in the context of Widom
anomalies for argon.zz In addition, Ha ef al.’® and Yoon et al.”’
have observed recently that both the liquid-like and gas-like fluids
may co-exist within this delta.

Lastly, we can map the anomalous region quantitatively
using the boundaries of the closed loops and knowledge on the
Widom delta (Fig. 12). It is bounded (a) at the bottom, by the
intersection of (c,/T)p min and the liquid-vapor line (point A), (b)
on the left, by the line for (c,/T)p min> red line AB, (c) on the top,
by the highest pressure line that is tangent to {,; =0 curve and
intersects the isochoric, {,, = 0line (dashed green line BC), (d) on
the right side bottom, the curve for (v8) r,min 0 (Vi),,min (red line
AD), and (e) on the upper side of the right, by the tangent to
{,3=0 curve that intersects the isochoric, {,, =0line at C (dashed
green line DC). Thermodynamically, the anomalous region
ABCDA includes the Widom delta. The top boundary of highest
pressure, P, .x = 3.227, can be justified since it is the upper limit
of the anomalous region beyond which the importance of the
Widom line goes down; Banuti*® had suggested P, =~ 3. Although
a thermodynamic justification of line DC is not readily available,
an inspection of the isobaric lines of specific heat on ¢,-vs-T plots
of Ar, CHy, N,, CO,, and water, indicates that no large-scale
variations occur beyond T, ,,.x (point C) for P, < P, ..« (see Sec.
IV E).

Phys. Fluids 36, 026105 (2024); doi: 10.1063/5.0179651
Published under an exclusive license by AIP Publishing

36, 026105-14

€511€:G) ¥20z Aenigad 90


pubs.aip.org/aip/phf

Physics of Fluids ARTICLE pubs.aip.org/aip/pof
4 T 7 T 7
Proposed ¢ ’ :.-"
top boundary of pmacit g 3
35¢ anomalous region i
K
''''''' max. FIG. 12. Loops formed in the (P, T)-
3 Praes plane from the three third-order functions:
(1 =0,(3=0,and {4 = 0. The loci of
(o = 0, however, extend beyond the criti-
cal point without any bound. Three Widom
257 lines, Cpmaxs Pmaxs @Nd Kimax, are also
p.max superposed on the P, — T, map. Two
iR dashed green lines are proposed at the
o~ 2 top and on the right; the top being the line
for Prmax=3.227, from T,=1.140 to
. Proposed 1.494, intersecting the line of {,, =0 and
15! xS right boundary of the right boundary is tangent to the line of
’ / anomalous region {s=0 at approximately T,=1.172 and
D P,=1.138. The green lines together with
) (Vi) & (v3) the curves for (cpl7)p,r.nin and (VB)7min
11 p,max Tmax form the anomalous region. (Note that to
k) & (vf) make the plot less crowded, we have
p,min T,min labeled the curves with dimensional form
05 - ; J of modified parameters, instead of the
(V& )T,min reduced, dimensionless form.)
~L .. ) van der Waals Fluid
Liquid-vapor line
0 L 1 1 1 1 L -
0.6 0.8 1 1.2 1.4 1.6 1.8

E. Anomalous regions for argon, methane, nitrogen,
carbon dioxide, and water

In this section, we present the results for argon, methane, nitro-
gen, carbon dioxide, and water. Argon is considered first since it is a
noble fluid and behaves similar to the van der Waals fluid. Figure 13
(a) shows the contours of ¢,/RT}; the value again being the highest at
the critical point. The pattern of the contours with maxima and min-
ima in Fig. 13(a) is identical to that observed for the vdW fluid in
Fig. 5. Superposed in Fig. 13(a) are also the curves for the loci of
{ra,r = 0 (in magenta) and {,; = 0, red representing (c,/RT,)pmin and
blue (c,/RT,)pmax- The curve for {,; = 0 again forms a closed loop
with the liquid-vapor line as part of its boundary. It starts in the sub-
critical state at P, =~ 0.173 and T, =~ 0.730 [point A in Fig. 13(b)] and
has an inflexion point (peak) at P, ~ 3.640 and T, ~ 1.094 (point B)
with the slope being zero there. The maximum temperature to which
this curve extends to T, ~ 1.22.

The above trends of the vdW fluid (Figs. 5 and 12) and argon
[Figs. 13(a) and 13(b)] are replicated by CH4, N,, and CO, [Figs. 14
(a), 15(a), and 16(a)] as well as by the water [Figs. 17(a) and 17(b)].
The starting point of the curve for {,; = 0, for all fluids considered
here, is given in Table I as point A, (P,, T,) being (0.173, 0.730) for
Ar, (0.199, 0.768) for CHy, (0.192, 0.772) for N, (0.203, 0.801) for
CO,, and (0.144, 0.788) for water. Clearly, the values for all fluids
are close to each other; the outlier being the water with P, some-
what lower. This trend is also followed by the peak values (point B);
(3.446, 1.101) for CH,, (3.383, 1.088) for N, (3.252, 1.086) for CO,; again,
the water (4.630, 1.108) has higher P,. Interestingly, all (c,/RT}), loop

extends to the maximum temperature of T, ~ 1.15, except for CO,, for
which it is ~1.12.

The contours of v,T. and v,kP, for all real fluids (not pre-
sented here) show similar behavior as demonstrated for the vdW
fluid in Figs. 8(a) and 11, respectively. Indeed, the loops formed by
the curves for expansion parameter, (v, 1) 7.max and (v Te) .min
({37 =0) and compressibility parameter, (V,kP)rmax and
(V+KP¢)7,min again lie on the right side of the L-V/(,,=0line, as
shown in Figs. 13(b), 14(a), 15(a), 16(a), and 17(b) for Ar, CHy, N,
CO,, and water, respectively. Indeed, these figures present all three
loops together, the truncated part of the line for {,,=0 (to be dis-
cussed in Sec. IV F), and the Widom lines for the dimensionless
properties, ¢,/R, BT, and kP, lie between the loops for {,; =0 and
€r3 =0.

Furthermore, the characteristics of these curves are identical
to those observed in Fig. 12 for the vdW fluid. As noted earlier,
ABCDA represents the area of the anomalous region. Following
the previous observations on A and B and noting that the values of
P, at B and C are identical, it can be observed that the values of P,
at D and T, at C and D do not vary much among these fluids,
including water. Since the variations are not large, we can conclude
that the law of corresponding states is applicable to the anomalous
regions of all real fluids considered here. The exception is water,
which is a polar fluid with much higher P,, T,, and @ (acentric fac-
tor). de Jesiis et al."’ have also observed a similar behavior that
Widom lines for argon, nitrogen, and oxygen follow a two-
parameter corresponding states whereas water and carbon dioxide
deviate from them, water more than CO,.
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FIG. 13. Closed loops formed by the derivatives of Gibbs free energy for argon: (a) contours of ¢,/RT;, superposed are two curves that connect the loci of {4 =0 and

a1 = 0, representing the extrema of the curves of ¢, /RT; red dashed line for minimum, blue for maximum, and magenta for (c,/RT;)

Tmax @nd (o7 = 0; compare with

Fig. 5 for the vdW fluid and (b) three closed loops formed by (1 = 0, {;3 = 0, and {;4 = 0 (see Fig. 19 for the loci of {;, = 0). Three Widom lines for ¢, max, Smax, @nd Kmax
are superposed on this P, — T, map. Two dashed green lines are proposed at the top and on the right; the top being the horizontal line. The values of A, B, C, and D are given
in Table |. (c) replica of (b) in pressure, P (MPa) and temperature, T (K); the numerical values of A-D are given in Table II.

In order to show the real values of A, B, C, and D, in pressure,
P (MPa), and temperature, T (K), replicas of Fig. 13(b), 14(a), 15
(a), 16(a), and 17(b) are presented in Fig. 13(c), 14(b), 15(b), 16(b),
and 17(c) with the corresponding numerical values listed in Table
I1, together with their P, and T.. Again in real terms, the pressure
and temperature of Point A (the start of anomalous region on the
L-V line) are much below the critical pressure and critical
temperature.

We also present a summary plot (Fig. 18) that demonstrates how
the phase-diagram for water can be modified to include the anomalous
state and the various phase transitions within this region. Note that iso-
baric (v/8)max is the same as isothermal (¢,/T)ax and isothermal (V) max

is equal to the isobaric (Vi) .y (Eq. (15)). Figure 18 exhibits the various
states of water in both the subcritical and supercritical regimes. Similar
modifications can be made to the phase diagrams of Ar, CH,, N,, and
CO, using the data in Figs. 13(c), 14(b), 15(b), and 16(b) and Table II.

The above figures clearly exhibit extension of the anomalous
states deep into the supercritical fluid region, an area of considerable
investigation by the SC fluid researchers. What has not been fully char-
acterized and well understood is the liquid and vapor/gas regions on
the subcritical side. We believe, the information in these figures and
Table 1T would be very useful to scientific research and engineering
applications of the SC fluids, and also, of the subcritical liquid and
vapor in the regions close to the L-V line.
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FIG. 14. Closed loops formed by the derivatives of Gibbs free energy for methane:
(@) closed loops formed by the three third-order functions: (4 =0, {3 =0,
and {4 = 0. Three Widom lines for ¢, max, fmax, aNd Kmax are superposed on this
P, - T, map and (b) replica of (a) in pressure, P (MPa) and temperature, T (K); the
values of A-D are given in Table II.

F. Trajectory of liquid-vapor line toward the solid-melt
boundary

Finally, we consider the curves of {,, 7 = 0 in Fig. 19, where
the solid lines represent the loci of the maxima while the dotted
lines are the loci of the minima. Recall that for the vdW fluid, this
line is the same as the critical isochoric line (v, =1), which starts
from the critical point and extends without any bound (Fig. 12).
This is an artifact of the vdW EQOS, where the isochoric line
becomes a straight line in the high-pressure region. As pointed out
by Deiters and DeReuck,” this is due to the fact that the repulsion
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FIG. 15. Closed loops formed by the derivatives of Gibbs free energy for nitrogen:
(a) See the caption of Fig. 13(b), closed loops formed by the three third-order func-
tions: {1 = 0, {3 = 0, and {;4 = 0. Three Widom lines for ¢, max, fmax, and Kmax
are superposed on this P, — T, map, and (b) replica of (a) in pressure, P (MPa) and
temperature, T (K); the values of A-D are given in Table Il.

term is overestimated and outweighs the attraction term at high
pressures in the vdW EOS. Indeed, for the real fluids the lines for
(cp/RT,) -vs-P exhibit shallow minima in the region of high-
pressures, beyond the inflexion points where the maxima end. It is
believed that these shallow minima are due to the details of the
molecular packing, which may be explained by the statistical ther-
modynamics of rigid-body fluids.”’

The reality is that the curves of {,, 7 = 0 for real fluids do form
closed loops, but with the solid/liquid lines (Fig. 19). This is in contrast
to the other three loops of minima and maxima (Figs. 13-17). Note
that the end of the minima curves meeting the melt/solid lines could
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not be shown because the REFPROP™’ does not provide data beyond characteristics (Fig. 19). They emanate from their critical points and
the pressures and temperatures, as in Fig. 19. move toward high pressures and high temperatures, reaching maxi-

Also, in the case of {,, 7 = 0, the maxima and minima curves mum temperatures, T} omax, but with different pressures, Py omay.
meet at extreme pressures (P>20P,) and temperatures (7> 3T,) Then, they turn toward lower T, but higher P,, finally ending at the
unlike the other three loops, and all of the five curves exhibit similar solid-liquid line.

€511€:G) ¥20z Aenigad 90

Phys. Fluids 36, 026105 (2024); doi: 10.1063/5.0179651 36, 026105-18
Published under an exclusive license by AIP Publishing


pubs.aip.org/aip/phf

ARTICLE

Physics of Fluids

pubs.aip.org/aip/pof

5 . - — . . - 16
. ] \
Water 5
4.5 s - ™
e .
4 A0S 1 14
t L
\
1
1
i
! 12
i
:
/

Y RT D
=== CYRT Do
—CJRT D s

—L-V line
T

5t
4.5 A
R
4r A
35 1
/o mcp
3k * | CIRT i ||
_(Cpl(R‘Tv))P,max
o ===0~Po)p min
25 :
=== (P e max
PY N R A D By N A N L (V'NPC)T o
..... (VAP max
1.5¢ — Ve max
- -CP_max
S e B nax i
== max
~==Top boundary ||
05 = ==Right boundary
——L-Vline
0 L L L L L L T
0.8 0.9 1 11 1.2 1.3 14 1.5

(b)

Pressure P (MPa)

1.2

1.3

90 -

80

70

60

50

40

301

20

& CcP

===

=== (V)

..... VR)1 max
= 5)p max
- =C

-

‘max

P,max

———

max

===Top boundary

=——L-Vline
I

—C R a1
—(Cy/ RNy o |

=== Right boundary ||

500 550 600

650

750

Temperature T (K)

850 900 950

FIG. 17. Closed loops formed by the derivatives of Gibbs free energy for water: (a) contours of ¢,/RT,, superposed are two curves that connect the loci of {4 = 0 and
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and {,,p =0, and (b) three

closed loops formed by {4 = 0, {;3 = 0, and {;4 = 0 (see Fig. 19 for the loci of {,, + = 0). Three Widom lines for ¢, max, fmax, @Nd Kmax are superposed on this P, — T, map.
The values of A, B, C, and D are given in Table |. (c) replica of (b) in pressure, P (MPa) and temperature, T (K); the numerical values of A-D are given in Table II.

TABLE I. Reduced pressure and temperature of points A-D on Figs. 12, 13(b), 14(a), 15(a), 16(a), and 17(b).

A B D
w Zc Pr Tr Pr,max Tr Pr Tr,max Pr Tr
vdw 0.375 0.155 0.664 3.227 1.140 3.227 1.494 1.138 1172
Ar —0.002 0.290 0.173 0.730 3.640 1.094 3.640 1.423 1.276 1.167
CH, 0.011 0.286 0.199 0.768 3.446 1.101 3.446 1.389 1.262 1.164
N, 0.037 0.289 0.192 0.772 3.383 1.088 3.383 1.379 1.239 1.160
CO, 0.224 0.274 0.203 0.801 3.252 1.086 3.252 1.299 1.281 1.150
Water 0.344 0.229 0.144 0.788 4.630 1.108 4.630 1.392 1.328 1.154
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TABLE II. Numerical values of points A-D on Figs. 13(c), 14(b), 15(b), 16(b), and 17(c).
A B C D
P, (MPa) T. (K) P (MPa) T (K) Pax (MPa) T (K) P (MPa) Trnax (K) P (MPa) T (K)
Ar 4.863 150.687 0.841 110.00 17.701 164.85 17.701 214.43 6.205 175.85
CH,4 4.599 190.564 0.915 146.35 15.849 209.81 15.849 264.69 5.804 221.82
N, 3.396 126.192 0.652 97.42 11.488 137.30 11.488 174.02 4.207 146.38
CO, 7.377 304.128 1.498 243.61 23.991 330.28 23.991 395.06 9.450 349.75
Water 22.064 647.096 3.177 503.44 102.156 716.98 102.156 900.76 29.301 746.75
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Indeed, the curves of Ar and CH, are almost identical for the
most part (solid lines for maxima) and deviate slightly in the part
of minima (dotted lines). The inflexion points of the two fluids are
also close to each other in terms of T omax and Py romay; (3.147,
35.851) for Ar and (3.100, 32.697) for CH,. This is understandable
since both fluids are considered simple fluids with symmetric
molecular geometry, a fact that is reflected by their close acentric
factors, w, —0.002 19 for Ar and 0.01142 for CH,. However, the
curve for N, is seen to deviate from these two curves, for example,
T, r2max and Py omax for N, are 2.836 and 33.712, but not too far
from that of Ar and CH,. The acentric factor of N, is 0.0372 and
N, has an asymmetric structure. On the other hand, for CO,
(w0 =0.22394) very different T} ;3max and Py amax are found, 2.20
and 24.346, respectively. Significant drops in both T} max and
P, rxmax of CO, from N,, Ar, and CH,, indicate that T} r>ma.x and
P, ramax are sensitive to the variations in molecular structures of the
fluids. In other words, like acentric factor, @, Ty¢imax» and

850 900 950

P, romax can also serve as indicators of the fluid structure.
Indeed, T,rmax and @ correlate very well with each other
for these four fluids, which again demonstrates the applica-
bility of the law of corresponding states from the subcritical
to supercritical states.

Interestingly, the water (blue line in Fig. 19) follows a similar
trend as of the other four fluids in the vicinity of the critical point.
However, the behavior changes substantially as the pressure and tem-
perature increase. This can be attributed to the water being a polar
fluid that deviates from the nonpolar fluids at high SC pressures and
temperature, P, > 10 and T, > 2. Remarkably, the curve suddenly
changes its trend with temperature, resulting in a continuous increase
in both T, and P,. It finally approaches much higher values of T’ :2max
(3.544) and P; (amax (85.347), where the inflexion takes place. Beyond
the inflexion point, the water curve follows the same trend as others.
Evidently, more work is needed to examine the variations at between
the polar and non-polar fluids at very high pressures, and also, for how
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FIG. 19. The loci of {7 =0 representing the extrema of the curves of
(co/RT;)7; solid lines represent maxima, dotted lines minima which are expected
to meet the dashed line representing the solid-liquid melt lines, in each case. (For
the vdW fluid, {,, + = 0 line extends infinitely, Fig. 5). The data for melt-solid lines
are obtained from Tegeler et al.*® (Ar), Setzmann and Wagner’” (CH,), Span
et al.*® (Ny), Span and Wagner* (CO,), and Saul and Wagner** (water).

the curves for (c,/RT,)pmin ({ 2,7 = 0) meet/merge with the melt-solid
lines (Fig. 19).

V. CRITICAL POINT

Historically, the critical point has been defined as the state where
the liquid and vapor phases of a fluid become indistinguishable.
Essentially, the critical point identifies the end of the liquid-vapor line
where the heat (enthalpy) of vaporization becomes zero. Based on the
present analysis we can state: “The critical point is a (P, v, T) state,
where (a) the anomalies in the fluid properties/behavior are maximal,
(b) the third derivative of the Gibbs free energy is zero, and (c) the
thermodynamic specific heat, isobaric volumetric expansion, and iso-
thermal compressibility parameters, (c,/T), (vf3), and (vi), respectively,
approach infinity.” In addition, the independent closed loops created
by the maxima and minima of these three parameters that identify the
anomalous states on the phase diagram, meet at the critical point.

VI. APPLICATION OF THE DELIMITATION OF
ANOMALOUS STATE

As Mouahid et al."” have stated “...the conditions of the pressure
and temperature of supercritical processes must be chosen outside
these transitory zones. The choice of the best operating conditions
depends on the targeted application.” Indeed, the delimitation of the
anomalous state is critically important to understand the phase
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transitions from the liquid to SC fluids and its implications to the
design and operations of the fluid flow and thermal systems.

1. First, the assumption of liquid being incompressible becomes
invalid when the state of the liquid falls in the anomalous region
(non-rigid liquid). This is part of the closed loop for (c,/T), on
the left side of the liquid-vapor line in Figs. 12, 13(b), 13(c), 14~
16, 17(b), and 17(c). This means the compressibility effects need
to be considered in the region right to the red line of (c,/T)p min-

2. Since the anomalous region on both the subcritical vapor/gas-
eous side and the supercritical fluid side, including the Widom
Delta as depicted in Figs. 12, 13(b), 13(c), 14(a), 14(b), 15(a), 15
(b), 16(a), 16(b), 17(b), and 17(c) can experience large-scale
property variations/inversions leading to flow instabilities, ther-
mal oscillations, and/or deteriorated heat transfer. Any system
expected to experience this state must be carefully designed and
operated. Following are a few scenarios of such possibilities:

The anomalous region can be looked at in two parts: (A) as tem-
perature, T, increases, the specific heat, ¢, increases until it
reaches its peak at the critical point, pc, shows a similar behavior
(Ref. 23), and (B) as T continues to increase further, beyond CP,
both ¢, and pc, may go down. It is then easy to see that in zone
A where (pc,T) is continuously increasing, a local thermody-
namic inequilibrium can set in if a rapid and sufficient energy
transport to the location of this condition cannot take place.
Similarly, in zone B a local thermodynamic inequilibrium can
occur since with an increase in temperature, cpis decreased, and
the heat may be released. This can further increase the tempera-
ture locally, producing an unstable condition if the heat transfer
is not rapid. Obviously, these thermal instabilities/oscillations
can produce the flow instabilities. In some situations, these
changes can be local and of very short durations but in other
cases they may be cyclic and can induce long-term or permanent
oscillations. In those situations, they are certainly detrimental to
the flow and heat transfer systems.

Furthermore, let us consider the heat transfer to a flowing fluid
from a heated surface. If the surface temperature keeps the flow
conditions in zone A, the heat transfer will increase since with
the increase in the fluid temperature the specific heat, pc, would
increase. However, if the fluid temperature crosses T, and moves
into the zone B, the heat transfer rate may start decreasing, since
pCp will decrease, and will go to a lower value. (This deterioration
in heat transfer rate, DHT, is not related to the thermal boundary
layer thickness.) This DHT can also occur locally, away from the
surface, and can create local instability.

3. Since outside the anomalous region on the supercritical side, the
properties change monotonically, fluid flow and thermal systems
would be stable and no fluctuations/oscillations would be expected.
However, the properties will still be strong functions of both pres-
sure and temperature and their variations would need to be
accounted for. That means, the effects of volume change, viscous
dissipation, compressible (pressure) work, Joule-Thomson cooling,
and so on would be quite important under those conditions.

As an example of the applicability of the above, we refer to our
recent work, Almara ef al." that presents safe conditions and gray zones
for the transport of SC hydrocarbons and natural gas. Employing the
findings in Almara’s work, Prasad et al’”’ have identified the safe
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pressures and temperatures at which supercritical natural gas (SNG)
can be transported intercontinentally at very-high-mass flow rates,
thousands of kilometers away—without recompression. This distance is
much more than that ever achieved or proposed. In addition to demon-
strating the benefits of the SNG transport via pipelines at the ocean bot-
tom, they have also analyzed the complex effects of property variations,
compressibility, surrounding thermal conditions, Joule-Thomson cool-
ing, and thermal resistance of the pipeline. Interestingly, the pumping
power requirement per unit length and per unit mass goes down as the
inlet pressure is increased in the SC regime, a huge operational advan-
tage. In the absence of the thermodynamic model presented in this
paper, the safe zone was approximated from the plots based on the
REFPROP™ property data. The estimated safe zone for methane,
P>5MPa and T> 243K is quite consistent with Fig. 14(b), the inlet
pressure being much higher than 5 MPa and the exit pressure not below
5 MPa. Consequently, Prasad et al."” have considered the SC pipeline
flow of natural gas from the inlet conditions of 30 MPa, 283K to the
exit pressure of 6 MPa. It is evident from Fig. 14(b) that under these
conditions, the natural gas consisting of 95% methane will not experi-
ence the anomalous behavior during its transit as long as the exit tem-
perature is above 230 K, true to most situations.

The above work*" clearly demonstrates the great potential of
high-capacity, long-distance, energy-efficient transport of fluids under
SC conditions beyond the anomalous state. In addition, the possibilities
of the use of SC heat transfer (working) fluids are enormous. Notable
among them are: (a) high-capacity large, medium, and small heat
exchangers, (b) energy conversion systems such as the thermal power
plants, including nuclear, concentrated solar power, and geothermal/
volcanic heat recovery (deep water can be at SC conditions), (c) trans-
port of methane extracted from the methane hydrate buried in the sedi-
ments at the ocean bottom (research under progress), (d) high-power
heat dissipation in many systems and devices such as the electronics,
avionics, server rooms, and data centers, (e) cryogenic cooling, refrigera-
tion, and air conditioning, and (f) space vehicles, satellites, space sta-
tions, and lunar systems. Many of these systems will work at SC
pressures and temperatures outside the anomalous state whereas many
others can be designed specifically to take advantage of the high heat
capacity, pc, of SC fluids within the anomalous state; such systems will
obviously require precise control of temperature and pressure.

VII. CONCLUSIONS

Major conclusions from this thermodynamic analysis and its
application to the vdW fluid, Ar, CHy, N,, CO,, and water, can be
summarized as follows:

* Thermodynamically, the most appropriate parameters that
govern the anomalous state in the subcritical and supercriti-
cal regions are (c,/T), (vf3), and (vk) rather than c,, f§, and x.
They are essentially the second derivatives of the Gibbs free
energy and depend on the variation of entropy and specific
volume.

* The critical point is the physical state (P, v, T) where anomalies
in the fluid properties/behavior are maximal, the third derivative
of the Gibbs free energy is zero, and the thermodynamic parame-
ters (c,/T), (vf3), and (vk) approach infinity.

e The third derivative of the Gibbs free energy as zero, d3g=0,
leads to two extrema (a minimum and a maximum) of these
three parameters, (c,/T), (vf), and (vk), in contrast to Cps p,and x
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which exhibit only maxima, not the minima. The maxima and
minima of these parameters form separate closed loops on the P-T
phase diagram revealing the regions of strong influence in both the
subcritical and supercritical states.

* The first third-order derivative {; = (8°g/0T?), = 0 leads to the
loci of (¢p/T)p,min, a0d (¢p/T)p,max and formation of a closed loop.
This occurs only in the liquid (subcritical) or liquid-like (super-
critical) states and does not cross the liquid-vapor line.

* The second third-order derivative {, = (0°g/0T?0P) = 0 yields
the demarcation line between the SC liquid-like and gas-like
states since it is a natural extension of the liquid-vapor line. For
the vdW fluid, this line is the isochoric line of v, =1 and extends
without any bounds toward high pressures and high tempera-
tures. However, for the real fluids, the line for (c,/T)1,max reaches
an inflexion point, turns around, and moves as the (c,/T)7,min
line toward the melt/solid line, asymptotically. Indeed, the {,=0
line presents a unified view of the liquid-to-gas phase transition.
Below the critical pressure, liquid-to-gas phase change is the first-
order phase transition with distinct changes in all thermody-
namic properties, and above CP, it becomes a third-order phase
transition with both the specific volume and entropy changing
continuously and smoothly.

* The third third-order derivative {5 = (8°¢/0TOP?) = 0 repre-
sents (V) 1,minmax aNd (VK)p minmax during an isothermal (vf8) or
isobaric (vk) expansion (or compression) process. In this region,
the trend in the variation of (vf) with pressure and in (vk) with
temperature are again in reverse to those outside the region.

¢ The fourth third-order derivative involves the isothermal deriva-
tives with respect to pressure, {, = (9°g/OP> )y =0, ie, the
(VK) ;minmax loop. Together with the liquid-vapor line, they
enclose a small region near the critical point that represents a
new phase and shows an anomalous variation in (vk) that is in
contrast to the variation of (vi) outside this region.

* The above third-order phase transitions as per (8°g/9T?), = 0,
(0%g/0T*0P) = 0, (0°g/OTOP?) =0, and (9°g/OP%), =0 are
related to the ridges discovered and reported in the literature.

* The three Widom lines for ¢, max Pmax aNd Kmay fall between the
closed loops of {; = (8°g/0T?), = 0and {5 = (8°¢g/OTOP?) = 0,
forming the so-called Widom Delta as proposed in the literature.

* The anomalous region can be mapped based on the zeros of the
third-order derivatives of the Gibbs free energy. It is considered
as the region bounded by the lines for (c,/T)pmins (VB)7min> the
tangent to (c,/T) loop (the line of P, 1qx), and the line connecting
the (V) 1,min curve to the intersection of P, .., and {, =0 line.

¢ The law of corresponding states is applicable in the anomalous
region of non-polar real fluids—Ar, CHy, N,, and CO,, from the
subcritical to supercritical states. Water, a polar fluid does show
some deviations, particularly in Pr,max.

* The delimitation of the anomalous region is critical to the design
and operation of the SC flow and thermal systems as well as to
the subcritical systems operating in the vicinity of the liquid-
vapor line.
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NOMENCLATURE

a  Coefficient in van der Waals equation of state
b Coefficient in van der Waals equation of state
CP  Ciritical point
¢, Isobaric specific heat (J kg71 K™Y
¢/T  Isobaric specific heat parameter (J kg~ K?)
EOS  Equation of state
Specific Gibbs free energy (J kg ')
Specific enthalpy (J kg ")
Thermal Conductivity (W m 'K
Pressure (Pa, MPa)
Gas constant (J kg ™' K
S Supercritical
SCGL  Supercritical gas-like
SCLL  Supercritical liquid-like
s Specific entropy (J kg ' K™')
T  Temperature (°C, K)
v Specific volume (m> kg ")

O X v x> o

Greek symbols

B Isobaric coefficient of volumetric expansion (K )

Isothermal compressibility (Pa™")

i Dynamic viscosity (N s m™?)
p  Density (kgm>)

@  Acentric factor

vp  Isobaric volumetric expansion parameter (m’ kgf1 K™Y

vic  Isothermal compressibility parameter (m> kg™ Pa™")

Subscript

¢ Value at critical point
max At the location of maximum
min At the location of minimum

ARTICLE pubs.aip.org/aip/pof

p, P Derivative at constant pressure or an isobaric process
r Reduced parameter (ratio with respect to the value at CP)
T  Derivative at constant temperature or an isothermal process

Dimensionless parameters

¢/RT,  Non-dimensional Isobaric specific heat parameter
v,fT.  Non-dimensional Isobaric volumetric expansion parameter
v,kP,  Non-dimensional Isothermal compressibility parameter
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