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ABSTRACT 
The diverse and heterogeneous terrains in the Arctic, 

consisting of snow, melting ice, permafrost, ice-covered lakes, 
sea ice and open ocean, pose serious challenges to locomotion 
and autonomous navigation capabilities of rovers deployed in 
the region for data collection and experimentation. The Multi-
terrain Amphibious ARCtic explOrer or MAARCO rover is a 
proposed screw-propelled vehicle that uses helical drives 
(similar to Archimedes’ screws) to move seamlessly across the 
diverse terrains in the Arctic. The motion of a pair of helical 
drives operating in soft or fluid terrain is dictated by the 
response of the surrounding substrate to the stresses exerted by 
the rotating helical drives. If the substrate under the rover does 
not fail when it is moving in a straight line, the linear 
displacement of the rover (𝑥) and the number of rotations of the 
helical drives (𝑛) are related through 𝑥 = 𝑃 ∙ 𝑛, where 𝑃 is the 
pitch length of the helical drives. However, when the substrate 
fails, the linear displacement of the rover is less than 𝑃 ∙ 𝑛, i.e., 
𝑥 < 𝑃 ∙ 𝑛. Thus, “𝑥 = 𝑃 ∙ 𝑛” motion represents the optimal 
mode of operation for the rover when moving in a straight line. 
This paper represents the first ever attempt, to the best of 
author’s knowledge, to derive the conditions necessary for the 
application of the holonomic constraint 𝑥 = 𝑃 ∙ 𝑛 to the 
dynamics of a helical drives-based rover.  

Keywords: planar locomotion dynamics, holonomic 
constraint, substrate failure check, multi-terrain, amphibious, 
helical drives, screw-propelled vehicle, Archimedes’ screw, 
Arctic exploration 

1. INTRODUCTION
Global warming has resulted in vast tracts of polar ice 

melting away leading to rising water levels and ever-changing 
weather patterns. The need to study the effects of global warming 

in the polar regions has led to the development of autonomous 
robots that can operate in areas that are inaccessible and 
dangerous to humans [1]-[3]. However, most robots developed 
so far have been deployed in areas of flat and mostly uniform 
terrain like the central plateau of the Antarctic continent. The 
diverse and heterogeneous terrains in the Arctic, consisting of 
snow, melting ice, permafrost, ice-covered lakes, sea ice and 
open ocean, pose serious challenges to locomotion and 
autonomous navigation capabilities that are not met by any 
current rover technology. A robot deployed in the Arctic must be 
highly adaptable to the diverse terrain conditions and must 
possess the ability to traverse both on land and under water. 

This paper presents the study of terrestrial locomotion 
dynamics of a proposed multi-terrain and amphibious rover 
capable of moving seamlessly across the diverse terrains in the 
Arctic. The proposed rover – MAARCO (Multi-terrain 
Amphibious ARCtic explOrer) employs a propulsion system that 
consists of a pair of helical drives or Archimedes’ screws. Helical 
drives are screw-like rotating central cylinders with helical 
blades. In snow, mud, and melting ice, the helical blades push 
the surface medium backward and produce propulsion. On water, 
the hollow central cylinders offer buoyancy that enables the 
vehicle to stay afloat while the rotating blades produce thrust. 
Conversely, the central cylinders can be flooded with water as 
ballast to make the vehicle neutrally buoyant for underwater 
operation, with thrust provided via the rotating blades. The 
variable buoyancy and combination of ground, ice, and water 
locomotion capabilities enable the MAARCO rover to traverse 
the heterogeneous landscape in the Arctic both on land and under 
water.  

While helical drives have been demonstrated as 
propulsion mechanisms in manned vehicles for various 
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purposes, limited understanding of the dynamics of the helical 
drives, at the time, resulted in heavy and inefficient designs with 
low maximum speeds and high-power requirements. The advent 
of modern computational tools has led to a resurgence of 
attempts to analyze the terrestrial locomotion characteristics of 
helical drives in recent years [4-10]. Terrestrial locomotion of 
helical drives represents an involved dynamics problem that 
includes complex interaction between the surrounding substrate 
and helical drives. The motion of helical drives is dictated by 
how the surrounding substrate ‘behaves’ under the stresses 
exerted by the rotating helical drives. Whether the substrate fails 
or stays intact under the stresses exerted by the helical drive 
determines the locomotion of a helical drive propulsion system. 
Specifically, the velocity of the point of contact of the blade with 
the surface medium in a direction perpendicular to the face of the 
blade is either zero or non-zero depending on the whether 
substrate between the blades failing or not. When the rover is 
moving in a straight line (counter-rotating helical drives acted 
upon by the equal amounts of torque) without failing the 
substrate, the velocity constraint can be simplified to 𝑥 = 𝑃 ∙ 𝑛 
or 𝑥 = 𝑃 ∙ 𝜃/2𝜋, where 𝑥 is the linear displacement of the center 
of mass of the rover, and 𝑃, 𝑛,  and 𝜃 are the pitch length, number 
of rotations, and angular displacement of the helical drives, 
respectively. Thus, the motion of the rover resembles that of a 
“bolt through a threaded hole” while moving in a straight line 
when the surrounding substrate does not fail. The holonomic 
constraint 𝑥 = 𝑃 ∙ 𝑛 if valid can then be applied to the 
locomotion dynamics model of a helical drives-based rover to 
eliminate a degree of freedom or dependent variable. However, 
when the substrate fails, the linear displacement of helical drive 
is less than 𝑃 ∙ 𝑛, i.e., 𝑥 < 𝑃 ∙ 𝑛 This paper represents the first 
ever attempt, to the best of author’s knowledge, to derive the 
conditions necessary for the application of the holonomic 
constraint to the dynamics of a helical drives-based rover or a 
screw-propelled vehicle.   

The rest of the paper is organized as follows: In Section 
2, first, we derive a simplified planar model of the locomotion of 
dynamics of the MAARCO rover. Second, we focus on rover 
dynamics involved in moving in a straight line, particularly, the 
holonomic constraint that is applied to the dynamic model when 
the substrate does not fail. Then, we derive the conditions 

necessary for substrate failure under the stresses exerted by the 
helical drives. In Section 3, we discuss the results of the 
simulation of the MAARCO rover moving along a straight line 
and check for the substrate failure criterion. 
 
2. METHODS and MODELING 
2.1 System Description 

Fig. 1 shows a schematic of the proposed MAARCO rover. 
The rover consists of a pair of helical drives, a central console, 
and a chassis which consists of a chassis bracket and four chassis 
legs. The central console carries the payload that includes 
sensors, control and communications electronics, batteries, 
and/or solar panels, and sample collectors. The chassis legs can 
be raised or lowered relative to the central console to change the 
ground clearance and location of the rover center of mass. The 
helical drives may be partially or fully submerged into the 
surrounding medium depending on the surface and bulk 
characteristics of the medium and the overall weight and design 
of the rover. The torques acting on the helical drives control the 
angular accelerations of the helical drives. Using a differential 
steering system, the vehicle is able to track different paths such 
as moving along a straight line, turning left, and turning right. 
The relative angular displacement of the helical drives 
determines the direction of motion and orientation of the rover. 

 
2.2 System Dynamics 

In this work, a planar or two-dimensional model of the 
terrestrial locomotion dynamics of MAARCO has been 
considered; in that the rover is assumed to be moving in the 𝑋-𝑌 
plane (Fig. 2). The two helical drives are in contact with the 
ground, and it is assumed that all the external forces exerted by 
the surrounding substrate act through a single point on the 
surface of the helical drive. In dynamically modeling the system, 
a multi-body system with 3 bodies – one central console and two 
helical drives, is considered. The model assumes that the chassis 
legs have small enough inertia so as to have a negligible impact 
on the overall dynamics of the rover. Multi-body dynamic 

FIGURE 1: SCHEMATIC THE MAARCO AND ITS 
COMPONENTS 

FIGURE 2: SCHEMATIC OF THE PLANAR MODEL OF 
MAARCO ALONG WITH the INERTIAL REFERENCE FRAME 
(IRF), 𝑂ത , AND BODY FRAME, 𝐶ҧ 
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systems, such as the MAARCO rover, have been modeled using 
various analytical techniques such as the Newton-Euler method 
and the Lagrange’s Equations. In this work, the Newton-Euler 
approach has been used to derive the equations of motion of the 
system. The system has three degrees of freedom – 𝑋 and 𝑌 
coordinates of the rover center of mass and the orientation of the 
rover body axis (located at the center of mass) with respect to the 
inertial reference frame. The analytical governing equations of 
motion obtained using the Newton-Euler approach are integrated 
numerically to derive the time response of the system.  

 2.3 Definition of Frames 
The first step in developing a dynamic model of a system is 

the definition of the frames used in the analysis. The frames used 
in this derivation are defined using their respective origins, unit 
vectors, and, for the body frames, the body that they are 
embedded in. As shown in Fig. 2, the frame 𝑂ത with 𝑂 at its origin 
is the arbitrarily located inertial reference frame (IRF). The unit 
vectors 𝑖𝑜ത and 𝑗𝑜ത lie in the plane of the page with 𝑘⃑⃑𝑜ത coming out 
of the page. The body frame 𝐶ҧ with unit vectors 𝑖𝑐, 𝑗𝑐 , 𝑘⃑⃑𝑐ҧ  has its 
origin at point 𝐶 which is the center of mass of the rover (𝐶𝑀 =
𝐶, where 𝐶𝑀 is the center of the mass of the rover). Frame  𝐶ҧ is 
derived through a rotation about 𝑘⃑⃑𝑜ത =  𝑘⃑⃑𝑐 axis by an angle of 
𝛽 = 𝛽(𝑡). The center of masses of the left and right helical drives 
are located at points 𝐻𝐿 and 𝐻𝑅, respectively. The frames that 
rotate along with the helical drives are shown in Fig. 3. The 
frames located at points 𝐻𝐿 and 𝐻𝑅 are obtained through the 
clockwise and counterclockwise rotation about the 𝑖𝑐 axis at 
angles of 𝜃𝐿 and 𝜃𝑅 respectively, where 𝜃𝐿 and 𝜃𝑅 are angular 
positions of the left and right helical drives. Points 𝐿𝜃𝐿

and 𝑅𝜃𝑅
 

are arbitrary points located on the surface of the left and right 
helical drives that rotate along with the rotating helical drives. 
Points 𝐿 and 𝑅 are derived using points 𝐿𝜃𝐿

and 𝑅𝜃𝑅
 such that 

𝜃𝐿 = 0 and 𝜃𝑅 = 0, respectively. Points 𝐿, and 𝑅 are located at 
a distance of 𝑟 from 𝐻𝐿 and 𝐻𝑅, respectively, where 𝑟 represents 
the effective radius of the helical drives. The forces acting on the 
helical drives are assumed to act through points 𝐿 and 𝑅. Another 
set of frames are required to define the forces acting normal and 
tangential to the helical drive blades. As shown in Fig. 4, these 
frames are derived through a fixed angle rotation of −𝜑 and 𝜑 
about the 𝑘⃑⃑𝑐 for the left and right helical drives respectively. It is 
important to note that the helical blades depicted in all the figures 
are on the bottom/lower half of the helical drives and are in 
contact with the surrounding substrate. 

2.4 Forces acting on Helical Drives 
1. Force acting normal to the ground (𝑁𝑔

⃑⃑ ⃑⃑ ⃑) 
This normal force is exerted by the ground on the rover and acts 
in a direction perpendicular to the surface. The ground is 
assumed to be flat and uniform and lies in the 𝑋 − 𝑌 plane. 
Hence, 𝑁𝑔

⃑⃑ ⃑⃑ ⃑ acts along 𝑘⃑⃑𝑜ത (or 𝑘⃑⃑𝑜ത), i.e., 
𝑁𝑔
⃑⃑ ⃑⃑ ⃑ = 𝑁𝑔 𝑘⃑⃑𝑜ത = 𝑁𝑔𝑘⃑⃑𝑐     (1) 

where, 𝑁𝑔 is the magnitude of the normal force. 

2. Friction force due to 𝑁𝑔
⃑⃑ ⃑⃑ ⃑ (𝐹𝐿1

⃑⃑ ⃑⃑ ⃑⃑  or 𝐹𝑅1
⃑⃑ ⃑⃑ ⃑⃑ ⃑) 

This force acts on the central cylinder or ballast of the helical 
drive opposing the linear motion of the point L or R on the helical 
drive. The motion of L and R on the respective helical drive is a 
combination of the motions due to the rotating ballast and the 
forward moving rover. When the rover moves forward (along 𝑖𝑐ҧ), 
the left (or right) helical drive rotates about 𝑖𝑐 (or −𝑖𝑐) and 
translates linearly along 𝑖𝑐 (or 𝑖𝑐). The friction force acts in a 
direction opposite to the  angle 𝜙𝐿 𝑜𝑟 𝑅 relative to 𝑗𝑐 (or −𝑗𝑐) 
where tan (𝜙𝐿 𝑜𝑟 𝑅) is equal to the ratio of the linear speed of the 
rover and the rotational speed of the ballast, as shown in Fig. 5 
for left helical drive.. 

3. Force acting normal to the helical blades (𝑁𝐿
⃑⃑ ⃑⃑ ⃑or 𝑁𝑅

⃑⃑⃑⃑⃑⃑ ) 
This propulsive force acts normal to the helical blades on the left 
(along 𝑖𝐿) and right (along 𝑖𝑅) helical drives. It is a reaction force 
exerted by the surrounding substrate on the helical drive that 
results in forward motion. The magnitude of this force depends 
on the bulk properties of the surrounding substrate and the 
dimensions and motion of the drives. 

4. Friction force due to normal (or propulsive) force 𝑁𝐿
⃑⃑ ⃑⃑ ⃑or 

𝑁𝑅
⃑⃑⃑⃑⃑⃑  (𝐹𝐿2

⃑⃑ ⃑⃑ ⃑⃑  or 𝐹𝑅2
⃑⃑ ⃑⃑ ⃑⃑ ⃑) 

Like the friction force due to 𝑁𝑔
⃑⃑ ⃑⃑ ⃑, this force opposes the linear 

motion of the point L or R on the helical drive. It acts in the same 
direction as the friction force due to 𝑁𝑔

⃑⃑ ⃑⃑ ⃑ (as shown in Fig. 5), 
except that it acts on the helical blades (instead of the ballast). 
However, in the simplified model discussed in this paper, both 
sets of friction forces are assumed to act through points L and R. 

It is important to note that the friction forces are kinetic 
friction forces of the form: 𝐹𝑘 = 𝜇 ∙ 𝐹𝑛𝑜𝑟𝑚𝑎𝑙, where 𝐹𝑘 is the 
magnitude of kinetic friction, 𝜇 is the coefficient of kinetic 
friction, and 𝐹𝑛𝑜𝑟𝑚𝑎𝑙  is the normal force.  

2.5 Deriving the Equations of Motion 
Using the Newton-Euler approach, the equations of motion 

for the system are derived to solve for the degrees of freedom – 
the position of center of mass and the orientation of the rover in 
the 𝑋 − 𝑌 plane. First, we start by defining the position vector of 
the center of mass of the rover or point 𝐶 with respect to point 𝑂 
in the IRF. 

𝑟𝐶/𝑂 =  𝑥𝑐𝑖𝑜 + 𝑦𝑐𝑗𝑜   (2) 
 

FIGURE 3: FRAMES 𝐻𝐿തതതത AND  𝐻𝑅തതതത ROTATE ALONG WITH THE 
LEFT AND RIGHT HELICAL DRIVES, RESPECTIVELY 
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Similarly, the velocity and acceleration vectors of point 𝐶 in the 
IRF are 𝑣⃑𝐶/𝑂 

𝑂 =  𝑥̇𝑐𝑖𝑜 + 𝑦̇𝑐𝑗𝑜 and 𝑎⃑𝐶/𝑂 
𝑂 =  𝑥̈𝑐𝑖𝑜 + 𝑦̇̈𝑐𝑗𝑜, 

respectively. The direction cosine matrix between the IRF (𝑂ത) 
and body frame 𝐶ҧ is: 

𝐶ҧ[𝑐]𝑂ത = [−
cos 𝛽 sin 𝛽 0
sin 𝛽 cos 𝛽 0

0 0 1

]   (3) 

Where, 𝛽 is the angle of rotation between the IRF (𝑂ത) and body 
frame 𝐶ҧ about the 𝑘⃑⃑𝑜axis. Thus, the acceleration of point 𝐶 
(𝑎⃑𝐶/𝑂 ), in the body frame will be: 

{ 𝑎⃑𝐶/𝑂 
𝑂 }

𝐶
= (𝑥̈𝑐 cos 𝛽 + 𝑦̈𝑐 sin 𝛽)𝑖𝑐 + (−𝑥̈𝑐 sin 𝛽 +

𝑦̈𝑐 cos 𝛽)𝑗𝑐  (4) 
 

 
FIGURE 5: FRICTION FORCE DUE 𝑁𝑔

⃑⃑ ⃑⃑ ⃑ ACTING ON THE LEFT 
HELICAL DRIVE 

 
Now, let’s consider the external forces acting on the rover 

system. The expression for 𝑁𝑔
⃑⃑ ⃑⃑ ⃑  is shown in Equation (1). The 

friction force due to 𝑁𝑔
⃑⃑ ⃑⃑ ⃑ acting on the ballast of left and right 

helical drives is derived as: 
𝐹𝐿1
⃑⃑ ⃑⃑ ⃑⃑ = 𝐹𝐿1(−𝑠𝑖𝑛𝜙𝐿 𝑖𝑐 −  𝑐𝑜𝑠𝜙𝐿 𝑗𝑐)  (5) 
𝐹𝑅1
⃑⃑ ⃑⃑ ⃑⃑ ⃑ = 𝐹𝑅1(−𝑠𝑖𝑛𝜙𝑅  𝑖𝑐 +  𝑐𝑜𝑠𝜙𝑅 𝑗𝑐)  (6) 

 
The force acting normal to the blades on the left and right helical 
drive is derived as: 

𝑁𝐿
⃑⃑ ⃑⃑ ⃑ = 𝑁𝐿𝑖𝐿 =  𝑁𝐿(𝑐𝑜𝑠𝜑 𝑖𝑐 −  𝑠𝑖𝑛𝜑 𝑗𝑐)  (7) 
𝑁𝑅
⃑⃑⃑⃑⃑⃑ = 𝑁𝑅𝑖𝑅 =  𝑁𝑅(𝑐𝑜𝑠𝜑 𝑖𝑐 +  𝑠𝑖𝑛𝜑 𝑗𝑐)   (8) 

Similarly, the friction force acting on the blades on the left and 
right helical drives is derived as: 

𝐹𝐿2
⃑⃑ ⃑⃑ ⃑⃑ = 𝐹𝐿2𝑗𝐿 =  𝐹𝐿2(−𝑠𝑖𝑛𝜑 𝑖𝑐 − 𝑐𝑜𝑠𝜑 𝑗𝑐)   (9) 
𝐹𝑅2
⃑⃑ ⃑⃑ ⃑⃑ ⃑ = 𝐹𝑅2𝑗𝐿 = 𝐹𝑅2(−𝑠𝑖𝑛𝜑 𝑖𝑐 + 𝑐𝑜𝑠𝜑 𝑗𝑐) (10) 

Additionally, the weight of rover 𝐹𝑔
⃑⃑⃑⃑  is: 

𝐹𝑔
⃑⃑⃑⃑ =  −𝑚𝑟𝑜𝑣𝑒𝑟𝑔𝑘⃑⃑𝑜ത  (11) 

where, 𝑔 is acceleration due to gravity and 𝑚𝑟𝑜𝑣𝑒𝑟  is the total 
mass of the rover, which consists of the mass of the central 
console (𝑚𝑐𝑐) and the masses of two helical drives (2 ∗ 𝑚𝐻𝐷), 
where 𝑚𝐻𝐷 is the mass of each helical drive. Therefore, 

 𝑚𝑟𝑜𝑣𝑒𝑟=(𝑚𝑐𝑐 + 2 ∗ 𝑚𝐻𝐷)  (12) 
Combining all the external forces, we get: 

{𝐹𝑒𝑥𝑡
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ }

𝐶
=  𝑁𝐿

⃑⃑ ⃑⃑ ⃑ + 𝑁𝑅
⃑⃑⃑⃑⃑⃑ + 𝐹𝐿1

⃑⃑ ⃑⃑ ⃑⃑ + 𝐹𝑅1
⃑⃑ ⃑⃑ ⃑⃑ ⃑ + 𝐹𝐿2

⃑⃑ ⃑⃑ ⃑⃑ + 𝐹𝑅2
⃑⃑ ⃑⃑ ⃑⃑ ⃑ + 𝑁𝑔

⃑⃑ ⃑⃑ ⃑ + 𝐹𝑔
⃑⃑⃑⃑      

(13) 
{𝐹𝑒𝑥𝑡
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ }

𝐶
= [𝑁𝐿𝑐𝑜𝑠𝜑 + 𝑁𝑅𝑐𝑜𝑠𝜑 − 𝐹𝐿1𝑠𝑖𝑛𝜙𝐿 − 𝐹𝑅1𝑠𝑖𝑛𝜙𝑅

− 𝐹𝐿2𝑠𝑖𝑛𝜑 − 𝐹𝑅2𝑠𝑖𝑛𝜑]𝑖𝑐ҧ

+ [−𝑁𝐿 𝑠𝑖𝑛𝜑 + 𝑁𝑅  𝑠𝑖𝑛𝜑 − 𝐹𝐿1 𝑐𝑜𝑠𝜙𝐿

+ 𝐹𝑅1𝑐𝑜𝑠𝜙𝑅 − 𝐹𝐿2𝑐𝑜𝑠𝜑 + 𝐹𝑅2𝑐𝑜𝑠𝜑]𝑗𝑐

+ [𝑁𝑔 + 𝐹𝑔]𝑘⃑⃑𝑜ത 
(14) 

 
Using Newton’s second law of motion equation for the rover 
system {𝐹𝑒𝑥𝑡

⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ }
𝐶

= 𝑚𝑟𝑜𝑣𝑒𝑟 ∙ { 𝑎⃑𝐶/𝑂 
𝑂 }

𝐶
, and comparing 

coefficients of 𝑖𝑐, 𝑗𝑐, and 𝑘⃑⃑𝑐we get: 
 
For 𝑖𝑐, 
 

𝑁𝐿𝑐𝑜𝑠𝜑 + 𝑁𝑅𝑐𝑜𝑠𝜑 − 𝐹𝐿1𝑠𝑖𝑛𝜙𝐿 − 𝐹𝑅1𝑠𝑖𝑛𝜙𝑅 − 𝐹𝐿2𝑠𝑖𝑛𝜑 −
𝐹𝑅2𝑠𝑖𝑛𝜑 = (𝑚𝑐𝑐 + 2 ∗ 𝑚𝐻𝐷) ∗ (𝑥̈𝑐 cos 𝛽 + 𝑦̈𝑐 sin 𝛽) (15) 

 
For 𝑗𝑐, 

−𝑁𝐿𝑠𝑖𝑛𝜑 + 𝑁𝑅𝑠𝑖𝑛𝜑 − 𝐹𝐿1𝑐𝑜𝑠𝜙𝐿 + 𝐹𝑅1𝑐𝑜𝑠𝜙𝑅 −
𝐹𝐿2𝑐𝑜𝑠𝜑 + 𝐹𝑅2𝑐𝑜𝑠𝜑 = (𝑚𝑐𝑐 + 2 ∗ 𝑚𝐻𝐷) ∗ (−𝑥̈𝑐 sin 𝛽 +

𝑦̈𝑐 cos 𝛽)  (16) 
 

For 𝑘⃑⃑𝑐, 
𝑁𝑔 = −𝐹𝑔 = 𝑚𝑟𝑜𝑣𝑒𝑟𝑔 = (𝑚𝑐𝑐 + 2 ∗ 𝑚𝐻𝐷)𝑔  (17) 

 
Equation 17 shows that the magnitude of the normal force (𝑁𝑔) 
is equal to the weight of the rover. The normal force supports the 

FIGURE 4: FRAMES 𝐿ത AND  𝑅ത ARE USED TO DEFINE 
FORCES ACTING NORMAL AND TANGENTIAL TO THE 
BLADES (THE BLADES SHOWN HERE ARE LOCATED ON 
BOTTOM HALF OF THE HELICAL DRIVES OR THE PART OF 
THE HELICAL DRIVES THAT IS IN CONTACT WITH THE 
SUSBTRATE)  
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weight of the rover equally through points 𝐿 and 𝑅. So, the 
friction forces due to 𝑁𝑔

⃑⃑ ⃑⃑ ⃑ acting on the ballast of left and right 
helical drives can be expressed as: 

𝐹𝐿1
⃑⃑ ⃑⃑ ⃑⃑ = 0.5 𝑚𝑟𝑜𝑣𝑒𝑟  𝑔 𝜇𝑘1(−𝑠𝑖𝑛𝜙𝐿 𝑖𝑐 −  𝑐𝑜𝑠𝜙𝐿 𝑗𝑐)  (18) 
𝐹𝑅1
⃑⃑ ⃑⃑ ⃑⃑ ⃑ = 0.5 𝑚𝑟𝑜𝑣𝑒𝑟  𝑔 𝜇𝑘1(−𝑠𝑖𝑛𝜙𝐿 𝑖𝑐 +  𝑐𝑜𝑠𝜙𝐿 𝑗𝑐)  (19) 

where, 𝜇𝑘1 is the kinetic friction between the substrate and 
helical drives. 
Similarly, the friction forces acting on the helical blades on the 
left and right helical drives can be expressed as: 

𝐹𝐿2
⃑⃑ ⃑⃑ ⃑⃑ =  𝜇𝑘1𝑁𝐿(−𝑠𝑖𝑛𝜑 𝑖𝑐 − 𝑐𝑜𝑠𝜑 𝑗𝑐)  (20) 
𝐹𝑅2
⃑⃑ ⃑⃑⃑⃑ ⃑ = 𝜇𝑘1𝑁𝑅(−𝑠𝑖𝑛𝜑 𝑖𝑐 + 𝑐𝑜𝑠𝜑 𝑗𝑐)  (21) 

Now, let’s calculate the external torques acting on the 
system, or specifically the torques exerted by the external forces 
listed in Equations 1, and 5 through 10. To calculate the external 
torques, the position vectors of 𝐿 and 𝑅 with respect to point 𝐶 
are derived: 

𝑟𝐿/𝐶 =  𝑤𝑗𝑐 − 𝑟 𝑘⃑⃑𝑐ҧ    (22) 
𝑟𝑅/𝐶 =  −𝑤𝑗𝑐 − 𝑟𝑘⃑⃑𝑐ҧ    (23) 

where, 𝑤 is the distance between the center of masses of the 
rover and the individual helical drives and 𝑟 is the effective 
radius of the helical drives. So, the external torques acting on the 
rover system about its center of mass is: 

(𝜏𝐶,𝑠𝑦𝑠)
𝑒𝑥𝑡

= 𝑟𝐿/𝐶 × (𝑁𝐿
⃑⃑ ⃑⃑ ⃑ + 𝐹𝐿1

⃑⃑ ⃑⃑ ⃑⃑ + 𝐹𝐿2
⃑⃑ ⃑⃑ ⃑⃑ + 0.5 ∗ 𝑁𝑔

⃑⃑ ⃑⃑ ⃑)

+ 𝑟𝑅/𝐶 × (𝑁𝑅
⃑⃑⃑⃑⃑⃑ + 𝐹𝑅1

⃑⃑ ⃑⃑ ⃑⃑ ⃑ + 𝐹𝑅2
⃑⃑ ⃑⃑ ⃑⃑ ⃑ + 0.5 ∗ 𝑁𝑔

⃑⃑ ⃑⃑ ⃑) 
(24) 

 
(𝜏𝐶,𝑠𝑦𝑠)

𝑒𝑥𝑡
= [(0.5𝑤𝑁𝑔) − (0.5𝑤𝑁𝑔) − (𝑟𝐹𝐿1𝑐𝑜𝑠(𝜙𝐿))

+ (𝑟𝐹𝑅1𝑐𝑜𝑠(𝜙𝑅)) − (𝑟𝐹𝐿2𝑐𝑜𝑠(𝜓))
+ (𝑟𝐹𝑅2𝑐𝑜𝑠(𝜓)) − (𝑟𝑁𝐿𝑠𝑖𝑛(𝜓))
+ (𝑟𝑁𝑅𝑠𝑖𝑛(𝜓))]𝑖𝑐ҧ +  𝑟[−(𝑁𝐿 cos(𝜓))

− (𝑁𝑅 cos(𝜓)) + (𝐹𝐿1𝑠𝑖𝑛(𝜙𝐿))

+ (𝐹𝑅1𝑠𝑖𝑛(𝜙𝑅)) + (𝐹𝐿2𝑠𝑖𝑛(𝜓))  

+ (𝐹𝑅2𝑠𝑖𝑛(𝜓))]𝑗𝑐ҧ + 𝑤[−(𝑁𝐿 cos(𝜓))

+ (𝑁𝑅 cos(𝜓)) + (𝐹𝐿1𝑠𝑖𝑛(𝜙𝐿))

− (𝐹𝑅1𝑠𝑖𝑛(𝜙𝑅)) + (𝐹𝐿2𝑠𝑖𝑛(𝜓))

− (𝐹𝑅2𝑠𝑖𝑛(𝜓)]𝑘⃑⃑𝑐ҧ  
(25) 

The external torque acting on a system about an arbitrary point 
𝐴 ((𝜏𝐴,𝑠𝑦𝑠)

𝑒𝑥𝑡
) is related to the change in angular momentum of 

the system about point 𝐴 as follows: 

(𝜏𝐴,𝑠𝑦𝑠)
𝑒𝑥𝑡

=
𝑑

𝑑𝑡
( ℎ𝐴,𝑠𝑦𝑠𝑂

𝑂 ) +
𝑂

𝑣⃑𝐴/𝑂 × 𝑚𝑠𝑦𝑠 𝑣⃑𝐶𝑀/𝑂 
𝑂𝑂

 (26) 
where, 𝐶𝑀 is the center of mass of the system. For the rover 
system under consideration 𝐴 = 𝐶 and 𝐶𝑀 = 𝐶. So, the second 
term 𝑣⃑𝐴/𝑂 × 𝑚𝑠𝑦𝑠 𝑣⃑𝐶𝑀/𝑂 

𝑂𝑂 = 𝑣⃑𝐶/𝑂 × 𝑚𝑠𝑦𝑠 𝑣⃑𝐶/𝑂 
𝑂𝑂  is equal to 

0⃑⃑. Now, using the appropriate notations, we get: 

(𝜏𝐶,𝑠𝑦𝑠)
𝑒𝑥𝑡

=
𝑑

𝑑𝑡
( ℎ𝐶,𝑠𝑦𝑠𝑂

𝑂 )
𝑂

  (27) 

Here, ℎ𝐶,𝑠𝑦𝑠𝑂
𝑂  is the angular momentum of the system about point 

𝐶 with respect to the IRF. Given that the location of the central 
console and helical drives does not change with respect to the 
center of mass and that the rover center of mass and point 𝐶 are 
one and the same, the angular momentum of the system can be 
simplified to: 

ℎ𝐶,𝑠𝑦𝑠𝑂
𝑂 = 𝐼𝐶,𝑠𝑦𝑠 ∙ 𝑂ത𝜔⃑⃑⃑𝐶ҧ  (28) 

where, 𝐼𝐶,𝑠𝑦𝑠 is the moment of inertia of the system about point 
𝐶 and 𝑂ത𝜔⃑⃑⃑𝐶ҧ is the angular velocity between the IRF and body 
frame 𝐶. Given that frame  𝐶ҧ is derived through a rotation about 
𝑘⃑⃑𝑜ത =  𝑘⃑⃑𝑐 axis at an angle of 𝛽, we have: 

𝑂ത𝜔⃑⃑⃑𝐶ҧ = 𝛽̈𝑘⃑⃑𝑜ത = 𝛽̇𝑘⃑⃑𝑐ҧ    (29) 
And, 

𝑂ത𝛼⃑𝐶ҧ = 𝛽̈𝑘⃑⃑𝑜ത = 𝛽̈𝑘⃑⃑𝑐ҧ    (30) 
So,  

(𝜏𝐶,𝑠𝑦𝑠)
𝑒𝑥𝑡

=
𝑑

𝑑𝑡
( ℎ𝐶,𝑠𝑦𝑠𝑂

𝑂 )
𝑂

=
𝑑

𝑑𝑡
(𝐼𝐶,𝑠𝑦𝑠 ∙ 𝑂ത𝜔⃑⃑⃑𝐶ҧ)

𝑂

= 𝐼𝐶,𝑠𝑦𝑠,𝑧 ∙ 𝛽̈ 𝑘⃑⃑𝑐ҧ 
(31) 

where, 𝐼𝐶,𝑠𝑦𝑠,𝑧 is the moment of inertia of the system about 𝑘⃑⃑𝑐ҧ. 
Now, comparing the coefficients of 𝑖𝑐, 𝑗𝑐, and 𝑘⃑⃑𝑐 in Equation 25 
and 31, we get:  
For 𝑖𝑐, 

𝑟[−𝐹𝐿1𝑐𝑜𝑠(𝜙𝐿) + 𝐹𝑅1𝑐𝑜𝑠(𝜙𝑅) − 𝐹𝐿2𝑐𝑜𝑠(𝜓) + 𝐹𝑅2𝑐𝑜𝑠(𝜓)
− 𝑁𝐿𝑠𝑖𝑛(𝜓) + 𝑁𝑅𝑠𝑖𝑛(𝜓)] =  0 

 

FIGURE 6: (FROM LEFT TO RIGHT) 1. FORCES ACTING ON ANNULAR SUBSTRATE ELEMENT LOCATED BETWEEN TWO BLADES, 
(2) STRESSES ACTING ON ANNULAR SUBSTRATE ELEMENT, (3) STRESSES ACTING ON CUBE-SHAPED SUBSTRATE ELEMENT 
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(32) 
For 𝑗𝑐,  

𝑟[−(𝑁𝐿 cos(𝜓)) − (𝑁𝑅 cos(𝜓)) + (𝐹𝐿1𝑠𝑖𝑛(𝜙𝐿))

+ (𝐹𝑅1𝑠𝑖𝑛(𝜙𝑅)) + (𝐹𝐿2𝑠𝑖𝑛(𝜓))  

+ (𝐹𝑅2𝑠𝑖𝑛(𝜓))] =  0 
(33) 

For 𝑘⃑⃑𝑐, 
𝑤(−𝑁𝐿𝑐𝑜𝑠𝜑 + 𝑁𝑅𝑐𝑜𝑠𝜑 + 𝐹𝐿1𝑠𝑖𝑛𝜙𝐿 − 𝐹𝑅1𝑠𝑖𝑛𝜙𝑅 + 𝐹𝐿2𝑠𝑖𝑛𝜑

− 𝐹𝑅2𝑠𝑖𝑛𝜑) = 𝐼𝐶,𝑠𝑦𝑠,𝑘 ∙ 𝛽̈ 
(34) 

Now, let’s consider the motion of individual helical drives 
and the torques acting on each helical drive. As mentioned 
previously, the external forces act through points 𝐿 and 𝑅. So, 
first, the position vectors of 𝐿 and 𝑅 with respect to point 𝐻𝐿 and 
𝐻𝑅 are derived as follows: 

𝑟𝐿/𝐻𝐿 =  −𝑟 𝑘⃑⃑𝑐ҧ    (35) 
𝑟𝑅/𝐻𝑅 =  −𝑟 𝑘⃑⃑𝑐ҧ   (36) 

The external torques acting on the left helical drive about point 
𝐻𝐿 are: 

(𝜏𝐻𝐿,𝐻𝐷)
𝑒𝑥𝑡

= 𝑟𝐿/𝐻𝐿 × (𝑁𝐿
⃑⃑ ⃑⃑ ⃑ + 𝐹𝐿1

⃑⃑ ⃑⃑ ⃑⃑ + 𝐹𝐿2
⃑⃑ ⃑⃑ ⃑⃑ ) + 𝜏𝑚𝑜𝑡𝑜𝑟,𝐻𝐿 +

𝜏𝐽𝑜𝑖𝑛𝑡 𝑓𝑜𝑟𝑐𝑒𝑠,𝐻𝐿  (37) 
Similarly, external torques acting on the right helical drive about 
point 𝐻𝑅 are:  

(𝜏𝐻𝑅,𝐻𝐷)
𝑒𝑥𝑡

= 𝑟𝑅/𝐻𝑅 × (𝑁𝑅
⃑⃑⃑⃑⃑⃑ + 𝐹𝑅1

⃑⃑ ⃑⃑ ⃑⃑ ⃑ + 𝐹𝑅2
⃑⃑ ⃑⃑ ⃑⃑ ⃑) + 𝜏𝑚𝑜𝑡𝑜𝑟,𝐻𝑅

+ 𝜏𝐽𝑜𝑖𝑛𝑡 𝑓𝑜𝑟𝑐𝑒𝑠,𝐻𝑅 
(38) 

Here, 𝜏𝑚𝑜𝑡𝑜𝑟,𝐻𝐿  and 𝜏𝑚𝑜𝑡𝑜𝑟,𝐻𝑅 are user inputs to the system and 
represent driving torques exerted by the motors on the helical 
drives that result in helical drive rotation and consequently 
forward motion of the rover. , 𝜏𝐽𝑜𝑖𝑛𝑡 𝑓𝑜𝑟𝑐𝑒𝑠,𝐻𝐿 & 𝜏𝐽𝑜𝑖𝑛𝑡 𝑓𝑜𝑟𝑐𝑒𝑠,𝐻𝑅

⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  
are the torques due to the forces acting on the joints, exerted by 
the chassis legs on the helical drives,.  

While applying Equation 26 for the left and right helical 
drives, we have 𝐴 = 𝐻𝐿, 𝐶𝑀 = 𝐻𝐿, and 𝐴 = 𝐻𝑅, 𝐶𝑀 = 𝐻𝑅, 
respectively. So, for the left helical drive, Equation 26 simplifies 
to: 

(𝜏𝐻𝐿,𝐻𝐷)
𝑒𝑥𝑡

=
𝑑

𝑑𝑡
( ℎ𝐻𝐿,𝐻𝐷𝑂

𝑂 )
𝑂

  (39) 
Similarly, for the right helical drive: 

(𝜏𝐻𝑅,𝐻𝐷)
𝑒𝑥𝑡

=
𝑑

𝑑𝑡
( ℎ𝐻𝑅,𝐻𝐷𝑂

𝑂 )
𝑂

  (40) 

Here, ℎ𝐻𝐿,𝐻𝐷𝑂
𝑂  and ℎ𝐻𝑅,𝐻𝐷𝑂

𝑂  are the angular momentums of the 
left and right helical drives about points 𝐻𝐿 and 𝐻𝑅 respectively 
with respect to the IRF. Given that the helical drives are rigid 
bodies and that their respective center of masses coincide with 
𝐻𝐿 and 𝐻𝑅, the angular momentum of the left helical drive about 
𝐻𝐿 is: 

ℎ𝐻𝐿,𝐻𝐷𝑂
𝑂 = 𝐼𝐻𝐿,𝐻𝐷 ∙ 𝑂ത𝜔⃑⃑⃑𝐻𝐿തതതത  (41) 

and the angular momentum of the right helical drive about 𝐻𝑅 
is: 

ℎ𝐻𝑅,𝐻𝐷𝑂
𝑂 = 𝐼𝐻𝑅,𝐻𝐷 ∙ 𝑂ത𝜔⃑⃑⃑𝐻𝑅തതതത  (42) 

where, 𝐼𝐻𝐿,𝐻𝐷 and 𝐼𝐻𝑅,𝐻𝐷 are the moments of inertia tensor of the 
left and right helical drives about their centers of mass 
respectively whereas 𝑂ത𝜔⃑⃑⃑𝐻𝐿തതതത and 𝑂ത𝜔⃑⃑⃑𝐻𝑅തതതത are the angular velocity 
between the IRF and body frames located at points 𝐻𝐿 and 𝐻𝑅, 
respectively. The angular velocity terms can be derived using the 
following expressions: 

𝑂ത𝜔⃑⃑⃑𝐻𝐿തതതത = 𝑂ത𝜔⃑⃑⃑𝐶ҧ + 𝐶ҧ𝜔⃑⃑⃑𝐻𝐿തതതത =  𝛽̇𝑘⃑⃑𝑐ҧ + 𝜃̇𝐿𝑖𝑐ҧ  (43) 
𝑂ത𝜔⃑⃑⃑𝐻𝑅തതതത = 𝑂ത𝜔⃑⃑⃑𝐶ҧ + 𝐶ҧ𝜔⃑⃑⃑𝐻𝑅തതതത =  𝛽̇𝑘⃑⃑𝑐ҧ − 𝜃𝑅̇𝑖𝑐ҧ (44) 

So, the torques due to rate of change of angular momentums for 
both left and right helical drives are: 

(𝜏𝐻𝐿,𝐻𝐷)
𝑒𝑥𝑡

=
𝑑

𝑑𝑡
( ℎ𝐻𝐿,𝐻𝐷𝑂

𝑂 )
𝑂

=
𝑑

𝑑𝑡
(𝐼𝐻𝐿,𝐻𝐷 ∙ 𝑂ത𝜔⃑⃑⃑𝐻𝐿തതതത)

𝑂
=

𝐼𝐻𝐿,𝐻𝐷 ∙ (𝛽̈𝑘⃑⃑𝑐ҧ + 𝜃𝐿̈𝑖𝑐ҧ) +  (𝐼𝐻𝐿,𝐻𝐷,𝑥 − 𝐼𝐻𝐿,𝐻𝐷,𝑧)𝛽̇𝜃̇𝐿𝑗𝑐ҧ 
 (45) 

(𝜏𝐻𝑅,𝐻𝐷)
𝑒𝑥𝑡

=
𝑑

𝑑𝑡
( ℎ𝐻𝑅,𝐻𝐷𝑂

𝑂 )
𝑂

=
𝑑

𝑑𝑡
(𝐼𝐻𝑅,𝐻𝐷 ∙ 𝑂ത𝜔⃑⃑⃑𝐻𝑅തതതത)

𝑂
=

𝐼𝐻𝑅,𝐻𝐷 ∙ (𝛽̈𝑘⃑⃑𝑐ҧ + 𝜃𝐿̈𝑖𝑐ҧ)(𝐼𝐻𝑅,𝐻𝐷,𝑥 − 𝐼𝐻𝑅,𝐻𝐷,𝑧)𝛽̇𝜃̇𝐿𝑗𝑐ҧ 
 (46) 

 
 
Now, comparing the coefficients of 𝑖𝑐ҧ, for Equations 39 and 45 
(equations for left helical drives) we get: 

𝑟 ∗ (−𝑁𝐿𝑠𝑖𝑛𝜑 − 𝐹𝐿1𝑐𝑜𝑠𝜙𝐿 − 𝐹𝐿2𝑐𝑜𝑠𝜑) + 𝜏𝑚𝑜𝑡𝑜𝑟,𝐻𝐿,𝑥

= 𝐼𝐻𝐿,𝐻𝐷,𝑥 ∙ 𝜃̈𝐿 
(47) 

and for Equations 40 and 46 (equations for right helical drives) 
we get: 

𝑟 ∗ (𝑁𝑅𝑠𝑖𝑛𝜑 + 𝐹𝑅1𝑐𝑜𝑠𝜙𝑅 + 𝐹𝑅2𝑐𝑜𝑠𝜑) + 𝜏𝑚𝑜𝑡𝑜𝑟,𝐻𝑅,𝑥 =

−𝐼𝐻𝐿,𝐻𝐷,𝑥 ∙ 𝜃̈𝑅    
(48) 

It is important to note that the 𝑡𝑜𝑟𝑞𝑢𝑒 𝑑𝑢𝑒 𝑡𝑜 𝑗𝑜𝑖𝑛𝑡 𝑓𝑜𝑟𝑐𝑒𝑠  act 
in such as a way to impose pitching and yawing motions on the 
helical drives, and not rolling. They act through the axis of 
rotation of the helical drives, i.e., 𝑖𝑐ҧ, and hence do not appear in 
Equations 47 and 48. 

The planar locomotion model of the MAARCO rover 
discussed above has a total of fourteen dependent variables – 𝑥𝑐, 
𝑥̇𝑐 ,  𝑦𝑐, 𝑦̇𝑐, 𝛽, 𝛽̇, 𝜃𝐿 ,  𝜃̇𝐿,𝜃𝑅, 𝜃̇𝑅, 𝑁𝐿, and 𝑁𝑅. Equations 15, 16, 34, 
47, and 48 represent five second order different equations that 
can be used to solve for the first ten variables (𝑥𝑐, 𝑥̇𝑐 ,  𝑦𝑐, 𝑦̇𝑐, 𝛽, 
𝛽̇, 𝜃𝐿 ,  𝜃̇𝐿,𝜃𝑅, 𝜃̇𝑅), while Equations 32 and 33 can be used to solve 
for 𝑁𝐿, and 𝑁𝑅. 

 
2.6 Steady State Motion along a Straight Line 

In this paper, we focus on a special case of planar motion, 
i.e., steady state motion along a straight line, and the conditions 
necessary for the application of the holonomic constraint relating 
the linear and angular displacements (𝑥 and 𝜃, respectively) of 
the helical drives.  

While moving along a straight line with no failure of 
substrate, the degree of freedom of the system is reduced from 
three (𝑥𝑐, 𝑦𝑐, and 𝛽) to one (𝑥𝑐). The rover is assumed to be 
moving along the x-axis and therefore  𝑦𝑐 = 0, 𝑦̇𝑐 = 0, 𝑦̈𝑐 = 0, 
𝛽 = 0, 𝛽̇ = 0, and 𝛽̈ = 0. Since the rover uses a differential 
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steering system, the angular displacements, velocities, and 
accelerations of the left and right helical drives have to be equal 
in magnitude while moving in a straight line, i.e., 𝜃𝐿 = 𝜃𝑅 = 𝜃, 
𝜃̇𝐿 = 𝜃̇𝑅 = 𝜃̇, and 𝜃̈𝐿 = 𝜃̈𝑅 =  𝜃̈. This is possible only if the 
external torques (applied by the motors) and normal forces 
(exerted by the surrounding substrate) on the left and right helical 
drives are equal in magnitude, i.e., 𝜏𝑚𝑜𝑡𝑜𝑟,𝐻𝐿,𝑥 =  𝜏𝑚𝑜𝑡𝑜𝑟,𝐻𝑅,𝑥 =

𝜏𝑚𝑜𝑡𝑜𝑟,𝑥 and 𝑁𝐿 = 𝑁𝑅 = 𝑁.  
Following these simplifications, the number of dependent 

variables in the dynamic model is reduced from twelve (𝑥𝑐, 𝑥̇𝑐 ,  
𝑦𝑐, 𝑦̇𝑐, 𝛽, 𝛽̇, 𝜃𝐿 ,  𝜃̇𝐿,𝜃𝑅, 𝜃̇𝑅) to five (𝑥𝑐, 𝑥̇𝑐 , 𝜃, 𝜃̇, 𝑁).  The two 
second order differential equations and one algebraic equation 
used to solve for the five dependent variables are: 

2 ∗ 𝑁𝑐𝑜𝑠𝜑 − 2 ∗ 𝐹1𝑠𝑖𝑛𝜙 − 2 ∗ 𝐹2𝑠𝑖𝑛𝜑
= (𝑚𝑐𝑐 + 2 ∗ 𝑚𝐻𝐷) ∗ 𝑥̈𝑐 

(49) 
𝑟 ∗ (−𝑁𝑠𝑖𝑛𝜑 − 𝐹1𝑐𝑜𝑠𝜙 − 𝐹2𝑐𝑜𝑠𝜑) + 𝜏𝑚𝑜𝑡𝑜𝑟,,𝑥 = 𝐼𝐻𝐷,𝑥 ∙ 𝜃̈ 

(50) 
𝑟[−2 ∗ 𝑁 cos 𝜑 + 2 ∗ 𝐹1𝑠𝑖𝑛𝜙 + 2 ∗ 𝐹2𝑠𝑖𝑛𝜑] =  0 

(51) 
Equations 49, 50, and 51 are derived using Equations 15, 47, and 
33, respectively, using the following notations: 𝐹𝐿1 = 𝐹𝑅1 = 𝐹1; 
𝐹𝐿2 = 𝐹𝑅2 = 𝐹2; and 𝜙𝐿 = 𝜙𝑅 = 𝜙 in addition to the 
simplifications listed previously.  

For a system in steady state motion, the net force and net 
torque acting on the system are equal to zero. Consequently, if 
said system has constant mass (such as the MAARCO rover), the 
linear and angular accelerations are equal to zero. Thus, for the 
MAARCO rover moving in a straight line in steady state, 𝑥̈𝑐 = 0 
and 𝜃̈ = 0. This means the linear velocity of the system 𝑥̇𝑐 and 
the angular velocities of both helical drives 𝜃̇ remain constant 
and 𝑥𝑐 and 𝜃 can be calculated by simply integrating 𝑥̇𝑐 and 𝜃̇, 
respectively, over time. After implementing 𝑥̈𝑐 = 0 and 𝜃̈ = 0, 
Equations 49 and 51 are now equivalent and Equations 49 and 
50 are algebraic equations (instead of second order differential 
equations). The normal/propulsive exerted by the surrounding 
substrate on the helical drives (𝑁) can be calculated using 
Equation 49 (or Equation 51). Similarly, the driving torque 
(𝜏𝑚𝑜𝑡𝑜𝑟,,𝑥) required to maintain steady state motion along a 
straight line can be calculated using Equation 50 and the value 
of 𝑁. 

2.7 Holonomic Constraint 
The motion of MAARCO, a helical drives-based rover, 

while moving in a straight line is constrained ‘holonomically’ if 
the surrounding substrate does not fail under the shear stresses 
exerted by the helical drives. The motion of each helical drive 
resembles that of a “bolt through a threaded hole”. In such a 
scenario, the linear displacement of the center of mass of the 
rover, 𝑥𝑐, and the number of rotations of the helical drives, 𝑛, are 
related by the following expression: 

𝑥𝑐 = 𝑃 ∙ 𝑛    (52) 
where, 𝑃 is the pitch of the helical drives. The holonomic 
constraint shown in Equation 52 is used to eliminate a degree of 
freedom – 𝑥𝑐, in the dynamic model and the system of equations 

derived previously (Equations 49, 50, 51) is used to solve for the 
other dependent variables – namely, 𝑁 and 𝜃. However, if the 
substate fails under the stresses exerted by the helical drive, then 
the above holonomic constraint does not apply, and the linear 
displacement of the rover is less than 𝑃 ∗ 𝑛. The analysis of the 
locomotion dynamics of MAARCO when the substrate fails is 
out of the scope of this paper. However, the holonomically 
constrained locomotion of the rover, i.e., when 𝑥𝑐 = 𝑃 ∙ 𝑛 is 
valid, represents the best-case scenario and hence the most 
optimal operating condition in that the rover achieves maximum 
linear displacement of distance (𝑃) per rotation, and hence 
warrants a detailed study of the conditions enabling such motion. 

Additionally, when the holonomic constraint is active, 
the expression for the angle 𝜙 simplifies to 𝜙 =

𝑃

𝑟
= 𝜑. This is 

because the linear velocity of the rover and thereby the helical 
drives can be derived using Equation 52 and is equal to 
‖𝑣⃑𝐿 𝑜𝑟 𝑅‖ = 𝑃 ∙ 𝜔.  

2.8 Substrate Failure Check 
In this section, we present the analysis for checking if the 

substrate fails under stresses exerted by the helical drives on the 
surrounding substrate. The forces acting on the substrate element 
located between two helical drives include: 

1. Normal force due to rover weight (𝑁⃑⃑⃑𝑔) – exerted by 
ballast  

2. Normal/propulsive force that results in forward motion 
of rover (𝑁⃑⃑⃑𝐿, 𝑁⃑⃑⃑𝑅, or 𝑁⃑⃑⃑) – exerted by blades 

3. Normal force due to stationary substrate wall (𝑁⃑⃑⃑𝑤) – 
exerted by substrate wall 

4. Friction force due to rover weight 𝑁⃑⃑⃑𝑔 (𝐹𝐿1
⃑⃑ ⃑⃑ ⃑⃑  , 𝐹𝑅1

⃑⃑ ⃑⃑ ⃑⃑ ⃑, or 𝐹1
⃑⃑ ⃑⃑ )  

– exerted by ballast 
5. Friction force due to 𝑁⃑⃑⃑ (𝐹𝐿2

⃑⃑ ⃑⃑ ⃑⃑  , 𝐹𝑅2
⃑⃑ ⃑⃑ ⃑⃑ ⃑, or 𝐹2

⃑⃑ ⃑⃑ ) – exerted by 
blades 

6. Friction force due to substrate wall (𝐹⃑𝑤) – exerted by 
substrate wall 

The friction forces due to substrate wall are also assumed to be 
kinetic friction forces are of the form 𝐹⃑𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 =  𝜇𝑘 ∙ 𝐹⃑𝑁𝑜𝑟𝑚𝑎𝑙, 
where 𝐹⃑𝑁𝑜𝑟𝑚𝑎𝑙 is a function of the normal force due to the 
stationary wall  The normal force 𝑁⃑⃑⃑𝑤 depends on the weight of 
the rover and the weight of the soil element, and is derived using 
the expression: 

𝑁⃑⃑⃑𝑤 = (0.5 ∗ (𝑚𝑐𝑐 + 2 ∗ 𝑚𝐻𝐷) + 𝑚𝑠𝑢𝑏)𝑔 𝑘⃑⃑𝑜ത (53) 
 
where, 𝑚𝑠𝑢𝑏 is the mass of the substrate element. The normal 
and shear stresses exerted by the forces are calculated using 
𝜎 (𝑜𝑟 𝜏) =

𝐹

𝐴
, where 𝜎 is the normal stress, 𝜏 is the shear stress, 

𝐹 is the normal or friction force, and 𝐴 is the substrate element 
surface area that the stress is exerted upon. Fig. 6 shows a 
schematic of the stresses exerted by the right helical drive on the 
substrate element. The stresses are assumed to act on the centroid 
of their respective surfaces. The area of each face and the mass 
of substrate element depend on the sinkage of the helical drives. 
In this analysis, the helical drive sinkage is assumed to be 

7 Copyright © 2023 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/IM

EC
E/proceedings-pdf/IM

EC
E2023/87639/V006T07A004/7239142/v006t07a004-im

ece2023-111018.pdf by N
C

 State U
niversity Libraries user on 30 August 2024



 

constant. The normal compressive stresses acting on the top and 
bottom faces are assumed to be the average of the normal stresses 
due to the normal forces 𝑁⃑⃑⃑𝑔 and  𝑁⃑⃑⃑𝑤. Because the substrate 
element is in equilibrium, the shear stress due to 𝐹1 acting on the 
top face and the shear stress due to 𝐹𝑤 acting on the bottom of 
fac are assumed to be equal in magnitude and opposite in 
direction. Using the frame of reference shown in Fig. 6, the stress 
tensor for an infinitesimally small cube-shaped element located 
inside the annulus shaped substrate element can be populated 
using the following expressions: 

𝜎𝑥 = −𝜎𝑅     (54) 
𝜎𝑦 = 0   (55) 

𝜎𝑧 = −
𝜎𝑔+𝜎𝑤

2
= −𝜎𝑔+𝑤  (56) 

𝜏𝑥𝑦 = 0   (57) 
𝜏𝑦𝑧 = 𝜏𝑅2   (58) 

𝜏𝑧𝑥 =
𝜏𝑅1+𝜏𝑤

2
= 𝜏𝑅1+𝑤   (59) 

Populating the stress tensor using the above expressions gives us 
𝑆𝑖𝑗  a symmetric matrix: 

𝑆𝑖𝑗 =  [

𝜎𝑥 𝜏𝑥𝑦 𝜏𝑧𝑥

𝜏𝑥𝑦 𝜎𝑦 𝜏𝑦𝑧

𝜏𝑧𝑥 𝜏𝑦𝑧 𝜎𝑧

] =  [

−𝜎𝑅 0 𝜏𝑅1+𝑤

0 0 𝜏𝑅2

𝜏𝑅1+𝑤 𝜏𝑅2 −𝜎𝑔+𝑤

]   (60) 

The eigen values of 𝑆𝑖𝑗  represent the principal stresses 
(𝜎1, 𝜎2, 𝜎3) acting on the substrate element. Because 𝑆𝑖𝑗  is a real 
symmetric matrix, its eigen values will be real numbers [11]. The 
maximum shear and normal stresses acting on the substrate 
element are calculated using the principal stresses as follows: 
 

𝜎1, 𝜎2, 𝜎3 = 𝑒𝑖𝑔𝑒𝑛(𝑆𝑖𝑗)  (61) 
 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑁𝑜𝑟𝑚𝑎𝑙 𝑆𝑡𝑟𝑒𝑠𝑠 = 𝜎𝑚𝑎𝑥 = max (𝜎1, 𝜎2, 𝜎3) 
(62) 

 
𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑁𝑜𝑟𝑚𝑎𝑙 𝑆𝑡𝑟𝑒𝑠𝑠 = 𝜎𝑚𝑖𝑛 = min (𝜎1, 𝜎2, 𝜎3) 

(63) 
 
𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑆ℎ𝑒𝑎𝑟 𝑆𝑡𝑟𝑒𝑠𝑠 = 𝜏𝑚𝑎𝑥 = ±

𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛

2
 

(64) 
Here, if the maximum shear stress (𝜏𝑚𝑎𝑥) acting on the substrate 
element is greater than or equal to the shear strength of the 
substrate material (𝜏𝑠𝑢𝑏), i.e., 𝜏𝑚𝑎𝑥 ≥ 𝜏𝑠𝑢𝑏 , then the substrate 
element fails and the holonomic constraint in Equation 38 is 
invalid. However, if the 𝜏𝑚𝑎𝑥 < 𝜏𝑠𝑢𝑏 , then the material does not 
fail, and the constraint is valid. The shear strength of the 
substrate is calculated using the Mohr-Coulomb criterion: 

𝜏𝑠𝑢𝑏 = 𝑐 + 𝜎𝑚𝑎𝑥,𝑠ℎ𝑒𝑎𝑟 ∗ tan 𝜙𝐹  (65) 
where, 𝑐 and 𝜙𝐹 are the apparent cohesion and internal shearing 
resistance of the substrate. These are substrate properties that are 
determined experimentally. 𝜎𝑚𝑎𝑥,𝑠ℎ𝑒𝑎𝑟  is the normal stress 
acting on the surface of maximum shear stress, and is calculated 
using the principal stresses as follows: 

𝑁𝑜𝑟𝑚𝑎𝑙 𝑆𝑡𝑟𝑒𝑠𝑠 𝑎𝑡 𝑀𝑎𝑥 𝑆ℎ𝑒𝑎𝑟 = 𝜎𝑚𝑎𝑥,𝑠ℎ𝑒𝑎𝑟 =
𝜎𝑚𝑎𝑥 + 𝜎𝑚𝑖𝑛

2
 

(66) 
 

3. RESULTS AND DISCUSSION 
The dynamic model and substrate failure analysis performed 

in the previous sections can be used to derive a design of the 
MAARCO that results in 𝑥 = 𝑃 ∙ 𝑛 motion while moving in a 
straight line in different types of substrates. The conditions for 
substrate failure depend only on the bulk properties of the 
substrate and dimensions and weight of the rover, while moving 
in a straight line in steady state.  

As shown in Section 2.8, the conditions for substrate failure 
depend on the normal and shear stresses exerted by the rover, 
which in turn depend on the design of the helical drives, the 
weight of the rover, and the substrate density.  The ballast 
diameter and blade height of the helical drives determine the 
surface area on which the various forces act as well as the amount 
of substrate present between two blades. Similarly, the overall 
weight of the rover, which consists of the central console 
representing the payload and the pair of helical drives, affects the 
normal and friction forces acting on the substrate. Hence, in this 
study, we determine the maximum possible payload (𝑚𝑐𝑐,𝑚𝑎𝑥) 
that the rover can carry without failing the surrounding substrate 
as a function of the ballast diameter and blade height of the 
helical drives. This analysis is performed on four different 
substrates – dry sand, sandy loam, clayey soil, and snow, and the 
results are shown in Fig. 7-10, respectively. The data points 
shown in the four plots represent the maximum payload total 
masses for a set of ballast diameter, blade height, and substrate 
beyond which the substrate will fail under the loads exerted by 
the rover. The bulk properties of these substrates are shown in 
Table 1, while the rover properties that are kept constant 
throughout the analysis are shown in Table 2. The ballast 
diameter and blade height values used in this analysis were 
multiples of ballast diameter and blade height of helical drives 
used in a prototype designed and tested by the authors. The 
values of the baseline ballast diameter and blade height are 0.048 
m and 0.009 m respectively. The mass of helical drives is 
assumed to be constant across the range of ballast diameters and 
blade heights. Additionally, the friction coefficients between the 
helical drives and all four substrates are assumed to be the same 
(as experiment and measurement of friction coefficients for all 
substrate is beyond the scope of this paper). 

 
3.1 Effect of Ballast Diameter  

The maximum payload increases with an increase in ballast 
diameter. This trend remains consistent throughout the four 
substrates under consideration. For a fixed sinkage, as the ballast 
diameter increases, the area of the ballast in contact with the 
substrate increases and therefore the normal and shear stresses 
exerted by the central cylinder (ballast) decrease. However, the 
reduction in stresses is not significant as the maximum payload 
that the substrate can withstand without failing only increases 
marginally. For example, in the case of dry sand, for a six-fold 
increase in ballast diameter, the maximum payload increases by 
only 3.9 kg for a fixed blade height of 0.5 times the baseline 
blade height. 
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3.2 Effect of Blade Height 
The maximum payload increases with an increase in blade height 
for all four substrates. However, compared to the ballast 
diameter, the increase is significantly higher. For example, in the 
case of dry sand, a six-fold increase in blade height results in an 
increase of 70.64 kg for a fixed ballast diameter corresponding 
to the 0.5 multiple case (brief explanation of how plots suggest 
so). This phenomenon can be explained as follows: a heavier 
payload results in a heavier rover which requires a greater 
amount of propulsive (𝑁) to achieve and maintain 𝑥 = 𝑃 ∙ 𝑛 
motion. A higher blade height results in a higher blade surface 
area for the 𝑁 and the friction force due to N, thereby resulting 
in lower normal and shear stresses exerted by the blades on the 
substrate element. Because the blade height directly affects the 
stresses resulting from 𝑁, it has a more prominent impact on the 
maximum payload. 
3.3 Effect of 𝒄 and 𝝓 

The apparent cohesion (𝑐) and angle of internal shearing 
resistance (𝜙) have a significant effect on the maximum payload. 
Substrates with a higher value of 𝑐 and/or 𝜙 result in a higher 
maximum payload. For example, sandy loam has a higher 
apparent cohesion (more than twice) compared to clayey soil, 
and therefore can sustain significantly higher maximum 
payloads without failure. Similarly, dry sand has a higher angle 
of internal shearing resistance than snow resulting in higher 
maximum payloads.  

Table 1. Substrate Properties 

 

3.4 Effect of 𝝆 
The density (𝜌) of the substrate affects the mass of the 

substrate element between two blades, which in turn affects the 
normal (or compressive) stress exerted by the stationary 
substrate wall on the element. A comparison of the plots of dry 
sand and snow shows that the density of substrate has an 
insignificant effect on the maximum payload. The density of dry 
sand is about 13 times that of snow, however, the maximum 
payload values across the range of ballast diameters and blade 
height differ only marginally.  

Table 2. Rover and Substrate Parameters 

 

FIGURE 8: DISTRIBUTION OF MAXIMUM ROVER PAYLOAD 
AS A FUNCTION OF BALLAST DIAMETER AND BLADE 
HEIGHT WHILE MOVING ON SANDY LOAM 

  𝑐 (kPa) 𝜙 (deg) 𝜌 (kg/m3) 
Dry Sand 1.04 28 1638.3 

Sandy Loam 5.17 11 1550 
Clayey Sand 2.07 10 1400 

Snow 1.03 19.7 125 

Property Description Value Unit 
𝑚𝐻𝐷 Mass of HD 2.25 kg 
𝑙𝐻𝐷 Length of HD 0.319 m 
𝑃 Pitch Length of HD 0.0366 m 
𝜑 Pitch Angle of HD 10 deg 

𝐼𝐻𝐷  Moment of Inertia of HD 0.0012 kg.m2 
𝑠 Sinkage 0.0165 m 

𝜇𝑘1 Kinetic Friction Coefficient 
between HD and Substrate 

0.35 - 

𝜇𝑘2 Kinetic Friction Coefficient 
between Stationary and 

Moving Substrate 

0.2 - 

FIGURE 7: DISTRIBUTION OF MAXIMUM ROVER PAYLOAD 
AS A FUNCTION OF BALLAST DIAMETER AND BLADE 
HEIGHT WHILE MOVING ON DRY SAND 
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FIGURE 9: DISTRIBUTION OF MAXIMUM ROVER PAYLOAD 
AS A FUNCTION OF BALLAST DIAMETER AND BLADE 
HEIGHT WHILE MOVING ON CLAYEY SOIL 

 
FIGURE 10: DISTRIBUTION OF MAXIMUM ROVER 
PAYLOAD AS A FUNCTION OF BALLAST DIAMETER AND 
BLADE HEIGHT WHILE MOVING ON SNOW 

4. CONCLUSION 
A planar locomotion dynamics model of a multi-terrain and 
amphibious robot designed for exploring the heterogeneous 
landscape of the Arctic has been derived. Additionally, the 
conditions necessary to achieve optimal locomotion 
performance, i.e.,  𝑥𝑐 = 𝑃 ∙ 𝑛, while moving in a straight 
line have been derived. The dynamic model and substrate 
failure analysis have been used in unison to derive rover 
dimensions and weight resulting in 𝑥𝑐 = 𝑃 ∙ 𝑛 on different 
substrates. 

 

ACKNOWLEDGEMENTS 
The authors gratefully acknowledge funding for this 

research provided by the National Science Foundation under 
award "MAARCO – Multi-terrain Amphibious ARCtic 
ExplOrer”, award no. CMMI-2116216, which is managed by Dr. 
Alex Leonessa 
REFERENCES 
[1] Pedersen, Liam, Michael Wagner, Dimitrios Apostolopoulos, 
and W. R. Whittaker. "Autonomous robotic meteorite 
identification in Antarctica." In Proceedings 2001 ICRA. IEEE 
International Conference on Robotics and Automation (Cat. No. 
01CH37164), vol. 4, pp. 4158-4165. IEEE, 2001. 
[2] Akers, Eric L., Richard S. Stansbury, Torry L. Akins, and 
Arvin Agah. "Mobile robots for harsh environments: Lessons 
learned from field experiments." In 2006 World Automation 
Congress, pp. 1-6. IEEE, 2006. 
[3] Ray, Laura, Alexander Price, Alexander Streeter, Daniel 
Denton, and James H. Lever. "The design of a mobile robot for 
instrument network deployment in antarctica." In Proceedings of 
the 2005 IEEE International Conference on Robotics and 
Automation, pp. 2111-2116. IEEE, 2005. 
[4] Nagaoka, Kenji, Masatsugu Otsuki, Takashi Kubota, and 
Satoshi Tanaka. "Terramechanics-based propulsive 
characteristics of mobile robot driven by Archimedean screw 
mechanism on soft soil." In 2010 IEEE/RSJ International 
Conference on Intelligent Robots and Systems, pp. 4946-4951. 
IEEE, 2010. 
[5] Thoesen, Andrew, Teresa McBryan, and Hamidreza Marvi. 
"Helically-driven granular mobility and gravity-variant scaling 
relations." RSC advances 9, no. 22 (2019): 12572-12579. 
[6] He, Ding, and Li Long. "Design and analysis of a novel 
multifunctional screw-propelled vehicle." In 2017 IEEE 
International Conference on Unmanned Systems (ICUS), pp. 
324-330. IEEE, 2017. 
[7] Donohue, Brigid, Sumedh Beknalkar, Matthew Bryant, 
Andre Mazzoleni. “A Dynamic Model for Underwater 
Propulsion of an Amphibious Rover Developed From Kane’s 
Method” In Press. 
[8] Donohue, Brigid, Sumedh Beknalkar, Maria Aleman, 
Matthew Bryant, Andre Mazzoleni. “Modeling Underwater 
Propulsion of a Helical Drive Using Computational Fluid 
Dynamics for an Amphibious Rover” In Press. 
[9] Vadlamannati, Ashwin, Sumedh Beknalkar, Dustin Best, 
Matthew Bryant, Andre Mazzoleni. “Design, Prototyping and 
Experiments Using Small-Scale Helical Drive Rover for Multi-
Terrain Exploration” In Press. 
[10] Lynch, Ryan, Sumedh Beknalkar, Riley Bishop, Arin Crow, 
Brigid Donohue, Cristian Pacheco-Cay, Alaina Smith, Andre 
Mazzoleni, Matthew Bryant. “Design and Construction of a 
Terrestrial Testing Rig for Experimentation and Analysis of 
Multi-Terrain Screw-Propelled Vehicle Dynamics and 
Performance” In Press. 
[11] Clint, Maurice, and A. Jenning. "The evaluation of 
eigenvalues and eigenvectors of real symmetric matrices by 
simultaneous iteration." The Computer Journal 13, no. 1 (1970): 
76-80. 

10 Copyright © 2023 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/IM

EC
E/proceedings-pdf/IM

EC
E2023/87639/V006T07A004/7239142/v006t07a004-im

ece2023-111018.pdf by N
C

 State U
niversity Libraries user on 30 August 2024




