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ABSTRACT

The diverse and heterogeneous terrains in the Arctic,
consisting of snow, melting ice, permafrost, ice-covered lakes,
sea ice and open ocean, pose serious challenges to locomotion
and autonomous navigation capabilities of rovers deployed in
the region for data collection and experimentation. The Multi-
terrain Amphibious ARCtic explOrer or MAARCO rover is a
proposed screw-propelled vehicle that uses helical drives
(similar to Archimedes’ screws) to move seamlessly across the
diverse terrains in the Arctic. The motion of a pair of helical
drives operating in soft or fluid terrain is dictated by the
response of the surrounding substrate to the stresses exerted by
the rotating helical drives. If the substrate under the rover does
not fail when it is moving in a straight line, the linear
displacement of the rover (x) and the number of rotations of the
helical drives (n) are related through x = P - n, where P is the
pitch length of the helical drives. However, when the substrate
fails, the linear displacement of the rover is less than P - n, i.e.,
x <P-n Thus, “x =P -n” motion represents the optimal
mode of operation for the rover when moving in a straight line.
This paper represents the first ever attempt, to the best of
author s knowledge, to derive the conditions necessary for the
application of the holonomic constraint x =P n to the
dynamics of a helical drives-based rover.

Keywords: planar locomotion dynamics, holonomic
constraint, substrate failure check, multi-terrain, amphibious,
helical drives, screw-propelled vehicle, Archimedes’ screw,
Arctic exploration

1. INTRODUCTION

Global warming has resulted in vast tracts of polar ice
melting away leading to rising water levels and ever-changing
weather patterns. The need to study the effects of global warming

in the polar regions has led to the development of autonomous
robots that can operate in areas that are inaccessible and
dangerous to humans [1]-[3]. However, most robots developed
so far have been deployed in areas of flat and mostly uniform
terrain like the central plateau of the Antarctic continent. The
diverse and heterogeneous terrains in the Arctic, consisting of
snow, melting ice, permafrost, ice-covered lakes, sea ice and
open ocean, pose serious challenges to locomotion and
autonomous navigation capabilities that are not met by any
current rover technology. A robot deployed in the Arctic must be
highly adaptable to the diverse terrain conditions and must
possess the ability to traverse both on land and under water.

This paper presents the study of terrestrial locomotion
dynamics of a proposed multi-terrain and amphibious rover
capable of moving seamlessly across the diverse terrains in the
Arctic. The proposed rover — MAARCO (Multi-terrain
Amphibious ARCtic explOrer) employs a propulsion system that
consists of a pair of helical drives or Archimedes’ screws. Helical
drives are screw-like rotating central cylinders with helical
blades. In snow, mud, and melting ice, the helical blades push
the surface medium backward and produce propulsion. On water,
the hollow central cylinders offer buoyancy that enables the
vehicle to stay afloat while the rotating blades produce thrust.
Conversely, the central cylinders can be flooded with water as
ballast to make the vehicle neutrally buoyant for underwater
operation, with thrust provided via the rotating blades. The
variable buoyancy and combination of ground, ice, and water
locomotion capabilities enable the MAARCO rover to traverse
the heterogeneous landscape in the Arctic both on land and under
water.

While helical drives have been demonstrated as
propulsion mechanisms in manned vehicles for various
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FIGURE 1: SCHEMATIC THE MAARCO AND ITS
COMPONENTS
purposes, limited understanding of the dynamics of the helical
drives, at the time, resulted in heavy and inefficient designs with
low maximum speeds and high-power requirements. The advent
of modern computational tools has led to a resurgence of
attempts to analyze the terrestrial locomotion characteristics of
helical drives in recent years [4-10]. Terrestrial locomotion of
helical drives represents an involved dynamics problem that
includes complex interaction between the surrounding substrate
and helical drives. The motion of helical drives is dictated by
how the surrounding substrate ‘behaves’ under the stresses
exerted by the rotating helical drives. Whether the substrate fails
or stays intact under the stresses exerted by the helical drive
determines the locomotion of a helical drive propulsion system.
Specifically, the velocity of the point of contact of the blade with
the surface medium in a direction perpendicular to the face of the
blade is either zero or non-zero depending on the whether
substrate between the blades failing or not. When the rover is
moving in a straight line (counter-rotating helical drives acted
upon by the equal amounts of torque) without failing the
substrate, the velocity constraint can be simplified to x =P - n
orx = P - 0/2m, where x is the linear displacement of the center
of mass of the rover, and P, n, and 8 are the pitch length, number
of rotations, and angular displacement of the helical drives,
respectively. Thus, the motion of the rover resembles that of a
“bolt through a threaded hole” while moving in a straight line
when the surrounding substrate does not fail. The holonomic
constraint x = P-n if valid can then be applied to the
locomotion dynamics model of a helical drives-based rover to
eliminate a degree of freedom or dependent variable. However,
when the substrate fails, the linear displacement of helical drive
is less than P - n, i.e., x < P -n This paper represents the first
ever attempt, to the best of author’s knowledge, to derive the
conditions necessary for the application of the holonomic
constraint to the dynamics of a helical drives-based rover or a
screw-propelled vehicle.

The rest of the paper is organized as follows: In Section
2, first, we derive a simplified planar model of the locomotion of
dynamics of the MAARCO rover. Second, we focus on rover
dynamics involved in moving in a straight line, particularly, the
holonomic constraint that is applied to the dynamic model when
the substrate does not fail. Then, we derive the conditions

necessary for substrate failure under the stresses exerted by the
helical drives. In Section 3, we discuss the results of the
simulation of the MAARCO rover moving along a straight line
and check for the substrate failure criterion.

2. METHODS and MODELING
2.1 System Description

Fig. 1 shows a schematic of the proposed MAARCO rover.
The rover consists of a pair of helical drives, a central console,
and a chassis which consists of a chassis bracket and four chassis
legs. The central console carries the payload that includes
sensors, control and communications electronics, batteries,
and/or solar panels, and sample collectors. The chassis legs can
be raised or lowered relative to the central console to change the
ground clearance and location of the rover center of mass. The
helical drives may be partially or fully submerged into the
surrounding medium depending on the surface and bulk
characteristics of the medium and the overall weight and design
of the rover. The torques acting on the helical drives control the
angular accelerations of the helical drives. Using a differential
steering system, the vehicle is able to track different paths such
as moving along a straight line, turning left, and turning right.
The relative angular displacement of the helical drives
determines the direction of motion and orientation of the rover.

2.2 System Dynamics

In this work, a planar or two-dimensional model of the
terrestrial locomotion dynamics of MAARCO has been
considered; in that the rover is assumed to be moving in the X-Y
plane (Fig. 2). The two helical drives are in contact with the
ground, and it is assumed that all the external forces exerted by
the surrounding substrate act through a single point on the
surface of the helical drive. In dynamically modeling the system,
a multi-body system with 3 bodies — one central console and two
helical drives, is considered. The model assumes that the chassis
legs have small enough inertia so as to have a negligible impact
on the overall dynamics of the rover. Multi-body dynamic

FIGURE 2: SCHEMATIC OF THE PLANAR MODEL OF
MAARCO ALONG WITH the INERTIAL REFERENCE FRAME
(IRF), 0, AND BODY FRAME, C
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systems, such as the MAARCO rover, have been modeled using
various analytical techniques such as the Newton-Euler method
and the Lagrange’s Equations. In this work, the Newton-Euler
approach has been used to derive the equations of motion of the
system. The system has three degrees of freedom — X and Y
coordinates of the rover center of mass and the orientation of the
rover body axis (located at the center of mass) with respect to the
inertial reference frame. The analytical governing equations of
motion obtained using the Newton-Euler approach are integrated
numerically to derive the time response of the system.

2.3 Definition of Frames

The first step in developing a dynamic model of a system is
the definition of the frames used in the analysis. The frames used
in this derivation are defined using their respective origins, unit
vectors, and, for the body frames, the body that they are
embedded in. As shown in Fig. 2, the frame O with O at its origin
is the arbitrarily located inertial reference frame (IRF). The unit
vectors 1 and J; lie in the plane of the page with Ea coming out
of the page. The body frame € with unit vectors i, J,, ks has its
origin at point C which is the center of mass of the rover (CM =
C, where CM is the center of the mass of the rover). Frame C is
derived through a rotation about Ea = EC axis by an angle of
B = B(t). The center of masses of the left and right helical drives
are located at points HL and HR, respectively. The frames that
rotate along with the helical drives are shown in Fig. 3. The
frames located at points HL and HR are obtained through the
clockwise and counterclockwise rotation about the 7, axis at
angles of 8; and 0y respectively, where 8, and 8 are angular
positions of the left and right helical drives. Points Lg, and Ry,
are arbitrary points located on the surface of the left and right
helical drives that rotate along with the rotating helical drives.
Points L and R are derived using points Lg, and Rg, such that
6, = 0 and 6y = 0, respectively. Points L, and R are located at
adistance of r from HL and HR, respectively, where r represents
the effective radius of the helical drives. The forces acting on the
helical drives are assumed to act through points L and R. Another
set of frames are required to define the forces acting normal and
tangential to the helical drive blades. As shown in Fig. 4, these
frames are derived through a fixed angle rotation of —¢ and ¢
about the EC for the left and right helical drives respectively. It is
important to note that the helical blades depicted in all the figures
are on the bottom/lower half of the helical drives and are in
contact with the surrounding substrate.

2.4 Forces acting on Helical Drives
1. Force acting normal to the ground (NT,)

This normal force is exerted by the ground on the rover and acts
in a direction perpendicular to the surface. The ground is
assumed to be flat and uniform and lies in the X —Y plane.
Hence, N—g acts along Ea (or E(;), ie.,

Ny = Ngks = Ngk, 1)
where, N, is the magnitude of the normal force.

..Ef—i‘ ' - HR
e - HL e
jc LGL $ JC

k—m, |L E RI Or
L 1

FIGURE 3: FRAMES HL AND HR ROTATE ALONG WITH THE
LEFT AND RIGHT HELICAL DRIVES, RESPECTIVELY

kHR

2. Friction force due to I—V; (m or m)

This force acts on the central cylinder or ballast of the helical
drive opposing the linear motion of the point L or R on the helical
drive. The motion of L and R on the respective helical drive is a
combination of the motions due to the rotating ballast and the
forward moving rover. When the rover moves forward (along 1;),
the left (or right) helical drive rotates about 1, (or —i,) and
translates linearly along 1, (or t.). The friction force acts in a
direction opposite to the angle ¢, ,, g relative to j, (or —J;)
where tan (¢, . ) is equal to the ratio of the linear speed of the
rover and the rotational speed of the ballast, as shown in Fig. 5
for left helical drive..

3. Force acting normal to the helical blades (FLor NTQ
This propulsive force acts normal to the helical blades on the left
(along 1;) and right (along 1) helical drives. It is a reaction force
exerted by the surrounding substrate on the helical drive that
results in forward motion. The magnitude of this force depends
on the bulk properties of the surrounding substrate and the
dimensions and motion of the drives.

4. Friction force due to normal (or propulsive) force NZor

N (F5 or Fry) .
Like the friction force due to Ny, this force opposes the linear
motion of the point L or R on the helical drive. It acts in the same
direction as the friction force due to Fg (as shown in Fig. 5),
except that it acts on the helical blades (instead of the ballast).
However, in the simplified model discussed in this paper, both
sets of friction forces are assumed to act through points L and R.

It is important to note that the friction forces are kinetic
friction forces of the form: Fj = u - Fpprmai, Where Fy is the
magnitude of kinetic friction, p is the coefficient of kinetic
friction, and F,;-mq; 1S the normal force.

2.5 Deriving the Equations of Motion

Using the Newton-Euler approach, the equations of motion
for the system are derived to solve for the degrees of freedom —
the position of center of mass and the orientation of the rover in
the X — Y plane. First, we start by defining the position vector of
the center of mass of the rover or point C with respect to point O
in the IRF.

FC/O = xcfo +ycjo (2)
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FIGURE 4: FRAMES L AND R ARE USED TO DEFINE
FORCES ACTING NORMAL AND TANGENTIAL TO THE
BLADES (THE BLADES SHOWN HERE ARE LOCATED ON
BOTTOM HALF OF THE HELICAL DRIVES OR THE PART OF
THE HELICAL DRIVES THAT IS IN CONTACT WITH THE
SUSBTRATE)

Similarly, the velocity and acceleration vectors of point C in the
IRF  are 056‘/0 = xc?o + ycjo and OaC/O = Xcio +j}cjoa
respectively. The direction cosine matrix between the IRF (0)
and body frame C is:

cosff sinff 0
Cl[c]0 = [— sinf cosf 0] (3)
0 0 1

Where, S is the angle of rotation between the IRF (0) and body

frame C about the anxis. Thus, the acceleration of point C
(@¢/p ), in the body frame will be:

{E&C/o }E = (¥, cos B + J. sin )i, + (—%.sin B +
Je cos B)]c “)

FIGURE 5: FRICTION FORCE DUE N—g ACTING ON THE LEFT
HELICAL DRIVE

Now, let’s consider the external forces acting on the rover

system. The expression for I_V; is shown in Equation (1). The

friction force due to Fgacting on the ballast of left and right
helical drives is derived as:
E = Fii(=sing, i — cos¢, J.) (%)
Fry = Fre(—singg i + cosg J.) (6)

The force acting normal to the blades on the left and right helical
drive is derived as:
&Z Nt = Ny(cosp 1. — sing j.) (7
Ng = Ngig = Ng(coso i, + sing j.) ®)
Similarly, the friction force acting on the blades on the left and
right helical drives is derived as:

E = Fiojy, = Fra(—sing i, — cose J.) )]

Fra = FraJy = Fpo(=sing ic + cosg ) (10)
Additionally, the weight of rover F is:

Fg; = _mrovergk6 (11)

where, g is acceleration due to gravity and m,,., is the total
mass of the rover, which consists of the mass of the central
console (m,.) and the masses of two helical drives (2 * myp),
where my,, is the mass of each helical drive. Therefore,
Myover=(Mee + 2 * Myp) (12)
Combining all the external forces, we get:
{Fext}z = Np+ Np + Fpy + Fgy + Fip + Fpp + Ny + Fy
(13)
{Fext}E = [N,cos@ + Ngcosg — F, sing, — FrySingg
— F,sing — Fp,sing|is
+ [—N, sing + Ng sing — F, cos¢,,
+ Fgicospg — Frycos@ + Frpcos@lj,
+ [N, + ks

(14)

Using Newton’s second law of motion equation for the rover

system {Fext z = Myover {Odc /0 }_, and  comparing
c

coefficients of I, J., and k,we get:
For 1,

Nycosp + Ngrcosp — Fising; — FgriSingg — Fi,sing —
Frysing = (mg, + 2 * myp) * (. cos B + . sinB) (15)

For J,
—N,sing + Ngsing — F;icos¢p; + Fpcos¢pp —
Fioco5¢ + Fpocosp = (Mg + 2 * myp) * (=X, sinf +
. cos B) (16)

For EC,
Ng = —F; = Myoperg = (Mee +2xmyp)g (17

Equation 17 shows that the magnitude of the normal force (Ng)
is equal to the weight of the rover. The normal force supports the
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FIGURE 6: (FROM LEFT TO RIGHT) 1. FORCES ACTING ON ANNULAR SUBSTRATE ELEMENT LOCATED BETWEEN TWO BLADES,
(2) STRESSES ACTING ON ANNULAR SUBSTRATE ELEMENT, (3) STRESSES ACTING ON CUBE-SHAPED SUBSTRATE ELEMENT

weight of the rover equally through points L and R. So, the
friction forces due to NT, acting on the ballast of left and right
helical drives can be expressed as:

& = 0.5 Myoper g i1 (—Sing,, 1o — cos, jc) (18)
Fry = 0.5 Mygper g i1 (—sing, 1c + cosdy J.) (19)
where, py, is the kinetic friction between the substrate and
helical drives.
Similarly, the friction forces acting on the helical blades on the
left and right helical drives can be expressed as:
Fiz = taN,(~sing 1, — cospJ,) (20)
Fry = praNp(—sing i¢ + cosg J.) (21)
Now, let’s calculate the external torques acting on the
system, or specifically the torques exerted by the external forces
listed in Equations 1, and 5 through 10. To calculate the external
torques, the position vectors of L and R with respect to point C
are derived:
Tue = We =T ke (22)
Tric = —Wje —Tke (23)
where, w is the distance between the center of masses of the
rover and the individual helical drives and r is the effective
radius of the helical drives. So, the external torques acting on the
rover system about its center of mass is:
(Tesys) = Trsc X (Ny+ Fry +Fp + 055 N,)

+7rjc X (Ng + Fpy + Frp + 0.5 % N,)
(24)

(Tesys) yy, = [(0.5WNg) = (0.5WN,) — (rFpycos(L))
+ (rFricos(¢r)) — (rFicos(@))
+ (rFgycos(¥)) — (rNysin(y))
+ (rNgsin(@))]iz + r[—(N,, cos(¥))
— (Ngcos(¥)) + (FL15in(¢L))
+ (FR15m(¢R)) + (Frsin(y))
+ (Frzsin(@)))je + w[—(N, cos())
+ (Ng cos(¥)) + (FL15in(¢L))
— (Frasin(@g)) + (Fizsin(y))
— (Frasin()]ke
(25)

The external torque acting on a system about an arbitrary point
A ((fA'SyS)ext) is related to the change in angular momentum of

the system about point 4 as follows:
Oy /- _ _
(TA,sys)ext = E(ghA,sys) + Va0 X Msys Vemjo
(26)
where, CM is the center of mass of the system. For the rover
system under consideration A = C and CM = C. So, the second
term %0,,0 X Mgy “Vemjo = Vejo X Mgys “Ve o is equal to
0. Now, using the appropriate notations, we get:
- %4 (5
(Tc,sys)ext = @ (OhC,sys) (27)
Here, ghc_sys is the angular momentum of the system about point
C with respect to the IRF. Given that the location of the central
console and helical drives does not change with respect to the
center of mass and that the rover center of mass and point C are
one and the same, the angular momentum of the system can be
simplified to:

_ 8hC,sys = iC,sys -0wC (28)
where, ¢ 5,5 is the moment of inertia of the system about point
C and OwC is the angular velocity between the IRF and body
frame C. Given that frame C is derived through a rotation about

k; = k. axis at an angle of 5, we have:
0wC = fk; = Bks (29)
And,

So,

. °d (5
(TC,sys)ext = E(ghc,sys) =

= IC,sys,z B ke
€)Y
where, iC,sys,z is the moment of inertia of the system about EC—.
Now, comparing the coefficients of 7, ., and k. in Equation 25
and 31, we get:
For 1,

r[—Fic05(Py) + Fricos(Ppr) — Frpcos (@) + Frpcos()
— N, sin(i) + Ngsin(ip)] = 0
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(32)
For J,
T[—(Ny cos(y)) — (Ng cos(y)) + (FLISin(¢L))
+ (Frysin(@g)) + (Fyzsin(i))
+ (Fresin())] = 0
(33)
For EC,
w(—N,cos@ + Ngcosp + F, sing, — Fgisingg + F,sing
- FRZSin‘p) = IC,sys,k ) ﬁ
(34)
Now, let’s consider the motion of individual helical drives
and the torques acting on each helical drive. As mentioned
previously, the external forces act through points L and R. So,
first, the position vectors of L and R with respect to point HL and
HR are derived as follows:

FL/HL = —Trke (3%

FR/HR = —Tke (36)
The external torques acting on the left helical drive about point
HL are:

(Tuwp) ., = Ty/mL X (NT, +Fp, + E) + Tmotorut

ext R

T]oint forces,HL (37)
Similarly, external torques acting on the right helical drive about
point HR are:

('EHR,HD) = FR/HR X (I\TR + m + m) + Tmotor HR

ext R
+ T]oint forces,HR

(38)

Here, Trmotornr and Toror,yr are user inputs to the system and

represent driving torques exerted by the motors on the helical

drives that result in helical drive rotation and consequently

forward motion of the rover. ,Tjome rorces,ur & Tjomt forcesHR
are the torques due to the forces acting on the joints, exerted by
the chassis legs on the helical drives,.

While applying Equation 26 for the left and right helical
drives, we have A = HL, CM = HL, and A = HR, CM = HR,
respectively. So, for the left helical drive, Equation 26 simplifies
to:

04

(fHL,HD)ext = it (thL,HD) (39)
Similarly, for the right helical drive:
- %4 (5

(THR,HD)ext = (8hHR,HD) (40)

Here, 8hHL,HD and 8hHR,HD are the angular momentums of the
left and right helical drives about points HL and HR respectively
with respect to the IRF. Given that the helical drives are rigid
bodies and that their respective center of masses coincide with
HL and HR, the angular momentum of the left helical drive about
HL is:

8hHL,HD = iHL,HD -OwHL (41)
and the angular momentum of the right helical drive about HR
is:

thR,HD = THR,HD -OwHR (42)

where, | wr,pp and I wr.up are the moments of inertia tensor of the
left and right helical drives about their centers of mass
respectively whereas OwHL and OwHR are the angular velocity
between the IRF and body frames located at points HL and HR,
respectively. The angular velocity terms can be derived using the
following expressions:

O0®HL = 0wC + CoHL = Pk + 6,1; (43)

O@HR = 0&C + CoHR = Pk — Ogl- (44)
So, the torques due to rate of change of angular momentums for
both left and right helical drives are:

R 04 /= 5, . o
(THL.HD)M = %(8hm,m) = %(IHL_HD ' OwHL) =
iHL,HD ' (ﬁEE + HLTE) + (IHL,HD,JC - IHL,HD,Z)BéLjE

(45)
- 04 (5 04 ,- R
(THR,HD)ext = E(ohHR,HD) = E(IHR,HD -OwHR) =
Turup - Bk + 6,0 (lur v x — luranz) BOLJc
(46)

Now, comparing the coefficients of 1z, for Equations 39 and 45
(equations for left helical drives) we get:
r* (=Nysing — Fycos¢p,, — IfLZCOS(p) + TmotorHLx
= lupupx " 0L

(47)
and for Equations 40 and 46 (equations for right helical drives)
we get:

1% (Ngsing + Fric05¢g + Frycos@) + Tmotor HRx =
—luLupx " Or

(43)
It is important to note that the torque due to joint forces act
in such as a way to impose pitching and yawing motions on the
helical drives, and not rolling. They act through the axis of
rotation of the helical drives, i.e., Tz, and hence do not appear in
Equations 47 and 48.

The planar locomotion model of the MAARCO rover
discussed above has a total of fourteen dependent variables — x,,
Xer Ver Ver By B, 01, 61,0, Or, Ny, and Ng. Equations 15, 16, 34,
47, and 48 represent five second order different equations that
can be used to solve for the first ten variables (x., X;, ¥:, Ve, B,
B,0,, 6;,0z,6%), while Equations 32 and 33 can be used to solve
for Ny, and Ng.

2.6 Steady State Motion along a Straight Line

In this paper, we focus on a special case of planar motion,
i.e., steady state motion along a straight line, and the conditions
necessary for the application of the holonomic constraint relating
the linear and angular displacements (x and 8, respectively) of
the helical drives.

While moving along a straight line with no failure of
substrate, the degree of freedom of the system is reduced from
three (x., y,, and B) to one (x.). The rover is assumed to be
moving along the x-axis and therefore y, =0,y. =0, y. =0,
B =0, [5’ =0, and [5’ = 0. Since the rover uses a differential
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steering system, the angular displacements, velocities, and
accelerations of the left and right helical drives have to be equal
in magnitude while moving in a straight line, i.e., 6, = 6z = 0,
6, =6r =0, and §, = Gy = . This is possible only if the
external torques (applied by the motors) and normal forces
(exerted by the surrounding substrate) on the left and right helical
drives are equal in magnitude, i.e., Tryoror HLx =
Tmotor,x and NL - NR =N.

Following these simplifications, the number of dependent
variables in the dynamic model is reduced from twelve (x., X,
Yer Ver By B, 0L, 0,0z, 0r) to five (x., X, 6,6, N). The two
second order differential equations and one algebraic equation
used to solve for the five dependent variables are:

2 * Ncosp — 2 * Fysing — 2 * F,sing
= (mcc + 2% mHD) * J'C.c

Tmotor HR,x =

(49)
r % (—=Nsing — Fycos¢ — F,c05¢0) + Tmotor.x = Lupx * 0
(50
r[—2* Ncos@ + 2 * Fysing + 2 * F,sinp] = 0
(5D

Equations 49, 50, and 51 are derived using Equations 15, 47, and
33, respectively, using the following notations: F;; = Fgy = F;;
F,=Fg, =F,; and ¢, =¢r=¢ in addition to the
simplifications listed previously.

For a system in steady state motion, the net force and net
torque acting on the system are equal to zero. Consequently, if
said system has constant mass (such as the MAARCO rover), the
linear and angular accelerations are equal to zero. Thus, for the
MAARCO rover moving in a straight line in steady state, ¥, = 0
and 6 = 0. This means the linear velocity of the system %, and
the angular velocities of both helical drives # remain constant
and x, and 6 can be calculated by simply integrating %, and 6,
respectively, over time. After implementing ¥, = 0 and 6 = 0,
Equations 49 and 51 are now equivalent and Equations 49 and
50 are algebraic equations (instead of second order differential
equations). The normal/propulsive exerted by the surrounding
substrate on the helical drives (N) can be calculated using
Equation 49 (or Equation 51). Similarly, the driving torque
(Tmotor,x) Tequired to maintain steady state motion along a
straight line can be calculated using Equation 50 and the value
of N.

2.7 Holonomic Constraint

The motion of MAARCO, a helical drives-based rover,
while moving in a straight line is constrained ‘holonomically’ if
the surrounding substrate does not fail under the shear stresses
exerted by the helical drives. The motion of each helical drive
resembles that of a “bolt through a threaded hole”. In such a
scenario, the linear displacement of the center of mass of the
rover, x., and the number of rotations of the helical drives, n, are
related by the following expression:

X, =P-'n (52)
where, P is the pitch of the helical drives. The holonomic
constraint shown in Equation 52 is used to eliminate a degree of
freedom — x, in the dynamic model and the system of equations

derived previously (Equations 49, 50, 51) is used to solve for the
other dependent variables — namely, N and 8. However, if the
substate fails under the stresses exerted by the helical drive, then
the above holonomic constraint does not apply, and the linear
displacement of the rover is less than P * n. The analysis of the
locomotion dynamics of MAARCO when the substrate fails is
out of the scope of this paper. However, the holonomically
constrained locomotion of the rover, i.e., when x, =P 'n is
valid, represents the best-case scenario and hence the most
optimal operating condition in that the rover achieves maximum
linear displacement of distance (P) per rotation, and hence
warrants a detailed study of the conditions enabling such motion.

Additionally, when the holonomic constraint is active,

the expression for the angle ¢ simplifies to ¢ = g = ¢@. This is

because the linear velocity of the rover and thereby the helical
drives can be derived using Equation 52 and is equal to
1L orrll = P w.

2.8 Substrate Failure Check
In this section, we present the analysis for checking if the
substrate fails under stresses exerted by the helical drives on the
surrounding substrate. The forces acting on the substrate element
located between two helical drives include:
1.  Normal force due to rover weight (ﬁg) — exerted by
ballast
2. Normal/propulszve force that results in forward motion
of rover (NL, NR, or N) — exerted by blades

3. Normal force due to stationary substrate wall (IVW) -
exerted by substrate wall
4. Friction force due to rover weight ﬁg (ﬁ , m, or FT)
— exerted by ballast
5. Friction force due to N (FT£ , m, or Fj) — exerted by
blades
6. Friction force due to substrate wall (ﬁw) — exerted by
substrate wall
The friction forces due to substrate wall are also assumed to be
kinetic friction forces are of the form ﬁfriction = U ﬁzvormal,
where ﬁNormal is a function of the normal force due to the
stationary wall The normal force IVW depends on the weight of
the rover and the weight of the soil element, and is derived using
the expression:
va = (0.5 * (Mg + 2 xmyp) + M) g ks (53)

where, my,;, is the mass of the substrate element. The normal
and shear stresses exerted by the forces are calculated using

F . .
o(ort) = " where o is the normal stress, 7 is the shear stress,

F is the normal or friction force, and A is the substrate element
surface area that the stress is exerted upon. Fig. 6 shows a
schematic of the stresses exerted by the right helical drive on the
substrate element. The stresses are assumed to act on the centroid
of their respective surfaces. The area of each face and the mass
of substrate element depend on the sinkage of the helical drives.
In this analysis, the helical drive sinkage is assumed to be
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constant. The normal compressive stresses acting on the top and
bottom faces are assumed to be the average of the normal stresses
due to the normal forces ﬁg and IVW. Because the substrate
element is in equilibrium, the shear stress due to F; acting on the
top face and the shear stress due to F,, acting on the bottom of
fac are assumed to be equal in magnitude and opposite in
direction. Using the frame of reference shown in Fig. 6, the stress
tensor for an infinitesimally small cube-shaped element located
inside the annulus shaped substrate element can be populated
using the following expressions:

0, = —0p (54)
gy = 0 (55)
og+oy
0z = QT = —O0g+w (56)
Ty = (57)
Tyz = TR2 (58)
TR1+Tw
Tzx = e TR1+w (59

Populating the stress tensor using the above expressions gives us
S;j a symmetric matrix:

Ox  Txy Tgzx —Og 0 TR1+w
Sij = [Txy Oy Tyzl = I 0 0 TR2 (60)
Tzx Tyz Oz Tri+w TR2 ~Ogiw
The eigen values of §;; represent the principal stresses
(01, 02, 03) acting on the substrate element. Because §;; is a real
symmetric matrix, its eigen values will be real numbers [11]. The
maximum shear and normal stresses acting on the substrate

element are calculated using the principal stresses as follows:
04, 0,,03 = eigen(S;;) (61)

Maximum Normal Stress = 0,4, = max (04, 0,, 03)
(62)

Minimum Normal Stress = 0,,;; = min (0y, 0,,03)
(63)

Omax — Omin

Maximum Shear Stress = Tpq, = + 5

(64)
Here, if the maximum shear stress (7,4, ) acting on the substrate
element is greater than or equal to the shear strength of the
substrate material (Tgy,p), 1.€., Tmax = Tsup, then the substrate
element fails and the holonomic constraint in Equation 38 is
invalid. However, if the T,,4, < Tgyp, then the material does not
fail, and the constraint is valid. The shear strength of the
substrate is calculated using the Mohr-Coulomb criterion:

Tsup = C+ Omax,sheqr * tan Or (65)
where, ¢ and ¢ are the apparent cohesion and internal shearing
resistance of the substrate. These are substrate properties that are
determined experimentally. G4y sneqr 1S the mormal stress
acting on the surface of maximum shear stress, and is calculated
using the principal stresses as follows:

Omax + Omin

Normal Stress at Max Shear = 04y shear = >

(66)

3. RESULTS AND DISCUSSION

The dynamic model and substrate failure analysis performed
in the previous sections can be used to derive a design of the
MAARCO that results in x = P - n motion while moving in a
straight line in different types of substrates. The conditions for
substrate failure depend only on the bulk properties of the
substrate and dimensions and weight of the rover, while moving
in a straight line in steady state.

As shown in Section 2.8, the conditions for substrate failure
depend on the normal and shear stresses exerted by the rover,
which in turn depend on the design of the helical drives, the
weight of the rover, and the substrate density. The ballast
diameter and blade height of the helical drives determine the
surface area on which the various forces act as well as the amount
of substrate present between two blades. Similarly, the overall
weight of the rover, which consists of the central console
representing the payload and the pair of helical drives, affects the
normal and friction forces acting on the substrate. Hence, in this
study, we determine the maximum possible payload (M.cmax)
that the rover can carry without failing the surrounding substrate
as a function of the ballast diameter and blade height of the
helical drives. This analysis is performed on four different
substrates — dry sand, sandy loam, clayey soil, and snow, and the
results are shown in Fig. 7-10, respectively. The data points
shown in the four plots represent the maximum paylead total
masses for a set of ballast diameter, blade height, and substrate
beyond which the substrate will fail under the loads exerted by
the rover. The bulk properties of these substrates are shown in
Table 1, while the rover properties that are kept constant
throughout the analysis are shown in Table 2. The ballast
diameter and blade height values used in this analysis were
multiples of ballast diameter and blade height of helical drives
used in a prototype designed and tested by the authors. The
values of the baseline ballast diameter and blade height are 0.048
m and 0.009 m respectively. The mass of helical drives is
assumed to be constant across the range of ballast diameters and
blade heights. Additionally, the friction coefficients between the
helical drives and all four substrates are assumed to be the same
(as experiment and measurement of friction coefficients for all
substrate is beyond the scope of this paper).

3.1 Effect of Ballast Diameter

The maximum payload increases with an increase in ballast
diameter. This trend remains consistent throughout the four
substrates under consideration. For a fixed sinkage, as the ballast
diameter increases, the area of the ballast in contact with the
substrate increases and therefore the normal and shear stresses
exerted by the central cylinder (ballast) decrease. However, the
reduction in stresses is not significant as the maximum payload
that the substrate can withstand without failing only increases
marginally. For example, in the case of dry sand, for a six-fold
increase in ballast diameter, the maximum payload increases by
only 3.9 kg for a fixed blade height of 0.5 times the baseline
blade height.
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FIGURE 7: DISTRIBUTION OF MAXIMUM ROVER PAYLOAD

AS A FUNCTION OF BALLAST DIAMETER AND BLADE
HEIGHT WHILE MOVING ON DRY SAND

3.2 Effect of Blade Height
The maximum payload increases with an increase in blade height
for all four substrates. However, compared to the ballast
diameter, the increase is significantly higher. For example, in the
case of dry sand, a six-fold increase in blade height results in an
increase of 70.64 kg for a fixed ballast diameter corresponding
to the 0.5 multiple case (brief explanation of how plots suggest
s0). This phenomenon can be explained as follows: a heavier
payload results in a heavier rover which requires a greater
amount of propulsive (N) to achieve and maintain x = P -n
motion. A higher blade height results in a higher blade surface
area for the N and the friction force due to N, thereby resulting
in lower normal and shear stresses exerted by the blades on the
substrate element. Because the blade height directly affects the
stresses resulting from N, it has a more prominent impact on the
maximum payload.
3.3 Effect of c and ¢

The apparent cohesion (¢) and angle of internal shearing
resistance (¢) have a significant effect on the maximum payload.
Substrates with a higher value of ¢ and/or ¢ result in a higher
maximum payload. For example, sandy loam has a higher
apparent cohesion (more than twice) compared to clayey soil,
and therefore can sustain significantly higher maximum
payloads without failure. Similarly, dry sand has a higher angle
of internal shearing resistance than snow resulting in higher
maximum payloads.

Table 1. Substrate Properties

c(kPa) | ¢ (deg) | p (kg/m3)
Dry Sand 1.04 28 1638.3
Sandy Loam 5.17 11 1550
Clayey Sand 2.07 10 1400
Snow 1.03 19.7 125

3.4 Effect of p

The density (p) of the substrate affects the mass of the
substrate element between two blades, which in turn affects the
normal (or compressive) stress exerted by the stationary
substrate wall on the element. A comparison of the plots of dry
sand and snow shows that the density of substrate has an
insignificant effect on the maximum payload. The density of dry
sand is about 13 times that of snow, however, the maximum
payload values across the range of ballast diameters and blade
height differ only marginally.

Table 2. Rover and Substrate Parameters

Property Description Value | Unit
Myp Mass of HD 2.25 kg
lup Length of HD 0.319 m
P Pitch Length of HD 0.0366 m
[ Pitch Angle of HD 10 deg
Iyp Moment of Inertia of HD 0.0012 | kg.m2
s Sinkage 0.0165 m
Wit Kinetic Friction Coefficient 0.35 -
between HD and Substrate
Uiz Kinetic Friction Coefficient 0.2 -
between Stationary and
Moving Substrate
Sandy Loam
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FIGURE 10: DISTRIBUTION OF MAXIMUM ROVER
PAYLOAD AS A FUNCTION OF BALLAST DIAMETER AND
BLADE HEIGHT WHILE MOVING ON SNOW

4. CONCLUSION

A planar locomotion dynamics model of a multi-terrain and
amphibious robot designed for exploring the heterogeneous
landscape of the Arctic has been derived. Additionally, the
conditions necessary to achieve optimal locomotion
performance, i.e., x. = P -n, while moving in a straight
line have been derived. The dynamic model and substrate
failure analysis have been used in unison to derive rover
dimensions and weight resulting in x, = P - n on different
substrates.
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