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ABSTRACT
The Multi-terrain Amphibious ARCtic explOrer (MAARCO)

rover is an amphibious arctic rover designed to traverse arctic
terrains and propel through water. The MAARCO rover consists
of an ellipsoid chassis with links connecting to the propulsion
system. The propulsion system consists of two helical drives
made up of hollow cylinder ballasts wrapped in auger or screw
shaped blades in opposing helical directions parallel to each
other. In this paper, a 6 degree of freedom dynamic model of
the MAARCO rover is created using Kane’s method dynamic
modeling to demonstrate the dynamic model capabilities for an
underwater vehicle’s performance. The hydrodynamic forces
considered on the underwater rover include drag, buoyancy, flow
acceleration, and added mass. In addition to the hydrodynamic
forces the rover will experience gravity forces, control forces, net
thrust from the helical drive blades, and net buoyancy from the he-
lical drive ballast system. The equations of motion are developed
from Kane’s method to reduce computational cost and simulated
in MATLAB for different cases to gain further understanding and
provide a visual representation of the system underwater and the
dynamic models capabilities. The results of the simulations show
the MAARCO rover behavior in the hydrodynamic environment.
The results reveal that the Kane’s method dynamic modeling suc-
cessfully develops equations of motion of a complicated system
that can be implemented into a control system.

Keywords: Dynamic Model, Kane’s Method, Hydrodynamic
Forces, Kinematics, Underwater Vehicle, Amphibious Rover,
Modeling and Simulation

1. INTRODUCTION
Exploration in the arctic region has become increasingly im-

portant in understanding the effects of global warming. The
harsh environments in the arctic limit exploration capabilities,
and autonomous vehicles can provide more opportunities to ex-
plore these regions that are otherwise dangerous or inaccessible
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to human-led missions. Underwater rovers provide additional ex-
ploration capabilities to further study the arctic bodies of water.

The Multi-terrain Amphibious ARCtic explOrer
(MAARCO) rover is an amphibious arctic rover capable
of traversing across different terrains and propelling through
water [1] [2] [3] [4] [5]. The MAARCO rover propulsion system
is made up of two hollow cylinder ballasts wrapped in auger
or screw shaped blades in opposing helical directions parallel
to each other, referred to as helical drives. When operating as
an underwater vehicle the helical drive blades provide thrust as
the helical drives rotate and the hollow cylinder ballast system
adjusts the buoyancy of the rover as water is filled or drained.

A dynamic model of an underwater rover is necessary to
provide an understanding of the vehicle’s performance in the
underwater environment and simulate the motion of the rover.
The dynamic model is essential in evaluating the vehicle’s per-
formance under different conditions and will provide information
considered in the rover design parameters, controls strategies, and
overall mission operations. Underwater robotic vehicles (URV)
have limited studies done on them because of uncertainties with
hydrodynamic forces, where the model requirements of the URV
include a model based dynamic control system, the vehicle, and
the dynamic system in an underwater environment [6].

In this paper, a dynamic model of the MAARCO rover is
created using Kane’s method dynamic modeling to create a sim-
plified model for a complicated underwater vehicle system. The
dynamic model considers the rover system model and the un-
derwater environment interactions with the system. The model
monitors the generalized coordinates of the 6 degree-of-freedom
rover with hydrodynamic forces acting on the rover and is used
to simulate the response of the rover in different cases.

2. KANE’S METHOD BACKGROUND
Kane’s Method is a dynamic modeling method used for cal-

culating the equations of motion for a system that uses generalized
speeds, partial velocities, and partial angular velocities in gen-
eralized active force and generalized inertia force equations to
develop the equations of motion [7]. The system is described in
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terms of 𝑞1, ...𝑞𝑟 generalized coordinates, and 𝑞̇1, ...𝑞̇𝑟 general-
ized velocities. Kane’s method expresses the equations of motion
in 𝑢1, ...𝑢𝑟 generalized speeds that are developed from the gen-
eralized velocities to create equations that describe the vehicle’s
motion and simplify the model [7].

[𝑢] = [𝑌 ] [𝑞̇] − [𝑍] (1)

The only requirements of the generalized speeds is that they
are able to solve unique expressions for the generalized velocities
[7]. Therefore [𝑌 ] must have an inverse, [𝑊], that exists and can
be used to calculate the generalized velocities.

[𝑞̇] = [𝑊] [𝑢] + [𝑍] [𝑢] (2)

These generalized speed equations result in 2𝑟 first order
differential equations, 𝑞̇1, ...𝑞̇𝑟 and 𝑢̇1, ...𝑢̇𝑟 . As opposed to 𝑟

second order differential equations, 𝑞1, ...𝑞𝑟 , that would be found
in models using Newton-Euler and Lagrange methods. This
results in simplified equations and lower computational efforts.

The Kane’s Method equation is 𝐹𝑟 + 𝐹∗
𝑟 = 0 where the gen-

eralized active force, 𝐹𝑟 , is

𝐹𝑟 =

𝑁𝑅∑︂
𝑘=1

(𝐹𝑘 ·𝑂̄𝑂 𝑣⃗𝑐𝑚𝑘 ,𝑟 + 𝜏𝑐𝑚𝑘 ,𝑟 ·𝑂̄ 𝜔𝑟
𝐵𝑘 ) +

𝑁𝑃∑︂
𝑙=1

𝑓⃗𝑙 ·𝑂̄𝑂 𝑣⃗𝑚𝑙 ,𝑟 (3)

And the generalized inertia force 𝐹𝑟∗ is

𝐹∗
𝑟 = −

𝑁𝑅∑︂
𝑘=1

(𝑚𝑘
𝑜̄𝑎𝑐𝑚𝑘/𝑂 ·𝑜̄𝑜 𝑣⃗𝑐𝑚𝑘 ,𝑟 + ((𝐼𝑐𝑚𝑘

·𝑂̄ 𝛼⃗𝐵𝑘+

𝑂̄𝜔⃗𝐵𝑘 × (𝐼𝑐𝑚𝑘
·𝑂̄ 𝜔⃗𝐵𝑘 )) ·𝑂̄ 𝜔𝑟

𝐵𝑘 ) −
𝑁𝑃∑︂
𝑙=1

𝑚𝑙
𝑜̄𝑎𝑚𝑙/𝑂 ·𝑜̄𝑜 𝑣⃗𝑚𝑙 ,𝑟 (4)

Where 𝑟 is the 𝑟 𝑡ℎ generalized speed, 𝑁𝑅 is the number of
rigid bodies in a system, and 𝐵𝑘 is the body frame of the 𝑘 𝑡ℎ rigid
body. For a rigid body, the velocities and angular velocities are

𝑂̄ 𝑣⃗𝑐𝑚𝑘/𝑂 =

𝑛∑︂
𝑟=1

(𝑂̄𝑂 𝑣⃗𝑐𝑚𝑘 ,𝑟 ∗ 𝑢𝑟 ) +𝑂̄𝑂 𝑣⃗𝑐𝑚𝑘 ,𝑡 (5)

𝑂̄𝜔⃗𝐵𝑘 =

𝑛∑︂
𝑟=1

(𝑂̄𝜔𝑟
𝐵𝑘 ∗ 𝑢𝑟 ) +𝑂̄ 𝜔𝑡

𝐵𝑘 (6)

where 𝑛 is the number of general coordinates. 𝑂̄
𝑂
𝑣⃗𝑐𝑚𝑘 ,𝑟 is

the 𝑟 𝑡ℎ partial velocity and 𝑂̄𝜔𝑟
𝐵𝑘 is the 𝑟 𝑡ℎ partial angular ve-

locity. From inspection the partial velocities and partial angular
velocities can be calculated by

𝑂̄
𝑂 𝑣⃗𝑐𝑚𝑘 ,𝑟 =

𝜕

𝜕𝑢𝑟

𝑂̄ 𝑣⃗𝑐𝑚𝑘/𝑂 (7)

𝑂̄𝜔𝑟
𝐵𝑘 =

𝜕

𝜕𝑢𝑟

𝑂̄𝜔⃗𝐵𝑘 (8)

And where 𝑁𝑃 is the number of point masses, or particles, in
a system with 𝑙 particles in the system. For a particle, the velocity
is

𝑂̄ 𝑣⃗𝑚𝑙/𝑂 =

𝑛∑︂
𝑟=1

(𝑂̄𝑂 𝑣⃗𝑚𝑙 ,𝑟 ∗ 𝑢𝑟 ) +𝑂̄𝑂 𝑣⃗𝑚𝑙 ,𝑡 (9)

where 𝑛 is the number of general coordinates. 𝑂̄
𝑂
𝑣⃗𝑚𝑙 ,𝑟 is

the 𝑟 𝑡ℎ partial velocity. From inspection the partial velocity is
calculated by

𝑂̄
𝑂 𝑣⃗𝑚𝑙 ,𝑟 =

𝜕

𝜕𝑢𝑟

𝑂̄ 𝑣⃗𝑚𝑙/𝑂 (10)

3. ROVER MODEL
3.1 Rover Description

The rover is designed to traverse through the arctic terrain
in substrates such as ice, mud, dirt, and water. The structure of
the rover contains a rover chassis and robotic arms to position the
helical drives, as well as controlled sliding masses located within
the rover chassis. The helical drive position adjusts the maneuver
capabilities of the rover in varying conditions, and is controlled
by an applied position or motion. For example having the helical
drives underneath the chassis to help traverse across terrain or
positioning them to the side parallel with the chassis to propel
through water to reduce involuntary pitching from the resulting
torque of thrust acting beneath the rover chassis and drag acting
on the rover chassis. The rover chassis is currently modeled as
an ellipsoid to provide a more streamlined shape for underwater
purposes. The sliding masses provide additional force control for
the motion of the rover. The underwater dynamics of the helical
drives is largely unknown and will be modeled as cylinders in the
current system with forces from the helical drives acting on the
body.

3.2 Rover System Coordinates
The rover body connects to the links supporting the helical

drive propulsion system. The rover body, links, and helical drives
each have a body frame that is attached and rotates with the body.
The body frames are relative to the inertial reference frame of
the system, assumed to be Earth. The body frame of the rover
chassis 𝑅̄, is located at the rover chassis center of mass 𝑅 and is
𝑅̄ = {𝑅, 𝑖⃗𝑅̄, 𝑗𝑅̄, 𝑘𝑅̄}. Where 𝑏 is the semi-major axis of the rover
chassis and 𝑎 is the semi-minor axis of the rover chassis. The arms
are represented in 4 links (𝐿1,𝐿3, 𝐿4, 𝐿6) and the helical drives
are modeled as cylinders (𝐿2,𝐿5). These are the rigid bodies of
the system with body frames 𝐿1, 𝐿2, 𝐿3, 𝐿4, 𝐿5, and 𝐿6 located
at the bodies center of mass 𝐿1, 𝐿2, 𝐿3, 𝐿4, 𝐿5, and 𝐿6. The link
and helical drive body frames are 𝐿1 = {𝐿𝑘 , 𝑖⃗𝐿𝑘

, 𝑗𝐿𝑘
, 𝑘𝐿𝑘

}.
The inertial reference frame 𝑂̄ is attached to Earth at the

Earth center of mass 𝑂 and is 𝑂̄ = {𝑂, 𝑖⃗𝑂̄, 𝑗𝑂̄, 𝑘𝑂̄}.
The links are connected to hinges 𝐴, 𝐵,𝐶, and 𝐷 at the major

axis poles of the ellipsoid which allow rotation in the link body 𝑗-
𝑘 plane. The body frames are displayed in Fig. 1. The arm links
and helical drive drive system rotate an angle 𝜃𝐴, 𝜃𝐵, 𝜃𝐶 , and 𝜃𝐷
about the hinges A, B, C, and D as shown in Fig. 1. 𝜃𝐴 and 𝜃𝐵 are
assumed to be equal, because the arms are all connected to each
other with no change in position relative to each link unless there
is a structural failure. 𝜃𝐶 and 𝜃𝐷 are assumed to be equal, because
the arms are all connected to each other with no change in position
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(a) A-B Side Body Frames
(b) C-D Side Body Frames

(c) Front View Body Frames (d) Back View Body Frames

FIGURE 1: ROVER SYSTEM FRAMES

FIGURE 2: SIDE VIEW OF ROVER WITH SLIDING MASSES

relative to each link unless there is a structural failure. The hinge
reference frames are 𝐴̄ = {𝐴, 𝑖⃗𝐴̄, 𝑗𝐴̄, 𝑘𝐴̄}, 𝐵̄ = {𝐵, 𝑖⃗𝐵̄, 𝑗𝐵̄, 𝑘𝐵̄},
𝐶̄ = {𝐶, 𝑖⃗𝐶̄ , 𝑗𝐶̄ , 𝑘𝐶̄ }, 𝐷̄ = {𝐷, 𝑖⃗𝐷̄ , 𝑗𝐷̄ , 𝑘𝐷̄}.

The dimensions of the links and helical drives are 𝑙1=length
of link 1, 𝑑1 = diameter of link 1, 𝑑2 = diameter of link 2, 𝑙3 =
length of the drive, 𝑑3 = diameter of the drive, 𝑙4 = length of link
4, 𝑑4 = diameter of link 4, 𝑙5 = length of link 5, and 𝑑5 = diameter
of link 5, 𝑙6 = length of link 6, 𝑑6 = diameter of link 6. The
sliding masses inside of the rover chassis adjust the orientation
of the rover body and allow more pitch and roll control. The
sliding masses are modeled as point masses that move within the
enclosed rover chassis in the rover body frame with an applied
and known motion. The x-direction point mass 𝑚𝑝,𝑥 will be able
to move forward and backward in the 𝑖⃗𝑅̄ direction as shown in
Fig. 2. The y-direction point mass 𝑚𝑝,𝑦 will be able to move side
to side in the 𝑗𝑅̄ direction as shown in Fig 3.

FIGURE 3: FRONT VIEW OF ROVER WITH SLIDING MASSES

3.3 Mass and Moment of Inertia
The mass of the sliding masses are 𝑚𝑝,𝑥 for the x-direction

point mass and 𝑚𝑝,𝑦 for the y-direction point mass. The masses
of each of the links and helical drives are 𝑚1, 𝑚2, 𝑚3, 𝑚4, 𝑚5.The
mass of the rover body is 𝑚𝑟𝑜𝑣. The moment of inertia for the
links and helical drives are modeled as thin rods. The moment of
inertia for the rover chassis is modeled as an ellipsoid. The mass
moment of inertia for each link (𝐿1, 𝐿3, 𝐿4, 𝐿6) about each link
center of mass, approximated as a thin rod, is

𝐼𝑐𝑚𝑘
=

[︃
1
12

𝑚𝑘 𝑙
2
𝑘

]︃
𝑖⃗𝐿𝑘

𝑖⃗𝐿𝑘
+ [0] 𝑗𝐿𝑘

𝑗𝐿𝑘
+

[︃
1
12

𝑚𝑘 𝑙
2
𝑘

]︃
𝑘𝐿𝑘

𝑘𝐿𝑘

The mass moment of inertia for each helical drive (𝐿2, 𝐿5) about
each helical drive center of mass, approximated currently as a
thin rod, is

𝐼𝑐𝑚𝑘
= [0] 𝑖⃗𝐿𝑘

𝑖⃗𝐿𝑘
+

[︃
1
12

𝑚𝑘 𝑙
2
𝑘

]︃
𝑗𝐿𝑘

𝑗𝐿𝑘
+

[︃
1
12

𝑚𝑘 𝑙
2
𝑘

]︃
𝑘𝐿𝑘

𝑘𝐿𝑘
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The mass moment of inertia for the rover chassis (𝑅) about the
rover chassis center of mass is

𝐼𝑅 =

[︃
1
5
𝑚𝑟𝑜𝑣 (𝑎2 + 𝑎2)

]︃
𝑖⃗𝑅̄ 𝑖⃗𝑅̄ +

[︃
1
5
𝑚𝑟𝑜𝑣 (𝑎2 + 𝑏2)

]︃
𝑗𝑅̄ 𝑗𝑅̄

+
[︃
1
5
𝑚𝑟𝑜𝑣 (𝑎2 + 𝑏2)

]︃
𝑘𝑅̄𝑘𝑅̄

3.4 Kinematics
The kinematic expressions of the rover describe the transla-

tional and rotational motion of the rover system without respect to
the forces [7]. The direction cosine matrices are defined to show
the rotation between different frames in the system and can be
used to calculate the angular velocities and angular accelerations
between frames. The position vectors describe the location of
the rigid bodies and particles, and can be used to calculate the
velocities and accelerations of between points.

The direction cosine matrix between 𝑅̄ and 𝑂̄ will follow
NASA Standard order yaw (𝜓), pitch (𝜃), then roll (𝜙).

𝑅̄ [𝐶]𝑂̄ = [𝑅𝑥 (𝜙)] [𝑅𝑦 (𝜃)] [𝑅𝑧 (𝜓)] (11)

The angular velocity between the rover chassis body frame
𝑅̄ and the inertial reference frame 𝑂̄ can be calculated from the
direction cosine matrices 𝑅̄ [𝐶]𝑂̄.

𝑂̄𝜔⃗𝑅̄ = 𝑂̄𝜔𝑥
𝑅̄ 𝑖⃗𝑅̄ + 𝑂̄𝜔𝑦

𝑅̄ 𝑗𝑅̄ + 𝑂̄𝜔𝑧
𝑅̄𝑘𝑅̄ (12)

𝑂̄𝜔𝑥
𝑅̄ =

[︁
0 0 1

]︁
𝑅̄ [𝐶]𝑂̄𝑂̄ ̇[𝐶] 𝑅̄

⎡⎢⎢⎢⎢⎣
0
1
0

⎤⎥⎥⎥⎥⎦ (13)

𝑂̄𝜔𝑦
𝑅̄ =

[︁
1 0 0

]︁
𝑅̄ [𝐶]𝑂̄𝑂̄ ̇[𝐶] 𝑅̄

⎡⎢⎢⎢⎢⎣
0
0
1

⎤⎥⎥⎥⎥⎦ (14)

𝑂̄𝜔𝑧
𝑅̄ =

[︁
0 1 0

]︁
𝑅̄ [𝐶]𝑂̄𝑂̄ ̇[𝐶] 𝑅̄

⎡⎢⎢⎢⎢⎣
1
0
0

⎤⎥⎥⎥⎥⎦ (15)

The angular acceleration vectors of the rover chassis body
frame is calculated from the time derivative of the angular velocity
vector.

𝑂̄𝛼⃗𝑅̄ = 𝑂̄ 𝑑

𝑑𝑡

𝑂̄𝜔⃗𝑅̄ (16)

The direction cosine matrices for the hinge, link, and helical
drive frames for the current rover design are defined in Appendix
A and can be used to calculate the angular velocity and angular
acceleration of each rigid body.
The position vector for the rover chassis body is a function of
time and can be used to calculate the velocity and acceleration
vector of the rover chassis body.

𝑟𝑅/𝑂 = 𝑥𝑖⃗𝑂̄ + 𝑦 𝑗𝑂̄ + 𝑧𝑘𝑂̄ (17)

Where 𝑥, 𝑦, and 𝑧 are functions of time.

The velocity vector of of the rover body from the inertial
reference frame is calculated from the position vector.

𝑂̄ 𝑣⃗𝑅/𝑂 = 𝑂̄ 𝑑

𝑑𝑡
𝑟𝑅/𝑂 = 𝑅̄ 𝑑

𝑑𝑡
𝑟𝑅/𝑂 +𝑂̄ 𝜔𝑅̄ × 𝑟𝑅/𝑂 (18)

The acceleration vector of of the rover body from the inertial
reference frame is calculated from the velocity vector.

𝑂̄𝑎𝑅/𝑂 = 𝑂̄ 𝑑

𝑑𝑡

𝑂̄ 𝑣⃗𝑅/𝑂 = 𝑅̄ 𝑑

𝑑𝑡

𝑂̄ 𝑣⃗𝑅/𝑂 +𝑂̄ 𝜔𝑅̄ × 𝑂̄ 𝑣⃗𝑅/𝑂 (19)

The position vector for the x-direction point mass particle,
𝑚𝑝,𝑥 , from the rover chassis center of mass is

𝑟𝑚𝑝,𝑥/𝑅 = 𝑥𝑝 𝑖⃗𝑅̄ + 0 𝑗𝑅̄ + 0𝑘𝑅̄ (20)

Where 𝑥𝑝 ,is a function of time.
The position vector for the y-direction point mass particle,

𝑚𝑝,𝑦 , from the rover chassis center of mass is

𝑟𝑚𝑝,𝑦/𝑅 = 0𝑖⃗𝑅̄ + 𝑦𝑝 𝑗𝑅̄ + 0𝑘𝑅̄ (21)

Where 𝑦𝑝 ,is a function of time.

The position vectors between the link and helical drive center
of masses to the inertial reference frame for the current rover
design are defined in Appendix B and can be used to calculate
the velocity and acceleration at the center of mass for each rigid
body.

3.5 Rover System Kane’s Method
3.5.1 Generalized Speeds. The generalized coordinates of

the rover system are

𝑞1 = 𝑥 - the position of R relative to O in 𝑖⃗𝑂̄
𝑞2 = 𝑦 - the position of R relative to O in 𝑗𝑂̄

𝑞3 = 𝑧 - the position of R relative to O in 𝑘𝑂̄
𝑞4 = 𝜙 - roll of 𝑅̄ relative to 𝑂̄ in 𝑖⃗𝑂̄

𝑞5 = 𝜃 - pitch of 𝑅̄ relative to 𝑂̄ in 𝑘𝑂̄
𝑞6 = 𝜓 - yaw of 𝑅̄ relative to 𝑂̄ in 𝑗𝑂̄

The time derivatives of the generalized coordinates return
the generalized velocities.

𝑞̇1 = 𝑥̇

𝑞̇2 = 𝑦̇

𝑞̇3 = 𝑧̇

𝑞̇4 = 𝜙̇

𝑞̇5 = 𝜃̇

𝑞̇6 = 𝜓̇

The generalized speeds for the system are selected to be

𝑢1 = 𝑣𝑥
𝑢2 = 𝑣𝑦
𝑢3 = 𝑣𝑧
𝑢4 = 𝜔𝑥

𝑢5 = 𝜔𝑦

𝑢6 = 𝜔𝑧
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Where 𝑣𝑥 , 𝑣𝑦 , and 𝑣𝑧 are the x, y, and z velocities of the rover
expressed in the 𝑅̄ frame relative to the inertial reference frame.

{𝑂̄ 𝑣⃗𝑅/𝑂}𝑅̄ = 𝑣𝑥 𝑖⃗𝑅̄ + 𝑣𝑦 𝑗𝑅̄ + 𝑧̇𝑘𝑅̄

This direction cosine matrices is used to relate {𝑂̄ 𝑣⃗𝑅/𝑂}𝑂̄
and {𝑂̄ 𝑣⃗𝑅/𝑂}𝑅̄

{𝑂̄ 𝑣⃗𝑅/𝑂}𝑂̄ = 𝑥̇𝑖⃗𝑂̄ + 𝑦̇ 𝑗𝑂̄ + 𝑣𝑧𝑘𝑂̄

{𝑂̄ 𝑣⃗𝑅/𝑂}𝑅̄ = 𝑅̄ [𝐶]𝑂̄{𝑂̄ 𝑣⃗𝑅/𝑂}𝑂̄
The velocity equations are

𝑣𝑥 = 𝑥̇ cos 𝜃 cos𝜓 + 𝑦̇ cos 𝜃 sin𝜓 − 𝑧̇ sin 𝜃

𝑣𝑦 = 𝑥̇(cos𝜓 sin 𝜙 sin 𝜃 − cos 𝜙 sin𝜓) + 𝑦̇(cos 𝜙 cos𝜓

+ sin 𝜙 sin 𝜃 sin𝜓) + 𝑧̇ cos 𝜃 sin 𝜙

𝑣𝑧 = 𝑥̇(cos 𝜙 cos𝜓 sin 𝜃 + sin 𝜙 sin𝜓) + 𝑦̇(− cos𝜓 sin 𝜙

+ cos 𝜙 sin 𝜃 sin𝜓) + 𝑧̇ cos 𝜙 cos 𝜃

The 𝜔𝑥 , 𝜔𝑦 , and 𝜔𝑧 are the x, y, and z angular velocities of
the rover expressed in the 𝑅̄ frame relative to the inertial reference
frame.

𝑂̄𝜔⃗𝑅̄ = 𝜔𝑥 𝑖⃗𝑅̄ + 𝜔𝑦 𝑗𝑅̄ + 𝜔𝑧𝑘𝑅̄

𝜔𝑥 =
[︁
0 0 1

]︁
𝑅̄ [𝐶]𝑂̄𝑂̄ ̇[𝐶] 𝑅̄

⎡⎢⎢⎢⎢⎣
0
1
0

⎤⎥⎥⎥⎥⎦
𝜔𝑦 =

[︁
1 0 0

]︁
𝑅̄ [𝐶]𝑂̄𝑂̄ ̇[𝐶] 𝑅̄

⎡⎢⎢⎢⎢⎣
0
0
1

⎤⎥⎥⎥⎥⎦
𝜔𝑧 =

[︁
0 1 0

]︁
𝑅̄ [𝐶]𝑂̄𝑂̄ ̇[𝐶] 𝑅̄

⎡⎢⎢⎢⎢⎣
1
0
0

⎤⎥⎥⎥⎥⎦
The angular velocity equations are

𝜔𝑥 = 𝜙̇ − 𝜓̇ sin 𝜃

𝜔𝑦 = 𝜃̇ cos 𝜙 − 𝜓̇ cos 𝜃 sin 𝜙

𝜔𝑧 = 𝜃̇ sin 𝜙 − 𝜓̇ cos 𝜃 cos 𝜙

The generalized speeds, or motion variables, 𝑢𝑟 , are related
to the generalized velocities through [𝑢] = [𝑌 ] [𝑞̇] − [𝑍].

𝑢1 = 𝑞̇1 cos 𝑞5 cos 𝑞6 − 𝑞̇3 sin 𝑞5 + 𝑞̇2 cos 𝑞5 sin 𝑞6
𝑢2 = 𝑞̇3 cos 𝑞5 sin 𝑞4 + 𝑞̇1 (cos 𝑞6 sin 𝑞4 sin 𝑞5 − cos 𝑞4 sin 𝑞6) +

𝑞̇2 (cos 𝑞4 cos 𝑞6) + sin 𝑞4 sin 𝑞5 sin 𝑞6)
𝑢3 = 𝑞̇3 cos 𝑞5 cos 𝑞4 + 𝑞̇1 (cos 𝑞6 cos 𝑞4 sin 𝑞5 + sin 𝑞4 sin 𝑞6) +

𝑞̇2 (− sin 𝑞4 cos 𝑞6 + cos 𝑞4 sin 𝑞5 sin 𝑞6)
𝑢4 = 𝑞̇4 − 𝑞̇6 sin 𝑞5

𝑢5 = 𝑞̇5 cos 𝑞4 − 𝑞̇6 cos 𝑞5 sin 𝑞4
𝑢6 = 𝑞̇5 sin 𝑞4 − 𝑞̇6 cos 𝑞5 cos 𝑞4

Then [𝑞̇] = [𝑊] [𝑢] + [𝑍] [𝑢] where [𝑊] is the inverse of
[𝑌 ] and [𝑍] = [0]. This returns 𝑞̇ values in terms of values 𝑢.

𝑞̇1 = 𝑢1 cos 𝑞5 cos 𝑞6 + 𝑢2 (cos 𝑞6𝑠𝑖𝑛𝑞4 sin 𝑞5 − cos 𝑞4 sin 𝑞6) +
𝑢3 (cos 𝑞4 cos 𝑞6 sin 𝑞5 + sin 𝑞4 sin 𝑞6)

𝑞̇2 = 𝑢1 cos 𝑞5 sin 𝑞6 + 𝑢3 (− cos 𝑞6 sin 𝑞4 + cos 𝑞4 sin 𝑞5 sin 𝑞6) +
𝑢2 (cos 𝑞4 cos 𝑞6 + sin 𝑞4 sin 𝑞5 sin 𝑞6)

𝑞̇3 = 𝑢3 cos 𝑞4 cos 𝑞5 + 𝑢2 cos 𝑞5 sin 𝑞4 − 𝑢1 sin 𝑞5
𝑞̇4 = 𝑢4 + 𝑢6 cos 𝑞4 tan 𝑞5 + 𝑢5 sin 𝑞4 tan 𝑞5

𝑞̇5 = 𝑢5 cos 𝑞4 − 𝑢6 sin 𝑞4
𝑞̇6 = 𝑢6 cos 𝑞4 sec 𝑞5 + 𝑢5 sec 𝑞5 sin 𝑞4

These 6 generalized speeds result in 6 governing Kane’s
method equations 𝐹𝑟 + 𝐹∗

𝑟 = 0, one for each of the generalized
speeds, 𝑢1, ...𝑢6.

𝐹1 + 𝐹∗
1 = 0

𝐹2 + 𝐹∗
2 = 0

𝐹3 + 𝐹∗
3 = 0

𝐹4 + 𝐹∗
4 = 0

𝐹5 + 𝐹∗
5 = 0

𝐹6 + 𝐹∗
6 = 0

3.5.2 Partial Velocities and Partial Angular Velocities.
The velocities, angular velocities, accelerations, and angular
accelerations are rewritten in terms of generalized coordinates
(𝑞1, ..., 𝑞6), the generalized speeds (𝑢1, ..., 𝑢6), and the time
derivative of the generalized speeds (𝑢̇1, ..., 𝑢̇6). The partial ve-
locities for the rigid bodies, 𝑂̄

𝑂
𝑣⃗𝑐𝑚𝑘 ,𝑟 , can be calculated from

𝑂̄ 𝑣⃗𝑐𝑚𝑘/𝑂 for the 6 generalized speeds. The partial angular veloc-
ities for the rigid bodies, 𝑂̄𝜔𝑟

𝐵𝑘 , can be calculated from 𝑂̄𝜔⃗𝐵𝑘

for the 6 generalized speeds. The partial velocities for the parti-
cles, 𝑂̄

𝑂
𝑣⃗𝑚𝑙 ,𝑟 , can be calculated from 𝑂̄ 𝑣⃗𝑚𝑙/𝑂 for the 6 generalized

speeds.

3.6 Forces
3.6.1 Calculating Link Forces. The forces acting on the

links are approximated as point forces acting at the center of mass.
The forces include gravity force (𝐹𝑘,𝑔𝑟𝑎𝑣), buoyancy force (𝐹𝑘,𝐵),
drag force (𝐹𝑘,𝑑𝑟𝑎𝑔), and flow acceleration force (𝐹𝑘,𝐹𝐴). There
are also reaction forces at each the hinges and each link connection
(𝐹𝑘,𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛). Assuming a frictionless system (𝐹𝑘, 𝑓 𝑟𝑖𝑐𝑡𝑖𝑜𝑛) is
ignored. Also assuming that the vehicle is slow moving, lift
(𝐹𝑘,𝑙𝑖 𝑓 𝑡 ) is ignored [6]. The forces acting on links 1, 3, 4, and 6
are

𝐹𝑘 = 𝐹𝑘,𝑔𝑟𝑎𝑣 + 𝐹𝑘,𝐵 + 𝐹𝑘,𝑑𝑟𝑎𝑔 + 𝐹𝑘,𝐹𝐴 + 𝐹𝑘,𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 (22)

The links 2 and 5 have additional helical drive forces
(𝐹𝑘,𝐻𝐷). Including a net thrust (𝐹𝑘,𝑡ℎ𝑟𝑢𝑠𝑡𝑛𝑒𝑡 ) from the helical
drive blades and a net buoyancy (𝐹𝑘,𝑏𝑢𝑜𝑦𝑛𝑒𝑡 ) from the helical
drive ballast system that will fill and drain. The total forces for
the links 2 and 5 are
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𝐹𝑘 = 𝐹𝑘,𝑔𝑟𝑎𝑣 + 𝐹𝑘,𝐵 + 𝐹𝑘,𝑑𝑟𝑎𝑔 + 𝐹𝑘,𝐹𝐴

+ 𝐹𝑘,𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 + 𝐹𝑘,𝐻𝐷 (23)

Where 𝐹𝑘,𝐻𝐷 = 𝐹𝑘,𝑡ℎ𝑟𝑢𝑠𝑡𝑛𝑒𝑡 + 𝐹𝑘,𝑏𝑢𝑜𝑦𝑛𝑒𝑡 for links 2 and 5
only. The net thrust represents the net thrust from the helical drive
rotation, and is the resulting thrust force remaining considering
any drag forces opposing the rotation and forward movement.
The net buoyancy force is the buoyancy from the ballast system
inside of the helical drives to navigate the helical drive to rise
or sink. These forces are unknown and applied as variables
for this dynamic model. The thrust estimations can come from
computational fluid dynamics simulations for helical drives [4].
The buoyancy from the ballast system can come from a ballast
design and study.

The gravity forces acting on each link and helical drive are

𝐹𝑘,𝑔𝑟𝑎𝑣 = 𝑚𝑘 (−𝑔)𝑘𝑜̄ (24)

The buoyancy forces acting on the links and helical drives
are proportional with the fluid that the links and helical drives
displace acting through the center of buoyancy for each rigid body
[6]. The center of buoyancy is assumed to be equal to the center
of mass due to the symmetry of the rigid bodies present in the
system. The buoyancy force acting on the link and the helical
drives in the inertial reference frame, opposing the gravity force,
is [6]

𝐹𝑘,𝐵 = −𝜌𝑉𝑘 (−𝑔)𝑘𝑜̄ (25)

Where 𝜌 is the density of the water and 𝑉𝑘 is the volume
of the fluid displaced by body k, which is approximated as the
volume of each of the links as cylinders.

𝑉𝑘 = 𝜋𝑟𝑘
2𝑙𝑘

The drag force acting on each link and helical drive is inte-
grated across the length of the body [6].

𝐹𝑘,𝑑𝑟𝑎𝑔 = −1
2
𝜌

∫ 𝑙𝑘

0
|Δ𝑂̄ 𝑣⃗𝑘,⊥ |Δ𝑂̄ 𝑣⃗𝑘,⊥𝐶𝐷𝑟𝑘𝑑𝑙𝑘 (26)

The drag force is simplified to a point force at the center of
mass of each link

𝐹𝑘,𝑑𝑟𝑎𝑔 = −1
2
𝜌𝐶𝐷 |Δ𝑂̄ 𝑣⃗𝑘,⊥ |Δ𝑂̄ 𝑣⃗𝑘,⊥𝑆𝑘 (27)

Where 𝑆𝑘 is the reference area of the body. The reference
area for a cylinder is 𝑆𝑘 = 𝑟𝑘 𝑙𝑘 . Δ𝑂̄ 𝑣⃗𝑘 is the difference between
the link velocity (𝑂̄ 𝑣⃗𝑐𝑚𝑘/𝑂) and flow velocity (𝑂̄ 𝑣⃗𝐹/𝑂). The flow
velocity (𝑂̄ 𝑣⃗𝐹/𝑂) is defined in the IRF, and is translated into the
body frames for each of the link to determine the flow velocity
components in the body frames.

Δ𝑂̄ 𝑣⃗𝑘 = [Δ𝑂̄ 𝑣⃗𝑘 , 𝑥]𝑖⃗𝐿𝑘 + [Δ𝑂̄ 𝑣⃗𝑘 , 𝑦] 𝑗𝐿𝑘 + [Δ𝑂̄ 𝑣⃗𝑘 , 𝑧]𝑘𝐿𝑘

Δ𝑂̄ 𝑣⃗𝑘 = 𝑂̄ 𝑣⃗𝑐𝑚𝑘/𝑂 − 𝐿𝑘 [𝐶]𝑂̄{𝑂̄ 𝑣⃗𝐹/𝑂}𝑂̄

Δ𝑂̄ 𝑣⃗𝑘⊥ is the components of Δ𝑂̄ 𝑣⃗𝑘 normal to the link or
helical drive. For links (𝐿1, 𝐿3, 𝐿4, 𝐿6) the directions normal to
the link are in the 𝑖⃗ and 𝑗 directions in the link body frame.

Δ𝑂̄ 𝑣⃗𝑘⊥ = [Δ𝑂̄ 𝑣⃗𝑘 , 𝑥]𝑖⃗𝐿𝑘 + [Δ𝑂̄ 𝑣⃗𝑘 , 𝑧]𝑘𝐿𝑘

For the helical drives (𝐿2, 𝐿5) the directions normal to the link
are in the 𝑗 and 𝑘 directions in the link body frame.

Δ𝑂̄ 𝑣⃗𝑘⊥ = [Δ𝑂̄ 𝑣⃗𝑘 , 𝑥] 𝑗𝐿𝑘 + [Δ𝑂̄ 𝑣⃗𝑘 , 𝑧]𝑘𝐿𝑘

𝐶𝐷 is the drag coefficient calculated by

𝐶𝐷 = 𝐶𝐷,𝑏𝑎𝑠𝑖𝑐𝑠𝑖𝑛
2𝜎𝑘 (28)

Where 𝐶𝐷,𝑏𝑎𝑠𝑖𝑐 is a constant based on the geometry,
𝐶𝐷,𝑏𝑎𝑠𝑖𝑐 = 1.1 for a cylinder [6]. 𝜎𝑘 is the angle between the
link or helical drive longitudinal axis and flow velocity. The 𝜎𝑘

for the links (𝐿1, 𝐿3, 𝐿4, 𝐿6), with longitudinal axis about 𝑗𝐿𝑘
, is

𝜎𝑘 = 𝑐𝑜𝑠−1

(︄
𝑂̄ 𝑣⃗𝐹/𝑂

|𝑂̄ 𝑣⃗𝐹/𝑂 |
· 𝑗𝐿𝑘

)︄
The𝜎𝑘 for the helical drives (𝐿2, 𝐿5), with longitudinal axis about
𝑖𝐿𝑘

, is

𝜎𝑘 = 𝑐𝑜𝑠−1

(︄
𝑂̄ 𝑣⃗𝐹/𝑂

|𝑂̄ 𝑣⃗𝐹/𝑂 |
· 𝑖𝐿𝑘

)︄
The flow acceleration force acting on the links and helical drives
from the flow acceleration is proportional to the fluid that the
links and helical drives displaced [6].

𝐹𝑘,𝐹𝐴 = 𝜌𝑉𝑘
𝑂̄𝑎𝐹/𝑂 (29)

Where 𝑂̄𝑎𝐹/𝑂 is the acceleration of the flow.

𝑂̄𝑎𝐹/𝑂 = 𝑂̄ 𝑑

𝑑𝑡

𝑂̄ 𝑣⃗𝐹/𝑂

3.6.2 Calculating Point Mass Forces. The forces acting
on the point masses are approximated as point forces acting on a
particle. The forces include gravity force (𝐹𝑚𝑝 ,𝑔𝑟𝑎𝑣). Assuming
a frictionless system (𝐹𝑚𝑙 , 𝑓 𝑟𝑖𝑐𝑡𝑖𝑜𝑛) is ignored. The forces acting
on the x-direction point mass are

𝐹𝑚𝑝,𝑥
= 𝐹𝑚𝑝,𝑥 ,𝑔𝑟𝑎𝑣 (30)

The forces acting on the y-direction point mass are

𝐹𝑚𝑝,𝑦
= 𝐹𝑚𝑝,𝑦 ,𝑔𝑟𝑎𝑣 (31)

The gravity forces acting on the point masses are

𝐹𝑚𝑝,𝑥 ,𝑔𝑟𝑎𝑣 = 𝑚𝑝,𝑥 (−𝑔)𝑘𝑜̄ (32)

𝐹𝑚𝑝,𝑦 ,𝑔𝑟𝑎𝑣 = 𝑚𝑝,𝑦 (−𝑔)𝑘𝑜̄ (33)
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3.6.3 Calculating Rover Forces. The forces acting on the
rover are approximated as point forces acting at the center of
mass. The forces include gravity force (𝐹𝑟𝑜𝑣,𝑔𝑟𝑎𝑣), buoyancy
force (𝐹𝑟𝑜𝑣,𝐵), drag force (𝐹𝑟𝑜𝑣,𝑑𝑟𝑎𝑔), and flow acceleration force
(𝐹𝑟𝑜𝑣,𝐹𝐴). There are also reaction forces at each of the hinges and
sliding mass positions (𝐹𝑟𝑜𝑣,𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛). Assuming a frictionless
system (𝐹𝑟𝑜𝑣, 𝑓 𝑟𝑖𝑐𝑡𝑖𝑜𝑛) is ignored. Also assuming that the vehicle
is slow moving, lift (𝐹𝑟𝑜𝑣,𝑙𝑖 𝑓 𝑡 ) is ignored. The forces acting on
the rover body are

𝐹𝑟𝑜𝑣 = 𝐹𝑟𝑜𝑣,𝑔𝑟𝑎𝑣 + 𝐹𝑟𝑜𝑣,𝐵 + 𝐹𝑟𝑜𝑣,𝑑𝑟𝑎𝑔 + 𝐹𝑟𝑜𝑣,𝐹𝐴 + 𝐹𝑟𝑜𝑣,𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛
(34)

The gravity force acting on the rover in the inertial reference
frame is

𝐹𝑟𝑜𝑣,𝑔𝑟𝑎𝑣 = 𝑚𝑟𝑜𝑣 (−𝑔)𝑘𝑜̄ (35)

The buoyancy force acting on the rover body chassis is pro-
portional with the fluid that the rover body chassis displaces acting
through the center of buoyancy for the rigid body [6]. The center
of buoyancy is assumed to be equal to the center of mass due
to the symmetry of the rigid bodies present in the system. The
buoyancy force acting on the rover body chassis in the inertial
reference frame, opposing the gravity force, is [6]

𝐹𝑟𝑜𝑣,𝐵 = −𝜌𝑉𝑟𝑜𝑣 (−𝑔)𝑘𝑜̄ (36)

Where 𝜌 is the density of the water and 𝑉𝑘 is the volume
of the fluid displaced by body k, which is approximated as the
volume of the rover body.

𝑉𝑟𝑜𝑣 =
4
3
𝜋𝑎2𝑏

The drag acting on the rover body, assuming the rover is
an ellipsoid with semi-major axis length 𝑏 and semi-minor axis
length 𝑎 is broken into normal and axial components [8].

𝐹𝑟𝑜𝑣,𝑑𝑟𝑎𝑔 = 𝐹𝐴𝑖⃗𝑅̄ + 𝐹𝑁𝑦
𝑗𝑅̄ + 𝐹𝑁𝑧

𝑘𝑅̄ (37)

The axial force component, 𝐹𝐴 acts about the center of mass
in the 𝑖⃗𝑅̄ direction of the rover body.

𝐹𝐴 = −1
2
𝜌𝐶𝐴𝑜

|Δ𝑂̄ 𝑣⃗𝑟𝑜𝑣 |2 (Δ𝑂̄ 𝑣⃗𝑟𝑜𝑣 · 𝑖⃗𝑅̄)𝑆𝑟 (38)

The normal force component, 𝐹𝑁 acts about the center of
mass in the 𝑗𝑅̄ and 𝑘𝑅̄ direction of the rover body.

𝐹𝑁𝑦
= −1

2
𝜌𝐶𝑑𝑛 |Δ𝑂̄ 𝑣⃗𝑟𝑜𝑣 |2 (Δ𝑂̄ 𝑣⃗𝑟𝑜𝑣 · 𝑗𝑅̄)𝑆𝑝 (39)

𝐹𝑁𝑧
= −1

2
𝜌𝐶𝑑𝑛 |Δ𝑂̄ 𝑣⃗𝑟𝑜𝑣 |2 (Δ𝑂̄ 𝑣⃗𝑟𝑜𝑣 · 𝑘𝑅̄)𝑆𝑝 (40)

𝐶𝐴𝑜
is the axial drag coefficient at zero angle of attack and

𝛼 is the angle of attack [8]. For an ellipsoid 𝐶𝐴𝑜
= 0.25 [9]. 𝐶𝑑𝑛

is the cross-flow drag coefficient and 𝛼 is the angle of attack [8].
For an ellipsoid 𝐶𝑑𝑛 ≈ 1.2 for Reynolds Number below 3 × 105

[10]. 𝑆𝑟 is the reference area and 𝑆𝑝 is the planform area. The

reference area for a ellipsoid is 𝑆𝑟 = 𝜋𝑎2. The planform area for
an ellipsoid is 𝑆𝑝 = 𝜋𝑎𝑏.

Δ𝑂̄ 𝑣⃗𝑟𝑜𝑣 is the difference between the rover velocity (𝑂̄ 𝑣⃗𝑅/𝑂)
and flow velocity (𝑂̄ 𝑣⃗𝐹/𝑂).The flow velocity (𝑂̄ 𝑣⃗𝐹/𝑂) is defined
in the IRF, and is translated into the body frames for the rover
chassis body frame to determine the flow velocity components
normal and axial to the rover chassis.

𝑂̄ 𝑣⃗𝐹/𝑂 =𝑂̄ 𝑣𝑥𝐹/𝑂 𝑖⃗𝑂̄ +𝑂̄ 𝑣𝑦𝐹/𝑂 𝑗𝑂̄ +𝑂̄ 𝑣𝑧𝐹/𝑂𝑘𝑂̄

{𝑂̄ 𝑣⃗𝐹/𝑂}𝑅̄ = 𝑅̄ [𝐶]𝑂̄{𝑂̄ 𝑣⃗𝐹/𝑂}𝑂̄

𝑂̄ 𝑣⃗𝐹/𝑂,𝑅 = {𝑂̄ 𝑣⃗𝐹/𝑂}𝑅̄

𝑂̄ 𝑣⃗𝐹/𝑂,𝑅 =𝑂̄ 𝑣𝑥,𝑅𝐹/𝑂 𝑖⃗𝑅̄ +𝑂̄ 𝑣𝑦,𝑅𝐹/𝑂 𝑗𝑅̄ +𝑂̄ 𝑣𝑧,𝑅𝐹/𝑂𝑘𝑅̄

Δ𝑂̄ 𝑣⃗𝑟𝑜𝑣 = [𝑂̄𝑣𝑥𝑅/𝑂 −𝑂̄ 𝑣𝑥,𝑅𝐹/𝑂]𝑖⃗𝑅̄ + [𝑂̄𝑣𝑦𝑅/𝑂
−𝑂̄ 𝑣𝑦,𝑅𝐹/𝑂] 𝑗𝑅̄ + [𝑂̄𝑣𝑧𝑅/𝑂 −𝑂̄ 𝑣𝑧,𝑅𝐹/𝑂]𝑘𝑅̄ (41)

The flow acceleration force acting on the rover body from the
flow acceleration is proportional to the fluid that the rover body
displaced [6].

𝐹𝑟𝑜𝑣,𝐹𝐴 = 𝜌𝑉𝑟𝑜𝑣
𝑂̄𝑎𝐹/𝑂 (42)

Where 𝑂̄𝑎𝐹/𝑂 is the acceleration of the flow.

𝑂̄𝑎𝐹/𝑂 =
𝑑

𝑑𝑡

𝑂̄ 𝑣⃗𝐹/𝑂

3.7 Torques
The torques acting on the links, helical drives, and rover

chassis are calculated from the forces acting on the object about
the center of mass of each rigid body. The gravity force, buoyancy
force, drag force, and flow acceleration force are approximated as
point forces acting on the bodies center of mass, so they generate
no torque about the center of mass. The reaction forces from the
link and hinge connections are found to cancel out in the system’s
equations of motion.

3.8 Added Mass
The added mass of the pressure distribution on the links

from the fluid surrounding the links and rover body [6]. The
added mass of the rigid bodies results in an effective inertia and
is included in the mass and moment of inertia terms located in
the generalized inertia force equations, 𝐹𝑅

∗. The added mass
approximations for cylinders are modeled as [6]

𝑚𝑘,𝑎𝑑𝑑 =
𝜌𝜋𝑟2

𝑘
𝑙𝑘

4
(43)

Where 𝑉𝑘 = 𝜋𝑟2
𝑘
𝑙𝑘 and 𝜌 is the density of the water. The added

mass of each link and helical drive is calculated as

𝑀𝑘 = 𝑚𝑘,𝑎𝑑𝑑 + 𝑚𝑘 = 𝑚𝑘 +
𝜌𝜋𝑟2

𝑘
𝑙𝑘

4
(44)
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The added mass term is applied to the normal components of the
links and helical drives [6]. The added mass matrix for each link
(𝐿1, 𝐿3, 𝐿4, 𝐿6) is

𝑀̃𝑘 = [𝑚𝑘 +
𝜌𝜋𝑟2

𝑘
𝑙𝑘

4
]𝑖⃗𝐿𝑘

𝑖⃗𝐿𝑘
+ [𝑚𝑘] 𝑗𝐿𝑘

𝑗𝐿𝑘

+ [𝑚𝑘 +
𝜌𝜋𝑟2

𝑘
𝑙𝑘

4
]𝑘𝐿𝑘

𝑘𝐿𝑘
(45)

The added mass matrix for each helical drive (𝐿2, 𝐿5) is

𝑀̃𝑘 = [𝑚𝑘]𝑖⃗𝐿𝑘
𝑖⃗𝐿𝑘

+ [𝑚𝑘 +
𝜌𝜋𝑟2

𝑘
𝑙𝑘

4
] 𝑗𝐿𝑘

𝑗𝐿𝑘

+ [𝑚𝑘 +
𝜌𝜋𝑟2

𝑘
𝑙𝑘

4
]𝑘𝐿𝑘

𝑘𝐿𝑘
(46)

The total mass moment of inertia terms for each link
(𝐿1, 𝐿3, 𝐿4, 𝐿6) about each link center of mass, approximated
as a thin rod, is

𝐼𝑐𝑚𝑘 ,𝑡𝑜𝑡 =

[︃
1
12

𝑀𝑘 𝑙
2
𝑘

]︃
𝑖⃗𝐿𝑘

𝑖⃗𝐿𝑘
+ [0] 𝑗𝐿𝑘

𝑗𝐿𝑘
+

[︃
1
12

𝑀𝑘 𝑙
2
𝑘

]︃
𝑘𝐿𝑘

𝑘𝐿𝑘

The total mass moment of inertia for each helical drive (𝐿2, 𝐿5)
about each helical drive center of mass, approximated currently
as a thin rod, is

𝐼𝑐𝑚𝑘 ,𝑡𝑜𝑡 = [0] 𝑖⃗𝐿𝑘
𝑖⃗𝐿𝑘

+
[︃

1
12

𝑀𝑘 𝑙
2
𝑘

]︃
𝑗𝐿𝑘

𝑗𝐿𝑘
+

[︃
1
12

𝑀𝑘 𝑙
2
𝑘

]︃
𝑘𝐿𝑘

𝑘𝐿𝑘

The added mass for the rover chassis, modeled as an ellipsoid, is
approximated using the added mass equation [11].

𝑚𝑟𝑜𝑣,𝑎𝑑𝑑 = 𝜌𝑉𝑟𝑜𝑣𝑐𝑚 (47)

Where 𝑐𝑚 is the added mass, or hydrodynamic mass, coefficient
for a given geometry. The added mass coefficient for an ellipsoid
is broken into components of vertical motion, 𝑐𝑚𝑦

and 𝑐𝑚𝑧
, and

horizontal motion, 𝑐𝑚𝑥
.

𝑀̃𝑟𝑜𝑣 = [𝑚𝑟𝑜𝑣 + 𝜌𝑉𝑟𝑜𝑣𝑐𝑚𝑥
]𝑖⃗𝑅̄ 𝑖⃗𝑅̄ + [𝑚𝑟𝑜𝑣 + 𝜌𝑉𝑟𝑜𝑣𝑐𝑚𝑦

] 𝑗𝑅̄ 𝑗𝑅̄
+ [𝑚𝑟𝑜𝑣 + 𝜌𝑉𝑟𝑜𝑣𝑐𝑚𝑧

]𝑘𝑅̄𝑘𝑅̄ (48)

When 𝑏/𝑎 = 2 is approximated to be 𝑐𝑚𝑥
= 0.225 and 𝑐𝑚𝑦

=

𝑐𝑚𝑧
= 0.7 [11]. The added mass moment of inertia for an ellipsoid

about the minor axis can be calculated using

𝐼𝑅,𝑎𝑑𝑑 = [0] 𝑖⃗𝑅̄ 𝑖⃗𝑅̄ +
[︃
1
5
𝜌𝑉𝑟𝑜𝑣𝑐𝐼 (𝑎2 + 𝑏2)

]︃
𝑗𝑅̄ 𝑗𝑅̄

+
[︃
1
5
𝜌𝑉𝑟𝑜𝑣𝑐𝐼 (𝑎2 + 𝑏2)

]︃
𝑘𝑅̄𝑘𝑅̄ (49)

The added mass moment of inertia coefficient, 𝑐𝐼 , about the minor
axis when 𝑏/𝑎 = 2 is approximated to be 𝑐𝐼𝑦 = 𝑐𝐼𝑧 = 0.225 [11].
There is no added mass moment of inertia about the ellipsoid
major axis. Therefore the total moment of inertia tensor for the
rover is

𝐼𝑅,𝑡𝑜𝑡 = [1
5
𝑚𝑟𝑜𝑣 (𝑎2 + 𝑎2)]𝑖⃗𝑅̄ 𝑖⃗𝑅̄ + [ 1

5
(𝑚𝑟𝑜𝑣 + 𝜌𝑉𝑟𝑜𝑣𝑐𝐼 ) (𝑎2

+ 𝑏2)] 𝑗𝑅̄ 𝑗𝑅̄ + [ 1
5
(𝑚𝑟𝑜𝑣 + 𝜌𝑉𝑟𝑜𝑣𝑐𝐼 ) (𝑎2 + 𝑏2)]𝑘𝑅̄𝑘𝑅̄ (50)

The added mass and added mass moment of inertia terms are
incorporated into the general inertia force equation.

𝐹∗
𝑟 = −

𝑁𝑅∑︂
𝑘=1

(𝑀̃𝑘 · 𝑜̄𝑎𝑐𝑚𝑘/𝑂 ·𝑜̄𝑜 𝑣⃗𝑐𝑚𝑘 ,𝑟 + ((𝐼𝑐𝑚𝑘 ,𝑡𝑜𝑡 ·𝑂̄ 𝛼⃗𝐵𝑘+

𝑂̄𝜔⃗𝐵𝑘 × (𝐼𝑐𝑚𝑘 ,𝑡𝑜𝑡 ·𝑂̄ 𝜔⃗𝐵𝑘 )) ·𝑂̄ 𝜔𝑟
𝐵𝑘 ) −

𝑁𝑃∑︂
𝑙=1

𝑚𝑙
𝑜̄𝑎𝑚𝑙/𝑂 ·𝑜̄𝑜 𝑣⃗𝑚𝑙 ,𝑟

(51)

4. NUMERICAL SIMULATION
All of these equations can be substitute into 𝐹𝑟 + 𝐹∗

𝑟 = 0
for each generalize motion to calculate the equations of motion.
Making the following geometric assumptions of the system

𝑑1 = 𝑑3 = 𝑑4 = 𝑑6 = 0.5𝑖𝑛 = 0.0127𝑚
𝑙1 = 𝑙3 = 𝑙4 = 𝑙6 = 10𝑖𝑛 = 0.254𝑚

𝑑2 = 𝑑5 = 2.5𝑖𝑛 = 0.0635𝑚
𝑙2 = 𝑙5 = 12.5𝑖𝑛 = 0.3175𝑚

2𝑏 =
𝑑1
2 + 𝑙2 + 𝑑3

2
𝑎 = 𝑏/2

𝑔 = 9.81𝑚/𝑠
𝜌 = 998.2 𝑘𝑔

𝑚3

The following specific case was applied to calculate the equa-
tions of motion. The helical drives are out to the side in line with
the center of mass of the rover chassis body and are modeled as
constants.

𝜃𝐴 = 𝜃𝐵 = 𝜋
2

𝜃𝐶 = 𝜃𝐷 = 𝜋
2

𝜃̇𝐴 = 𝜃̇𝐵 = 0
𝜃̇𝐶 = 𝜃̇𝐷 = 0
𝜃𝐴 = 𝜃𝐵 = 0
𝜃𝐶 = 𝜃𝐷 = 0

The natural buoyancy of the system and the gravity of the
system are calculated to make the forces cancel out, 𝐹𝑘,𝑔𝑟𝑎𝑣 +
𝐹𝑘,𝐵 = 0. The required masses of each link, given the dimensions
stated, to cancel out the gravity and natural buoyancy of the rigid
bodies can be calculated from

𝐹𝑘,𝑔𝑟𝑎𝑣 = −𝐹𝑘,𝐵

𝑚𝑘 (−𝑔) = −(−𝜌𝑉𝑘 (−𝑔))
𝑚𝑘 = 𝜌𝑉𝑘 = 𝜌𝜋

𝑑𝑘

2 𝑙𝑘

The helical drive masses are 𝑚2 = 𝑚5 ≈ 1𝑘𝑔. The link masses
are 𝑚1 = 𝑚3 = 𝑚4 = 𝑚6 ≈ 0.32𝑘𝑔. The required masses of the
rover chassis, given the dimensions stated, to calculate the total
mass required to cancel out the natural buoyancy of the rover
chassis

𝐹𝑟𝑜𝑣,𝑔𝑟𝑎𝑣 = −𝐹𝑟𝑜𝑣,𝐵
𝑚𝑟𝑜𝑣 (−𝑔) = −(−𝜌𝑉𝑟𝑜𝑣 (−𝑔))

𝑚𝑟𝑜𝑣 = 𝜌𝑉𝑘 = 𝜌 4
3𝜋𝑎

2𝑏

The total mass of the rover chassis and the sliding masses is
𝑚𝑟𝑜𝑣 ≈ 4.70𝑘𝑔. The only buoyancy from the system comes from
the ballast system filling or draining (𝐹𝑘,𝑏𝑢𝑜𝑦𝑛𝑒𝑡 ). For cases where
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the sliding masses are present the mass of the sliding masses is
selected to be 𝑚𝑝,𝑥 = 𝑚𝑝,𝑦 = 0.5𝑘𝑔. The added mass from the
sliding masses will be offset by 𝐹𝑘,𝑏𝑢𝑜𝑦𝑛𝑒𝑡 to prevent sinking.
The water in this case is assumed to be static, and therefore has
no flow velocity or acceleration.

𝑂̄ 𝑣⃗𝐹/𝑂 = 0𝑖⃗𝑂̄ + 0 𝑗𝑂̄ + 0𝑘𝑂̄

. The differential equations of motion were simulated in MAT-
LAB using ode45(), at initial values 𝑞1 (0) = 𝑞2 (0) = 𝑞3 (0) =

𝑞4 (0) = 𝑞5 (0) = 𝑞6 (0) = 𝑞1 (0) = 𝑞2 (0) = 𝑞3 (0) = 𝑞4 (0) =

𝑞5 (0) = 𝑞6 (0) = 0.

5. RESULTS
The dynamic model was simulated for various cases to

demonstrate the rover’s underwater capabilities.

5.1 Forward Thrust
The net thrust from the helical drives provides a forward

motion. In the case the net thrust and net buoyancy forces were
set to be

𝐹2,𝑡ℎ𝑟𝑢𝑠𝑡𝑛𝑒𝑡 = 10𝑁
𝐹5,𝑡ℎ𝑟𝑢𝑠𝑡𝑛𝑒𝑡 = 10𝑁

𝐹2,𝑏𝑢𝑜𝑦𝑛𝑒𝑡 =
𝑚𝑝,𝑥𝑔

2 + 𝑚𝑝,𝑦𝑔

2 𝑁

𝐹5,𝑏𝑢𝑜𝑦𝑛𝑒𝑡 =
𝑚𝑝,𝑥𝑔

2 + 𝑚𝑝,𝑦𝑔

2 𝑁

The net buoyancy accounts for the weight of the sliding
masses, split evenly between the two helical drives. This prevents
the rover from sinking due to the additional mass from the sliding
masses and allows a distinct demonstration of how the rover will
perform when the sliding masses are off center.

The location of the sliding masses for this case are located at
the center of mass of the rover body.

𝑥𝑝 = 0𝑖⃗𝑅̄
𝑦𝑝 = 0 𝑗𝑅̄

The overall path of the rover in the 𝑥𝑂̄, 𝑦𝑂̄, and 𝑧𝑂̄ directions is
plotted in Fig. 4. The rover experiences a brief acceleration when
it first begins moving from rest, and then the position increases
linearly and the rover velocity is constant. This provides a base
case for the rover in a forward motion, to confirm the expected
motion when both helical drives have the same amount of net
thrust.

5.2 Rise from Buoyancy
The net buoyancy from the helical drives provides a rising

motion. In the case the net thrust and net buoyancy forces were
set to be

𝐹2,𝑡ℎ𝑟𝑢𝑠𝑡𝑛𝑒𝑡 = 0𝑁
𝐹5,𝑡ℎ𝑟𝑢𝑠𝑡𝑛𝑒𝑡 = 0𝑁

𝐹2,𝑏𝑢𝑜𝑦𝑛𝑒𝑡 =
𝑚𝑝,𝑥𝑔

2 + 𝑚𝑝,𝑦𝑔

2 + 10𝑁
𝐹5,𝑏𝑢𝑜𝑦𝑛𝑒𝑡 =

𝑚𝑝,𝑥𝑔

2 + 𝑚𝑝,𝑦𝑔

2 + 10𝑁

The net buoyancy accounts for the weight of the sliding
masses, split evenly between the two helical drives. This prevents
the rover from sinking due to the additional mass from the sliding

masses and allows a distinct demonstration of how the rover will
perform when the sliding masses are off center.

The location of the sliding masses for this case are located at
the center of mass of the rover body.

𝑥𝑝 = 0𝑖⃗𝑅̄
𝑦𝑝 = 0 𝑗𝑅̄

The overall path of the rover in the 𝑥𝑂̄, 𝑦𝑂̄, and 𝑧𝑂̄ directions is
plotted in Fig. 5. The rover experiences a brief acceleration when
it first begins moving from rest, and then the position increases
linearly and the rover velocity is constant. This provides a base
case for the rover in a rising motion, to confirm the expected
motion when both helical drives have the same amount of net
buoyancy.

5.3 Yaw from Thrust Variation
The net thrust from the helical drives provides a forward

motion, and when the forces are not equal will result in the rover
yawing. The rover the net thrust and net buoyancy forces were
set to be

𝐹2,𝑡ℎ𝑟𝑢𝑠𝑡𝑛𝑒𝑡 = 10𝑁
𝐹5,𝑡ℎ𝑟𝑢𝑠𝑡𝑛𝑒𝑡 = 5𝑁

𝐹2,𝑏𝑢𝑜𝑦𝑛𝑒𝑡 =
𝑚𝑝,𝑥𝑔

2 + 𝑚𝑝,𝑦𝑔

2 𝑁

𝐹5,𝑏𝑢𝑜𝑦𝑛𝑒𝑡 =
𝑚𝑝,𝑥𝑔

2 + 𝑚𝑝,𝑦𝑔

2 𝑁

The net buoyancy accounts for the weight of the sliding
masses, split evenly between the two helical drives. This prevents
the rover from sinking due to the additional mass from the sliding
masses and allows a distinct demonstration of how the rover will
perform when the sliding masses are off center.

The location of the sliding masses for this case are located at
the center of mass of the rover body.

𝑥𝑝 = 0𝑖⃗𝑅̄
𝑦𝑝 = 0 𝑗𝑅̄

A top view of the rover path in the x-y plane in Fig. 6 shows
the path of the rover in the 𝑥𝑂̄ and 𝑦𝑂̄ directions. The yaw, 𝜓,
position of the rover vs time is plotted in Fig. 6. The rover
experiences an angular acceleration when it first begins moving
from rest, and then the angular velocity approaches constant and
the rover reaches a constant diameter circular path in congruent
circles as confirmed in the x position of the rover vs time plot in
Fig. 6.

5.4 Roll Motion
The rover has two methods of implementing roll, the net

buoyancy and the y-direction sliding mass.

5.4.1 Roll from Buoyancy in Helical Drive. The net buoy-
ancy from the helical drives provides a rising motion, and when
the forces are not equal will result in the rover rolling. The rover
the net thrust and net buoyancy forces were set to be

𝐹2,𝑡ℎ𝑟𝑢𝑠𝑡𝑛𝑒𝑡 = 0𝑁
𝐹5,𝑡ℎ𝑟𝑢𝑠𝑡𝑛𝑒𝑡 = 0𝑁

𝐹2,𝑏𝑢𝑜𝑦𝑛𝑒𝑡 =
𝑚𝑝,𝑥𝑔

2 + 𝑚𝑝,𝑦𝑔

2 + 10𝑁
𝐹5,𝑏𝑢𝑜𝑦𝑛𝑒𝑡 =

𝑚𝑝,𝑥𝑔

2 + 𝑚𝑝,𝑦𝑔

2 𝑁
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(a) Rover Path (b) Rover X Position vs Time

FIGURE 4: FORWARD MOTION FROM THRUST GENERALIZED COORDINATE PLOTS

(a) Rover Path (b) Rover Z Position vs Time

FIGURE 5: RISE FROM BUOYANCY GENERALIZED COORDINATE PLOTS

(a) Rover X vs Y Path (b) Rover Yaw Position vs Time (c) Rover X Position vs Time

FIGURE 6: YAW FROM THRUST GENERALIZED COORDINATE PLOTS

The net buoyancy accounts for the weight of the sliding
masses, split evenly between the two helical drives. This prevents
the rover from sinking due to the additional mass from the sliding
masses and allows a distinct demonstration of how the rover will
perform when the sliding masses are off center.

The location of the sliding masses for this case are located at
the center of mass of the rover body.

𝑥𝑝 = 0𝑖⃗𝑅̄
𝑦𝑝 = 0 𝑗𝑅̄

The overall path of the rover in the 𝑥𝑂̄, 𝑦𝑂̄, and 𝑧𝑂̄ directions
is plotted in Fig. 7. The roll, 𝜙, position of the rover vs time is

plotted in Fig. 7. The rover experiences an angular acceleration
when it first begins moving from rest, and then the roll rotation
overshoots 𝜋

2 and then returns and levels out at 𝜋
2 , where the

rover is now balanced on its side. As the rover rotates from net
buoyancy, the rover experiences roll motion, as well as motion in
the 𝑧𝑂̄ direction from the continuous positive net buoyancy.

5.4.2 Roll from Sliding Mass Moment. The y-direction
sliding mass moving away from the center of mass of the rover
chassis, will apply a moment about the rover center of mass in
the rolling direction. The rover the net thrust and net buoyancy
forces were set to be
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(a) Rover Path (b) Rover Roll Position vs Time

FIGURE 7: ROLL FROM BUOYANCY GENERALIZED COORDINATE PLOTS

𝐹2,𝑡ℎ𝑟𝑢𝑠𝑡𝑛𝑒𝑡 = 0𝑁
𝐹5,𝑡ℎ𝑟𝑢𝑠𝑡𝑛𝑒𝑡 = 0𝑁

𝐹2,𝑏𝑢𝑜𝑦𝑛𝑒𝑡 =
𝑚𝑝,𝑥𝑔

2 + 𝑚𝑝,𝑦𝑔

2 𝑁

𝐹5,𝑏𝑢𝑜𝑦𝑛𝑒𝑡 =
𝑚𝑝,𝑥𝑔

2 + 𝑚𝑝,𝑦𝑔

2 𝑁

There is no motion from the net thrust and net buoyancy applied
in this case. The net buoyancy accounts for the weight of the
sliding masses, split evenly between the two helical drives. This
prevents the rover from sinking due to the additional mass from
the sliding masses and allows a distinct demonstration of how the
rover will perform when the sliding masses are off center. The
location of the x-direction sliding mass is located at the center of
mass of the rover body and the y-direction sliding mass is located
3 inches from center of mass of the rover body in the 𝑗𝑅̄ direction.

𝑥𝑝 = 0𝑖⃗𝑅̄
𝑦𝑝 = [3𝑖𝑛] 𝑗𝑅̄ = [0.0762𝑚] 𝑗𝑅̄

The overall path of the rover in the 𝑥𝑂̄, 𝑦𝑂̄, and 𝑧𝑂̄ directions is
plotted in Fig. 8. As the rover rotates from the y-direction sliding
mass, the rover experiences roll motion as well as movement
in the 𝑦𝑂̄ and 𝑧𝑂̄ direction as the rover adjusts to the new 𝑦𝑝
location. The roll, 𝜙, position of the rover of the rover vs time is
plotted in Fig. 8. The rover experiences an angular acceleration,
the magnitude of the roll rotation overshoots 𝜋

2 and then returns
and oscillates about 𝜋

2 , where the rover is now on its side. The
roll from the y-direction sliding mass is oscillatory, while the
roll from the net buoyancy reaches a steady solution relatively
quickly. However the roll from the y-direction sliding mass does
not change the position of the rover as much as the roll from the
net buoyancy.

5.5 Pitch from Sliding Mass Moment
The x-direction sliding mass moving away from the center

of mass of the rover chassis, will apply a moment about the rover
center of mass in the pitching direction. The rover the net thrust
and net buoyancy forces were set to be

𝐹2,𝑡ℎ𝑟𝑢𝑠𝑡𝑛𝑒𝑡 = 10𝑁
𝐹5,𝑡ℎ𝑟𝑢𝑠𝑡𝑛𝑒𝑡 = 10𝑁

𝐹2,𝑏𝑢𝑜𝑦𝑛𝑒𝑡 =
𝑚𝑝,𝑥𝑔

2 + 𝑚𝑝,𝑦𝑔

2 𝑁

𝐹5,𝑏𝑢𝑜𝑦𝑛𝑒𝑡 =
𝑚𝑝,𝑥𝑔

2 + 𝑚𝑝,𝑦𝑔

2 𝑁

There is a forward motion from the net thrust applied in this case.
The net buoyancy accounts for the weight of the sliding masses,
split evenly between the two helical drives. This prevents the
rover from sinking due to the additional mass from the sliding
masses and allows a distinct demonstration of how the rover will
perform when the sliding masses are off center.

The location of the y-direction sliding mass is located at the
center of mass of the rover body and the x-direction sliding mass
is located 3 inches from center of mass of the rover body in the
−𝑖⃗𝑅̄ direction.

𝑥𝑝 = [−3𝑖𝑛]𝑖⃗𝑅̄ = [−0.0762𝑚]𝑖⃗𝑅̄
𝑦𝑝 = 0 𝑗𝑅̄

The overall path of the rover in the 𝑥𝑂̄, 𝑦𝑂̄, and 𝑧𝑂̄ directions
is plotted in Fig. 9. As the rover pitches upward from the x-
direction sliding mass, the rover experiences pitch motion as well
as upward movement in the 𝑧𝑂̄ direction as the rover continues to
propel forward from net thrust in the 𝑖⃗𝑅̄ direction.

The pitch, 𝜃, position of the rover vs time is plotted in Fig. 9.
The rover experiences an angular acceleration, the pitch rotation
approaches 𝜋

2 , where the rover is now facing the 𝑘𝑂̄ direction.

6. CONCLUSION
Kane’s method successfully models the underwater motion

for the MAARCO rover. The model includes the expected hy-
drodynamic forces acting on the rover, as well as other generated
forces from the system such as net thrust, net buoyancy, and con-
trol forces. The model confirms that the rover motion can be
controlled by the helical drive thrust, helical drive ballast sys-
tem buoyancy, and the position of the sliding masses by inducing
a linear or angular acceleration on the rover body system. The
model has the ability to model transient effects of a hydrodynamic
environment. The thrust from the helical drives will produce a
forward acceleration, and the imbalance of thrust is confirmed to
result in a yaw angular acceleration about the rover chassis center.
The buoyancy from the helical drives will produce a upward ac-
celeration, and the imbalance of buoyancy is confirmed to result
in a roll angular acceleration about the rover chassis center. The
x-direction sliding mass gravity force offset from the center of the
rover chassis will produce a moment about the y-axis, that results
in a pitch angular acceleration about the rover chassis center. The
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(a) Rover Path (b) Rover Roll Position vs Time

FIGURE 8: ROLL FROM SLIDING MASS WITH NO MOTION GENERALIZED COORDINATE PLOTS

(a) Rover Path (b) Rover Pitch Position vs Time

FIGURE 9: PITCH UP FROM SLIDING MASS WITH FORWARD MOTION GENERALIZED COORDINATE PLOTS

y-direction sliding mass gravity force offset from the center of
the rover chassis will produce a moment about the x-axis, that re-
sults in a roll angular acceleration about the rover chassis center.
These base cases behave as expected from the applied motion to
the rover system, and demonstrate the success of Kane’s method
modeling.

This method provided a simplified model for a complex sys-
tem, with lower computational cost, and the ability to numeri-
cally simulate the rover motion underwater. This dynamic model
demonstrates the capabilities of the rover underwater and provides
a model to further develop controls methods for specific cases and
missions as the resulting linear and angular positions are calcu-
lated. Specific control equations can be applied to the sliding
masses position and motion, the thrust of the helical drives, and
the buoyancy of the helical drive ballast to control the system per-
formance based on the design and desired mission requirements.
Future work for a more complete model would include investiga-
tion into more accurate helical drive properties, including the net
thrust force, net buoyancy force, moment of inertia from further
helical drive design and studies. These additional studies could
be implemented in the dynamic model equations described above
for a more accurate model. Different cases would also provide
additional insight on the behavior of the underwater vehicle.
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APPENDIX A. DIRECTION COSINE MATRICES ROVER
SYSTEM

For side A-B, the direction cosine matrices between 𝐴̄ and
𝑅̄ as well as 𝐵̄ and 𝑅̄ are

𝐴̄[𝐶] 𝑅̄ =𝐵̄ [𝐶] 𝑅̄ =

⎡⎢⎢⎢⎢⎣
1 0 0
0 𝑐𝑜𝑠 𝜋

2 𝑠𝑖𝑛 𝜋
2

0 −𝑠𝑖𝑛 𝜋
2 𝑐𝑜𝑠 𝜋

2

⎤⎥⎥⎥⎥⎦
The direction cosine matrices for the A-B side link and helical

drive body frames are

𝐿1 [𝐶] 𝐴̄ =

⎡⎢⎢⎢⎢⎣
1 0 0
0 𝑐𝑜𝑠𝜃𝐴 𝑠𝑖𝑛𝜃𝐴
0 −𝑠𝑖𝑛𝜃𝐴 𝑐𝑜𝑠𝜃𝐴

⎤⎥⎥⎥⎥⎦
𝐿2 [𝐶]𝐿1 =

⎡⎢⎢⎢⎢⎣
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎦
𝐿3 [𝐶]𝐿2 =

⎡⎢⎢⎢⎢⎣
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎦
𝐿3 [𝐶] 𝐵̄ =

⎡⎢⎢⎢⎢⎣
1 0 0
0 𝑐𝑜𝑠𝜃𝐵 𝑠𝑖𝑛𝜃𝐵
0 −𝑠𝑖𝑛𝜃𝐵 𝑐𝑜𝑠𝜃𝐵

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
1 0 0
0 𝑐𝑜𝑠𝜃𝐴 𝑠𝑖𝑛𝜃𝐴
0 −𝑠𝑖𝑛𝜃𝐴 𝑐𝑜𝑠𝜃𝐴

⎤⎥⎥⎥⎥⎦
For side C-D, the direction cosine matrices between 𝐶̄ and

𝑅̄ as well as 𝐷̄ and 𝑅̄ are

𝐶̄ [𝐶] 𝑅̄ =𝐷̄ [𝐶] 𝑅̄
⎡⎢⎢⎢⎢⎣
1 0 0
0 𝑐𝑜𝑠 𝜋

2 𝑠𝑖𝑛 𝜋
2

0 −𝑠𝑖𝑛 𝜋
2 𝑐𝑜𝑠 𝜋

2

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
𝑐𝑜𝑠𝜋 𝑠𝑖𝑛𝜋 0
−𝑠𝑖𝑛𝜋 𝑐𝑜𝑠𝜋 0

0 0 1

⎤⎥⎥⎥⎥⎦

The direction cosine matrices for the C-D side link and helical
drive body frames are

𝐿4 [𝐶]𝐶̄ =

⎡⎢⎢⎢⎢⎣
1 0 0
0 𝑐𝑜𝑠𝜃𝐶 𝑠𝑖𝑛𝜃𝐶
0 −𝑠𝑖𝑛𝜃𝐶 𝑐𝑜𝑠𝜃𝐶

⎤⎥⎥⎥⎥⎦
𝐿4 [𝐶]𝐿5 =

⎡⎢⎢⎢⎢⎣
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎦
𝐿5 [𝐶]𝐿6 =

⎡⎢⎢⎢⎢⎣
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎦
𝐿6 [𝐶]𝐷̄ =

⎡⎢⎢⎢⎢⎣
1 0 0
0 𝑐𝑜𝑠𝜃𝐷 𝑠𝑖𝑛𝜃𝐷
0 −𝑠𝑖𝑛𝜃𝐷 𝑐𝑜𝑠𝜃𝐷

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
1 0 0
0 𝑐𝑜𝑠𝜃𝐶 𝑠𝑖𝑛𝜃𝐶
0 −𝑠𝑖𝑛𝜃𝐶 𝑐𝑜𝑠𝜃𝐶

⎤⎥⎥⎥⎥⎦
APPENDIX B. POSITION VECTORS ROVER SYSTEM

The position vectors of the hinges of the system from the
rover chassis center of mass are

𝑟𝐴/𝑅 = −𝑏𝑖⃗𝑅̄ + 0 𝑗𝑅̄ + 0𝑘𝑅̄

𝑟𝐵/𝑅 = 𝑏𝑖⃗𝑅̄ + 0 𝑗𝑅̄ + 0𝑘𝑅̄

𝑟𝐶/𝑅 = −𝑏𝑖⃗𝑅̄ + 0 𝑗𝑅̄ + 0𝑘𝑅̄

𝑟𝐷/𝑅 = 𝑏𝑖⃗𝑅̄ + 0 𝑗𝑅̄ + 0𝑘𝑅̄
The position vectors for the links and helical drive on the

A-B side are

𝑟𝐿1/𝐴 = 𝑟𝑐𝑚1/𝐴 = 0𝑖⃗𝐿1 −
𝑙1
2
𝑗𝐿1 + 0𝑘𝐿1

𝑟𝐿2/𝐿1 = 𝑟𝑐𝑚2/𝑐𝑚1 =

[︃
𝑑1
2

+ 𝑙2
2

]︃
𝑖⃗𝐿2 −

𝑙1
2
𝑗𝐿2 + 0𝑘𝐿2

𝑟𝐿′
2/𝐿1 = 0𝑖⃗𝐿2 + 0 𝑗𝐿2 + 0𝑘𝐿2

𝑟𝐿3/𝐿2 = 𝑟𝑐𝑚3/𝑐𝑚2 =

[︃
𝑑3
2

+ 𝑙2
2

]︃
𝑖⃗𝐿3 +

𝑙3
2
𝑗𝐿3 + 0𝑘𝐿3

𝑟𝐵/𝐿3 = 𝑟𝐵/𝑐𝑚3 = 0𝑖⃗𝐿3 +
𝑙3
2
𝑗𝐿3 + 0𝑘𝐿3

The position vectors for the links and helical drive on the
C-D side are

𝑟𝐿6/𝐷 = 𝑟𝑐𝑚6/𝐷 = 0𝑖⃗𝐿6 −
𝑙6
2
𝑗𝐿6 + 0𝑘𝐿6

𝑟𝐿5/𝐿6 = 𝑟𝑐𝑚5/𝑐𝑚6 =

[︃
𝑑6
2

+ 𝑙5
2

]︃
𝑖⃗𝐿5 −

𝑙6
2
𝑗𝐿5 + 0𝑘𝐿5
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𝑟𝐿′
5/𝐿5 = 0𝑖⃗𝐿5 + 0 𝑗𝐿5 + 0𝑘𝐿5

𝑟𝐿4/𝐿5 = 𝑟𝑐𝑚4/𝑐𝑚5 =

[︃
𝑑4
2

+ 𝑙5
2

]︃
𝑖⃗𝐿4 +

𝑙4
2
𝑗𝐿4 + 0𝑘𝐿4

𝑟𝐶/𝐿4 = 𝑟𝐶/𝑐𝑚4 = 0𝑖⃗𝐿4 +
𝑙4
2
𝑗𝐿4 + 0𝑘𝐿4

The position vectors to relate the links and helical drives
from the inertial reference frame can be calculated. The position
vectors for side A-B are

𝑟𝐴/𝑂 = 𝑟𝐴/𝑅 + 𝑟𝑅/𝑂

𝑟𝐵/𝑂 = 𝑟𝐵/𝑅 + 𝑟𝑅/𝑂

𝑟𝐿1/𝑂 = 𝑟𝑐𝑚1/𝑂 = 𝑟𝑐𝑚1/𝐴 + 𝑟𝐴/𝑂

𝑟𝐿2/𝑂 = 𝑟𝑐𝑚2/𝑂 = 𝑟𝑐𝑚2/𝑐𝑚1 + 𝑟𝑐𝑚1/𝑂

𝑟𝐿3/𝑂 = 𝑟𝑐𝑚3/𝑂 = 𝑟𝑐𝑚3/𝑐𝑚2 + 𝑟𝑐𝑚2/𝑂

The position vectors for side C-D are

𝑟𝐶/𝑂 = 𝑟𝐶/𝑅 + 𝑟𝑅/𝑂

𝑟𝐷/𝑂 = 𝑟𝐷/𝑅 + 𝑟𝑅/𝑂

𝑟𝐿6/𝑂 = 𝑟𝑐𝑚6/𝑂 = 𝑟𝑐𝑚6/𝐷 + 𝑟𝐷/𝑂

𝑟𝐿5/𝑂 = 𝑟𝑐𝑚5/𝑂 = 𝑟𝑐𝑚5/𝑐𝑚6 + 𝑟𝑐𝑚6/𝑂

𝑟𝐿4/𝑂 = 𝑟𝑐𝑚4/𝑂 = 𝑟𝑐𝑚4/𝑐𝑚5 + 𝑟𝑐𝑚5/𝑂

Then the position vectors can be rotated back into the body
frame using the direction cosine matrices. The position vectors
can be used to calculate the velocity and acceleration for each of
the links an helical drives.

𝑂̄ 𝑣⃗𝑐𝑚𝑘/𝑂 = 𝑂̄ 𝑑

𝑑𝑡
𝑟𝑐𝑚𝑘/𝑂

= 𝐿𝑘
𝑑

𝑑𝑡
𝑟𝑐𝑚𝑘/𝑂 +𝑂̄ 𝜔𝐿𝑘 × 𝑟𝑐𝑚𝑘/𝑂 (52)

𝑂̄𝑎𝑐𝑚𝑘/𝑂 = 𝑂̄ 𝑑

𝑑𝑡

𝑂̄ 𝑣⃗𝑐𝑚𝑘/𝑂

= 𝐿𝑘
𝑑

𝑑𝑡

𝑂̄ 𝑣⃗𝑐𝑚𝑘/𝑂 +𝑂̄ 𝜔𝐿𝑘 × 𝑂̄ 𝑣⃗𝑐𝑚𝑘/𝑂 (53)

The angular velocities between the link and helical drive
body frames and the inertial reference frame 𝑂̄

𝑂̄𝜔⃗𝐿𝑘 = 𝑂̄𝜔𝑥
𝐿𝑘 𝑖⃗𝐿𝑘

+ 𝑂̄𝜔𝑦
𝐿𝑘 𝑗𝐿𝑘

+ 𝑂̄𝜔𝑧
𝐿𝑘 𝑘𝐿𝑘

(54)

𝑂̄𝜔𝑥
𝐿𝑘 =

[︁
0 0 1

]︁
𝐿𝑘 [𝐶]𝑂̄𝑂̄ ̇[𝐶]𝐿𝑘

⎡⎢⎢⎢⎢⎣
0
1
0

⎤⎥⎥⎥⎥⎦ (55)

𝑂̄𝜔𝑦
𝐿𝑘 =

[︁
1 0 0

]︁
𝐿𝑘 [𝐶]𝑂̄𝑂̄ ̇[𝐶]𝐿𝑘

⎡⎢⎢⎢⎢⎣
0
0
1

⎤⎥⎥⎥⎥⎦ (56)

𝑂̄𝜔𝑧
𝐿𝑘 =

[︁
0 1 0

]︁
𝐿𝑘 [𝐶]𝑂̄𝑂̄ ̇[𝐶]𝐿𝑘

⎡⎢⎢⎢⎢⎣
1
0
0

⎤⎥⎥⎥⎥⎦ (57)

The angular acceleration vectors of each link and helical
drive are calculated from the time derivative of the angular ve-
locity vectors

𝑂̄𝛼⃗𝐿𝑘 = 𝑂̄ 𝑑

𝑑𝑡

𝑂̄𝜔⃗𝐿𝑘 (58)

14 Copyright © 2023 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/IM

EC
E/proceedings-pdf/IM

EC
E2023/87639/V006T07A012/7239184/v006t07a012-im

ece2023-113559.pdf by N
C

 State U
niversity Libraries user on 30 August 2024


	Abstract
	1 Introduction
	2 Kane's Method Background
	3 Rover Model
	3.1 Rover Description
	3.2 Rover System Coordinates
	3.3 Mass and Moment of Inertia
	3.4 Kinematics
	3.5 Rover System Kane's Method
	3.5.1 Generalized Speeds
	3.5.2 Partial Velocities and Partial Angular Velocities

	3.6 Forces
	3.6.1 Calculating Link Forces
	3.6.2 Calculating Point Mass Forces
	3.6.3 Calculating Rover Forces

	3.7 Torques
	3.8 Added Mass

	4 Numerical Simulation
	5 Results
	5.1 Forward Thrust
	5.2 Rise from Buoyancy
	5.3 Yaw from Thrust Variation
	5.4 Roll Motion
	5.4.1 Roll from Buoyancy in Helical Drive
	5.4.2 Roll from Sliding Mass Moment

	5.5 Pitch from Sliding Mass Moment

	6 Conclusion
	Acknowledgments
	References
	APPENDICES
	A Direction Cosine Matrices Rover System
	B Position Vectors Rover System




