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ARTICLE INFO ABSTRACT

Keywords: Rapid and accurate detection of the pathogens, such as severe acute respiratory syndrome coronavirus 2 (SARS-
Pathogen sensors CoV-2) for COVID-19, is critical for mitigating the COVID-19 pandemic. Current state-of-the-art pathogen tests
Biomarker

for COVID-19 diagnosis are done in a liquid medium and take 10-30 min for rapid antigen tests and hours to days

:Aii'c;):t'ezm for polymerase chain reaction (PCR) tests. Herein we report novel accurate pathogen sensors, a new test method,
BIr’eathI;lyzer and machine-learning algorithms for a breathalyzer platform for fast detection of SARS-CoV-2 virion particles in

VoG the aerosol in 30 s. The pathogen sensors are based on a functionalized molecularly-imprinted polymer, with the
template molecules being the receptor binding domain spike proteins for different variants of SARS-CoV-2.
Sensors are tested in the air and exposed for 10 s to the aerosols of various types of pathogens, including
wild-type, D614G, alpha, delta, and omicron variant SARS-CoV-2, BSA (Bovine serum albumin), Middle East
respiratory syndrome-related coronavirus (MERS-CoV), influenza, and wastewater samples from local sewage.
Our low-cost, fast-responsive pathogen sensors yield accuracy above 99% with a limit-of-detection (LOD) better
than 1 copy/pL for detecting the SARS-CoV-2 virus from the aerosol. The machine-learning algorithm supporting
these sensors can accurately detect the pathogens, thereby enabling a new and unique breathalyzer platform for
rapid COVID-19 tests with unprecedented speeds.

1. Introduction methods have been developed and commercialized for COVID-19 tests.
RT-PCR (reverse transcription polymerase chain reaction) tests have

The COVID-19 pandemic has claimed the lives of roughly 7 million been the gold standard for a medical diagnosis of COVID-19, but they are
people. Rapid and timely COVID-19 tests can effectively mitigate the slow with hours to days turnaround time and require expensive in-
pandemic, increase the chance of survival, and limit its side effects. strumentations and skilled staff to carry out the tests (Vandenberg et al.,
Since the outbreak of the COVID-19 pandemic in 2019, different 2021; Wang et al., 2021; Ayankojo et al., 2022; Farsaeivahid et al.,
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2022). Antibody tests in serum based on enzyme-linked immunosorbent
assay are cheaper and faster than PCR tests. But they are not appropriate
for early-stage diagnosis (Rump et al., 2021; Raziq et al., 2021) as an-
tibodies cannot be detected until 10-14 days after symptoms begin to
appear (Peto et al., 2021; Rump et al., 2021). Antigen tests based on
lateral flow immunoassay take 10-30 min, but they have limited
sensitivity (Peto et al., 2021). Therefore, there is an urgent need to
develop new pathogen sensors which can detect the pathogens, not
VOCs, and provide test results in seconds (not minutes) for rapid
detection of viral and bacterial pathogens such as SARS-CoV-2.

Recently, different laboratory-based rapid detection methods for
SASR-CoV-2 viruses have emerged. Porte et al. (2020) developed a novel
antigen-based rapid test for SARS-CoV-2 in respiratory samples based on
fluorescent immunochromatography. Zamzami et al. (2022) designed a
carbon-nanotube field-effect transistor (CN-FET)-based biosensor for
fast detection (2-3 min) of SARS-CoV-2 surface spike protein S1, with a
sensitivity of 4.12 fg/mL. Mautner et al. (2020) proposed a reverse
transcription loop-mediated isothermal amplification (RT-LAMP) on
heat-inactivated samples to directly detect SARS-CoV-2, which is 12
times faster and 10 times cheaper than RT-PCR COVID-19 tests. Ventura
et al. (2020) developed a colorimetric sensor using gold nanoparticles
for SARS-CoV-2 surface spike protein detection, which led to a threshold
cycle value of Ct = 36.5 as the limit of detection of the biosensor in terms
of RT-PCR cycle threshold. Huang et al. (2020) designed a
double-antibody sandwich plasmonic resonance immunoassay for
SARS-CoV-2 pseudo virus detection using an Au nano-cup array chip and
gold nanoparticles. Aithal et al. (2022) reported an
aptamer-functionalized gold nanoparticle-based sensor that can detect
16 nM spike protein and 3.54 x 10 genome copies/pL of inactivated
SARS-CoV-2. The main problem with these detection methods is that
they detect the SARS-CoV-2 pathogens dispersed in a liquid. As such,
they require liquid sample preparation, which is time-consuming. A
breathalyzer platform that can detect the SARS-CoV-2 pathogen in the
aerosol taken from the exhaled breath is more advantageous for
COVID-19 screening or diagnosis, particularly if it can deliver test re-
sults in less than a minute.
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The major challenge for such a breathalyzer for COVID-19 tests is the
lack of pathogen sensors to detect SARS-CoV-2 from the aerosol. Con-
ventional breathalyzers can detect small biomarker VOCs with high
equilibrium partial pressure at room temperature (Das et al., 2016).
Pathogens such as viruses, bacteria, and fungi have much larger mo-
lecular weights and are transmitted in liquid droplets or aerosol particles
(Gralton et al., 2011). Most test methods for pathogens in aerosols (e.g.,
gas chromatography-mass spectroscopy, GC-MS) are time-consuming
because they rely on the aerosol collection and conversion into a
liquid form for conventional liquid assay measurement techniques such
as PCR (Aithal et al., 2022; Li et al., 2021). The only FDA (U.S. Food and
Drug Administration)-approved COVID-19 breathalyzer has a
desktop-sized GC-MS tester for in vitro qualitative identification of five
VOCs from the ketone and aldehyde families linked with SARS-CoV-2
infection in patients’ exhaled breath in 3 min utilizing a 115 VAC
power source (U.S. Food and Drug Administration, 2022; Rubin, 2022).
Since a unique set of biomarker VOCs for COVID-19 has not been re-
ported, which may also change in response to the different symptoms
associated with different variants of SARS-CoV-2 infection, it is chal-
lenging for this VOC-based breathalyzer to make an accurate diagnosis,
particularly for new SARS-CoV-2 variants. A better idea is to directly
detect pathogens such as SARS-CoV-2 (instead of small-molecule VOCs)
from the aerosols in exhaled breath, as it leads to much more accurate
test results.

Since 2017, we have been working on functionalized molecularly
imprinted polymers (MIP)-based sensors for biomarker VOCs for the
diagnosis of different diseases, such as Alzheimer’s disease (Emam et al.,
2018), lung cancer (Emam et al., 2022). As soon as COVID was declared
a pandemic in early 2020, we have started to work on the functionalized
molecularly-imprinted polymers (MIP)-based electrochemical sensors
for detecting the SARS-CoV-2 pathogens from the aerosol for a
COVID-19 breathalyzer. Our initial efforts used the full-length spike
proteins of the SARS-CoV-2 as the template molecules for making these
MIP sensors, which led to the high sensitivity of the sensors but rela-
tively poor specificity. Since full-length spike proteins have molecular
weights in the range of 180-200k Da (Huang et al., 2020), which are too
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Fig. 1. Schematic of the fabrication process flow and test of the pathogen sensor with functional monomers and template molecules (SARS-CoV-2 s-proteins) forming
an artificial antibody (lock) to detect SARS-CoV-2 pathogens (key) with high specificity.
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large for MIP sensors, we tried to use the S1 subunit of the spike proteins
of the SARS-CoV-2 with molecular weights of nearly 78 kDa (Zamzami
et al., 2022). At the same time, we used functionalized MIP sensors by
using 1-pyrenebutyric acid N-hydroxy succinimide ester (PBSE) and
cysteamine to bind the S1 proteins before using the functionalized S1
proteins as template molecules. This effort led to pathogen sensors for
detecting SARS-CoV-2 from the aerosol with significantly improved
sensitivity and specificity (Sun et al., 2021). To further improve the
sensitivity and specificity, we used the RBD subunit of the spike proteins
of the SARS-CoV-2 which further reduced the molecular weight to nearly
26 kDa and successfully achieved ultra-high sensitivity by new func-
tional monomer of dopamine. With these background efforts in mind,
we report, for the first time, on developing highly accurate pathogen
sensors, new test methods and algorithms for ultrafast detection of
SARS-CoV-2 in aerosols. The SARS-CoV-2 pathogen sensors developed in
this work are based on the omicron-variant RBD spike proteins and are
highly accurate (>99%) for different variants of SARS-CoV-2. The sensor
exhibits a fast response and short recovery time, yielding test results in
less than 30 s. The proposed approach is an electrochemical sensor that
incorporates molecularly-imprinted polymer with functionalization
leading to high accuracy. The sensor works on the premise that the
ohmic resistance of the device is altered when COVID-19 pathogens are
present in the test aerosol sample. In what follows, we give some details
about the structure and working principles of this sensor, together with
some experimental data.

2. Materials and methods
2.1. Materials

The readers are referred to Supplementary Material (S1) for Research
Methodology and Materials, which incorporates design details and
fabrication steps. Here, we present our sensor design and fabrication,
and the methodology for carrying out a rapid COVID-19 screening or
diagnostic test.

I” Sensor facing
I down on a PCB
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pathogens
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2.2. Design and fabrication

Our novel electrochemical pathogen sensors are based on function-
alized molecularly imprinted polymers (MIP) and Graphene/Prussian-
blue on a substrate surface to create synthetic recognition sites in
polymeric matrices that are complementary to the targeted template
molecules or recognition sites of pathogens in terms of size, shape,
atomic groups, and spatial arrangement. A thin layer of the polymer
matrix is electrochemically deposited around the pathogens’ template
molecules or recognition sites, such as the receptor binding domain
(RBD) spike proteins (s-protein) of the SARS-CoV-2. The template mol-
ecules are then washed away after polymerization, leaving imprinted
cavities of the exact size and shape of the template molecule in the
polymer matrix. The imprinted cavities in the sensor act as synthetic
antibodies. As a result, the sensor only detects the originally-targeted
template molecules or pathogens due to the matched shape and size
and the strong hydrogen bonding between the cavities on the sensors
and the template molecules, leading to extremely high specificity. The
binding of the template molecules and the imprinted cavities in the
sensor polymer (MIP) layer leads to reduced mobility of charge carriers
in the polymer layer and increased sensor ohmic resistance that can be
readily measured by a digital multimeter (Zarejousheghani et al., 2021).
The steps used for sensor design, fabrication, and testing approach are
shown in Fig. 1.

The first step of the fabrication process is the deposition of a metal
electrode on a substrate such as Si or glass, and the second step is the
deposition of graphene-Prussian blue on the metal electrodes. After
deposition of the Graphene-Prussian blue on the surface of a metal
electrode, a polypyrrole layer is formed on the Graphene Prussian blue
through cyclic voltammetry-induced electropolymerization in a pyrrole-
PBS solution. Functional monomers are carefully selected and added
during the electropolymerization process to improve the binding be-
tween the atom groups between the template molecules and the speci-
ficity of the sensors. The selective recognition abilities of the imprinted
polymers are mainly due to the formation of a complex between the
analyte target and the functional monomers during the pre-
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Fig. 2. Schematic depicting the 10s-10s-10s testing method: (a) Sensor resting in the middle of a PCB with four leads for resistance measurement. (b) An idealized
test result, (c) Testing setup and its peripherals. (d) Four-lead connections. The sensor is tested with its faced down while an open Eppendorf vial (containing the
pathogens to be tested) is placed at 2-3 mm beneath the sensor. During the test, the sensor resistance is measured by an Ohmmeter.
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polymerization step (Vasapollo et al., 2011). The choice of a suitable
functional monomer is based on its ability to establish a good interaction
with the functional groups of the template molecule in a covalent or
non-covalent way. The choice of functional monomer is critical to
achieving a high-accuracy electrochemical pathogen sensor. We chose
dopamine as the functional monomer for our sensors based on its prior
success in the specific detection of bovine hemoglobin (Li et al., 2015) as
well as dopamine’s ability to self-polymerize into thin adherent poly-
dopamine (PDA) films, which can then be coated on various organic and
inorganic substrates (Li et al., 2015). As a functional monomer, dopa-
mine has led to pathogen sensors with the highest accuracy >99% for
different variants of SARS-CoV-2, compared to other functional mono-
mers we have used, such as methacrylic acid (MAA). We have, therefore,
focused our efforts on dopamine-based sensors in this work (Palladino
et al., 2019). After the electropolymerization process, the sensor was
washed in ethanol to remove the template molecules and left to dry in
the air before electrodes were added for sensor testing. All process steps
were carefully optimized. Details of the sensor fabrication process are
described in the Supplemental Materials: S1.

2.3. New test strategy

One of the main challenges of directly detecting pathogens in the
aerosol (i.e., with no need to convert the aerosol into liquid) is that there
is no known methodology for testing the pathogens in the aerosol.
Commercially available breath analyzers (breathalyzers) used for blood
alcohol content (BAC) tests can provide the test result in a couple of
seconds by measuring the ethanol from the exhaled breath (Jones,
2016). Recently, we demonstrated that electrochemical sensors based on
MIP are effective for measuring the VOCs from exhaled breath with
response time on the order of 5-10 min (Adams et al., 2019; Emam et al.,
2018; Sun et al., 2022; Emam et al., 2020). As mentioned earlier, the
FDA-approved breathalyzer for COVID-19 tests needs roughly 3 min for
a test as compared with the antigen tests, which take 5-30 min (Abus-
rewil et al., 2021). An ideal test method for a COVID-19 breathalyzer
should render accurate test results in seconds not minutes. Herein we
report on a new method (labelled 10s-10s-10s method) to test the

Test Kit

viability of our novel pathogen sensors. Our testing approach is based on
the pathogen binding to the sensor, which leads to immobilization of the
carriers in the semiconducting molecularly imprinted polymer layer
thereby reducing carrier mobility while significantly increasing its
ohmic resistance. To test the sensors’ performance, based on our new
10s-10s-10s method, we measure the sensor resistance for 10 s of sensor
stabilization, then 10 s of sensor exposure (i.e., with the sensor exposed
to the specific aerosol), and finally another 10 s for sensor recovery. The
first 10 s allows the sensor to stabilize and sets the baseline for the noise
level. During the next 10 s, the sensor is exposed to aerosol of the test
liquid with different virus loads or protein concentrations. The last 10 s
of sensor recovery allow us to monitor the sensor resistance change after
the sensor exposure. Compared to other test methods, this 10s-10-s10
test method enables rapid COVID-19 test result in just 30 s without
sacrificing the accuracy. The technique is easy to implement and needs
no training.

2.4. Experimental setup

Fig. 2 shows a schematic of the sensor test setup. In the setup, the
sensor (which rests on the middle of a PCB board) is faced down with an
open Eppendorf vial containing the pathogens placed at 2-3 mm
beneath the sensor (see Fig. 2a). An ohmmeter monitors the sensor’s
ohmic resistance during the operation. Fig. 2b shows an idealized sensor
resistance vs. time profile, R(t), obtained this way. For a positive test, the
resistance comprises: (1) an initialization 10-s phase, where the resis-
tance is almost constant; (2) an exposure 10-s phase, where the resis-
tance linearly increases with time until it reaches a maximum; and (3) a
recovery 10s phase, where the signal drops with time because there is no
longer any exposure. The device relies on a 4-point measurement tech-
nique (see Fig. 2c and d), which yields more accurate results than the 2-
point measurements.
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Table 1

A comparison between the human-brain decision with the outputs of three
different theoretical classifying methods in terms of sensitivity, specificity, and
accuracy (obtained based on the sensor’s R(t) profiles) for a sensor exposed to a
positive test kit.

Omicron-Variant Pathogen Sensors

Method Sensitivity Specificity Accuracy
Human Brain Decision 98.41% 100% 99.26%
Wavelet Method 92.10% 90.30% 91.10%
Deep-Learning Method 95.20% 90.30% 92.60%
Curve-Fitting Method 95.23% 100% 97.78%

3. Results and discussions
3.1. Experimental results

Fig. 3 shows a typical positive test result obtained using the 10:10:10
method for the Delta variant Spike Protein (10 pg/mL). As is seen in
Fig. 3a, due to the random noise (which is nearly 1m Q RMS) the
resistance is not exactly equal to zero during the initialization phase.
During the exposure phase, the resistance sharply increases with time
until it reaches its maximum at t = 20 s, at which time the exposure is cut
off. The resistance then drops with time during the recovery phase. The
response becomes totally different when the sample does not contain the
pathogen. Fig. 3b shows the negative test result for bovine serum al-
bumin protein (BSA), which contains no pathogen. As is seen in Fig. 3b,
for a negative test the resistance profile is a decaying function of time, on
a time-averaged basis. In fact, negative response is mainly dominated by
the noise during all three phases. The limit of detection of these path-
ogen sensors can be estimated when the resistance change is equal to the
noise level at 1m Q leading to a signal-to-noise ratio of 1 or, equiva-
lently, O dB. The limit of detection for the sensor shown in Fig. 3 is
between 0.1 and 1 copies/pL (i.e., 0.1-1 fg/ml), which is comparable to
the conventional RT-PCR (Cheong et al., 2020). It is important to note
that, for the positive test cases, the load plays a key role on the ohmic
resistance. It is speculated that the resistance-change (AR) increases
with the pathogen loads of the gamma-ray inactivated wild-type SAR-
S-CoV-2 virus. The log-log plot in Fig. 3C shows that this is indeed the
case. In fact, based on the data presented in this figure, AR increases
with the load in a nonlinear fashion. The best fit turned out to be of the
power-law form: AR = k x (virus_load)" where the coefficient (k) and
the exponent (n) are found to be equal to 0.2748 + 0.1064 and 0.2935

+ 0.0209, respectively—the uncertainties associated with (k,n) have
been obtained from linear regression analysis on the log-transformed
data. The error bars in Fig. 3c are a clear indication of the errors asso-
ciated with the electrical measurements. We also tested our sensors with
RT-qPCR wastewater samples, the readers are referred to Supplemen-
tary Material (S2) for the results.

Biosensors and Bioelectronics: X 14 (2023) 100369

It needs to be mentioned that the pathogen sensors (made with the
RBD spike-proteins of omicron-variant SARS-CoV-2 for detecting
different variants of SARS-CoV-2 pathogens) include gamma-ray inac-
tivated wild-type SARS-CoV-2 virion particles and delta-variant spike
proteins, and they all showed a sensitivity of 98.41%, specificity of
100% and accuracy of 99.26%. Detailed test results for each of the
sensors are listed in Supplementary Material: S2. All pathogen sensors
were carried out on a custom-designed test kit with 15 samples,
including 6 positive-labelled and 9 negative-labelled controls. The cur-
rent test kit shows 62 TP (True Positive), 1 FN (False Negative), 72 TN
(True Negative), and 0 FP (False Positive) for the omicron-variant
pathogen sensors. Statistical parameters of our sensor has been shown
in Table 1. The positive test kits include Gamma-ray inactivated wild-
type SARS-CoV-2 virion particles with different virus loads of 1, 102,
10*, and 10° copies/pL, and the spike proteins of delta-variant SARS-
CoV-2 with a concentration of 1 and 10 pg/uL. Negative controls for the
test kit will include Vero E6 cell lysate, BSA, PBS, influenza A/B, MERS,
and SARS (or SARS-1) with typical concentrations of 0.1-10 pg/uL. We
have tested hundreds of such sensors. These pathogen sensors were also
tested at different temperatures from 0 °C up to 50 °C in an environ-
mental containing contaminant gases (water vapor, CO2, ammonia, etc.)
to simulate real-world breath tests. Our sensors were found to be
insensitive to temperatures and environmental contaminants. Based on
the obtained experimental data, sensitivity, specificity, and accuracy of
the sensors made with omicron-variant RBD are respectively equal to
98.41%, 100%, and 99.26%.

The SEM investigation of MIP samples was also studied to better
understand the sensor surface topography (Chang and Kuo, 1993; Yu
et al., 2011). We deposited a thin layer of roughly 3 nm of Gold Palla-
dium on the sensor’s surface to take a better SEM image. Fig. 4 shows
SEM images of the sensor before/after electrodeposition, and also when
the template is removed. As is seen in this figure, the surface topogra-
phies are significantly different from each other. The SEM images of the
Gr-PB layer shows that, after electrodeposition, a polymeric layer has
been formed on the top of the Gr-PB layer. On the other hand, Fig. 4c
shows that the process of template removal results in the formation of
some voids on the surface of the sensor.

The pathogen detection sensors developed in this work and the data
presented in Fig. 3 are based on human evaluation of the sensor resis-
tance data. We have also analyzed the capabilities of artificial intelli-
gence (Aster et al., 2018) to detect COVID-19 from the sensor data with
no need for visual inspection of the ohmmeter data. Such an approach
would enable automated detection with no need for gross human
intervention.

3.2. Artificial intelligence methods for COVID-19 diagnosis

In this section, we design and evaluate several detection schemes
based on machine learning (Goodfellow et al., 2016). To this end, we

Fig. 4. SEM images of MIP sensor surface: (a) before electrodeposition; (b) after electrodeposition; and (c) after template removal.
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rely on an experimental dataset of L time series that were acquired as

noted in the prior sections. We denote by {xi}{-;l the i th experimental
time series of the dataset. As seen below, each test set is of length 30,
corresponding to a 30-s observation sampled at 1 Hz. Each experimental
time series is associated with a known binary label y; € {0,1} that takes
value O or 1 in the absence or presence of SARS-CoV-2 pathogens in the
aerosol being tested, respectively. We design a classifier, represented by
a function f : R—1 that associates every input time series x of length n
with a binary prediction corresponding to inference on the presence of
SARS-CoV-2 pathogens in the tested aerosol. An efficient classifier
should achieve low empirical risk, such that the number of classified
entries in a test dataset of L time series given by Sk, R(Y,¥) =
S R(f(x:),y:) is small, where the function R equals 0 if y; = y; and 1
otherwise. In practice, the risk function R can be weighted to balance
between the two types of the probability of error: P[f(x) = 0| pathogens |
and P[f(x) = 1| no pathogen |. In the sequel, three categories of classifiers
are considered. We first consider two model-driven classifiers based on
the wavelet decomposition (Dempster et al., 1977; Daubechies, 1990;
Rhif et al., 2019). These classical methods rely on prior model as-
sumptions on the structure of the acquired time series. Moreover, they
come with the advantage of needing a small number of samples to train
the classifier. The wavelet decomposition assumes that there is an un-
derlying deterministic function mapping time to the resistance that
linear combinations of wavelet functions can describe. The Gaussian
mixture model assumes that the resistance can be described by a random
variable with a distribution that is a mixture of Gaussian probability
density functions. As these methods are classical, they are described in
more detail in the Supplementary Material: S3 (Bottou, 2010; Carbune
et al., 2020; Elman, 1990; Esfahani and Sun, 2023; Figueiredo and Jain,
2002; Gers et al., 2000; Graves et al., 2013; Hochreiter and Schmid-
huber, 1997; Ji et al., 2021; Lambrou et al., 1998; Mallat, 1999;
McLachlan, 1999; Murugappan et al., 2010).

The models are tested on a dataset of 135 experimental time series,
among which 63 are positive and 72 are negative. A cross-validation
method is adopted to train and test the models (Browne, 2000). This
consists of firstly partitioning the time series into five distinct subsets of
27 time series at random. Next, one subset is discarded and left for
validation for each of the five training batches, while the four others are
retained for training purposes. The accuracy and specificity of the
classifier are defined as the mean statistics over the batches. The
wavelet-based and Gaussian mixture model classifiers are implemented
under MATLAB. The LSTM neural network is implemented on one
computer with Nvidia GeForce RTX 3060 Graphical Processing Units
and 16 GB of memory. PYTORCH 1.10.0 is employed as the deep
learning framework. Consistent with the experiments for the other
methods, we use the same dataset for training and testing. Note that, to
make a fair comparison with the other methods, there are no samples for
validation, i.e., the samples are either for training or testing. For the
training process of the deep learning-based method, the learning rate
and the momentum are set to 0.01 and 0.9, respectively. The batch size
is selected as 32, considering the size of the dataset, and the dropout rate
is set to 0.2 for the first three FCLs. The designed network is trained for
2000 epochs. The performance of the two mathematical models
(wavelet-based vs. deep-learning-based) in comparison with the deci-
sion made by human brain via visual inspection is listed Table 1. For
comparison purposes, we have also included curve-fitting results in this
table. As is seen in this list, the deep learning-based classification shows
a better trade-off between true positive and true negative rates but at a
price of more complexity than the supervised learning methods. Still, it
should be conceded that in circumstances where the computational
training power is limited, the wavelet-based classifier remains a good
compromise.

Another look at Table 1 reveals that curve-fitting is competitive with
the other methods. In fact, using the same data set of 135 experimental
time series, curve-fitting is seen to provide an excellent accuracy of
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97.78%. It needs to be mentioned that the curve-fitting approach relies
on artificial intelligence’s (AI’s) capacity to identify COVID-19 pathogen
from sensor data. The diagnosis is produced by the algorithm we have
developed in Java language using the raw data from the biomarker
breathalyzer sensors. We can determine the regression lines for each
period using standard deviation and Pearson correlation coefficient. The
initialization, exposure, and recovery phases are the three-time windows
that make up the sensor response. The algorithm aims to determine if the
sensor resistance during the exposure phase was significantly affected to
warrant a positive diagnosis as biomarkers increase the sensor’s resis-
tance. The algorithm utilizes a total of four conditions to assess whether
the aerosol (to the sensor exposed) influenced the sensor resistance that
is significant enough or not. The first condition determines if the
exposure phase’s regression slope is higher than the initialization pha-
se’s regression slope. The second condition determines if the exposure
phase’s regression slope is greater than the recovery phase’s regression
slope. The third condition determines if the exposure phase’s regression
slope is greater than zero. The final condition determines whether the
exposure phase’s range is larger than the initialization phase’s range.
Conditions one and two check whether the rise in resistance during the
exposure phase was greater than that in the initialization and recovery
phases, indicating an impact created by the substrate on the sensor. The
third condition ensures that the magnitude of change is directed in the
positive direction during the exposure phase. Finally, the fourth condi-
tion determines whether the changes experienced during the exposure
phase are significant compared to the changes seen during the initiali-
zation phase. If the changes are not more significant, they can be marked
down as noise and discarded.

All in all, the analysis described in this sub-section demonstrates that
the pathogen sensors are statistically informative for detecting SARS-
CoV-2 pathogens in aerosols.

3.3. Viability of our pathogen BioSensor

As earlier mentioned, there are different methods in the market for
detecting COVID-19 virus in human body. Molecular-based methods use
the reverse transcription-polymerase chain reaction RT-PCR to amplify
and detect viral RNA from respiratory samples. They have high speci-
ficity (>99%) and sensitivity (>95%) for COVID-19 diagnosis, but their
limit of detection (LOD) is rather low (Wolfl-Duchek et al., 2022). Fig-
ueroa et al. (2021) developed a two-step endpoint RT-PCR assay for
SARS-CoV-2 detection with a limit of detection of 20 viral RNA
copies/pL with specificity of 95.8% and a sensitivity of 95.1%. Their
method, however, requires specialized equipment and training, and can
take several hours to produce test results (Udugama et al., 2020). For
reasons like these, other methods have been developed or are under
development to improve the speed, accuracy and accessibility of
COVID-19 testing. Antigen-based methods use immunological assays
methods that can detect viral antigens or host antibodies in blood or
saliva samples using various platforms such as enzyme-linked immu-
nosorbent assay (ELISA), lateral flow immunoassay (LFIA) or electro-
chemical biosensors. These methods can provide rapid and point-of-care
testing for COVID-19, especially in the early stages of infection
(Broughton et al., 2020), but they have lower specificity (85-99%) and
sensitivity (23-71%) than molecular methods, and they are prone to
false negative results. Their LOD also varies depending on the assay and
the sample type. For example, the Abbott BinaxNOW COVID-19 Ag Card
has a LOD of 97.1 TCID50/mL for nasal swabs (Mak et al., 2020). Sali-
va-based method uses RT-LAMP to amplify and detect viral RNA from
saliva samples. However, they are less sensitive than swab-based tests
and can detect SARS-CoV-2 in 45 min. Its LOD is also reported to be 6
copies/pL (Leleu et al., 2020). In contrast, CRISPR-based method uses a
CRISPR-Cas12 enzyme that cleaves a reporter molecule when it binds to
a specific viral sequence, thereby generating a visible signal on a paper
strip. It has high specificity (100%) and sensitivity (95%) for COVID-19
diagnosis, and it can detect SARS-CoV-2 from respiratory swab RNA
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Table 2
A comparison between the novel sensor developed in this work with those already available on the market for COVID-19 test.
Approach Sensitivity Specificity Time Body Fluids Vendors
RT-PCR RNA 95-100% 95-100% 3h Respiratory specimens LabCrop, Roche, etc.
Antibody IgM, IgG 80-100% 90-100% 15-30 min Blood Cellex,etc.
Antigen RNA 20-71% 85-100% 15-30 min Blood UCSD
CRISP-based RNA 95% 100% 40 min Respiratory specimens Sherlock Biosciences
LAMP-based RNA 97% 100% 30 min Respiratory specimens MicrosensDx
Saliva-based RNA 91% 98% 45 min Saliva Yale School of Public Health
Breath-based GC-MS VOC 91% 99% 5-10 min Air Inspect-IR, Breathomix
Our Sensor RBD S-Protein 98.40% 100% 10s Aerosol/Air Winchester Technologies, LLC

extracts in less than 40 min. Its LOD is reported to be 10 copies/pL.
However, this technique requires specialized staff and training (Gan-
baatar and Liu, 2021). LAMP-based method uses loop-mediated
isothermal amplification (LAMP) to amplify and detect viral RNA from
respiratory samples. It has high specificity (100%) and sensitivity (97%)
for COVID-19 diagnosis, and it can detect SARS-CoV-2 in 30 min. Its LOD
is reported to be 0.2 copies/pL, but it can produce false positives for
contaminated samples (Amaral et al., 2021). The breath-based method for
COVID-19 detection is a new and developing technology. One such de-
vice is the SpiroNose, made by the Dutch company Breathomix. It ana-
lyzes the chemical compounds in a person’s breath to detect signatures
of a coronavirus infection (Arnold, 2022). Another breath-based test
that has been authorized by the FDA is the InspectlR COVID-19
Breathalyzer. It uses gas chromatography/mass-spectrometry tech-
nique (GC-MS) to separate and identify chemical mixtures and rapidly
detect five volatile organic compounds (VOCs) associated with
SARS-CoV-2 infection in exhaled breath.

A comparison between our novel breath-based pathogen sensors
with other methods discussed above has been shown in Table 2. This
table suggests that our novel pathogen biosensor is indeed a viable and
competitive option for COVID-19 rapid tests.

4. Conclusion

We have designed and tested a novel pathogen sensor that can
directly detect SARS-CoV-2 from the aerosol. The sensors developed in
this work respond to the pathogens in the aerosol within 10 s, exhibit a
high accuracy of >99%, and can readily distinguish SARS-CoV-2 from
influenza viruses, MERS viruses, etc., even in the presence of environ-
mental contaminants. These sensors and the machine-learning algo-
rithm developed by our team have enabled a new breathalyzer platform
for rapid COVID-19 screening and diagnosis. A comparison between our
pathogen aerosol-based sensor with other methods currently available
on the market (see Table 1) demonstrates that our novel sensor is indeed
a viable option for rapid COVID-19 tests. Our affordable pathogen sensor
is of low-power and this makes it a good option for POC applications. To
this should be added the fact that, the sensor is supported by a user-
friendly mobile application that analyses the data and provides
detailed test results. Work is currently ongoing in our research group to
extend the range of applicability of our novel biosensor for detecting
other pathogens (viruses, bacteria, or fungi) with minimal human
intervention.
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