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A B S T R A C T   

Rapid and accurate detection of the pathogens, such as severe acute respiratory syndrome coronavirus 2 (SARS- 
CoV-2) for COVID-19, is critical for mitigating the COVID-19 pandemic. Current state-of-the-art pathogen tests 
for COVID-19 diagnosis are done in a liquid medium and take 10–30 min for rapid antigen tests and hours to days 
for polymerase chain reaction (PCR) tests. Herein we report novel accurate pathogen sensors, a new test method, 
and machine-learning algorithms for a breathalyzer platform for fast detection of SARS-CoV-2 virion particles in 
the aerosol in 30 s. The pathogen sensors are based on a functionalized molecularly-imprinted polymer, with the 
template molecules being the receptor binding domain spike proteins for different variants of SARS-CoV-2. 
Sensors are tested in the air and exposed for 10 s to the aerosols of various types of pathogens, including 
wild-type, D614G, alpha, delta, and omicron variant SARS-CoV-2, BSA (Bovine serum albumin), Middle East 
respiratory syndrome–related coronavirus (MERS-CoV), influenza, and wastewater samples from local sewage. 
Our low-cost, fast-responsive pathogen sensors yield accuracy above 99% with a limit-of-detection (LOD) better 
than 1 copy/μL for detecting the SARS-CoV-2 virus from the aerosol. The machine-learning algorithm supporting 
these sensors can accurately detect the pathogens, thereby enabling a new and unique breathalyzer platform for 
rapid COVID-19 tests with unprecedented speeds.   

1. Introduction 

The COVID-19 pandemic has claimed the lives of roughly 7 million 
people. Rapid and timely COVID-19 tests can effectively mitigate the 
pandemic, increase the chance of survival, and limit its side effects. 
Since the outbreak of the COVID-19 pandemic in 2019, different 

methods have been developed and commercialized for COVID-19 tests. 
RT-PCR (reverse transcription polymerase chain reaction) tests have 
been the gold standard for a medical diagnosis of COVID-19, but they are 
slow with hours to days turnaround time and require expensive in
strumentations and skilled staff to carry out the tests (Vandenberg et al., 
2021; Wang et al., 2021; Ayankojo et al., 2022; Farsaeivahid et al., 
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2022). Antibody tests in serum based on enzyme-linked immunosorbent 
assay are cheaper and faster than PCR tests. But they are not appropriate 
for early-stage diagnosis (Rump et al., 2021; Raziq et al., 2021) as an
tibodies cannot be detected until 10–14 days after symptoms begin to 
appear (Peto et al., 2021; Rump et al., 2021). Antigen tests based on 
lateral flow immunoassay take 10–30 min, but they have limited 
sensitivity (Peto et al., 2021). Therefore, there is an urgent need to 
develop new pathogen sensors which can detect the pathogens, not 
VOCs, and provide test results in seconds (not minutes) for rapid 
detection of viral and bacterial pathogens such as SARS-CoV-2. 

Recently, different laboratory-based rapid detection methods for 
SASR-CoV-2 viruses have emerged. Porte et al. (2020) developed a novel 
antigen-based rapid test for SARS-CoV-2 in respiratory samples based on 
fluorescent immunochromatography. Zamzami et al. (2022) designed a 
carbon-nanotube field-effect transistor (CN-FET)-based biosensor for 
fast detection (2–3 min) of SARS-CoV-2 surface spike protein S1, with a 
sensitivity of 4.12 fg/mL. Mautner et al. (2020) proposed a reverse 
transcription loop-mediated isothermal amplification (RT-LAMP) on 
heat-inactivated samples to directly detect SARS-CoV-2, which is 12 
times faster and 10 times cheaper than RT-PCR COVID-19 tests. Ventura 
et al. (2020) developed a colorimetric sensor using gold nanoparticles 
for SARS-CoV-2 surface spike protein detection, which led to a threshold 
cycle value of Ct = 36.5 as the limit of detection of the biosensor in terms 
of RT-PCR cycle threshold. Huang et al. (2020) designed a 
double-antibody sandwich plasmonic resonance immunoassay for 
SARS-CoV-2 pseudo virus detection using an Au nano-cup array chip and 
gold nanoparticles. Aithal et al. (2022) reported an 
aptamer-functionalized gold nanoparticle-based sensor that can detect 
16 nM spike protein and 3.54 × 103 genome copies/μL of inactivated 
SARS-CoV-2. The main problem with these detection methods is that 
they detect the SARS-CoV-2 pathogens dispersed in a liquid. As such, 
they require liquid sample preparation, which is time-consuming. A 
breathalyzer platform that can detect the SARS-CoV-2 pathogen in the 
aerosol taken from the exhaled breath is more advantageous for 
COVID-19 screening or diagnosis, particularly if it can deliver test re
sults in less than a minute. 

The major challenge for such a breathalyzer for COVID-19 tests is the 
lack of pathogen sensors to detect SARS-CoV-2 from the aerosol. Con
ventional breathalyzers can detect small biomarker VOCs with high 
equilibrium partial pressure at room temperature (Das et al., 2016). 
Pathogens such as viruses, bacteria, and fungi have much larger mo
lecular weights and are transmitted in liquid droplets or aerosol particles 
(Gralton et al., 2011). Most test methods for pathogens in aerosols (e.g., 
gas chromatography-mass spectroscopy, GC-MS) are time-consuming 
because they rely on the aerosol collection and conversion into a 
liquid form for conventional liquid assay measurement techniques such 
as PCR (Aithal et al., 2022; Li et al., 2021). The only FDA (U.S. Food and 
Drug Administration)-approved COVID-19 breathalyzer has a 
desktop-sized GC-MS tester for in vitro qualitative identification of five 
VOCs from the ketone and aldehyde families linked with SARS-CoV-2 
infection in patients’ exhaled breath in 3 min utilizing a 115 VAC 
power source (U.S. Food and Drug Administration, 2022; Rubin, 2022). 
Since a unique set of biomarker VOCs for COVID-19 has not been re
ported, which may also change in response to the different symptoms 
associated with different variants of SARS-CoV-2 infection, it is chal
lenging for this VOC-based breathalyzer to make an accurate diagnosis, 
particularly for new SARS-CoV-2 variants. A better idea is to directly 
detect pathogens such as SARS-CoV-2 (instead of small-molecule VOCs) 
from the aerosols in exhaled breath, as it leads to much more accurate 
test results. 

Since 2017, we have been working on functionalized molecularly 
imprinted polymers (MIP)-based sensors for biomarker VOCs for the 
diagnosis of different diseases, such as Alzheimer’s disease (Emam et al., 
2018), lung cancer (Emam et al., 2022). As soon as COVID was declared 
a pandemic in early 2020, we have started to work on the functionalized 
molecularly-imprinted polymers (MIP)-based electrochemical sensors 
for detecting the SARS-CoV-2 pathogens from the aerosol for a 
COVID-19 breathalyzer. Our initial efforts used the full-length spike 
proteins of the SARS-CoV-2 as the template molecules for making these 
MIP sensors, which led to the high sensitivity of the sensors but rela
tively poor specificity. Since full-length spike proteins have molecular 
weights in the range of 180–200k Da (Huang et al., 2020), which are too 

Fig. 1. Schematic of the fabrication process flow and test of the pathogen sensor with functional monomers and template molecules (SARS-CoV-2 s-proteins) forming 
an artificial antibody (lock) to detect SARS-CoV-2 pathogens (key) with high specificity. 
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large for MIP sensors, we tried to use the S1 subunit of the spike proteins 
of the SARS-CoV-2 with molecular weights of nearly 78 kDa (Zamzami 
et al., 2022). At the same time, we used functionalized MIP sensors by 
using 1-pyrenebutyric acid N-hydroxy succinimide ester (PBSE) and 
cysteamine to bind the S1 proteins before using the functionalized S1 
proteins as template molecules. This effort led to pathogen sensors for 
detecting SARS-CoV-2 from the aerosol with significantly improved 
sensitivity and specificity (Sun et al., 2021). To further improve the 
sensitivity and specificity, we used the RBD subunit of the spike proteins 
of the SARS-CoV-2 which further reduced the molecular weight to nearly 
26 kDa and successfully achieved ultra-high sensitivity by new func
tional monomer of dopamine. With these background efforts in mind, 
we report, for the first time, on developing highly accurate pathogen 
sensors, new test methods and algorithms for ultrafast detection of 
SARS-CoV-2 in aerosols. The SARS-CoV-2 pathogen sensors developed in 
this work are based on the omicron-variant RBD spike proteins and are 
highly accurate (>99%) for different variants of SARS-CoV-2. The sensor 
exhibits a fast response and short recovery time, yielding test results in 
less than 30 s. The proposed approach is an electrochemical sensor that 
incorporates molecularly-imprinted polymer with functionalization 
leading to high accuracy. The sensor works on the premise that the 
ohmic resistance of the device is altered when COVID-19 pathogens are 
present in the test aerosol sample. In what follows, we give some details 
about the structure and working principles of this sensor, together with 
some experimental data. 

2. Materials and methods 

2.1. Materials 

The readers are referred to Supplementary Material (S1) for Research 
Methodology and Materials, which incorporates design details and 
fabrication steps. Here, we present our sensor design and fabrication, 
and the methodology for carrying out a rapid COVID-19 screening or 
diagnostic test. 

2.2. Design and fabrication 

Our novel electrochemical pathogen sensors are based on function
alized molecularly imprinted polymers (MIP) and Graphene/Prussian- 
blue on a substrate surface to create synthetic recognition sites in 
polymeric matrices that are complementary to the targeted template 
molecules or recognition sites of pathogens in terms of size, shape, 
atomic groups, and spatial arrangement. A thin layer of the polymer 
matrix is electrochemically deposited around the pathogens’ template 
molecules or recognition sites, such as the receptor binding domain 
(RBD) spike proteins (s-protein) of the SARS-CoV-2. The template mol
ecules are then washed away after polymerization, leaving imprinted 
cavities of the exact size and shape of the template molecule in the 
polymer matrix. The imprinted cavities in the sensor act as synthetic 
antibodies. As a result, the sensor only detects the originally-targeted 
template molecules or pathogens due to the matched shape and size 
and the strong hydrogen bonding between the cavities on the sensors 
and the template molecules, leading to extremely high specificity. The 
binding of the template molecules and the imprinted cavities in the 
sensor polymer (MIP) layer leads to reduced mobility of charge carriers 
in the polymer layer and increased sensor ohmic resistance that can be 
readily measured by a digital multimeter (Zarejousheghani et al., 2021). 
The steps used for sensor design, fabrication, and testing approach are 
shown in Fig. 1. 

The first step of the fabrication process is the deposition of a metal 
electrode on a substrate such as Si or glass, and the second step is the 
deposition of graphene-Prussian blue on the metal electrodes. After 
deposition of the Graphene-Prussian blue on the surface of a metal 
electrode, a polypyrrole layer is formed on the Graphene Prussian blue 
through cyclic voltammetry-induced electropolymerization in a pyrrole- 
PBS solution. Functional monomers are carefully selected and added 
during the electropolymerization process to improve the binding be
tween the atom groups between the template molecules and the speci
ficity of the sensors. The selective recognition abilities of the imprinted 
polymers are mainly due to the formation of a complex between the 
analyte target and the functional monomers during the pre- 

Fig. 2. Schematic depicting the 10s-10s-10s testing method: (a) Sensor resting in the middle of a PCB with four leads for resistance measurement. (b) An idealized 
test result, (c) Testing setup and its peripherals. (d) Four-lead connections. The sensor is tested with its faced down while an open Eppendorf vial (containing the 
pathogens to be tested) is placed at 2–3 mm beneath the sensor. During the test, the sensor resistance is measured by an Ohmmeter. 
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polymerization step (Vasapollo et al., 2011). The choice of a suitable 
functional monomer is based on its ability to establish a good interaction 
with the functional groups of the template molecule in a covalent or 
non-covalent way. The choice of functional monomer is critical to 
achieving a high-accuracy electrochemical pathogen sensor. We chose 
dopamine as the functional monomer for our sensors based on its prior 
success in the specific detection of bovine hemoglobin (Li et al., 2015) as 
well as dopamine’s ability to self-polymerize into thin adherent poly
dopamine (PDA) films, which can then be coated on various organic and 
inorganic substrates (Li et al., 2015). As a functional monomer, dopa
mine has led to pathogen sensors with the highest accuracy >99% for 
different variants of SARS-CoV-2, compared to other functional mono
mers we have used, such as methacrylic acid (MAA). We have, therefore, 
focused our efforts on dopamine-based sensors in this work (Palladino 
et al., 2019). After the electropolymerization process, the sensor was 
washed in ethanol to remove the template molecules and left to dry in 
the air before electrodes were added for sensor testing. All process steps 
were carefully optimized. Details of the sensor fabrication process are 
described in the Supplemental Materials: S1. 

2.3. New test strategy 

One of the main challenges of directly detecting pathogens in the 
aerosol (i.e., with no need to convert the aerosol into liquid) is that there 
is no known methodology for testing the pathogens in the aerosol. 
Commercially available breath analyzers (breathalyzers) used for blood 
alcohol content (BAC) tests can provide the test result in a couple of 
seconds by measuring the ethanol from the exhaled breath (Jones, 
2016). Recently, we demonstrated that electrochemical sensors based on 
MIP are effective for measuring the VOCs from exhaled breath with 
response time on the order of 5–10 min (Adams et al., 2019; Emam et al., 
2018; Sun et al., 2022; Emam et al., 2020). As mentioned earlier, the 
FDA-approved breathalyzer for COVID-19 tests needs roughly 3 min for 
a test as compared with the antigen tests, which take 5–30 min (Abus
rewil et al., 2021). An ideal test method for a COVID-19 breathalyzer 
should render accurate test results in seconds not minutes. Herein we 
report on a new method (labelled 10s-10s–10s method) to test the 

viability of our novel pathogen sensors. Our testing approach is based on 
the pathogen binding to the sensor, which leads to immobilization of the 
carriers in the semiconducting molecularly imprinted polymer layer 
thereby reducing carrier mobility while significantly increasing its 
ohmic resistance. To test the sensors’ performance, based on our new 
10s-10s–10s method, we measure the sensor resistance for 10 s of sensor 
stabilization, then 10 s of sensor exposure (i.e., with the sensor exposed 
to the specific aerosol), and finally another 10 s for sensor recovery. The 
first 10 s allows the sensor to stabilize and sets the baseline for the noise 
level. During the next 10 s, the sensor is exposed to aerosol of the test 
liquid with different virus loads or protein concentrations. The last 10 s 
of sensor recovery allow us to monitor the sensor resistance change after 
the sensor exposure. Compared to other test methods, this 10s-10-s10 
test method enables rapid COVID-19 test result in just 30 s without 
sacrificing the accuracy. The technique is easy to implement and needs 
no training. 

2.4. Experimental setup 

Fig. 2 shows a schematic of the sensor test setup. In the setup, the 
sensor (which rests on the middle of a PCB board) is faced down with an 
open Eppendorf vial containing the pathogens placed at 2–3 mm 
beneath the sensor (see Fig. 2a). An ohmmeter monitors the sensor’s 
ohmic resistance during the operation. Fig. 2b shows an idealized sensor 
resistance vs. time profile, R(t), obtained this way. For a positive test, the 
resistance comprises: (1) an initialization 10-s phase, where the resis
tance is almost constant; (2) an exposure 10-s phase, where the resis
tance linearly increases with time until it reaches a maximum; and (3) a 
recovery 10s phase, where the signal drops with time because there is no 
longer any exposure. The device relies on a 4-point measurement tech
nique (see Fig. 2c and d), which yields more accurate results than the 2- 
point measurements. 

Fig. 3. (a) A typical positive test case with sensor 
exposed to the aerosol of Delta variant Spike Protein 
(10 pg/μL) during the 10s-10s-10s test method. A 
similar trend was observed for all fabricated sensors. 
Note that a resistance change of roughly 1mΩ is the 
resistance limit of detection which corresponds to a 
limit of detection (LOD) better than 1 copy/μL for 
SARS-CoV-2 virus; (b) A typical negative test case 
with sensor exposed to the aerosol of bovine serum 
albumin protein (BSA); (c) Effect of the virus load on 
resistance change for a positive test case with the 
sensor exposed to Delta variant Spike Protein; (d) 
Repeatability report for a positive test case of delta 
variant spike protein (10 pg/μL) with the mean 
resistance-change of +9.59 mΩ. This plot also shows 
repeatability of a negative test case for bovine serum 
albumin protein (BSA) control with the mean 
resistance-change of −48.4 mΩ. The relative standard 
deviation (RSD) shows that, compared with the 
mean, variance of our data is 12.6% for the positive 
test case and 16.2% for the negative test case.   
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3. Results and discussions 

3.1. Experimental results 

Fig. 3 shows a typical positive test result obtained using the 10:10:10 
method for the Delta variant Spike Protein (10 pg/mL). As is seen in 
Fig. 3a, due to the random noise (which is nearly 1m Ω RMS) the 
resistance is not exactly equal to zero during the initialization phase. 
During the exposure phase, the resistance sharply increases with time 
until it reaches its maximum at t = 20 s, at which time the exposure is cut 
off. The resistance then drops with time during the recovery phase. The 
response becomes totally different when the sample does not contain the 
pathogen. Fig. 3b shows the negative test result for bovine serum al
bumin protein (BSA), which contains no pathogen. As is seen in Fig. 3b, 
for a negative test the resistance profile is a decaying function of time, on 
a time-averaged basis. In fact, negative response is mainly dominated by 
the noise during all three phases. The limit of detection of these path
ogen sensors can be estimated when the resistance change is equal to the 
noise level at 1m Ω leading to a signal-to-noise ratio of 1 or, equiva
lently, 0 dB. The limit of detection for the sensor shown in Fig. 3 is 
between 0.1 and 1 copies/μL (i.e., 0.1–1 fg/ml), which is comparable to 
the conventional RT-PCR (Cheong et al., 2020). It is important to note 
that, for the positive test cases, the load plays a key role on the ohmic 
resistance. It is speculated that the resistance-change (ΔR) increases 
with the pathogen loads of the gamma-ray inactivated wild-type SAR
S-CoV-2 virus. The log-log plot in Fig. 3C shows that this is indeed the 
case. In fact, based on the data presented in this figure, ΔR increases 
with the load in a nonlinear fashion. The best fit turned out to be of the 
power-law form: ΔR = k × (virus load)

n where the coefficient (k) and 
the exponent (n) are found to be equal to 0.2748 ± 0.1064 and 0.2935 

± 0.0209, respectively–the uncertainties associated with (k,n) have 
been obtained from linear regression analysis on the log-transformed 
data. The error bars in Fig. 3c are a clear indication of the errors asso
ciated with the electrical measurements. We also tested our sensors with 
RT-qPCR wastewater samples, the readers are referred to Supplemen
tary Material (S2) for the results. 

It needs to be mentioned that the pathogen sensors (made with the 
RBD spike-proteins of omicron-variant SARS-CoV-2 for detecting 
different variants of SARS-CoV-2 pathogens) include gamma-ray inac
tivated wild-type SARS-CoV-2 virion particles and delta-variant spike 
proteins, and they all showed a sensitivity of 98.41%, specificity of 
100% and accuracy of 99.26%. Detailed test results for each of the 
sensors are listed in Supplementary Material: S2. All pathogen sensors 
were carried out on a custom-designed test kit with 15 samples, 
including 6 positive-labelled and 9 negative-labelled controls. The cur
rent test kit shows 62 TP (True Positive), 1 FN (False Negative), 72 TN 
(True Negative), and 0 FP (False Positive) for the omicron-variant 
pathogen sensors. Statistical parameters of our sensor has been shown 
in Table 1. The positive test kits include Gamma-ray inactivated wild- 
type SARS-CoV-2 virion particles with different virus loads of 1, 102, 
104, and 106 copies/μL, and the spike proteins of delta-variant SARS- 
CoV-2 with a concentration of 1 and 10 pg/uL. Negative controls for the 
test kit will include Vero E6 cell lysate, BSA, PBS, influenza A/B, MERS, 
and SARS (or SARS-1) with typical concentrations of 0.1–10 pg/uL. We 
have tested hundreds of such sensors. These pathogen sensors were also 
tested at different temperatures from 0 ◦C up to 50 ◦C in an environ
mental containing contaminant gases (water vapor, CO2, ammonia, etc.) 
to simulate real-world breath tests. Our sensors were found to be 
insensitive to temperatures and environmental contaminants. Based on 
the obtained experimental data, sensitivity, specificity, and accuracy of 
the sensors made with omicron-variant RBD are respectively equal to 
98.41%, 100%, and 99.26%. 

The SEM investigation of MIP samples was also studied to better 
understand the sensor surface topography (Chang and Kuo, 1993; Yu 
et al., 2011). We deposited a thin layer of roughly 3 nm of Gold Palla
dium on the sensor’s surface to take a better SEM image. Fig. 4 shows 
SEM images of the sensor before/after electrodeposition, and also when 
the template is removed. As is seen in this figure, the surface topogra
phies are significantly different from each other. The SEM images of the 
Gr-PB layer shows that, after electrodeposition, a polymeric layer has 
been formed on the top of the Gr-PB layer. On the other hand, Fig. 4c 
shows that the process of template removal results in the formation of 
some voids on the surface of the sensor. 

The pathogen detection sensors developed in this work and the data 
presented in Fig. 3 are based on human evaluation of the sensor resis
tance data. We have also analyzed the capabilities of artificial intelli
gence (Aster et al., 2018) to detect COVID-19 from the sensor data with 
no need for visual inspection of the ohmmeter data. Such an approach 
would enable automated detection with no need for gross human 
intervention. 

3.2. Artificial intelligence methods for COVID-19 diagnosis 

In this section, we design and evaluate several detection schemes 
based on machine learning (Goodfellow et al., 2016). To this end, we 

Table 1 
A comparison between the human-brain decision with the outputs of three 
different theoretical classifying methods in terms of sensitivity, specificity, and 
accuracy (obtained based on the sensor’s R(t) profiles) for a sensor exposed to a 
positive test kit.  

Omicron-Variant Pathogen Sensors 

Method Sensitivity Specificity Accuracy 

Human Brain Decision 98.41% 100% 99.26% 
Wavelet Method 92.10% 90.30% 91.10% 
Deep-Learning Method 95.20% 90.30% 92.60% 
Curve-Fitting Method 95.23% 100% 97.78%  

Fig. 4. SEM images of MIP sensor surface: (a) before electrodeposition; (b) after electrodeposition; and (c) after template removal.  
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rely on an experimental dataset of L time series that were acquired as 
noted in the prior sections. We denote by {xi}

L
i=1 the i th experimental 

time series of the dataset. As seen below, each test set is of length 30, 
corresponding to a 30-s observation sampled at 1 Hz. Each experimental 
time series is associated with a known binary label yi ∈ {0, 1} that takes 
value 0 or 1 in the absence or presence of SARS-CoV-2 pathogens in the 
aerosol being tested, respectively. We design a classifier, represented by 
a function f : R↦1 that associates every input time series x of length n 
with a binary prediction corresponding to inference on the presence of 
SARS-CoV-2 pathogens in the tested aerosol. An efficient classifier 
should achieve low empirical risk, such that the number of classified 
entries in a test dataset of L time series given by 

∑L
i=1 R(ŷi, yi) =

∑L
i=1 R(f(xi), yi) is small, where the function R equals 0 if ŷi = yi and 1 

otherwise. In practice, the risk function R can be weighted to balance 
between the two types of the probability of error: P[f(x) = 0| pathogens ]
and P[f(x) = 1| no pathogen ]. In the sequel, three categories of classifiers 
are considered. We first consider two model-driven classifiers based on 
the wavelet decomposition (Dempster et al., 1977; Daubechies, 1990; 
Rhif et al., 2019). These classical methods rely on prior model as
sumptions on the structure of the acquired time series. Moreover, they 
come with the advantage of needing a small number of samples to train 
the classifier. The wavelet decomposition assumes that there is an un
derlying deterministic function mapping time to the resistance that 
linear combinations of wavelet functions can describe. The Gaussian 
mixture model assumes that the resistance can be described by a random 
variable with a distribution that is a mixture of Gaussian probability 
density functions. As these methods are classical, they are described in 
more detail in the Supplementary Material: S3 (Bottou, 2010; Carbune 
et al., 2020; Elman, 1990; Esfahani and Sun, 2023; Figueiredo and Jain, 
2002; Gers et al., 2000; Graves et al., 2013; Hochreiter and Schmid
huber, 1997; Ji et al., 2021; Lambrou et al., 1998; Mallat, 1999; 
McLachlan, 1999; Murugappan et al., 2010). 

The models are tested on a dataset of 135 experimental time series, 
among which 63 are positive and 72 are negative. A cross-validation 
method is adopted to train and test the models (Browne, 2000). This 
consists of firstly partitioning the time series into five distinct subsets of 
27 time series at random. Next, one subset is discarded and left for 
validation for each of the five training batches, while the four others are 
retained for training purposes. The accuracy and specificity of the 
classifier are defined as the mean statistics over the batches. The 
wavelet-based and Gaussian mixture model classifiers are implemented 
under MATLAB. The LSTM neural network is implemented on one 
computer with Nvidia GeForce RTX 3060 Graphical Processing Units 
and 16 GB of memory. PYTORCH 1.10.0 is employed as the deep 
learning framework. Consistent with the experiments for the other 
methods, we use the same dataset for training and testing. Note that, to 
make a fair comparison with the other methods, there are no samples for 
validation, i.e., the samples are either for training or testing. For the 
training process of the deep learning-based method, the learning rate 
and the momentum are set to 0.01 and 0.9, respectively. The batch size 
is selected as 32, considering the size of the dataset, and the dropout rate 
is set to 0.2 for the first three FCLs. The designed network is trained for 
2000 epochs. The performance of the two mathematical models 
(wavelet-based vs. deep-learning-based) in comparison with the deci
sion made by human brain via visual inspection is listed Table 1. For 
comparison purposes, we have also included curve-fitting results in this 
table. As is seen in this list, the deep learning-based classification shows 
a better trade-off between true positive and true negative rates but at a 
price of more complexity than the supervised learning methods. Still, it 
should be conceded that in circumstances where the computational 
training power is limited, the wavelet-based classifier remains a good 
compromise. 

Another look at Table 1 reveals that curve-fitting is competitive with 
the other methods. In fact, using the same data set of 135 experimental 
time series, curve-fitting is seen to provide an excellent accuracy of 

97.78%. It needs to be mentioned that the curve-fitting approach relies 
on artificial intelligence’s (AI’s) capacity to identify COVID-19 pathogen 
from sensor data. The diagnosis is produced by the algorithm we have 
developed in Java language using the raw data from the biomarker 
breathalyzer sensors. We can determine the regression lines for each 
period using standard deviation and Pearson correlation coefficient. The 
initialization, exposure, and recovery phases are the three-time windows 
that make up the sensor response. The algorithm aims to determine if the 
sensor resistance during the exposure phase was significantly affected to 
warrant a positive diagnosis as biomarkers increase the sensor’s resis
tance. The algorithm utilizes a total of four conditions to assess whether 
the aerosol (to the sensor exposed) influenced the sensor resistance that 
is significant enough or not. The first condition determines if the 
exposure phase’s regression slope is higher than the initialization pha
se’s regression slope. The second condition determines if the exposure 
phase’s regression slope is greater than the recovery phase’s regression 
slope. The third condition determines if the exposure phase’s regression 
slope is greater than zero. The final condition determines whether the 
exposure phase’s range is larger than the initialization phase’s range. 
Conditions one and two check whether the rise in resistance during the 
exposure phase was greater than that in the initialization and recovery 
phases, indicating an impact created by the substrate on the sensor. The 
third condition ensures that the magnitude of change is directed in the 
positive direction during the exposure phase. Finally, the fourth condi
tion determines whether the changes experienced during the exposure 
phase are significant compared to the changes seen during the initiali
zation phase. If the changes are not more significant, they can be marked 
down as noise and discarded. 

All in all, the analysis described in this sub-section demonstrates that 
the pathogen sensors are statistically informative for detecting SARS- 
CoV-2 pathogens in aerosols. 

3.3. Viability of our pathogen BioSensor 

As earlier mentioned, there are different methods in the market for 
detecting COVID-19 virus in human body. Molecular-based methods use 
the reverse transcription-polymerase chain reaction RT-PCR to amplify 
and detect viral RNA from respiratory samples. They have high speci
ficity (>99%) and sensitivity (>95%) for COVID-19 diagnosis, but their 
limit of detection (LOD) is rather low (Wölfl-Duchek et al., 2022). Fig
ueroa et al. (2021) developed a two-step endpoint RT-PCR assay for 
SARS-CoV-2 detection with a limit of detection of 20 viral RNA 
copies/μL with specificity of 95.8% and a sensitivity of 95.1%. Their 
method, however, requires specialized equipment and training, and can 
take several hours to produce test results (Udugama et al., 2020). For 
reasons like these, other methods have been developed or are under 
development to improve the speed, accuracy and accessibility of 
COVID-19 testing. Antigen-based methods use immunological assays 
methods that can detect viral antigens or host antibodies in blood or 
saliva samples using various platforms such as enzyme-linked immu
nosorbent assay (ELISA), lateral flow immunoassay (LFIA) or electro
chemical biosensors. These methods can provide rapid and point-of-care 
testing for COVID-19, especially in the early stages of infection 
(Broughton et al., 2020), but they have lower specificity (85–99%) and 
sensitivity (23–71%) than molecular methods, and they are prone to 
false negative results. Their LOD also varies depending on the assay and 
the sample type. For example, the Abbott BinaxNOW COVID-19 Ag Card 
has a LOD of 97.1 TCID50/mL for nasal swabs (Mak et al., 2020). Sali
va-based method uses RT-LAMP to amplify and detect viral RNA from 
saliva samples. However, they are less sensitive than swab-based tests 
and can detect SARS-CoV-2 in 45 min. Its LOD is also reported to be 6 
copies/μL (Leleu et al., 2020). In contrast, CRISPR-based method uses a 
CRISPR-Cas12 enzyme that cleaves a reporter molecule when it binds to 
a specific viral sequence, thereby generating a visible signal on a paper 
strip. It has high specificity (100%) and sensitivity (95%) for COVID-19 
diagnosis, and it can detect SARS-CoV-2 from respiratory swab RNA 
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extracts in less than 40 min. Its LOD is reported to be 10 copies/μL. 
However, this technique requires specialized staff and training (Gan
baatar and Liu, 2021). LAMP-based method uses loop-mediated 
isothermal amplification (LAMP) to amplify and detect viral RNA from 
respiratory samples. It has high specificity (100%) and sensitivity (97%) 
for COVID-19 diagnosis, and it can detect SARS-CoV-2 in 30 min. Its LOD 
is reported to be 0.2 copies/μL, but it can produce false positives for 
contaminated samples (Amaral et al., 2021). The breath-based method for 
COVID-19 detection is a new and developing technology. One such de
vice is the SpiroNose, made by the Dutch company Breathomix. It ana
lyzes the chemical compounds in a person’s breath to detect signatures 
of a coronavirus infection (Arnold, 2022). Another breath-based test 
that has been authorized by the FDA is the InspectIR COVID-19 
Breathalyzer. It uses gas chromatography/mass-spectrometry tech
nique (GC-MS) to separate and identify chemical mixtures and rapidly 
detect five volatile organic compounds (VOCs) associated with 
SARS-CoV-2 infection in exhaled breath. 

A comparison between our novel breath-based pathogen sensors 
with other methods discussed above has been shown in Table 2. This 
table suggests that our novel pathogen biosensor is indeed a viable and 
competitive option for COVID-19 rapid tests. 

4. Conclusion 

We have designed and tested a novel pathogen sensor that can 
directly detect SARS-CoV-2 from the aerosol. The sensors developed in 
this work respond to the pathogens in the aerosol within 10 s, exhibit a 
high accuracy of >99%, and can readily distinguish SARS-CoV-2 from 
influenza viruses, MERS viruses, etc., even in the presence of environ
mental contaminants. These sensors and the machine-learning algo
rithm developed by our team have enabled a new breathalyzer platform 
for rapid COVID-19 screening and diagnosis. A comparison between our 
pathogen aerosol-based sensor with other methods currently available 
on the market (see Table 1) demonstrates that our novel sensor is indeed 
a viable option for rapid COVID-19 tests. Our affordable pathogen sensor 
is of low-power and this makes it a good option for POC applications. To 
this should be added the fact that, the sensor is supported by a user- 
friendly mobile application that analyses the data and provides 
detailed test results. Work is currently ongoing in our research group to 
extend the range of applicability of our novel biosensor for detecting 
other pathogens (viruses, bacteria, or fungi) with minimal human 
intervention. 
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