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Abstract

Low-collisionality plasma in a magnetic field generically develops anisotropy in its distribution function with
respect to the magnetic field direction. Motivated by the application to radiation from accretion flows and jets, we
explore the effect of temperature anisotropy on synchrotron emission. We derive analytically and provide
numerical fits for the polarized synchrotron emission and absorption coefficients for a relativistic bi-Maxwellian
plasma (we do not consider Faraday conversion/rotation). Temperature anisotropy can significantly change how
the synchrotron emission and absorption coefficients depend on observing angle with respect to the magnetic field.
The emitted linear polarization fraction does not depend strongly on anisotropy, while the emitted circular
polarization does. We apply our results to black hole imaging of Sgr A* and M87* by ray tracing a GRMHD
simulation and assuming that the plasma temperature anisotropy is set by the thresholds of kinetic-scale anisotropy-
driven instabilities. We find that the azimuthal asymmetry of the 230 GHz images can change by up to a factor of 3,
accentuating (T⊥> T∥) or counteracting (T⊥< T∥) the image asymmetry produced by Doppler beaming. This can
change the physical inferences from observations relative to models with an isotropic distribution function, e.g., by
allowing for larger inclination between the line of sight and spin direction in Sgr A*. The observed image diameter
and the size of the black hole shadow can also vary significantly due to plasma temperature anisotropy. We
describe how the anisotropy of the plasma can affect future multifrequency and photon ring observations. We also
calculate kinetic anisotropy-driven instabilities (mirror, whistler, and firehose) for relativistically hot plasmas.

Unified Astronomy Thesaurus concepts: Accretion (14); Astrophysical black holes (98); Supermassive black holes
(1663); Black holes (162); Low-luminosity active galactic nuclei (2033); Plasma physics (2089); Plasma
astrophysics (1261); Gravitational lensing (670); Radiative processes (2055); Radiative transfer (1335)

1. Introduction

Synchrotron emission produced by relativistic electrons in
the presence of a magnetic field appears in many astrophysical
systems. It is the source of emission across much of the
electromagnetic spectrum in pulsar wind nebulae and jets from
neutron stars and black holes (BHs). Synchrotron emission is
also the source of the millimeter-wavelength radio emission
observed on event-horizon scales in M87* and Sgr A* by the
Event Horizon Telescope (EHT; Event Horizon Telescope
Collaboration et al. 2019a, 2022a).

Models of synchrotron emission from astrophysical plasmas
typically assume that the plasma has a thermal or power-law
distribution function or a hybrid of the two, such as a kappa
distribution function. The latter two are motivated by the power-
law (nonthermal) synchrotron spectra often observed from
astrophysical sources. Another explicit assumption typically
made is that the electron distribution function is isotropic
relative to the local magnetic field, i.e., that the electrons have
the same temperature or energy density in all directions.4

In the presence of dynamically strong magnetic fields, the
assumption of an isotropic electron distribution function is not
theoretically or observationally well-motivated. By “dynami-
cally strong” here, we mean an energy density in the magnetic
field similar to or larger than that in the plasma. Such
magnetized collisionless (and weakly collisional) plasmas can
readily depart from thermal equilibrium and develop aniso-
tropies with respect to the local magnetic field direction
(Quataert et al. 2002). Although the distribution function will in
general be gyrotropic (isotropic in the plane perpendicular to
the magnetic field), it can have significant anisotropies parallel
and perpendicular to the local magnetic field (Kulsrud 1983).
There is extensive observational evidence for such

anisotropy in the solar corona and solar wind (Bale et al.
2009). In the most extreme cases, oxygen ions in the solar
corona have perpendicular temperatures that are a factor
of ∼10–100 times that of their parallel temperature
(Cranmer et al. 1999). This anisotropy is in fact critical to
interpreting spectroscopy of the solar corona. By analogy, one
might expect that anisotropy in the electron distribution
function could be important for interpreting synchrotron
radiation from astrophysical plasmas. This is particularly true
in high spatial resolution observations where our viewing angle
relative to the local magnetic field likely changes significantly
across the image (e.g., the EHT or radio interferometry more
generally).
The anisotropy in a plasma’s distribution function cannot,

however, grow without bound. It is limited by kinetic-scale
instabilities such as the mirror, whistler, firehose, and ion
cyclotron instabilities (Rosenbluth 1956; Southwood &

The Astrophysical Journal, 957:103 (24pp), 2023 November 10 https://doi.org/10.3847/1538-4357/acfa77

© 2023. The Author(s). Published by the American Astronomical Society.

3
Corresponding author.

Original content from this work may be used under the terms

of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title

of the work, journal citation and DOI.

4
An exception to this is in very strongly magnetized plasmas such as neutron

star magnetospheres where the synchrotron cooling time is so short that the
perpendicular energy is nearly instantaneously radiated away. In this paper, we
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accretion flows and jets.
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Kivelson 1993; Chandrasekhar et al. 1958; Rudakov &
Sagdeev 1961; Sudan 1963; Gary 1992). When the anisotropy
in the distribution function becomes too large (relative to the
threshold of the instability5), such instabilities rapidly grow,
driving the anisotropy toward the instability threshold. This
endows the plasma with an effective collisionality that acts to
partially isotropize the distribution function. A very rough rule
of thumb is that instabilities set in vigorously when the
fractional temperature anisotropy satisfies ∣ ∣ ( )ù bD -T T 1

(where ΔT is the temperature anisotropy and β is the ratio of
thermal to magnetic energy). Anisotropy can thus be much
larger in strongly magnetized plasmas with β 1. Anisotropy
in the distribution function is thus expected to be particularly
important in jets and in models of accretion flows with
dynamically strong magnetic fields, such as the magnetically
arrested disk (MAD) models favored by EHT observations of
M87* (Event Horizon Telescope Collaboration et al. 2021).

Observations of protons and electrons in the solar wind show
that they obey the expected anisotropy-driven instability
thresholds and that the anisotropy is larger at lower β (Bale
et al. 2009; however, the measured anisotropy is smaller than
the instability thresholds at β 0.1). We expect that in
accretion flows and jets, inflow, outflow, and heating of the
plasma will likewise drive temperature anisotropies to the point
that instabilities set in (Foucart et al. 2017). Global
axisymmetric GR kinetic simulations of collisionless plasma
accreting onto a BH indeed find the growth of the mirror and
firehose instability and that they regulate the plasmas’s
temperature anisotropy (Galishnikova et al. 2023).

Motivated by the potential importance of an anisotropic
distribution function in synchrotron-emitting plasmas, in this
paper we theoretically calculate emission and absorption of
polarized synchrotron radiation for a physically motivated
gyrotropic distribution function. The study of polarized
synchrotron radiation dates back to the work of Westfold
(1959), who studied emission from an ultrarelativistically
gyrating electron. General formulae for Stokes parameters for
ultrarelativistic synchrotron emission from an assemble of
electrons can be found in the review of Ginzburg & Syrovatskii
(1965), who noted that a substantial amount of circular
polarization is present only in the case of a highly anisotropic
pitch-angle distribution. Melrose (1971) presented the general
equations for Stokes parameters for an arbitrary anisotropic
distribution function separable in momentum and pitch-angle,
while Sazonov (1972) focused on the case of a power-law
momentum distribution with a separable pitch-angle
anisotropy.

In the last few decades, the study of synchrotron radiation
was extended to a broader range of validity and a number of
different distribution functions via numerical integration
methods (Mahadevan et al. 1996; Shcherbakov 2008; Leung
et al. 2011; Pandya et al. 2016, 2018; Dexter 2016). This is
useful for improving analytical results at arbitrary frequency,
emission direction with respect to the magnetic field, and
distribution function. These works provide fits for the Stokes
emissivities, absorptivities, and rotativities that have been
widely used in modeling polarized synchrotron radiation from
accreting black holes, particularly in the context of the EHT
sources M87* and Sgr A*

(e.g., Dexter 2016; Mościbrodzka &

Gammie 2018; White 2022; and others; see also Gold et al.
2020). However, no pitch-angle anisotropy was considered in
these studies.
In this paper, we extend previous work on synchrotron

radiation by studying the intrinsic emission from an ensemble
of electrons with an anisotropic relativistic distribution
function. We focus on the case of a relativistic generalization
of a bi-Maxwellian that has different temperatures perpend-
icular and parallel to the local magnetic field (Section 2) and
provide fits for the polarized emissivity and absorption
coefficients in Section 2.2. We defer the case of an anisotropic
power-law distribution function to future work. We also defer
the calculation of Faraday rotation and conversion coefficients
for an anisotropic distribution function to future work. We then
implement these expressions in a GR radiative transfer code to
ray trace GRMHD MAD simulations and study the impact of
pitch-angle anisotropy on the observable quantities (Section 3).
Finally, in Section 4 we summarize the application of our
results to current and future EHT observations.

2. Synchrotron Emission from Gyrotropic Distribution
Functions

In this section, we describe radiation transfer and emission
produced by electrons with a gyrotropic distribution function
f (γ, ξ) in the presence of a background magnetic field B; γ and
ξ denote the Lorentz factor of electrons and pitch angle with the
magnetic field, respectively; we will use m x= cos and ξ
interchangeably in what follows. Throughout the paper, me, e,
and c are constants that stand for electron mass, electron
charge, and speed of light. Therefore, the momentum of a
particle with velocity v is p=meγv and β= v/c. In what
follows, we normalize the frequency of emission ν by a
nonrelativistic cyclotron frequency given by νc= eB/2πmec.
The angle between the propagation direction along the
wavevector k and the background magnetic field B is set by θB.
Polarized emission is described in the Stokes basis as Ia= {I,

Q, U, V}T, where I stands for intensity, Q and U describe
linear polarization, and V describes circular polarization. Given
emissivities { }=j j j j j, , ,a I Q U V

T , absorption coefficients a =a
{ }a a a a, , ,I Q U V

T , and Faraday rotativities { }r r r r= , ,a Q U V
T ,

the polarized emission can then be found using (see, e.g., Leung
et al. 2011)

( )= -
dI

ds
j M I , 1

a
a ab b

where Mab is the Mueller matrix,

( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

a a a a
a a r r
a r a r
a r r a

=
-

-
-

M , 2ab

I Q U V

Q I V U

U V I Q

V U Q I

where U components vanish if B is aligned with U: jU = 0,

αU= 0, and ρU= 0. Then, I components of ja and αa describe

total emission, Q components describe linearly polarized

emission, and V describes circularly polarized emission, while

ρQ and ρV account for Faraday conversion and rotation,

respectively. In this work, we focus on emissivities ja and

absorption coefficients αa, while Faraday rotativities ρa will be

studied in future work.
We need to evaluate ja, αa, and ρa through f (γ, ξ) to describe

the radiation emission and transfer. In the Stokes basis at

5
Some instabilities, e.g., the ion cyclotron instability, formally do not have a

threshold, but their growth rate becomes sufficiently small at low anisotropies
that in practice they do.
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frequency ν (see, e.g., Leung et al. 2011):
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where δ(yn) is a delta function of argument

( )n g n b x q= - -y n 1 cos cosn c B , ngb q x n=z sin sinB c,

p g b g x=d p m c d d2 cose
3 3 3 2 for a gyrotropic f (γ, ξ), and Df

is an operator that includes a full derivative of the distribution

function:
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In Equation (3), Ka is defined as
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where Jn is a Bessel function of the first kind,

( )q b x q= -M cos cos sinB B, and b x=N sin . Given f (γ,

ξ), one can find ja and αa through Equations (3), (4), and (5).

2.1. Anisotropic Electron Distribution Function

We will use an anisotropic distribution function f (γ, ξ) for

emitting electrons, written in cgs units:

 
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where ne is the electron number density, ò⊥= kT⊥,e/mec
2 is the

dimensionless perpendicular electron temperature, K2 is the

modified Bessel function of the second kind, and p⊥ and p∥
stand for the relativistic momentum perpendicular and parallel

to the magnetic field direction. Here η is a measure of

anisotropy, with η= 1 corresponding to an isotropic relativistic

Maxwellian distribution function. In the nonrelativistic limit,

T⊥,e/T∥,e= η, while T⊥,e/T∥,e≈ η0.8 in the ultrarelativistic limit

(see Appendix C for a detailed fit). Transforming f (p⊥, p∥) to

γ− ξ variables:
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In the limit of high γ:
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is the new renormalized temperature. Thus, in the high-γ limit,

the temperature in the distribution function depends on both the

anisotropy η and pitch angle or m x= cos . In the isotropic case

η= 1, the temperature is described by ò= ò⊥= ò∥ in all

directions. Note that in the analytical fitting functions in

Section 2.2, ^ will be evaluated at ξ= θB because the radiation

is beamed along the local direction of motion of relativistic

electrons (as is standard in synchrotron radiation; see Appendix

A for details). In our numerical evaluations, however, we

integrate and sum over ξ and θB separately using Equation (3).
The total derivative Df that is used in calculating αa in

Equation (3) contains


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While ∂μf (γ, ξ) is nonzero, we find that the absorption

coefficients change negligibly if we include this term. This is

due to the prefactor it goes with in Equation (4) since γ? 1

and the absorption is mainly concentrated around ξ≈ θB (see

Appendix A for details).

2.2. Emissivities and Absorption Coefficients

We obtain the following fits for emissivities and absorption
coefficients for a relativistic plasma with an anisotropic bi-
Maxwellian distribution function (see Appendix A for details
on the derivation):

   
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and  ( ) »^ ^K 1 22
2 when ò⊥? 1. Here ^ is evaluated at

ξ= θB and  ( )n n q= ^j , ,a c B,iso and  ( )a n n q= ^, ,a c B,iso

correspond to emission and absorption in the case of an

isotropic relativistic Maxwellian. Absorption coefficients αa

can be obtained via Kirchoff’s law for a thermal distribution
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function:

( )a- =nj B 0, 13a a,iso ,iso

where ( ) ( ( ) )n= -n
n

^ ^
-B T h kTexp 1e

h

c e,
2

,
1

3

2
for an anisotro-

pic distribution has the same functional form as in the isotropic

case (with T⊥,e= Te for an isotropic distribution).

Equations (11) correspond to total intensity and linearly

polarized emissivities with the same functional form as in an

isotropic plasma but with a temperature  ^ that depends on the

observer-angle θB due to the anisotropy in the distribution

function relative to the magnetic field (the factors of

   û ( ) ( )h h»^ ^ ^ ^,a
1 2 1 2 3 in Equation (11) reflect the

change in normalization of the distribution function due to the

different number of particles whose radiation is beamed in the

direction of the observer). By contrast, the Stokes V (circular

polarization) emissivity in Equation (11) differs by a larger

factor because of a change in the efficiency of producing

circularly polarized radiation for an anisotropic distribution

function (see Equations (A1) and (A9) in Appendix (A).
Given Equation (11), it is straightforward to derive the

location of the peak of the optically thin emission νjI(ò, ν, θB, η)
as




( )
( )n n q

n q
h q

»
+ -^

^36.7 sin
36.7 sin

1 1 cos
, 14c B

c B

B

peak
2

2

2

which shifts to lower (higher) frequencies with increasing

(decreasing) η at a fixed ò⊥ and θB (though we show below in

Figure 1 that η changes the efficiency of producing radiation as

a function of θB).
We find good agreement between our analytic expressions

and numerical calculation over a wide parameter range using a
publicly available code symphony, which integrates
Equations (3) for a given distribution function f (γ, ξ). For a
detailed derivation of the fits given by Equations (11), full
expressions for ja,iso and αa,iso, and the comparison with
numerical solutions, see Appendix A. The fits presented here
become inaccurate for   ø^ 3 and low frequencies ν/νc 10,
where the isotropic fits that we scale to in Equation (11)
themselves become inaccurate.

We demonstrate the resulting emission properties in Figure
1, where jI (a), αI (b), and the emitted linear and circular
polarization fractions (solid and dashed lines in panel (c),
respectively) are shown as functions of the angle between
propagation direction and magnetic field θB at different values
of anisotropy parameter η, represented by different colors (we
intentionally choose relatively large anisotropy to highlight the
large differences in synchrotron radiation possible in this limit).
The parameters used in Figure 1 are a high frequency of ν/
νc= 103 and temperature of ò⊥= 10. The isotropic case (black
line) closely follows a qsin B

2 dependence of jI (dotted) in panel
(a) due to the frequency being near the peak of the synchrotron
emissivity.

Figure 1 shows that there are significant differences in the
synchrotron emission/absorption for an anisotropic plasma
distribution, compared to the isotropic case. This change can be
understood as a renormalization of the number of relativistic
particles emitting toward the observer at θB. In particular, the
plasma is less prone to emitting along the magnetic field at
η> 1 (T⊥> T∥, red lines) and , hence, the rapid fall off of jν,I
with decreasing θB, compared to η≡ 1. That is, the emission is

even more concentrated toward θB= 90° when η> 1. For the
opposite anisotropy, η< 1 and T∥> T⊥ (blue lines), the
number of particles capable of emitting along the magnetic
field direction increases. Thus, more emission can be produced
at smaller θB (along the magnetic field), relative to the isotropic
case with η≡ 1. The unpolarized absorption coefficient αI (b)
shows a similar but smaller dependence on η as jI.
The polarization fractions have a weaker dependence on η.

This is shown in Figure 1(c) with solid and dashed lines for the
intrinsic linear |jQ|/jI and circular |jV|/jI polarization fractions,
respectively.
Quantitatively, both |jQ|/jI and |jV|/jI are higher for higher η,

but the change is particularly modest for the intrinsic linear
polarization |jQ|/jI. Since most of the emission comes from
small (large) angles for η< 1 (η> 1), the emitted circular
polarization degree can significantly vary with η due to the
change in which pitch angles dominate the emission. In
particular, η> 1 is significantly more circularly polarized, and
η< 1 is less circularly polarized, compared to emission from an
isotropic plasma. This is because η> 1 decreases the effective
temperature ^ by suppressing the parallel temperature at a
fixed ò⊥.

3. Black Hole Imaging

In this section we study the observational implications of
synchrotron emission by a plasma with anisotropic temperatures

Figure 1. Emissivity jI (a), absorption αI (b), and emitted polarization fractions
(c) as functions of the angle between propagation direction and magnetic field
θB at different anisotropy values: T⊥ < T∥ (η < 1, blue), isotropic (η = 1,
black), and T⊥ > T∥ (η > 1, red). The free parameters are ν/νc = 103 and
ò⊥ = 10 (near the peak of the optically thin synchrotron spectrum for an
isotropic distribution function). In panel (c), the emitted linear |jQ|/jI and
circular |jV|/jI polarization fractions are shown by solid and dashed lines,

respectively. In panel (a), qsin B
2 dependence is shown by a black dotted line.
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in the context of black hole accretion flows. Specifically, we
focus on the application to the EHT targets Sgr A* and M87*

(Event Horizon Telescope Collaboration et al. 2019a, 2022a).
Our goal in this initial study is to determine the rough magnitude
of the effect and which observables are most sensitive to
electron temperature anisotropy. The exact electron temperature
anisotropy in the near-horizon plasma is uncertain, so we will
use general stability arguments to bound the anisotropy and thus
the effect of anisotropy on the synchrotron radiation.

3.1. Method

We use a publicly available radiative transfer code
blacklight (White 2022) to ray trace synchrotron emission
in GRMHD simulations and study the resulting intensity and
polarization images. We implement the formulas for the
emissivity and absorption coefficients of hot electrons with
an anisotropic distribution function discussed in Section 2 (we
use the limit of high temperature such that K2(1/x)≈ 2x2).
Since EHT observational constraints favor highly magnetized
models (Event Horizon Telescope Collaboration et al. 2021),
we restrict our study to an MAD simulation of plasma accreting
onto a spinning BH with dimensionless spin parameters of
a = 0.98 and 0.5. Our results are averaged over 100 snapshots,
which span a time of 1000rg/c when the accretion rate and
magnetic flux on the horizon are in approximate steady-state
(see Appendix D for details on the simulation setup and choice
of this time period). Since the MHD method cannot handle
vacuum, our GRMHD simulations have a ceiling plasma
magnetization parameter of σ= B2/[4πρc]= 100, and we
ignore emission from σ> 10 regions.6 We choose a BH mass
and distance to the BH to match M87*, MBH= 6.5× 109Me,
and d= 1.67× 107 pc, unless otherwise specified. In the
GRMHD simulations, the plasma number density normal-
ization is a free parameter, which we choose such that the total
flux of the image Fν at 230 GHz matches EHT observations of
M87*, i.e., 0.66 Jy. The ray-traced images have a resolution of
128× 128 cells, with a point camera located at 100rg and
inclination (observing angle) of θ. We consider both θ= 163°,
appropriate for M87*, as well as fewer face-on viewing angles
to demonstrate the change with viewing angle.

Since the GRMHD equations evolve a single fluid, while in
the plasmas of interest the electrons and ions likely have
different temperatures, we have the freedom to set the electron
temperature. The heating of collisionless electrons should
depend on local plasma parameters, in particular, the magnetic
field strength (Quataert & Gruzinov 1999) via βth= Pth/PB—

the ratio of thermal pressure to magnetic pressure. To
parameterize the electron temperate, we use the widely
employed Rhigh− Rlow model (Mościbrodzka et al. 2016). In
this model, the ion-to-electron temperature is set by

( )
b

b
= =

+

+
R

T

T

R R

1
, 15

i

e

th
2

high low

th
2

where βth= Pth/PB is the plasma βth for an MHD fluid, Rhigh

and Rlow are ion-to-electron temperature ratios in the high and

low-βth regions, respectively. The fluid GRMHD temperature

is T= (Ti+ Te)/2, and thus Te= 2T/(1+ R). In this work, we

explore three cases: Rhigh= 1, 10, and 100, while Rlow is set to

1 always.
To study the effect of the anisotropy of the plasma on

images, we also have the freedom to set the anisotropy
parameter η∼ T⊥,e/T∥,e since the GRMHD simulations have
no information about plasma anisotropy. The anisotropy of the
plasma is limited by kinetic-scale instability thresholds, which
allow for a large anisotropy in low-βth regions. Ion-scale mirror
and firehose instabilities are clearly present in global GR
kinetic simulations of collisionless plasma accreting onto a BH
(Galishnikova et al. 2023) and in kinetic shearing-box
simulations (Kunz et al. 2014; Riquelme et al. 2015). The
electrons also contribute to driving mirror, firehose, and
whistler instabilities, which are important for setting the
electron temperature anisotropy. Since the magnitude of the
electron temperature anisotropy in the near-horizon environ-
ment is not fully understood, we consider all three limiting
cases—where the plasma sits at the mirror (η> 1), whistler
(η> 1), or firehose (η< 1) instability thresholds everywhere.
We then compare these limiting cases to the usually considered
isotropic plasma distribution. This should bracket the
magnitude of the effect introduced by an anisotropic electron
distribution function. We note that in the single-fluid global
“extended GRMHD” simulations of Foucart et al. (2017) in
which the pressure anisotropy is a dynamical variable, most of
the plasma was near the mirror threshold. If generically true,
and applicable to electrons, this would suggest that the mirror
and whistler instability thresholds are the most important.
The microinstability thresholds can be expressed as T⊥,e/T∥,

e= g(βe), where g(βe) is a function of election plasma −β,
different for each of the anisotropy-driven instability (see
Appendix B for a derivation of relativistic mirror, firehose, and
whistler instabilities and Appendix C for additional details on g

(βe) for each instability). Therefore, our procedure for obtaining
T⊥,e and η for each of the four instability cases (here and after
mirror, whistler, isotropic, firehose) is as follows. We first
compute electron –β as βe= 2βth/(1+ R), according to
Equation (15). Knowing βe allows us to calculate T⊥,e/T∥,
e= g(βe) for each case of interest and thus η (we consider the
relativistic limit, where T⊥,e/T∥,e≈ η0.8). The perpendicular
temperature can then be separately determined from the
definition Te= (T∥,e+ 2T⊥,e)/3= T⊥,e(η

1/0.8
+ 2)/3= Ti/R.

Now that we have η and ò⊥ for electrons, we can then
calculate ja and αa, given by Equations (11) (with ò⊥= kT⊥,

e/mec
2
).

In Figure 2 we show an example of the inferred physical
conditions in MAD accretion flows from GRMHD simulations:
MHD-βth (first column), plasma temperature P/2ρ (second
column), and the resulting η (third and fourth columns for
mirror and firehose, respectively) and electron ò⊥ (fifth and
sixth columns for mirror and firehose, respectively). The top
row is for a = 0.98 while the bottom row is for a = 0.5. Gray
regions indicate σ� σcut= 10. Since MAD simulations are
highly magnetized with low plasma-β in much of the volume,
the mirror (c and i, η> 1) and firehose (d and j, η< 1)
instabilities allow for a large temperature anisotropy in much of
the volume. The mirror case also results in a higher electron
temperature ò⊥, while the firehose case results in a lower and
more uniform ò⊥.
Future observations aim to probe not only the direct

emission from the BH but also the lensed emission associated
with the “photon ring” (Johnson et al. 2023). The latter can be

6
The magnetization in the jet region can, in reality, be significantly larger

than the ceiling value set in our GRMHD simulations. These low-density
regions with σ  10 are, however, not expected to contribute significantly to
the observed flux at 230 GHz.
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decomposed into a series of subrings labeled by the ray order n
—the number of half-orbits a photon traveled to the observer,
defined as ( )f pD modray , where Δfray is the change in the

angular coordinate fray along the ray in the plane of its orbit.
To distinguish n= 0 (direct) and n= 1 (“photon ring” of the
order of 1) in the ray tracing, we track dz/dλ along each ray,
where z and λ are Cartesian Kerr Schild coordinate along the
spin axis and coordinate along the ray, respectively. The
number of times that dz/dλ crosses zero for a particular ray
defines the order of this ray n, allowing us to approximately
distinguish n= 0 and n= 1.

3.2. 230 GHz Images

Total intensity images observed at θ= 163°, expected for
M87* (Mertens et al. 2016), with Rhigh= 10 are shown in
Figure 3 for a = 0.98. The top row (panels (a)–(d)) shows the
brightness blurred with 20 μas FWHM Gaussian kernel on a
linear scale to match current EHT observations. Each column
represents a different anisotropy model: mirror, whistler,
isotropic, and firehose (from left to right, from largest to
smallest η). The density normalization is roughly the same for
each of these cases at fixed Rhigh and observing angle θ, with
the density in the firehose model being larger than in the
isotropic case by a factor of a few. The three bottom rows in
Figure 3 show unblurred full emission (second row), which is
decomposed into the direct emission (n= 0, third row) and the

n= 1 photon ring (fourth row) on a logarithmic scale (as

appropriate for future higher dynamic range measurements).
The azimuthal anisotropy in the images in Figure 3 is due to

a combination of two effects: Doppler beaming and differences

in the angle θB relative to the local magnetic field that photons

are emitted at, in order to arrive at a given location in the
observed image. Anisotropy in the electron distribution

function can significantly change the synchrotron emission as

a function of θB, thus changing this second source of azimuthal

image anisotropy. Figure 3 shows that, compared to the

isotropic case (panel (c)), the mirror and whistler images

(η> 1; panels (a) and (b)) are more azimuthally asymmetric,
while plasma at the firehose instability threshold (η< 1; panel

(d)) results in a more symmetric image. This is also noticeable

in the unblurred case, as well as separately in n= 0 and n= 1

images.
The dependence of the azimuthal image symmetry on plasma

anisotropy is also more apparent with increasing viewing angle,

i.e., as we look more “edge-on” instead of “face-on.”

Additionally, the effect of the anisotropy of the distribution
function is more prominent for larger Rhigh. This is because

larger Rhigh suppresses the emission from high-β regions

(where distribution function anisotropies are constrained to be

smaller) relative to low-β regions (where distribution function

anisotropies can be larger). The more azimuthally asymmetric

images at higher inclination and higher Rhigh are demonstrated
in Figure 4, where we show the full intensity images at

Figure 2. Plasma-βth (column 1, panels (a) and (g)), plasma temperature P/2ρ (column 2, panels (b) and (h)), anisotropy η (columns 3 and 4 for mirror and firehose,
respectively), and normalized electron perpendicular temperature ò⊥ (columns 5 and 6 for mirror and firehose, respectively) for a = 0.98 (at the time of 14,300rg/c,
top row) and a = 0.5 (at the time of 16,000rg/c, bottom row).
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Rhigh= 1 (top) and Rhigh= 100 (bottom) at a higher inclination
relative to the spin axis of θ= 135° for a = 0.98.

Table 1 shows the image-averaged, emission-weighted ratio
of the two components of anisotropic temperature, 〈jνT⊥/T∥〉/
〈jν〉, for a = 0.98, θ= 163°, and Rhigh= 1, 10, and 100. As
Rhigh increases, the anisotropic temperature ratio approaches
our maximum allowed values of 10 ad 0.1 for mirror and
firehose models, respectively. The significant changes in image
morphology found here thus require large temperature
anisotropy in the emitting plasma.

To better understand the interplay between Doppler-induced
asymmetry and magnetic field viewing angle-induced asym-
metry, we also consider the case of a moderately spinning BH,
a = 0.5, shown in Figure 5, where the Doppler effect is smaller
than for a = 0.98 studied above. This figure is organized

identically to Figure 3, and the viewing angle relative to the
spin axis and the choice of Rhigh= 10 are the same. We find
that the asymmetry of the image due to the plasma temperature
anisotropy is still pronounced, similar to the case of a highly
spinning BH. As in the a = 0.98 case, mirror and whistler
anisotropies make the image more asymmetric, while
temperature anisotropy near the firehose boundary results in a
more symmetric image.
Our calculations show that the anisotropic temperature

distribution of plasma sitting at the firehose and mirror
thresholds leads to a more azimuthally symmetric or
asymmetric synchrotron image, respectively. At first glance,
it is not entirely obvious why the firehose sense of anisotropy
(rather than the mirror sense of anisotropy) should be
associated with a more symmetric image. Our interpretation

Figure 3. Synchrotron emission of accreting plasma ray-traced from an MAD simulation for a BH with a = 0.98 at Rhigh = 10 and inclination of θ = 163°. Each
column represents different plasma anisotropy: mirror instability threshold (column 1), whistler instability threshold (column 2), isotropic plasma distribution (column
3), and firehose instability threshold (column 4). The first row represents the full image blurred with 20 μas FWHM Gaussian kernel on a linear scale (panels (a)–(d)),
the second row shows a full unblurred image on a logarithmic scale, from which Iν,0 (n = 0) and Iν,1 (n = 1) are decoupled on the third (panels (i)–(l)) and forth
(panels (m)–(p)) rows, respectively.
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of this is that if the rotation rate of the magnetic field lines is

small relative to the rotation rate of the plasma, then in ideal

MHD models, the plasma velocity is approximately parallel to

the magnetic field direction (see, e.g., Equation E148b of Chael

et al. 2023b for a relativistic version of this expression). For

nearly (but not exactly) face-on viewing angles, the Doppler

effect and the effect of changing viewing angle relative to the

magnetic field are “in phase”: the brightening and dimming

produced by the two effects peak in roughly the same places in

the image plane (this follows, e.g., from the analytic model in

Narayan et al. 2021). The firehose instability sense of

anisotropy counteracts this by making the emission a

significantly weaker function of angle relative to the magnetic

field (Figure 1) thus making the overall emission more

isotropic.
Another key difference between images with different

electron temperature anisotropy is the image diameter; this is

Figure 4. Synchrotron emission of accreting plasma ray-traced from an MAD simulation at an inclination of θ = 135° for a BH with a = 0.98. As in Figure 3, each
column represents different plasma anisotropy. The first and second rows represent Rhigh = 1 and 100 models, respectively.

Figure 5. Similar to Figure 3 but for a BH with spin parameter of a = 0.5. Inclination of θ = 163° and Rhigh = 10 are identical to Figure 3. The first row represents the
full image blurred with 20 μas FWHM Gaussian kernel on a linear scale (panels (a)–(d)), and the second row shows a full unblurred image on a logarithmic scale.

Table 1

Summary of Image-averaged Anisotropy T⊥/T∥

Rhigh Mirror Whistler Firehose

1 3.13 1.47 0.52

10 5.3 2.0 0.1100

100 8.9 2.9 0.102

Note. Values of image-averaged emission-weighted temperature anisotropy

T⊥/T∥ (pixel-averaged〈jνT⊥/T∥〉/〈jν〉) for our three temperature anisotropy

cases at a = 0.98, an inclination of θ = 163°, and three Rhigh values.
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noticeable at both spin values in Figures 3 and 5: the size of the
bright region in the image increases as η increases.
Additionally, a = 0.5 shows variations in the size of the BH
shadow between different models in Figure 5. Both of these
effects, as well as the asymmetry of the images, are quantified
below.

Figure 6 shows the emissivity-weighted angle between the
magnetic field and photon direction along the ray 〈jνθB〉/jν.
This angle is larger for a = 0.98 (panel (a)) than for a = 0.5
(panels (b) and (c)) in the inner region of the image. Physically
for roughly face-on viewing angles, the magnetic field in the
accretion flow onto a BH with a smaller spin has a more
vertical field than onto a highly spinning BH (where the field is
wrapped up to be more azimuthal). This leads to the average
angle between the propagation direction and the local magnetic
field decreasing for a = 0.5 relative to a = 0.98. A less face-on
viewing angle produces a similar effect (panel (c)). Figure 6
shows results for the isotropic emission model but can be used
to gain insight into why the central “shadow” is noticeably
different in the firehose and mirror cases in Figures 3 and 5. In
particular, the lower average angle between the photon and
magnetic field in Figure 6 at lower spin and observer viewing
angle implies (via Figure 1) that in the mirror (firehose) case
the emission in the shadow should be suppressed (enhanced).
This is exactly what is seen in the images. Plasma anisotropy
could thus have an effect on observational efforts to infer
physical properties of the black hole using the “inner shadow”
(Chael et al. 2021).

We now quantify the effects of changing image size and
asymmetry for different plasma anisotropy models. Following
(Event Horizon Telescope Collaboration et al. 2019b), we
measure the image diameter d as twice the distance from the
center of the image to the peak Iν averaged over all directions
and w is the FWHM of Iν averaged over all directions. We can
then infer rin= (d−w)/2 and rout= (d+w)/2—inner and
outer radius of the image. The asymmetry parameter A of the
image, defined in image plane coordinates f-rim im, is

( )
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where ( )fI im is the brightness profile across image coordinate

fim at a fixed radial coordinate rim. A fully symmetric image

has A= 0, while an antisymmetric image has A= 1.

The asymmetry A and diameter d measured from ray-traced
images are shown in Figure 7 with different models represented
by different colors, identical across all panels; 230 GHz results
and the variation with frequency are shown in panels (a), (b),
(d), and (c), respectively. The top panels show A (panel (a)) and
d (panel (b)) for an M87* observing angle θ= 163° as
functions of Rhigh. Panel (d) shows A for Rhigh= 10 as a
function of observing angle θ for a = 0.98 (solid lines) and
a = 0.5 (thin dotted lines) for Sgr A*. Shaded regions indicate
the allowed range as inferred from observations for M87*

(panels (a)–(b); Event Horizon Telescope Collaboration et al.
2019b, 2019c) and Sgr A*

(panel (d); Event Horizon Telescope
Collaboration et al. 2022b). Panel (c) shows A measured from
unblurred images as a function of frequency for an M87*

viewing angle.
As expected, the difference in anisotropy A between the

models becomes larger with increasing Rhigh (panel (a)) since
larger Rhigh suppresses the emission from high-β regions
relative to low-β regions, where the plasma can develop
significant anisotropy (see also Table 1). The firehose case
(η< 1) always shows smaller A, consistent with the images in
Figures 3–5, while models with η> 1 show higher A compared
to the isotropic case. The firehose models typically have
anisotropy A up to 3 smaller than the mirror case, with the
exact value depending on Rhigh and viewing angle. As
explained above, this is because plasma at the firehose limit
(η< 1) emits more isotropically (over a wide range of angles)
with respect to the magnetic field direction, relative to the
mirror case, which emits mostly at θB= 90°. This leads to less
anisotropy in the image overall. In M87*, the viewing angle is
constrained to be θ≈ 163°, while A≈ 0.16–0.32; thus, from
Figure 7(a), a better fit to the observed A is obtained for η< 1
at larger Rhigh or η> 1 with smaller Rhigh.
We also show the diameter of the image in Figure 7(b),

calculated for the same images as shown in panel (a), i.e.,
a = 0.98, θ= 163°, and Rhigh= 10; the diameter is generally
larger for models with larger η. The shaded region indicates the
M87* constraint of d= (42± 3) μas (Event Horizon Telescope
Collaboration et al. 2019c). As was shown in Figure 2, the
temperature ò⊥ for plasma at the firehose limit (panels (f) and
(l)) is smaller and varies less with radius than at the mirror limit
(panels (e) and (k)) for both spin parameters. This lower
temperature leads to emission more concentrated near the black
hole and thus a smaller image diameter.
Figure 7(d) shows that the image becomes more asymmetric

(panel (d)) as we look more “edge-on” instead of “face-on.”
Both spin values of 0.98 (solid lines) and 0.5 (thin dotted lines)
show similar behavior. The images used for panel (d) are
produced for Sgr A* with M= 4.3× 106Me, and the density is
normalized such that the total flux matches EHT observations,
i.e., Fν= 2.4 Jy at 230 GHz and distance of d= 8178pc. A
quantitatively similar trend, however, is also present for our
M87* models. We also show the EHT constraints on A for Sgr
A* by the shaded region in panel (d) [A≈ 0–0.5]. As before,
plasma at the firehose anisotropy limit leads to a more
symmetric image, compared to mirror and whistler limits, at
any observing angle. Note the quite isotropic image (small A)

at the firehose limit even at θ= 135°, especially for the lower
spin case a = 0.5. This effect can significantly change the
constraint on our viewing angle relative to Sgr A* suggested by
the EHT data, allowing for larger observing angles than for an
isotropic plasma.

Figure 6. Average angle with the magnetic field along the ray, measured by
emission-weighted sine of θB for different spins and viewing angles. Lower
spin decreases the average angle of the emitted photons relative to the magnetic
field. This in turn enhances the effects of plasma anisotropy on the observed
image (Figures 3–5).
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We will now quantify the imprint of the anisotropy of the
plasma distribution function on the direct emission I0 and the

n= 1 photon ring I1 separately. As seen in Figure 3(i)–(p), both
n= 0 and n= 1 emission have their azimuthal asymmetry
modified with varying η in a way that is similar to the full
blurred image. Both are more symmetric at the firehose limit
with η< 1 and more asymmetric at the mirror and whistler
limits with η> 1, compared to the isotropic plasma distribution
case. To distinguish the imprint of the plasma anisotropy on the
two components, we show angular profiles of n= 0 and n= 1
emission in Figure 8 (I0 and I1 as functions of the polar angle in
the image plane fim, top row, panels (a) and (b)) and their ratio
(I1/I0, bottom row, panels (c) and (d)). The polar angle is
plotted such that the dimmest region of the image, f ~ 0im , is
in the center of the profile. This is for an observing angle of
θ= 163° for both of our spin values of 0.98 and 0.5 (thick and
thin lines, respectively); Rhigh= 1 and 100 are shown in the left
and right columns, respectively.
As expected, the Rhigh= 100 case shows a stronger

dependence of I0 and I1 on plasma anisotropy than Rhigh= 1
due to the higher anisotropy in the low-βth regions. The
quantitative dependence of the n= 0 and n= 1 intensities on
plasma anisotropy differ because the n= 0 and n= 1 photons
at the same place in the image plane are emitted at different
directions relative to the local magnetic field. The largest
difference between I0 and I1 is reached in the case of smaller
electron temperatures at the mirror limit. In principle,
measurements of the azimuthal intensity profiles at n= 0 and
n= 1 could thus be used to constrain plasma anisotropy,
though it is unclear if this is feasible in practice given
uncertainties in black hole spin, the electron temperature,
degree of Doppler beaming, etc.
In addition to calculating the synchrotron emission and

absorption produced by an anisotropic distribution function, we
have also calculated how the emitted linear and circular
polarization depends on plasma anisotropy. Because we do not

Figure 7. Asymmetry A (panel (a)) and diameter d (panel (b)) as functions of
Rhigh for a = 0.98 and M87* observing angle, θ = 163°, for images at 230 GHz
blurred with 20 μas FWHM Gaussian kernel. Panel (c): asymmetry of
unblurred images at θ = 163° and Rhigh = 10 as a function of observing
frequency, a = 0.98. Panel (d): asymmetry at Rhigh = 10 as a function of
observing angle θ for a = 0.98 (solid lines) and a = 0.5 (thin dotted lines) for
Sgr A*. The green regions highlight EHT constraints for M87* (a,b) and Sgr A*

(d). In each panel, the color of the lines represents four limiting cases: mirror
instability, whistler instability, isotropic plasma distribution, and firehose
instability.

Figure 8. Angular profiles of n = 0 and n = 1 brightness (I0 [solid] and I1
[dotted] as functions of fim in the image plane, top row) and their ratio (bottom
row) at an observing angle of θ = 163° at spins of 0.98 (thick lines) and 0.5
(thin lines). The first and second columns represent Rhigh = 1 and 100,
respectively. The color of the lines, as in Figure 7, represents four limiting
cases: mirror, whistler, isotropic, and firehose.
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consider the impact of plasma anisotropy on Faraday rotation
and conversion in this paper, we defer a detailed discussion of
the polarization due to plasma anisotropy to future work. We
can, however, quantify the change in intrinsic linear and
circular polarization, i.e., neglecting the effects of Faraday
rotation and conversion. We find that the image-averaged linear
polarization fraction can change by up to roughly +10% or
−10% for the mirror and firehose limits, respectively,
compared to the isotropic case. Circular polarization exhibits
the same trend, but the mirror case can be five times more
circularly polarized compared to the isotropic case, at
Rhigh= 100. We also note that because models with plasma
at the firehose anisotropy have smaller ò⊥, a higher density is
required to match the observed EHT flux. This leads to an
increase in pixel-averaged optical depth, e.g., 1.1× 10−3,
1.2× 10−3, 1.3× 10−3, and 3.7× 10−3 for the mirror,
whistler, isotropic, and firehose cases, respectively, at an
inclination of 163° and Rhigh= 10. Thus, τ is by a factor of 3–4
larger in the firehose case, compared to other cases, which
might also lead to a higher Faraday depolarization.

3.3. Multiwavelength Observations

Future millimeter interferometric observations will include
two more frequencies, 345 GHz and 86 GHz (Johnson et al.
2023), with the latter (former) expected to be more (less)
optically thick (Chael et al. 2023a). We thus explore the impact
of an anisotropic plasma distribution function on observable
images and spectra at these frequencies. In Figure 9 we show
intensity images for a BH with a = 0.98 at 345 GHz on top
(panels (a) and (b)) and 86 GHz on the bottom (panels (c) and
(d)), with the parameters being identical to those in Figure 3—
θ= 163° and Rhigh= 10. The mirror and firehose models are
shown in the first (panels (a) and (c)) and second (panels (b)
and (d)) columns, respectively. The respective images at
230 GHz are shown in Figure 3 for mirror (panel (e)) and
firehose (panel (h)) cases.

The differences between the mirror and firehose in Figure 9
at 345 GHz are similar to the differences at 230 GHz in Figure
3: the mirror case is more azimuthally asymmetric than the
firehose case. Images at 345 GHz (panels (a)–(b)) are
particularly similar to their 230 GHz counterparts because the
emission is predominantly optically thin in both cases. At lower
frequency (panels (c)–(d)), however, the higher synchrotron
optical depth somewhat suppresses the differences between the
mirror and firehose limits and overall makes the emission more
azimuthally symmetric. Figure 7(c) quantifies the asymmetry A
as a function of frequency for the four different distribution
function models: the difference in the asymmetry between the
different distribution function models persists at all frequencies,
though the overall asymmetry is largest at high frequencies. In
the firehose model at 86 GHz, Figure 9(d) also shows that the
photon ring emission is much less evident. This is because the
firehose model has a lower temperature and higher density (at
fixed 230 GHz flux) than the other plasma anisotropy models,
and so the emission is optically thick at 86 GHz. The same
trend, i.e., optically thin emission at high frequencies (345 GHz
and 230 GHz) and optically thick emission at 86 GHz in the
firehose case, persists at a lower spin parameter of a = 0.5 (not
shown here).

We also calculate the synchrotron emission spectra from
1010–1015 Hz, shown in Figure 10 at 135° (left; panels (a)–(b))
and 163° (right; panels (c)–(d)) for spins of 0.98 (solid lines)

and 0.5 (dotted lines) at two Rhigh values of 10 (panels (a) and
(c)) and 100 (panels (b) and (d); shown on the left and right
side panels for each angle, respectively). The different spectra
for different black hole spins are due to the higher temperatures
found in more rapidly spinning GRMHD simulations
(Mościbrodzka et al. 2009). The color of the lines is organized
as in previous plots with different colors representing different
plasma anisotropy. The firehose case shows a significantly
different spectrum for both a = 0.98 and a= 0.5. The change is
minor at low frequencies, with firehose being slightly fainter
than the other models. The peak of the spectrum, however, can
significantly shift to lower frequencies, steepening the spectral
slope just below the peak. At higher frequencies, the emission
in the firehose model is substantially fainter and the spectral
slope is steeper, compared to other cases. The qualitative
results do not depend on the value of Rhigh. Our physical
interpretation of this is that at fixed GMRHD temperature, the
firehose model (with T∥,e> T⊥,e) has a lower value of T⊥,e.
This suppresses the peak frequency of the synchrotron emission
as given by Equation (14) leading to a more rapid decline in
emission at high frequency.

4. Summary and Conclusions

Magnetized collisionless plasmas are prone to developing
anisotropies in their distribution function with respect to the
magnetic field direction: the distribution function is isotropic in
the plane perpendicular to the magnetic field because of rapid
cyclotron motion (“gyrotropic”), but can be very different
along and perpendicular to the local magnetic field. In this
work we have calculated the synchrotron radiation from
distribution functions with anisotropy of this form. We are
motivated by the application to low accretion rate black holes
such as those found in Sgr A* and M87*, but we anticipate that
the synchrotron radiation calculations presented here will have
broader applicability.
First, we have derived and provided fits for synchrotron

emissivities and absorption coefficients for relativistic thermal

Figure 9. Synchrotron emission of accreting plasma ray-traced from an MAD
simulation with a = 0.98 at an inclination of θ = 163° and Rhigh = 10 at
frequencies of 345 GHz (panels (a)–(b)) and 86 GHz (panels (c)–(d)). The first
and second columns represent two limiting cases (mirror and firehose,
respectively).
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electrons with an anisotropic distribution function in
(Equation (11)). The distribution function we choose
(Equation (7)) is a natural relativistic generalization of a
nonrelativistic bi-Maxwellian and allows for arbitrary temper-
ature anisotropies relative to the local magnetic field T⊥/T∥ via
a parameter η. The derived fits we present are accurate to
∼10% or better compared to numerical solutions using the
publicly available synchrotron code symphony (Pandya et al.
2016) in the parameter range of interest (high frequency and
high temperature); the main source of error is the inaccuracy of
the fits for synchrotron emission and absorption for an isotropic
thermal plasma, which our fits are scaled to.

The change in synchrotron emission as the plasma transitions
from an isotropic to anisotropic distribution function at a fixed
perpendicular temperature T⊥ can be understood as a
renormalization of the number of particles that emit toward
the observer. The reason for this is that synchrotron emission
emitted at an angle θB relative to the local magnetic field is
produced primarily by particles whose vector momenta are in
the same direction as θB, or, equivalently, the pitch angle of the
emitting particles is ξ≈ θB. The emission thus depends on the
distribution function at pitch angle ξ≈ θB. For a plasma with an
isotropic distribution function, the temperature is independent
of ξ but temperature anisotropy in the distribution function
implies that the temperature is now effectively a function of
pitch angle ξ and thus viewing angle θB (Equation (9)). For an
isotropic plasma, synchrotron emission is peaked near
θB∼ 90°, i.e., orthogonal to the magnetic field. This trend is
enhanced for T⊥> T∥ (anisotropy parameter η> 1) while for
T∥> T⊥ (η< 1) the emission can peak at significantly smaller
observing angles, depending on the exact value of η (Figure 1).
The case of η< 1 also shows more uniform emission across
observing angles than does η> 1.

In addition to calculating the total emitted synchrotron
radiation as a given frequency, we have also calculated the
emitted linear and circular polarization fractions as a function
of plasma anisotropy. We find that the intrinsic linear
polarization degree depends only weakly on the plasma
anisotropy η. On the other hand, circular polarization, which
is very weak in synchrotron emission from relativistic isotropic
plasmas, increases significantly for T∥< T⊥ at a fixed T⊥
(η> 1). In addition, since most of the emission comes from
large (small) angles relative to the magnetic field for η> 1
(η< 1), the respective angle-averaged circular polarization
degree is higher (smaller).

We have employed the newly developed fits for synchrotron
emission and absorption by anisotropic electrons in a GR

radiative transfer code blacklight, capable of propagating
synchrotron radiation in curvilinear spacetime. To assess how
anisotropy of the accreting plasma affects millimeter-
wavelength observations of Sgr A* and M87*, we ray trace
GRMHD MAD simulations—the accretion model most
favored observationally (Event Horizon Telescope Collabora-
tion et al. 2021). Other accretion models, such as Standard and
Normal Evolution (SANE) models, are also possible. In such
models, the plasma-β is considerably higher. This suggests that
the effect of plasma anisotropies is relatively smaller in SANE
models compared to MAD models, but more detailed work in
the future is required to assess this quantitatively. Since the
ideal MHD approach describes a collisional isotropic fluid, the
main source of uncertainty in this work is the temperature and
temperature anisotropy of the synchrotron-emitting electrons.
In particular, the ion-to-electron temperature ratio, which we
approximate by the widely used Rhigh− Rlow model and the
electron’s anisotropy η, are the main free parameters in our
study. Since η is a prescribed quantity, absent in our ideal
GRMHD simulations, the conclusions of this work should be
thought of as qualitative rather than quantitative.
The temperature anisotropy in a collisionless plasma cannot

grow without bound because small-scale instabilities set in and
limit the magnitude of the temperature anisotropy. We thus
examine the effect of an anisotropic synchrotron-emitting
plasma on observed emission by considering three limiting
cases, defined by the anisotropy thresholds of three anisotropy-
driven instabilities: the mirror and whistler instabilities (η> 1)
and the firehose instability (η< 1). We present relativistic
derivations of these thresholds in Appendix B. In particular, we
derive a fully kinetic mirror instability threshold in the case of
anisotropic relativistic electrons with anisotropy parameter η
(and anisotropic nonrelativistic ions with a different anisotropy
parameter ηi). The temperature anisotropy allowed by kinetic-
scale instabilities is larger for stronger magnetic fields, i.e.,
smaller β (the ratio of thermal to magnetic energy density). The
effects of temperature anisotropy on observed synchrotron
emission are thus likely to be the largest when the emission is
dominated by regions with β 1, as is often the case in
magnetically arrested disk models favored on theoretical and
observational grounds.
We find that anisotropy in the accreting plasma can

significantly modify the observed synchrotron emission in
horizon-scale images, including the azimuthal asymmetry in
the image plane and size of the image. This is primarily due to
the following two effects. The first effect is that the emission
and absorption for different distribution anisotropies are

Figure 10. Synchrotron emission spectra for BHs with a = 0.98 (solid lines) and a = 0.5 (thin dotted lines) viewed at inclinations of θ = 135° (panels (a) and (b)) and
163° (panels (c) and (d)) at Rhigh = 10 (panels (a) and (c)) and 100 (panels (b) and (d)). As in Figure 7, different models are represented by different colors.
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concentrated at different observing angles with the magnetic
field, with η< 1 emitting more uniformly across all angles as η
decreases, and η> 1 emission/absorption being more con-
centrated near θB∼ 90° (Figure 1). This can significantly
modify the azimuthal asymmetry in the image plane because
different parts of the image contain radiation that was initially
emitted at different angles relative to the local magnetic field.
The second key effect is that the local perpendicular
temperature T⊥ of the electrons changes with an assumed
anisotropy η at a given total fluid temperature T given by the
GRMHD solution (Figure 2). Models with η> 1 (η< 1) have a
larger (smaller) T⊥, compared to the isotropic case. Higher
(lower) temperatures produce larger (smaller) 230 GHz images
because the emission at 230 GHz occurs over a larger (smaller)
range of radii (Figure 3). Higher temperatures also lead to a
smaller (higher) density of the accreting plasma at a fixed
230 GHz flux and thus more optically thin (thick) emission; this
is especially pronounced for η> 1, i.e., the firehose regime, in
which the image-averaged optical depth can increase by a
factor of 3–4.

More specifically, we find that emission from plasma with
η< 1 (η> 1) produces a more azimuthally symmetric
(asymmetric) image, up to a factor of 3 difference in the
asymmetry parameter A. This result is of particular interest in
application to Sgr A*, where the observed EHT azimuthal
asymmetry is surprisingly modest given expectations for a
random viewing angle. This appears to suggest we are
observing Sgr A* closer to face-on than not, which is a priori
surprising. Models with η< 1 have significantly less variation
in the synchrotron emissivity with photon direction relative to
the magnetic field. This produces a more azimuthally
symmetric image, alleviating the restrictive constraints on
viewing angle (Figure 7(d)).

Anisotropy in the plasma distribution function also changes
the image diameter and the size of the central flux depression
(or the observed “BH shadow”). The smaller perpendicular
temperature T⊥ in η< 1 firehose model results in a reduced
image diameter (Figure 7(b)). At lower BH spins, the viewing
angle relative to the magnetic field is also smaller in the near-
horizon region. This suppresses (enhances) the emission in the
image center interior to the true photon ring (i.e., the critical
curve). The BH “shadow” therefore appears to be larger in low
spin models with η> 1 (Figure 5). Chael et al. (2021) showed
that the size and shape of the “inner shadow” depend on BH
spin and our viewing angle relative to the BH spin, potentially
providing a route to measuring these quantities. Our results
show that anisotropy in the distribution function in this region
close to the event horizon may be important to consider as well.

In this paper we have not calculated the Faraday conversion
coefficients for an anisotropic plasma. We defer this to future
work. We have, however, calculated the emitted linear and
circular polarization fractions and how they depend on plasma
anisotropy. We find that the imaged-averaged emitted linear
polarization fraction can increase (decrease) by up to 10% in the
mirror and whistler (firehose) cases. The emitted circular
polarization fraction shows a similar trend, although the
magnitude of the effect is much larger, with the T⊥> T∥ regime
showing an emitted circular polarization in the millimeter that is
up to five times larger than in an isotropic plasma.

The high-frequency synchrotron emission is particularly
sensitive to plasma anisotropy. As a result, interpreting and
modeling GRAVITY observations of Sgr A* may require

incorporating the effects of plasma anisotropy; this emission is
also likely nonthermal, however, so an extension of our results
to nonthermal distribution functions would be valuable.
We have also assessed how the anisotropy of the plasma

affects future multifrequency and n= 1 photon ring observa-
tions. We find that the effect of the plasma distribution function
on the azimuthal image asymmetry persists throughout the
frequencies of interest to future ngEHT observations, i.e.,
86 GHz and 345 GHz, though the effect is more pronounced at
higher frequencies (Figure 7(c)). We also find that the n= 1
photon ring emission is even more azimuthally asymmetric
(symmetric) for η> 1 (η< 1) than the direct n= 0 emission,
leading to an increased (decreased) ratio of photon ring to direct
emission brightness—up to a factor of 6 in intensity ratio
relative to the isotropic distribution function case for the
parameter range we considered. Anisotropy in the distribution
function has a particularly large effect on the ratio of the n= 1
to n= 0 emission because plasma anisotropy directly changes
the emissivity as a function of viewing angle relative to the
magnetic field, and the n= 0 and n= 1 images contain emission
emitted at different angles relative to the local magnetic field.
The largest limitation of the present study as applied to

modeling Sgr A*, M87* and related sources is that the true
electron temperature anisotropy in the near-horizon environment
is poorly constrained. In this work we have attempted to bracket
the magnitude of the effect that temperature anisotropy can
produce on near-horizon synchrotron radiation by considering the
extreme limit in which all of the plasma is at the temperature-
anisotropy associated with the instability thresholds for the
mirror, whistler, or firehose instabilities. The image-averaged
emission-weighted electron temperature anisotropies in these
models are given in Table 1 and range from ∼0.1–9. Real
systems likely do not follow just one of the limiting anisotropy
models considered here since different temperature anisotropy
can coexist in different parts of the accretion flow . In
magnetically dominated jet regions, the plasma is in principle
capable of developing large anisotropy in its distribution function.
This could occur due to differential parallel and perpendicular
heating and/or as a result of outflow-driven expansion of the jet
(as in the solar wind). Consequently, it would be interesting to
apply the methods developed here—likely extended to non-
thermal distribution functions—to model and interpret the
emission from spatially extended jets (e.g., Lu et al. 2023).
Fortunately, there is a clear path forward for improving our

understanding of the role of temperature anisotropy in the
radiation from accretion flows and jets. Global “extended”
MHD models that evolve the pressure anisotropy as a
dynamical variable can predict T⊥/T∥ as a function of time
and space (Foucart et al. 2017), removing the need to specify
the temperature anisotropy in post-processing as we have done
here; such models will, however, needed to be extended to
consider both electron and proton temperature anisotropies.
Global GRPIC simulations can go one step further and predict
the full distribution function in the accretion flow and outflow,
including temperature anisotropy, and deviations from a
Maxwellian, etc. (Galishnikova et al. 2023). One aspect that
is important to account for in future modeling is that in plasmas
with Tp> Te, the mirror and fluid firehose instabilities are most
sensitive to the proton temperature anisotropy (see Appendix
B). As a result, it is plausible that the electron anisotropy is set
primarily by resonant instabilities such as the whistler and
resonant firehose instabilities.
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Appendix A
Comparison of Analytical Synchrotron Expressions with

Numerical Results

In this Appendix, we analytically calculate the synchrotron
emission and absorption coefficients for our assumed
gyrotropic distribution function and compare the resulting
analytic expressions to full numerical evaluations of
Equations (3). The analytic calculations are carried out in the
limit of high Lorentz factors for the emitting electrons, the
same regime in which analytic progress can be made for an
isotropic distribution function (see, e.g., Ginzburg &
Syrovatskii 1965; Melrose 1971).

A.1. Derivation of Analytical Fits for Total Intensity, Linear
Polarization, and Circular Polarization

Under the assumption of high Lorentz factor γ (or energy E)

for the emitting electrons, the emission is predominantly
concentrated in a narrow cone around the pitch angle

( )m q cos B where θB is the viewing angle with respect to
the magnetic field. Following Melrose (1971), the electron
emissivity in the Stokes basis from Equations (3) and (5) in the
main text can be expressed in tensor form as
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where νc= eB/2πmec is a nonrelativistic cyclotron frequency,

X= ν/νcr and ( )n n g q= 3 2 sincr c B
2 . The first expression in

Equation (A1) is general while in the second expression we

have integrated over pitch angle ξ by assuming ξ; θB. The

Stokes emissivities are related to Equation (A1) as

jI= j22+ j11, jQ= j22− j11, jU= j12+ j21≡ 0, and jV= i

( j
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21
). Here, unlike in Melrose (1971), we define g(θB)
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In the last equality in Equation (A2), we have defined the

anisotropy parameter A (a function of η) that will appear below.
We now proceed analytically evaluating the emissivities jI,

jQ, and jV, beginning with jI. Equation (A1) for jI can be
rewritten as:
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is the asymptotic behavior of the synchrotron power at low and

high frequencies, and Γ(a) is the gamma-function. To express

the emissivity in terms of the new temperature

  ( ) ( )x q h q= = = + -^ ^ ^ 1 1 cosB B
2 , as given by

distribution in Equation (8), we consider separately the low-

and high-frequency limits in Equation (A4) applied to

Equation (A3). In the low-frequency limit,
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Therefore, the final expression for the emissivity is
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where n n q= ^ sins c B
2

9

2 and   ( )x q= =^ ^ B . This calcul-

ation was done in the limit of low ν, but the same expression

can be obtained in the limit of high ν as well. The integral over

the Lorentz factor in Equation (A3) now becomes
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The fact that jI for the anisotropic relativistic Maxwellian can

be expressed as Equation (A6) in both the low- and high-

frequency limits motivates our using this expression as the

proposed fit in Equation (11) of the main text. Physically, this

corresponds to the total intensity emissivity just changing due

to a different effective distribution function in the angle θB
toward the observer. Note as well that although we derived

Equation (A6) for total intensity, the same expression scaled to

the isotropic distribution function emissivity holds for the

intrinsic linear polarization emissivity, i.e., jQ. This is because

K2/3(X) has the same functional form as ( )ò
¥
K X

X
5 3 at both

high and low frequencies.
Circular polarization, however, has a different functional

form:
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Unlike in the case of total intensity and linear polarization, the

circular polarization emissivity requires expanding the dis-

tribution function in a narrow cone around θB; the resulting jV
depends on the derivative of the distribution function, included

in g(γ, θB). To understand the origin of our fit for jV in

Equations (11), we first consider the high-frequency limit when

both ( )ò
¥
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X
1 3 and ( )K X1 3 scale as -e XX for X? 1.
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Equation (A9) can then be integrated via the method of steepest
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As with jI and jQ, we choose to express jV relative to the result

for an isotropic Maxwellian with temperature  ^. The latter can
be derived in an identical manner to Equation (A11). We find

that ratio of jV in the anisotropic case to jV,iso at a temperature of

^ and A= 0 has two terms. One is the ratio of distribution

function normalizations     ( )( ( ) ( ))h ^ ^ ^ ^K K1 11 2
2 2 that

appears in jI and jQ. The other is the factor  ( )h ^ ^
2 in

Equation (A11)—present only in jV and not jQ and jI—that is

due to the presence of the distribution function derivative g(θB)

in the circular polarization emissivity. The net result is
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which gives the analytical fit given by Equation (11) in the

main text. The same result can be derived in the low-frequency

limit via suitable expansion of Equation (A9).

A.2. Comparison of Analytics and Numerics

We now solve Equations (3)–(5) in the main text
numerically and check the validity of the approximations used
in the previous section for obtaining analytical fits for the
polarized synchrotron emissivity and absorption coefficients.
To do so, we use the publicly available code symphony to
compare our theoretical fits (Equation (11)) with a numerical
solution. We implemented an anisotropic distribution function
to calculate jS and αS. In particular, we added the possibility for
the distribution to depend on harmonic number n as well as a
nonzero ∂μf term in the absorption coefficient calculation
(Equation (4), which shows up in Equation (3), includes ∂μf );
both were absent in symphony. The distribution function and
analytical derivatives ∂γf and ∂μf can now depend on
m x= cos . However, as described in Section 2 and below,
the term with ∂μf in the absorption coefficient is negligible
because it shows up proportional to a term that vanishes when
the pitch angle is approximately θB.
The integrands in Equations (3) are Kaf (γ, ξ) for ja and

KaDf (γ, ξ) for αa, where ξ can be substituted for n since at
yn = 0 (as required by δ(yn) ) :
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Thus, the integrands can be expressed as functions of γ and n

and integrated in γ− n space.
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In Figure 11 we show the integrands for jI (a) and αI (b) and

the two terms from Df that include ∂γf (γ, ξ) and ∂μf (γ, ξ) for

ν/νc= 103, ò⊥= 10, and η= 10. The location of the sharp

peak in the γ− n plane is where ξ; θB (as in the isotropic

distribution function case). However, the exact harmonic at

which the emission peaks moves along this line, depending on

η. This is equivalent to the result in Figure 1 that different θB
dominate the emission as we vary η. Panels (c) and (d) in

Figure 11 show that, at the location in γ− n space where the

absorption coefficient peaks (panel (b)), the first term in Df due

to gradients in γ is much larger than the second term due to

gradients in μ. This is because most of the emission and

Figure 11. Integrands |KIf (γ, ξ)| for jI (a) and |KIDf (γ, ξ)| for αI (b). Two parts of Df that include ∂γf (γ, ξ) (c) and ∂μf (γ, ξ) (d). The approximate location of the peak
that corresponds to q bm=cos B is shown by dotted lines. The free parameters are ν/νc = 103, η = 10, ò⊥ = 10. While the location of the peak is still the same as in
the η = 1 case, a nonzero term with ∂μf (γ, μ) appears, which, however, goes through zero at the peak of the integrand. Note the saturated color bar in panels (c)
and (d).

Figure 12. Comparison of numerical results for jI (a)–(b), αI (c)–(d), jQ (e)–(f), and jV (g)–(h) with the theoretical fits given by Equations (11) and (A14). Numerical
results and theoretical fits are shown on the left by solid and dotted lines, respectively. On the right, the relative error is shown. Note that the dashed gray line on the
right shows a relative error of 30%. The free parameters are ò⊥ = 10 and ν/νc = 103.
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absorption is coming from pitch angles of ξ≈ θB. Thus, the

propagation is almost parallel, and the term with b q m-cos B

shown in panel (d) does not contribute significantly to Df. This

implies that in practice the total intensity emission and

absorption coefficients for the anistropic distribution function

are equivalent to calculations for a thermal isotropic

distribution function at a new temperature  ^. This allows us

to calculate αa from ja via Kirchoff’s law even for our

anisotropic distribution function (at least in the limit of high γ

where ξ≈ θB is justified).
A number of fitting functions for ja and αa are used in the

literature (see, e.g., Pandya et al. 2016; Dexter 2016). Here we

compare our results for the fits used by blacklight:
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where X= ν/νs. Absorption coefficients αS for a thermal

distribution can be obtained via Kirchoff’s law.

Figure 12 shows numerical integration results from
symphony (solid lines) along with their respective theoretical
fits (dotted lines) for jI (a), αI (b), jQ (c), and jV (d) on the left.
On the right, their respective absolute errors are shown in
panels (b), (d), (f), and (h). All results are shown as a function
of observing angle θB at different anisotropy parameters η
represented by different colors, at ν/νc= 103 and for ò⊥= 10.
These are typical parameters for application to Sgr A* and
M87*. The agreement is excellent for all η, with maximal
errors 10%
We show a more challenging case of low temperature ò⊥= 3

and low frequency ν/νc= 10 in Figure 13, which is organized
identically to Figure 12. This case is more challenging for our
analytic fits than Figure 12 because the emission for ò⊥= 3 and
low frequency ν/νc= 10 is dominated by much lower-energy
electrons. The errors in our fits in Figure 13 are, not
surprisingly, larger. Generally, η< 1 has smaller relative errors
than η> 1. This is because at a fixed observing angle θB and
ò⊥, the effective temperature ^ is larger than ò⊥ for η< 1. By

contrast,  <^ ^ for η> 1, which can start to approach the
nonrelativistic cyclotron limit for which our fits do not apply.
Figure 13 shows that the case of η< 1 has a relative error of
<30% across all considered angles θB ä [5, 85]°, and <10% for
most angles. The fits have a relative error of larger than 30%
for η� 1; however, at the largest and smallest angles. This is
true for the isotropic case as well at small angles. We note,
though, that the actual value of the emissivity and absorption
coefficient are very small at small angles for η 1 (Figure 6) so
that most of the emission and absorption will arise at larger

Figure 13. Same as Figure 12 but for ò⊥ = 3 and ν/νc = 10.
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angles where the fits are better. In addition, at this low
frequency, the emission will in most practical cases of interest
be self-absorbed and approximately a blackbody. Finally, we
note that a significant cause of error here is that our fits in
Equation (11) for the anisotropic emission and absorption
coefficients are scaled to the isotropic emissivity and
absorption fits in Equation (A14), which become inaccurate
at low temperatures, low frequencies, and small angles, as
indicated by the large fractional errors for the isotropic case in
Figure 13. In practice, we advise caution in using the fits here if
  ø^ 3 and the frequency is low 10νc. The regime of most
interest for our applications is much higher frequencies where
the analytic fits in Equation (11) are accurate.

Appendix B
Anisotropy-driven Instabilities in Relativistic Plasmas

B.1. Mirror Instability

To calculate the kinetic threshold for the relativistic mirror
instability, we consider Vlasov and Maxwell’s equations:
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where s is the particle species (ions i or electrons e) with mass

ms and charge qs, vs= ps/msγ, E is electric field (with E0= 0
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that ˆ=B B z0 . We now consider a small perturbation in the
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. We seek the solution of the

linearized Vlasov equation for δfs and the corresponding

current via the method of characteristics (e.g., Mikhailovskii

1976). The current response δjy due to δEy is:
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For isotropic ions, the terms with ∂μf can be dropped,
resulting in the following current response:
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where the second term in brackets equals zero due to the odd

function ( )m m x= - =S 1 sin2 2 . For the mirror mode, we are

interested in the k∥v∥/ω? 1 limit, which leaves only the

resonant term. Using
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integration by parts of the third resonant term in Equation (B8)
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2 is the Alfvén speed.

We will now analyze the electron’s current in Equation (B6),
splitting it by the three terms in the brackets jy,e,1, jy,e,2, and jy,
e,3. The second term in Equation (B6) is μω/k∥v= 1 times
smaller than the third term and thus jy,e,2 is negligible. As with
the ions, considering the resonant term’s residue of −iπω/k∥v
at μ0= ω/k∥v
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The dispersion relation in the limit of ω= k∥vμ is therefore
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As in Osipov et al. (2017), the current response from
anisotropic electrons, which drives the mirror instability, can be
calculated in the same form:
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Integral I1 can be calculated by parts and expressed through
parallel and perpendicular pressure P∥,e and P⊥,e since
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Therefore, the two integral terms in I1 in Equation (B17) lead to

( ) ( )

( )

( ) ( )

ò ò

ò ò

p m m m

p mm m

h

´ -

- = -

= -l

¥

-
¥

- ^ 



dpp v d f p

dpp v d f p P P

P

2 2 1 ,

2 , 4

4 1 . B19

e

e e e

e

0

3

1

1
2

0

3

1

1
2

, ,

,

For the distribution function given by Equation (7) in the

main text, ( ) ( )m mµ - +f p a b, exp 1e
2 , where a= γ/ò⊥

and b= (1− 1/γ2)(η− 1). Then, the boundary term in
Equation (B17) can be expressed as
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resulting in the following contribution to δjy,e,3 from I1:
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For calculating I2, we find the derivative of the distribution
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integrand is an even function of μ, the contribution of I2 to the
current is

 

 

( )

( )

( )
( )

( )

ò

ò ò

ò

ò

p
h

g g m
m

h
g g

m
m

= -

´ -
+

=- -

´
+

m

l

m

¥

^ ^

¥ - +

+

^ ^

¥

- +



dpp vI
nm c

K

d ab d
e

b

P
K

d ab

d
e

b

2
1

1
1

1
1

1
. B22

e

a b

e

a b

0

3
2

2 1 2

2

1

2 3 2

0

1 1

2

,

1 2

2
2 1

2 3 2

0

1 1

2

2

2

Therefore, the relevant current can be expressed as
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which defines the integral ù .
Therefore, the final dispersion relation is
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In the ultrarelativistic limit, g g- »12 and b≈ η− 1, ù
reduces to
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where the boundary term (first term in Equation (B28)) cancels.

Therefore, the mirror instability threshold in the ultrarelativistic

limit is
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In the nonrelativistic limit, the instability threshold defined
by Equations (B27) and (B28) reduces to β⊥,e< 1/(η− 1),
consistent with previous work. This is because for a
nonrelativistic distribution P⊥,e/P∥,e= η1, i.e., λ= 1. The
contribution to δjy,e,3 from the boundary term in I1 (first term
in Equation (B28)) is 3P⊥,e/η

2, and the contribution from I2
(second term in Equation (B28)) is P⊥,e(η− 1)(8η2+ 4η+ 3)/
η2. Thus, ù ( )h h h- - = -4 1 8 1 in a nonrelativistic limit.

In the case of nonrelativistic anisotropic ions with anisotropy
parameter ηi, the same derivation leads to a threshold
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Therefore, the threshold condition is defined by the ions as β⊥,

i< 1/(ηi− 1) when P∥,i? P∥,e.
The assumption of a zero parallel current jz holds only when

plasma-β of at least one species is =1. Consequently, when
this assumption is invalid, a nonzero δEz also leads to a more
complex jy. In this case, both jy and jz contain terms
proportional to δEy and δEz through Vlasov’s equation. In a
nonrelativistic limit, the threshold is modified by an additional
stabilizing term, which depends on plasma-β of all species (see,
e.g., Hall 1979; Hellinger 2007). A similar stabilizing relation
can be obtained in a relativistic limit. The dispersion relation in
the long-wavelength limit with Ωe? ω and Ωe? kv is then
defined by the following two inseparable equations:
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which is equivalent to writing it in terms of plasma dielectric

tensor õab:
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where õ22 has already been calculated as the current response

along ŷ due to δEy:
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The general relations for relevant dielectric tensor compo-
nents are as follows:
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where õ õd= + åab ab abs
s . Keeping the leading terms of order

W-s
1 for d djz E, y

and djy E, z
and terms of order Ws

0 for d djz E, z
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In a nonrelativistic limit for an isotropic distribution, this

reduces to:
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In the dispersion relation, the imaginary term in õs33 above will
group with other imaginary terms in õ22 as a coefficient in front
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of the growth rate −iω. Thus, the threshold condition,

considering k∥v∥/ω? 1 and k⊥? k∥, to leading order in Ωs, is
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In Figure 14 we show a comparison of the nonrelativistic
mirror threshold β∥,e,nr= 1/(η− 1) (thick black line) and the
numerically calculated relativistic electron mirror threshold
from Equations (B27) and (B28). In panel (a), η is shown as a
function of β∥,e at different temperatures. Panel (b) shows the
ratio of the relativistic threshold value β∥,e and the
nonrelativistic threshold β∥,e,nr as a function of η. Deviations
are small for ò⊥ 0.1 and small values of anisotropy parameter
η 10. At high temperatures, the numerical solution is well
approximated by the ultrarelativistic limit β∥,e,ur given by
Equation (B30). We show their ratio, β∥,e,ur/β∥,e, as a function
of η in panel (c). Due to the large uncertainties in the electron
anisotropy in accretion flows and since we limit the anisotropy
T∥,e/T⊥,e to be �10 where the nonrelativistic and relativistic
mirror thresholds are similar, we chose to use the analytically
simple nonrelativistic mirror threshold for our application to
BH images in Section 3.

B.2. Parallel Firehose Instability

To calculate the relativistic firehose threshold, we linearize
Equations (B3) for ˆ=k kz , ˆd d=B B yy , and ˆd d=E E xx (see,
e.g., Barnes & Scargle 1973). The resulting equations for the
ion and relativistic electron’s currents are as follows:
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Solving for subrelativistic isotropic ions with distribution

function B10 and dropping the terms with odd μ-integrands in

δjx,e we find the following:
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This results in the following dispersion relation:
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which gives the usual nonrelativistic firehose threshold
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where b p= P B8e e, , 0
2. Note that if the ions are anisotropic as

well, the relevant firehose threshold becomes P⊥,e+ P⊥,i< P∥,

e+ P∥,i− B2/4π. Thus, if P⊥,i> P⊥,e the ion anisotropy will in

general be more important than the electron anisotropy in

setting stability to the fluid firehose instability.
The calculation presented here focuses on the fluid parallel

firehose instability. There are also resonant parallel and oblique
firehose instabilities: Larmor-scale resonant instabilities desta-
bilized by cyclotron interaction. The resonant instabilities
typically have faster growth rates and somewhat lower
anisotropy thresholds than the fluid firehose instability (Gary
et al. 1998; Hellinger & Matsumoto 2000). Calculations of
electron-scale resonant firehose instabilities for relativistically
hot electrons with Tp Te would be valuable but we leave this
to future work.

B.3. Whistler Instability

The electron whistler instability, first noted in Sudan (1963)
and followed by a relativistic derivation (Sudan 1965), is an
instability of circularly polarized electron waves propagating
along the magnetic field direction ˆB z0 . Considering a
wavevector k and fluctuating electric field δEx and δEy, the

Figure 14. (a): Relativistic mirror instability thresholds (anisotropy η as a function of β∥,e) defined by Equations (B27)–(B28) calculated for different ò⊥ represented
by different colors from darkest (ò⊥ = 0.01) to brightest (ò⊥ = 100). The dotted black line represents a nonrelativistic limit. (b): Ratio of relativistic mirror instability
threshold value β∥,e and its nonrelativistic limit β∥,e,nr as a function of η. (c): Ratio of relativistic mirror instability threshold value β∥,e and its ultrarelativistic limit β∥,e,
ur, defined by Equation (B30) as a function of η.
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dispersion relation can be written as (Gladd 1983)
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where ò∥= T∥,e/mec
2, fe is defined by Equation (7), p∥ and p⊥

are relativistic parallel and perpendicular momentum, respec-

tively, Ωe and Ωe,0 are the relativistic and nonrelativistic

electron cyclotron frequencies. The whistler instability, like the

ion cyclotron instability and unlike the mirror and firehose

instabilities considered in the previous Section, typically does

not have a formal threshold, but the growth rate becomes

negligible for decreasing anisotropy. This dispersion relation

can thus be solved numerically to find the target growth rate for

a fixed β⊥,e and varying η.
The threshold for the relativistic whistler instability can be

parameterized as (Lynn 2014) ( ) b= + a
^ ^ ^P P S1e e e, , , ,

where  ( ) ( )= - +^ ^
-S 0.265 0.165 1 1 and

a = - G0.58 0.043 log , where Γ∼ 10−6|eB/mec| is the
assumed growth rate. Since S(ò⊥) is a slowly varying and
monotonic function of temperature, S(ò⊥)≈ [0.1–0.25] for
ò⊥= [10−2, 102], we choose to use S(ò⊥= 1)= 0.183.

Appendix C
Anisotropy Model for GR Radiative Transfer

For our choice of the distribution function (Equation (7)), the
ratio of perpendicular and parallel temperatures T⊥,e/T∥,e= ηλ.
The value of λ is in turn a function of temperature ò⊥, which
we show in Figure 15. The function λ(ò⊥) can be well-
approximated by

( ( )) ( )l = - + +^0.08 tanh 1.5 log 0.5 0.92. C110

In the nonrelativistic limit, when ò⊥= 1, this gives T⊥,e/T∥,
e≈ η, while in the ultrarelativistic limit, T⊥,e/T∥,e≈ η0.8.

In our modeling of black hole accretion images, we consider
three limiting cases for the anisotropy of the distribution
function T⊥,e/T∥,e, intended to bracket the magnitude of the
effect that an anisotropic distribution function can introduce:
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where we take S = 0.183 and α= 0.838, as in Appendix B.3.

Since the firehose threshold is undefined at small electron-β∥,e,

we choose to set the threshold to a constant value of T⊥,e/T∥,
e= 0.1 at low β∥,e. This is motivated by local simulations

(Riquelme et al. 2015). Likewise, for the mirror instability, we

limit T⊥,e/T∥,e< 10. In reality, the temperature anisotropy at

low β will depend on the heating, expansion, and contraction of

the plasma, which is what drives the temperature anisotropy in

the first place.

It is useful to re-express Equations (C2) in terms of the total

electron temperature

( ) ( )= +^ T T T
1

3
2 . C3e e e, ,

Using Equation (C3), note that Equation (C2), for the

instability thresholds, can be rewritten as
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where β∥,e,firehose and β∥,e,mirror are exact solutions and β⊥,e,

whistler is a polynomial fit to a numerical solution with growth

rate Γ∼ 10−6|eB/mec| and ò⊥= 1. The thresholds in

Equation (C4) can then be used in Equation (C2), thus

providing expressions for the threshold temperature anisotropy

in terms of βe. This is a variable accessible to a simulation that

does not evolve temperature anisotropy, such as those that we

used in Section 3. The threshold conditions are shown in

Figure 16 as a function of electron βe, which is extracted from

the MHD plasma-βth via βe= 2βth/(R+ 1).

Figure 15. Numerically calculated λ as a function of ò⊥ for T⊥,e/T∥,e = ηλ for
an anisotropic relativistic bi-Maxwellian distribution function. A simple fit for
λ is given in Equation (C1).

Figure 16. Models used in the radiative transfer of GRMHD simulation,
represented by different colors: mirror and whistler (T⊥,e > T∥,e) and firehose
(T⊥,e < T∥,e).
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Appendix D
GRMHD Simulations

The GRMHD simulations used in Section 3 were performed
using the publicly available code Athena++ in spherical Kerr-
Schild coordinates with a logarithmically stretched grid in the
radial direction r. The setup is identical to that in White et al.
(2019) with the outer radius of 1000rg and the inner radius
being inside the horizon. The grid is refined with the level 0
grid being Nr× Nξ×Nf= 64× 32× 64. A total of three
refinement levels are concentrated around the midplane, θ= π/
2, resulting in an effective resolution of 512× 256× 512 in r,
θ, and f. We initialize a Fishbone torus (Fishbone & Moncrief
1976) with a purely poloidal magnetic field with mean plasma-
β of 100. We study two different spin values of the BH:
a = 0.98 and 0.5. Each of the two simulations is run up to a
steady state and several eruption events for a total simulation
time of more than 15,000rg/c.

Figure 17 shows the time evolution of the accretion rate M
in code units (panel (a)), magnetic flux F =

∣ ∣ò q f p-d d g B0.5 4 r though a hemisphere (panel (b)), and

dimensionless magnetic flux f = F Mr cgBH
2 (panel (c))

measured at 2rg as functions of time, starting from 8000rg/c.
Here g is the determinant of spherical Kerr-Schild metric. Spins
of 0.5 and 0.98 are shown by blue and black lines, respectively.
The time periods chosen for the GR radiative transfer in
Section 3 (shown by the shaded blue and gray regions for
a = 0.5 and a = 0.98, respectively) are such that the accretion
rate is almost constant, and no magnetic flux eruptions occur.
We have also performed the same analysis for different
quiescent time periods and found no qualitative difference in
the obtained results. The time interval we use to calculate
average images is relatively short, but we do not analyze the
time variability properties of our results, so this modest time
interval is sufficient for our purposes.
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