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The spiking activity of neocortical neurons exhibits a striking level of variability, even when these
networks are driven by identical stimuli. The approximately Poisson firing of neurons has led to the
hypothesis that these neural networks operate in the asynchronous state. In the asynchronous state, neurons
fire independently from one another, so that the probability that a neuron experience synchronous synaptic
inputs is exceedingly low. While the models of asynchronous neurons lead to observed spiking variability,
it is not clear whether the asynchronous state can also account for the level of subthreshold membrane
potential variability. We propose a new analytical framework to rigorously quantify the subthreshold
variability of a single conductance-based neuron in response to synaptic inputs with prescribed degrees of
synchrony. Technically, we leverage the theory of exchangeability to model input synchrony via jump-
process-based synaptic drives; we then perform a moment analysis of the stationary response of a neuronal
model with all-or-none conductances that neglects postspiking reset. As a result, we produce exact,
interpretable closed forms for the first two stationary moments of the membrane voltage, with explicit
dependence on the input synaptic numbers, strengths, and synchrony. For biophysically relevant
parameters, we find that the asynchronous regime yields realistic subthreshold variability (voltage
variance ~4-9 mV?) only when driven by a restricted number of large synapses, compatible with strong
thalamic drive. By contrast, we find that achieving realistic subthreshold variability with dense cortico-
cortical inputs requires including weak but nonzero input synchrony, consistent with measured pairwise
spiking correlations. We also show that, without synchrony, the neural variability averages out to zero for
all scaling limits with vanishing synaptic weights, independent of any balanced state hypothesis. This result

challenges the theoretical basis for mean-field theories of the asynchronous state.

DOI: 10.1103/PhysRevX.14.011021

I. INTRODUCTION

A common and striking feature of cortical activity is the
high degree of neuronal spiking variability [1]. This high
variability is notably present in sensory cortex and motor
cortex, as well as in regions with intermediate representa-
tions [2-5]. The prevalence of this variability has led to it
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being a major constraint for modeling cortical networks.
Cortical networks may operate in distinct regimes depend-
ing on species, cortical area, and brain states. In the asleep
or anesthetized state, neurons tend to fire synchronously
with strong correlations between the firing of distinct
neurons [6-8]. In the awake state, although synchrony
has been reported as well, stimulus drive, arousal, or
attention tend to promote an irregular firing regime
whereby neurons spike in a seemingly random manner,
with decreased or little correlation [1,8,9]. This has led to
the hypothesis that cortex primarily operates asynchro-
nously [10-12]. In the asynchronous state, neurons fire
independently from one another, so that the probability that
a neuron experiences synchronous synaptic inputs is
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exceedingly low. That said, the asynchronous state hypoth-
esis appears at odds with the high degree of observed
spiking variability in cortex. Cortical neurons are thought to
receive a large number of synaptic inputs (~10%) [13].
Although the impact of these inputs may vary across
synapses, the law of large numbers implies that variability
should average out when integrated at the soma. In
principle, this would lead to clock-like spiking responses,
contrary to experimental observations [14].

A number of mechanisms have been proposed to explain
how high spiking variability emerges in cortical networks
[15]. The prevailing approach posits that excitatory and
inhibitory inputs converge on cortical neurons in a balanced
manner. In balanced models, the overall excitatory and
inhibitory drives cancel each other so that transient
imbalances in the drive can bring the neuron’s membrane
voltage across the spike-initiation threshold. Such balanced
models result in spiking statistics that match those found in
the neocortex [16,17]. However, these statistics can emerge
in distinct dynamical regimes depending on whether the
balance between excitation and inhibition is tight or loose
[18]. In tightly balanced networks, whereby the net neuro-
nal drive is negligible compared to the antagonizing
components, activity correlation is effectively zero, leading
to a strictly asynchronous regime [19-21]. By contrast, in
loosely balanced networks, the net neuronal drive remains
of the same order as the antagonizing components, which
allows for strong neuronal correlations during evoked
activity, compatible with a synchronous regime [22-24].

While the high spiking variability is an important
constraint for cortical network modeling, there are other
biophysical signatures that may be employed. We now have
access to the subthreshold membrane voltage fluctuations
that underlie spikes in awake, behaving animals (see
Fig. 1). Membrane voltage recordings reveal two main
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FIG. 1. Large trial-by-trial membrane voltage fluctuations.
Membrane voltage responses are shown using whole cell record-
ings in awake behaving primates for both fixation alone trials
(left) and visual stimulation trials (right). A drifting grating is
presented for 1 s beginning at the arrow. Below, the membrane
voltage traces are records of horizontal and vertical eye move-
ments, illustrating that the animal was fixating during the
stimulus. Red and green traces indicate different trials under
the same conditions. Adapted from Ref. [27].

deviations from the asynchronous hypothesis: First, mem-
brane voltage does not hover near the spiking threshold and
is modulated by the synaptic drive; second, it exhibits state-
or stimulus-dependent non-Gaussian fluctuation statistics
with positive skewness [25-28]. In this work, we further
argue that membrane voltage recordings reveal much larger
voltage fluctuations than predicted by balanced cortical
models [29,30].

How could such large subthreshold variations in mem-
brane voltage emerge? One way that fluctuations could
emerge, even for large numbers of input, is if there is
synchrony in the driving inputs [31]. In practice, input
synchrony is revealed by the presence of positive spiking
correlations, which quantify the propensity of distinct
synaptic inputs to coactivate. Measurements of spiking
correlations between pairs of neurons vary across reports
but have generally been shown to be weak [10-12]. That
said, even weak correlations can have a large impact when
the population of correlated inputs is large [32,33].
Furthermore, the existence of input synchrony, supported
by weak but persistent spiking correlations, is consistent
with at least two other experimental observations. First,
intracellular recordings from pairs of neurons in both
anesthetized and awake animals reveal a high degree of
membrane voltage correlations [7,34,35]. Second, excita-
tory and inhibitory conductance inputs are highly corre-
lated with each other within the same neuron [35,36]. These
observations suggest that input synchrony could explain the
observed level of subthreshold variability.

While our focus is on achieving realistic subthreshold
variability, other challenges to asynchronous networks have
been described. In particular, real neural networks exhibit
distinct regimes of activity depending on the strength of
their afferent drives. In that respect, Zerlaut et al. [37]
showed that asynchronous networks can exhibit a spectrum
of realistic regimes of activity if they have moderate
recurrent connections and are driven by strong thalamic
projections (see also Ref. [17]). Furthermore, it has been a
challenge to identify the scaling rule that should apply to
synaptic strengths for asynchrony to hold stably in ideal-
ized networks. Recently, Sanzeni, Histed, and Brunel [38]
proposed that a realistic asynchronous regime is achieved
for a particular large-coupling rule, whereby synaptic
strengths scale in keeping with the logarithmic size of
the network. Both studies consider balanced networks with
conductance-based neuronal models, but neither focuses on
the role of synchrony, consistent with the asynchronous
state hypothesis. The asynchronous state hypothesis is
theoretically attractive, because it represents a naturally
stable regime of activity in infinite-size, balanced networks
of current-based neuronal models [16,17,20,21]. Such
neuronal models, however, neglect the voltage dependence
of conductances, and it remains unclear whether the
asynchronous regime is asymptotically stable for infinite-
size, conductance-based network models.
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Here, independent of the constraint of network stability,
we ask whether biophysically relevant neuronal models can
achieve the observed subthreshold variability under real-
istic levels of input synchrony. To answer this question, we
derive exact analytical expressions for the stationary
voltage variance of a single conductance-based neuron in
response to synchronous shot-noise drives [39,40]. A
benefit of shot-noise models compared to diffusion models
is to allow for individual synaptic inputs to be temporally
separated in distinct impulses, each corresponding to a
transient positive conductance fluctuation [41-43]. We
develop our shot-noise analysis for a variant of classically
considered neuronal models. We call this variant the all-or-
none-conductance-based model for which synaptic activa-
tion occurs as an all-or-none process rather than as an
exponentially relaxing process. To perform an exact treat-
ment of these models, we develop original probabilistic
techniques inspired from Marcus’ work about shot-noise-
driven dynamics [44,45]. To model shot-noise drives with
synchrony, we develop a statistical framework based on the
property of input exchangeability, which assumes that no
synaptic inputs play a particular role. In this framework, we
show that input drives with varying degree of synchrony
can be rigorously modeled via jump processes, while
synchrony can be quantitatively related to measures of
pairwise spiking correlations.

Our main results are biophysically interpretable formulas
for the voltage mean and variance in the limit of instanta-
neous synapses. Crucially, these formulas explicitly depend
on the input numbers, weights, and synchrony and hold
without any forms of diffusion approximation. This is in
contrast with analytical treatments which elaborate on
the diffusion and effective-time-constant approximations
[37,38,46,47]. We leverage these exact, explicit formulas to
determine under which synchrony conditions a neuron can
achieve the experimentally observed subthreshold variabil-
ity. For biophysically relevant synaptic numbers and
weights, we find that achieving realistic variability is
possible in response to a restricted number of large
asynchronous connections, compatible with the dominance
of thalamo-cortical projections in the input layers of the
visual cortex. However, we find that achieving realistic
variability in response to a large number of moderate
cortical inputs, as in superficial cortical visual layers,
necessitates nonzero input synchrony in amounts that are
consistent with the weak levels of measured spiking
correlations observed in vivo.

In practice, persistent synchrony may spontaneously
emerge in large but finite neural networks, as nonzero
correlations are the hallmark of finite-dimensional interact-
ing dynamics. The network structural features responsible
for the magnitude of such correlations remains unclear, and
we do not address this question here (see Refs. [48,49] for
review). The persistence of synchrony is also problematic
for theoretical approaches that consider networks in the

infinite-size limits. Indeed, our analysis supports that, in
the absence of synchrony and for all scaling of the
synaptic weights, subthreshold variability must vanish in
the limit of arbitrary large numbers of synapses. This
suggests that, independent of any balanced condition, the
mean-field dynamics that emerge in infinite-size networks
of conductance-based neurons will not exhibit Poisson-like
spiking variability, at least in the absence of additional
constraints on the network structure or on the biophysical
properties of the neurons. In current-based neuronal mod-
els, however, variability is not dampened by a conductance-
dependent effective time constant. These findings,
therefore, challenge the theoretical basis for the asynchro-
nous state in conductance-based neuronal networks.

Our exact analysis, as well as its biophysical interpre-
tations, is possible only at the cost of several caveats: First,
we neglect the impact of the spike-generating mechanism
(and of the postspiking reset) in shaping the subthreshold
variability. Second, we quantify synchrony under the
assumption of input exchangeability, that is, for synapses
having a typical strength as opposed to being hetero-
geneous. Third, we consider input drives that implement
an instantaneous form of synchrony with temporally
precise synaptic coactivations. Fourth, we do not consider
slow temporal fluctuations in the mean synaptic drive.
Fifth, and perhaps most concerning, we do not account for
the stable emergence of a synchronous regime in network
models. We argue in the discussion that all the above
caveats but the last one can be addressed without impacting
our findings. Addressing the last caveat remains an open
problem.

For reference, we list in Table I the main notations used
in this work. These notations utilize the subscript {}, and
{},; to refer to excitation or inhibition, respectively. The
notation {},/; means that the subscript can be either {}, or
{},- The notation {},; is used to emphasize that a quantity
depends jointly on excitation and inhibition.

II. STOCHASTIC MODELING AND ANALYSIS

A. All-or-none-conductance-based neurons

We consider the subthreshold dynamics of an original
neuronal model, which we called the all-or-none-
conductance-based (AONCB) model. In this model, the
membrane voltage V obeys the first-order stochastic differ-
ential equation

CV =GV, = V) +g(Ve=V)+g(Vi=V)+ 1. (1)

where randomness arises from the stochastically activating
excitatory and inhibitory conductances, respectively
denoted by g, and g; [see Fig. 2(a)]. These conductances
result from the action of K, excitatory and K; inhibitory
synapses: g, (1) = Y-y ges(t) and g;(1) = 3217, g (1),
In the absence of synaptic inputs, i.e., when g, = g; = 0,
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TABLE I. Main notations.

Aejit First-order synaptic efficacies

Aejin Second-order synaptic efficacies

Aeinn Auxiliary second-order synaptic efficacies

b, Rate of the driving Poisson process N

by Rate of the excitatory or inhibitory Poisson
process N,

C Membrane capacitance

Ceis Cross-correlation synaptic efficacy

C[, ] Stationary covariance

E[] Stationary expectation

E.il] Expectation with respect to the joint distribution
Dei OF Deiki

E,/[] Expectation with respect to the marginal
distribution p,/; or p,;

€e=1,/7 Fast-conductance small parameter

G Passive leak conductance

Geyi Overall excitatory or inhibitory conductance

hesi = g.;i/C  Reduced excitatory or inhibitory conductance

kesi Number of coactivating excitatory or inhibitory
synaptic inputs

K. Total number of excitatory or inhibitory
synaptic inputs

N Driving Poisson process with rate b

N Excitatory or inhibitory driving Poisson process
with rate b, /;

Dei Bivariate jump distribution of (W,, W;)

Pe/i Marginal jump distribution of W,

Deikl Bivariate distribution for the numbers of
coactivating synapses (k,, k;)

De/ik Marginal synaptic count distribution k,;

Te)i Individual excitatory or inhibitory synaptic rate

Pei Spiking correlation between excitatory and
inhibitory inputs

Pe/i Spiking correlation within excitatory or
inhibitory inputs

T Passive membrane time constant

T Synaptic time constant

V[ Stationary variance

Wi Excitatory or inhibitory random jumps

Vi Excitatory or inhibitory reversal potentials

We/i Typical value for excitatory or inhibitory
synaptic weights

Xy Binary variable indicating the activation of
excitatory synapse k

Y, Binary variable indicating the activation of
inhibitory synapse [

Z Driving compound Poisson process with base

rate b and jump distribution p,;

and of external current /, the voltage exponentially relaxes
toward its leak reversal potential V; with passive time
constant 7 = C/G, where C denotes the cell’s membrane
capacitance and G denotes the cellular passive conductance
[50]. In the presence of synaptic inputs, the transient
synaptic currents I, = g,(V,—V) and I, = g;(V;-V)
cause the membrane voltage to fluctuate. Conductance-

20 40 60 80 100
Time (ms)

Conductance-based model

FIG. 2. All-or-none-conductance-based models. (a) Electrical
diagram of conductance-based model for which the neuronal
voltage V evolves in response to fluctuations of excitatory and
inhibitory conductances g, and g;. (b) In all-or-none models, inputs
delivered as Poisson processes transiently activate the excitatory
and inhibitory conductances g, and g; during a finite, nonzero
synaptic activation time z; > 0. Simulation parameters: K, =
K;=50,r,=r; =10 Hz, 7 = 15 ms, and 7, = 2 ms > 0.

based models account for the voltage dependence of
synaptic currents via the driving forces V,—V and
V=V, where V, and V; denotes the excitatory and
inhibitory reversal potential, respectively. Without loss of
generality, we assume in the following that V; = 0 and
that V; <V, =0<V,.

We model the spiking activity of the K, 4+ K; upstream
neurons as shot noise [39,40], which can be generically
modeled as a (K, + K;)-dimensional stochastic point proc-
ess [51,52]. Let us denote by {N, x(¢)}, <<k, its excitatory
componentand by {N; ()}, <<, its inhibitory component,
where ¢ denotes time and k is the neuron index. For each
neuron k, the process N, ; (¢) is specified as the counting
process registering the spiking occurrences of neuron k up to
time #. In other words, N «(t) = > s Uiz, <> Where
{T )i kn}nez denotes the full sequence of spiking times of
neuron k and where 1, denotes the indicator function of set
A. Note that, by convention, we label spikes so that 7', /; o <
0 < T,/j, forall neuron k. Given a point-process model for
the upstream spiking activity, classical conductance-based
models consider that a single input to a synapse causes an
instantaneous increase of its conductance, followed by an
exponential decay with typical timescale z, > 0. Here, we
depart from this assumption and consider that the synaptic
conductances g, operates all-or-none with a common
activation time still referred to as 7. Specifically, we assume
that the dynamics of the conductance g,; ; follows

T5Jesik(1)
= Cwe/i,kZ(é(t_ Te/i,k,n) _5(t_ Te/i,k.n _Ts))7 (2)

where w,; , > 0 is the dimensionless synaptic weight. The
above equation prescribes that the nth spike delivery to
synapse k at time T, /;; , is followed by an instantaneous
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increase of that synapse’s conductance by an amount w, /; ; for
a period z,. Thus, the synaptic response prescribed by Eq. (2)
is all-or-none as opposed to being graded as in classical
conductance-based models. Moreover, just as in classical
models, Eq. (2) allows synapses to multiactivate, thereby
neglecting nonlinear synaptic saturation [see Fig. 2(b)].

To be complete, AONCB neurons must, in principle,
include a spike-generating mechanism. A customary choice
is the integrate-and-fire mechanism [53,54]: A neuron
emits a spike whenever its voltage V exceeds a threshold
value V; and resets instantaneously to some value Vj
afterward. Such a mechanism impacts the neuronal sub-
threshold voltage dynamics via postspiking reset, which
implements a nonlinear form of feedback. However, in this
work, we focus on the variability that is generated by
fluctuating, possibly synchronous, synaptic inputs. For this
reason, we neglect the influence of the spiking reset in our
analysis, and, actually, we ignore the spike-generating
mechanism altogether. Finally, although our analysis of
AONCB neurons applies to positive synaptic activation
time 7, > 0, we discuss our results only in the limit of
instantaneous synapses. This corresponds to taking 7, — 0™
while adopting the scaling g,,; « 1/7 in order to maintain
the charge transfer induced by a synaptic event. We will see
that this limiting process preserves the response variability
of AONCB neurons.

B. Quantifying the synchrony of exchangeable
synaptic inputs

Our goal here is to introduce a discrete model for
synaptic inputs, whereby synchrony can be rigorously
quantified. To this end, let us suppose that the neuron
under consideration receives inputs from K, excitatory
neurons and K; inhibitory neurons, chosen from arbitrary
large pools of N, > K, excitatory neurons and N; > K;
inhibitory neurons. Adopting a discrete-time representa-
tion with elementary bin size Af, we denote by
{{xl.nv “wae,n}’ {yl,nv ---»yK,-,n}} in {O’ I}Ke X {0’ 1}Ki
the input state within the nth bin. Our main simplifying
assumption consists in modeling the N, excitatory inputs
and the N; inhibitory inputs as separately exchangeable
random variables {X;,,....Xg ,} and {Y,,,....Yg ,}
that are distributed identically over {0,1}" and {0, 1}V,
respectively, and independently across time. This warrants
dropping the dependence on time index n. By separately
exchangeable, we mean that no subset of excitatory inputs
or inhibitory inputs plays a distinct role so that, at all
time, the respective distributions of {X,,...,Xx ,} and
{Y14,.... Yk ,} are independent of the input labeling. In
other words, for all permutations ¢, of {1, ..., N, } and o; of
{1,...,N;}, the joint distribution of {Xﬁe(l),...,X,,e(N»}
and {Y, (1), .... Y, (v, } is identical to that of {X;,..., Xy }
and {Y;,....Yy } [55,56]. By contrast with independent
random spiking variables, exchangeable ones can exhibit

nonzero correlation structure. By symmetry, this structure
is specified by three correlation coefficients:

X, O] o)
PTG T VI DT ARV

where C[X,Y] and V[X]| denote the covariance and the
variance of the binary variables X and Z, respectively.

Interestingly, a more explicit form for p,, p,, and p,;
can be obtained in the limit of an infinite-size pool
N,,N; = . This follows from de Finetti’s theorem
[57], which states that the probability of observing a given
input configuration for K, excitatory neurons and K;
inhibitory neurons is given by

PXy .o Xk Yoo Y]

K, K;
= / [T6 (1—6.)'=* ][ 67" (1-6,)"¥1dF ;(6..6,).
k=1 =1

where F,; is the directing de Finetti measure, defined as a
bivariate distribution over the unit square [0, 1] x [0, 1]. In
the equation above, the numbers 8, and 6, represent the
(jointly fluctuating) probabilities that an excitatory neuron
and an inhibitory neuron spike in a given time bin,
respectively. The core message of the de Finetti theorem
is that the spiking activity of neurons from infinite
exchangeable pools is obtained as a mixture of condition-
ally independent binomial laws. This mixture is specified
by the directing measure F,;, which fully parametrizes our
synchronous input model. Independent spiking corre-
sponds to choosing F,; as a point-mass measure concen-
trated on some probabilities z,,; = r,/;At, where r,/;
denotes the individual spiking rate of a neuron: dF,;(0) =
50, — n,)5(0; — n;)d6,dO; [see Fig. 3(a)]. By contrast, a
dispersed directing measure F,; corresponds to the exist-
ence of correlations among the inputs [see Fig. 3(b)].
Accordingly, we show in Appendix A that the spiking
pairwise correlation p,/; takes the explicit form

Do)i = \/[ae/i]
T EB,)(1 - E6,])

(3)

whereas p,;, the correlation between excitation and inhib-
ition, is given by
C [ee ) ei ]
Pei = .
VEJEG,](1 - E[6.])(1 - E[6])

4)

In the above formulas, E[6, ], V[6,/;], and C[6,, §,] denote
expectation, variance, and covariance of (0,,6;) ~ F,;,
respectively. Note that these formulas show that nonzero
correlations p,/; correspond to nonzero variance, as is
always the case for dispersed distribution. Independence
between excitation and inhibition for which p,; =0
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FIG. 3. Parametrizing correlations via exchangeability. The
activity of K, = 100 exchangeable synaptic inputs collected
over N consecutive time bins can be represented as {0, 1 }-valued
array {Xy;}i<i<k, 1<i<y» Where X, ; = 1 if input k activates in
time bin i. Under assumptions of exchangeability, the input
spiking correlation is entirely captured by the count statistics of
how many inputs coactivate within a given time bin. In the limit
K, — oo, the distribution of the fraction of coactivating inputs
coincides with the directing de Finetti measure, which we
consider as a parametric choice in our approach. In the absence
of correlation, synapses tend to activate in isolation: p, = 0 in (a).
In the presence of correlation, synapses tend to coactivate,
yielding a disproportionately large synaptic activation event:
p. = 0.1 in (b). Considering the associated cumulative counts
specifies discrete-time jump processes that can be generalized
to the continuous-time limit, i.e., for time bins of vanishing
duration Az — 0.

corresponds to directing measure F,; with product form,
ie., F,(0,,0;,) = F.(0,)F;(0;), where F, and F; denote
the marginal distributions. Alternative forms of the directed
measure F,; generally lead to nonzero cross correlation p,;,
which necessarily satisfies 0 < |p,;| < \/p.p;-

In this exchangeable setting, a reasonable parametric
choice for the marginals F, and F; is given by beta

distributions Beta(a, #), where a and f denote shape
parameters [58]. Practically, this choice is motivated by
the ability of beta distributions to efficiently fit correlated
spiking data generated by existing algorithms [59].
Formally, this choice is motivated by the fact that beta
distributions are conjugate priors for the binomial like-
lihood functions, so that the resulting probabilistic models
can be studied analytically [60-62]. For instance, for
F, ~ Beta(a,, f,), the probability that k, synapses among
the K, inputs are jointly active within the same time bin
follows the beta-binomial distribution

Pek: (Ke) B(ae+k7/je+Ke_k) (5)

k B(a..p.)

Accordingly, the mean number of active excitatory inputs is
Elk,| = K.a./(a, + B.) = K,.r,At. Utilizing Eq. (3), we
also find that p, = 1/(1 4+ a, + f.). Note that the above
results show that, by changing de Finetti’s measure, one can
modify not only the spiking correlation, but also the mean
spiking rate.

In the following, we exploit the above analytical results
to illustrate that taking the continuous-time limit At — 0
specifies synchronous input drives as compound Poisson
processes [51,52]. To do so, we consider both excitation
and inhibition, which in a discrete setting corresponds to
considering bivariate probability distributions P,; ;; defined
over {0,...,K,} x {0, ..., K;}. Ideally, these distributions
P,; 1y should be such that its conditional marginals P, ; and
P;;, with distributions given by Eq. (5). Unfortunately,
there does not seem to be a simple low-dimensional
parametrization for such distributions P,;;;, except in
particular cases. To address this point, at least numerically,
one can resort to a variety of methods including copulas
[63,64]. For analytical calculations, we consider only two
particular cases for which the marginals of F,; are given
by the beta distributions: (i) the case of maximum pos-
itive correlation for which 6, = 6;, i.e., dF,;(0,,6;) =
6(0, — 6;)F(8,)do,do; with F, = F; = F, and (ii) the case
of zero correlation for which 6, and @; are independent,
i'e" Fei(ewei) = Fe(ee)Fl(gl)

C. Synchronous synaptic drives as compound
Poisson processes

Under assumption of input exchangeability and given
typical excitatory and inhibitory synaptic weights w, ;, the
overall synaptic drive to a neuron is determined by (k,, k;),
the numbers of active excitatory and inhibitory inputs at
each discrete time step. As AONCB dynamics unfolds in
continuous time, we need to consider this discrete drive in
the continuous-time limit as well, i.e., for vanishing time
bins Ar — 0". When A7 — 0", we show in Appendix B
that the overall synaptic drive specifies a compound
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Poisson process Z with bivariate jumps (W,, W;).
Specifically, we have

N(r) N(1)
= <Z We.n’ Z Wi,n) ’ (6)

where (W, . W, ,) are i.i.d. samples with bivariate distri-
bution denoted by p,; and where the overall driving
Poisson process N registers the number of synaptic events
without multiple counts (see Fig. 4). By synaptic events, we
mean these times for which at least one excitatory synapse
or one inhibitory synapse activates. We say that N registers
these events without multiple count as it counts one event
independent of the number of possibly coactivating syn-
apses. Similarly, we denote by N, and N; the counting
processes registering synaptic excitatory events and syn-
aptic inhibitory events alone, respectively. These processes
N, and N,; are Poisson processes that are correlated in
the presence of synchrony, as both N, and N; may
register the same event. Note that this implies that
max[N, (1), N;(1)] < N(t) < N,(t) + N;(t). More gener-
ally, denoting by b and b,; the rates of N and N,/;,
respectively, the presence of synchrony implies that
max(b,,b;)<b<b,+b; and r,;; < b,;; < K,);r./;, Where
resi 1s the typical activation rate of a single synapse.

For simplicity, we explain how to obtain such limit
compound Poisson processes by reasoning on the excitatory
inputs alone. To this end, let us denote the marginal jump
distribution of W, as p,. Given a fixed typical synaptic
weight w,, the jumps are quantized as W, = kw,, with k
distributed on {1, ..., K,}, as by convention jumps cannot
have zero size. These jumps are naturally defined in the
discrete setting, i.e., with A7 > 0, and their discrete distri-
bution is given via conditioning as P, /(1 — P, ). For beta
distributed marginals F,, we show in Appendix B that
considering Az — 0" yields the jump distribution

li Pe,k - <Ke> B(kvﬁe+Ke_k)
Ar—0+ 1 — Pe,O l//(ﬂg + Ke) - l//(ﬂe) ’

()

Pek =

where y denotes the digamma function. In the following, we
explicitly index discrete count distributions, e€.g., p.,
to distinguish them from the corresponding jump distribu-
tions, i.e., p,.. Equation (7) follows from observing that the
probability to find a spike within a bin is E[X;] =
a,/(a, + p.) = r, At, so that for fixed excitatory spiking
rate r,,a, — 0" when At — 0*. As aresult, the continuous-
time spiking correlation is p, = 1/(1 + f3,), so that we can
interpret f, as a parameter controlling correlations. More
generally, we show in Appendix C that the limit correlation
p. depends only on the count distribution p, ; via

_Efk(k-1)]
Pe TE MK, — 1)’

—~
oo
~

where E,[-] denotes expectations with respect to p, ;. This
shows that zero spiking correlation corresponds to single
synaptic activations, i.e., to an input drive modeled as a
Poisson process, as opposed to a compound Poisson process.
For Poisson-process models, the overall rate of synaptic
events is necessarily equal to the sum of the individual
spiking rate: b, = K,r,. This is no longer the case in the
presence of synchronous spiking, when nonzero input
correlation p, > 0 arises from coincidental synaptic activa-
tions. Indeed, as the population spiking rate is conserved
when Ar — 01, the rate of excitatory synaptic events b,
governing N, satisfies K,r, = b,E,[k] so that

Kere

b=k

=rBew(Be +K)—w(p.). (9

Let us reiterate for clarity that, if k, synapses activate
synchronously, this counts as only one synaptic event, which
can come in variable size k. Consistently, we have, in general,
r, <b,<K,r,. When §, — 0, we have perfect synchrony
with p, = 1 and b, — r,, whereas the independent spiking
regime with p, = 0 is attained for , — oo, for which we
have b, — K,r,.

It is possible to generalize the above construction to
mixed excitation and inhibition, but a closed-form treat-
ment is possible only for special cases. For the independent
case (i), in the limit A7 — 0%, jumps are either excitatory
alone or inhibitory alone; i.e., the jump distribution p,;
has support on {I1,...,K,} x {0} u {0} x{I,....K;}.
Accordingly, we show in Appendix D that

PP,
pei’kl - Afl—r>%+ 1 - Pe,OPi,O
b,
b b, ——Pes = 0}+ P:zﬂ{k oy (10)

where p, /i and b, ; are specified in Egs. (7) and (9) by the
parameters f3,/; and K, ;, respectively. This shows that, as
expected, in the absence of synchrony the driving com-
pound Poisson process Z with bidimensional jump is
obtained as the direct sum of two independent compound
Poisson processes. In particular, the driving processes are
such that N = N, + N,;, with rates satisfying b = b, + b;.
By contrast, for the maximally correlated case with
r, = r; = r (i), we show in Appendix D that the jumps
are given as (W,, W;) = (kw,, Iw;), with (k, [) distributed
on {0,....K,} x{0,...,K;}\{0,0} [see Figs. 4(b) and 4(c)]
according to

p — lim Pei.kl
k= __env
el At—0t 1 — Pei,OO

_<Ke><K,~>B(k+l,ﬂ+K6+Ki—k—l)
C\kJ\1I) w(B+K.+K)—w(p)

(11)

011021-7



LOGAN A. BECKER et al.

PHYS. REV. X 14, 011021 (2024)

—
(Y]
-

200 e

Neuron
index

Input
count

Cumulative

0 20 40 60
Time (ms)

—
O
-

TH v, g

Neuron
index

Input
count

Cumulative
count

80

100

0 40 60
Time (ms)

80

Input
count
o 3

Cumulative
count

0 20 40 60
Time (ms)

80

100

Inhibitory
input count

Inhibitory
input count

Inhibitory
input count

40 40
§S)
30 . a 30
gt '
. S 3
n O
. E‘ o
55
= Q
o c
2
£
30 40 1 05 0 30 40
0.5 Excitatory 05/ Excitatory synaptic
1 input count 1 input count
40 40
. e §S) .
30 ‘%H 30
€5
n O
E‘ (&)
&5
= Q
o c
E g
£
O 10 0 % 40 1050 9 10 20 30 40
05 Excitatory 05; Excitatory synaptic
1 input count 1 input count
40 40
30 ’ o 30 '
%*" .
€5
e
o L]
53 '
= Q
o c ¢
: I:—J
£
0"'“""
0 30 4010-5000 10 20 30 40
0.5I Excitatory 0-5! Excitatory synaptic
1 input count 1 input count

FIG. 4. Limit compound Poisson process with excitation and inhibition. (a) Under assumption of partial exchangeability, synaptic
inputs can be distinguished only by the fact that they are either excitatory or inhibitory, which is marked by being colored in red or blue,
respectively, in the discrete representation of correlated synaptic inputs with bin size Az = 1 ms. Accordingly, considering excitation
and inhibition separately specifies two associated input-count processes and two cumulative counting processes. For nonzero spiking
correlation p = 0.03, these processes are themselves correlated as captured by the joint distribution of excitatory and inhibitory input
counts P,;;; (center) and by the joint distribution of excitatory and inhibitory jumps P,; /(1 — Pyy) (right). (b) The input count
distribution P,; 4, is a finite-size approximation of the bivariate directing de Finetti measure F',;, which we consider as a parameter as
usual. For a smaller bin size A7 = 0.1 ms, this distribution concentrates in (0,0), as an increasing proportion of time bins does not
register any synaptic events, be they excitatory or inhibitory. In the presence of correlation, however, the conditioned jump distribution
remains correlated but also dispersed. (c) In the limit Ar — 0, the input-count distribution is concentrated in (0,0), consistent with the
fact that the average number of synaptic activations remains constant while the number of bins diverges. By contrast, the distribution of
synaptic event size conditioned to distinct from (0,0) converges toward a well-defined distribution: p,; ;; = lima,_o+ P/ (1 = Pi0)-
This distribution characterizes the jumps of a bivariate compound Poisson process, obtained as the limit of the cumulative count process

when considering Ar — 0.
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Incidentally, the driving Poisson process N has a rate b
determined by adapting Eq. (9):

b=rpw(p+K,+K;)—w(p)),

for which one can check that r < b < (K, + K;)r.

All the closed-form results so far have been derived for
synchrony parametrization in terms of beta distribution.
There are other possible parametrizations, and these would
lead to different count distributions p,;;, but without
known closed form. To address this limitation in the
following, all our results hold for arbitrary distributions
pei of the jump sizes (W,, W;) on the positive orthant
(0, 00) x (0, 0). In particular, our results are given in terms
of expectations with respect to p,;, still denoted by E,;[].
Nonzero correlation between excitation and inhibition
corresponds to those choices of p,; for which W, W; > 0
with nonzero probability, which indicates the presence of
synchronous excitatory and inhibitory inputs. Note that this
modeling setting restricts nonzero correlations to be pos-
itive, which is an inherent limitation of our synchrony-
based approach. When considering an arbitrary p,;, the
main caveat is understanding how such a distribution
may correspond to a given input numbers K, /; and spiking
correlations p,;; and p,;. For this reason, we always
consider that k, = W,/w, and k; = W;/w; follows beta
distributed marginal distributions when discussing the roles
of w/i, Kojis pejis and p,; in shaping the voltage response
of a neuron. In that respect, we show in Appendix C that the
coefficient p,; can always be deduced from the knowledge
of a discrete count distribution p,;;; on {0,...,K,} x
{0,...,K;}\{0,0} via

o [Eei[keki] >
\/Ke[Eei[ke]Ki[Eei [kl] B

Pei

where the expectations are with respect to p; 4.

D. Instantaneous synapses and Marcus integrals

We are now in a position to formulate the mathematical
problem at stake within the framework developed by
Marcus to study shot-noise-driven systems [44,45]. Our
goal is quantifying the subthreshold variability of an
AONCB neuron subjected to synchronous inputs.
Mathematically, this amounts to computing the first two
moments of the stationary process solving the following
stochastic dynamics:

V==V/t+h,(V,-V)+h(V,=V)+1/C, (12)

where V; < 0 <V, are constants and where the reduced
conductances h, = g,/C and h; = g;/C follow stochastic
processes defined in terms of a compound Poisson process
Z with bivariate jumps. Formally, the compound Poisson
process Z is specified by b, the rate of its governing Poisson

process N, and by the joint distribution of its jumps p,;.
Each point of the Poisson process N represents a synaptic
activation time 7T, where n is in Z with the convention that
Ty <0 < T,. Atall these times, the synaptic input sizes are
drawn as i.i.d. random variables (W, ,, W,,) in RT x R*
with probability distribution p,;.

At this point, it is important to observe that the driv-
ing process Z is distinct from the conductance process
h = (h,, h;). The latter process is formally defined for
AONCB neurons as

hr) = Z(t) - Z(t —e1)

€T
: N(t) N(e)
(X W > ),
n=N(t—er)+1 n=N(t—et)+1

where the dimensionless parameter ¢ = 7,/t > 0 is the
ratio of the duration of synaptic activation relative to the
passive membrane time constant. Note that the amplitude of
h scales in inverse proportion to € in order to maintain the
overall charge transfer during synaptic events of varying
durations. Such a scaling ensures that the voltage response
of AONCB neurons has finite, nonzero variability for small
or vanishing synaptic time constant, i.e., for ¢ < 1 (see
Fig. 5). The simplifying limit of instantaneous synapses is
obtained for ¢ = 7,/7 — 0T, which corresponds to infi-
nitely fast synaptic activation. By virtue of its construction,
the conductance process i becomes a shot noise in the limit
¢ — 0T, which can be formally identified to dZ/dt. This is
consistent with the definition of shot-noise processes as
temporal derivative of compound Poisson processes, i.e., as
collections of randomly weighted Dirac-delta masses.
Because of their high degree of idealization, shot-noise
models are often amenable to exact stochastic analysis,
albeit with some caveats. For equations akin to Eq. (12) in
the limit of instantaneous synapses, such a caveat follows
from the multiplicative nature of the conductance shot noise
h. In principle, one might expect to solve Eq. (12) with shot-
noise drive via stochastic calculus, as for diffusion-based
drive. This would involve interpreting the stochastic integral
representations of solutions in terms of Stratonovich repre-
sentations [65]. However, Stratonovich calculus is not well
defined for shot-noise drives [66]. To remedy this point,
Marcus has proposed to study stochastic equations subjected
to regularized versions of shot noises, whose regularity is
controlled by a nonnegative parameter ¢ [44,45]. For e > 0,
the dynamical equations admit classical solutions, whereas
the shot-noise-driven regime is recovered in the limit
€ — 0. The hope is to be able to characterize analytically
the shot-noise-driven solution, or at least some of its
moments, by considering regular solutions in the limit
e — 0%. We choose to refer to the control parameter as e
by design in the above. This is because AONCB models
represent Marcus-type regularizations that are amenable to
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FIG. 5. Limit of instantaneous synapses. The voltage trace and
the empirical voltage distribution are only marginally altered by
taking the limite — O for short synaptic time constant: 7, = 2 ms
in (a) and 7, = 0.02 ms in (b). In both (a) and (b), we consider the
same compound Poisson-process drive with p, = 0.03, p; = 0.06,
and p,; = 0, and the resulting fluctuating voltage V is simulated
via a standard Euler discretization scheme. The corresponding
empirical conductance and voltage distributions are shown on the
right. The later voltage distribution asymptotically determines the
stationary moments of V.

analysis in the limit of instantaneous synapses, i.e., when
€ = 7,/t — 07, for which the conductance process & con-
verges toward a form of shot noise.

Marcus interpretation of stochastic integration has prac-
tical implications for numerical simulations with shot noise
[41]. According to this interpretation, shot-noise-driven
solutions are conceived as limits of regularized solu-
tions for which standard numerical scheme applies.
Correspondingly, shot-noise-driven solutions to Eq. (12)
can be simulated via a limit numerical scheme. We derive
such a limit scheme in Appendix E. Specifically, we show
that the voltage of shot-noise-driven AONCB neurons
exponentially relaxes toward the leak reversal potential

V, =0, except when subjected to synaptic impulses at
times {7,},cz. At these times, the voltage V updates
discontinuously according to V(T,,) = V(T},) + J,,, where
the jumps are given in Appendix E via the Marcus rule

J = (We,nve + Wi,nvi _
" We,n + Wi.n

X (1 f— e_(We,rw+Wi,11)> . (13)

Observe that the above Marcus rule directly implies that no
jump can cause the voltage to exit (V;,V,), the allowed
range of variation for V. Moreover, note that this rule
specifies an exact even-driven simulation scheme given
knowledge of the synaptic activation times and sizes
{T,.W,,,Wi;,},ez [67]. We adopt the above Marcus-
type numerical scheme in all the simulations that involve
instantaneous synapses.

E. Moment calculations

When driven by stationary compound Poisson processes,
AONCB neurons exhibit ergodic voltage dynamics. As a
result, the typical voltage state, obtained by sampling the
voltage at random time, is captured by a unique stationary
distribution. Our main analytical results, which we give
here, consist in exact formulas for the first two voltage
moment with respect to that stationary distribution.
Specifically, we derive the stationary mean voltage
Eq. (14) in Appendix F and the stationary voltage variance
Eq. (16) in Appendix G. These results are obtained by a
probabilistic treatment exploiting the properties of com-
pound Poisson processes within Marcus’ framework. This
treatment yields compact, interpretable formulas in the
limit of instantaneous synapses ¢ = 7,/t — 0T. Readers
who are interested in the method of derivation for these
results are encouraged to go over the calculations presented
in Appendixes F-L.

In the limit of instantaneous synapses, ¢ — 07, we find
that the stationary voltage mean is

E[V] = imE[V,.] = a, \Vo+a, Vi +1/G
e—0" 1 n a&l n ai’l

. (14)

where we define the first-order synaptic efficacies as

d, 1 = leEei 7W€ (1 — e_(We‘f‘Wi)) s
’ W, + W,

a,,:bT[Ee,{ Wi (1_e—<we+w,»>)} (15)

W, + W,

Note the E,;[-] refers to the expectation with respect to the
jump distribution p,; in Eq. (15), whereas E[-] refers to
the stationary expectation in Eq. (14). Equation (14) has the
same form as for deterministic dynamics with constant
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conductances, in the sense that the mean voltage is a
weighted sum of the reversal potentials V,, V;,and V; = 0.
One can check that, for such deterministic dynamics, the
synaptic efficacies involved in the stationary mean simply
read a,/i; = K,jiro/iw,si- Thus, the impact of synaptic
variability, and, in particular, of synchrony, entirely lies in
the definition of the efficacies in Eq. (15). In the absence
of synchrony, one can check that accounting for the
shot-noise nature of the synaptic conductances leads to
synaptic efficacies under exponential form: a,/; =
K,ire;i(1 —e™i). In turn, accounting for input syn-
chrony leads to synaptic efficacies expressed as expectation
of these exponential forms in Eq. (15), consistent with the
stochastic nature of the conductance jumps (W,, W;). Our
other main result, the formula for the stationary voltage
variance, involves synaptic efficacies of similar form.
Specifically, we find that

1
14 Aep +ain
X (ae12(Ve —E[V])? + a;1o(V; — E[V])?
- cei(ve - Vi)2)7 (16)

VV]

where we define the second-order synaptic efficacies as

aez = E i L (] —_ 6_2(W1'+Wi)) S
’ 2 W, + W,
bt W,
in=—F, |—"'— (1 - —2(Wg+W,-)) . 17
42 =% [We Tw, ¢ (17)

Equation (16) also prominently features auxiliary second-
order efficacies defined by a,;; 1o = a,/i1 — @.yi»- OwWing
to their prominent role, we also mention their explicit form:

bt W 2
=—FE, |—*— (1= _(W“JrWi))
Ae 12 2 ei |:We + Wi ( e ’
b W,
aip = 77:['561' |:W +l W (1 _ e—(We+W1))2:| ' (18)

The other quantity of interest featuring in Eq. (16) is the
cross-correlation coefficient

bt E {
Cei = 7 ¢
(

2 W, + W,

WeW; 7 (1 —e_(WeJFWi))Z], (19)
which entirely captures the (non-negative) correlation
between excitatory and inhibitory inputs and shall be seen
as an efficacy as well.

In conclusion, let us stress that, for AONCB models,
establishing the above exact expressions does not
require any approximation other than taking the limit of
instantaneous synapses. In particular, we neither resort to
any diffusion approximations [37,38] nor invoke the
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FIG. 6. Comparison of simulation and theory. (a) Examples of
voltage traces obtained via Monte Carlo simulations of an
AONCB neuron for various types of synchrony-based input
correlations: uncorrelated p, = p; = p,; = 0 (uncorr, yellow),
within correlation p,,p; > 0 and p,; = 0 (within corr, cyan),
and within and across correlation p,, p;,p,; > 0 (across corr,
magenta). (b) Comparison of the analytically derived expressions
(14) and (16) with numerical estimates obtained via Monte Carlo
simulations for the synchrony conditions considered in (a).

effective-time-constant approximation [41-43]. We give
in Appendix L an alternative factorized form for V[V] to
justify the non-negativity of expression (16). In Fig. 6, we
illustrate the excellent agreement of the analytically derived
expressions (14) and (16) with numerical estimates
obtained via Monte Carlo simulations of the AONCB
dynamics for various input synchrony conditions.
Discussing and interpreting quantitatively Eqgs. (14) and
(16) within a biophysically relevant context is the main
focus of the remainder of this work.

III. COMPARISON WITH EXPERIMENTAL DATA

A. Experimental measurements
and parameter estimations

Cortical activity typically exhibits a high degree of
variability in response to identical stimuli [68,69], with
individual neuronal spiking exhibiting Poissonian charac-
teristics [3,70]. Such variability is striking, because neurons
are thought to typically receive a large number (~10*) of
synaptic contacts [13]. As a result, in the absence of
correlations, neuronal variability should average out, lead-
ing to quasideterministic neuronal voltage dynamics [71].
To explain how variability seemingly defeats averaging in
large neural networks, it has been proposed that neurons
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operate in a special regime, whereby inhibitory and
excitatory drive nearly cancel one another [16,17,19-21].
In such balanced networks, the voltage fluctuations
become the main determinant of the dynamics, yielding
a Poisson-like spiking activity [16,17,19-21]. However,
depending upon the tightness of this balance, networks can
exhibit distinct dynamical regimes with varying degree of
synchrony [18].

In the following, we exploit the analytical framework of
AONCB neurons to argue that the asynchronous picture
predicts voltage fluctuations are an order of magnitude
smaller than experimental observations [1,26-28]. Such
observations indicate that the variability of the neuronal
membrane voltage exhibits typical variance values of
~4-9 mV?. Then, we claim that achieving such variability
requires input synchrony within the setting of AONCB
neurons. Experimental estimates of the spiking correlations
are typically thought as weak with coefficients ranging from
0.01 to 0.04 [10-12]. Such weak values do not warrant the
neglect of correlations owing to the typically high number of
synaptic connections. Actually, if K denotes the number of
inputs, all assumed to play exchangeable roles, an empirical
criterion to decide whether a correlation coefficient p is weak
is that p < 1/K [32,33]. Assuming the lower estimate of
p ~0.01, this criterion is achieved for K ~ 100 inputs, which
is well below the typical number of excitatory synapses for
cortical neurons. In the following, we consider only the
response of AONCB neurons to synchronous drive with
biophysically realistic spiking correlations (0 < p < 0.03).

Two key parameters for our argument are the excitatory
and inhibitory synaptic weights denoted by w, and w;,
respectively. Typical values for these weights can be
estimated via biophysical considerations within the frame-
work of AONCB neurons. In order to develop these
considerations, we assume the values V; = —-10 mV <
V, =0<V,=60mV for reversal potentials and 7 =
15 ms for the passive membrane time constant. Given these
assumptions, we set the upper range of excitatory synaptic
weights so that, when delivered to a neuron close to its
resting state, unitary excitatory inputs cause peak membrane
fluctuations of ~0.5 mV at the soma, attained after a peak
time of ~5 ms. Such fluctuations correspond to typically
large in vivo synaptic activations of thalamo-cortical pro-
jections in rats [72]. Although activations of similar ampli-
tude have been reported for cortico-cortical connections
[73,74], recent large-scale in vivo studies have revealed that
cortico-cortical excitatory connections are typically much
weaker [75,76]. At the same time, these studies have
shown that inhibitory synaptic conductances are about
fourfold larger than excitatory ones but with similar time-
scales. Fitting these values within the framework of AONCB
neurons for € = 7,/7 =~ 1/4 reveals that the largest possible
synaptic inputs correspond to dimensionless weights
w,~0.01 and w; ~0.04. Following Refs. [75,76], we
consider that the comparatively moderate cortico-cortical

recurrent connections are an order of magnitude weaker than
typical thalamo-cortical projections, i.e., w, ~0.001 and
w; =~ 0.004. Such a range is in keeping with estimates used
in Ref. [38].

B. The effective-time-constant approximation holds
in the asynchronous regime

Let us consider that neuronal inputs have zero (or
negligible) correlation structure, which corresponds to
assuming that all synapses are driven by independent
Poisson processes. Incidentally, excitation and inhibition
act independently. Within the framework of AONCB
neurons, this latter assumption corresponds to choosing
a joint jump distribution of the form

b,
pei(Ww Wt) =

2 pe(WSW,) + 7 (W)W,

where §(+) denotes the Dirac delta function so that W, W, =
0 with probability one. Moreover, b, and b; are independ-
ently specified via Eq. (9), and the overall rate of synaptic
events is purely additive: b = b, + b;. Consequently, the
cross-correlation efficacy c,; in Eq. (16) vanishes, and the
dimensionless efficacies simplify to

a,; = b,7E,[1 —e™W] and a;; = bizE;[1 — e Wi].

Further assuming that individual excitatory and inhibitory
synapses act independently leads to considering that p, and
p; depict the size of individual synaptic inputs, as opposed to
aggregate events. This corresponds to taking f, — oo and
i — oo in our parametric model based on beta distributions.
Then, as intuition suggests, the overall rates of excitation and
inhibition activation are recovered as b, = K,r, and
b; = K;r;, where r, and r; are the individual spiking rates.

Individual synaptic weights are small in the sense that
w,, w; < 1, which warrants neglecting exponential correc-
tions for the evaluation of the synaptic efficacies, at least in
the absence of synchrony-based correlations. Accordingly,
we have

aey =K roow, and  a, = K, r,ow?/2,

as well as symmetric expressions for inhibitory efficacies.
Plugging these values into Eq. (16) yields the classical
mean-field estimate for the stationary variance:

iy o KerewE (Ve = EVD? + Krai? (v, ~ EIV)?
- 2(1/T+Kerewe+Kiriwi)

)

which is exactly the same expression as that derived via the
diffusion and effective-time-constant approximations in
Refs. [46,47]. However, observe that the only approxima-
tion we made in obtaining the above expression is to
neglect exponential corrections due to the relative weakness
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of biophysically relevant synaptic weights, which we
hereafter refer to as the small-weight approximation.

C. Asynchronous inputs yield exceedingly
small neural variability

In Fig. 7, we represent the stationary mean E[V] and
variance V[V] as a function of the neuronal spiking input
rates 7, and r; but for distinct values of synaptic weights w,
and w;. In Fig. 7(a), we consider synaptic weights as large
as biophysically admissible based on recent in vivo studies
[75,76], i.e., w, =0.01 and w; = 0.04. By contrast, in
Fig. 7(b), we consider moderate synaptic weights w, =
0.001 and w; = 0.004, which yield somatic postsynaptic
deflections of typical amplitudes. In both cases, we con-
sider input numbers K, and K; such that the mean voltage
E[V] covers the same biophysical range of values as r, and
r; varies between 0 and 50 Hz. Given a zero resting
potential, we set this biophysical range to be bounded by
AE[V] <20 mV as typically observed experimentally in
electrophysiological recordings. These conditions corre-
spond to constant aggregate weights setto K ,w, =K;w; =1
so that

K.,row, = K;riw; <50 Hz~ 1/.

K 100, K=25, w,=0.01, w=0.04 (b) K =10% K=250, w,=0.001, w=0.004
5
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FIG. 7. Voltage mean and variance in the absence of input
correlations. Column (a) depicts the stationary subthreshold
response of an AONCB neuron driven by K, = 100 and K; =
25 synapses with large weights w, = 0.01 and w; = 0.04. Column
(b) depicts the stationary subthreshold response of an AONCB
neuron driven by K, = 10% and K; = 250 synapses with moderate
weights w, = 0.001 and w; = 0.004. For synaptic weights
w,, w; < 1, the mean response is identical as K,w, = K;w; =1
for (a) and (b). By contrast, for p, = p; = p,; = 0, the variance is at
least an order of magnitude smaller than that experimentally
observed (4-9 mV?) for moderate weights as shown in (a).
Reaching the lower range of realistic neural variability requires
driving the cell via large weights as shown in (b).

3

Mean

2

3

Variance
o - N w B [ [=2)

This implies that the AONCB neurons under consideration
do not reach the high-conductance regime for which the
passive conductance can be neglected, i.e., K,r,w, +
K,r,w;> 1/t [77]. Away from the high-conductance
regime, the variance magnitude is controlled by the
denominator in Eq. (20). Accordingly, the variance in both
cases is primarily dependent on the excitatory rate r,, since,
for K,w, = K;w; = 1, the effective excitatory driving force
F, = K,w%(V, — E[V])? dominates the effective inhibitory
driving force F; = K;w?(V; — E[V])?. This is because the
neuronal voltage typically sits close to the inhibitory
reversal potential but far from the excitatory reversal
potential V, — E[V] > E[V] — V,. For instance, when close
to rest E[V] ~ 0, the ratio of the effective driving forces is
(K,w2V2)/(Kw?V2?)~9 fold in favor of excitation.
Importantly, the magnitude of the variance is distinct for
moderate synapses and for large synapses. This is because,
for constant aggregate weights K ,w, = K;w; = 1, the ratio
of effective driving forces for large and moderate synapses
scales in keeping with the ratio of the weights, and so does
the ratio of variances away from the high-conductance
regime. Thus, we have

Fe|w£:10‘2/Fe|w¢,:10‘3 = Fi|w,-:10‘2/Fi|w,~:10'3 =10,

and the variance decreases by one order of magnitude from
large weights in Fig. 7(a) to moderate weights in Fig. 7(b).

The above numerical analysis reveals that achieving
realistic levels of subthreshold variability for a biophysical
mean range of variation requires AONCB neurons to be
exclusively driven by large synaptic weights. This is
confirmed by considering the voltage mean E[V] and
variance V[V] in Fig. 8 as a function of the number of
inputs K, and of the synaptic weights w, for a given level of
inhibition. We choose this level of inhibition to be set by
K; = 250 moderate synapses w; = 0.004 with r; = 20 Hz
in Fig. 8(a) and by K; = 25 large synapses w; = 0.04 with
r; = 20 Hz in Fig. 8(b). As expected, assuming that r, =
20 Hz in the absence of input correlations, the voltage
mean E[V] depends on only the product K, w,, which yields
a similar mean range of variations for K, varying up to
2000 in Fig. 8(a) and up to 200 in Fig. 8(b). Thus, it is
possible to achieve the same range of variations as with
moderate synaptic with a fewer number of larger synaptic
weights. By contrast, the voltage variance V[V] achieves
realistic levels only for large synaptic weights in both
conditions, with w, > 0.015 for moderate inhibitory back-
ground synapses in Fig. 8(a) and w, > 0.01 for large
inhibitory background synapses in Fig. 8(b).

D. Including input correlations yields realistic
subthreshold variability

Without synchrony, achieving the experimentally
observed variability necessitates an excitatory drive medi-
ated via synaptic weights w, ~ 0.01, which corresponds to

011021-13



LOGAN A. BECKER et al.

PHYS. REV. X 14, 011021 (2024)

(a) r=20Hz, r,=20 Hz, K=250, w=0.004 (D)  r,=20 Hz, =20 Hz, K=25, w=0.04
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FIG. 8. Dependence on the number of inputs and the synaptic
weights in the absence of correlations. Column (a) depicts the
stationary subthreshold response of an AONCB neuron driven by
a varying number of excitatory synapses K, with varying weight
w, atrate r, = 20 Hz, with background inhibitory drive given by
K; =250 with moderate weights w; = 0.004 and r; = 20 Hz.
Column (b) depicts the same as in column (a) but for a back-
ground inhibitory drive given by K; =25 with large weights
w; =0.04 and r; =20 Hz. For both conditions, achieving
realistic level of variance, i.e., V[V] ~4-9 mV?, while ensuring
a Dbiophysically relevant mean range of variation, i.e.,
AE[V] 2~ 10-20 mV, is possible only for large weights: w, >
0.015 for moderate inhibitory weights in (a) and w, > 0.01 for
large weights.

the upper bounds of the biophysically admissible range and
is in agreement with numerical results presented in
Ref. [38]. Albeit possible, this is unrealistic given the wide
distribution of amplitudes observed experimentally,
whereby the vast majority of synaptic events are small
to moderate, at least for cortico-cortical connections
[75,76]. In principle, one can remedy this issue by allowing
for synchronous activation of, say, k, = 10 synapses with
moderate weight w, = 0.001, as it amounts to the activa-
tion of a single synapse with large weight k,w, = 0.01. A
weaker assumption that yields a similar increase in neural
variability is to ask for synapses to only tend to synchronize
probabilistically, which amounts to requiring k, to be a
random variable with some distribution mass on {k, > 1}.
This exactly amounts to modeling the input drive via a
jump process as presented in Sec. II, with a jump
distribution p, that probabilistically captures this degree
of input synchrony. In turn, this distribution p, corresponds
to a precise input correlation p, via Eq. (8).

We quantify the impact of nonzero correlation in Fig. 9,
where we consider the cases of moderate weights w, =
0.001 and w, = 0.004 and large weights w, = 0.01 and
w; = 0.04 as in Fig. 7 but for p, = p; = 0.03. Specifically,

(@) K,=100, K=25, w,=0.01, w=0.04 K =10%, K=250, w,=0.001, w=0.004

r5 25 25
e
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15 15
’ 3
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8 8
6 4
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2
2
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FIG.9. Voltage mean and variance in the presence of excitatory
and inhibitory input correlations but without correlation across
excitation and inhibition: p, = p; > p,; = 0. Column (a) depicts
the stationary subthreshold response of an AONCB neuron driven
by K, =100 and K; =25 synapses with large weights w, =
0.01 and w; = 0.04. Column (b) depicts the stationary subthresh-
old response of an AONCB neuron driven by K, = 10° and K; =
250 synapses with moderate dimensionless weights w, = 0.001
and w; = 0.004. For synaptic weights w,,w; < 1, the mean
response is identical as K,w, = K;w; =1 for (a) and (b). By
contrast with the case of no correlation in Fig. 7, for p, = p; =
0.03 and p,; = 0, the variance achieves similar levels as exper-
imentally observed (4-9 mV?) for moderate weights as shown in
(b) but slightly larger levels for large weights as shown in (a).

Mean

=

3

Variance

we consider an AONCB neuron subjected to two indepen-
dent beta-binomial-derived compound Poisson process
drives with rate b, and b;, respectively. These rates b,
and b; are obtained via Eq. (9) by setting f, =f; =
1/p.—1=1/p;—1 and for given input numbers K,
and K; and spiking rates r, and r;. This ensures that the
mean number of synaptic activations b,E,;[k,| = K,r, and
b;E[k;] = K;r; remains constant when compared with
Fig. 7. As a result, the mean response of the AONCB
neuron is essentially left unchanged by the presence of
correlations, with virtually identical biophysical range of
variations AE,;[V] ~ 10-20 mV. This is because, for
correlation p, = p; ~0.03, the aggregate weights still
satisfy k,w,, k;w; < 1 with probability close to one given
that K,w, = K;w; = 1. Then, in the absence of cross-
correlation, i.e., p,; = 0, we still have

el = beT[Ee[l - e_kewe] = berwe[Ee[ke] = K, r.tw,,

as well as a;; ~ K;r;tw; by symmetry. However, for both
moderate and large synaptic weights, the voltage variance
V[V] now exhibits slightly larger magnitudes than observed
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experimentally. This is because we show in Appendix M
that in the small-weight approximation

b,
Ae12 = B3

E, [(1 - e—kewﬂ)ﬂ

2
= (1 +/)e(Ke - 1))%’

where we recognize K, r,tw?2/2 = 1] ,.—0 as the second-
order efficacy in the absence of correlations from Fig. 7.
A similar statement holds for a;;,. This shows that
correlations increase neural variability whenever p, >
1/K, or p; > 1/K;, which coincides with our previously
given criterion to assess the relative weakness of correla-
tions. Accordingly, when excitation and inhibition act
independently, i.e., p,;, = 0, we find that the increase in
variability due to input synchrony Apg/, =V
VIV]

Vllp,=o =

peji=p=0 Satisfies
eft el

Npe(Ke B 1>KereW3<Ve B [E[V])2
Peli ™ 21/t + Korow, + Kiriw;)
pi(Ki— I)Kiriwzz(vi - [E[V])z
2(1/z+ K, row, + Kiriw;)

(20)

The above relation follows from the fact that the small-
weight approximation for E[V] is independent of correla-
tions and from neglecting the exponential corrections due
to the nonzero size of the synaptic weights. The above
formula remains valid as long as the correlations p, and p;
are weak enough so that the aggregate weights satisfy
k,w,, kw; < 1 with probability close to one. To inspect
the relevance of exponential corrections, we estimate in
Appendix N the error incurred by neglecting exponential
corrections. Focusing on the case of excitatory inputs, we
find that, for correlation coefficients p, < 0.05, neglecting
exponential corrections incurs less than a 3% error if the
number of inputs is smaller than K, < 1000 for moderate
synaptic weight w, = 0.001 or than K, < 100 for large
synaptic weight w, = 0.01.

E. Including correlations between excitation and
inhibition reduces subthreshold variability

The voltage variance estimated for realistic excitatory
and inhibitory correlations, e.g., p, =p; =0.03 and
pei = 0, exceeds the typical levels measured in vivo, i.e.,
4-9 mV?, for large synaptic weights. The inclusion of
correlations between excitation and inhibition, i.e., p,; > 0,
can reduce the voltage variance to more realistic levels. We
confirm this point in Fig. 10, where we consider the cases
of moderate weights w, = 0.001 and w, = 0.004 and large
weights w, = 0.01 and w; = 0.04 as in Fig. 9 but for
p. = pi = p.i = 0.03. Positive cross-correlation between
excitation and inhibition only marginally impacts the mean
voltage response. This is due to the fact that exponential

a) K=100, K=25, w.=0.01, w=0.04 (b K,=10% K=250, w,=0.001, w=0.004
(a) k=100, K=25, w, j (
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FIG. 10. Voltage mean and variance in the presence of
excitatory and inhibitory input correlations and with correlation
across excitation and inhibition: p, = p; = p,; > 0. Column
(a) depicts the stationary subthreshold response of an AONCB
neuron driven by K, = 100 and K; = 25 synapses with large
weights w, = 0.01 and w; = 0.04. Column (b) depicts the
stationary subthreshold response of an AONCB neuron driven
by K, = 10° and K; = 250 synapses with moderate dimension-
less weights w, = 0.001 and w; = 0.004. For synaptic weights
w,, w; < 1, the mean response is identical as K,w, = K;w; = 1
for (a) and (b). Compared with the case of no cross-correlation in
Fig. 9, for p, = p; = p,; = 0.03, the variance is reduced to a
biophysical range similar to that experimentally observed
(4-9 mV?) for moderate weights as shown in (a), as well as
for large weights as shown in (b).

corrections become slightly more relevant as the presence
of cross-correlation leads to larger aggregate weights:
W, + W, with W, and W; possibly being jointly positive.
By contrast with this marginal impact on the mean
response, the voltage variance is significantly reduced
when excitation and inhibition are correlated. This is in
keeping with the intuition that the net effect of such cross-
correlation is to cancel excitatory and inhibitory synaptic
inputs with one another, before they can cause voltage
fluctuations. The amount by which the voltage variance is
reduced can be quantified in the small-weight approxima-
tion. In this approximation, we show in Appendix M that
the efficacy c,; capturing the impact of cross-correlations
simplifies to

b
_T lEei[We Wl]

Coi = 2

= (Pesz/z)(KeWe)(Ksz)

Using the above simplified expression and invoking the fact
that the small-weight approximation for E[V] is indepen-
dent of correlations, we show a decrease in the amount
A, =V[V]=V[V]|, _, with
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Peiv/ reri(KeWe)(Kiwi)(Ve - [E[V])([E[V] - Vl)
Pei 1/T+Kerewe+K,»r,-wi
<0. 21)

Despite the above reduction in variance, we also show in
Appendix M that positive input correlations always cause
an overall increase of neural variability:

0 <V[V]

L SVIV] VY]

Pefi=Pei Pei=0"

Note that the reduction of variability due to p,; >0
crucially depends on the instantaneous nature of correla-
tions between excitation and inhibition. To see this, observe
that Marcus rule Eq. (13) specifies instantaneous jumps via
a weighted average of the reversal potentials V, and V;,
which represent extreme values for voltage updates. Thus,
perfectly synchronous excitation and inhibition updates the
voltage toward an intermediary value rather than extreme
ones, leading to smaller jumps on average. Such an effect
can vanish or even reverse when synchrony breaks down,
e.g., when inhibition substantially lags behind excitation.

F. Asynchronous scaling limits require fixed-size
synaptic weights

Our analysis reveals that the correlations must signifi-
cantly impact the voltage variability whenever the number of
inputs is such that K, > 1/p, or K; > 1/p,;. Spiking
correlations are typically measured in vivo to be larger than
0.01. Therefore, synchrony must shape the response of
neurons that are driven by more than 100 active inputs,
which is presumably allowed by the typically high number
of synaptic contacts (~10%) in the cortex [ 13]. In practice, we
find that synchrony can explain the relatively high level of
neural variability observed in the subthreshold neuronal
responses. Beyond these practical findings, we predict that
input synchrony also has significant theoretical implications
with respect to modeling spiking networks. Analytically
tractable models for cortical activity are generally obtained
by considering spiking networks in the infinite-size limit.
Such infinite-size networks are tractable, because the
neurons they comprise interact only via population aver-
ages, erasing any role for nonzero correlation structure.
Distinct mean-field models assume that synaptic weights
vanish according to distinct scalings with respect to the
number of synapses, i.e., w,/; = 0 as K,/; = co. In par-
ticular, classical mean-field limits consider the scaling
Wesi ~1/K,);, balanced mean-field limits consider the
scaling w,;; ~1/,/K,;;, with K,w, — K;w; = O(1), and
strong coupling limits consider the scalingw, /; ~ 1/ In K, /;,
with K,w, — K;w; = O(1) as well.

Our analysis of AONCB neurons shows that the neglect
of synchrony-based correlations is incompatible with
the maintenance of neural variability in the infinite-size
limit. Indeed, Eq. (20) shows that for any scaling with

1/w, = o(K,) and 1/w; = o(K;), as for all the mean-field
limits mentioned above, we have

V[V] = O(w,) + O(w;) “2°5

Thus, in the absence of correlation and independent of the
synaptic weight scaling, the subthreshold voltage variance of
AONCB neurons must vanish in the limit of arbitrary large
numbers of synapses. We expect such decay of the voltage
variability to be characteristic of conductance-based models
in the absence of input correlation. Indeed, dimensional
analysis suggests that voltage variances for both current-
based and conductance-based models are generically
obtained via normalization by the reciprocal of the mem-
brane time constant. However, by contrast with current-based
models, the reciprocal of the membrane time constant for
conductance-based models, i.e., 1/7+ K, w,r, + K,w;r;,
involves contributions from synaptic conductances. Thus,
to ensure nonzero asymptotic variability, the denominator
scaling O(K,w,) + O(K;w;) must be balanced by the
natural scaling of the Poissonian input drives, i.e.,
O(K,w?) + O(K;w?). In the absence of input correlations,
this is possible only for fixed-size weights, which is
incompatible with any scaling assumptions.

G. Synchrony allows for variability-preserving
scaling limits with vanishing weights

Infinite-size networks with fixed-size synaptic weights
are problematic for restricting modeled neurons to operate
in the high-conductance regime, whereby the intrinsic
conductance properties of the cell play no role. Such a
regime is biophysically unrealistic, as it implies that the cell
would respond to perturbations infinitely fast. We propose
to address this issue by considering a new type of
variability-preserving limit models obtained for the
classical scaling but in the presence of synchrony-based
correlations. For simplicity, let us consider our correlated
input model with excitation alone in the limit of an arbitrary
large number of inputs K, — o0. When p, > 0, the small-
weight approximation Eq. (20) suggests that adopting the
scaling w, ~Q,/K,, where Q, denotes the aggregate
synaptic weight, yields a nonzero contribution when K, —
oo as the numerator scales as O(K2w?). It turns out that this
choice can be shown to be valid without resorting to any
approximations. Indeed, under the classical scaling
assumption, we show in Appendix O that the discrete
jump distribution p,; weakly converges to the continuous
density dv,/dw in the sense that

K

< w k K,—~

b, Dei0 <— - —) dw ——
2. r0\o, ",

Vo(dw) = %’Be (1 - &y}e_ldw. (22)

w
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The above density has infinite mass over [0, Q,] owing to
its diverging behavior in zero and is referred to as a
degenerate beta distribution. In spite of its degenerate
nature, it is known that densities of the above form define
well-posed processes, the so-called beta processes, which
have been studied extensively in the field of nonparametric
Bayesian inference [61,62]. These beta processes represent
generalizations of our compound Poisson process drives
insofar as they allow for a countable infinity of jumps to
occur within a finite time window. This is a natural
requirement to impose when considering an infinite pool
of synchronous synaptic inputs, the overwhelming majority
of which having nearly zero amplitude.

The above arguments show that one can define a gener-
alized class of synchronous input models that can serve as the
drive of AONCB neurons as well. Such generalizations are
obtained as limits of compound Poisson processes and are
specified via their Lévy-Khintchine measures, which for-
malize the role of v, [78,79]. Our results naturally extend to
this generalized class. Concretely, for excitation alone, our
results extend by replacing all expectations of the form
b,E,[] by integral with respect to the measure v,. One can
easily check that these expectations, which feature promi-
nently in the definition of the various synaptic efficacies, all
remain finite for Lévy-Khintchine measures. In particular,
the voltage mean and variance of AONCB neurons remain
finite with

E[V] = Ve Jo (1= e )we(dw) ’
1/T+f0 (1=e™)v.(dw)
vv] = (Ve ZEWD? 54 (1= ) we(dw)
2t JE (= (dw)

Thus, considering the classical scaling limit w, « 1/K,
preserves nonzero subthreshold variability in the infinite size
limit K, — oo as long as v, puts mass away from zero, i.e., for
p. < 00 < p, > 0. Furthermore, we show in Appendix O
that V[V] = O(p,) so that voltage variability consistently
vanishes in the absence of spiking correlation, for which v,
concentrates in zero, i.e., when f, - co<p,=0.

IV. DISCUSSION
A. Synchrony modeling

We have presented a parametric representation of the
neuronal drives resulting from a finite number of asyn-
chronous or (weakly) synchronous synaptic inputs. Several
parametric statistical models have been proposed for
generating correlated spiking activities in a discrete setting
[59,80-82]. Such models have been used to analyze the
activity of neural populations via Bayesian inference
methods [83-85], as well as maximum entropy methods
[86,87]. Our approach is not to simulate or analyze
complex neural dependencies but rather to derive from

first principles the synchronous input models that could
drive conductance-based neuronal models. This approach
primarily relies on extending the definition of discrete-
time correlated spiking models akin to Ref. [59] to the
continuous-time setting. To do so, the main tenet of our
approach is to realize that input synchrony and spiking
correlation represent equivalent measures under the
assumption of input exchangeability.

Input exchangeability posits that the driving inputs form a
subset of an arbitrarily large pool of exchangeable random
variables [55,56]. In particular, this implies that the main
determinant of the neuronal drive is the number of active
inputs, as opposed to the magnitude of these synaptic inputs.
Then, the de Finetti theorem [57] states that the probability
of observing a given input configuration can be represented
in the discrete setting under an integral form [see Eq. (3)]
involving a directing probability measure F. Intuitively, F
represents the probability distribution of the fraction of
coactivating inputs at any discrete time. Our approach
identifies the directing measure F as a free parameter that
captures input synchrony. The more dispersed the distribu-
tion F, the more synchronous the inputs, as previously noted
in Refs. [88,89]. Our work elaborates on this observation to
develop computationally tractable statistical models for
synchronous spiking in the continuous-time limit, i.e., for
vanishing discrete time step Ar — 07,

We derive our results using a discrete-time directing
measure chosen as beta distribution F ~ B(a, f3), where the
parameters « and S can be related to the individual spiking
rate r and the spiking correlation p via rAr = a/(a + ) and
p = 1/(14 a+ ). For this specific choice of distribution,
we are able to construct statistical models of the correlated
spiking activity as generalized beta-binomial processes [60],
which play an important role in statistical Bayesian infer-
ence [61,62]. This construction allows us to fully para-
metrize the synchronous activity of a finite number of inputs
via the jump distribution of a compound Poisson process,
which depends explicitly on the spiking correlation. For
being continuously indexed in time, stationary compound
Poisson processes can naturally serve as the drive to
biophysically relevant neuronal models. The idea to utilize
compound Poisson processes to model input synchrony was
originally proposed in Refs. [90-92] but without construct-
ing these processes as limits of discrete spiking models and
without providing explicit functional form for their jump
distributions. More generally, our synchrony modeling can
be interpreted as a limit case of the formalism proposed in
Refs. [93,94] to model correlated spiking activity via
multidimensional Poisson processes.

B. Moment analysis

We analytically characterize the subthreshold variability
of a tractable conductance-based neuronal model, the
AONCB neurons, when driven by synchronous synaptic
inputs. The analytical characterization of a neuron’s voltage
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fluctuations has been the focus of intense research
[46,47,95-97]. These attempts have considered neuronal
models that already incorporate some diffusion scaling
hypotheses [98,99], formally obtained by assuming an
infinite number of synaptic inputs. The primary benefit
of these diffusion approximations is that one can treat the
corresponding Fokker-Planck equations to quantify neuro-
nal variability in conductance-based integrate-and-fire
models while also including the effect of postspiking reset
[37,38]. In practice, subthreshold variability is often esti-
mated in the effective-time-constant approximation, while
neglecting the multiplicative noise contributions due to
voltage-dependent membrane fluctuations [46,95,96],
although an exact treatment is also possible without this
simplifying assumption [38]. By contrast, the analysis of
conductance-based models has resisted exact treatments
when driven by shot noise, as for compound Poisson input
processes, rather than by Gaussian white noise, as in the
diffusion approximation [41-43].

The exact treatment of shot-noise-driven neuronal
dynamics is primarily hindered by the limitations of the
[t6-Stratonovich integrals [65,100] to capture the effects of
point-process-based noise sources, even without including
a reset mechanism. These limitations were originally
identified by Marcus, who proposed to approach the
problem via a new type of stochastic equation [44,45].
The key to the Marcus equation is to define shot noise as
limits of regularized, well-behaved approximations of that
shot noise, for which classical calculus applies [66]. In
practice, these approximations are canonically obtained as
the solutions of shot-noise-driven Langevin equations with
relaxation timescale z,, and shot noise is formally recov-
ered in the limit 7, — 0. Our assertion here is that all-or-
none conductances implement such a form of shot-noise
regularization for which a natural limiting process can be
defined when synapses operate instantaneously, i.e.,
7, = 0". The main difference with the canonical Marcus
approach is that our regularization is all-or-none, substitut-
ing each Dirac delta impulse with a finite steplike impulse
of duration 7z, and magnitude 1/z,, thereby introducing a
synaptic timescale but without any relaxation mechanism.

The above assertion is the basis for introducing AONCB
neurons, which is supported by our ability to obtain exact
formulas for the first two moments of their stationary
voltage dynamics [see Egs. (14) and (16)]. For z; > 0, these
moments can be expressed in terms of synaptic efficacies
that take exact but rather intricate integral forms.
Fortunately, these efficacies drastically simplify in the
instantaneous synapse limit 7, — 0T, for which the canoni-
cal shot-noise drive is recovered. These resulting formulas
mirror those obtained in the diffusion and effective-time-
constant approximations [46,47], except that they involve
synaptic efficacies whose expressions are original in three
ways [see Egs. (15), (G4), (G7), and (G8)]: First, inde-
pendent of input synchrony, these efficacies all have

exponential forms and saturate in the limit of large synaptic
weights. Such saturation is a general characteristic of shot-
noise-driven, continuously relaxing systems [101-103].
Second, these efficacies are defined as expectations with
respect to the jump distribution p,; of the driving com-
pound Poisson process [see Eq. (11) and Appendix B].
A nonzero dispersion of p,;, indicating that synaptic
activation is truly modeled via random variables W, and
W, is the hallmark of input synchrony [91,92]. Third, these
efficacies involve the overall rate of synaptic events b [see
Eq. (12)], which also depends on input synchrony. Such
dependence can be naturally understood within the frame-
work of Palm calculus [104], a form of calculus specially
developed for stationary point processes.

C. Biophysical relevance

Our analysis allows us to investigate quantitatively how
subthreshold variability depends on the numbers and
strength of the synaptic contacts. This approach requires
that we infer synaptic weights from the typical peak time
and peak amplitude of the somatic membrane fluctuations
caused by postsynaptic potentials [72,75,76]. Within our
modeling framework, these weights are dimensionless
quantities that we estimate by fitting the AONCB neuronal
response to a single all-or-none synaptic activation at rest.
For biophysically relevant parameters, this yields typically
small synaptic weights in the sense that w,, w; << 1. These
small values warrant adopting the small-weight approxi-
mation, for which expressions (14) and (16) simplify.

In the small-weight approximation, the mean voltage
becomes independent of input synchrony, whereas the
simplified voltage variance Eq. (20) depends on input
synchrony only via the spiking correlation coefficients
Pes Pi» and p,;, as opposed to depending on a full jump
distribution. Spike-count correlations have been experi-
mentally shown to be weak in cortical circuits [10-12], and,
for this reason, most theoretical approaches argued for
asynchronous activity [17,105-109]. A putative role for
synchrony in neural computations remains a matter of
debate [110-112]. In modeled networks, although the tight
balance regime implies asynchronous activity [19-21], the
loosely balanced regime is compatible with the establish-
ment of strong neuronal correlations [22-24]. When
distributed over large networks, weak correlations can still
give rise to precise synchrony, once information is pooled
from a large enough number of synaptic inputs [32,33]. In
this view, and assuming that distinct inputs play compa-
rable roles, correlations measure the propensity of distinct
synaptic inputs impinging on a neuron to coactivate, which
represents a clear form of synchrony. Our analysis shows
that considering synchrony in amounts consistent with the
levels of observed spiking correlation is enough to account
for the surprisingly large magnitude of subthreshold neuro-
nal variability [1,26-28]. In contrast, the asynchronous
regime yields unrealistically low variability, an observation
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that challenges the basis for the asynchronous state
hypothesis.

Recent theoretical works [37,38] have also noted that the
asynchronous state hypothesis seems at odds with certain
features of the cortical activity such as the emergence of
spontaneous activity or the maintenance of significant
average polarization during evoked activity. Zerlaut et al.
have analyzed under which conditions conductance-based
networks can achieve a spectrum of asynchronous states
with realistic neural features. In their work, a key variable
to achieve this spectrum is a strong afferent drive that
modulates a balanced network with moderate recurrent
connections. Moderate recurrent conductances are inferred
from allowing for up to 2 mV somatic deflections at rest,
whereas the afferent drive is provided via even stronger
synaptic conductances that can activate synchronously.
These inferred conductances appear large in light of recent
in vivo measurements [72,75,76], and the corresponding
synaptic weights all satisfy w,,w; > 0.01 within our
framework. Correspondingly, the typical connectivity num-
bers considered are small with K, =200, K; = 50 for
recurrent connections, and K, = 10 for the coactivating
afferent projections. Thus, results from Ref. [37] appear
consistent with our observation that realistic subthreshold
variability can be achieved asynchronously only for a
restricted number of large synaptic weights. Our findings,
however, predict that these results follow from connectivity
sparseness and will not hold in denser networks, for which
the pairwise spiking correlation will exceed the empirical
criteria for asynchrony, e.g., p, >1/K, (p,<0.005<1/K,
in Ref. [37]). Sanzeni et al. have pointed out that imple-
menting the effective-time-constant approximation in
conductance-based models suppresses subthreshold vari-
ability, especially in the high-conductance state [77]. As
mentioned here, this suppression causes the voltage vari-
ability to decay as O(w,) + O(w;) in any scaling limit with
vanishing synaptic weights. Sanzeni et al. observe that such
decay is too fast to yield realistic variability for the balanced
scaling, which assumes w, ~ 1//K, and w; ~ 1//K;. To
remedy this point, these authors propose to adopt a slower
scaling of the weights, i.e.,w, ~1/InK, and w; ~ 1/ In K,
which can be derived from the principle of rate conservation
in neural networks. Such a scaling is sufficiently slow for
variability to persist in networks with large connectivity
number (~10°). However, as any scaling with vanishing
weights, our exact analysis shows that such scaling must
eventually lead to decaying variability, thereby challenging
the basis for the synchronous state hypothesis.

Both of these studies focus on the network dynamics of
conductance-based networks under the diffusion approx-
imations. Diffusive behaviors rigorously emerge only under
some scaling limit with vanishing weights [98,99]. By
focusing on the single-cell level rather than the network
level, we are able to demonstrate that the effective-time-
constant approximation holds exactly for shot-noise-driven,

conductance-based neurons, without any diffusive approx-
imations. Consequently, suppression of variability must
occur independent of any scaling choice, except in the
presence of input synchrony. Although this observation
poses a serious theoretical challenge to the asynchronous
state hypothesis, observe that it does not invalidate the
practical usefulness of the diffusion approximation. For
instance, we show in Fig. 11 that the mean spiking response
of an a shot-noise-driven AONCB neuron with an integrate-
and-fire mechanism can be satisfactorily captured via the
diffusion approximation. In addition, our analysis allows
one to extend the diffusion approximation to include input
synchrony.

D. Limitations of the approach

A first limitation of our analysis is that we neglect the
spike-generating mechanism as a source of neural variabil-
ity. Most diffusion-based approaches model spike gener-
ation via the integrate-and-fire mechanism, whereby the
membrane voltages reset to fixed value upon reaching a
spike-initiation threshold [37,38,46,47,95-97]. Accounting
for such a mechanism can impact our findings in two ways:
(i) By confining voltage below the spiking threshold, the
spiking mechanism may suppress the mean response enough
for the neuron to operate well in the high-conductance
regime for large input drives. Such a scenario will still
produce exceedingly low variability due to variability
quenching in the high-conductance regime, consistent with
Ref. [1]. (i) The additional variability due to postspiking
resets may dominate the synaptic variability, so that a large
overall subthreshold variability can be achieved in spite
of low synaptic variability. This possibility also seems
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FIG. 11. Diffusion approximations in the presence of synchrony.
(a) Comparison of an asynchronously driven integrate-and-fire
AONCB neuron (blue trace) with its diffusion approximation
obtained via the effective-time-constant approximation (red trace).
(b) Comparison of a synchronously driven integrate-and-fire
AONCB neuron (blue trace) with its diffusion approximation ob-
tained by our exact analysis (red trace). Parameters: K, = 1000,
K; =350,7 = 15 ms,w, = 0.001,w; = 0.004,r, = r; = 25 Hz,
pe=pi =003, p,=0,V;=15mV, and Vp = 12 mV.

011021-19



LOGAN A. BECKER et al.

PHYS. REV. X 14, 011021 (2024)

unlikely as dominant yet stereotypical resets would imply a
quasideterministic neural response [71]. Addressing the
above limitations quantitatively requires extending our
exact analysis to include the integrate-and-fire mechanism
using a technique from queueing theory [104]. This is
beyond the scope of this work. We note, however, that
implementing a postspiking reset to a fixed voltage level
yields simulated trajectories that markedly differ from
physiological ones (see Fig. 1), for which the postspiking
voltage varies across conditions [26-28].

A second limitation of our analysis is our assumption of
exchangeability, which is the lens through which we operate
a link between spiking correlations and input drives. Taken
literally, the exchangeability assumption states that synapses
all have a typical strength and that conductance variability
primarily stems from the variable numbers of coactivating
synapses. This is certainly an oversimplification as synapses
exhibit heterogeneity [113], which likely plays a role in
shaping neural variability [114]. Distinguishing between
heterogeneity and correlation contributions, however, is a
fundamentally ambiguous task [115]. For instance, consid-
ering K, synchronous inputs with weight w, at rate b, and
with jump probability p, [see Eqs. (5) and (9)] is indis-
tinguishable from considering K, independent inputs
with heterogeneous weights {w,, 2w,, ..., K,w,} and rates
K,r.p. . Within our modeling approach, accounting for
synaptic heterogeneity, with dispersed distribution for syn-
aptic weights ¢,(w), can be done by taking the jump
distribution p, as

K
pew) =D av™ (W)pes.
k=1

where qg*k) refers to the k-fold convolution of ¢,(w). This

leads to an overdispersion of the jump distribution p, and,
thus, increased subthreshold neural variability. Therefore,
while we have assumed exchangeability, our approach can
accommodate weight heterogeneity. The interpretation of
our results in terms of synchrony rather than heterogeneity is
supported by recent experimental evidence that cortical
response selectivity derives from strength in numbers of
synapses rather than difference in synaptic weights [116].

A third limitation of our analysis is to consider a perfect
form of synchrony, with exactly simultaneous synaptic
activations. Although seemingly unrealistic, we argue that
perfect input synchrony can still yield biologically relevant
estimates of the voltage variability. For instantaneous
synchrony, the empirical spiking correlation is independent
of the timescale over which spikes are counted, i.e.,
Pemp = Pe»> a8 shown in Fig. 12(a) (blue line). This is a
potential problem, because spiking correlations have been
measured to vanish on small timescales in experimental
recordings [117,118]. More realistic input models can be
obtained by jittering instantaneously synchronous spikes.
Such a procedure leads to a general decrease in the
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FIG. 12. Impact of jittering synchronous inputs. (a) Effect of

jittering synchronous spike times via independent Gaussian cen-
tered time shifts with varied standard deviation o;: Without jitter,
spiking correlation is independent of the size of the time bins used
to count spikes (blue trace). Jittering with larger o; decreases
spiking correlation for all bin sizes, with spiking correlation
vanishing in the limit of small bin sizes. (b) Given a jitter standard
deviation of ¢; = 50 ms, one obtains spike-count correlation of
p(At) = 0.03 in Ar = 25 ms bins by jittering a synchronous input
with instantaneous correlation of p, = 0.2-0.3. (c) Comparison of
voltage trace obtained with instantaneous synchronous input (blue)
and jittered correlated inputs (red) for o; = 50 ms. Both types of
input are chosen so that they yield the same spiking correlation of
pe = p(At) = 0.03 with a bin size of At = 25 ms. The stationary
distributions are close to identical, leading to less than 1% error in
the variance estimates. (d) Comparison between the voltage
variances of an AONCB neuron driven by realistic synchronous
inputs with various jitters (dashed line) and the voltage variances of
the same AONCB neuron driven by instantaneously synchronous
approximations (solid line). For each ¢, different instantaneous
approximations are obtained for different bin sizes Az by setting
p. = p(Ar) for various bin sizes Az. Good approximations are
consistently obtained for A7 ~ 25 ms (gray column). Other param-
eters: r, = 10 Hz, K, = 1000, and w, = 1073,

empirical spiking correlations pep,,(At) with spiking cor-
relations over all timescales At, including for At = 25 ms
[vertical dashed line in Fig. 12(a)], which vanish in the limit
of small timescales At — 0 [red, yellow, and purple lines in
Fig. 12(a)]. Analysis of the temporal structure of spiking
correlation in Refs. [117,118] suggests that correlations
Pemp (At) lie within the range 0.01-0.04 for Az ~ 25 ms. We
focus on this timescale because it is just larger than the
membrane time constant of the neuron. Then, to achieve
realistic correlations at Ar=~25 ms, the instantaneous
spiking correlation of the unjitterred synchronous input
model, denoted by p,, may be increased. Adopting a
jittering timescale of ¢; = 50 ms, Fig. 12(b) shows that
Pemp(At) ~0.03 with Az = 25 ms for instantaneous spik-
ing correlation p, within the range 0.2—0.3. Note that, for
very long timescales At — oo, this also implies that the
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empirical spiking correlation saturates at p, ~ 0.2-0.3,
as reported in Refs. [117,118]. To validate that our
instantaneous model makes realistic prediction about the
subthreshold variability, we simulate AONCB neurons in
response to these jittered synchronous inputs. Figure 12(c)
shows that the resulting stationary voltage distribution (red
histogram) closely follows the distribution obtained by
assuming instantaneous synchrony with p, chosen such
that p, = pemp(Af =25 ms) (blue trace and histogram).
Furthermore, we can justify the choice of the timescale
At =25 ms a posteriori. Specifically, in Fig. 12(d), we
consider temporally structured inputs obtained from the
same instantaneous synchrony p., but for various jittering
timescale ¢;. Jittering at larger timescale o; reduces
synchrony and voltage variance (vertical dashed lines).
We then compare the resulting voltage variance with
perfectly synchronous approximations obtained by match-
ing spike-count correlation at various timescales (our
choice is to match at 25 ms). Figure 12(d) shows that
matching at increasing timescale yields higher variance, but
matching at At ~ 25 ms offers good approximations (gray
square where variances are about the same). Extending our
analytic results to include jittering will require modeling
spiking correlations via multidimensional Poisson proc-
esses rather than via compound Poisson processes [93,94].
However, this is beyond the scope of this work. A
remaining limitation of our synchrony modeling is that
our analysis can account for only non-negative, instanta-
neous correlations between excitation and inhibition, while
in reality such correlations may be negative and are
expected to peak at a nonzero time lag.

A fourth limitation of our analysis is that it is restricted to
a form of synchrony that ignores temporal heterogeneity.
This is a limitation, because a leading hypothesis for the
emergence of variability is that neurons generate spikes
as if through a doubly stochastic process, i.e., as a
Poisson process with temporally fluctuating rate [119].
To better understand this limitation, let us interpret our
exchangeability-based modeling approach within the
framework of doubly stochastic processes [51,52]. This
can be done most conveniently by reasoning on the discrete
correlated spiking model specified by Eq. (3). Specifically,
given fixed bin size At > 0, one can interpret the collection
of i.i.d. variables 6 ~ F as an instantaneously fluctuating
rate. In this interpretation, nonzero correlations can be seen
as emerging from a doubly stochastic process for which the
rate fluctuates as uncorrelated noise, i.e., with zero corre-
lation time. This zero correlation time is potentially a
serious limitation, as it has been argued that shared
variability is best modeled by a low-dimensional latent
process evolving with slow, or even smooth, dynamics [82].
Addressing this limitation will require developing limit
spiking model with nonzero correlation time using
probabilistic techniques that are beyond the scope of this
work [56].

A final limitation of our analysis is that it does not
explain the consistent emergence of synchrony in network
dynamics. It remains conceptually unclear how synchrony
can emerge and persist in neural networks that are
fundamentally plagued by noise and exhibit large degrees
of temporal and cellular heterogeneity. It may well be that
carefully taking into account the finite size of networks will
be enough to produce the desired level of synchrony-based
correlation, which is rather weak after all. Still, one would
have to check whether achieving a given degree of
synchrony requires the tuning of certain network features,
such as the degree of shared input or the propensity of
certain recurrent motifs [120] or the relative width of
recurrent connections with respect to feedforward projec-
tions [121]. From a theoretical standpoint, the asynchro-
nous state hypothesis answers the consistency problem by
assuming no spiking correlations and, thus, no synchrony.
One can justify this assumption in idealized mathematical
models by demonstrating the so-called “propagation-of-
chaos” property [122], which rigorously holds for certain
scaling limits with vanishing weights and under the
assumption of exchangeability [107-109]. In this light,
the main theoretical challenge posed by our analysis is
extending the latter exchangeability-based property to
include nonzero correlations [123] and hopefully to char-
acterize irregular synchronous state in some scaling limits.
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APPENDIX A: DISCRETE-TIME
SPIKING CORRELATION

In this appendix, we consider first the discrete-time
version of our model for possibly correlated excitatory
synaptic inputs. In this model, we consider that observing
K, synaptic inputs during N time steps specifies a {0, 1}-
valued matrix {X;;}, <k i<i<y> Where 1 indicates that an
input is received and 0 indicates an absence of inputs. For
simplicity, we further assume that the inputs are indepen-
dent across time:

N

P [{Xk,i}lsksm.lggv} = H P [{Xk,i}lskSKe},

i=1

so that we can drop the time index and consider the
population vector {X;} <k . Consequently, given the
individual spiking rate r,, we have E[X;] = P[X; = 1] =
r;At, where At is the duration of the time step where a spike
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may or may not occur. Under the assumption that { X }; <<k

belongs to an infinitely exchangeable set of random varia-
bles, the de Finetti theorem states that there exists a
probability measure F', on [0, 1] such that

K,
P[{Xk}lgcgg] = /ggﬁfk(l —0,)'7XdF,(0,).

Assuming the directing measure F', known, we can compute
the spiking correlation attached to our model. To see this, first
observe that, specifying the above probabilistic model for
K, =1, we have

E[X,] = E[E[X,0,]] = E[0,] = / 0,dF (0,).

Then, using the total law of covariance and specifying the
above probabilistic model for K = 2, we have

ClXi. X)| = E[C[X;, X/(0,.]] + C[E[X,[0.]. E[X;|6,]]
= Vun E[VIXi[6.]] + C6.. 6.]
= =y E[0.(1 - 6,)] + V[0,]
= Ty B0 (1 = E[6e]) + Vs VIO, .
This directly yields that the spiking correlation reads
CX;., X))

B vl
Pe="Vix,] T EG](I-E@.)

(A1)

The exact same calculations can be performed for the
partially exchangeable case of mixed excitation and inhib-
ition. The assumption of partial exchangeability requires
that, when considered separately, the {0, 1}-valued vectors
{Xi,..0 XKP} and {Y,, ..., YKE} each belong to an infinitely
exchangeable sequence of random variables. Then, de
Finetti’s theorem states that the probability to find the full
vector of inputs {X,, ..., X , Yy, ..., Yg } in any particular
configuration is given by

[P)[Xla--"XK‘,? Yly"'9YKl-:|

K, K;
- / [ (-0~ ] 01(1 = 0)'""1dF.i(0.. 0).
k=1 =1
(A2)

where the directing measure F,; fully parametrizes our
probabilistic model. Performing similar calculations as for
the case of excitation alone within this partially exchangeable
setting yields

C[X;. Y]
VXYY
_ Clo.. 0]
VEB](1-E[.EB,](1 - E[6)])

ei

(A3)

APPENDIX B: COMPOUND POISSON
PROCESSES AS CONTINUOUS-TIME LIMITS

Let us consider the discrete-time model specified by
Eq. (A2), which is obtained under the assumption of partial
infinite exchangeability. Under this assumption, the prob-
ability laws of the inputs are entirely determined by the
distribution of (k,, k;), where k, denotes the number of
active excitatory inputs and k; denotes the number of
inhibitory inputs. This distribution can be computed as

Pei,kl = [p[ke = kv ki = l]

-(B)(8) fon-or-

X 95(1 - Hi)Ki_ldFei<ee79i)'

It is convenient to choose the directing measure as beta
distributions, since these are conjugate to the binomial
distributions. Such a choice yields a class of probabilistic
models referred to as beta-binomial models, which have
been studied extensively [61,62]. In this appendix, we
always assume that the marginals F, and F; have the form
F, ~Beta(a,, f,) and F; ~ Beta(a;, ;). Then, direct inte-
grations shows that the marginal distributions for the
number of excitatory inputs and inhibitory inputs are
B(a, + k,p, + K, — k)

K; K
P,, = P,.u=1 °
ek lzz(; ei,kl ( k > B(ag9ﬂe)

K

- Ki B((Zl+l,ﬂl+K,—l)

Piy=> Peon= ( > .
; l B(a;, Bi)

Moreover, given individual spiking rates r, and r; within a
time step Az, we have

A,

rebt = E[X] = PIX, = 1] =E[f] =5 and
ridt = E[Y)] = PlY, = 1] = E[6,] = — ‘i‘ﬂ.

The continuous-time limit is obtained by taking Ar — 0%,
which implies that the parameters , and @; jointly vanish.
When a,, a; — 07, the beta distributions F, and F; become
deficient, and we have P,,, P;y — 1. In other words, time
bins of size At almost surely have no active inputs in the
limit Az — O*. Actually, one can show that

1- Pe,O ~ (W(Ke +ﬁe) - W(ﬂe))ae and
1=Pio~ (w(K; +Bi) —yw(Bi)a,

where y denotes the digamma function. This indicates in the
limit Az — O™ the times at which some excitatory inputs or
some inhibitory inputs are active define a point process.
Moreover, owing to the assumption of independence across
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time, this point process will actually be a Poisson point
process. Specifically, consider a time 7 > 0 and set At =
T /N for some large integer N. Define the sequence of times

T
Te,n = N . lnf{l > NTe.”_]/lee’i > 1} with
T . .
Te,l = N ]nf{l Z O|ke,i Z 1},
T . . .
Ti.n = N . lnf{l > NTi,n—l/T|ki,i Z 1} Wlth
. ..
Ti.l = N . lnf{l > Olki,i > 1}

Considered separately, the sequences of times {7, , },»; and
{T;,},> constitute binomial approximations of Poisson
processes which we denote by N, and N, respectively. Itis a
classical result that these limit Poisson processes are recov-
ered exactly when N — oo and that their rates are, respec-
tively, given by

be = lim 1_Pe’0—(!//(Ke+ﬂe)—v/(ﬂe))( lim &)

Ar—0T At At—0+ At

= (W(Ke +ﬁe) - W(ﬁe))ﬂerw
b= lim L= Li0 (w(Ki+ﬁi)—w(ﬁ,~>>< lim ““)

Ar—0t At At—0" At

= (w(K; + B:) —w(B:))piri.

For all integer K > 1, the function > B(y (K + ) — w(p))
is an increasing analytic functions on the domain R™ with
range (1, K]. Thus, we always have r, < b, < K,r, and
ri <b; < K;r;, and the extreme cases are achieved for
perfect or zero correlations. Perfect correlations are achieved
when p, =1 or p; = 1, which corresponds to , — 0 or
p; — 0. Thisimplies thatb, = r, and b; = r;, consistent with
all synapses activating simultaneously. Zero correlations are
achieved when p, =0 or p; =0, which corresponds to
p, — oo or ff; - oo. This implies that b, = K,r, and
b; = K,r;, consistent with all synapses activating asynchro-
nously, so that no inputs simultaneously activate. Observe
that, in all generality, the rates b, and b; are such that the mean
number of spikes over the duration 7" is conserved in the limit
At — 0%. For instance, one can check that

N,(T)
KereT = [E|: Z ke,NTg_,,/T:| = [E|:Z ke,n:|
n=I

Toen<T

en=

= E[N.(T)]E[k.] = b.TE[k,].

When excitation and inhibition are considered sepa-
rately, the limit process Ar — 0 specifies two compound
Poisson processes:

N, (1) Ni(1)
t> Y key and te Y ki,
n=1 n=1

where N, and N; are Poisson processes with rate b, and b;
and where {k, , },>; areii.d. according to p, and {k, , } >
are i.i.d. according to p;. Nonzero correlations between
excitation and inhibition emerge when the Poisson proc-
esses N, and N; are not independent. This corresponds to
the processes N, and N; sharing times, so excitation and
inhibition occur simultaneously at these times. To under-
stand this point intuitively, let us consider the limit Poisson
process N obtained by considering synaptic events without
distinguishing excitation and inhibition. For perfect corre-
lation, i.e., p,; = 1, all synapses activate synchronously and
we have N = N, = N;: All times are shared. By contrast,
for zero correlation, i.e., p,; =0, no synapses activate
simultaneously and we have N = N, + N;: No times are
shared. For the intermediary regime of correlations, a
nonzero fraction of times are shared, resulting in a
driving Poisson process N with overall rate b satisfying
min(b,, b;) < b < b, + b;. We investigate the above intui-
tive statements quantitatively in Appendix D by inspecting
two key examples.

Let us conclude this appendix by recapitulating the
general form of the limit compound process Z obtained
in the continuous-time limit Ar — 0" when jointly con-
sidering excitation and inhibition. This compound Poisson
process can be represented as

N(t) N(1)
1> Z(1) = (Z Wen D W,-,n>,

where N is that Poisson process registering all synaptic
events without distinguishing excitation and inhibition and
where the pairs (W,,, W;,) are ii.d. random jumps in
R x R\{0, 0}. Formally, such a process is specified by the
rate of N, denoted by b, and the bivariate distribution of the
jumps (W, . W;,), denoted by p,;. These are defined as

. 1=P,
b= lim —&= d
At]—rf(;+ At an
P
Peij = lim _ ek for (k,1) # (0,0), (B1)

Ar—0*t 1 — Pei.OO

where P, is the probability to register no synaptic
activation during a time step Af. According to these
definitions, b is the infinitesimal likelihood that an input
is active within a time bin, whereas p,; is the probability
that k excitatory inputs and / inhibitory inputs are active
given that at least one input is active. One can similarly
define the excitatory and inhibitory rates of events b, and
b;, as well as the excitatory jump distribution p, and the
inhibitory jump distribution p; ;. Specifically, we have
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b,= lim % and Pes= lim for k#0,
Ar—0" Ar—0* —Pe,o
1—
b= li d =1 for/#0, (B2
Atl—r}(%+ anc pis Atl—I}(%*l—Pi,o orl# (B2)

with P,; = Zszo P, and P; = Zfio P, ;. Observe
that, thus defined, the jump distributions p, and p; are
specified as conditional marginal distributions of the joint
jump distribution p,; on the events {k, > 0} and {k; > 0},
respectively. These are such that p,, = (b/b,) Zﬁo Peikl
and p;; = (b/D;) ZkK;0 Peiki- To see why, observe, for
instance, that

K;

Py 1-P.;
lim _ ei,kl ei,00

Pek= At—0t 1 — Peo At—»O*ZOI PeiOO l_PeO

i 1=P,ip0
:(zp) (i ") 25

b=
where we use the definitions of the rates b and b, given in
Egs. (B1) and (B2) to establish that

lim 1= Peioo _ limp, o+ (1 = Peigo)/ At _b
Ar—0+ 1 — Pe,O limAt_>0+(l — Pe,O)/At be ’

APPENDIX C: CONTINUOUS-TIME
SPIKING CORRELATION

Equations (A1) and (A3) carry over to the continuous
time limit A7 — 0" by observing that, for limit compound
Poisson processes to emerge, one must have that E[X;] =
E[0,] = O(Ar) and E[Y,] = E[0;] = O(A¢). This directly
implies that, when At — 0", we have

_ClXeX)] EXX)]  EXX] and

© VX E[X7] E[X]
e CiXeY) ] — EXY]  EXY) (e
“ VVIXIVY ] \/[E[X%][E[Y?] VEXJEY]

All the stationary expectations appearing above can be
computed via the jump distribution of the limit point
process emerging in the limit Az — 0" [104]. Because
this limit process is a compound Poisson process with dis-
crete bivariate jumps, the resulting jump distribution p,; is
specified over {I,...,K,} x {1,...,K;}\{0,0}. Denoting
by b the overall rate of synaptic events, one has
limA,_,0+ E[Xle]/At = blEei[Xle]. Then, by partlal
exchangeability of the {0, 1}-valued population vectors
{Xih i<k, and {Y;} <<, we have

[Eei[Xle] - [Eei[lE[Xlel(ke’ kl)]] = [Eei |:££:|

KeKi
Oges k 1 ei[keki]
kK= gk (©
k=0 =0 "¢ 1 et

where the bivariate jump (k,, k;) is distributed as p,;.

To further proceed, it is important to note the relation
between the expectation E,;[-], which is tied to the overall
input process with rate b, and the expectation E,[-|, which is
tied to the excitatory input process with rate b,. This
relation is best captured by remarking that p, are not
defined as the marginals of p,; but only as conditional
marginals on {k, > 0}. In other words, we have p,; =
(b/b,) Zﬁo Peirs» Which implies that bE,[X, X =
b E.[X;X;] and E[X;] = bE,;[X;] = b,E [X;] with

E,[X,X)] = E,[E[X,X/|k.] = E, [M}

Ke(Ke_1>
K
< k(k—1) E, [k, (k. — 1
- KEK —pPer= 1<[(1<< —1)>]’ (©3)
k=0 "re\re e\re
ke
E.[Xi] = E [E[X;k]] = E, X
K, K;
&k E, [k,
3oy K =k ()
k=0 [=0 "¢ ¢

with similar expressions for the inhibition-related quan-
tities. Injecting Egs. (C2)—-(C4) in Eq. (CI) yields

E,[k,(k, = 1)]
Pe T E k(K. — 1)

bE [k k]
VKD, KK bEK]

and

E.ilk.ki]
VK EeilkJKE k]

Pei =

APPENDIX D: TWO EXAMPLES OF LIMIT
COMPOUND POISSON PROCESSES

The probability P, o, that plays a central role in
Appendix B can be easily computed for zero correlation,
ie., p,; =0, by considering a directing measure under
product form F,;(0,,0;) = F,(0,)F;(0;). Then, integration
with respect to the separable variables 6, and 6; yields

Poixi = PeiPiy
K,\ B(a, +k, B, + K, — k)
‘(k) B(a,.f.)
" <K,~> Bl + L+ K, = 1)
l B(a;, B;)
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In turn, the limit compound Poisson process can be obtain
in the limit At — 0" by observing that

1—-P,o=0bAt+ o(At),
1- PE.OPi,O = blAt + O(At), and
1- Pe.OPi.O = (be -+ bl)At+ O(At),

which implies that the overall rate is determined as
b=1limy,_ o (1 =P, oP;o)/At = b, + b;, as expected. To
characterize the limit compound Poisson process, it
remains to exhibit p,; ;;, the distribution of the jumps k,
and k;. Suppose that k > 1; then, we have

lim Pekpll
—>0+1 PeOPIO

m || ————— | Py :
Ar—0" 1 _Pe,OPi,O "\ 1 _Pe,O
1-P P
= lim ——<2 ) ( lim P, ) lim —%).
At—0+ 1 — Pe.OPi.O At—0" At—0+ 1 — Pe.O

Then, one can use the limit behaviors

Peiki=

1-P,, b,
b, + b,

and lim P;; = 14_qy,

im
a0t 1 =P, oP; g Ar—0*

so that, for kK > 1, we have

Peiki = m {1 0} Pek with
3 PEk <K€> B<k’ﬁe+Ke_k)
Pek = li . = .
' A0+ 1 _Pe,O k W(Ke +ﬂe)_W(ﬂ)

A similar calculation shows that, for all [>1, we
have  p.; = bi/(b, + bi)ﬂ{kzo}l?i,l- Thus, p.ix=0
whenever k, [>1, so that the support of p,;, is
{1,...,K,} x{0} u {0} x {1,...,K;}. This is consistent
with the intuition that excitation and inhibition happen at
distinct times in the absence of correlations.

Let us now consider the case of maximum correlation for
F,=F; =F, where F is a beta distribution with param-
eters o and f. Moreover, let us assume the deterministic
coupling 8, = 6, such that F,;(0,,0,) = F(0,)5(6;, —6,).
Then, the joint distribution of the jumps (k,, k;) can be
evaluated via direct integration as

o= (5)(8) f oo

!
x 0L(1 = 0,)K1dF(6,)5(6; — 6,)

:(iﬁ(?)/mﬂa—m&%%WMw)

(KN (K\Bla+k+1.p+K, +K;,—k—1)
- (o) ()

As excitation and inhibition are captured separately by the
same marginal functions F, = F; = F, we necessarily
have a/(a+ p) = E[X;] = E[Y,] = r,At = r;At, and we
refer to the common spiking rate as . Then, the overall rate
of synaptic events is obtained as

1 - Pei,OO — lim

At—0" At a—0" (04
= (w(K. + Ki+B) —w(p))pr

and one can check that b differs from the excitatory- and
inhibitory-specific rates b, and b;, which satisfy

1 =P, lim @
A0 At
(D1)

1-P
b= lim ——0 = (y(K, +p) ~w(#)pr and
1-P,
hzﬂ%fjfhﬂwm+@—wwwn (D2)

To characterize the limit compound Poisson process, it
remains to exhibit p,; 4, the joint distribution of the jumps
(k,,k;). A similar calculation as for the case of excitation
alone yields

oy = lim Pin
eikl At—0+ 1 — Pei,OO
- <K> (K,.> Blk+1LA+K, +K;—k—1)
kJ\1 w(K, +Ki+B) —w(p)

Remember that, within our model, spiking correlations do
not depend on the number of neurons and that by
construction we have p,; < /p.p;. Thus, for the symmetric
case under consideration, maximum correlation corre-
sponds to p,; = p, = p; = 1/(1 + p). In particular, perfect
correlation between excitation and inhibition can be
attained only for f — 0. When > 0, i.e., for partial
correlations, the Poisson processes N, and N; share only
a fraction of their times, yielding an aggregate Poisson
process N such that min(b,, b;) < b < b, + b;. The rela-
tions between b, b,, and b; can be directly recovered from
the knowledge of p,; by observing that
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- w(K, +K; +p)—w(K, +p)
P[kefoakz>0 ZpezOI K +K +ﬂ) (ﬂ) B
K K; K;

lp[ki:O’ke>0 Zpelk() ;—Fl_{'—?ﬂ)lp( (';;ﬂ)’

K .

S 2y (K, + K; +p) —w(K, + p) —w(K; + p)
Plk; > 0,k, 0: =1- .
Plki > 0.k > ZZ” y(K. + K, +B) —v(h)

This implies that the fraction of times with nonzero
excitation is given by

Pk, > 0] = P[k, > 0,k; = 0] + Py[k, > 0,k; > 0]
_ wK A —v(p)
w(K, +Ki+p)—w(p)’
so that we consistently recover the value of b, already
obtained in Egs. (9) and (D2) via

b, T = [E[Ne(T)] - [E[]]{k€>0}N(T)] = bT[Eei“] {kg>0}}

APPENDIX E: MARCUS JUMP RULE

The goal of this appendix is to justify the Marcus-type
update rule given in Eq. (13). To do so, let us first remark
that, given a finite time interval [0, 7], the number of
synaptic activation times {7, },c, falling in this interval
is almost surely finite. In particular, we have A =
info<r, 2+ <r|T, — T, > 0 almost surely. Consequently,
taking € < A/z; ensures that synaptic activation events
do not overlap in time, so that it is enough to consider a
single synaptic activation triggered with no lack of general-
ity in 7 = 0. Let us denote the voltage just before the
impulse onset as V(T;) = V,, which serves as initial
condition for the ensuing voltage dynamics. As the dimen-
sionless conductances remain equals to W, /e and W; /e for
a duration [0, e7], the voltage V. satisfies

TVG = _Ve + (We/e)(ve - VE)

+ (Wi/e)(Vi=V,), 0<t<er,

where we assume / = 0 for simplicity. The unique solution
satisfying V(07) =V is

Vg(l‘) — Voe—t/‘r(lJrW,/eJrWi/e)
WeVe+Wiv; (1 _e—r/r<1+we/e+w,-/e>) 0<t<er.
€+ We + Wi

The Marcus-type rule follows from evaluating the jump
update as the limit

lim V,(er) = Vo= lim {Vo (e_(€+We+Wi) _ 1)
e—0" e—0"
LAZEL Ay A
e+W,+W,;
_ (WYt WiV Vo (1 - e—(Wp+W,»)),
W,+ W,

which has the same form as the rule announced in Eq. (13).
Otherwise, at fixed e > 0, the fraction of time for which
the voltage V. is exponentially relaxing toward the leak
reversal potential V; = 0 is larger than 1 — Ne/T, where N
denotes the almost surely finite number of synaptic
activations, which does not depend on e. Thus, the voltage
V =lim._y+ V., exponentially relaxes toward V; =0,
except when it has jump discontinuities in {7, }, -

APPENDIX F: STATIONARY VOLTAGE MEAN

For a positive synaptic activation time ¢ > 0, the classical
method of the variation of the constant applies to solve
Eq. (1). This yields an expression for V,(¢) in terms of
regular Riemann-Stieltjes integrals where the conductance
traces h,(t) and h;(t) are treated as a form of deterministic
quenched disorder. Specifically, given an initial condition
V.(0), we have

V.(1) = V.(0)e” ﬁ:(l/r)—&-hg(u)—&-h,-(u)du

+ / "(Voho(u) + Vili(u) + 1/C)
0

X e ﬁ:(]/7)+he(’7)+hi(1/’)dvdu

s

where V() depends on ¢ via the all-or-none-conductance
processes h, and h;. As usual, the stationary dynamics of
the voltage V. is recovered by considering the limit of
arbitrary large times ¢ — oo, for which one can neglect the
influence of the initial condition V.(0). Introducing the
cumulative input processes H = (H,, H;) defined by
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and satisfying tdH,(t) = h,(t)dt and 7dH(t) = h;(t)dt,
we have

0 I dt
Ve= / /P (d[veHe<t> +ViH (1)) +5—) :
—00 T

(F1)

In turn, expanding the integrand above yields the following
expression for the stationary expectation of the voltage:

E[V.]=V, / ° e(’/T)E[eHem*Hf(’)dHe(t)}

[Se]

Ly, / ’ e(zm[E[em(r)wi(ndHi(,)}

I [0 dt
+o / e<z/r>[E[eHe<z>+H,-<z>} dr (F2)
oo T

Our primary task is to evaluate the various stationary
expectations appearing in the above formula. Such a goal
can be achieved analytically for AONCB models. As the
involved calculations tend to be cumbersome, we give only
a detailed account in Appendices H and I. Here, we account
for the key steps of the calculation, which ultimately
produces an interpretable compact formula for E[V,] in
the limit of instantaneous synapses, i.e., when ¢ — 0.

In order to establish this compact formula, it is worth
introducing the stationary bivariate function

0.(1,5) = E {eHg(tHH,»(s)}, (F3)

which naturally depends on € via H,(t) and H;(s). The
function Q, is of great interest, because all the stationary
expectations at stake in Eq. (F2) can be derived from it.
Before justifying this point, an important observation is that
the expectation defining Q.(, s) bears on only the cumu-
lative input processes H, and H;, which specify bounded,
piecewise continuous functions with probability one, in-
dependent of €. As a result of this regular behavior, the
expectation commute with the limit of instantaneous
synapses, allowing one to write

Q(t, s) = lim Qe(t’ S) =F [elimmoHe(t)JrH,-(s)}

e—0"

—E [e—ze<r>—zf(s>} ,

where we exploit the fact that the cumulative input
processes H, and H; converge toward the coupled com-
pound Poisson processes Z, and Z; when ¢ — 0*:

N, (1) Ni(1)

Z(t)=> W,., and Z(t)=) W, (F4)

n n

The above remark allows one to compute the term due to
current injection / in Eq. (F2), where the expectation can be
identified to Q.(¢, 7). Indeed, utilizing the standard form for
the moment-generating function for compound Poisson
processes [51], we find that

Q([7 t) = eaci.lt/f’

where we introduce the first-order aggregate efficacy

Api) = b7<1 -E, [6_(W5+W")]>.

Remember that, in the above definition, E,;[-] denotes the
expectation with respect to the joint probability of the
conductance jumps, i.e., p,;.

It remains to evaluate the expectations associated to
excitation and inhibition reversal potentials in Eq. (F2).
These terms differ from the current-associated term in that
they involve expectations of stochastic integrals with
respect to the cumulative input processes H, ;. This is
by contrast with evaluating Eq. (F3), which involves only
expectations of functions that depend on H ;. In principle,
one could still hope to adopt a similar route as for the
current-associated term, exploiting the compound Poisson
process Z obtained in the limit of instantaneous synapses.
However, such an approach would require that the oper-
ations of taking the limit of instantaneous synapses and
evaluating the stationary expectation still commute. This is
a major caveat, as such a commuting relation generally fails
for point-process-based stochastic integrals. Therefore, one
has to analytically evaluate the expectations at stake for
positive synaptic activation time € > 0, without resorting to
the simplifying limit of instantaneous synapses. This
analytical requirement is the primary motivation to consider
AONCB models.

The first step in the calculation is to realize that, for
€ > 0, the conductance traces h,(t) = zdH,(t)/dt and
hi(t) =7dH,(t)/dt are bounded, piecewise continuous
functions with probability one. Under these conditions, it
then holds that

dH (1

limo,Q,(1,s) = E {T() em(r)wm} and
dH (1

limasQe(t, S) =E |:—dlt( ) eHe(’)+H[(f):| ,

s—t

so that the sought-after expectations can be deduced from
the closed-form knowledge of Q.(t,s) for positive ¢ > 0.
The analytical expression of Q.(t,s) can be obtained via
careful manipulation of the processes H, and H; featured in
the exponent in Eq. (F3) (see Appendix H). In a nutshell,
these manipulations hinge on splitting the integrals defining
H,(t) and H,;(s) into independent contributions arising
from spiking events occurring in the five nonoverlapping,
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contiguous intervals bounded by the times 0 > —er > ¢ >
s>t—etr>s—er. There is no loss of generality in
assuming the latter ordering, and, from the corresponding
analytical expression, we can compute

lim lim0,0.(t, s) = ba, e/ and

e—01T s—1

lim lim 0,Q,(t. s) = ba; je%1"/",

e—0" 5=t ’
where the effective first-order synaptic efficacies via
Eq. (15) as

w
el = bT[Eei —
' W, + W,

a;, = brE,; {Wwﬁ (1 - e‘(WfJFW"))}

Observe that, by definition, a,
Aoy T Qi1 = Aej-

(1 - e‘(WerW"))} and

and a;; satisfy

Altogether, upon evaluation of the integrals featured in
Eq. (F2), these results allow one to produce the compact
expression Eq. (14) for the stationary voltage mean in the
limit of instantaneous synapses:

aeylVe + Cli,lvi + I/G
1 +ae,1 -l—a“ '

E[V] = mE[V,] =

e—0"

APPENDIX G: STATIONARY
VOLTAGE VARIANCE

The calculation of the stationary voltage variance is more
challenging than that of the stationary voltage mean.
However, in the limit of instantaneous synapses, this
calculation produces a compact, interpretable formula as
well. Adopting a similar approach as for the stationary
mean calculation, we start by expressing V? in the sta-
tionary limit in terms of a stochastic integrals involving the
cumulative input processes H, and H;. Specifically, using
Eq. (F1), we have

I dt

0 2
V2 — < / (/D) +H (1) +H; (1) <d[VeHe(t) + ViH,(1)] +——>>

Gt

I dt I ds

T

= [ ceinnnsnir s (ay o + Vi) + G2 (a6 4 Vo] + 52 @)
R2 T

Our main goal is to compute the stationary expectation of
the above quantity. As for the stationary voltage mean, our
strategy is (i) to derive the exact stationary expectation of
the integrands for finite synaptic activation time, (ii) to
evaluate these integrands in the simplifying limit of
instantaneous synapses, and (iii) to rearrange the terms
obtained after integration into an interpretable final form.
Enacting the above strategy is a rather tedious task, and, as
for the calculation of the mean voltage, we present only the
key steps of the calculation in the following.

The integrand terms at stake are obtained by expanding
Eq. (G1), which yields the following quadratic expression
for the stationary second moment of the voltage:

lE[Vz] = Ae,evczl + Bei,eve Vi + Ai,evl2
+ (VeBore + ViBi)(1/G) + A (1/G)?,
whose various coefficients need to be evaluated. These

coefficients are conveniently specified in terms of the
following symmetric random function:

’

8ei(l’ s) — eHe(t)+Hi(I>+He(S>+Hi(S>

which features prominently in Eq. (G1). Moreover, drawing
on the calculation of the stationary mean voltage, we

|

anticipate that the quadrivariate version of &,;(z,s) will
play a central role in the calculation via its stationary
expectation. Owing to this central role, we denote this
expectation as

R.(t,u,s5,v) = E [eHe<t)+H,ﬂ<u)+He(s)+H,-(v)] ,

where we make the e dependence explicit. As a mere
expectation with respect to the cumulative input processes
(H,, H;), the expectation can be evaluated in closed form
for AONCB models. This again requires careful manipu-
lations of the processes H, and H;, which need to split into
independent contributions arising from spiking events
occurring in nonoverlapping intervals. By contrast with
the bivariate case, the quadrivariate case requires to con-
sider nine contiguous intervals. There is no loss of general-
ity to consider these interval bounds to be determined by
the two following time orderings:
O order—0>—€t>t>u>t—€T>U—€T>S>V>S—€T>
v—er,
D order—0>—€et>t>u>s>0>t—€r>U—€r>5—€T>
v—er,
where O stands for off-diagonal ordering and D for
diagonal ordering.
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The reason to consider only the O/D orders is that all the
relevant calculations are made in the limit (u, v) — (t,s).
By symmetry of R.(¢,u, s, v), it is then enough to restrict
our consideration to the limit (u,v) — (+7,s7), which
leaves the choice of 7, s <0 to be determined. By
symmetry, one can always choose ¢ > s, so that the only
remaining alternative is to decide wether (z, s) belong to the
diagonal region D, = {t,s <O0ler > |t —s|} or the off-
diagonal region O, = {t, s < 0ler < |t — s|}. For the sake
of completeness, we give the two expressions of
R.(t,u,s,v) on the regions O, and D, in Appendix I.
Owing to their tediousness, we do not give the detailed
calculations leading to these expressions, which are lengthy
but straightforward elaborations on those wused in
Appendix H. Here, we stress that, for ¢ > 0, these expres-
sions reveal that R,(t,u,s,v) is defined as a twice-
differentiable quadrivariate function.

With these remarks in mind, the coefficients featured in
Eq. (G2) can be categorized into three classes.

(I) There is a single current-dependent inhomogeneous

coefficient

dtd
Ape = / / e(’”)/T[E[Eei(t,s)}—zs,
R2 T
def

where we recognize that E[E,;(t,5)]=R.(t,t,5,5) =
R.(1,5). As R.(t,s) is merely a stationary expect-
ation with respect to the cumulative input processes
(H,, H;), it can be directly evaluated in the limit of
instantaneous synapses. In other words, step (ii) can
be performed before step (i), similarly as for the
stationary voltage mean calculation. However, hav-
ing a general analytical expression for R.(¢, u, s, v)
on O, (see Appendix I), we can directly evaluate for
all r # s that

R(t,s) = Im R.(¢,s)

e—0"

= e(zaenz max(t,s)=d,; | |T—S|)/T, (GZ)

where we define the second-order aggregate efficacy

b
aei,2 = ET <1 - [Eei |:e_2(Wg+Wi>] > .

Itis clear that the continuous function R(z, s) is smooth
everywhere except on the diagonal, where it admits a
slope discontinuity. As we shall see, this slope dis-
continuity is the reason why one needs to consider the
D, region carefully, even when concerned only with
the limit ¢ — 0. That being said, the diagonal
behavior plays no role here, and straightforward
integration of R(#, s) on the negative orthant gives

1
(I +ae)(1+ams)

A] = lim AI.E =
e—>0"
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(IT) There are two current-dependent linear coefficients

d
By, =2 / / IS, (1, 5)dH, ()] 2 and
R2 T
ds
Bije =2 eITELE, (¢, 5)dH ()] — .
R2 T

where the coefficient 2 above comes from the
fact that B,; . and B;; . are actually resulting from
the contributions of two symmetric terms in the
expansion of Eq. (G1). Both B,;. and B;; . involve
expectations of stochastic integrals akin to those
evaluated for the stationary mean calculation. There-
fore, these terms can be treated similarly by imple-
menting steps (i) and (ii) sequentially. The trick is
to realize that, for positive € and t# s <0, it
holds that

dH (¢t
[E|:gei(tvs) st( )] :lirr}é,Re(t, u,s,s) and
H.
[E|:5ei(t7s)d dlt<t>:| :limasRe(t, t,s, 7}).

Thus, for any (z, s) in the off-diagonal region O,, the
analytical knowledge of R.(7, u, s, v) (see Appendix I)
allows one to evaluate

O,R.(t,u,s, a if t>,
hmfwz el . and
TR \aa—an ifr<s,

o.R.(t,u,s, a; if t>s,
lim’rM: i1 ) (G3)
V=8~ Re([,S) ai72—al~’1 1ft<S,

where the second-order synaptic efficacies are de-
fined as

e = E[E - (1 - e‘z(We+Wf>) and
e D) ei We + W,
bt Wi _ v
di’z = ElEei |:W + W (1 —e 2(W4+W1>>:| . (G4)

Observe that these efficacies satisfy the familiar
relation a,, + a;, = a,;,. Taking the limits of
Eq. (G3) when ¢ — 07 specifies two bivariate func-
tions that are continuous everywhere, except on the
diagonal r = s, where these functions present a jump
discontinuity. This behavior is still regular enough
to discard any potential contributions from diagonal
terms, so that we can restrict ourselves to the region
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(IID)

O,. Then, taking the limit e — 0T after integration of
over O,, we find that

. a 2
B, = limB,;, = v and
1 e el, (1 + ae“)(l + ae,-_z)
bza;,

B;; = limB;;, = :
il gt il e (1 4 aei,1)<1 + aei.Z)

There are four quadratic coefficients associated to

the reversal potential V, and V,, including two
diagonal terms

A”:// e HITELE, (1. 5)dH (1)dH ()] and
R2
A = / / LS, (1, 5)dH (1)dH (5)]

R2

and two symmetric cross terms contributing

By, =2 / / CCHEE, (1, 5)dH  (1)dH, (5)].
R2

Notice that it is enough to compute only one
diagonal term, as the other term can be deduced
by symmetry. Following the same method as for the
linear terms, we start by remarking that, for all (¢, s)
in the off-diagonal region O,, it holds that

E Eei(t, S)

dH,(1) dH (s)
dt ds
= lim 0,0,R.(t,u,s,v),
(u,v)—>(t.5) ! ( )
dH (1) dH (s)
dt ds

= lim 0d,0,R.(t,u,s,v).
(u,v)—>(1,5) ! ( )

E gei(t’ S)

As before, the analytical knowledge of R.(7, u, s, v)
on the O, region (see Appendix I) allows one to
evaluate

2 0,0,R.(t,u,s,s) _

li 2a. -, —
(L“))Lr%“y)_ Re(l, S) e | ( %) ae,l)’
lim 22 0,0,R.(t,u,s,v)
(u,v)—(1,5)" Re(t, S)
1
=3 [@e1(2a;5 —a;y) +a;1(2a. — a.y)).

The above closed-form expressions allow one to
compute A, . and B, ., the part of the coefficients
A, . and Bel,e resulting from integration over the
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off-diagonal region O., which admit well-defined
limit values A, =lim,_+ A, . and B}, =lim._+ B,; .
with

— lim / / E)/TE[E, (1, 8)dH, (1)dH, (s)]

e—0"

o 61(2a€2 el)
(1 + aezl 1 =+ brae12)

B, _251331 // (H)/TEE,;(1, 8)dH  (t)dH (s)]

a,1(2a;,—a;1) +a;(2a,,—a,,)
(14 aeiy)(1 + aein)

However, for quadratic terms, one also needs to
include the contributions arising from the diagonal
region D, as suggested by the first-order jump
discontinuity of R(z,s) = lim._+ R.(¢,s) on the
diagonal ¢ = s. To confirm this point, one can show
from the analytical expression of R, (¢, u, s, v) on D,
(see Appendix I) that all relevant second-order
derivative terms scale as 1/e over D,. This scaling
leads to the nonzero contributions Ay, and By,
resulting from the integration of these second-order
derivative terms over the diagonal region D,, even in
the limit € — 0", Actually, we find that these
contributions also admit well-defined limit values
Ay = lim._+ A{ and BY; = lim,_+ BY; . with (see
Appendix J)

A” = lim // (t+s /’[E
=0T

e 12 —
= detd = Cei G5
1 + Clei’z ( )

(¢, s)dH,(1)dH.(s)]

e—0"

B/, = 2lim / / (CH/SE[E (1, 5)dH, (1)dH (5)]

= e G6
1 + aei.Z ( )

Remembering that the expression of A? can be
deduced from that of A” by symmetry, Eq. (G5)
defines A}, and, thus, A/, in terms of the useful
auxiliary second-order efficacies a, 1, = a,; —a,,
and a;j, =a;; —a;;. These efficacies feature
prominently in the final variance expression, and
it is worth mentioning their explicit definitions as

Ae12 = ﬁ[E (e (1 - e—(wg+w,»))2 and
“ 2 W+ W
bt Wi _ 32
a2 = 5 Eei [7“/ W (1 —e (Wﬁwt)) } (G7)
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The other quantity of interest is the coefficient c,;,
which appears in both Egs. (G5) and (G6). This non-
negative coefficient, defined as

b | WWi —<We+w,»>)2]

Cel - 2 el |:(We +Wl‘)2 (1 e ’ (GS)
entirely captures the (non-negative) correlation be-
tween excitatory and inhibitory inputs and shall be
seen as an efficacy as well. Keeping these definitions
in mind, the full quadratic coefficients are finally
obtainedas A, = A, + A, A; = Al + A, and B,; =

From there, injecting the analytical expressions of the
various coefficients in the quadratic form Eq. (G2) leads to
an explicit formula for the stationary voltage variance in the
limit of instantaneous synapses. Then, one is left with only
step (iii), which aims at exhibiting a compact, interpretable

|

form for this formula. We show in Appendix K that lengthy
but straightforward algebraic manipulations lead to the
simplified form given in Eq. (16):

VY] = lim vV,
1 2 2
=17 s (ac12(Ve = E[V])* + a;12(Vi — E[V])
- Cei(Ve - Vi)z)'

APPENDIX H: EVALUATION OF Q,(t,s)
FOR e >0

The goal here is to justify the closed-form expression of
Q. (t,5) = E[ef()HHi)] via standard manipulation of
exponential functionals of Poisson processes. By defini-
tion, assuming with no loss of generality the order
0>1t>s, we have

H, (1) + Hi(s) = —% <[° () du + [) h,-(u)du>

:__(/ du Z Wek+/ du Z Wzk)

(u—et)+1

a2

(u—er)+1

We evaluate Q,(1,s) = E[e”

N(u—er)+1

Wi+ W) + /du Z

N(u—et)+1

) (H1)

() +H; (“)] as a product of independent integral contributions.

Isolating these independent contributions from Eq. (H1) requires one to establish two preliminary results about the quantity

ll
I(1,5) / Z Xkdu
k=N(u—A)+

N

(H2)

where N denotes a Poisson process, X, denotes i.i.d. non-negative random variables, and A is positive activation time. Assume

t —s > A; then, given some real w < u — A, we have

N(u—A)

I(t,) /du ZXk—/duZXk
:/rdu Z Xk / Z Xk
:/t du ZM Xk_/s du Zu Xk

r—A k=N(v)+1 s=A k=N(v)+1

N(u)

. N(1—A) . s N(s) s N(s)
([ a > i+ [ S x) ([ S - [a Y x)
A oN(o)+1 t=A )+1 STA L j=N(0)+1 STA L =N(u)+1

k=N(r—A

t
:/ du Z Xk—{—A ZX“L/ du Z Xk

A k=N(=A)+

(H3)
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One can check that the three terms in Eq. (H3) above are independent for involving independent numbers of i.i.d. draws over the
intervals (1 — A, 1], (s,t — AJ, and (s — A, s], respectively. Similar manipulations for the order for  — s < A yield

, N(u) N(1=4)
I(t,s):/du > X+ (t-s) Z Xk—i-/ du > X (H4)
§ k=N(s)+1 k=N(t-A)+ k=N(u)+1

where the three independent contributions correspond to independent numbers of i.i.d. draws over the intervals (s, 7], (r — A, s],
and (s — A, r — A, respectively.

As evaluating Q. involves only taking the limit s — ¢~ at fixed ¢ > 0, it is enough to consider the order
0> —er >1t>s5>1t—er. With that in mind, we can apply Eqs. (H3) and (H4) with A =e7 and X; = W, + W, or
X, = W, to decompose the two terms of Eq. (H1) in six contributions:

0 N(u) N(—e1) ‘ N(1)
I(1,5) = / du Y W+ W) +er D (Wep+Wiy) +/ du D (Wex+ W)
—er k:N(t—er) +1 k=N(1)+1 1=€T  k=N(u)+1
t er
v z Wt (1) > Wk [ 30w
$ k=N(t—e7) s—er k=N(u

It turns out that the contribution of the third term overlaps with that of the fourth and fifth terms. Further splitting of that
third term produces the following expression:

0 N(u) N(—e1)
I(t.5) = / di S Wt W) +er Y (Wait Wig)
€T k=N(t-er)+1 k=N(1)+1

ter

+ (/[S du Z (Wer+Wip) +(t=5) Z) lWiJc> [_a Z Wl"’

€T k=N(u)+1 k=N (1—et)+

I(s.1) I5(t.5)

where all five terms correspond to independent numbers of i.i.d. draws over the intervals (—ez, 0], (¢, —ez], (s, 1], (t — €z, 5],
and (s — e, t — er]. Then, we have

0.(1,5) = E {eﬂeo)w[(s)] —E {e—u/(eﬂ} E [3—12(’)/(67)] E [e—lm,s)/(er)] E [6—14<s.r>/<er>] E [6—15(”5)/(67)]’

where all expectation terms can be computed via standard manipulation of the moment-generating function of Poisson
processes [51]. The trick is to remember that, for all 7 > s, given that a Poisson process admits K = N(t) — N(s) points in
(s, 7], all these K points are uniformly i.i.d. over (s, ¢]. This trick allows one to simply represent all integral terms in terms of
uniform random variables, whose expectations are easily computable. To see this, let us consider I5(¢, s), for instance.
We have

N(1) N(1)

Ii(t,s)=(t—=s) > [(1 —Ud)(Wes+Wir) + UkWi,k] +(s—t4er) Y (WertWip)
k=N(s)+1 k=N(s)+1

N(r)

(t—ys) Z Uk ek T €t Z (Wer +Wip),

k=N(s)+1
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where {Uy}y(s)+1<k<n (o) are uniformly i.i.d. on [0, 1]. From the knowledge of the moment-generating function of Poisson
random variables [51], one can evaluate

E {6—13(1,3“)/(61)] - F [e—[(f—s)/”] Ef:(',)v(.‘)ﬂ UkWe,k_Z;\Yillzl(SHl(We.k+Wi.k)i|

N(1) - N(s)]

— exp (b(, —5) ([E [e_m_x)/e,]UW,(WﬁW,.)] _ 1))

—E [[E [e—[<r—s>/eﬂ UW@—<WF+W,»>] N()=N(s)

where (W,, W;) denotes exemplary conductance jumps and U denotes an independent uniform random variable.
Furthermore, we have

[E{e—[(t—s)/er]UWe—(We+W,-)} — [E[[E {e [(1=s)/ec]UW . —(W +W;) :HWe’ W}
E,, [e (W, +W,) [e [(— s/er]UWH

1 —_ e—[([—S)/ST]W‘,)
S|

[E |: (W, +W;)

so that we finally obtain

In [E[e—h(t.x)/(er)} _ ebr<[Ee,» |:e—(We+W,-) (1- e‘[(f—s>/€T]We):| - s)'

Similar calculations show that we have

7 1 —_ _(W9+Wi)
ln[E[e‘Il/(”) —ebr(E, |——¢ " | _q),
] W, + W,

ln[E[ ~h()/(er)| = b(e‘[—l-t)(l - E,; [e—<We+Wf>D,

1 — e~ (IH[(s=n)/ec))(W.+W;) -
InE |:e—l4(s,t)/(er) — ¢hr [Eei e—(t—s)/erW,- (1 e ) —(1+ §s—1 )
] W, + W,

- _ o—(t=s)/er]W; _
InE[e~15)/€)] = ebe E,, I-e _1=sy,
J “ W, et

APPENDIX I: EXPRESSION OF R, (t.u,s,v) ON O, AND D,

Using similar calculations as in Appendix H, we can evaluate the quadrivariate expectation R..(, u, s, v) on the region O,,
for which the O order holds: 0 > —er >t >u>t—er>u—er>s>v>s—er > v—er. This requires one to isolate
and consider nine independent contributions, corresponding to the nine contiguous intervals specified by the O order. We
find

InR.(t,u,s,v) = Ay + As(t) + Az(t,u) + As(u, 1) + As(t, u) + Ag(u, s) + A;(s, v) + Ag(v, s) + Ag(s, v),

where the non-negative terms making up the above sum are defined as
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1 - 6_2(W0+Wi)
A] = ebt lEei —_—| -1 P
2(W,+W))

Ay(t) = b(er + 1) <1 -E, [e‘ﬂwﬁwf)} >

I _ o—l(t—u)/er)W, _
As(t. ) —ebr([Eel. g2y (L= )] K u>
- We €T
[ _ o~ l(u=1)fec)(WAW)) _
Au(u,t) = ebr( E,; oWt [y redyw, (1= € () -t ’
- We+ W, €t
[ — g lmw/eW, _
As(t,u) —ebr([Eei o-worwy L€ )} 1 u>
- Wi €T

Ag(u,s) = b(s + et —u) <1 - E,; [e‘(WﬁWi)} ),

Aq(s,v) = ebt ([Eei etvery (1= fKS_U)MW?)} - 1]),

L W, €T
r 1 = e~ (I=l(s=v)/er) (W +W;) _
Ag(v,5) = ebe(E,; |e-limnsedw, (1= No (12222,
L We + Wi €T
_(1 _ e_[(s—v)/eT]W[) s —
A 5 - b [Eei - .
o(s,v) =€ T( _ W o

One can check that A;(7,7) = As(t,¢) = 0 and A7(s,s) = Ag(s,s) = 0 and that A, A4(u, t), and Ag(v, s) are all uniformly
O(e) on the region O,.. This implies that, for all (¢, s) in O,, we have

R( ) = lim R (t’ t,s, S) = lim eAZ(t)"'Aﬁ(tvS) — emeei‘z_blt_S‘aei‘li

e—>0" e—0"
Using similar calculations as in Appendix H, we can evaluate the quadrivariate expectation R, (¢, u, s, v) on the region D,

for which the D order holds: 0> —ez>t>u>s>v>t—er>u—er>s—er>v—er. This requires one to isolate and
consider nine independent contributions, corresponding to the nine contiguous intervals specified by the O order. We find

InR.(#,u,s,v) =B+ B, (t)+ B;3(t,u) + B4(t,u,s)+ Bs(t,u,s,v) + Bg(t,u,s,v) + By (t,u,s,v) + Bg(u,s,v) + By (s,v),  (I1)

where the non-negative terms making up the above sum are defined as

1— e—Z(W(,JrW,»)
B =ebt|Ey|——e | 1),
2(W,+ W)

B,(1) = b(et + 1) (1 - E, [e—2<We+Wf>] )

BS(t, u) =ebt| E,; —e_z(WeJrWi) (1 — e_[(t_u)/ST]We) _ t—u ,
N We €T

£, [ e -tims)/edyw,~aumsyseayw, (L= eVAWTIN w =5
W, + W,

B,(t,u,s) = ebt

L 2W, +W;

[ 1 = e~ (I=[(t=v)/ex))2(W +W,) t—
Bg(t,u,s,v) = ebr| E,; e—((f—S)/er)We—([2t—(u+v)]/€f)Wi( ¢ AW W) )} - (1 - U>>,

r _ s—v)/er| QW ,+W; -
Bs(t,u,s,v —eln([Eg,' o~ -l(11)fer) W= (2=[(u=a) e, (1= €7 =€l ))] -2 ”>,
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B;(t,u,s,v) = ebt <[Ee,~

o ((s=0)/er)W,

o~ ((u=s)/e0)W,~((u=v) /e

W, (1 _ e—[(t—u)/er](Wﬁ-ZW,»)) B
W, +2W,

r—u
et )’

Bg(u,s,v) = ebz <[Ee,»

o~ ((s=0)/er)W,

(1- e—[(u—b')/s‘f](WﬁWi))]

W, + W,

By(s,v) = ber <[Ee,-

Observe that B =A; and B, (f) = A,(t) and that B5(t, 1) =
B;(t,t,s,v) = 0 and Bs(t,u,s,s) = By(s,s)=0. Moreover,
one can see that R(z,s) is continuous over the whole
negative orthant by checking that

lim By(t,t,5) = lim A4(t,s),
sa(}ire!r)' 4( S) s—)(}g‘r)+ 4( S)
lim Bg(t,t,5,5) = lim Aq(t,s),

s—)(}gr)’ 6( s S) s—»(:zlel*f)* 6( S)

li Bg(t,s,s)= i Ag(t,s).

s—»(}zrcl'r)‘ 8( S S) S_)(}£1611>+ 8( S)

Actually, by computing the appropriate limit values of the
relevant first- and second-order derivatives of R.(t, u, s, v),

0,0sR.(t,u,s,v)
R.(t,u,s,v)

(1 - e_[<s_'”)/€T]Wj):| B

=0,0,InR.(t,u,s,v) +

s—v
et )’

one can check that, for ¢ > 0, all the integrands involved in
specifying the coefficients of the quadratic form Eq. (G2)
define continuous functions.

Wi

APPENDIX J: INTEGRALS OF THE
QUADRATIC TERMS ON D,

Here, we treat only the quadratic term A,, as the
other quadratic terms A; and B, involve a similar
treatment. The goal is to compute A”, which is defined
as the contribution to A, resulting from integrating
lim,, )5 0:95R(, u, 5, v) over the diagonal region
D, = {t,s <0|re > |t — s|}, in the limit ¢ - 0". To this
end, we first remark that

(0,InR.(t,u,s,v))(0; InR.(t,u,s,v)).

Injecting the analytical expression Eq. (I1) into the above relation and evaluating I.(¢, s) = lim, ,_(; ,-) 0,0,R.(t, u, s, v)

reveals that 7,(z,s) scales as 1/e, so that one expects that

A” = lim
e—~0"

// e (1, 5)dtds > 0.
DE

To compute the exact value of A/, we perform the change of variable x = (t — 5)/(e7) & s =t — e7x to write

0 1
// eI (¢, 5)dtds = 2/ </ ere™ 1, (1,1 + erx)dx) e/ dt,
D, —o00 0

where the function ee*/7I,.(¢, t + ex) remains of the order of one on D, in the limit of instantaneous synapses. Actually,

one can compute that

b
1im+€e_€"le(t, t+etx) =—E,

W2
=0 27 [

W, + W,

e—x(We+W,v) <1 _ e—2(1—x)(We+W,~)>:| 62bm“~2.

Then, for dealing with positive, continuous, uniformly bounded functions, one can safely exchange the integral and limit

operations to get
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0 1
Al = / </ lim eze™¢*1(t,t + erx)dx) e/ dt
—o0 0 €—0"
0 1 wW?2
= / e2t/7)(1+aci2) gy / DE,. | ——¢ o= (/WetWi) [ 1 _ o= 2(1=(x/2))(WetWi) ) | 1y
-0 0 “ We + Wi
2
e (1]
2(1 + aeil) (We + Wi)2

A similar calculation for the quadratic cross term B/, yields

2¢ei b W, W, i
Bgi — i Wlth Cei o _T[Eei 9712 1 _ e_<W1'+Wi) )
I +as 2 (W, + W,

In order to express A} in terms of ¢,;, we need to introduce the quantity a, ;, = a,; — a,, which satisfies

a,, = btFE,; L 1 — e~ (WetWi) _l[E , L 1 — e~ (WetWy) 2
e 12 ei I ) ei ( )
= brE,; L (1 — e—(Wg""Wz)) (
i i) 2
[ _<W9+Wi)
= btE,; L) (1 — €_<W5+Wi)> (M)]
bt w 2
B O (1 —(We+w,-)) '
2 l |:(We + Wi) e

With the above observation, we remark that

bt w2 2 W 2
1 +a,,)A" —a,;, == (E, 46(1_ —(wg+wf>) —E,, —6(1_ —<Wg+wl->>
(0 auat = =5 (a7 e (1 w, rwy =

bt [W% -W, (W, +W,) (1 B e—(WeJrW,»))Z]

2 (W wy)?

= _E[Eei _WW; (1 - e—(wg+w,-))2
2 (W, + W,;)?

= —Cy¢j

so that we have the following compact expression for the quadratic diagonal term:

Al — Ae12 — Cej
C  l4a,,
ei,2

APPENDIX K: COMPACT VARIANCE EXPRESSION

Our goal is to find a compact, interpretable formula for the stationary variance V[V] from the knowledge of the quadratic
form

E[V?] =AV; +B,V.Vi+AVi+ (V.By+ ViBy)(I/G) + A/(I/G)*.

Let us first assume no current injection, / = 0, so that one has to keep track of only the quadratic terms. Specifying the
quadratic coefficient A, = A, + A, A; = AL + A}, and B,; = B, + B/, in Eq. (K1), we get
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ael(zan_ael) ae]Z_Cei> a,1(2a;,—a;1) +a;(2a,,—a,,) 2¢,
E[V?] = ’ : e Vig | ’ ’ : — 4+ V.V,
\& <(1 tag )1 +a,,) 1+a,, (14 aeiy)(1 + ae;n) I+ air

+ < ai,1(20i,2 - ai,l) + aiin — Cei> e

(I+ap )1 +ag,) 1+au,) !

_ <ae,1(2ae,2 —a,y) +(1+a,+a;)(a., - an)> V24 <ae.1(2ai,2 —a;y) +a;(2a,, - ae.1)> V.oV,

(1 + @ein)(1 + aci2) ‘ (14 @ei)(1 + aeiz) o

i <ai,l(2ai.2 —aiy)+(1+a.; +a;;)(a; - Cli2))
(1 + aein)(1 + aci2)

where we collect separately all the terms containing the coefficient c¢,; and where we use the facts that by definition
Qo2 = Aoy — dgo, Aj1y = dj) — Ao, and a,; = a,; + a; ;. Expanding and simplifying the coefficients of V2 and V?
above yield

[E[Vz} _ (ae,lae,z + (1 + ai,l)(ae,l - ae2)> Vﬁ 4 <ae,1(2‘li.2 - ai,l) + ai,l(zae,Z - ae,1)> V.V,
(14 aeiy)(1 + aein) (14 aei)(1 +aen)
n <ai,1ai.2 + (1 +aei)(ais — aiZ)) v2__ Cei
(1 —+ aei,l)(l + aei.Z) ' I+ Aei2

(Ve - Vi)2'

Then, we can utilize the expression above for E[V?] together with the stationary mean formula

_ ae,lve + ai,lvi

[E[V] 1+a~1

to write the variance V[V] = E[V?] — E[V]? as

\/{V] _ <(ae,l - ae,Z)(l + ai,1)2 + (ai,l - ai,2)a%,]> V2 _ ((ae.l — ae.z)ae.] (1 + Cle.]) + a; (Cll’_] — ai,Z)(l + Cli.])> V.V
(T4 api1)*(1 + agn) ‘ (14 api1)*(1 + azin) o
. ((ai,l —a;n)(1+a, 1) + (a; - ae.Z)ail) 5 Coi

P Ve - V[ 2.
(1+au1)*(1+a,z) Yol tag; ( )

To factorize the above expression, let us reintroduce a, 1, = a,; — d,, and a; 1, = a;; — a;, and collect the terms where
these two coefficients occur. This yields

Qe 12 2172 2 2y72
[ ] (1 aei,1>2(l aei,z) (( al,l) e al,l( ae,l) eVi (ae.l) l)

ai,lz 2772 2 207 Cei 9
1 Vi — 1 i1)°V,V; i) V) ————(V, -V,
+ (1 +aei,1)2(1 +aei,2) (( +ae.l) i ae.l( +az,l) e 1+ (az,l) e) 1 +aei,2( e l)

_ Q12 ((1 +ai)Ve - ae,lvi>2 LG ((1 +ai.)Vi- ai.lve>2 G
I+ a., 1+ a,, I+ a,, I+ a,, I+ a.,

(Ve - Vi)z'

Finally, injecting the expression of stationary mean Eq. (K1) in both parentheses above produces the compact formula

a, a; Cei
VIV] = T (V, — EVIP 4 1 (v~ BV -

= V, = V)2, K2
1+ a.» 1+a,, (Ve i) (K2)

which is the same as the one given in Eq. (16).

APPENDIX L: FACTORIZED VARIANCE EXPRESSION

In this appendix, we reshape the variance expression given in Eq. (K2) under a form that is clearly non-negative. To this
end, let us first remark that the calculation in Appendix J shows that
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bt w2 2
- .= —[E . e 1 _(We+wi) .
fe T AT [(W6+Wi>2< T ) }

Then, setting (V, — V;)> = {(V, = E[V]) = (V; = E[V])}* = (V. = E[V])* = 2(V, = E[V])(V; = E[V]) + (V; - E[V])? in
Eq. (K2), we obtain

VIV = 1 (GeaaVe = EVD? + gV~ EVI = calVe = V.)?)
= 14'161‘2 ((ae.lz — i) (Ve = E[V])? 4 2¢,(V, = E[V])(V; = E[V]) + (12 — co:)(V; = [E[V]V)
_ bt o {(WE(Ve —E[V])?  2W, (V. —E[V))W,(V, —E[V]) WV, - [E[V])2> (1 3 e-(we+w,))2}
L+a, “|\ 2(W,+W,;)? 2(W, 4+ W;)? 2(W, + W;)?
_ bt [We(ve - [E[V]) + Wi(vi - [E[V])]z —(W,+W; 2
21 +aei.z)[E”'[< (W +W,)? >(1 — )) } (L)

Note that the above quantity is clearly non-negative as any variance shall be. From there, one can include the impact of the
injected current / by further considering all the terms in Eq. (K1), including the linear and inhomogeneous current-
dependent terms. Similar algebraic manipulations confirm that Eq. (L1) remains valid so that the only impact of / is via
altering the expression E[V], so that we ultimately obtain the following explicit compact form:

E.: {(% - [E[VDZ (1 - e_(WfJ“Wi))z}

2/(b7) + E, [(1 - e—2<We+Wf>)]

biE,, {(7) (1- e—<we+w,->)] e

i

VIVl = L bek [ (1= e )|

with E[V] =

The above expression shows that as expected V[V] >0 and that the variability vanishes if and only if W,/W; =
(E[V]-V;)/(V, = E[V]) with probability one. In turn, plugging this relation into the mean voltage expression and solving
for E[V] reveals that we necessarily have E[V] = I/G. This is consistent with the intuition that variability can vanish only if
excitation and inhibition perfectly cancel one another.

APPENDIX M: VARIANCE IN THE SMALL-WEIGHT APPROXIMATION

In this appendix, we compute the simplified expression for the variance V[V] obtained via the small-weight
approximation. Second, let us compute the small-weight approximation of the second-order efficacy

bt W, W, 2 be bt
= F, |t (1= e WetW) ) | & T, [W, W] = — w,wiE,[k.ki].
CEl 2 el |:(We +Wl)2 < e ) } 2 Bl[ e l] 2 Wewl el[ e l]

which amounts to computing the expectation of the cross product of the jumps k, and k;. To estimate the above
approximation, it is important to remember that first that p, and p; are not defined as the marginals of p,; but as conditional

marginals, for which we have p,; = (b/b,) Zﬁo Peis and p;; = (b/b;) Zf;o Pein- Then, by the definition of the
correlation coefficient p,; in Eq. (4), we have

o b[Eei [kekl] _ bIEei [kekl] _ b[Eei[keki}
\/Keb[Eei[ke]Kib[Eei[ki] \/KebelEe[ke}Kibi[Ei[ki} KeKi \% Fel'i ’

Pei

as the rates b, and b, are such that b E,[k,| = K,r, and b,E,[k;] = K;r;. As a result, we obtain a simplified expression for
the cross-correlation coefficient:

Cei = (peimf/z)(Kewe)(Kiwi)'

Observe that, as expected, c,; vanishes when p,; = 0. Second, let us compute the small-weight approximation of the
second-order efficacy
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bt W, 2l br bt
Ae12 = T[Eei [m (1 - 6_(WE+W")) ] = ?[Eei[we(we + W)= E) (Wg[Eei[kg] +wowiE,[k k).

To estimate the above approximation, we use the definition of the correlation coefficient p, in Eq. (8):

o be[Ee[ke(ke - 1)] o b[Eei[ke(ke - 1)]
B be[Ee[ke](Ke - 1) B Ke(Ke - l)re '

Pe

as the rate b, is such that b,E,[k,] = K,r,. This directly implies that
b[Eez[k%] = b[Eei[ke(ke - 1)} + b[Eei[ke] = peKe(Ke - 1)re + Kere = Kere[l +pe(Ke - 1)]’
so that we evaluate

bt r,T TiTr T
e 12 = 7 (Wg[Eei[k(%] + Wewi[Eei[kekiD = TKe[l +pe(Ke - 1)]W% +peiT(KeWe)(Kiwi)7

which simplifies to a, 15 = (r,7/2)K,[1 + p.(K, — 1)]w? when excitation and inhibition act independently. A symmetric
expression holds for the inhibitory efficacy a; ,. Plugging the above expressions for synaptic efficacies into the variance
expression Eq. (16) yields the small-weight approximation

[+ pe(Ke = DK rewe(Ve = E[V])? + [1 + pi(K; = DIKirwi (Vi — E[V])?
2(1/7 + Kerewe + Kiriwi)
pern/FeTi(Kewe) (K (Ve = EIV]) + (V, = E[V])? = (V. = V)’
2(1/T+Kerewe+Kiriwi) .

V[V] ~

+

Let us note that the first term in the right-hand side above represents the small-weight approximation of the voltage variance
in the absence of correlation between excitation and inhibition, i.e., for p,; = 0. Denoting the latter approximation by
V[V]|, —o and using the fact that the small-weight expression for the mean voltage

. KereWeVe + K,-rl-w,-Vi
1/t + K, r,w, + K;rjw;

E[V]

is independent of correlations, we observe that, as intuition suggests, synchrony-based correlation between excitation and
inhibition results in a decrease of the neural variability:

P EEK ) (Kan) (Ve —EVDEV] = V) _
pei=0 = 1/t +K,r,w, + K;rjw; -

However, the overall contribution of correlation is to increase variability in the small-weight approximation. This can be
shown under the assumptions that K, > 1 and K; > 1, by observing that

A\/[V} \/[V} - \/[V] |pg/,-:/)e,»:0

(VPeTeKwe(Ve = EV]) = \/piriKiwi( Vi = EIV]))?
2(1/T + Kerewe + K,-rl-wl-)
(V= pop) Lo K we) (Kiv) (Ve — EIV)(E[V] = Vi)

1/t +K,r,w, + K;rjw;

PeiPeli =

~

20’

where both terms are positive since we always have 0 < p,; < \/p.p;-
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APPENDIX N: VALIDITY OF THE
SMALL-WEIGHT APPROXIMATION

Biophysical estimates of the synaptic weights w, < 0.01
and w; < 0.04 and the synaptic input numbers K, < 10000
and K; < 2500 suggest that neurons operates in the small-
weight regime. In this regime, we claim that exponential
corrections due to finite-size effect can be neglected in the
evaluation of synaptic efficacies, as long as the spiking
correlations remains weak. Here, we make this latter
statement quantitative by focusing on the first-order effi-
cacies in the case of excitation alone. The relative error due
to neglecting exponential corrections can be quantified as

[Ee[We] B [Ee[l B e_We] >0

€= E[1-e "] =

Let us evaluate this relative error, assumed to be small,
when correlations are parametrized via beta distributions
with parameter §, = 1/p, — 1. Assuming correlations to be
weak, p, < 1, amounts to assuming large, , > 1. Under
the assumptions of small error, we can compute

[Ee[l - e_We] = [Ee[We] = We[Ee[ke] and

E (W, =1+ e ] =~E[W;]/2 = wiE, [kZ]/2.
By the calculations carried out in Appendix M, we have
b.E,[k,|=K,r, and b,E [k2]=K,r,[l+p.(K,—1)].
Remembering that #, = 1/p, — 1, this implies that we have

[Ee[Wg]/z We[l +pe(Ke - 1)]/2

EXE W - E W22 T woll 4+ pu(K, = 1)]/2°

neglecting exponential corrections incurs less than e = 3%
error if the number of inputs is smaller than K, < 1000 for
moderate synaptic weight w, = 0.001 or than K, < 100 for
large synaptic weight w, = 0.01.

For a correlation coefficient p, < 0.05, this means that

APPENDIX O: INFINITE-SIZE LIMIT
WITH SPIKING CORRELATIONS

The computation of the first two moments E[V] and
[E[V?] requires one to evaluate various efficacies as expect-
ations. Upon inspection, these expectations are all of the
form DE,;[f(W,.,W;)], where f is a smooth positive
function that is bounded on R™ x R™ with f(0,0) = 0.
Just as for the Lévy-Khintchine decomposition of stable
jump processes [78,79], this observation allows one to
generalize our results to processes that exhibit and count-
able infinity of jumps over finite, nonzero time intervals.
For our parametric forms based on beta distributions, such
processes emerge in the limit of an arbitrary large number
of inputs, i.e., for K,, K; — oo. Let us consider the case of

excitation alone for simplicity. Then, we need to make sure
that all expectations of the form b,E,;[f(W,)] remain well
posed in the limit K, — oo for smooth, bounded test
function f with f(0) = 0. To check this, observe that,
for all 0 < k < K,, we have by Egs. (7) and (9) that

K,
bepe,k:ﬁre< k )B(k’ﬂ+Ke_k)

I'K,+1)

B Frp+K,—k+1)
= R DK, =k 1)

r(p+K,) ’

where we have introduced the Gamma function T
Rearranging terms and using the fact that I'(z+ 1) =
7ZI'(z) for all z > 0, we obtain

_pro K.T(K,) T(B+K, K
ePek = Tr(ﬁ+ Ke) (Ke - k)F(Ke - k)

pr. aYal 1
=% U k) Tex)

where the last equality is uniform in k and follows from the
fact that, for all x > 0, we have

(o ()10)

From there, given a test function f, let us consider

b

K kS
be[Ee[f(We)] = /Zbepe,k(S(We - Ke)f(We)dWe
k=1 €
K k.
= be e, f( e)
kz:; Pek K,

us kAL [(kQ
=7, i(l—K> f<K€>+0(1)

The order zero term above can be interpreted as a Riemann
sum so that one has

1
—r, / $O-1(1—0)-1£(09,)d0
0

Qeﬁ w\ /-1
:re/o v—y(l—g—) fw)dw.

Thus, the jump densities is specified via the Lévy-
Khintchine measure

vn) =2 (1)
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which is a deficient measure for admitting a pole in zero.
This singular behavior indicates that the limit jump process
obtained when K, — oo has a countable infinity of jumps
within any finite, nonempty time interval. Generic sta-
tionary jump processes with independent increments, as is
the case here, are entirely specified by their Lévy-
Khintchine measure v, [78,79]. Moreover, one can check
that, given knowledge of v,, one can consistently estimate
the corresponding pairwise spiking correlation as

Culh =)y, b/ )
1) K,—o0 be[Ee[ke/Ke]

Performing integral with respect to the Lévy-Khintchine
measure v, instead of the evaluating the expectation E,[-] in
Egs. (14) and (16) yields

E[V] = Ve Jo' (1= e (dw) -
1/T+f0 (1 —e™)v,(dw)
viy] = Ve —El VI Jo* (1= e u(dw)

2/t 4[5+ (1= ™), (dw)

Observe that, as (1 —e™)? < w? for all w > 0, the defi-
nition of the spiking correlation and voltage variance
implies that we have V[V] = O(p,) so that neural vari-
ability consistently vanishes in the absence of correlations.
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