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The spiking activity of neocortical neurons exhibits a striking level of variability, even when these
networks are driven by identical stimuli. The approximately Poisson firing of neurons has led to the
hypothesis that these neural networks operate in the asynchronous state. In the asynchronous state, neurons
fire independently from one another, so that the probability that a neuron experience synchronous synaptic
inputs is exceedingly low. While the models of asynchronous neurons lead to observed spiking variability,
it is not clear whether the asynchronous state can also account for the level of subthreshold membrane
potential variability. We propose a new analytical framework to rigorously quantify the subthreshold
variability of a single conductance-based neuron in response to synaptic inputs with prescribed degrees of
synchrony. Technically, we leverage the theory of exchangeability to model input synchrony via jump-
process-based synaptic drives; we then perform a moment analysis of the stationary response of a neuronal
model with all-or-none conductances that neglects postspiking reset. As a result, we produce exact,
interpretable closed forms for the first two stationary moments of the membrane voltage, with explicit
dependence on the input synaptic numbers, strengths, and synchrony. For biophysically relevant
parameters, we find that the asynchronous regime yields realistic subthreshold variability (voltage
variance ≃4–9 mV2) only when driven by a restricted number of large synapses, compatible with strong
thalamic drive. By contrast, we find that achieving realistic subthreshold variability with dense cortico-
cortical inputs requires including weak but nonzero input synchrony, consistent with measured pairwise
spiking correlations. We also show that, without synchrony, the neural variability averages out to zero for
all scaling limits with vanishing synaptic weights, independent of any balanced state hypothesis. This result
challenges the theoretical basis for mean-field theories of the asynchronous state.
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I. INTRODUCTION

A common and striking feature of cortical activity is the
high degree of neuronal spiking variability [1]. This high
variability is notably present in sensory cortex and motor
cortex, as well as in regions with intermediate representa-
tions [2–5]. The prevalence of this variability has led to it

being a major constraint for modeling cortical networks.
Cortical networks may operate in distinct regimes depend-
ing on species, cortical area, and brain states. In the asleep
or anesthetized state, neurons tend to fire synchronously
with strong correlations between the firing of distinct
neurons [6–8]. In the awake state, although synchrony
has been reported as well, stimulus drive, arousal, or
attention tend to promote an irregular firing regime
whereby neurons spike in a seemingly random manner,
with decreased or little correlation [1,8,9]. This has led to
the hypothesis that cortex primarily operates asynchro-
nously [10–12]. In the asynchronous state, neurons fire
independently from one another, so that the probability that
a neuron experiences synchronous synaptic inputs is
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exceedingly low. That said, the asynchronous state hypoth-
esis appears at odds with the high degree of observed
spiking variability in cortex. Cortical neurons are thought to
receive a large number of synaptic inputs (≃104) [13].
Although the impact of these inputs may vary across
synapses, the law of large numbers implies that variability
should average out when integrated at the soma. In
principle, this would lead to clock-like spiking responses,
contrary to experimental observations [14].
A number of mechanisms have been proposed to explain

how high spiking variability emerges in cortical networks
[15]. The prevailing approach posits that excitatory and
inhibitory inputs converge on cortical neurons in a balanced
manner. In balanced models, the overall excitatory and
inhibitory drives cancel each other so that transient
imbalances in the drive can bring the neuron’s membrane
voltage across the spike-initiation threshold. Such balanced
models result in spiking statistics that match those found in
the neocortex [16,17]. However, these statistics can emerge
in distinct dynamical regimes depending on whether the
balance between excitation and inhibition is tight or loose
[18]. In tightly balanced networks, whereby the net neuro-
nal drive is negligible compared to the antagonizing
components, activity correlation is effectively zero, leading
to a strictly asynchronous regime [19–21]. By contrast, in
loosely balanced networks, the net neuronal drive remains
of the same order as the antagonizing components, which
allows for strong neuronal correlations during evoked
activity, compatible with a synchronous regime [22–24].
While the high spiking variability is an important

constraint for cortical network modeling, there are other
biophysical signatures that may be employed. We now have
access to the subthreshold membrane voltage fluctuations
that underlie spikes in awake, behaving animals (see
Fig. 1). Membrane voltage recordings reveal two main

deviations from the asynchronous hypothesis: First, mem-
brane voltage does not hover near the spiking threshold and
is modulated by the synaptic drive; second, it exhibits state-
or stimulus-dependent non-Gaussian fluctuation statistics
with positive skewness [25–28]. In this work, we further
argue that membrane voltage recordings reveal much larger
voltage fluctuations than predicted by balanced cortical
models [29,30].
How could such large subthreshold variations in mem-

brane voltage emerge? One way that fluctuations could
emerge, even for large numbers of input, is if there is
synchrony in the driving inputs [31]. In practice, input
synchrony is revealed by the presence of positive spiking
correlations, which quantify the propensity of distinct
synaptic inputs to coactivate. Measurements of spiking
correlations between pairs of neurons vary across reports
but have generally been shown to be weak [10–12]. That
said, even weak correlations can have a large impact when
the population of correlated inputs is large [32,33].
Furthermore, the existence of input synchrony, supported
by weak but persistent spiking correlations, is consistent
with at least two other experimental observations. First,
intracellular recordings from pairs of neurons in both
anesthetized and awake animals reveal a high degree of
membrane voltage correlations [7,34,35]. Second, excita-
tory and inhibitory conductance inputs are highly corre-
lated with each other within the same neuron [35,36]. These
observations suggest that input synchrony could explain the
observed level of subthreshold variability.
While our focus is on achieving realistic subthreshold

variability, other challenges to asynchronous networks have
been described. In particular, real neural networks exhibit
distinct regimes of activity depending on the strength of
their afferent drives. In that respect, Zerlaut et al. [37]
showed that asynchronous networks can exhibit a spectrum
of realistic regimes of activity if they have moderate
recurrent connections and are driven by strong thalamic
projections (see also Ref. [17]). Furthermore, it has been a
challenge to identify the scaling rule that should apply to
synaptic strengths for asynchrony to hold stably in ideal-
ized networks. Recently, Sanzeni, Histed, and Brunel [38]
proposed that a realistic asynchronous regime is achieved
for a particular large-coupling rule, whereby synaptic
strengths scale in keeping with the logarithmic size of
the network. Both studies consider balanced networks with
conductance-based neuronal models, but neither focuses on
the role of synchrony, consistent with the asynchronous
state hypothesis. The asynchronous state hypothesis is
theoretically attractive, because it represents a naturally
stable regime of activity in infinite-size, balanced networks
of current-based neuronal models [16,17,20,21]. Such
neuronal models, however, neglect the voltage dependence
of conductances, and it remains unclear whether the
asynchronous regime is asymptotically stable for infinite-
size, conductance-based network models.
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FIG. 1. Large trial-by-trial membrane voltage fluctuations.
Membrane voltage responses are shown using whole cell record-
ings in awake behaving primates for both fixation alone trials
(left) and visual stimulation trials (right). A drifting grating is
presented for 1 s beginning at the arrow. Below, the membrane
voltage traces are records of horizontal and vertical eye move-
ments, illustrating that the animal was fixating during the
stimulus. Red and green traces indicate different trials under
the same conditions. Adapted from Ref. [27].
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Here, independent of the constraint of network stability,
we ask whether biophysically relevant neuronal models can
achieve the observed subthreshold variability under real-
istic levels of input synchrony. To answer this question, we
derive exact analytical expressions for the stationary
voltage variance of a single conductance-based neuron in
response to synchronous shot-noise drives [39,40]. A
benefit of shot-noise models compared to diffusion models
is to allow for individual synaptic inputs to be temporally
separated in distinct impulses, each corresponding to a
transient positive conductance fluctuation [41–43]. We
develop our shot-noise analysis for a variant of classically
considered neuronal models. We call this variant the all-or-
none-conductance-based model for which synaptic activa-
tion occurs as an all-or-none process rather than as an
exponentially relaxing process. To perform an exact treat-
ment of these models, we develop original probabilistic
techniques inspired from Marcus’ work about shot-noise-
driven dynamics [44,45]. To model shot-noise drives with
synchrony, we develop a statistical framework based on the
property of input exchangeability, which assumes that no
synaptic inputs play a particular role. In this framework, we
show that input drives with varying degree of synchrony
can be rigorously modeled via jump processes, while
synchrony can be quantitatively related to measures of
pairwise spiking correlations.
Our main results are biophysically interpretable formulas

for the voltage mean and variance in the limit of instanta-
neous synapses. Crucially, these formulas explicitly depend
on the input numbers, weights, and synchrony and hold
without any forms of diffusion approximation. This is in
contrast with analytical treatments which elaborate on
the diffusion and effective-time-constant approximations
[37,38,46,47]. We leverage these exact, explicit formulas to
determine under which synchrony conditions a neuron can
achieve the experimentally observed subthreshold variabil-
ity. For biophysically relevant synaptic numbers and
weights, we find that achieving realistic variability is
possible in response to a restricted number of large
asynchronous connections, compatible with the dominance
of thalamo-cortical projections in the input layers of the
visual cortex. However, we find that achieving realistic
variability in response to a large number of moderate
cortical inputs, as in superficial cortical visual layers,
necessitates nonzero input synchrony in amounts that are
consistent with the weak levels of measured spiking
correlations observed in vivo.
In practice, persistent synchrony may spontaneously

emerge in large but finite neural networks, as nonzero
correlations are the hallmark of finite-dimensional interact-
ing dynamics. The network structural features responsible
for the magnitude of such correlations remains unclear, and
we do not address this question here (see Refs. [48,49] for
review). The persistence of synchrony is also problematic
for theoretical approaches that consider networks in the

infinite-size limits. Indeed, our analysis supports that, in
the absence of synchrony and for all scaling of the
synaptic weights, subthreshold variability must vanish in
the limit of arbitrary large numbers of synapses. This
suggests that, independent of any balanced condition, the
mean-field dynamics that emerge in infinite-size networks
of conductance-based neurons will not exhibit Poisson-like
spiking variability, at least in the absence of additional
constraints on the network structure or on the biophysical
properties of the neurons. In current-based neuronal mod-
els, however, variability is not dampened by a conductance-
dependent effective time constant. These findings,
therefore, challenge the theoretical basis for the asynchro-
nous state in conductance-based neuronal networks.
Our exact analysis, as well as its biophysical interpre-

tations, is possible only at the cost of several caveats: First,
we neglect the impact of the spike-generating mechanism
(and of the postspiking reset) in shaping the subthreshold
variability. Second, we quantify synchrony under the
assumption of input exchangeability, that is, for synapses
having a typical strength as opposed to being hetero-
geneous. Third, we consider input drives that implement
an instantaneous form of synchrony with temporally
precise synaptic coactivations. Fourth, we do not consider
slow temporal fluctuations in the mean synaptic drive.
Fifth, and perhaps most concerning, we do not account for
the stable emergence of a synchronous regime in network
models. We argue in the discussion that all the above
caveats but the last one can be addressed without impacting
our findings. Addressing the last caveat remains an open
problem.
For reference, we list in Table I the main notations used

in this work. These notations utilize the subscript fge and
fgi to refer to excitation or inhibition, respectively. The
notation fge=i means that the subscript can be either fge or
fgi. The notation fgei is used to emphasize that a quantity
depends jointly on excitation and inhibition.

II. STOCHASTIC MODELING AND ANALYSIS

A. All-or-none-conductance-based neurons

We consider the subthreshold dynamics of an original
neuronal model, which we called the all-or-none-
conductance-based (AONCB) model. In this model, the
membrane voltage V obeys the first-order stochastic differ-
ential equation

CV̇ ¼ GðVL − VÞ þ geðVe − VÞ þ giðVi − VÞ þ I; ð1Þ

where randomness arises from the stochastically activating
excitatory and inhibitory conductances, respectively
denoted by ge and gi [see Fig. 2(a)]. These conductances
result from the action of Ke excitatory and Ki inhibitory
synapses: geðtÞ ¼

PKe
k¼1 ge;kðtÞ and giðtÞ ¼

PKi
k¼1 gi;kðtÞ.

In the absence of synaptic inputs, i.e., when ge ¼ gi ¼ 0,
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and of external current I, the voltage exponentially relaxes
toward its leak reversal potential VL with passive time
constant τ ¼ C=G, where C denotes the cell’s membrane
capacitance andG denotes the cellular passive conductance
[50]. In the presence of synaptic inputs, the transient
synaptic currents Ie ¼ geðVe − VÞ and Ii ¼ giðVi − VÞ
cause the membrane voltage to fluctuate. Conductance-

based models account for the voltage dependence of
synaptic currents via the driving forces Ve − V and
Vi − V, where Ve and Vi denotes the excitatory and
inhibitory reversal potential, respectively. Without loss of
generality, we assume in the following that VL ¼ 0 and
that Vi < VL ¼ 0 < Ve.
We model the spiking activity of the Ke þ Ki upstream

neurons as shot noise [39,40], which can be generically
modeled as a ðKe þ KiÞ-dimensional stochastic point proc-
ess [51,52]. Let us denote by fNe;kðtÞg1≤k≤Ke

its excitatory
component and by fNi;kðtÞg1≤k≤Ki

its inhibitory component,
where t denotes time and k is the neuron index. For each
neuron k, the process Ne=i;kðtÞ is specified as the counting
process registering the spiking occurrences of neuron k up to
time t. In other words, Ne=i;kðtÞ ¼

P
k 1fTe=i;k;n≤tg, where

fTe=i;k;ngn∈Z denotes the full sequence of spiking times of
neuron k and where 1A denotes the indicator function of set
A. Note that, by convention, we label spikes so that Te=i;k;0 ≤
0 < Te=i;k;1 for all neuron k. Given a point-processmodel for
the upstream spiking activity, classical conductance-based
models consider that a single input to a synapse causes an
instantaneous increase of its conductance, followed by an
exponential decay with typical timescale τs > 0. Here, we
depart from this assumption and consider that the synaptic
conductances ge=i;k operates all-or-none with a common
activation time still referred to as τs. Specifically, we assume
that the dynamics of the conductance ge=i;k follows

τsġe=i;kðtÞ

¼Cwe=i;k

X

n

ðδðt−Te=i;k;nÞ−δðt−Te=i;k;n−τsÞÞ; ð2Þ

where we=i;k ≥ 0 is the dimensionless synaptic weight. The
above equation prescribes that the nth spike delivery to
synapse k at time Te=i;k;n is followed by an instantaneous

TABLE I. Main notations.

ae=i;1 First-order synaptic efficacies
ae=i;2 Second-order synaptic efficacies
ae=i;12 Auxiliary second-order synaptic efficacies
b, Rate of the driving Poisson process N
be=i Rate of the excitatory or inhibitory Poisson

process Ne=i
C Membrane capacitance
cei, Cross-correlation synaptic efficacy
C½·; ·& Stationary covariance
E½·& Stationary expectation
Eei½·& Expectation with respect to the joint distribution

pei or pei;kl
Ee=i½·& Expectation with respect to the marginal

distribution pe=i or pe=i;k
ϵ ¼ τs=τ Fast-conductance small parameter
G Passive leak conductance
ge=i Overall excitatory or inhibitory conductance
he=i ¼ ge=i=C Reduced excitatory or inhibitory conductance
ke=i Number of coactivating excitatory or inhibitory

synaptic inputs
Ke=i Total number of excitatory or inhibitory

synaptic inputs
N Driving Poisson process with rate b
Ne=i Excitatory or inhibitory driving Poisson process

with rate be=i
pei Bivariate jump distribution of ðWe;WiÞ
pe=i Marginal jump distribution of We=i

pei;kl Bivariate distribution for the numbers of
coactivating synapses ðke; kiÞ

pe=i;k Marginal synaptic count distribution ke=i
re=i Individual excitatory or inhibitory synaptic rate
ρei Spiking correlation between excitatory and

inhibitory inputs
ρe=i Spiking correlation within excitatory or

inhibitory inputs
τ Passive membrane time constant
τs Synaptic time constant
V ½·& Stationary variance
We=i Excitatory or inhibitory random jumps
Ve=i Excitatory or inhibitory reversal potentials
we=i Typical value for excitatory or inhibitory

synaptic weights
Xk Binary variable indicating the activation of

excitatory synapse k
Yl Binary variable indicating the activation of

inhibitory synapse l
Z Driving compound Poisson process with base

rate b and jump distribution pei

geC

Ve Vi VL

gi gL
V

Conductance-based model

g e
g i

Time (ms)
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FIG. 2. All-or-none-conductance-based models. (a) Electrical
diagram of conductance-based model for which the neuronal
voltage V evolves in response to fluctuations of excitatory and
inhibitory conductances ge and gi. (b) In all-or-nonemodels, inputs
delivered as Poisson processes transiently activate the excitatory
and inhibitory conductances ge and gi during a finite, nonzero
synaptic activation time τs > 0. Simulation parameters: Ke ¼
Ki ¼ 50, re ¼ ri ¼ 10 Hz, τ ¼ 15 ms, and τs ¼ 2 ms > 0.
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increase of that synapse’s conductance by an amountwe=i;k for
a period τs. Thus, the synaptic response prescribed by Eq. (2)
is all-or-none as opposed to being graded as in classical
conductance-based models. Moreover, just as in classical
models, Eq. (2) allows synapses to multiactivate, thereby
neglecting nonlinear synaptic saturation [see Fig. 2(b)].
To be complete, AONCB neurons must, in principle,

include a spike-generating mechanism. A customary choice
is the integrate-and-fire mechanism [53,54]: A neuron
emits a spike whenever its voltage V exceeds a threshold
value VT and resets instantaneously to some value VR
afterward. Such a mechanism impacts the neuronal sub-
threshold voltage dynamics via postspiking reset, which
implements a nonlinear form of feedback. However, in this
work, we focus on the variability that is generated by
fluctuating, possibly synchronous, synaptic inputs. For this
reason, we neglect the influence of the spiking reset in our
analysis, and, actually, we ignore the spike-generating
mechanism altogether. Finally, although our analysis of
AONCB neurons applies to positive synaptic activation
time τs > 0, we discuss our results only in the limit of
instantaneous synapses. This corresponds to taking τs→0þ

while adopting the scaling ge=i ∝ 1=τs in order to maintain
the charge transfer induced by a synaptic event. We will see
that this limiting process preserves the response variability
of AONCB neurons.

B. Quantifying the synchrony of exchangeable
synaptic inputs

Our goal here is to introduce a discrete model for
synaptic inputs, whereby synchrony can be rigorously
quantified. To this end, let us suppose that the neuron
under consideration receives inputs from Ke excitatory
neurons and Ki inhibitory neurons, chosen from arbitrary
large pools of Ne ≫ Ke excitatory neurons and Ni ≫ Ki
inhibitory neurons. Adopting a discrete-time representa-
tion with elementary bin size Δt, we denote by
ffx1;n;…; xKe;ng; fy1;n;…; yKi;ngg in f0; 1gKe × f0; 1gKi

the input state within the nth bin. Our main simplifying
assumption consists in modeling the Ne excitatory inputs
and the Ni inhibitory inputs as separately exchangeable
random variables fX1;n;…; XKe;ng and fY1;n;…; YKi;ng
that are distributed identically over f0;1gNe and f0; 1gNi ,
respectively, and independently across time. This warrants
dropping the dependence on time index n. By separately
exchangeable, we mean that no subset of excitatory inputs
or inhibitory inputs plays a distinct role so that, at all
time, the respective distributions of fX1;n;…; XKe;ng and
fY1;n;…; YKi;ng are independent of the input labeling. In
other words, for all permutations σe of f1;…; Neg and σi of
f1;…; Nig, the joint distribution of fXσeð1Þ;…; XσeðNeÞg
and fYσið1Þ;…; YσiðNiÞg is identical to that of fX1;…; XNe

g
and fY1;…; YNi

g [55,56]. By contrast with independent
random spiking variables, exchangeable ones can exhibit

nonzero correlation structure. By symmetry, this structure
is specified by three correlation coefficients:

ρe ¼
C½Xk;Xl&
V ½Xk&

; ρi ¼
C½Yk;Yl&
V ½Yk&

; ρei ¼
C½Xk;Yl&ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V ½Xk&V ½Yl&

p ;

where C½X; Y& and V ½X& denote the covariance and the
variance of the binary variables X and Z, respectively.
Interestingly, a more explicit form for ρe, ρe, and ρei

can be obtained in the limit of an infinite-size pool
Ne; Ni → ∞. This follows from de Finetti’s theorem
[57], which states that the probability of observing a given
input configuration for Ke excitatory neurons and Ki
inhibitory neurons is given by

P½X1;…;XKe
;Y1;…;YKi

&

¼
Z YKe

k¼1

θXk
e ð1−θeÞ1−Xk

YKi

l¼1

θXl
i ð1−θiÞ1−XldFeiðθe;θiÞ;

where Fei is the directing de Finetti measure, defined as a
bivariate distribution over the unit square ½0; 1& × ½0; 1&. In
the equation above, the numbers θe and θi represent the
(jointly fluctuating) probabilities that an excitatory neuron
and an inhibitory neuron spike in a given time bin,
respectively. The core message of the de Finetti theorem
is that the spiking activity of neurons from infinite
exchangeable pools is obtained as a mixture of condition-
ally independent binomial laws. This mixture is specified
by the directing measure Fei, which fully parametrizes our
synchronous input model. Independent spiking corre-
sponds to choosing Fei as a point-mass measure concen-
trated on some probabilities πe=i ¼ re=iΔt, where re=i
denotes the individual spiking rate of a neuron: dFeiðθÞ ¼
δðθe − πeÞδðθi − πiÞdθedθi [see Fig. 3(a)]. By contrast, a
dispersed directing measure Fei corresponds to the exist-
ence of correlations among the inputs [see Fig. 3(b)].
Accordingly, we show in Appendix A that the spiking
pairwise correlation ρe=i takes the explicit form

ρe=i ¼
V ½θe=i&

E½θe=i&ð1 − E½θe=i&Þ
; ð3Þ

whereas ρei, the correlation between excitation and inhib-
ition, is given by

ρei ¼
C½θe; θi&ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E½θe&E½θi&ð1 − E½θe&Þð1 − E½θi&Þ
p : ð4Þ

In the above formulas, E½θe=i&, V ½θe=i&, and C½θe; θi& denote
expectation, variance, and covariance of ðθe; θiÞ ∼ Fei,
respectively. Note that these formulas show that nonzero
correlations ρe=i correspond to nonzero variance, as is
always the case for dispersed distribution. Independence
between excitation and inhibition for which ρei ¼ 0
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corresponds to directing measure Fei with product form,
i.e., Feiðθe; θiÞ ¼ FeðθeÞFiðθiÞ, where Fe and Fi denote
the marginal distributions. Alternative forms of the directed
measure Fei generally lead to nonzero cross correlation ρei,
which necessarily satisfies 0 < jρeij ≤

ffiffiffiffiffiffiffiffi
ρeρi

p
.

In this exchangeable setting, a reasonable parametric
choice for the marginals Fe and Fi is given by beta

distributions Betaðα; βÞ, where α and β denote shape
parameters [58]. Practically, this choice is motivated by
the ability of beta distributions to efficiently fit correlated
spiking data generated by existing algorithms [59].
Formally, this choice is motivated by the fact that beta
distributions are conjugate priors for the binomial like-
lihood functions, so that the resulting probabilistic models
can be studied analytically [60–62]. For instance, for
Fe ∼ Betaðαe; βeÞ, the probability that ke synapses among
the Ke inputs are jointly active within the same time bin
follows the beta-binomial distribution

Pe;k ¼
"
Ke

k

#
Bðαe þ k; βe þ Ke − kÞ

Bðαe; βeÞ
: ð5Þ

Accordingly, the mean number of active excitatory inputs is
E½ke& ¼ Keαe=ðαe þ βeÞ ¼ KereΔt. Utilizing Eq. (3), we
also find that ρe ¼ 1=ð1þ αe þ βeÞ. Note that the above
results show that, by changing de Finetti’s measure, one can
modify not only the spiking correlation, but also the mean
spiking rate.
In the following, we exploit the above analytical results

to illustrate that taking the continuous-time limit Δt → 0þ

specifies synchronous input drives as compound Poisson
processes [51,52]. To do so, we consider both excitation
and inhibition, which in a discrete setting corresponds to
considering bivariate probability distributions Pei;kl defined
over f0;…; Keg × f0;…; Kig. Ideally, these distributions
Pei;kl should be such that its conditional marginals Pe;k and
Pi;l, with distributions given by Eq. (5). Unfortunately,
there does not seem to be a simple low-dimensional
parametrization for such distributions Pei;kl, except in
particular cases. To address this point, at least numerically,
one can resort to a variety of methods including copulas
[63,64]. For analytical calculations, we consider only two
particular cases for which the marginals of Fei are given
by the beta distributions: (i) the case of maximum pos-
itive correlation for which θe ¼ θi, i.e., dFeiðθe; θiÞ ¼
δðθe − θiÞFðθeÞdθedθi with Fe ¼ Fi ¼ F, and (ii) the case
of zero correlation for which θe and θi are independent,
i.e., Feiðθe; θiÞ ¼ FeðθeÞFiðθiÞ.

C. Synchronous synaptic drives as compound
Poisson processes

Under assumption of input exchangeability and given
typical excitatory and inhibitory synaptic weights we=i, the
overall synaptic drive to a neuron is determined by ðke; kiÞ,
the numbers of active excitatory and inhibitory inputs at
each discrete time step. As AONCB dynamics unfolds in
continuous time, we need to consider this discrete drive in
the continuous-time limit as well, i.e., for vanishing time
bins Δt → 0þ. When Δt → 0þ, we show in Appendix B
that the overall synaptic drive specifies a compound
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FIG. 3. Parametrizing correlations via exchangeability. The
activity of Ke ¼ 100 exchangeable synaptic inputs collected
over N consecutive time bins can be represented as f0; 1g-valued
array fXk;ig1≤k≤Ke;1≤i≤N, where Xk;i ¼ 1 if input k activates in
time bin i. Under assumptions of exchangeability, the input
spiking correlation is entirely captured by the count statistics of
how many inputs coactivate within a given time bin. In the limit
Ke → ∞, the distribution of the fraction of coactivating inputs
coincides with the directing de Finetti measure, which we
consider as a parametric choice in our approach. In the absence
of correlation, synapses tend to activate in isolation: ρe ¼ 0 in (a).
In the presence of correlation, synapses tend to coactivate,
yielding a disproportionately large synaptic activation event:
ρe ¼ 0.1 in (b). Considering the associated cumulative counts
specifies discrete-time jump processes that can be generalized
to the continuous-time limit, i.e., for time bins of vanishing
duration Δt → 0þ.
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Poisson process Z with bivariate jumps ðWe;WiÞ.
Specifically, we have

ZðtÞ ¼
"XNðtÞ

n

We;n;
XNðtÞ

n

Wi;n

#
; ð6Þ

where ðWe;n;Wi;nÞ are i.i.d. samples with bivariate distri-
bution denoted by pei and where the overall driving
Poisson process N registers the number of synaptic events
without multiple counts (see Fig. 4). By synaptic events, we
mean these times for which at least one excitatory synapse
or one inhibitory synapse activates. We say that N registers
these events without multiple count as it counts one event
independent of the number of possibly coactivating syn-
apses. Similarly, we denote by Ne and Ni the counting
processes registering synaptic excitatory events and syn-
aptic inhibitory events alone, respectively. These processes
Ne and Ni are Poisson processes that are correlated in
the presence of synchrony, as both Ne and Ni may
register the same event. Note that this implies that
max½NeðtÞ; NiðtÞ& ≤ NðtÞ ≤ NeðtÞ þ NiðtÞ. More gener-
ally, denoting by b and be=i the rates of N and Ne=i,
respectively, the presence of synchrony implies that
maxðbe;biÞ≤b≤beþbi and re=i ≤ be=i ≤ Ke=ire=i, where
re=i is the typical activation rate of a single synapse.
For simplicity, we explain how to obtain such limit

compound Poisson processes by reasoning on the excitatory
inputs alone. To this end, let us denote the marginal jump
distribution of We as pe. Given a fixed typical synaptic
weight we, the jumps are quantized as We ¼ kwe, with k
distributed on f1;…; Keg, as by convention jumps cannot
have zero size. These jumps are naturally defined in the
discrete setting, i.e., with Δt > 0, and their discrete distri-
bution is given via conditioning as Pe;k=ð1 − Pe;0Þ. For beta
distributed marginals Fe, we show in Appendix B that
considering Δt → 0þ yields the jump distribution

pe;k ¼ lim
Δt→0þ

Pe;k

1 − Pe;0
¼

"
Ke

k

#
Bðk; βe þ Ke − kÞ
ψðβe þ KeÞ − ψðβeÞ

; ð7Þ

where ψ denotes the digamma function. In the following, we
explicitly index discrete count distributions, e.g., pe;k,
to distinguish them from the corresponding jump distribu-
tions, i.e., pe. Equation (7) follows from observing that the
probability to find a spike within a bin is E½Xi& ¼
αe=ðαe þ βeÞ ¼ reΔt, so that for fixed excitatory spiking
rate re, αe → 0þ whenΔt → 0þ. As a result, the continuous-
time spiking correlation is ρe ¼ 1=ð1þ βeÞ, so that we can
interpret βe as a parameter controlling correlations. More
generally, we show in Appendix C that the limit correlation
ρe depends only on the count distribution pe;k via

ρe ¼
Ee½kðk − 1Þ&
Ee½k&ðKe − 1Þ

; ð8Þ

where Ee½·& denotes expectations with respect to pe;k. This
shows that zero spiking correlation corresponds to single
synaptic activations, i.e., to an input drive modeled as a
Poisson process, as opposed to a compound Poisson process.
For Poisson-process models, the overall rate of synaptic
events is necessarily equal to the sum of the individual
spiking rate: be ¼ Kere. This is no longer the case in the
presence of synchronous spiking, when nonzero input
correlation ρe > 0 arises from coincidental synaptic activa-
tions. Indeed, as the population spiking rate is conserved
when Δt → 0þ, the rate of excitatory synaptic events be
governing Ne satisfies Kere ¼ beEe½k& so that

be ¼
Kere
Ee½k&

¼ reβeðψðβe þ KeÞ − ψðβeÞÞ: ð9Þ

Let us reiterate for clarity that, if ke synapses activate
synchronously, this counts as only one synaptic event, which
can come invariable size k. Consistently,we have, in general,
re ≤ be ≤ Kere. When βe → 0, we have perfect synchrony
with ρe ¼ 1 and be → re, whereas the independent spiking
regime with ρe ¼ 0 is attained for βe → ∞, for which we
have be → Kere.
It is possible to generalize the above construction to

mixed excitation and inhibition, but a closed-form treat-
ment is possible only for special cases. For the independent
case (i), in the limit Δt → 0þ, jumps are either excitatory
alone or inhibitory alone; i.e., the jump distribution pei
has support on f1;…; Keg × f0g ∪ f0g × f1;…; Kig.
Accordingly, we show in Appendix D that

pei;kl ¼ lim
Δt→0þ

PkPl

1 − Pe;0Pi;0

¼ be
be þ bi

pe;k1fl¼0g þ
be

be þ bi
pi;l1fk¼0g; ð10Þ

where pe=i;k and be=i are specified in Eqs. (7) and (9) by the
parameters βe=i and Ke=i, respectively. This shows that, as
expected, in the absence of synchrony the driving com-
pound Poisson process Z with bidimensional jump is
obtained as the direct sum of two independent compound
Poisson processes. In particular, the driving processes are
such that N ¼ Ne þ Ni, with rates satisfying b ¼ be þ bi.
By contrast, for the maximally correlated case with
re ¼ ri ¼ r (ii), we show in Appendix D that the jumps
are given as ðWe;WiÞ ¼ ðkwe; lwiÞ, with ðk; lÞ distributed
on f0;…;Keg×f0;…;Kignf0;0g [see Figs. 4(b) and 4(c)]
according to

pei;kl ¼ lim
Δt→0þ

Pei;kl

1−Pei;00

¼
"
Ke

k

#"
Ki

l

#
Bðkþ l;βþKeþKi−k− lÞ
ψðβþKeþKiÞ−ψðβÞ

: ð11Þ
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FIG. 4. Limit compound Poisson process with excitation and inhibition. (a) Under assumption of partial exchangeability, synaptic
inputs can be distinguished only by the fact that they are either excitatory or inhibitory, which is marked by being colored in red or blue,
respectively, in the discrete representation of correlated synaptic inputs with bin size Δt ¼ 1 ms. Accordingly, considering excitation
and inhibition separately specifies two associated input-count processes and two cumulative counting processes. For nonzero spiking
correlation ρ ¼ 0.03, these processes are themselves correlated as captured by the joint distribution of excitatory and inhibitory input
counts Pei;kl (center) and by the joint distribution of excitatory and inhibitory jumps Pei;kl=ð1 − P00Þ (right). (b) The input count
distribution Pei;kl is a finite-size approximation of the bivariate directing de Finetti measure Fei, which we consider as a parameter as
usual. For a smaller bin size Δt ¼ 0.1 ms, this distribution concentrates in (0,0), as an increasing proportion of time bins does not
register any synaptic events, be they excitatory or inhibitory. In the presence of correlation, however, the conditioned jump distribution
remains correlated but also dispersed. (c) In the limit Δt → 0, the input-count distribution is concentrated in (0,0), consistent with the
fact that the average number of synaptic activations remains constant while the number of bins diverges. By contrast, the distribution of
synaptic event size conditioned to distinct from (0,0) converges toward a well-defined distribution: pei;kl ¼ limΔt→0þ Pei;kl=ð1 − Pei;00Þ.
This distribution characterizes the jumps of a bivariate compound Poisson process, obtained as the limit of the cumulative count process
when considering Δt → 0þ.
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Incidentally, the driving Poisson process N has a rate b
determined by adapting Eq. (9):

b ¼ rβðψðβ þ Ke þ KiÞ − ψðβÞÞ;

for which one can check that r ≤ b ≤ ðKe þ KiÞr.
All the closed-form results so far have been derived for

synchrony parametrization in terms of beta distribution.
There are other possible parametrizations, and these would
lead to different count distributions pei;kl but without
known closed form. To address this limitation in the
following, all our results hold for arbitrary distributions
pei of the jump sizes ðWe;WiÞ on the positive orthant
ð0;∞Þ × ð0;∞Þ. In particular, our results are given in terms
of expectations with respect to pei, still denoted by Eei½·&.
Nonzero correlation between excitation and inhibition
corresponds to those choices of pei for which WeWi > 0
with nonzero probability, which indicates the presence of
synchronous excitatory and inhibitory inputs. Note that this
modeling setting restricts nonzero correlations to be pos-
itive, which is an inherent limitation of our synchrony-
based approach. When considering an arbitrary pei, the
main caveat is understanding how such a distribution
may correspond to a given input numbers Ke=i and spiking
correlations ρe=i and ρei. For this reason, we always
consider that ke ¼ We=we and ki ¼ Wi=wi follows beta
distributed marginal distributions when discussing the roles
of we=i, Ke=i, ρe=i, and ρei in shaping the voltage response
of a neuron. In that respect, we show in Appendix C that the
coefficient ρei can always be deduced from the knowledge
of a discrete count distribution pei;kl on f0;…; Keg ×
f0;…; Kignf0; 0g via

ρei ¼
Eei½keki&ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KeEei½ke&KiEei½ki&
p ≥ 0;

where the expectations are with respect to pei;kl.

D. Instantaneous synapses and Marcus integrals

We are now in a position to formulate the mathematical
problem at stake within the framework developed by
Marcus to study shot-noise-driven systems [44,45]. Our
goal is quantifying the subthreshold variability of an
AONCB neuron subjected to synchronous inputs.
Mathematically, this amounts to computing the first two
moments of the stationary process solving the following
stochastic dynamics:

V̇ ¼ −V=τ þ heðVe − VÞ þ hiðVi − VÞ þ I=C; ð12Þ

where Vi < 0 < Ve are constants and where the reduced
conductances he ¼ ge=C and hi ¼ gi=C follow stochastic
processes defined in terms of a compound Poisson process
Z with bivariate jumps. Formally, the compound Poisson
process Z is specified by b, the rate of its governing Poisson

process N, and by the joint distribution of its jumps pei.
Each point of the Poisson process N represents a synaptic
activation time Tn, where n is in Z with the convention that
T0 ≤ 0 ≤ T1. At all these times, the synaptic input sizes are
drawn as i.i.d. random variables ðWe;n;Wi;nÞ in Rþ ×Rþ

with probability distribution pei.
At this point, it is important to observe that the driv-

ing process Z is distinct from the conductance process
h ¼ ðhe; hiÞ. The latter process is formally defined for
AONCB neurons as

hðtÞ ¼ ZðtÞ − Zðt − ϵτÞ
ϵτ

¼ 1

ϵτ

" XNðtÞ

n¼Nðt−ϵτÞþ1

We;n;
XNðtÞ

n¼Nðt−ϵτÞþ1

Wi;n

#
;

where the dimensionless parameter ϵ ¼ τs=τ > 0 is the
ratio of the duration of synaptic activation relative to the
passive membrane time constant. Note that the amplitude of
h scales in inverse proportion to ϵ in order to maintain the
overall charge transfer during synaptic events of varying
durations. Such a scaling ensures that the voltage response
of AONCB neurons has finite, nonzero variability for small
or vanishing synaptic time constant, i.e., for ϵ ≪ 1 (see
Fig. 5). The simplifying limit of instantaneous synapses is
obtained for ϵ ¼ τs=τ → 0þ, which corresponds to infi-
nitely fast synaptic activation. By virtue of its construction,
the conductance process h becomes a shot noise in the limit
ϵ → 0þ, which can be formally identified to dZ=dt. This is
consistent with the definition of shot-noise processes as
temporal derivative of compound Poisson processes, i.e., as
collections of randomly weighted Dirac-delta masses.
Because of their high degree of idealization, shot-noise

models are often amenable to exact stochastic analysis,
albeit with some caveats. For equations akin to Eq. (12) in
the limit of instantaneous synapses, such a caveat follows
from the multiplicative nature of the conductance shot noise
h. In principle, one might expect to solve Eq. (12) with shot-
noise drive via stochastic calculus, as for diffusion-based
drive. This would involve interpreting the stochastic integral
representations of solutions in terms of Stratonovich repre-
sentations [65]. However, Stratonovich calculus is not well
defined for shot-noise drives [66]. To remedy this point,
Marcus has proposed to study stochastic equations subjected
to regularized versions of shot noises, whose regularity is
controlled by a nonnegative parameter ϵ [44,45]. For ϵ > 0,
the dynamical equations admit classical solutions, whereas
the shot-noise-driven regime is recovered in the limit
ϵ → 0þ. The hope is to be able to characterize analytically
the shot-noise-driven solution, or at least some of its
moments, by considering regular solutions in the limit
ϵ → 0þ. We choose to refer to the control parameter as ϵ
by design in the above. This is because AONCB models
represent Marcus-type regularizations that are amenable to
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analysis in the limit of instantaneous synapses, i.e., when
ϵ ¼ τs=τ → 0þ, for which the conductance process h con-
verges toward a form of shot noise.
Marcus interpretation of stochastic integration has prac-

tical implications for numerical simulations with shot noise
[41]. According to this interpretation, shot-noise-driven
solutions are conceived as limits of regularized solu-
tions for which standard numerical scheme applies.
Correspondingly, shot-noise-driven solutions to Eq. (12)
can be simulated via a limit numerical scheme. We derive
such a limit scheme in Appendix E. Specifically, we show
that the voltage of shot-noise-driven AONCB neurons
exponentially relaxes toward the leak reversal potential

VL ¼ 0, except when subjected to synaptic impulses at
times fTngn∈Z. At these times, the voltage V updates
discontinuously according to VðTnÞ ¼ VðT−

n Þ þ Jn, where
the jumps are given in Appendix E via the Marcus rule

Jn ¼
"
We;nVe þWi;nVi

We;n þWi;n
− VðT−

n Þ
#

×
$
1 − e−ðWe;nþWi;nÞ

%
: ð13Þ

Observe that the above Marcus rule directly implies that no
jump can cause the voltage to exit ðVi; VeÞ, the allowed
range of variation for V. Moreover, note that this rule
specifies an exact even-driven simulation scheme given
knowledge of the synaptic activation times and sizes
fTn;We;n;Wi;ngn∈Z [67]. We adopt the above Marcus-
type numerical scheme in all the simulations that involve
instantaneous synapses.

E. Moment calculations

When driven by stationary compound Poisson processes,
AONCB neurons exhibit ergodic voltage dynamics. As a
result, the typical voltage state, obtained by sampling the
voltage at random time, is captured by a unique stationary
distribution. Our main analytical results, which we give
here, consist in exact formulas for the first two voltage
moment with respect to that stationary distribution.
Specifically, we derive the stationary mean voltage
Eq. (14) in Appendix F and the stationary voltage variance
Eq. (16) in Appendix G. These results are obtained by a
probabilistic treatment exploiting the properties of com-
pound Poisson processes within Marcus’ framework. This
treatment yields compact, interpretable formulas in the
limit of instantaneous synapses ϵ ¼ τs=τ → 0þ. Readers
who are interested in the method of derivation for these
results are encouraged to go over the calculations presented
in Appendixes F–L.
In the limit of instantaneous synapses, ϵ → 0þ, we find

that the stationary voltage mean is

E½V& ¼ lim
ϵ→0þ

E½Vϵ& ¼
ae;1Ve þ ai;1Vi þ I=G

1þ ae;1 þ ai;1
; ð14Þ

where we define the first-order synaptic efficacies as

ae;1 ¼ bτEei

&
We

We þWi

$
1 − e−ðWeþWiÞ

%'
;

ai;1 ¼ bτEei

&
Wi

We þWi

$
1 − e−ðWeþWiÞ

%'
: ð15Þ

Note the Eei½·& refers to the expectation with respect to the
jump distribution pei in Eq. (15), whereas E½·& refers to
the stationary expectation in Eq. (14). Equation (14) has the
same form as for deterministic dynamics with constant
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FIG. 5. Limit of instantaneous synapses. The voltage trace and
the empirical voltage distribution are only marginally altered by
taking the limit ϵ → 0þ for short synaptic time constant: τs ¼ 2 ms
in (a) and τs ¼ 0.02 ms in (b). In both (a) and (b), we consider the
same compound Poisson-process drivewith ρe ¼ 0.03, ρi ¼ 0.06,
and ρei ¼ 0, and the resulting fluctuating voltage V is simulated
via a standard Euler discretization scheme. The corresponding
empirical conductance and voltage distributions are shown on the
right. The later voltage distribution asymptotically determines the
stationary moments of V.
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conductances, in the sense that the mean voltage is a
weighted sum of the reversal potentials Ve, Vi, and VL ¼ 0.
One can check that, for such deterministic dynamics, the
synaptic efficacies involved in the stationary mean simply
read ae=i;1 ¼ Ke=ire=iwe=i. Thus, the impact of synaptic
variability, and, in particular, of synchrony, entirely lies in
the definition of the efficacies in Eq. (15). In the absence
of synchrony, one can check that accounting for the
shot-noise nature of the synaptic conductances leads to
synaptic efficacies under exponential form: ae=i;1 ¼
Ke=ire=ið1 − e−we=iÞ. In turn, accounting for input syn-
chrony leads to synaptic efficacies expressed as expectation
of these exponential forms in Eq. (15), consistent with the
stochastic nature of the conductance jumps ðWe;WiÞ. Our
other main result, the formula for the stationary voltage
variance, involves synaptic efficacies of similar form.
Specifically, we find that

V ½V& ¼ 1

1þ ae;2 þ ai;2
× ðae;12ðVe − E½V&Þ2 þ ai;12ðVi − E½V&Þ2

− ceiðVe − ViÞ2Þ; ð16Þ

where we define the second-order synaptic efficacies as

ae;2 ¼
bτ
2
Eei

&
We

We þWi

$
1 − e−2ðWeþWiÞ

%'
;

ai;2 ¼
bτ
2
Eei

&
Wi

We þWi

$
1 − e−2ðWeþWiÞ

%'
: ð17Þ

Equation (16) also prominently features auxiliary second-
order efficacies defined by ae=i;12 ¼ ae=i;1 − ae=i;2. Owing
to their prominent role, we also mention their explicit form:

ae;12 ¼
bτ
2
Eei

&
We

We þWi

$
1 − e−ðWeþWiÞ

%
2
'
;

ai;12 ¼
bτ
2
Eei

&
Wi

We þWi

$
1 − e−ðWeþWiÞ

%
2
'
: ð18Þ

The other quantity of interest featuring in Eq. (16) is the
cross-correlation coefficient

cei ¼
bτ
2
Eei

&
WeWi

ðWe þWiÞ2
$
1 − e−ðWeþWiÞ

%
2
'
; ð19Þ

which entirely captures the (non-negative) correlation
between excitatory and inhibitory inputs and shall be seen
as an efficacy as well.
In conclusion, let us stress that, for AONCB models,

establishing the above exact expressions does not
require any approximation other than taking the limit of
instantaneous synapses. In particular, we neither resort to
any diffusion approximations [37,38] nor invoke the

effective-time-constant approximation [41–43]. We give
in Appendix L an alternative factorized form for V ½V& to
justify the non-negativity of expression (16). In Fig. 6, we
illustrate the excellent agreement of the analytically derived
expressions (14) and (16) with numerical estimates
obtained via Monte Carlo simulations of the AONCB
dynamics for various input synchrony conditions.
Discussing and interpreting quantitatively Eqs. (14) and
(16) within a biophysically relevant context is the main
focus of the remainder of this work.

III. COMPARISON WITH EXPERIMENTAL DATA

A. Experimental measurements
and parameter estimations

Cortical activity typically exhibits a high degree of
variability in response to identical stimuli [68,69], with
individual neuronal spiking exhibiting Poissonian charac-
teristics [3,70]. Such variability is striking, because neurons
are thought to typically receive a large number (≃104) of
synaptic contacts [13]. As a result, in the absence of
correlations, neuronal variability should average out, lead-
ing to quasideterministic neuronal voltage dynamics [71].
To explain how variability seemingly defeats averaging in
large neural networks, it has been proposed that neurons
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FIG. 6. Comparison of simulation and theory. (a) Examples of
voltage traces obtained via Monte Carlo simulations of an
AONCB neuron for various types of synchrony-based input
correlations: uncorrelated ρe ¼ ρi ¼ ρei ¼ 0 (uncorr, yellow),
within correlation ρe; ρi > 0 and ρei ¼ 0 (within corr, cyan),
and within and across correlation ρe; ρi; ρei > 0 (across corr,
magenta). (b) Comparison of the analytically derived expressions
(14) and (16) with numerical estimates obtained via Monte Carlo
simulations for the synchrony conditions considered in (a).
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operate in a special regime, whereby inhibitory and
excitatory drive nearly cancel one another [16,17,19–21].
In such balanced networks, the voltage fluctuations
become the main determinant of the dynamics, yielding
a Poisson-like spiking activity [16,17,19–21]. However,
depending upon the tightness of this balance, networks can
exhibit distinct dynamical regimes with varying degree of
synchrony [18].
In the following, we exploit the analytical framework of

AONCB neurons to argue that the asynchronous picture
predicts voltage fluctuations are an order of magnitude
smaller than experimental observations [1,26–28]. Such
observations indicate that the variability of the neuronal
membrane voltage exhibits typical variance values of
≃4–9 mV2. Then, we claim that achieving such variability
requires input synchrony within the setting of AONCB
neurons. Experimental estimates of the spiking correlations
are typically thought as weak with coefficients ranging from
0.01 to 0.04 [10–12]. Such weak values do not warrant the
neglect of correlations owing to the typically high number of
synaptic connections. Actually, if K denotes the number of
inputs, all assumed to play exchangeable roles, an empirical
criterion to decidewhether a correlation coefficient ρ isweak
is that ρ < 1=K [32,33]. Assuming the lower estimate of
ρ ≃ 0.01, this criterion is achieved forK ≃ 100 inputs,which
is well below the typical number of excitatory synapses for
cortical neurons. In the following, we consider only the
response of AONCB neurons to synchronous drive with
biophysically realistic spiking correlations (0 ≤ ρ ≤ 0.03).
Two key parameters for our argument are the excitatory

and inhibitory synaptic weights denoted by we and wi,
respectively. Typical values for these weights can be
estimated via biophysical considerations within the frame-
work of AONCB neurons. In order to develop these
considerations, we assume the values Vi ¼ −10 mV <
VL ¼ 0 < Ve ¼ 60 mV for reversal potentials and τ ¼
15 ms for the passive membrane time constant. Given these
assumptions, we set the upper range of excitatory synaptic
weights so that, when delivered to a neuron close to its
resting state, unitary excitatory inputs cause peakmembrane
fluctuations of ≃0.5 mV at the soma, attained after a peak
time of ≃5 ms. Such fluctuations correspond to typically
large in vivo synaptic activations of thalamo-cortical pro-
jections in rats [72]. Although activations of similar ampli-
tude have been reported for cortico-cortical connections
[73,74], recent large-scale in vivo studies have revealed that
cortico-cortical excitatory connections are typically much
weaker [75,76]. At the same time, these studies have
shown that inhibitory synaptic conductances are about
fourfold larger than excitatory ones but with similar time-
scales. Fitting thesevalueswithin the framework ofAONCB
neurons for ϵ ¼ τs=τ ≃ 1=4 reveals that the largest possible
synaptic inputs correspond to dimensionless weights
we ≃ 0.01 and wi ≃ 0.04. Following Refs. [75,76], we
consider that the comparatively moderate cortico-cortical

recurrent connections are an order ofmagnitudeweaker than
typical thalamo-cortical projections, i.e., we ≃ 0.001 and
wi ≃ 0.004. Such a range is in keeping with estimates used
in Ref. [38].

B. The effective-time-constant approximation holds
in the asynchronous regime

Let us consider that neuronal inputs have zero (or
negligible) correlation structure, which corresponds to
assuming that all synapses are driven by independent
Poisson processes. Incidentally, excitation and inhibition
act independently. Within the framework of AONCB
neurons, this latter assumption corresponds to choosing
a joint jump distribution of the form

peiðWe;WiÞ ¼
be
b
peðWeÞδðWiÞ þ

bi
b
piðWiÞδðWeÞ;

where δð·Þ denotes the Dirac delta function so thatWeWi ¼
0 with probability one. Moreover, be and bi are independ-
ently specified via Eq. (9), and the overall rate of synaptic
events is purely additive: b ¼ be þ bi. Consequently, the
cross-correlation efficacy cei in Eq. (16) vanishes, and the
dimensionless efficacies simplify to

ae;1 ¼ beτEe½1 − e−We & and ai;1 ¼ biτEi½1 − e−Wi &:

Further assuming that individual excitatory and inhibitory
synapses act independently leads to considering that pe and
pi depict the size of individual synaptic inputs, as opposed to
aggregate events. This corresponds to taking βe → ∞ and
βi → ∞ in our parametric model based on beta distributions.
Then, as intuition suggests, the overall rates of excitation and
inhibition activation are recovered as be ¼ Kere and
bi ¼ Kiri, where re and ri are the individual spiking rates.
Individual synaptic weights are small in the sense that

we; wi ≪ 1, which warrants neglecting exponential correc-
tions for the evaluation of the synaptic efficacies, at least in
the absence of synchrony-based correlations. Accordingly,
we have

ae;1 ≃ Kereτwe and ae;12 ≃ Kereτw2
e=2;

as well as symmetric expressions for inhibitory efficacies.
Plugging these values into Eq. (16) yields the classical
mean-field estimate for the stationary variance:

V ½V& ≃ Kerew2
eðVe − E½V&Þ2 þ Kiriw2

i ðVi − E½V&Þ2

2ð1=τ þ Kerewe þ KiriwiÞ
;

which is exactly the same expression as that derived via the
diffusion and effective-time-constant approximations in
Refs. [46,47]. However, observe that the only approxima-
tion we made in obtaining the above expression is to
neglect exponential corrections due to the relative weakness
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of biophysically relevant synaptic weights, which we
hereafter refer to as the small-weight approximation.

C. Asynchronous inputs yield exceedingly
small neural variability

In Fig. 7, we represent the stationary mean E½V& and
variance V ½V& as a function of the neuronal spiking input
rates re and ri but for distinct values of synaptic weights we
and wi. In Fig. 7(a), we consider synaptic weights as large
as biophysically admissible based on recent in vivo studies
[75,76], i.e., we ¼ 0.01 and wi ¼ 0.04. By contrast, in
Fig. 7(b), we consider moderate synaptic weights we ¼
0.001 and wi ¼ 0.004, which yield somatic postsynaptic
deflections of typical amplitudes. In both cases, we con-
sider input numbers Ke and Ki such that the mean voltage
E½V& covers the same biophysical range of values as re and
ri varies between 0 and 50 Hz. Given a zero resting
potential, we set this biophysical range to be bounded by
ΔE½V& ≤ 20 mV as typically observed experimentally in
electrophysiological recordings. These conditions corre-
spond to constant aggregate weights set to Kewe¼Kiwi¼1
so that

Kerewe ¼ Kiriwi ≤ 50 Hz ≃ 1=τ:

This implies that the AONCB neurons under consideration
do not reach the high-conductance regime for which the
passive conductance can be neglected, i.e., Kerewe þ
Kerewi ≫ 1=τ [77]. Away from the high-conductance
regime, the variance magnitude is controlled by the
denominator in Eq. (20). Accordingly, the variance in both
cases is primarily dependent on the excitatory rate re, since,
for Kewe ¼ Kiwi ¼ 1, the effective excitatory driving force
Fe ¼ Kew2

eðVe − E½V&Þ2 dominates the effective inhibitory
driving force Fi ¼ Kiw2

i ðVi − E½V&Þ2. This is because the
neuronal voltage typically sits close to the inhibitory
reversal potential but far from the excitatory reversal
potential Ve − E½V& > E½V& − Vi. For instance, when close
to rest E½V& ≃ 0, the ratio of the effective driving forces is
ðKew2

eV2
eÞ=ðKiw2

i V
2
i Þ ≃ 9 fold in favor of excitation.

Importantly, the magnitude of the variance is distinct for
moderate synapses and for large synapses. This is because,
for constant aggregate weights Kewe ¼ Kiwi ¼ 1, the ratio
of effective driving forces for large and moderate synapses
scales in keeping with the ratio of the weights, and so does
the ratio of variances away from the high-conductance
regime. Thus, we have

Fejwe¼10−2=Fejwe¼10−3 ¼ Fijwi¼10−2=Fijwi¼10−3 ¼ 10;

and the variance decreases by one order of magnitude from
large weights in Fig. 7(a) to moderate weights in Fig. 7(b).
The above numerical analysis reveals that achieving

realistic levels of subthreshold variability for a biophysical
mean range of variation requires AONCB neurons to be
exclusively driven by large synaptic weights. This is
confirmed by considering the voltage mean E½V& and
variance V ½V& in Fig. 8 as a function of the number of
inputsKe and of the synaptic weightswe for a given level of
inhibition. We choose this level of inhibition to be set by
Ki ¼ 250 moderate synapses wi ¼ 0.004 with ri ¼ 20 Hz
in Fig. 8(a) and by Ki ¼ 25 large synapses wi ¼ 0.04 with
ri ¼ 20 Hz in Fig. 8(b). As expected, assuming that re ¼
20 Hz in the absence of input correlations, the voltage
mean E½V& depends on only the productKewe, which yields
a similar mean range of variations for Ke varying up to
2000 in Fig. 8(a) and up to 200 in Fig. 8(b). Thus, it is
possible to achieve the same range of variations as with
moderate synaptic with a fewer number of larger synaptic
weights. By contrast, the voltage variance V ½V& achieves
realistic levels only for large synaptic weights in both
conditions, with we ≥ 0.015 for moderate inhibitory back-
ground synapses in Fig. 8(a) and we ≥ 0.01 for large
inhibitory background synapses in Fig. 8(b).

D. Including input correlations yields realistic
subthreshold variability

Without synchrony, achieving the experimentally
observed variability necessitates an excitatory drive medi-
ated via synaptic weights we ≃ 0.01, which corresponds to
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FIG. 7. Voltage mean and variance in the absence of input
correlations. Column (a) depicts the stationary subthreshold
response of an AONCB neuron driven by Ke ¼ 100 and Ki ¼
25 synapses with largeweightswe ¼ 0.01 andwi ¼ 0.04. Column
(b) depicts the stationary subthreshold response of an AONCB
neuron driven byKe ¼ 103 andKi ¼ 250 synapses with moderate
weights we ¼ 0.001 and wi ¼ 0.004. For synaptic weights
we; wi ≪ 1, the mean response is identical as Kewe ¼ Kiwi ¼ 1
for (a) and (b). By contrast, for ρe ¼ ρi ¼ ρei ¼ 0, the variance is at
least an order of magnitude smaller than that experimentally
observed (4–9 mV2) for moderate weights as shown in (a).
Reaching the lower range of realistic neural variability requires
driving the cell via large weights as shown in (b).
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the upper bounds of the biophysically admissible range and
is in agreement with numerical results presented in
Ref. [38]. Albeit possible, this is unrealistic given the wide
distribution of amplitudes observed experimentally,
whereby the vast majority of synaptic events are small
to moderate, at least for cortico-cortical connections
[75,76]. In principle, one can remedy this issue by allowing
for synchronous activation of, say, ke ¼ 10 synapses with
moderate weight we ¼ 0.001, as it amounts to the activa-
tion of a single synapse with large weight kewe ¼ 0.01. A
weaker assumption that yields a similar increase in neural
variability is to ask for synapses to only tend to synchronize
probabilistically, which amounts to requiring ke to be a
random variable with some distribution mass on fke > 1g.
This exactly amounts to modeling the input drive via a
jump process as presented in Sec. II, with a jump
distribution pe that probabilistically captures this degree
of input synchrony. In turn, this distribution pe corresponds
to a precise input correlation ρe via Eq. (8).
We quantify the impact of nonzero correlation in Fig. 9,

where we consider the cases of moderate weights we ¼
0.001 and we ¼ 0.004 and large weights we ¼ 0.01 and
wi ¼ 0.04 as in Fig. 7 but for ρe ¼ ρi ¼ 0.03. Specifically,

we consider an AONCB neuron subjected to two indepen-
dent beta-binomial-derived compound Poisson process
drives with rate be and bi, respectively. These rates be
and bi are obtained via Eq. (9) by setting βe ¼ βi ¼
1=ρe − 1 ¼ 1=ρi − 1 and for given input numbers Ke
and Ki and spiking rates re and ri. This ensures that the
mean number of synaptic activations beEei½ke& ¼ Kere and
biE½ki& ¼ Kiri remains constant when compared with
Fig. 7. As a result, the mean response of the AONCB
neuron is essentially left unchanged by the presence of
correlations, with virtually identical biophysical range of
variations ΔEei½V& ≃ 10–20 mV. This is because, for
correlation ρe ¼ ρi ≃ 0.03, the aggregate weights still
satisfy kewe; kiwi < 1 with probability close to one given
that Kewe ¼ Kiwi ¼ 1. Then, in the absence of cross-
correlation, i.e., ρei ¼ 0, we still have

ae;1 ¼ beτEe½1 − e−kewe & ≃ beτweEe½ke& ¼ Kereτwe;

as well as ai;1 ≃ Kiriτwi by symmetry. However, for both
moderate and large synaptic weights, the voltage variance
V ½V& now exhibits slightly larger magnitudes than observed
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FIG. 8. Dependence on the number of inputs and the synaptic
weights in the absence of correlations. Column (a) depicts the
stationary subthreshold response of an AONCB neuron driven by
a varying number of excitatory synapses Ke with varying weight
we at rate re ¼ 20 Hz, with background inhibitory drive given by
Ki ¼ 250 with moderate weights wi ¼ 0.004 and ri ¼ 20 Hz.
Column (b) depicts the same as in column (a) but for a back-
ground inhibitory drive given by Ki ¼ 25 with large weights
wi ¼ 0.04 and ri ¼ 20 Hz. For both conditions, achieving
realistic level of variance, i.e., V ½V& ≃ 4–9 mV2, while ensuring
a biophysically relevant mean range of variation, i.e.,
ΔE½V& ≃ 10–20 mV, is possible only for large weights: we ≥
0.015 for moderate inhibitory weights in (a) and we ≥ 0.01 for
large weights.
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FIG. 9. Voltage mean and variance in the presence of excitatory
and inhibitory input correlations but without correlation across
excitation and inhibition: ρe ¼ ρi > ρei ¼ 0. Column (a) depicts
the stationary subthreshold response of an AONCB neuron driven
by Ke ¼ 100 and Ki ¼ 25 synapses with large weights we ¼
0.01 and wi ¼ 0.04. Column (b) depicts the stationary subthresh-
old response of an AONCB neuron driven by Ke ¼ 103 and Ki ¼
250 synapses with moderate dimensionless weights we ¼ 0.001
and wi ¼ 0.004. For synaptic weights we; wi ≪ 1, the mean
response is identical as Kewe ¼ Kiwi ¼ 1 for (a) and (b). By
contrast with the case of no correlation in Fig. 7, for ρe ¼ ρi ¼
0.03 and ρei ¼ 0, the variance achieves similar levels as exper-
imentally observed (4–9 mV2) for moderate weights as shown in
(b) but slightly larger levels for large weights as shown in (a).
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experimentally. This is because we show in Appendix M
that in the small-weight approximation

ae;12 ¼
beτ
2

Ee

h
ð1 − e−keweÞ2

i

≃ ð1þ ρeðKe − 1ÞÞKereτw2
e

2
;

where we recognize Kereτw2
e=2 ¼ ae;12jρe¼0 as the second-

order efficacy in the absence of correlations from Fig. 7.
A similar statement holds for ai;12. This shows that
correlations increase neural variability whenever ρe >
1=Ke or ρi > 1=Ki, which coincides with our previously
given criterion to assess the relative weakness of correla-
tions. Accordingly, when excitation and inhibition act
independently, i.e., ρei ¼ 0, we find that the increase in
variability due to input synchrony Δρe=i ¼ V ½V&jρei¼0 −
V ½V&jρe=i¼ρei¼0 satisfies

Δρe=i ≃
ρeðKe − 1ÞKerew2

eðVe − E½V&Þ2

2ð1=τ þ Kerewe þ KiriwiÞ

þ ρiðKi − 1ÞKiriw2
i ðVi − E½V&Þ2

2ð1=τ þ Kerewe þ KiriwiÞ
: ð20Þ

The above relation follows from the fact that the small-
weight approximation for E½V& is independent of correla-
tions and from neglecting the exponential corrections due
to the nonzero size of the synaptic weights. The above
formula remains valid as long as the correlations ρe and ρi
are weak enough so that the aggregate weights satisfy
kewe; kiwi < 1 with probability close to one. To inspect
the relevance of exponential corrections, we estimate in
Appendix N the error incurred by neglecting exponential
corrections. Focusing on the case of excitatory inputs, we
find that, for correlation coefficients ρe ≤ 0.05, neglecting
exponential corrections incurs less than a 3% error if the
number of inputs is smaller than Ke ≤ 1000 for moderate
synaptic weight we ¼ 0.001 or than Ke ≤ 100 for large
synaptic weight we ¼ 0.01.

E. Including correlations between excitation and
inhibition reduces subthreshold variability

The voltage variance estimated for realistic excitatory
and inhibitory correlations, e.g., ρe ¼ ρi ¼ 0.03 and
ρei ¼ 0, exceeds the typical levels measured in vivo, i.e.,
4–9 mV2, for large synaptic weights. The inclusion of
correlations between excitation and inhibition, i.e., ρei > 0,
can reduce the voltage variance to more realistic levels. We
confirm this point in Fig. 10, where we consider the cases
of moderate weights we ¼ 0.001 and we ¼ 0.004 and large
weights we ¼ 0.01 and wi ¼ 0.04 as in Fig. 9 but for
ρe ¼ ρi ¼ ρei ¼ 0.03. Positive cross-correlation between
excitation and inhibition only marginally impacts the mean
voltage response. This is due to the fact that exponential

corrections become slightly more relevant as the presence
of cross-correlation leads to larger aggregate weights:
We þWi with We and Wi possibly being jointly positive.
By contrast with this marginal impact on the mean
response, the voltage variance is significantly reduced
when excitation and inhibition are correlated. This is in
keeping with the intuition that the net effect of such cross-
correlation is to cancel excitatory and inhibitory synaptic
inputs with one another, before they can cause voltage
fluctuations. The amount by which the voltage variance is
reduced can be quantified in the small-weight approxima-
tion. In this approximation, we show in Appendix M that
the efficacy cei capturing the impact of cross-correlations
simplifies to

cei ≃
bτ
2
Eei½WeWi& ¼ ðρei

ffiffiffiffiffiffiffiffi
reri

p
τ=2ÞðKeweÞðKiwiÞ:

Using the above simplified expression and invoking the fact
that the small-weight approximation for E½V& is indepen-
dent of correlations, we show a decrease in the amount
Δρei ¼ V ½V& − V ½V&jρei¼0 with
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FIG. 10. Voltage mean and variance in the presence of
excitatory and inhibitory input correlations and with correlation
across excitation and inhibition: ρe ¼ ρi ¼ ρei > 0. Column
(a) depicts the stationary subthreshold response of an AONCB
neuron driven by Ke ¼ 100 and Ki ¼ 25 synapses with large
weights we ¼ 0.01 and wi ¼ 0.04. Column (b) depicts the
stationary subthreshold response of an AONCB neuron driven
by Ke ¼ 103 and Ki ¼ 250 synapses with moderate dimension-
less weights we ¼ 0.001 and wi ¼ 0.004. For synaptic weights
we; wi ≪ 1, the mean response is identical as Kewe ¼ Kiwi ¼ 1
for (a) and (b). Compared with the case of no cross-correlation in
Fig. 9, for ρe ¼ ρi ¼ ρei ¼ 0.03, the variance is reduced to a
biophysical range similar to that experimentally observed
(4–9 mV2) for moderate weights as shown in (a), as well as
for large weights as shown in (b).
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Δρei ≃ −
ρei

ffiffiffiffiffiffiffiffi
reri

p ðKeweÞðKiwiÞðVe − E½V&ÞðE½V& − ViÞ
1=τ þ Kerewe þ Kiriwi

≤ 0: ð21Þ

Despite the above reduction in variance, we also show in
Appendix M that positive input correlations always cause
an overall increase of neural variability:

0 ≤ V ½V&jρe=i¼ρei¼0 ≤ V ½V& ≤ V ½V&jρei¼0:

Note that the reduction of variability due to ρei > 0
crucially depends on the instantaneous nature of correla-
tions between excitation and inhibition. To see this, observe
that Marcus rule Eq. (13) specifies instantaneous jumps via
a weighted average of the reversal potentials Ve and Vi,
which represent extreme values for voltage updates. Thus,
perfectly synchronous excitation and inhibition updates the
voltage toward an intermediary value rather than extreme
ones, leading to smaller jumps on average. Such an effect
can vanish or even reverse when synchrony breaks down,
e.g., when inhibition substantially lags behind excitation.

F. Asynchronous scaling limits require fixed-size
synaptic weights

Our analysis reveals that the correlations must signifi-
cantly impact thevoltagevariabilitywhenever the number of
inputs is such that Ke > 1=ρe or Ki > 1=ρi. Spiking
correlations are typically measured in vivo to be larger than
0.01. Therefore, synchrony must shape the response of
neurons that are driven by more than 100 active inputs,
which is presumably allowed by the typically high number
of synaptic contacts (≃104) in the cortex [13]. In practice, we
find that synchrony can explain the relatively high level of
neural variability observed in the subthreshold neuronal
responses. Beyond these practical findings, we predict that
input synchrony also has significant theoretical implications
with respect to modeling spiking networks. Analytically
tractable models for cortical activity are generally obtained
by considering spiking networks in the infinite-size limit.
Such infinite-size networks are tractable, because the
neurons they comprise interact only via population aver-
ages, erasing any role for nonzero correlation structure.
Distinct mean-field models assume that synaptic weights
vanish according to distinct scalings with respect to the
number of synapses, i.e., we=i → 0 as Ke=i → ∞. In par-
ticular, classical mean-field limits consider the scaling
we=i ∼ 1=Ke=i, balanced mean-field limits consider the
scaling we=i ∼ 1=

ffiffiffiffiffiffiffiffiffi
Ke=i

p
, with Kewe − Kiwi ¼ Oð1Þ, and

strong coupling limits consider the scalingwe=i ∼ 1= lnKe=i,
with Kewe − Kiwi ¼ Oð1Þ as well.
Our analysis of AONCB neurons shows that the neglect

of synchrony-based correlations is incompatible with
the maintenance of neural variability in the infinite-size
limit. Indeed, Eq. (20) shows that for any scaling with

1=we ¼ oðKeÞ and 1=wi ¼ oðKiÞ, as for all the mean-field
limits mentioned above, we have

V ½V& ¼ OðweÞ þOðwiÞ⟶
Ke;Ki→∞

0:

Thus, in the absence of correlation and independent of the
synaptic weight scaling, the subthreshold voltage variance of
AONCB neurons must vanish in the limit of arbitrary large
numbers of synapses. We expect such decay of the voltage
variability to be characteristic of conductance-based models
in the absence of input correlation. Indeed, dimensional
analysis suggests that voltage variances for both current-
based and conductance-based models are generically
obtained via normalization by the reciprocal of the mem-
brane time constant.However, by contrastwith current-based
models, the reciprocal of the membrane time constant for
conductance-based models, i.e., 1=τ þ Kewere þ Kiwiri,
involves contributions from synaptic conductances. Thus,
to ensure nonzero asymptotic variability, the denominator
scaling OðKeweÞ þOðKiwiÞ must be balanced by the
natural scaling of the Poissonian input drives, i.e.,
OðKew2

eÞ þOðKiw2
i Þ. In the absence of input correlations,

this is possible only for fixed-size weights, which is
incompatible with any scaling assumptions.

G. Synchrony allows for variability-preserving
scaling limits with vanishing weights

Infinite-size networks with fixed-size synaptic weights
are problematic for restricting modeled neurons to operate
in the high-conductance regime, whereby the intrinsic
conductance properties of the cell play no role. Such a
regime is biophysically unrealistic, as it implies that the cell
would respond to perturbations infinitely fast. We propose
to address this issue by considering a new type of
variability-preserving limit models obtained for the
classical scaling but in the presence of synchrony-based
correlations. For simplicity, let us consider our correlated
input model with excitation alone in the limit of an arbitrary
large number of inputs Ke → ∞. When ρe > 0, the small-
weight approximation Eq. (20) suggests that adopting the
scaling we ∼Ωe=Ke, where Ωe denotes the aggregate
synaptic weight, yields a nonzero contribution when Ke →
∞ as the numerator scales asOðK2

ew2
eÞ. It turns out that this

choice can be shown to be valid without resorting to any
approximations. Indeed, under the classical scaling
assumption, we show in Appendix O that the discrete
jump distribution pe;k weakly converges to the continuous
density dνe=dw in the sense that

be
XKe

k¼1

pe;kδ

"
w
Ωe

−
k
Ke

#
dw⟶

Ke→∞

νeðdwÞ ¼
reβe
w

"
1 −

We

w

#
βe−1

dw: ð22Þ
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The above density has infinite mass over ½0;Ωe& owing to
its diverging behavior in zero and is referred to as a
degenerate beta distribution. In spite of its degenerate
nature, it is known that densities of the above form define
well-posed processes, the so-called beta processes, which
have been studied extensively in the field of nonparametric
Bayesian inference [61,62]. These beta processes represent
generalizations of our compound Poisson process drives
insofar as they allow for a countable infinity of jumps to
occur within a finite time window. This is a natural
requirement to impose when considering an infinite pool
of synchronous synaptic inputs, the overwhelming majority
of which having nearly zero amplitude.
The above arguments show that one can define a gener-

alized class of synchronous inputmodels that can serve as the
drive of AONCB neurons as well. Such generalizations are
obtained as limits of compound Poisson processes and are
specified via their Lévy-Khintchine measures, which for-
malize the role of νe [78,79]. Our results naturally extend to
this generalized class. Concretely, for excitation alone, our
results extend by replacing all expectations of the form
beEe½·& by integral with respect to the measure νe. One can
easily check that these expectations, which feature promi-
nently in the definition of the various synaptic efficacies, all
remain finite for Lévy-Khintchine measures. In particular,
the voltage mean and variance of AONCB neurons remain
finite with

E½V& ¼
Ve

RΩe
0 ð1 − e−wÞνeðdwÞ

1=τ þ
RΩe
0 ð1 − e−wÞνeðdwÞ

;

V ½V& ¼
ðVe − E½V&Þ2

RΩe
0 ð1 − e−wÞ2νeðdwÞ

2=τ þ
RΩe
0 ð1 − e−2wÞνeðdwÞ

:

Thus, considering the classical scaling limit we ∝ 1=Ke
preserves nonzero subthreshold variability in the infinite size
limitKe → ∞ as long as νe putsmass away fromzero, i.e., for
βe < ∞ ⇔ ρe > 0. Furthermore, we show in Appendix O
that V ½V& ¼ OðρeÞ so that voltage variability consistently
vanishes in the absence of spiking correlation, for which νϵ
concentrates in zero, i.e., when βe→∞⇔ρe¼0.

IV. DISCUSSION

A. Synchrony modeling

We have presented a parametric representation of the
neuronal drives resulting from a finite number of asyn-
chronous or (weakly) synchronous synaptic inputs. Several
parametric statistical models have been proposed for
generating correlated spiking activities in a discrete setting
[59,80–82]. Such models have been used to analyze the
activity of neural populations via Bayesian inference
methods [83–85], as well as maximum entropy methods
[86,87]. Our approach is not to simulate or analyze
complex neural dependencies but rather to derive from

first principles the synchronous input models that could
drive conductance-based neuronal models. This approach
primarily relies on extending the definition of discrete-
time correlated spiking models akin to Ref. [59] to the
continuous-time setting. To do so, the main tenet of our
approach is to realize that input synchrony and spiking
correlation represent equivalent measures under the
assumption of input exchangeability.
Input exchangeability posits that the driving inputs form a

subset of an arbitrarily large pool of exchangeable random
variables [55,56]. In particular, this implies that the main
determinant of the neuronal drive is the number of active
inputs, as opposed to themagnitude of these synaptic inputs.
Then, the de Finetti theorem [57] states that the probability
of observing a given input configuration can be represented
in the discrete setting under an integral form [see Eq. (3)]
involving a directing probability measure F. Intuitively, F
represents the probability distribution of the fraction of
coactivating inputs at any discrete time. Our approach
identifies the directing measure F as a free parameter that
captures input synchrony. The more dispersed the distribu-
tionF, themore synchronous the inputs, as previously noted
in Refs. [88,89]. Our work elaborates on this observation to
develop computationally tractable statistical models for
synchronous spiking in the continuous-time limit, i.e., for
vanishing discrete time step Δt → 0þ.
We derive our results using a discrete-time directing

measure chosen as beta distribution F ∼ Bðα; βÞ, where the
parameters α and β can be related to the individual spiking
rate r and the spiking correlation ρvia rΔt ¼ α=ðαþ βÞ and
ρ ¼ 1=ð1þ αþ βÞ. For this specific choice of distribution,
we are able to construct statistical models of the correlated
spiking activity as generalized beta-binomial processes [60],
which play an important role in statistical Bayesian infer-
ence [61,62]. This construction allows us to fully para-
metrize the synchronous activity of a finite number of inputs
via the jump distribution of a compound Poisson process,
which depends explicitly on the spiking correlation. For
being continuously indexed in time, stationary compound
Poisson processes can naturally serve as the drive to
biophysically relevant neuronal models. The idea to utilize
compound Poisson processes to model input synchrony was
originally proposed in Refs. [90–92] but without construct-
ing these processes as limits of discrete spiking models and
without providing explicit functional form for their jump
distributions. More generally, our synchrony modeling can
be interpreted as a limit case of the formalism proposed in
Refs. [93,94] to model correlated spiking activity via
multidimensional Poisson processes.

B. Moment analysis

We analytically characterize the subthreshold variability
of a tractable conductance-based neuronal model, the
AONCB neurons, when driven by synchronous synaptic
inputs. The analytical characterization of a neuron’s voltage
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fluctuations has been the focus of intense research
[46,47,95–97]. These attempts have considered neuronal
models that already incorporate some diffusion scaling
hypotheses [98,99], formally obtained by assuming an
infinite number of synaptic inputs. The primary benefit
of these diffusion approximations is that one can treat the
corresponding Fokker-Planck equations to quantify neuro-
nal variability in conductance-based integrate-and-fire
models while also including the effect of postspiking reset
[37,38]. In practice, subthreshold variability is often esti-
mated in the effective-time-constant approximation, while
neglecting the multiplicative noise contributions due to
voltage-dependent membrane fluctuations [46,95,96],
although an exact treatment is also possible without this
simplifying assumption [38]. By contrast, the analysis of
conductance-based models has resisted exact treatments
when driven by shot noise, as for compound Poisson input
processes, rather than by Gaussian white noise, as in the
diffusion approximation [41–43].
The exact treatment of shot-noise-driven neuronal

dynamics is primarily hindered by the limitations of the
Itô-Stratonovich integrals [65,100] to capture the effects of
point-process-based noise sources, even without including
a reset mechanism. These limitations were originally
identified by Marcus, who proposed to approach the
problem via a new type of stochastic equation [44,45].
The key to the Marcus equation is to define shot noise as
limits of regularized, well-behaved approximations of that
shot noise, for which classical calculus applies [66]. In
practice, these approximations are canonically obtained as
the solutions of shot-noise-driven Langevin equations with
relaxation timescale τs, and shot noise is formally recov-
ered in the limit τs → 0þ. Our assertion here is that all-or-
none conductances implement such a form of shot-noise
regularization for which a natural limiting process can be
defined when synapses operate instantaneously, i.e.,
τs → 0þ. The main difference with the canonical Marcus
approach is that our regularization is all-or-none, substitut-
ing each Dirac delta impulse with a finite steplike impulse
of duration τs and magnitude 1=τs, thereby introducing a
synaptic timescale but without any relaxation mechanism.
The above assertion is the basis for introducing AONCB

neurons, which is supported by our ability to obtain exact
formulas for the first two moments of their stationary
voltage dynamics [see Eqs. (14) and (16)]. For τs > 0, these
moments can be expressed in terms of synaptic efficacies
that take exact but rather intricate integral forms.
Fortunately, these efficacies drastically simplify in the
instantaneous synapse limit τs → 0þ, for which the canoni-
cal shot-noise drive is recovered. These resulting formulas
mirror those obtained in the diffusion and effective-time-
constant approximations [46,47], except that they involve
synaptic efficacies whose expressions are original in three
ways [see Eqs. (15), (G4), (G7), and (G8)]: First, inde-
pendent of input synchrony, these efficacies all have

exponential forms and saturate in the limit of large synaptic
weights. Such saturation is a general characteristic of shot-
noise-driven, continuously relaxing systems [101–103].
Second, these efficacies are defined as expectations with
respect to the jump distribution pei of the driving com-
pound Poisson process [see Eq. (11) and Appendix B].
A nonzero dispersion of pei, indicating that synaptic
activation is truly modeled via random variables We and
Wi, is the hallmark of input synchrony [91,92]. Third, these
efficacies involve the overall rate of synaptic events b [see
Eq. (12)], which also depends on input synchrony. Such
dependence can be naturally understood within the frame-
work of Palm calculus [104], a form of calculus specially
developed for stationary point processes.

C. Biophysical relevance

Our analysis allows us to investigate quantitatively how
subthreshold variability depends on the numbers and
strength of the synaptic contacts. This approach requires
that we infer synaptic weights from the typical peak time
and peak amplitude of the somatic membrane fluctuations
caused by postsynaptic potentials [72,75,76]. Within our
modeling framework, these weights are dimensionless
quantities that we estimate by fitting the AONCB neuronal
response to a single all-or-none synaptic activation at rest.
For biophysically relevant parameters, this yields typically
small synaptic weights in the sense that we; wi ≪ 1. These
small values warrant adopting the small-weight approxi-
mation, for which expressions (14) and (16) simplify.
In the small-weight approximation, the mean voltage

becomes independent of input synchrony, whereas the
simplified voltage variance Eq. (20) depends on input
synchrony only via the spiking correlation coefficients
ρe, ρi, and ρei, as opposed to depending on a full jump
distribution. Spike-count correlations have been experi-
mentally shown to be weak in cortical circuits [10–12], and,
for this reason, most theoretical approaches argued for
asynchronous activity [17,105–109]. A putative role for
synchrony in neural computations remains a matter of
debate [110–112]. In modeled networks, although the tight
balance regime implies asynchronous activity [19–21], the
loosely balanced regime is compatible with the establish-
ment of strong neuronal correlations [22–24]. When
distributed over large networks, weak correlations can still
give rise to precise synchrony, once information is pooled
from a large enough number of synaptic inputs [32,33]. In
this view, and assuming that distinct inputs play compa-
rable roles, correlations measure the propensity of distinct
synaptic inputs impinging on a neuron to coactivate, which
represents a clear form of synchrony. Our analysis shows
that considering synchrony in amounts consistent with the
levels of observed spiking correlation is enough to account
for the surprisingly large magnitude of subthreshold neuro-
nal variability [1,26–28]. In contrast, the asynchronous
regime yields unrealistically low variability, an observation
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that challenges the basis for the asynchronous state
hypothesis.
Recent theoretical works [37,38] have also noted that the

asynchronous state hypothesis seems at odds with certain
features of the cortical activity such as the emergence of
spontaneous activity or the maintenance of significant
average polarization during evoked activity. Zerlaut et al.
have analyzed under which conditions conductance-based
networks can achieve a spectrum of asynchronous states
with realistic neural features. In their work, a key variable
to achieve this spectrum is a strong afferent drive that
modulates a balanced network with moderate recurrent
connections. Moderate recurrent conductances are inferred
from allowing for up to 2 mV somatic deflections at rest,
whereas the afferent drive is provided via even stronger
synaptic conductances that can activate synchronously.
These inferred conductances appear large in light of recent
in vivo measurements [72,75,76], and the corresponding
synaptic weights all satisfy we; wi ≥ 0.01 within our
framework. Correspondingly, the typical connectivity num-
bers considered are small with Ke ¼ 200, Ki ¼ 50 for
recurrent connections, and Ke ¼ 10 for the coactivating
afferent projections. Thus, results from Ref. [37] appear
consistent with our observation that realistic subthreshold
variability can be achieved asynchronously only for a
restricted number of large synaptic weights. Our findings,
however, predict that these results follow from connectivity
sparseness and will not hold in denser networks, for which
the pairwise spiking correlation will exceed the empirical
criteria for asynchrony, e.g., ρe>1=Ke (ρe<0.005≤1=Ke
in Ref. [37]). Sanzeni et al. have pointed out that imple-
menting the effective-time-constant approximation in
conductance-based models suppresses subthreshold vari-
ability, especially in the high-conductance state [77]. As
mentioned here, this suppression causes the voltage vari-
ability to decay asOðweÞ þOðwiÞ in any scaling limit with
vanishing synaptic weights. Sanzeni et al. observe that such
decay is too fast to yield realistic variability for the balanced
scaling, which assumes we ∼ 1=

ffiffiffiffiffiffi
Ke

p
and wi ∼ 1=

ffiffiffiffiffi
Ki

p
. To

remedy this point, these authors propose to adopt a slower
scaling of the weights, i.e., we ∼ 1= lnKe and wi ∼ 1= lnKi,
which can be derived from the principle of rate conservation
in neural networks. Such a scaling is sufficiently slow for
variability to persist in networks with large connectivity
number (≃105). However, as any scaling with vanishing
weights, our exact analysis shows that such scaling must
eventually lead to decaying variability, thereby challenging
the basis for the synchronous state hypothesis.
Both of these studies focus on the network dynamics of

conductance-based networks under the diffusion approx-
imations. Diffusive behaviors rigorously emerge only under
some scaling limit with vanishing weights [98,99]. By
focusing on the single-cell level rather than the network
level, we are able to demonstrate that the effective-time-
constant approximation holds exactly for shot-noise-driven,

conductance-based neurons, without any diffusive approx-
imations. Consequently, suppression of variability must
occur independent of any scaling choice, except in the
presence of input synchrony. Although this observation
poses a serious theoretical challenge to the asynchronous
state hypothesis, observe that it does not invalidate the
practical usefulness of the diffusion approximation. For
instance, we show in Fig. 11 that the mean spiking response
of an a shot-noise-driven AONCB neuron with an integrate-
and-fire mechanism can be satisfactorily captured via the
diffusion approximation. In addition, our analysis allows
one to extend the diffusion approximation to include input
synchrony.

D. Limitations of the approach

A first limitation of our analysis is that we neglect the
spike-generating mechanism as a source of neural variabil-
ity. Most diffusion-based approaches model spike gener-
ation via the integrate-and-fire mechanism, whereby the
membrane voltages reset to fixed value upon reaching a
spike-initiation threshold [37,38,46,47,95–97]. Accounting
for such a mechanism can impact our findings in two ways:
(i) By confining voltage below the spiking threshold, the
spikingmechanismmay suppress themean response enough
for the neuron to operate well in the high-conductance
regime for large input drives. Such a scenario will still
produce exceedingly low variability due to variability
quenching in the high-conductance regime, consistent with
Ref. [1]. (ii) The additional variability due to postspiking
resets may dominate the synaptic variability, so that a large
overall subthreshold variability can be achieved in spite
of low synaptic variability. This possibility also seems
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FIG. 11. Diffusion approximations in the presence of synchrony.
(a) Comparison of an asynchronously driven integrate-and-fire
AONCB neuron (blue trace) with its diffusion approximation
obtained via the effective-time-constant approximation (red trace).
(b) Comparison of a synchronously driven integrate-and-fire
AONCB neuron (blue trace) with its diffusion approximation ob-
tained by our exact analysis (red trace). Parameters: Ke ¼ 1000,
Ki ¼ 350, τ ¼ 15 ms,we ¼ 0.001,wi ¼ 0.004, re ¼ ri ¼ 25 Hz,
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unlikely as dominant yet stereotypical resets would imply a
quasideterministic neural response [71]. Addressing the
above limitations quantitatively requires extending our
exact analysis to include the integrate-and-fire mechanism
using a technique from queueing theory [104]. This is
beyond the scope of this work. We note, however, that
implementing a postspiking reset to a fixed voltage level
yields simulated trajectories that markedly differ from
physiological ones (see Fig. 1), for which the postspiking
voltage varies across conditions [26–28].
A second limitation of our analysis is our assumption of

exchangeability, which is the lens throughwhich we operate
a link between spiking correlations and input drives. Taken
literally, the exchangeability assumption states that synapses
all have a typical strength and that conductance variability
primarily stems from the variable numbers of coactivating
synapses. This is certainly an oversimplification as synapses
exhibit heterogeneity [113], which likely plays a role in
shaping neural variability [114]. Distinguishing between
heterogeneity and correlation contributions, however, is a
fundamentally ambiguous task [115]. For instance, consid-
ering Ke synchronous inputs with weight we at rate be and
with jump probability pe [see Eqs. (5) and (9)] is indis-
tinguishable from considering Ke independent inputs
with heterogeneous weights fwe; 2we;…; Keweg and rates
Kerepe;k. Within our modeling approach, accounting for
synaptic heterogeneity, with dispersed distribution for syn-
aptic weights qeðwÞ, can be done by taking the jump
distribution pe as

peðwÞ ¼
XK

k¼1

qð⋆kÞe ðwÞpe;k;

where qð⋆kÞe refers to the k-fold convolution of qeðwÞ. This
leads to an overdispersion of the jump distribution pe and,
thus, increased subthreshold neural variability. Therefore,
while we have assumed exchangeability, our approach can
accommodate weight heterogeneity. The interpretation of
our results in terms of synchrony rather than heterogeneity is
supported by recent experimental evidence that cortical
response selectivity derives from strength in numbers of
synapses rather than difference in synaptic weights [116].
A third limitation of our analysis is to consider a perfect

form of synchrony, with exactly simultaneous synaptic
activations. Although seemingly unrealistic, we argue that
perfect input synchrony can still yield biologically relevant
estimates of the voltage variability. For instantaneous
synchrony, the empirical spiking correlation is independent
of the timescale over which spikes are counted, i.e.,
ρemp ¼ ρe, as shown in Fig. 12(a) (blue line). This is a
potential problem, because spiking correlations have been
measured to vanish on small timescales in experimental
recordings [117,118]. More realistic input models can be
obtained by jittering instantaneously synchronous spikes.
Such a procedure leads to a general decrease in the

empirical spiking correlations ρempðΔtÞ with spiking cor-
relations over all timescales Δt, including for Δt ¼ 25 ms
[vertical dashed line in Fig. 12(a)], which vanish in the limit
of small timescales Δt → 0 [red, yellow, and purple lines in
Fig. 12(a)]. Analysis of the temporal structure of spiking
correlation in Refs. [117,118] suggests that correlations
ρempðΔtÞ lie within the range 0.01–0.04 forΔt ≃ 25 ms. We
focus on this timescale because it is just larger than the
membrane time constant of the neuron. Then, to achieve
realistic correlations at Δt ≃ 25 ms, the instantaneous
spiking correlation of the unjitterred synchronous input
model, denoted by ρ∞, may be increased. Adopting a
jittering timescale of σJ ¼ 50 ms, Fig. 12(b) shows that
ρempðΔtÞ ≃ 0.03 with Δt ¼ 25 ms for instantaneous spik-
ing correlation ρ∞ within the range 0.2–0.3. Note that, for
very long timescales Δt → ∞, this also implies that the

Bin size (ms)

Sp
ik

in
g 

co
rre

la
tio

n

Sp
ik

in
g 

co
rre

la
tio

n
Vo

lta
ge

 v
ar

ia
nc

e 
(m

V
2 )

Time (s)

Vo
lta

ge
 (m

V)

0 20 40 60 80 100
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

σJ = 0ms
σJ = 10ms
σJ = 25ms
σJ = 50ms

Bin size (ms)
0 20 40 60 80 100

0

0.02

0.04

0.06

0.08

0.1

0.12
 ρ0 = 0.30
 ρ0 = 0.20

Bin size (ms)
0 20 40 60 80 100

0

5

10

15

20

25
σJ = 25 ms
σJ = 50 ms
σJ = 75 ms

0 0.2 0.4 0.6 0.8 1
2

4

6

8

10

12

14

16

18
Instantaneous
Jitter

(a) (b)

(c) (d)

FIG. 12. Impact of jittering synchronous inputs. (a) Effect of
jittering synchronous spike times via independent Gaussian cen-
tered time shifts with varied standard deviation σJ: Without jitter,
spiking correlation is independent of the size of the time bins used
to count spikes (blue trace). Jittering with larger σJ decreases
spiking correlation for all bin sizes, with spiking correlation
vanishing in the limit of small bin sizes. (b) Given a jitter standard
deviation of σJ ¼ 50 ms, one obtains spike-count correlation of
ρðΔtÞ ¼ 0.03 inΔt ¼ 25 ms bins by jittering a synchronous input
with instantaneous correlation of ρe ¼ 0.2–0.3. (c) Comparison of
voltage trace obtainedwith instantaneous synchronous input (blue)
and jittered correlated inputs (red) for σJ ¼ 50 ms. Both types of
input are chosen so that they yield the same spiking correlation of
ρe ¼ ρðΔtÞ ¼ 0.03 with a bin size of Δt ¼ 25 ms. The stationary
distributions are close to identical, leading to less than 1% error in
the variance estimates. (d) Comparison between the voltage
variances of an AONCB neuron driven by realistic synchronous
inputs with various jitters (dashed line) and the voltage variances of
the same AONCB neuron driven by instantaneously synchronous
approximations (solid line). For each σJ, different instantaneous
approximations are obtained for different bin sizes Δt by setting
ρe ¼ ρðΔtÞ for various bin sizes Δt. Good approximations are
consistently obtained forΔt ≃ 25 ms (gray column). Other param-
eters: re ¼ 10 Hz, Ke ¼ 1000, and we ¼ 10−3.
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empirical spiking correlation saturates at ρ∞ ≃ 0.2–0.3,
as reported in Refs. [117,118]. To validate that our
instantaneous model makes realistic prediction about the
subthreshold variability, we simulate AONCB neurons in
response to these jittered synchronous inputs. Figure 12(c)
shows that the resulting stationary voltage distribution (red
histogram) closely follows the distribution obtained by
assuming instantaneous synchrony with ρe chosen such
that ρe ¼ ρempðΔt ¼ 25 msÞ (blue trace and histogram).
Furthermore, we can justify the choice of the timescale
Δt ¼ 25 ms a posteriori. Specifically, in Fig. 12(d), we
consider temporally structured inputs obtained from the
same instantaneous synchrony ρ∞ but for various jittering
timescale σJ. Jittering at larger timescale σJ reduces
synchrony and voltage variance (vertical dashed lines).
We then compare the resulting voltage variance with
perfectly synchronous approximations obtained by match-
ing spike-count correlation at various timescales (our
choice is to match at 25 ms). Figure 12(d) shows that
matching at increasing timescale yields higher variance, but
matching at Δt ≃ 25 ms offers good approximations (gray
square where variances are about the same). Extending our
analytic results to include jittering will require modeling
spiking correlations via multidimensional Poisson proc-
esses rather than via compound Poisson processes [93,94].
However, this is beyond the scope of this work. A
remaining limitation of our synchrony modeling is that
our analysis can account for only non-negative, instanta-
neous correlations between excitation and inhibition, while
in reality such correlations may be negative and are
expected to peak at a nonzero time lag.
A fourth limitation of our analysis is that it is restricted to

a form of synchrony that ignores temporal heterogeneity.
This is a limitation, because a leading hypothesis for the
emergence of variability is that neurons generate spikes
as if through a doubly stochastic process, i.e., as a
Poisson process with temporally fluctuating rate [119].
To better understand this limitation, let us interpret our
exchangeability-based modeling approach within the
framework of doubly stochastic processes [51,52]. This
can be done most conveniently by reasoning on the discrete
correlated spiking model specified by Eq. (3). Specifically,
given fixed bin size Δt > 0, one can interpret the collection
of i.i.d. variables θ ∼ F as an instantaneously fluctuating
rate. In this interpretation, nonzero correlations can be seen
as emerging from a doubly stochastic process for which the
rate fluctuates as uncorrelated noise, i.e., with zero corre-
lation time. This zero correlation time is potentially a
serious limitation, as it has been argued that shared
variability is best modeled by a low-dimensional latent
process evolving with slow, or even smooth, dynamics [82].
Addressing this limitation will require developing limit
spiking model with nonzero correlation time using
probabilistic techniques that are beyond the scope of this
work [56].

A final limitation of our analysis is that it does not
explain the consistent emergence of synchrony in network
dynamics. It remains conceptually unclear how synchrony
can emerge and persist in neural networks that are
fundamentally plagued by noise and exhibit large degrees
of temporal and cellular heterogeneity. It may well be that
carefully taking into account the finite size of networks will
be enough to produce the desired level of synchrony-based
correlation, which is rather weak after all. Still, one would
have to check whether achieving a given degree of
synchrony requires the tuning of certain network features,
such as the degree of shared input or the propensity of
certain recurrent motifs [120] or the relative width of
recurrent connections with respect to feedforward projec-
tions [121]. From a theoretical standpoint, the asynchro-
nous state hypothesis answers the consistency problem by
assuming no spiking correlations and, thus, no synchrony.
One can justify this assumption in idealized mathematical
models by demonstrating the so-called “propagation-of-
chaos” property [122], which rigorously holds for certain
scaling limits with vanishing weights and under the
assumption of exchangeability [107–109]. In this light,
the main theoretical challenge posed by our analysis is
extending the latter exchangeability-based property to
include nonzero correlations [123] and hopefully to char-
acterize irregular synchronous state in some scaling limits.
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APPENDIX A: DISCRETE-TIME
SPIKING CORRELATION

In this appendix, we consider first the discrete-time
version of our model for possibly correlated excitatory
synaptic inputs. In this model, we consider that observing
Ke synaptic inputs during N time steps specifies a f0; 1g-
valued matrix fXk;ig1≤k≤Ke;1≤i≤N , where 1 indicates that an
input is received and 0 indicates an absence of inputs. For
simplicity, we further assume that the inputs are indepen-
dent across time:

P
h
fXk;ig1≤k≤Ke;1≤i≤N

i
¼

YN

i¼1

P
h
fXk;ig1≤k≤Ke

i
;

so that we can drop the time index and consider the
population vector fXkg1≤k≤Ke

. Consequently, given the
individual spiking rate re, we have E½Xk& ¼ P½Xk ¼ 1& ¼
riΔt, whereΔt is the duration of the time step where a spike
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mayormaynot occur.Under the assumption thatfXkg1≤k≤Ke

belongs to an infinitely exchangeable set of random varia-
bles, the de Finetti theorem states that there exists a
probability measure Fe on [0, 1] such that

P
h
fXkg1≤k≤Ke

i
¼

Z YKe

k¼1

θXk
e ð1 − θeÞ1−XkdFeðθeÞ:

Assuming the directing measureFe known, we can compute
the spiking correlation attached to ourmodel. To see this, first
observe that, specifying the above probabilistic model for
Ke ¼ 1, we have

E½Xk& ¼ E½E½Xkjθe&& ¼ E½θe& ¼
Z

θedFeðθeÞ:

Then, using the total law of covariance and specifying the
above probabilistic model for K ¼ 2, we have

C½Xk; Xl& ¼ E½C½Xk; Xljθe&& þ C½E½Xkjθe&;E½Xljθe&&
¼ 1fk¼lgE½V ½Xkjθe&& þ C½θe; θe&
¼ 1fk¼lgE½θeð1 − θeÞ& þ V ½θe&
¼ 1fk¼lgE½θe&ð1 − E½θe&Þ þ 1fk≠lgV ½θe&:

This directly yields that the spiking correlation reads

ρe ¼
C½Xk; Xl&
V ½Xk&

¼ V ½θe&
E½θe&ð1 − E½θe&Þ

: ðA1Þ

The exact same calculations can be performed for the
partially exchangeable case of mixed excitation and inhib-
ition. The assumption of partial exchangeability requires
that, when considered separately, the f0; 1g-valued vectors
fX1;…; XKe

g and fY1;…; YKe
g each belong to an infinitely

exchangeable sequence of random variables. Then, de
Finetti’s theorem states that the probability to find the full
vector of inputs fX1;…; XKe

; Y1;…; YKe
g in any particular

configuration is given by

P½X1;…; XKe
; Y1;…; YKi

&

¼
Z YKe

k¼1

θXk
e ð1− θeÞ1−Xk

YKi

l¼1

θYl
i ð1− θiÞ1−YldFeiðθe;θiÞ;

ðA2Þ

where the directing measure Fei fully parametrizes our
probabilistic model. Performing similar calculations as for
the case of excitation alonewithin this partially exchangeable
setting yields

ρei ¼
C½Xk; Yl&ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V ½Xk&V ½Yl&

p

¼ C½θe; θi&ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½θe&ð1 − E½θe&ÞE½θi&ð1 − E½θi&Þ

p : ðA3Þ

APPENDIX B: COMPOUND POISSON
PROCESSES AS CONTINUOUS-TIME LIMITS

Let us consider the discrete-time model specified by
Eq. (A2), which is obtained under the assumption of partial
infinite exchangeability. Under this assumption, the prob-
ability laws of the inputs are entirely determined by the
distribution of ðke; kiÞ, where ke denotes the number of
active excitatory inputs and ki denotes the number of
inhibitory inputs. This distribution can be computed as

Pei;kl ¼ P½ke ¼ k; ki ¼ l&

¼
"
Ke

k

#"
Ki

l

#Z
θkeð1 − θeÞKe−k

× θlið1 − θiÞKi−ldFeiðθe; θiÞ:

It is convenient to choose the directing measure as beta
distributions, since these are conjugate to the binomial
distributions. Such a choice yields a class of probabilistic
models referred to as beta-binomial models, which have
been studied extensively [61,62]. In this appendix, we
always assume that the marginals Fe and Fi have the form
Fe ∼ Betaðαe; βeÞ and Fi ∼ Betaðαi; βiÞ. Then, direct inte-
grations shows that the marginal distributions for the
number of excitatory inputs and inhibitory inputs are

Pe;k ¼
XKi

l¼0

Pei;kl ¼
"
Ke

k

#
Bðαe þ k; βe þ Ke − kÞ

Bðαe; βeÞ
and

Pi;l ¼
XKe

k¼0

Pei;kl ¼
"
Ki

l

#
Bðαi þ l; βi þ Ki − lÞ

Bðαi; βiÞ
:

Moreover, given individual spiking rates re and ri within a
time step Δt, we have

reΔt ¼ E½Xk& ¼ P½Xk ¼ 1& ¼ E½θe& ¼
αe

αe þ βe
and

riΔt ¼ E½Yl& ¼ P½Yl ¼ 1& ¼ E½θi& ¼
αi

αi þ βi
:

The continuous-time limit is obtained by taking Δt → 0þ,
which implies that the parameters αe and αi jointly vanish.
When αe; αi → 0þ, the beta distributions Fe and Fi become
deficient, and we have Pe;0; Pi;0 → 1. In other words, time
bins of size Δt almost surely have no active inputs in the
limit Δt → 0þ. Actually, one can show that

1 − Pe;0 ∼ ðψðKe þ βeÞ − ψðβeÞÞαe and

1 − Pi;0 ∼ ðψðKi þ βiÞ − ψðβiÞÞαi;

where ψ denotes the digamma function. This indicates in the
limit Δt → 0þ the times at which some excitatory inputs or
some inhibitory inputs are active define a point process.
Moreover, owing to the assumption of independence across
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time, this point process will actually be a Poisson point
process. Specifically, consider a time T > 0 and set Δt ¼
T=N for some large integer N. Define the sequence of times

Te;n ¼
T
N
· inf fi > NTe;n−1=Tjke;i ≥ 1g with

Te;1 ¼
T
N
· inf fi ≥ 0jke;i ≥ 1g;

Ti;n ¼
T
N
· inf fi > NTi;n−1=Tjki;i ≥ 1g with

Ti;1 ¼
T
N
· inf fi ≥ 0jki;i ≥ 1g:

Considered separately, the sequences of times fTe;ngn≥1 and
fTi;ngn≥1 constitute binomial approximations of Poisson
processes which we denote byNe andNi, respectively. It is a
classical result that these limit Poisson processes are recov-
ered exactly when N → ∞ and that their rates are, respec-
tively, given by

be ¼ lim
Δt→0þ

1 − Pe;0

Δt
¼ ðψðKe þ βeÞ − ψðβeÞÞ

"
lim

Δt→0þ

αe
Δt

#

¼ ðψðKe þ βeÞ − ψðβeÞÞβere;

bi ¼ lim
Δt→0þ

1 − Pi;0

Δt
¼ ðψðKi þ βiÞ − ψðβiÞÞ

"
lim

Δt→0þ

αi
Δt

#

¼ ðψðKi þ βiÞ − ψðβiÞÞβiri:

For all integerK>1, the function β ↦ βðψðK þ βÞ − ψðβÞÞ
is an increasing analytic functions on the domain Rþ with
range ½1; K&. Thus, we always have re ≤ be ≤ Kere and
ri ≤ bi ≤ Kiri, and the extreme cases are achieved for
perfect or zero correlations. Perfect correlations are achieved
when ρe ¼ 1 or ρi ¼ 1, which corresponds to βe → 0 or
βi → 0. This implies thatbe ¼ re andbi ¼ ri, consistentwith
all synapses activating simultaneously. Zero correlations are
achieved when ρe ¼ 0 or ρi ¼ 0, which corresponds to
βe → ∞ or βi → ∞. This implies that be ¼ Kere and
bi ¼ Kiri, consistent with all synapses activating asynchro-
nously, so that no inputs simultaneously activate. Observe
that, in all generality, the ratesbe andbi are such that themean
number of spikes over the duration T is conserved in the limit
Δt → 0þ. For instance, one can check that

KereT ¼ E
& X

Te;n≤T
ke;NTe;n=T

'
¼ E

&XNeðTÞ

n¼1

ke;n

'

¼ E½NeðTÞ&E½ke& ¼ beTE½ke&:

When excitation and inhibition are considered sepa-
rately, the limit process Δt → 0þ specifies two compound
Poisson processes:

t ↦
XNeðtÞ

n¼1

ke;n and t ↦
XNiðtÞ

n¼1

ki;n;

where Ne and Ni are Poisson processes with rate be and bi
and where fke;ngn≥1 are i.i.d. according to pe and fke;ngn≥1
are i.i.d. according to pi. Nonzero correlations between
excitation and inhibition emerge when the Poisson proc-
esses Ne and Ni are not independent. This corresponds to
the processes Ne and Ni sharing times, so excitation and
inhibition occur simultaneously at these times. To under-
stand this point intuitively, let us consider the limit Poisson
process N obtained by considering synaptic events without
distinguishing excitation and inhibition. For perfect corre-
lation, i.e., ρei ¼ 1, all synapses activate synchronously and
we have N ¼ Ne ¼ Ni: All times are shared. By contrast,
for zero correlation, i.e., ρei ¼ 0, no synapses activate
simultaneously and we have N ¼ Ne þ Ni: No times are
shared. For the intermediary regime of correlations, a
nonzero fraction of times are shared, resulting in a
driving Poisson process N with overall rate b satisfying
minðbe; biÞ ≤ b < be þ bi. We investigate the above intui-
tive statements quantitatively in Appendix D by inspecting
two key examples.
Let us conclude this appendix by recapitulating the

general form of the limit compound process Z obtained
in the continuous-time limit Δt → 0þ when jointly con-
sidering excitation and inhibition. This compound Poisson
process can be represented as

t ↦ ZðtÞ ¼
"XNðtÞ

n

We;n;
XNðtÞ

n

Wi;n

#
;

where N is that Poisson process registering all synaptic
events without distinguishing excitation and inhibition and
where the pairs ðWe;n;Wi;nÞ are i.i.d. random jumps in
R ×Rnf0; 0g. Formally, such a process is specified by the
rate of N, denoted by b, and the bivariate distribution of the
jumps ðWe;n;Wi;nÞ, denoted by pei. These are defined as

b ¼ lim
Δt→0þ

1 − Pei;00

Δt
and

pei;kl ¼ lim
Δt→0þ

Pei;kl

1 − Pei;00
for ðk; lÞ ≠ ð0; 0Þ; ðB1Þ

where Pei;00 is the probability to register no synaptic
activation during a time step Δt. According to these
definitions, b is the infinitesimal likelihood that an input
is active within a time bin, whereas pei is the probability
that k excitatory inputs and l inhibitory inputs are active
given that at least one input is active. One can similarly
define the excitatory and inhibitory rates of events be and
bi, as well as the excitatory jump distribution pe and the
inhibitory jump distribution pi;l. Specifically, we have
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be¼ lim
Δt→0þ

1−Pe;0

Δt
and pe;k¼ lim

Δt→0þ

Pe;k

1−Pe;0
for k≠0;

bi¼ lim
Δt→0þ

1−Pi;0

Δt
and pi;l¼ lim

Δt→0þ

Pi;l

1−Pi;0
for l≠0; ðB2Þ

with Pe;k ¼
PKi

l¼0 Pei;k;l and Pi;k ¼
PKe

k¼0 Pei;k;l. Observe
that, thus defined, the jump distributions pe and pi are
specified as conditional marginal distributions of the joint
jump distribution pei on the events fke > 0g and fki > 0g,
respectively. These are such that pe;k ¼ ðb=beÞ

PKi
l¼0 pei;kl

and pi;l ¼ ðb=biÞ
PKe

k¼0 pei;kl. To see why, observe, for
instance, that

pe;k¼ lim
Δt→0þ

Pe;k

1−Pe;0
¼ lim

Δt→0þ

XKi

l¼0

Pei;kl

1−Pei;00

1−Pei;00

1−Pe;0

¼
"XKi

l¼0

pei;kl

#"
lim

Δt→0þ

1−Pei;00

1−Pe;0

#
¼ b
be

XKi

l¼0

pei;kl; ðB3Þ

where we use the definitions of the rates b and be given in
Eqs. (B1) and (B2) to establish that

lim
Δt→0þ

1 − Pei;00

1 − Pe;0
¼

limΔt→0þð1 − Pei;00Þ=Δt
limΔt→0þð1 − Pe;0Þ=Δt

¼ b
be

:

APPENDIX C: CONTINUOUS-TIME
SPIKING CORRELATION

Equations (A1) and (A3) carry over to the continuous
time limit Δt → 0þ by observing that, for limit compound
Poisson processes to emerge, one must have that E½Xk& ¼
E½θe& ¼ OðΔtÞ and E½Yl& ¼ E½θi& ¼ OðΔtÞ. This directly
implies that, when Δt → 0þ, we have

ρe¼
C½Xk;Xl&
V ½Xk&

∼
E½XkXl&
E½X2

k&
¼E½XkXl&

E½Xk&
and

ρei¼
C½Xk;Yl&ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V ½Xk&V ½Yl&

p ∼
E½XkYl&ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½X2

k&E½Y2
l &

q ¼ E½XkYl&ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½Xk&E½Yl&

p : ðC1Þ

All the stationary expectations appearing above can be
computed via the jump distribution of the limit point
process emerging in the limit Δt → 0þ [104]. Because
this limit process is a compound Poisson process with dis-
crete bivariate jumps, the resulting jump distribution pei is
specified over f1;…; Keg × f1;…; Kignf0; 0g. Denoting
by b the overall rate of synaptic events, one has
limΔt→0þ E½XkYl&=Δt ¼ bEei½XkYl&. Then, by partial
exchangeability of the f0; 1g-valued population vectors
fXkg1≤k≤Ke

and fYlg1≤l≤Ki
, we have

Eei½XkYl& ¼ Eei½E½XkYljðke; kiÞ&& ¼ Eei

&
ke
Ke

ki
Ki

'

¼
XKe

k¼0

XKi

l¼0

k
Ke

l
Ki

pei;kl ¼
Eei½keki&
KeKi

; ðC2Þ

where the bivariate jump ðke; kiÞ is distributed as pei.
To further proceed, it is important to note the relation

between the expectation Eei½·&, which is tied to the overall
input process with rate b, and the expectation Ee½·&, which is
tied to the excitatory input process with rate be. This
relation is best captured by remarking that pe are not
defined as the marginals of pei but only as conditional
marginals on fke > 0g. In other words, we have pe;k ¼
ðb=beÞ

PKi
l¼0 pei;kl, which implies that bEei½XkXl& ¼

beEe½XkXl& and E½Xk& ¼ bEei½Xk& ¼ beEe½Xk& with

Ee½XkXl& ¼ Ee½E½XkXljke&& ¼ Ee

&
keðke − 1Þ
KeðKe − 1Þ

'

¼
XKe

k¼0

kðk − 1Þ
KeðKe − 1Þ

pe;k ¼
Ee½keðke − 1Þ&
KeðKe − 1Þ

; ðC3Þ

Ee½Xk& ¼ Ee½E½Xkjke&& ¼ Ee

&
ke
Ke

'

¼
XKe

k¼0

XKi

l¼0

k
Ke

pe;k ¼
Ee½ke&
Ke

; ðC4Þ

with similar expressions for the inhibition-related quan-
tities. Injecting Eqs. (C2)–(C4) in Eq. (C1) yields

ρe ¼
Ee½keðke − 1Þ&
Ee½ke&ðKe − 1Þ

and

ρei ¼
bEei½keki&ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KebeEe½ke&KibiEi½ki&
p ¼ Eei½keki&ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KeEei½ke&KiEei½ki&
p :

APPENDIX D: TWO EXAMPLES OF LIMIT
COMPOUND POISSON PROCESSES

The probability Pei;00 that plays a central role in
Appendix B can be easily computed for zero correlation,
i.e., ρei ¼ 0, by considering a directing measure under
product form Feiðθe; θiÞ ¼ FeðθeÞFiðθiÞ. Then, integration
with respect to the separable variables θe and θi yields

Pei;kl ¼ Pe;kPi;l

¼
"
Ke

k

#
Bðαe þ k; βe þ Ke − kÞ

Bðαe; βeÞ

×
"
Ki

l

#
Bðαi þ l; βi þ Ki − lÞ

Bðαi; βiÞ
:
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In turn, the limit compound Poisson process can be obtain
in the limit Δt → 0þ by observing that

1 − Pe;0 ¼ beΔtþ oðΔtÞ;
1 − Pe;0Pi;0 ¼ biΔtþ oðΔtÞ; and

1 − Pe;0Pi;0 ¼ ðbe þ biÞΔtþ oðΔtÞ;

which implies that the overall rate is determined as
b¼ limΔt→0þð1−Pe;0Pi;0Þ=Δt¼ be þ bi, as expected. To
characterize the limit compound Poisson process, it
remains to exhibit pei;kl, the distribution of the jumps ke
and ki. Suppose that k ≥ 1; then, we have

pei;kl ¼ lim
Δt→0þ

Pe;kPi;l

1−Pe;0Pi;0

¼ lim
Δt→0þ

&"
1−Pe;0

1−Pe;0Pi;0

#
Pi;l

"
Pe;k

1−Pe;0

#'

¼
"

lim
Δt→0þ

1−Pe;0

1−Pe;0Pi;0

#"
lim

Δt→0þ
Pi;l

#"
lim

Δt→0þ

Pe;k

1−Pe;0

#
:

Then, one can use the limit behaviors

lim
Δt→0þ

1 − Pe;0

1 − Pe;0Pi;0
¼ be

be þ bi
and lim

Δt→0þ
Pi;l ¼ 1fl¼0g;

so that, for k ≥ 1, we have

pei;kl ¼
be

be þ bi
1fl¼0gpe;k with

pe;k ¼ lim
Δt→0þ

Pe;k

1 − Pe;0
¼

"
Ke

k

#
Bðk; βe þ Ke − kÞ
ψðKe þ βeÞ − ψðβÞ

:

A similar calculation shows that, for all l ≥ 1, we
have pei;kl ¼ bi=ðbe þ biÞ1fk¼0gpi;l. Thus, pei;kl ¼ 0

whenever k, l ≥ 1, so that the support of pei;kl is
f1;…; Keg × f0g ∪ f0g × f1;…; Kig. This is consistent
with the intuition that excitation and inhibition happen at
distinct times in the absence of correlations.
Let us now consider the case of maximum correlation for

Fe ¼ Fi ¼ F, where F is a beta distribution with param-
eters α and β. Moreover, let us assume the deterministic
coupling θe ¼ θi such that Feiðθe; θiÞ ¼ FðθeÞδðθi − θeÞ.
Then, the joint distribution of the jumps ðke; kiÞ can be
evaluated via direct integration as

Pei;kl ¼
"
Ke

k

#"
Ki

l

# Z
θkeð1 − θeÞKe−k

× θleð1 − θiÞKi−ldFðθeÞδðθi − θeÞ

¼
"
Ke

k

#"
Ki

l

# Z
θkþlð1 − θÞKeþKi−k−ldFðθÞ

¼
"
Ke

k

#"
Ki

l

#
Bðαþ kþ l; β þ Ke þ Ki − k − lÞ

Bðα; βÞ
:

As excitation and inhibition are captured separately by the
same marginal functions Fe ¼ Fi ¼ F, we necessarily
have α=ðαþ βÞ ¼ E½Xk& ¼ E½Yl& ¼ reΔt ¼ riΔt, and we
refer to the common spiking rate as r. Then, the overall rate
of synaptic events is obtained as

b ¼ lim
Δt→0þ

1 − Pei;00

Δt
¼ lim

α→0þ

1 − Pei;00

α
lim

Δt→0þ

α
Δt

¼ ðψðKe þ Ki þ βÞ − ψðβÞÞβr; ðD1Þ

and one can check that b differs from the excitatory- and
inhibitory-specific rates be and bi, which satisfy

be ¼ lim
Δt→0þ

1 − Pe;0

Δt
¼ ðψðKe þ βÞ − ψðβÞÞβr and

bi ¼ lim
Δt→0þ

1 − Pi;0

Δt
¼ ðψðKi þ βÞ − ψðβÞÞβr: ðD2Þ

To characterize the limit compound Poisson process, it
remains to exhibit pei;kl, the joint distribution of the jumps
ðke; kiÞ. A similar calculation as for the case of excitation
alone yields

pei;kl ¼ lim
Δt→0þ

Pei;kl

1 − Pei;00

¼
"
Ke

k

#"
Ki

l

#
Bðkþ l; β þ Ke þ Ki − k − lÞ

ψðKe þ Ki þ βÞ − ψðβÞ
:

Remember that, within our model, spiking correlations do
not depend on the number of neurons and that by
construction we have ρei ≤

ffiffiffiffiffiffiffiffi
ρeρi

p
. Thus, for the symmetric

case under consideration, maximum correlation corre-
sponds to ρei ¼ ρe ¼ ρi ¼ 1=ð1þ βÞ. In particular, perfect
correlation between excitation and inhibition can be
attained only for β → 0. When β > 0, i.e., for partial
correlations, the Poisson processes Ne and Ni share only
a fraction of their times, yielding an aggregate Poisson
process N such that minðbe; biÞ < b < be þ bi. The rela-
tions between b, be, and bi can be directly recovered from
the knowledge of pei by observing that
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P½ke ¼ 0; ki > 0& ¼
XKi

l¼1

pei;0l ¼
ψðKe þ Ki þ βÞ − ψðKe þ βÞ

ψðKe þ Ki þ βÞ − ψðβÞ
;

P½ki ¼ 0; ke > 0& ¼
XKe

k¼1

pei;k0 ¼
ψðKe þ Ki þ βÞ − ψðKi þ βÞ

ψðKe þ Ki þ βÞ − ψðβÞ
;

P½ki > 0; ke > 0& ¼
XKe

k¼1

XKi

l¼1

pei;kl ¼ 1 −
2ψðKe þ Ki þ βÞ − ψðKe þ βÞ − ψðKi þ βÞ

ψðKe þ Ki þ βÞ − ψðβÞ
:

This implies that the fraction of times with nonzero
excitation is given by

P½ke > 0& ¼ P½ke > 0; ki ¼ 0& þ P0½ke > 0; ki > 0&

¼ ψðKe þ βÞ − ψðβÞ
ψðKe þ Ki þ βÞ − ψðβÞ

;

so that we consistently recover the value of be already
obtained in Eqs. (9) and (D2) via

beT ¼ E½NeðTÞ& ¼ E½1fke>0gNðTÞ& ¼ bTEei½1fke>0g&
¼ bTP0½ke > 0&:

APPENDIX E: MARCUS JUMP RULE

The goal of this appendix is to justify the Marcus-type
update rule given in Eq. (13). To do so, let us first remark
that, given a finite time interval ½0; T&, the number of
synaptic activation times fTngn∈Z falling in this interval
is almost surely finite. In particular, we have Δ ¼
inf0≤Tn≠Tm≤T jTn − Tmj > 0 almost surely. Consequently,
taking ϵ < Δ=τs ensures that synaptic activation events
do not overlap in time, so that it is enough to consider a
single synaptic activation triggered with no lack of general-
ity in T0 ¼ 0. Let us denote the voltage just before the
impulse onset as VðT−

0 Þ ¼ V0, which serves as initial
condition for the ensuing voltage dynamics. As the dimen-
sionless conductances remain equals toWe=ϵ andWi=ϵ for
a duration ½0; ϵτ&, the voltage Vϵ satisfies

τV̇ϵ ¼ −Vϵ þ ðWe=ϵÞðVe − VϵÞ
þ ðWi=ϵÞðVi − VϵÞ; 0 ≤ t ≤ ϵτ;

where we assume I ¼ 0 for simplicity. The unique solution
satisfying Vð0−Þ ¼ V0 is

VϵðtÞ¼V0e−t=τð1þWe=ϵþWi=ϵÞ

þWeVeþWiVi

ϵþWeþWi

$
1−e−t=τð1þWe=ϵþWi=ϵÞ

%
; 0≤ t≤ϵτ:

The Marcus-type rule follows from evaluating the jump
update as the limit

lim
ϵ→0þ

VϵðϵτÞ−V0¼ lim
ϵ→0þ

(
V0

$
e−ðϵþWeþWiÞ−1

%

þWeVeþWiVi

ϵþWeþWi

$
1−e−ðϵþWeþWiÞ

%)

¼
"
WeVeþWiVi

WeþWi
−V0

#$
1−e−ðWeþWiÞ

%
;

which has the same form as the rule announced in Eq. (13).
Otherwise, at fixed ϵ > 0, the fraction of time for which
the voltage Vϵ is exponentially relaxing toward the leak
reversal potential VL ¼ 0 is larger than 1 − Nϵ=T, where N
denotes the almost surely finite number of synaptic
activations, which does not depend on ϵ. Thus, the voltage
V ¼ limϵ→0þ Vϵ exponentially relaxes toward VL ¼ 0,
except when it has jump discontinuities in fTngn∈Z.

APPENDIX F: STATIONARY VOLTAGE MEAN

For a positive synaptic activation time t > 0, the classical
method of the variation of the constant applies to solve
Eq. (1). This yields an expression for VϵðtÞ in terms of
regular Riemann-Stieltjes integrals where the conductance
traces heðtÞ and hiðtÞ are treated as a form of deterministic
quenched disorder. Specifically, given an initial condition
Vϵð0Þ, we have

VϵðtÞ ¼ Vϵð0Þe
−
R

t

0
ð1=τÞþheðuÞþhiðuÞdu

þ
Z

t

0
ðVeheðuÞ þ VihiðuÞ þ I=CÞ

× e−
R

t

u
ð1=τÞþheðvÞþhiðvÞdvdu;

where VϵðtÞ depends on ϵ via the all-or-none-conductance
processes he and hi. As usual, the stationary dynamics of
the voltage Vϵ is recovered by considering the limit of
arbitrary large times t → ∞, for which one can neglect the
influence of the initial condition Vϵð0Þ. Introducing the
cumulative input processes H ¼ ðHe;HiÞ defined by

ðHeðtÞ; HiðtÞÞ ¼
"Z

t

0
heðuÞdu;

Z
t

0
hiðuÞdu

#
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and satisfying τdHeðtÞ ¼ heðtÞdt and τdHiðtÞ ¼ hiðtÞdt,
we have

Vϵ¼
Z

0

−∞
eðt=τÞþHeðtÞþHiðtÞ

"
d½VeHeðtÞþViHiðtÞ&þ

I
G
dt
τ

#
:

ðF1Þ

In turn, expanding the integrand above yields the following
expression for the stationary expectation of the voltage:

E½Vϵ& ¼ Ve

Z
0

−∞
eðt=τÞE

h
eHeðtÞþHiðtÞdHeðtÞ

i

þ Vi

Z
0

−∞
eðt=τÞE

h
eHeðtÞþHiðtÞdHiðtÞ

i

þ I
G

Z
0

−∞
eðt=τÞE

h
eHeðtÞþHiðtÞ

i dt
τ
: ðF2Þ

Our primary task is to evaluate the various stationary
expectations appearing in the above formula. Such a goal
can be achieved analytically for AONCB models. As the
involved calculations tend to be cumbersome, we give only
a detailed account in Appendices H and I. Here, we account
for the key steps of the calculation, which ultimately
produces an interpretable compact formula for E½Vϵ& in
the limit of instantaneous synapses, i.e., when ϵ → 0.
In order to establish this compact formula, it is worth

introducing the stationary bivariate function

Qϵðt; sÞ ¼ E
h
eHeðtÞþHiðsÞ

i
; ðF3Þ

which naturally depends on ϵ via HeðtÞ and HiðsÞ. The
function Qϵ is of great interest, because all the stationary
expectations at stake in Eq. (F2) can be derived from it.
Before justifying this point, an important observation is that
the expectation defining Qϵðt; sÞ bears on only the cumu-
lative input processes He and Hi, which specify bounded,
piecewise continuous functions with probability one, in-
dependent of ϵ. As a result of this regular behavior, the
expectation commute with the limit of instantaneous
synapses, allowing one to write

Qðt; sÞ ¼ lim
ϵ→0þ

Qϵðt; sÞ ¼ E
h
elimϵ→0HeðtÞþHiðsÞ

i

¼ E
h
e−ZeðtÞ−ZiðsÞ

i
;

where we exploit the fact that the cumulative input
processes He and Hi converge toward the coupled com-
pound Poisson processes Ze and Zi when ϵ → 0þ:

ZeðtÞ ¼
XNeðtÞ

n

We;n and ZiðtÞ ¼
XNiðtÞ

n

Wi;n: ðF4Þ

The above remark allows one to compute the term due to
current injection I in Eq. (F2), where the expectation can be
identified toQϵðt; tÞ. Indeed, utilizing the standard form for
the moment-generating function for compound Poisson
processes [51], we find that

Qðt; tÞ ¼ eaei;1t=τ;

where we introduce the first-order aggregate efficacy

aei;1 ¼ bτ
"
1 − Eei

h
e−ðWeþWiÞ

i#
:

Remember that, in the above definition, Eei½·& denotes the
expectation with respect to the joint probability of the
conductance jumps, i.e., pei.
It remains to evaluate the expectations associated to

excitation and inhibition reversal potentials in Eq. (F2).
These terms differ from the current-associated term in that
they involve expectations of stochastic integrals with
respect to the cumulative input processes He=i. This is
by contrast with evaluating Eq. (F3), which involves only
expectations of functions that depend on He=i. In principle,
one could still hope to adopt a similar route as for the
current-associated term, exploiting the compound Poisson
process Z obtained in the limit of instantaneous synapses.
However, such an approach would require that the oper-
ations of taking the limit of instantaneous synapses and
evaluating the stationary expectation still commute. This is
a major caveat, as such a commuting relation generally fails
for point-process-based stochastic integrals. Therefore, one
has to analytically evaluate the expectations at stake for
positive synaptic activation time ϵ > 0, without resorting to
the simplifying limit of instantaneous synapses. This
analytical requirement is the primary motivation to consider
AONCB models.
The first step in the calculation is to realize that, for

ϵ > 0, the conductance traces heðtÞ ¼ τdHeðtÞ=dt and
hiðtÞ ¼ τdHiðtÞ=dt are bounded, piecewise continuous
functions with probability one. Under these conditions, it
then holds that

lim
s→t

∂tQϵðt; sÞ ¼ E
&
dHeðtÞ
dt

eHeðtÞþHiðtÞ
'

and

lim
s→t

∂sQϵðt; sÞ ¼ E
&
dHiðtÞ
dt

eHeðtÞþHiðtÞ
'
;

so that the sought-after expectations can be deduced from
the closed-form knowledge of Qϵðt; sÞ for positive ϵ > 0.
The analytical expression of Qϵðt; sÞ can be obtained via
careful manipulation of the processesHe andHi featured in
the exponent in Eq. (F3) (see Appendix H). In a nutshell,
these manipulations hinge on splitting the integrals defining
HeðtÞ and HiðsÞ into independent contributions arising
from spiking events occurring in the five nonoverlapping,
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contiguous intervals bounded by the times 0 ≥ −ϵτ ≥ t ≥
s ≥ t − ϵτ ≥ s − ϵτ. There is no loss of generality in
assuming the latter ordering, and, from the corresponding
analytical expression, we can compute

lim
ϵ→0þ

lim
s→t

∂tQϵðt; sÞ ¼ bae;1eaei;1t=τ and

lim
ϵ→0þ

lim
s→t

∂sQϵðt; sÞ ¼ bai;1eaei;1t=τ;

where the effective first-order synaptic efficacies via
Eq. (15) as

ae;1 ¼ bτEei

&
We

We þWi

$
1 − e−ðWeþWiÞ

%'
and

ai;1 ¼ bτEei

&
Wi

We þWi

$
1 − e−ðWeþWiÞ

%'
:

Observe that, by definition, ae;1 and ai;1 satisfy
ae;1 þ ai;1 ¼ aei;1.

Altogether, upon evaluation of the integrals featured in
Eq. (F2), these results allow one to produce the compact
expression Eq. (14) for the stationary voltage mean in the
limit of instantaneous synapses:

E½V& ¼ lim
ϵ→0þ

E½Vϵ& ¼
ae;1Ve þ ai;1Vi þ I=G

1þ ae;1 þ ai;1
:

APPENDIX G: STATIONARY
VOLTAGE VARIANCE

The calculation of the stationary voltage variance is more
challenging than that of the stationary voltage mean.
However, in the limit of instantaneous synapses, this
calculation produces a compact, interpretable formula as
well. Adopting a similar approach as for the stationary
mean calculation, we start by expressing V2

ϵ in the sta-
tionary limit in terms of a stochastic integrals involving the
cumulative input processes He and Hi. Specifically, using
Eq. (F1), we have

V2
ϵ ¼

"Z
0

−∞
eðt=τÞþHeðtÞþHiðtÞ

"
d½VeHeðtÞ þ ViHiðtÞ& þ

I
G
dt
τ

##
2

¼
Z Z

R2
−

e½ðtþsÞ=τ&þHeðtÞþHiðtÞþHeðsÞþHiðsÞ
"
d½VeHeðtÞ þ ViHiðtÞ& þ

I
G
dt
τ

#"
d½VeHeðsÞ þ ViHiðsÞ& þ

I
G
ds
τ

#
: ðG1Þ

Our main goal is to compute the stationary expectation of
the above quantity. As for the stationary voltage mean, our
strategy is (i) to derive the exact stationary expectation of
the integrands for finite synaptic activation time, (ii) to
evaluate these integrands in the simplifying limit of
instantaneous synapses, and (iii) to rearrange the terms
obtained after integration into an interpretable final form.
Enacting the above strategy is a rather tedious task, and, as
for the calculation of the mean voltage, we present only the
key steps of the calculation in the following.
The integrand terms at stake are obtained by expanding

Eq. (G1), which yields the following quadratic expression
for the stationary second moment of the voltage:

E½V2
ϵ & ¼ Ae;ϵV2

e þ Bei;ϵVeVi þ Ai;ϵV2
i

þ ðVeBeI;ϵ þ ViBiI;ϵÞðI=GÞ þ AI;ϵðI=GÞ2;

whose various coefficients need to be evaluated. These
coefficients are conveniently specified in terms of the
following symmetric random function:

Eeiðt; sÞ ¼ eHeðtÞþHiðtÞþHeðsÞþHiðsÞ;

which features prominently in Eq. (G1). Moreover, drawing
on the calculation of the stationary mean voltage, we

anticipate that the quadrivariate version of Eeiðt; sÞ will
play a central role in the calculation via its stationary
expectation. Owing to this central role, we denote this
expectation as

Rϵðt; u; s; vÞ ¼ E
h
eHeðtÞþHiðuÞþHeðsÞþHiðvÞ

i
;

where we make the ϵ dependence explicit. As a mere
expectation with respect to the cumulative input processes
ðHe;HiÞ, the expectation can be evaluated in closed form
for AONCB models. This again requires careful manipu-
lations of the processes He and Hi, which need to split into
independent contributions arising from spiking events
occurring in nonoverlapping intervals. By contrast with
the bivariate case, the quadrivariate case requires to con-
sider nine contiguous intervals. There is no loss of general-
ity to consider these interval bounds to be determined by
the two following time orderings:

O order.—0≥−ϵτ≥t≥u≥t−ϵτ≥u−ϵτ≥s≥v≥s−ϵτ≥
v−ϵτ,

D order.—0≥−ϵτ≥t≥u≥s≥v≥t−ϵτ≥u−ϵτ≥s−ϵτ≥
v−ϵτ,

where O stands for off-diagonal ordering and D for
diagonal ordering.

LOGAN A. BECKER et al. PHYS. REV. X 14, 011021 (2024)

011021-28



The reason to consider only theO=D orders is that all the
relevant calculations are made in the limit ðu; vÞ → ðt; sÞ.
By symmetry of Rϵðt; u; s; vÞ, it is then enough to restrict
our consideration to the limit ðu; vÞ → ðt−; s−Þ, which
leaves the choice of t, s ≤ 0 to be determined. By
symmetry, one can always choose t > s, so that the only
remaining alternative is to decide wether ðt; sÞ belong to the
diagonal region Dϵ ¼ ft; s ≤ 0jϵτ ≥ jt − sjg or the off-
diagonal region Oϵ ¼ ft; s ≤ 0jϵτ < jt − sjg. For the sake
of completeness, we give the two expressions of
Rϵðt; u; s; vÞ on the regions Oϵ and Dϵ in Appendix I.
Owing to their tediousness, we do not give the detailed
calculations leading to these expressions, which are lengthy
but straightforward elaborations on those used in
Appendix H. Here, we stress that, for ϵ > 0, these expres-
sions reveal that Rϵðt; u; s; vÞ is defined as a twice-
differentiable quadrivariate function.
With these remarks in mind, the coefficients featured in

Eq. (G2) can be categorized into three classes.
(I) There is a single current-dependent inhomogeneous

coefficient

AI;ϵ ¼
Z Z

R2
−

eðtþsÞ=τE½Eeiðt; sÞ&
dtds
τ2

;

where we recognize that E½Eeiðt;sÞ&¼Rϵðt;t;s;sÞ ¼
def

Rϵðt;sÞ. As Rϵðt; sÞ is merely a stationary expect-
ation with respect to the cumulative input processes
ðHe;HiÞ, it can be directly evaluated in the limit of
instantaneous synapses. In other words, step (ii) can
be performed before step (i), similarly as for the
stationary voltage mean calculation. However, hav-
ing a general analytical expression for Rϵðt; u; s; vÞ
on Oϵ (see Appendix I), we can directly evaluate for
all t ≠ s that

Rðt; sÞ ¼ lim
ϵ→0þ

Rϵðt; sÞ

¼ eð2aei;2 maxðt;sÞ−aei;1jt−sjÞ=τ; ðG2Þ

where we define the second-order aggregate efficacy

aei;2 ¼
bτ
2

"
1 − Eei

h
e−2ðWeþWiÞ

i#
:

It is clear that the continuous functionRðt; sÞ is smooth
everywhere except on the diagonal, where it admits a
slope discontinuity. As we shall see, this slope dis-
continuity is the reason why one needs to consider the
Dϵ region carefully, even when concerned only with
the limit ϵ → 0þ. That being said, the diagonal
behavior plays no role here, and straightforward
integration of Rðt; sÞ on the negative orthant gives

AI ¼ lim
ϵ→0þ

AI;ϵ ¼
1

ð1þ aei;1Þð1þ aei;2Þ
:

(II) There are two current-dependent linear coefficients

BeI;ϵ ¼ 2

Z Z

R2
−

eðtþsÞ=τE½Eeiðt; sÞdHeðtÞ&
ds
τ

and

BiI;ϵ ¼ 2

Z Z

R2
−

eðtþsÞ=τE½Eeiðt; sÞdHiðtÞ&
ds
τ
;

where the coefficient 2 above comes from the
fact that BeI;ϵ and BiI;ϵ are actually resulting from
the contributions of two symmetric terms in the
expansion of Eq. (G1). Both BeI;ϵ and BiI;ϵ involve
expectations of stochastic integrals akin to those
evaluated for the stationary mean calculation. There-
fore, these terms can be treated similarly by imple-
menting steps (i) and (ii) sequentially. The trick is
to realize that, for positive ϵ and t ≠ s ≤ 0, it
holds that

E
&
Eeiðt; sÞ

dHeðtÞ
dt

'
¼ lim

u→t
∂tRϵðt; u; s; sÞ and

E
&
Eeiðt; sÞ

dHiðtÞ
dt

'
¼ lim

v→s
∂sRϵðt; t; s; vÞ:

Thus, for any ðt; sÞ in the off-diagonal region Oϵ, the
analytical knowledgeofRϵðt; u; s; vÞ (seeAppendix I)
allows one to evaluate

lim
u→t−

τ
∂tRϵðt;u;s;sÞ

Rϵðt;sÞ
¼
(
ae;1 if t > s;

ae;2−ae;1 if t < s;
and

lim
v→s−

τ
∂sRϵðt;u;s;sÞ

Rϵðt;sÞ
¼
(
ai;1 if t > s;

ai;2−ai;1 if t < s;
ðG3Þ

where the second-order synaptic efficacies are de-
fined as

ae;2 ¼
bτ
2
Eei

&
We

We þWi

$
1 − e−2ðWeþWiÞ

%'
and

ai;2 ¼
bτ
2
Eei

&
Wi

We þWi

$
1 − e−2ðWeþWiÞ

%'
: ðG4Þ

Observe that these efficacies satisfy the familiar
relation ae;2 þ ai;2 ¼ aei;2. Taking the limits of
Eq. (G3) when ϵ → 0þ specifies two bivariate func-
tions that are continuous everywhere, except on the
diagonal t ¼ s, where these functions present a jump
discontinuity. This behavior is still regular enough
to discard any potential contributions from diagonal
terms, so that we can restrict ourselves to the region
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Oϵ. Then, taking the limit ϵ → 0þ after integration of
over Oϵ, we find that

BeI ¼ lim
ϵ→0þ

BeI;ϵ ¼
ae;2

ð1þ aei;1Þð1þ aei;2Þ
and

BiI ¼ lim
ϵ→0þ

BiI;ϵ ¼
bτai;2

ð1þ aei;1Þð1þ aei;2Þ
:

(III) There are four quadratic coefficients associated to
the reversal potential Ve and Vi, including two
diagonal terms

Ae;ϵ ¼
Z Z

R2
−

eðtþsÞ=τE½Eeiðt; sÞdHeðtÞdHeðsÞ& and

Ai;ϵ ¼
Z Z

R2
−

eðtþsÞ=τE½Eeiðt; sÞdHiðtÞdHiðsÞ&

and two symmetric cross terms contributing

Bei;ϵ ¼ 2

Z Z

R2
−

eðtþsÞ=τE½Eeiðt; sÞdHeðtÞdHiðsÞ&:

Notice that it is enough to compute only one
diagonal term, as the other term can be deduced
by symmetry. Following the same method as for the
linear terms, we start by remarking that, for all ðt; sÞ
in the off-diagonal region Oϵ, it holds that

E
&
Eeiðt; sÞ

dHeðtÞ
dt

dHeðsÞ
ds

'

¼ lim
ðu;vÞ→ðt;sÞ

∂t∂sRϵðt; u; s; vÞ;

E
&
Eeiðt; sÞ

dHeðtÞ
dt

dHiðsÞ
ds

'

¼ lim
ðu;vÞ→ðt;sÞ

∂t∂vRϵðt; u; s; vÞ:

As before, the analytical knowledge of Rϵðt; u; s; vÞ
on the Oϵ region (see Appendix I) allows one to
evaluate

lim
ðu;vÞ→ðt;sÞ−

τ2
∂t∂uRϵðt; u; s; sÞ

Rϵðt; sÞ
¼ ae;1ð2ae;2 − ae;1Þ;

lim
ðu;vÞ→ðt;sÞ−

τ2
∂t∂sRϵðt; u; s; vÞ

Rϵðt; sÞ

¼ 1

2
½ae;1ð2ai;2 − ai;1Þ þ ai;1ð2ae;2 − ae;1Þ&:

The above closed-form expressions allow one to
compute A0

e;ϵ and B0
ei;ϵ, the part of the coefficients

Ae;ϵ and Bei;ϵ resulting from integration over the

off-diagonal region Oϵ, which admit well-defined
limit values A0

e¼ limϵ→0þA0
e;ϵ and B0

ei¼ limϵ→0þB0
ei;ϵ

with

A0
e ¼ lim

ϵ→0þ

Z Z

Oϵ

eðtþsÞ=τE½Eeiðt; sÞdHeðtÞdHeðsÞ&

¼
ae;1ð2ae;2 − ae;1Þ

ð1þ aei;1Þð1þ bτaei;2Þ
;

B0
ei ¼ 2 lim

ϵ→0þ

Z Z

Oϵ

eðtþsÞ=τE½Eeiðt; sÞdHeðtÞdHiðsÞ&

¼
ae;1ð2ai;2 − ai;1Þ þ ai;1ð2ae;2 − ae;1Þ

ð1þ aei;1Þð1þ aei;2Þ
:

However, for quadratic terms, one also needs to
include the contributions arising from the diagonal
region Dϵ, as suggested by the first-order jump
discontinuity of Rðt; sÞ ¼ limϵ→0þ Rϵðt; sÞ on the
diagonal t ¼ s. To confirm this point, one can show
from the analytical expression of Rϵðt; u; s; vÞ onDϵ
(see Appendix I) that all relevant second-order
derivative terms scale as 1=ϵ over Dϵ. This scaling
leads to the nonzero contributions A00

e;ϵ and B00
ei;ϵ

resulting from the integration of these second-order
derivative terms over the diagonal regionDϵ, even in
the limit ϵ → 0þ. Actually, we find that these
contributions also admit well-defined limit values
A00
e ¼ limϵ→0þ A00

e;ϵ and B00
ei ¼ limϵ→0þ B00

ei;ϵ with (see
Appendix J)

A00
e ¼ lim

ϵ→0þ

Z Z

Dϵ

eðtþsÞ=τE½Eeiðt; sÞdHeðtÞdHeðsÞ&

¼ ae;12 − cei
1þ aei;2

; ðG5Þ

B00
ei ¼ 2 lim

ϵ→0þ

Z Z

Dϵ

eðtþsÞ=τE½Eeiðt; sÞdHeðtÞdHiðsÞ&

¼ 2cei
1þ aei;2

: ðG6Þ

Remembering that the expression of A00
i can be

deduced from that of A00
e by symmetry, Eq. (G5)

defines A00
e , and, thus, A00

i , in terms of the useful
auxiliary second-order efficacies ae;12 ¼ ae;1 − ae;2
and ai;12 ¼ ai;1 − ai;2. These efficacies feature
prominently in the final variance expression, and
it is worth mentioning their explicit definitions as

ae;12 ¼
bτ
2
Eei

&
We

We þWi

$
1 − e−ðWeþWiÞ

%
2
'

and

ai;12 ¼
bτ
2
Eei

&
Wi

We þWi

$
1 − e−ðWeþWiÞ

%
2
'
: ðG7Þ
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The other quantity of interest is the coefficient cei,
which appears in both Eqs. (G5) and (G6). This non-
negative coefficient, defined as

cei ¼
bτ
2
Eei

&
WeWi

ðWeþWiÞ2
$
1−e−ðWeþWiÞ

%
2
'
; ðG8Þ

entirely captures the (non-negative) correlation be-
tween excitatory and inhibitory inputs and shall be
seen as an efficacy as well. Keeping these definitions
in mind, the full quadratic coefficients are finally
obtained as Ae ¼ A0

e þ A00
e , Ai ¼ A0

i þ A00
i , and Bei ¼

B0
ei þ B00

ei.
From there, injecting the analytical expressions of the

various coefficients in the quadratic form Eq. (G2) leads to
an explicit formula for the stationary voltage variance in the
limit of instantaneous synapses. Then, one is left with only
step (iii), which aims at exhibiting a compact, interpretable

form for this formula. We show in Appendix K that lengthy
but straightforward algebraic manipulations lead to the
simplified form given in Eq. (16):

V ½V& ¼ lim
ϵ→0þ

V ½Vϵ&

¼ 1

1þ aei;2
ðae;12ðVe − E½V&Þ2 þ ai;12ðVi − E½V&Þ2

− ceiðVe − ViÞ2Þ:

APPENDIX H: EVALUATION OF Qϵðt;sÞ
FOR ϵ > 0

The goal here is to justify the closed-form expression of
Qϵðt; sÞ ¼ E½eHeðtÞþHiðsÞ& via standard manipulation of
exponential functionals of Poisson processes. By defini-
tion, assuming with no loss of generality the order
0 ≥ t ≥ s, we have

HeðtÞ þHiðsÞ ¼ −
1

τ

"Z
0

t
heðuÞduþ

Z
0

s
hiðuÞdu

#

¼ −
1

ϵτ

"Z
0

t
du

XNðuÞ

Nðu−ϵτÞþ1

We;k þ
Z

0

s
du

XNðuÞ

Nðu−ϵτÞþ1

Wi;k

#

¼ −
1

ϵτ

"Z
0

t
du

XNðuÞ

Nðu−ϵτÞþ1

ðWe;k þWi;kÞ þ
Z

t

s
du

XNðuÞ

Nðu−ϵτÞþ1

Wi;k

#
: ðH1Þ

We evaluate Qϵðt; sÞ ¼ E½eHeðtÞþHiðsÞ& as a product of independent integral contributions.
Isolating these independent contributions from Eq. (H1) requires one to establish two preliminary results about the quantity

Iðt; sÞ ¼
Z

t

s

XNðuÞ

k¼Nðu−ΔÞþ1

Xkdu; ðH2Þ

whereN denotes a Poisson process,Xk denotes i.i.d. non-negative randomvariables, andΔ is positive activation time.Assume
t − s ≥ Δ; then, given some real w < u − Δ, we have

Iðt; sÞ ¼
Z

t

s
du

XNðuÞ

k¼NðvÞþ1

Xk −
Z

t

s
du

XNðu−ΔÞ

k¼NðvÞþ1

Xk

¼
Z

t

s
du

XNðuÞ

k¼NðvÞþ1

Xk −
Z

t−Δ

s−Δ
du

XNðuÞ

k¼NðvÞþ1

Xk

¼
Z

t

t−Δ
du

XNðuÞ

k¼NðvÞþ1

Xk −
Z

s

s−Δ
du

XNðuÞ

k¼NðvÞþ1

Xk

¼
"Z

t

t−Δ
du

XNðt−ΔÞ

k¼NðvÞþ1

Xk þ
Z

t

t−Δ
du

XNðuÞ

k¼Nðt−ΔÞþ1

Xk

#
−
"Z

s

s−Δ
du

XNðsÞ

k¼NðvÞþ1

Xk −
Z

s

s−Δ
du

XNðsÞ

k¼NðuÞþ1

Xk

#

¼
Z

t

t−Δ
du

XNðuÞ

k¼Nðt−ΔÞþ1

Xk þ Δ
XNðt−ΔÞ

k¼NðsÞþ1

Xk þ
Z

s

s−Δ
du

XNðsÞ

k¼NðuÞþ1

Xk: ðH3Þ
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One can check that the three terms inEq. (H3) above are independent for involving independent numbers of i.i.d. draws over the
intervals ðt − Δ; t&, ðs; t − Δ&, and ðs − Δ; s&, respectively. Similar manipulations for the order for t − s ≤ Δ yield

Iðt; sÞ ¼
Z

t

s
du

XNðuÞ

k¼NðsÞþ1

Xk þ ðt − sÞ
XNðsÞ

k¼Nðt−ΔÞþ1

Xk þ
Z

t−Δ

s−Δ
du

XNðt−ΔÞ

k¼NðuÞþ1

Xk; ðH4Þ

where the three independent contributions correspond to independent numbers of i.i.d. draws over the intervals ðs; t&, ðt − Δ; s&,
and ðs − Δ; t − Δ&, respectively.
As evaluating Qϵ involves only taking the limit s → t− at fixed ϵ > 0, it is enough to consider the order

0 ≥ −ϵτ ≥ t ≥ s ≥ t − ϵτ. With that in mind, we can apply Eqs. (H3) and (H4) with Δ ¼ ϵτ and Xk ¼ We;k þWi;k or
Xk ¼ Wi;k, to decompose the two terms of Eq. (H1) in six contributions:

Iðt; sÞ ¼
Z

0

−ϵτ
du

XNðuÞ

k¼Nðt−ϵτÞþ1

ðWe;k þWi;kÞ þ ϵτ
XNð−ϵτÞ

k¼NðtÞþ1

ðWe;k þWi;kÞ þ
Z

t

t−ϵτ
du

XNðtÞ

k¼NðuÞþ1

ðWe;k þWi;kÞ

þ
Z

t

s
du

XNðuÞ

k¼NðsÞþ1

Wi;k þ ðt − sÞ
XNðsÞ

k¼Nðt−ϵτÞþ1

Wi;k þ
Z

t−ϵτ

s−ϵτ
du

XNðt−ϵτÞ

k¼NðuÞþ1

Wi;k:

It turns out that the contribution of the third term overlaps with that of the fourth and fifth terms. Further splitting of that
third term produces the following expression:

Iðt; sÞ ¼
Z

0

−ϵτ
du

XNðuÞ

k¼Nðt−ϵτÞþ1

ðWe;k þWi;kÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I1

þ ϵτ
XNð−ϵτÞ

k¼NðtÞþ1

ðWe;k þWi;kÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I2ðtÞ

þ
Z

t

s
du

" XNðtÞ

k¼NðuÞþ1

ðWe;k þWi;kÞ þ
XNðuÞ

k¼NðsÞþ1

Wi;k

#
þ ðs − tþ ϵτÞ

XNðtÞ

k¼NðsÞþ1

ðWe;k þWi;kÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I3ðt;sÞ

þ
"Z

s

t−ϵτ
du

XNðsÞ

k¼NðuÞþ1

ðWe;k þWi;kÞ þ ðt − sÞ
XNðsÞ

k¼Nðt−ϵτÞþ1

Wi;k

#

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I4ðs;tÞ

þ
Z

t−ϵτ

s−ϵτ
du

XNðt−ϵτÞ

k¼NðuÞþ1

Wi;k

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I5ðt;sÞ

;

where all five terms correspond to independent numbers of i.i.d. draws over the intervals ð−ϵτ; 0&, ðt;−ϵτ&, ðs; t&, ðt − ϵτ; s&,
and ðs − ϵτ; t − ϵτ&. Then, we have

Qϵðt; sÞ ¼ E
h
eHeðtÞþHiðsÞ

i
¼ E

h
e−I1=ðϵτÞ

i
E
h
e−I2ðtÞ=ðϵτÞ

i
E
h
e−I3ðt;sÞ=ðϵτÞ

i
E
h
e−I4ðs;tÞ=ðϵτÞ

i
E
h
e−I5ðt;sÞ=ðϵτÞ

i
;

where all expectation terms can be computed via standard manipulation of the moment-generating function of Poisson
processes [51]. The trick is to remember that, for all t ≥ s, given that a Poisson process admits K ¼ NðtÞ − NðsÞ points in
ðs; t&, all these K points are uniformly i.i.d. over ðs; t&. This trick allows one to simply represent all integral terms in terms of
uniform random variables, whose expectations are easily computable. To see this, let us consider I3ðt; sÞ, for instance.
We have

I3ðt; sÞ ¼ ðt − sÞ
XNðtÞ

k¼NðsÞþ1

h
ð1 −UkÞðWe;k þWi;kÞ þ UkWi;k

i
þ ðs − tþ ϵτÞ

XNðtÞ

k¼NðsÞþ1

ðWe;k þWi;kÞ

¼ ðt − sÞ
XNðtÞ

k¼NðsÞþ1

UkWe;k þ ϵτ
XNðtÞ

k¼NðsÞþ1

ðWe;k þWi;kÞ;
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where fUkgNðsÞþ1≤k≤NðtÞ are uniformly i.i.d. on [0, 1]. From the knowledge of the moment-generating function of Poisson
random variables [51], one can evaluate

E
h
e−I3ðt;sÞ=ðϵτÞ

i
¼ E

h
e−½ðt−sÞ=ϵτ&

P
NðtÞ
k¼NðsÞþ1

UkWe;k−
P

NðtÞ
k¼NðsÞþ1

ðWe;kþWi;kÞ
i

¼ E
h
E
h
e−½ðt−sÞ=ϵτ&UWe−ðWeþWiÞ

i
NðtÞ−NðsÞ

+++NðtÞ − NðsÞ
i

¼ exp
$
bðt − sÞ

$
E
h
e−½ðt−sÞ=ϵτ&UWe−ðWeþWiÞ

i
− 1

%%
;

where ðWe;WiÞ denotes exemplary conductance jumps and U denotes an independent uniform random variable.
Furthermore, we have

E
h
e−½ðt−sÞ=ϵτ&UWe−ðWeþWiÞ

i
¼ E

h
E
h
e−½ðt−sÞ=ϵτ&UWe−ðWeþWiÞ

i+++We;Wi

i

¼ Eei

h
e−ðWeþWiÞE

h
e−½ðt−sÞ=ϵτ&UWe

ii

¼ Eei

&
e−ðWeþWiÞ ð1 − e−½ðt−sÞ=ϵτ&WeÞ

t−s
ϵτ We

'
;

so that we finally obtain

lnE
h
e−I3ðt;sÞ=ðϵτÞ

i
¼ ϵbτ

"
Eei

&
e−ðWeþWiÞ ð1 − e−½ðt−sÞ=ϵτ&WeÞ

We

'
−
t − s
ϵτ

#
:

Similar calculations show that we have

lnE
h
e−I1=ðϵτÞ

i
¼ ϵbτ

"
Eei

&
1 − e−ðWeþWiÞ

We þWi

'
− 1

#
;

lnE
h
e−I2ðtÞ=ðϵτÞ

i
¼ bðϵτ þ tÞ

"
1 − Eei

h
e−ðWeþWiÞ

i#
;

lnE
h
e−I4ðs;tÞ=ðϵτÞ

i
¼ ϵbτ

"
Eei

&
e−ðt−sÞ=ϵτWi

ð1 − e−ð1þ½ðs−tÞ=ϵτ&ÞðWeþWiÞÞ
We þWi

'
−
"
1þ s − t

ϵτ

##
;

lnE
h
e−I5ðt;sÞ=ðϵτÞ

i
¼ ϵbτ

"
Eei

&
1 − e−½ðt−sÞ=ϵτ&Wi

Wi

'
−
t − s
ϵτ

#
:

APPENDIX I: EXPRESSION OF Rϵðt;u;s;vÞ ON Oϵ AND Dϵ

Using similar calculations as in Appendix H, we can evaluate the quadrivariate expectation Rϵðt; u; s; vÞ on the regionOϵ,
for which the O order holds: 0 ≥ −ϵτ ≥ t ≥ u ≥ t − ϵτ ≥ u − ϵτ ≥ s ≥ v ≥ s − ϵτ ≥ v − ϵτ. This requires one to isolate
and consider nine independent contributions, corresponding to the nine contiguous intervals specified by the O order. We
find

lnRϵðt; u; s; vÞ ¼ A1 þ A2ðtÞ þ A3ðt; uÞ þ A4ðu; tÞ þ A5ðt; uÞ þ A6ðu; sÞ þ A7ðs; vÞ þ A8ðv; sÞ þ A9ðs; vÞ;

where the non-negative terms making up the above sum are defined as
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A1 ¼ ϵbτ
"
Eei

&
1 − e−2ðWeþWiÞ

2ðWe þWiÞ

'
− 1

#
;

A2ðtÞ ¼ bðϵτ þ tÞ
"
1 − Eei

h
e−2ðWeþWiÞ

i#
;

A3ðt; uÞ ¼ ϵbτ
"
Eei

&
e−2ðWeþWiÞ ð1 − e−½ðt−uÞ=ϵτ&WeÞ

We

'
−
t − u
ϵτ

#
;

A4ðu; tÞ ¼ ϵbτ
"
Eei

&
e−We−ð1þ½ðt−uÞ=ϵτ&ÞWi

ð1 − e−ð1þ½ðu−tÞ=ϵτ&ÞðWeþWiÞÞ
We þWi

'
−
"
1þ u − t

ϵτ

##
;

A5ðt; uÞ ¼ ϵbτ
"
Eei

&
e−ðWeþWiÞ ð1 − e−ðt−uÞ=ϵτWiÞ

Wi

'
−
t − u
ϵτ

#
;

A6ðu; sÞ ¼ bðsþ ϵτ − uÞ
"
1 − Eei

h
e−ðWeþWiÞ

i#
;

A7ðs; vÞ ¼ ϵbτ
"
Eei

&
e−ðWeþWiÞ ð1 − e−½ðs−vÞ=ϵτ&WeÞ

We

'
−
s − v
ϵτ

#
;

A8ðv; sÞ ¼ ϵbτ
"
Eei

&
e−½ðs−vÞ=ϵτ&Wi

ð1 − e−ð1−½ðs−vÞ=ϵτ&ÞðWeþWiÞÞ
We þWi

'
−
"
1 −

s − v
ϵτ

##
;

A9ðs; vÞ ¼ ϵbτ
"
Eei

&
ð1 − e−½ðs−vÞ=ϵτ&WiÞ

Wi

'
−
s − v
ϵτ

#
:

One can check that A3ðt; tÞ ¼ A5ðt; tÞ ¼ 0 and A7ðs; sÞ ¼ A9ðs; sÞ ¼ 0 and that A1, A4ðu; tÞ, and A8ðv; sÞ are all uniformly
OðϵÞ on the region Oϵ. This implies that, for all ðt; sÞ in Oϵ, we have

Rðt; sÞ ¼ lim
ϵ→0þ

Rϵðt; t; s; sÞ ¼ lim
ϵ→0þ

eA2ðtÞþA6ðt;sÞ ¼ e2btaei;2−bjt−sjaei;1 :

Using similar calculations as in Appendix H, we can evaluate the quadrivariate expectation Rϵðt; u; s; vÞ on the regionDϵ,
for which the D order holds: 0≥−ϵτ≥ t≥ u≥ s≥ v≥ t−ϵτ≥ u− ϵτ≥ s− ϵτ≥ v− ϵτ. This requires one to isolate and
consider nine independent contributions, corresponding to the nine contiguous intervals specified by the O order. We find

lnRϵðt;u;s;vÞ¼B1þB2ðtÞþB3ðt;uÞþB4ðt;u;sÞþB5ðt;u;s;vÞþB6ðt;u;s;vÞþB7ðt;u;s;vÞþB8ðu;s;vÞþB9ðs;vÞ; ðI1Þ

where the non-negative terms making up the above sum are defined as

B1 ¼ ϵbτ
"
Eei

&
1 − e−2ðWeþWiÞ

2ðWe þWiÞ

'
− 1

#
;

B2ðtÞ ¼ bðϵτ þ tÞ
"
1 − Eei

h
e−2ðWeþWiÞ

i#
;

B3ðt; uÞ ¼ ϵbτ
"
Eei

&
e−2ðWeþWiÞ ð1 − e−½ðt−uÞ=ϵτ&WeÞ

We

'
−
t − u
ϵτ

#
;

B4ðt; u; sÞ ¼ ϵbτ
"
Eei

&
e−ð2−½ðt−sÞ=ϵτ&ÞWe−ð2−½ðu−sÞ=ϵτ&ÞWi

ð1 − e−½ðu−sÞ=ϵτ&ðWeþWiÞÞ
We þWi

'
−
u − s
ϵτ

#
;

B5ðt; u; s; vÞ ¼ ϵbτ
"
Eei

&
e−ð2−½ðt−vÞ=ϵτ&ÞWe−ð2−½ðu−vÞ=ϵτ&ÞWi

ð1 − e−½ðs−vÞ=ϵτ&ð2WeþWiÞÞ
2We þWi

'
−
s − v
ϵτ

#
;

B6ðt; u; s; vÞ ¼ ϵbτ
"
Eei

&
e−ððt−sÞ=ϵτÞWe−ð½2t−ðuþvÞ&=ϵτÞWi

ð1 − e−ð1−½ðt−vÞ=ϵτ&Þ2ðWeþWiÞÞ
2ðWe þWiÞ

'
−
"
1 −

t − v
ϵτ

##
;
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B7ðt; u; s; vÞ ¼ ϵbτ
"
Eei

&
e−ððu−sÞ=ϵτÞWe−ððu−vÞ=ϵτÞWi

ð1 − e−½ðt−uÞ=ϵτ&ðWeþ2WiÞÞ
We þ 2Wi

'
−
t − u
ϵτ

#
;

B8ðu; s; vÞ ¼ ϵbτ
"
Eei

&
e−ððs−vÞ=ϵτÞWi

ð1 − e−½ðu−sÞ=ϵτ&ðWeþWiÞÞ
We þWi

'
−
u − s
ϵτ

#
;

B9ðs; vÞ ¼ bϵτ
"
Eei

&
e−ððs−vÞ=ϵτÞWi

ð1 − e−½ðs−vÞ=ϵτ&WiÞ
Wi

'
−
s − v
ϵτ

#
:

Observe that B1¼A1 and B2ðtÞ ¼ A2ðtÞ and that B3ðt; tÞ ¼
B7ðt; t; s; vÞ ¼ 0 and B5ðt;u;s;sÞ¼B9ðs;sÞ¼0. Moreover,
one can see that Rðt; sÞ is continuous over the whole
negative orthant by checking that

lim
s→ðt−ϵτÞ−

B4ðt; t; sÞ ¼ lim
s→ðt−ϵτÞþ

A4ðt; sÞ;

lim
s→ðt−ϵτÞ−

B6ðt; t; s; sÞ ¼ lim
s→ðt−ϵτÞþ

A6ðt; sÞ;

lim
s→ðt−ϵτÞ−

B8ðt; s; sÞ ¼ lim
s→ðt−ϵτÞþ

A8ðt; sÞ:

Actually, by computing the appropriate limit values of the
relevant first- and second-order derivatives of Rϵðt; u; s; vÞ,

one can check that, for ϵ > 0, all the integrands involved in
specifying the coefficients of the quadratic form Eq. (G2)
define continuous functions.

APPENDIX J: INTEGRALS OF THE
QUADRATIC TERMS ON Dϵ

Here, we treat only the quadratic term Ae, as the
other quadratic terms Ai and Bei involve a similar
treatment. The goal is to compute A00

e , which is defined
as the contribution to Ae resulting from integrating
limðu;vÞ→ðt;sÞ− ∂t∂sRϵðt; u; s; vÞ over the diagonal region
Dϵ ¼ ft; s ≤ 0jτϵ ≥ jt − sjg, in the limit ϵ → 0þ. To this
end, we first remark that

∂t∂sRϵðt; u; s; vÞ
Rϵðt; u; s; vÞ

¼ ∂t∂s lnRϵðt; u; s; vÞ þ ð∂t lnRϵðt; u; s; vÞÞð∂s lnRϵðt; u; s; vÞÞ:

Injecting the analytical expression Eq. (I1) into the above relation and evaluating Iϵðt; sÞ ¼ limðu;v→ðt;sÞ−Þ ∂t∂sRϵðt; u; s; vÞ
reveals that Iϵðt; sÞ scales as 1=ϵ, so that one expects that

A00
e ¼ lim

ϵ→0þ

Z Z

Dϵ

eðtþsÞ=τIϵðt; sÞdtds > 0:

To compute the exact value of A00
e , we perform the change of variable x ¼ ðt − sÞ=ðϵτÞ ⇔ s ¼ t − ϵτx to write

Z Z

Dϵ

eðtþsÞ=τIϵðt; sÞdtds ¼ 2

Z
0

−∞

"Z
1

0
ϵτe−ϵxIϵðt; tþ ϵτxÞdx

#
e2t=τdt;

where the function ϵe−ϵx=τIϵðt; tþ ϵxÞ remains of the order of one on Dϵ in the limit of instantaneous synapses. Actually,
one can compute that

lim
ϵ→0þ

ϵe−ϵxIϵðt; tþ ϵτxÞ ¼ b
2τ

Eei

&
W2

e

We þWi
e−xðWeþWiÞ

"
1 − e−2ð1−xÞðWeþWiÞ

#'
e2btaei;2 :

Then, for dealing with positive, continuous, uniformly bounded functions, one can safely exchange the integral and limit
operations to get
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A00
e ¼ 2

Z
0

−∞

"Z
1

0
lim
ϵ→0þ

ϵτe−ϵxIϵðt; tþ ϵτxÞdx
#
e2t=τdt

¼
"Z

0

−∞
e2ðt=τÞð1þaei;2Þdt

#"Z
1

0
bEei

&
W2

e

We þWi
e−ðx=τÞðWeþWiÞ

"
1 − e−2ð1−ðx=τÞÞðWeþWiÞ

#'
dx

#

¼ bτ
2ð1þ aei;2Þ

Eei

&
W2

e

ðWe þWiÞ2

"
1 − e−ðWeþWiÞ2

#'
:

A similar calculation for the quadratic cross term B00
ei yields

B00
ei ¼

2cei
1þ aei;2

with cei ¼
bτ
2
Eei

&
WeWi

ðWe þWiÞ2

"
1 − e−ðWeþWiÞ2

#'
:

In order to express A00
e in terms of cei, we need to introduce the quantity ae;12 ¼ ae;1 − ae;2 which satisfies

ae;12 ¼ bτEei

&
We

ðWe þWiÞ

$
1 − e−ðWeþWiÞ

%'
−
1

2
Eei

&
We

ðWe þWiÞ

$
1 − e−ðWeþWiÞ

%
2
'

¼ bτEei

&
We

ðWe þWiÞ

$
1 − e−ðWeþWiÞ

%"
1 −

1

2

$
1 − e−ðWeþWiÞ

%#'

¼ bτEei

&
We

ðWe þWiÞ

$
1 − e−ðWeþWiÞ

%"ð1þ e−ðWeþWiÞÞ
2

#'

¼ bτ
2
Eei

&
We

ðWe þWiÞ

$
1þ e−ðWeþWiÞ

%
2
'
:

With the above observation, we remark that

ð1þ aei;2ÞA00
e − ae;12 ¼

bτ
2

"
Eei

&
W2

e

ðWe þWiÞ2
$
1 − e−ðWeþWiÞ

%
2
'
− Eei

&
We

ðWe þWiÞ

$
1 − e−ðWeþWiÞ

%
2
'#

¼ bτ
2
Eei

&
W2

e −WeðWe þWiÞ
ðWe þWiÞ2

$
1 − e−ðWeþWiÞ

%
2
'

¼ −
bτ
2
Eei

&
WeWi

ðWe þWiÞ2
$
1 − e−ðWeþWiÞ

%
2
'

¼ −cei

so that we have the following compact expression for the quadratic diagonal term:

A00
e ¼

ae;12 − cei
1þ aei;2

:

APPENDIX K: COMPACT VARIANCE EXPRESSION

Our goal is to find a compact, interpretable formula for the stationary variance V ½V& from the knowledge of the quadratic
form

E½V2& ¼ AeV2
e þ BeiVeVi þ AiV2

i þ ðVeBeI þ ViBiIÞðI=GÞ þ AIðI=GÞ2:

Let us first assume no current injection, I ¼ 0, so that one has to keep track of only the quadratic terms. Specifying the
quadratic coefficient Ae ¼ A0

e þ A00
e , Ai ¼ A0

i þ A00
i , and Bei ¼ B0

ei þ B00
ei in Eq. (K1), we get
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E½V2& ¼
"

ae;1ð2ae;2 − ae;1Þ
ð1þ aei;1Þð1þ aei;2Þ

þ
ae;12 − cei
1þ aei;2

#
V2
e þ

"
ae;1ð2ai;2 − ai;1Þ þ ai;1ð2ae;2 − ae;1Þ

ð1þ aei;1Þð1þ aei;2Þ
þ 2cei
1þ aei;2

#
VeVi

þ
"

ai;1ð2ai;2 − ai;1Þ
ð1þ aei;1Þð1þ aei;2Þ

þ
ai;12 − cei
1þ aei;2

#
V2
i

¼
"
ae;1ð2ae;2 − ae;1Þ þ ð1þ ae;1 þ ai;1Þðae;1 − ae2Þ

ð1þ aei;1Þð1þ aei;2Þ

#
V2
e þ

"
ae;1ð2ai;2 − ai;1Þ þ ai;1ð2ae;2 − ae;1Þ

ð1þ aei;1Þð1þ aei;2Þ

#
VeVi

þ
"
ai;1ð2ai;2 − ai;1Þ þ ð1þ ae;1 þ ai;1Þðai;1 − ai2Þ

ð1þ aei;1Þð1þ aei;2Þ

#
V2
i −

cei
1þ aei;2

ðVe − ViÞ2;

where we collect separately all the terms containing the coefficient cei and where we use the facts that by definition
ae;12 ¼ ae;1 − ae;2, ai;12 ¼ ai;1 − ai;2, and aei;1 ¼ ae;1 þ ai;1. Expanding and simplifying the coefficients of V2

e and V2
i

above yield

E½V2& ¼
"
ae;1ae;2 þ ð1þ ai;1Þðae;1 − ae2Þ

ð1þ aei;1Þð1þ aei;2Þ

#
V2
e þ

"
ae;1ð2ai;2 − ai;1Þ þ ai;1ð2ae;2 − ae;1Þ

ð1þ aei;1Þð1þ aei;2Þ

#
VeVi

þ
"
ai;1ai;2 þ ð1þ ae;1Þðai;1 − ai2Þ

ð1þ aei;1Þð1þ aei;2Þ

#
V2
i −

cei
1þ aei;2

ðVe − ViÞ2:

Then, we can utilize the expression above for E½V2& together with the stationary mean formula

E½V& ¼ ae;1Ve þ ai;1Vi

1þ aei;1
ðK1Þ

to write the variance V ½V& ¼ E½V2& − E½V&2 as

V ½V& ¼
"ðae;1 − ae;2Þð1þ ai;1Þ2 þ ðai;1 − ai;2Þa2e;1

ð1þ aei;1Þ2ð1þ aei;2Þ

#
V2
e −

"
ðae;1 − ae;2Þae;1ð1þ ae;1Þ þ ai;1ðai;1 − ai;2Þð1þ ai;1Þ

ð1þ aei;1Þ2ð1þ aei;2Þ

#
VeVi

þ
"ðai;1 − ai;2Þð1þ ae;1Þ2 þ ðae;1 − ae;2Þa2i;1

ð1þ aei;1Þ2ð1þ aei;2Þ

#
V2
i −

cei
1þ aei;2

ðVe − ViÞ2:

To factorize the above expression, let us reintroduce ae;12 ¼ ae;1 − ae;2 and ai;12 ¼ ai;1 − ai;2 and collect the terms where
these two coefficients occur. This yields

V ½V& ¼ ae;12
ð1þ aei;1Þ2ð1þ aei;2Þ

ðð1þ ai;1Þ2V2
e − ai;1ð1þ ae;1Þ2VeVi þ ðae;1Þ2V2

i Þ

þ
ai;12

ð1þ aei;1Þ2ð1þ aei;2Þ
ðð1þ ae;1Þ2V2

i − ae;1ð1þ ai;1Þ2VeVi þ ðai;1Þ2V2
eÞ −

cei
1þ aei;2

ðVe − ViÞ2

¼
ae;12

1þ aei;2

"
ð1þ ai;1ÞVe − ae;1Vi

1þ aei;1

#
2

þ
ai;12

1þ aei;2

"
ð1þ ai;eÞVi − ai;1Ve

1þ aei;1

#
2

−
cei

1þ aei;2
ðVe − ViÞ2:

Finally, injecting the expression of stationary mean Eq. (K1) in both parentheses above produces the compact formula

V ½V& ¼
ae;12

1þ aei;2
ðVe − E½V&Þ2 þ

ai;12
1þ aei;2

ðVi − E½V&Þ2 − cei
1þ aei;2

ðVe − ViÞ2; ðK2Þ

which is the same as the one given in Eq. (16).

APPENDIX L: FACTORIZED VARIANCE EXPRESSION

In this appendix, we reshape the variance expression given in Eq. (K2) under a form that is clearly non-negative. To this
end, let us first remark that the calculation in Appendix J shows that
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ae;12 − cei ¼
bτ
2
Eei

&
W2

e

ðWe þWiÞ2

"
1þ e−ðWeþWiÞ

#
2
'
:

Then, setting ðVe − ViÞ2 ¼ fðVe − E½V&Þ − ðVi − E½V&Þg2 ¼ ðVe − E½V&Þ2 − 2ðVe − E½V&ÞðVi − E½V&Þ þ ðVi − E½V&Þ2 in
Eq. (K2), we obtain

V ½V& ¼ 1

1þ aei;2

$
ae;12ðVe − E½V&Þ2 þ ai;12ðVi − E½V&Þ2 − ceiðVe − ViÞ2

%

¼ 1

1þ aei;2

$
ðae;12 − ceiÞðVe − E½V&Þ2 þ 2ceiðVe − E½V&ÞðVi − E½V&Þ þ ðai;12 − ceiÞðVi − E½V&Þ2

%

¼ bτ
1þ aei;2

Eei

&"
W2

eðVe − E½V&Þ2

2ðWe þWiÞ2
þ 2WeðVe − E½V&ÞWiðVi − E½V&Þ

2ðWe þWiÞ2
þW2

i ðVi − E½V&Þ2

2ðWe þWiÞ2

#$
1 − e−ðWeþWiÞ

%
2
'

¼ bτ
2ð1þ aei;2Þ

Eei

&"
½WeðVe − E½V&Þ þWiðVi − E½V&Þ&2

ðWe þWiÞ2

#$
1 − e−ðWeþWiÞ

%
2
'
: ðL1Þ

Note that the above quantity is clearly non-negative as any variance shall be. From there, one can include the impact of the
injected current I by further considering all the terms in Eq. (K1), including the linear and inhomogeneous current-
dependent terms. Similar algebraic manipulations confirm that Eq. (L1) remains valid so that the only impact of I is via
altering the expression E½V&, so that we ultimately obtain the following explicit compact form:

V ½V& ¼
Eei

&$
WeVeþWiVi

WeþWi
− E½V&

%
2
$
1 − e−ðWeþWiÞ

%
2
'

2=ðbτÞ þ Eei

h$
1 − e−2ðWeþWiÞ

%i with E½V& ¼
bτEei

&$
WeVeþWiVi

WeþWi

%$
1 − e−ðWeþWiÞ

%'
þ I=G

1þ bτEei

h$
1 − e−ðWeþWiÞ

%i :

The above expression shows that as expected V ½V& ≥ 0 and that the variability vanishes if and only if We=Wi ¼
ðE½V& − ViÞ=ðVe − E½V&Þ with probability one. In turn, plugging this relation into the mean voltage expression and solving
for E½V& reveals that we necessarily have E½V& ¼ I=G. This is consistent with the intuition that variability can vanish only if
excitation and inhibition perfectly cancel one another.

APPENDIX M: VARIANCE IN THE SMALL-WEIGHT APPROXIMATION

In this appendix, we compute the simplified expression for the variance V ½V& obtained via the small-weight
approximation. Second, let us compute the small-weight approximation of the second-order efficacy

cei ¼
bτ
2
Eei

&
WeWi

ðWe þWiÞ2

"
1 − e−ðWeþWiÞ

#
2
'
≃
bτ
2
Eei½WeWi& ¼

bτ
2
wewiEei½keki&;

which amounts to computing the expectation of the cross product of the jumps ke and ki. To estimate the above
approximation, it is important to remember that first that pe and pi are not defined as the marginals of pei but as conditional
marginals, for which we have pe;k ¼ ðb=beÞ

PKi
l¼0 pei;kl and pi;l ¼ ðb=biÞ

PKe
k¼0 pei;kl. Then, by the definition of the

correlation coefficient ρei in Eq. (4), we have

ρei ¼
bEei½keki&ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KebEei½ke&KibEei½ki&
p ¼ bEei½keki&ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KebeEe½ke&KibiEi½ki&
p ¼ bEei½keki&

KeKi
ffiffiffiffiffiffiffiffi
reri

p ;

as the rates be and bi are such that beEe½ke& ¼ Kere and biEe½ki& ¼ Kiri. As a result, we obtain a simplified expression for
the cross-correlation coefficient:

cei ¼ ðρei
ffiffiffiffiffiffiffiffi
reri

p
τ=2ÞðKeweÞðKiwiÞ:

Observe that, as expected, cei vanishes when ρei ¼ 0. Second, let us compute the small-weight approximation of the
second-order efficacy
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ae;12 ¼
bτ
2
Eei

&
We

We þWi

"
1 − e−ðWeþWiÞ

#
2
'
≃
bτ
2
Eei½WeðWe þWiÞ& ¼

bτ
2
ðw2

eEei½k2e& þ wewiEei½keki&Þ:

To estimate the above approximation, we use the definition of the correlation coefficient ρe in Eq. (8):

ρe ¼
beEe½keðke − 1Þ&
beEe½ke&ðKe − 1Þ

¼ bEei½keðke − 1Þ&
KeðKe − 1Þre

;

as the rate be is such that beEe½ke& ¼ Kere. This directly implies that

bEei½k2e& ¼ bEei½keðke − 1Þ& þ bEei½ke& ¼ ρeKeðKe − 1Þre þ Kere ¼ Kere½1þ ρeðKe − 1Þ&;

so that we evaluate

ae;12 ¼
bτ
2
ðw2

eEei½k2e& þ wewiEei½keki&Þ ¼
reτ
2

Ke½1þ ρeðKe − 1Þ&w2
e þ ρei

ffiffiffiffiffiffiffiffi
rire

p
τ

2
ðKeweÞðKiwiÞ;

which simplifies to ae;12 ¼ ðreτ=2ÞKe½1þ ρeðKe − 1Þ&w2
e when excitation and inhibition act independently. A symmetric

expression holds for the inhibitory efficacy ai;12. Plugging the above expressions for synaptic efficacies into the variance
expression Eq. (16) yields the small-weight approximation

V ½V& ≃ ½1þ ρeðKe − 1Þ&Kerew2
eðVe − E½V&Þ2 þ ½1þ ρiðKi − 1Þ&Kiriw2

i ðVi − E½V&Þ2

2ð1=τ þ Kerewe þ KiriwiÞ

þ
ρei

ffiffiffiffiffiffiffiffi
reri

p ðKeweÞðKiwiÞ½ðVe − E½V&Þ2 þ ðVi − E½V&Þ2 − ðVe − ViÞ2&
2ð1=τ þ Kerewe þ KiriwiÞ

:

Let us note that the first term in the right-hand side above represents the small-weight approximation of the voltage variance
in the absence of correlation between excitation and inhibition, i.e., for ρei ¼ 0. Denoting the latter approximation by
V ½V&jρei¼0 and using the fact that the small-weight expression for the mean voltage

E½V& ¼ KereweVe þ KiriwiVi

1=τ þ Kerewe þ Kiriwi

is independent of correlations, we observe that, as intuition suggests, synchrony-based correlation between excitation and
inhibition results in a decrease of the neural variability:

ΔV ½V&ρei ¼ V ½V& − V ½V&jρei¼0 ≃ −
ρei

ffiffiffiffiffiffiffiffi
reri

p ðKeweÞðKiwiÞðVe − E½V&ÞðE½V& − ViÞ
1=τ þ Kerewe þ Kiriwi

≤ 0:

However, the overall contribution of correlation is to increase variability in the small-weight approximation. This can be
shown under the assumptions that Ke ≫ 1 and Ki ≫ 1, by observing that

ΔV ½V&ρei;ρe=i ¼ V ½V& − V ½V&jρe=i¼ρei¼0

≃
ð ffiffiffiffiffiffiffiffiffi

ρere
p

KeweðVe − E½V&Þ − ffiffiffiffiffiffiffiffi
ρiri

p
KiwiðVi − E½V&ÞÞ2

2ð1=τ þ Kerewe þ KiriwiÞ

þ ð ffiffiffiffiffiffiffiffi
ρeρi

p − ρeiÞ
ffiffiffiffiffiffiffiffi
reri

p ðKeweÞðKiwiÞðVe − E½V&ÞðE½V& − ViÞ
1=τ þ Kerewe þ Kiriwi

≥ 0;

where both terms are positive since we always have 0 ≤ ρei ≤
ffiffiffiffiffiffiffiffi
ρeρi

p
.
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APPENDIX N: VALIDITY OF THE
SMALL-WEIGHT APPROXIMATION

Biophysical estimates of the synaptic weights we < 0.01
andwi < 0.04 and the synaptic input numbersKe < 10 000
and Ki < 2500 suggest that neurons operates in the small-
weight regime. In this regime, we claim that exponential
corrections due to finite-size effect can be neglected in the
evaluation of synaptic efficacies, as long as the spiking
correlations remains weak. Here, we make this latter
statement quantitative by focusing on the first-order effi-
cacies in the case of excitation alone. The relative error due
to neglecting exponential corrections can be quantified as

E ¼ Ee½We& − Ee½1 − e−We &
Ee½1 − e−We &

≥ 0:

Let us evaluate this relative error, assumed to be small,
when correlations are parametrized via beta distributions
with parameter βe ¼ 1=ρe − 1. Assuming correlations to be
weak, ρe ≪ 1, amounts to assuming large, βe ≫ 1. Under
the assumptions of small error, we can compute

Ee½1 − e−We & ≃ Ee½We& ¼ weEe½ke& and

Ee½We − 1þ e−We & ≃ Ee½W2
e&=2 ¼ w2

eEe½k2e&=2:

By the calculations carried out in Appendix M, we have

beEe½ke&¼Kere and beEe½k2e&¼Kere½1þρeðKe−1Þ&:

Remembering that βe ¼ 1=ρe − 1, this implies that we have

E ≃
Ee½W2

e&=2
Ee½We& − Ee½W2

e&=2
≃

we½1þ ρeðKe − 1Þ&=2
1 − we½1þ ρeðKe − 1Þ&=2

:

For a correlation coefficient ρe ≤ 0.05, this means that
neglecting exponential corrections incurs less than e ¼ 3%
error if the number of inputs is smaller than Ke ≤ 1000 for
moderate synaptic weight we ¼ 0.001 or thanKe ≤ 100 for
large synaptic weight we ¼ 0.01.

APPENDIX O: INFINITE-SIZE LIMIT
WITH SPIKING CORRELATIONS

The computation of the first two moments E½V& and
E½V2& requires one to evaluate various efficacies as expect-
ations. Upon inspection, these expectations are all of the
form bEei½fðWe;WiÞ&, where f is a smooth positive
function that is bounded on Rþ × Rþ with fð0; 0Þ ¼ 0.
Just as for the Lévy-Khintchine decomposition of stable
jump processes [78,79], this observation allows one to
generalize our results to processes that exhibit and count-
able infinity of jumps over finite, nonzero time intervals.
For our parametric forms based on beta distributions, such
processes emerge in the limit of an arbitrary large number
of inputs, i.e., for Ke; Ki → ∞. Let us consider the case of

excitation alone for simplicity. Then, we need to make sure
that all expectations of the form beEei½fðWeÞ& remain well
posed in the limit Ke → ∞ for smooth, bounded test
function f with fð0Þ ¼ 0. To check this, observe that,
for all 0 < k ≤ Ke, we have by Eqs. (7) and (9) that

bepe;k¼ βre

"
Ke

k

#
Bðk;βþKe−kÞ

¼ βre
ΓðKeþ1Þ

Γðkþ1ÞΓðKe−kþ1Þ
ΓðkÞΓðβþKe−kþ1Þ

ΓðβþKeÞ
;

where we have introduced the Gamma function Γ.
Rearranging terms and using the fact that Γðzþ 1Þ ¼
zΓðzÞ for all z > 0, we obtain

bepe;k ¼
βre
k

KeΓðKeÞ
Γðβ þ KeÞ

Γðβ þ Ke − kÞ
ðKe − kÞΓðKe − kÞ

¼ βre
k

"
1 −

k
Ke

#
β−1

þ o
"

1

Ke

#
;

where the last equality is uniform in k and follows from the
fact that, for all x > 0, we have

lim
z→∞

Γðzþ xÞ
ΓðzÞ

¼ zx
"
1þ

"
x
2

#
1

z
þ o

"
1

z

##
:

From there, given a test function f, let us consider

beEe½fðWeÞ& ¼
Z XKe

k¼1

bepe;kδ

"
We −

kΩe

Ke

#
fðWeÞdWe

¼
XKe

k¼1

bepe;kf
"
kΩe

Ke

#

¼ re
XKe

k¼1

β
k

"
1 −

k
Ke

#
β−1

f
"
kΩe

Ke

#
þ oð1Þ:

The order zero term above can be interpreted as a Riemann
sum so that one has

lim
Ke→∞

beEe½fðWeÞ& ¼ re lim
Ke→∞

1

Ke

XKe

k¼1

βKe

k

"
1− k

Ke

#
f
"
kΩe

Ke

#

¼ re

Z
1

0
βθ−1ð1−θÞβ−1fðθΩeÞdθ

¼ re

Z
Ωe

0

β
w

"
1−

w
Ωe

#
β−1

fðwÞdw:

Thus, the jump densities is specified via the Lévy-
Khintchine measure

νeðwÞ ¼
β
w

"
1 −

w
Ωe

#
β−1

;
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which is a deficient measure for admitting a pole in zero.
This singular behavior indicates that the limit jump process
obtained when Ke → ∞ has a countable infinity of jumps
within any finite, nonempty time interval. Generic sta-
tionary jump processes with independent increments, as is
the case here, are entirely specified by their Lévy-
Khintchine measure νe [78,79]. Moreover, one can check
that, given knowledge of νe, one can consistently estimate
the corresponding pairwise spiking correlation as

ρe ¼ lim
Ke→∞

Ee½keðke − 1Þ&
Ee½ke&ðKe − 1Þ

¼ lim
Ke→∞

beEe½ðke=KeÞ2&
beEe½ke=Ke&

¼
RΩe
0 w2νeðwÞdw

Ωe
RΩe
0 wνeðwÞdw

:

Performing integral with respect to the Lévy-Khintchine
measure νe instead of the evaluating the expectation Ee½·& in
Eqs. (14) and (16) yields

E½V& ¼
Ve

RΩe
0 ð1 − e−wÞνeðdwÞ

1=τ þ
RΩe
0 ð1 − e−wÞνeðdwÞ

and

V ½V& ¼
ðVe − E½V&Þ2

RΩe
0 ð1 − e−wÞ2νeðdwÞ

2=τ þ
RΩe
0 ð1 − e−2wÞνeðdwÞ

:

Observe that, as ð1 − e−wÞ2 ≤ w2 for all w ≥ 0, the defi-
nition of the spiking correlation and voltage variance
implies that we have V ½V& ¼ OðρeÞ so that neural vari-
ability consistently vanishes in the absence of correlations.
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