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Transmission spectroscopy1–3 of exoplanets has revealed signatures of water vapour, 
aerosols and alkali metals in a few dozen exoplanet atmospheres4,5. However, these 
previous inferences with the Hubble and Spitzer Space Telescopes were hindered by the 
observations’ relatively narrow wavelength range and spectral resolving power, which 
precluded the unambiguous identification of other chemical species—in particular the 
primary carbon-bearing molecules6,7. Here we report a broad-wavelength 0.5–5.5 µm 
atmospheric transmission spectrum of WASP-39b8, a 1,200 K, roughly Saturn-mass, 
Jupiter-radius exoplanet, measured with the JWST NIRSpec’s PRISM mode9 as part of  
the JWST Transiting Exoplanet Community Early Release Science Team Program10–12.  
We robustly detect several chemical species at high significance, including Na (19σ),  
H2O (33σ), CO2 (28σ) and CO (7σ). The non-detection of CH4, combined with a strong  
CO2 feature, favours atmospheric models with a super-solar atmospheric metallicity.  
An unanticipated absorption feature at 4 µm is best explained by SO2 (2.7σ), which could 
be a tracer of atmospheric photochemistry. These observations demonstrate JWST’s 
sensitivity to a rich diversity of exoplanet compositions and chemical processes.

We observed one transit of WASP-39b on 10 July 2022 with JWST’s Near 
InfraRed Spectrograph (NIRSpec)9,13, using the PRISM mode, as part 
of the JWST Transiting Exoplanet Community Early Release Science 
Program (ERS Program 1366) (PIs: Natalie Batalha, Jacob Bean, Kevin 
Stevenson)10,11. These observations cover the 0.5–5.5 µm wavelength 
range at a native resolving power of 20–300. WASP-39b was selected for 
this JWST-ERS Program because of previous space- and ground-based 
observations revealing strong alkali metal absorption and several 
prominent H2O bands4,6,14–16, suggesting a strong signal-to-noise ratio 
could be obtained with JWST. However, the limited wavelength range 
of existing transmission spectra (0.3–1.65 µm, combined with two wide 
photometric Spitzer channels at 3.6 and 4.5 µm) left several important 
questions unresolved. Previous estimates of WASP-39b’s atmospheric 
metallicity—a measure of the relative abundance of all gases heavier 
than hydrogen or helium—vary by four orders of magnitude6,16–20. Accu-
rate determinations of metallicity can explain formation pathways and 

provide greater insight into the planet’s history21. The JWST NIRSpec 
PRISM observations we present here offer a more detailed view into 
WASP-39b’s atmospheric composition than has previously been pos-
sible (see ref. 21 for an initial infrared analysis of these data).

We obtained time-series spectroscopy over 8.23 h centred around 
the transit event to extract the wavelength-dependent absorption by 
the planet’s atmosphere—that is, the transmission spectrum, which 
probes the planet’s day-night terminator region near millibar pressures. 
We used NIRSpec PRISM in Bright Object Time Series (BOTS) mode. 
WASP-39 is a bright, nearby, relatively inactive22 G7 type star with an 
effective temperature of 5,400 K (ref. 8). WASP-39’s J-band magnitude 
of 10.66 puts it near PRISM’s saturation limit, which allows us to test the 
effects of saturation on the quality of the resulting science compared 
to past measurements (Methods).

In our baseline reduction using Fast InfraRed Exoplanet Fitting for 
Lightcurves (FIREFLy)23, we perform calibrations on the raw data using 
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the jwst Python pipeline12 and then identify and correct for bad pixels 
and cosmic rays. We mitigate the 1/f noise9 at the group level rather than 
the integration level to ensure accurate slope fitting, which we find 
to be a crucial step for NIRSpec PRISM observations with few groups 
per integration.

We bin the resulting spectrophotometry in wavelength to create 207 
variable-width spectral channels with roughly equal counts in each. 
Figure 1 shows the FIREFLy white and spectrophotometric light curves at 
this step in the top panel. Several absorption features are visible by-eye as 
darker horizontal stripes within the transit region in the two-dimensional 
(2D) light curve (Fig. 1), demonstrating the high quality of the raw spec-
trophotometry achieved by the PRISM observing mode.

To extract the atmosphere’s transmission spectrum, we fit the plan-
et’s transit depth in each wavelength bin using a limb darkened tran-
sit light curve model using the Python-based Levenburg–Marquardt 
least-squares algorithm lmfit24. The light curves show a typical photo-
metric scatter of 0.2–1.2% per integration (1.36 s each), and the typical 
transit depth uncertainties vary between 50 and 200 parts per million 
(ppm), which is in line with near-photon-limited precision (Methods). 
Although we successfully measure fluxes in the saturated regions (0.8–
2.3 µm), because of the lower number of groups used per integration 
here (1–3) the measured count rates may be adversely affected. We do 
not find excess red noise in the saturated channels themselves, how-
ever, we notice large point-to-point scatter in the transit depths, which 
required wider wavelength binning to better match previous Hubble 
Space Telescope (HST) observations. Figure 2 highlights representa-
tive transit light curves spanning the entire wavelength range. These 
data are binned into wider wavelength channels than those used for 
the final transmission spectrum for ease of presentation. Light curve 
systematics have not been removed from these data, demonstrating the 
unprecedented stability and precision of the PRISM observing mode.

We also compared the results from the FIREFLy reduction to three 
other independent reductions that use different treatments for the 
saturated region of the detector, limb darkening and various detector 
systematics (Methods). All four reductions obtain consistent results. 
Figure 3 shows a comparison of the four reductions. The consistency 
provides confidence in the accuracy of derived atmospheric param-
eters, demonstrating that any residual systematics are minimal and do 

not strongly bias results for NIRSpec PRISM observations. The trans-
mission spectrum also agrees well with previous measurements from 
ground-based telescopes15,16 as well as HST and Spitzer6 within error 
(Fig. 3), indicating that we can reliably recover a spectrum at these levels 
of saturation. These PRISM observations offer high-quality data from 
0.5–5.5 µm, with minimal contributions from systematics and at preci-
sions generally near the photon limit (Methods). Although recovery of 
the saturated region (0.9–1.5 µm) is possible, caution is warranted when 
interpreting this portion of the spectrum (Methods). Future PRISM 
observations of similarly bright targets should therefore carefully 
consider whether saturating the spectrum is an appropriate choice 
for a given planet, or whether building the wavelength coverage from 
several transits with different complementary modes is preferable.

The transmission spectrum of WASP-39b from the FIREFLy reduction 
is shown in Fig. 4. We select the FIREFLy reduction to be our baseline 
reduction, but comparable results are achieved with the three other 
reductions presented in this work (Methods). We interpret the spec-
trum with grids of one-dimensional (1D) radiative–convective–thermo-
chemical equilibrium (RCTE) models (postprocessed with some more 
gases (Methods)), with a representative best-fitting model transmission 
spectrum shown in Fig. 4, along with opacity contributions from atoms, 
molecules and grey clouds. We detect the presence of H2O by means 
of four pronounced independent bands (33σ, 1–2.2 µm), a prominent 
CO2 feature at 4.3 µm (28σ), Na at 0.58 µm (19σ), a CO absorption band 
at 4.7 µm (7σ) and a grey cloud (21σ). We do not observe any significant 
CH4 absorption (expected at 3.3 µm), despite predictions of its pres-
ence for atmospheres at approximately solar metallicity and place 
a 3σ upper limit of 5 × 10−6 on the CH4 volume mixing ratio between 0.1 
and 2 mbar. We also observe a relatively narrow absorption feature at 
4.05 µm (roughy 2.7σ), which we attribute to SO2—a potential tracer 
for photochemistry25–27—after an extensive search across many pos-
sible opacity sources (Methods). Using a Bayesian approach described 
in the Methods section, we calculate that the volume mixing ratio of 
SO2 needed to explain this feature is 10−5. The potential SO2 feature is 
also observed at higher resolutions with JWST NIRSpec G395H (ref. 28),  
adding confidence that the feature first reported as an unknown 
absorber29 is a genuine feature of the planet’s atmosphere. With Na 
detected in the atmosphere, the alkali metal, K, is also expected at 
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Fig. 1 | The light curve of WASP-39b observed by JWST NIRSpec PRISM.  
a, The normalized white light curve created by integrating over all wavelengths 
using the FIREFLy reduction. b, The binned time series (with 30 integrations 

per time bin) of the relative flux for each wavelength. A constant 200 ppm per 
hour linear trend through time has been removed from the white light curve 
and each spectral channel for visual clarity.
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optical wavelengths14 although not detected. However, the resolution 
covering the narrow K absorption doublet in the optical is low, which 
may be preventing detection. This might also be because of detector 
saturation in the wavelength range where K absorption is expected. We 
also do not detect the presence of H2S in the atmosphere. We note that 
although the best-fitting models shown in Figs. 3 and 4 have some CH4, 
H2S and K signatures, these species are not favoured by the data to the 
level of a detection. We determine the single best-fitting atmospheric 
metallicity, C/O ratio and grey cloud opacity to be ten times solar, 0.7 

and κcld = 10−2.07 cm2 g−1, respectively. A detailed discussion on these 
best-fitting parameters is presented in the Methods section.

JWST/NIRSpec PRISM’s power to constrain many chemical species 
in hot giant planet atmospheres provides new windows into their com-
positions and chemical processes, as we show here with WASP-39b. 
Using our model grids, we find that WASP-39b’s best-fitting atmos-
pheric metallicity is roughly ten times solar. In the limit of equilib-
rium chemistry, our non-detection of CH4 at 3.4 µm paired with the 
prominence of the large CO2 feature at 4.4 µm are indicative of a 
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Fig. 2 | Normalized spectrophotometric light curves for the JWST-PRISM 
transit of WASP-39b. The light curves were created by summing over wide 
wavelength channels (wavelength ranges indicated on the plot). Overplotted 

on each light curve are their best-fit models, which include a transit model and 
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data.
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super-solar atmospheric metallicity, as illustrated in Extended Data 
Fig. 9. This may point to WASP-39b’s puffy envelope bearing more com-
positional similarity to the similarly massed ice giants than the gas 
giants. Moreover, the probably detection of SO2, and its unexpectedly 
high estimated abundance, suggests that photochemical processes 
are pushing this species out of equilibrium. Photochemistry models 
show that sulfur compounds such as H2S efficiently photodissociate 
and recombine to form SO2 with roughly 1 ppm abundances and at 

1–100 mbar pressures26—roughly the same pressure range probed 
by our transmission spectroscopy (Extended Data Fig. 10). The abun-
dance measurement of SO2 can therefore serve as an important tracer 
of the thermochemical properties of highly irradiated stratospheres 
and the efficiency of photochemistry. Furthermore, our detection 
of a qualitatively significant wavelength dependence to the planet’s 
central transit time (Extended Data Fig. 3) suggests that these obser-
vations are sensitive to differences in the atmospheric composition at 
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carbon-to-oxygen ratio with moderate cloud opacity (Methods). The PRISM 
transmission spectrum is explained by contributions from Na (19σ), H2O (33σ), 
CO2 (28σ), CO (7σ), SO2 (2.7σ) and clouds (21σ). The data do not provide evidence 
of CH4, H2S and K absorption (Methods). Also, note that the detector was 
saturated to varying degrees between 0.8 and 1.9 µm. As before, the error bars 
are 1 − σ standard deviations.
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the planet’s leading and trailing hemispheres. The measured roughly 
20 s amplitude of this effect is in line with model expectations30. This 
indicates that such observations will be informative in exploring the 
three-dimensional (3D) nature of hot Jupiter atmospheres, which may 
give a more holistic understanding of their heat redistribution and 
nightside chemistry.
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Methods
Data reduction
One transit of WASP-39b was observed with the NIRSpec PRISM mode, 
with the 8.23-h observation roughly centred around the transit event. 
We used NIRSpec’s Bright Object Time Series (BOTS) mode with the 
NRSRAPID readout pattern, the S1600A1 slit (1.6" × 1.6" ) and the SUB512 
subarray. Throughout the exposure, we recorded 21,500 integrations, 
each with five 0.28-s groups up the ramp. We achieved a duty cycle of 82%.

We extracted transmission spectra of WASP-39b using four differ-
ent reductions with the FIREFLy, tshirt, Eureka!+ExoTEP and Tiberius 
pipelines. The results from all reductions are broadly consistent (Fig. 3 
and Extended Data Fig. 1). We used the FIREFLy reduction as our baseline 
for comparison to models throughout this paper, however, equivalent 
overall results can be deduced from the other reductions. Some key 
attributes of the reductions are compared in Extended Data Table 2. 
All reductions correct for 1/f noise: correlated frequency-dependent 
read noise in the images caused by detector readout and current biases 
in the electronics31. We note that as the GAINSCALE step of the JWST 
pipeline applies a gain correction to the raw count rate files, the counts 
and count rates quoted herein are in units of electrons and electrons 
per second, respectively.

We find that recovery of the saturated region was possible by apply-
ing several custom steps described here. Without these steps, the heav-
ily saturated region showed a large and unexpected point-to-point 
scatter of several thousand ppm in the transmission spectra. We note 
that there was limited on-sky NIRSpec calibration data available when 
the data were obtained and reduced, including an incomplete detector 
bias image whose values were all set to zero. We used a custom bias 
frame for this step (private communication, S. Birkmann). Although 
the transmission spectra longwards of about 2 µm could be extracted 
without the use of this calibration, we found that bias correction was 
critical to extract the spectrum in the saturated region.

In addition, to recover the saturated region it was necessary to per-
form a reference pixel correction something that was skipped by the 
default jwst pipeline for NIRSpec PRISM because no official reference 
pixels are present in the subarray (tshirt section below). All reductions 
also expand the saturation flags along entire columns and only use 
the groups before saturation for slope fitting in these regions. With 
these steps, the spectra broadly matched previous HST and Very Large 
Telescope (VLT) observations6, with improvement in the region with 
only one or two groups before saturation. We expect that as updated 
NIRSpec calibration data become available, the recovery of saturated 
regions in PRISM observations may become easier, however, we still 
suggest avoiding rapid saturation with less than two groups before 
saturation if possible, especially if that region of the spectrum is impor-
tant to one’s science case.

FIREFLy. We performed custom calibrations on the uncalibrated data, 
including 1/f noise destriping9 at the group level, bad and hot pixel 
cleaning, cosmic ray removal and 5σ outlier rejection. Destriping the 
data also removed potential background in the 2D images, although 
none was apparent in the data. The jump-step and dark-current stages 
of the jwst pipeline12 (v.1.6.2) were skipped, and the top and bottom six 
pixels of the non-illuminated subarray were manually set to be refer-
ence pixels in the jwst pipeline reference pixel step. To obtain our final 
wavelength calibration, we extrapolated the STScI-provided in-flight 
instrumental wavelength calibration data product across the detector 
edge pixels that did not have an assigned wavelength. The calibration 
was derived using the ground-based wavelength solution. We per-
formed tests to search for zero-point offsets in the calibration versus 
the planetary and stellar spectra and did not find any at the level of half 
a pixel width or greater.

JWST detectors integrate using a non-destructive up-the-ramp sam-
pling technique in which the flux is measured in counts per second from 

fitting the ramp from the groups contained within each integration. 
Extended Data Fig. 2 shows the regions of the spectrum affected by 
saturation. Within a column where a pixel was marked as saturated by 
the pipeline in any given group, we used only the data from the preced-
ing groups for ramp fitting and manually set an entire column of the 
detector as saturated if a pixel in that column was saturated. Because a 
small portion of the spectrum reaches our saturation threshold in the 
second group, this region of the spectrum only uses one group to derive 
a ‘ramp’. Although we were able to recover the spectra in this wavelength 
range by flagging and ignoring saturated pixels at the group level, we 
note that the data quality is lower in the saturated region than in the 
rest of the spectrum given the counts per second ramp was measured 
from fewer than the total five groups.

We measured the positional shift of the spectral trace across the 
detector throughout the time series using cross correlation and used 
them to shift-stabilize the images with flux-conserving interpolation. 
This procedure reduced the amplitude of position-dependent trends 
in the light curves. We optimized the width of our flux extraction aper-
ture at each wavelength pixel and extracted the spectrophotometry. 
For each wavelength, we tested a wide range of aperture widths and 
determined the width that minimized the scatter of the photometry 
of the first 350 data points. We bin the cleaned spectrophotometry in 
wavelength to create 207 variable-width spectral channels with roughly 
105 counts per second in each bin and widths ranging from 3.3 to 60 nm. 
Because we use fewer groups in the saturated detector columns, our 
bin widths are larger by a factor of a few in this region to account for 
the lower count rates per detector column.

Before fitting the transmission spectrum, we use a very wide, 
high-SNR white light channel (3–5.5 µm) to fit for the planet’s orbital 
parameters (listed in Extended Data Table 1). Restricting the wide bin to 
the reddest wavelengths minimizes the impact of limb darkening on the 
transit light curve and the resulting covariance with the orbital system 
parameters while ignoring the saturated region. We fit this white light 
curve using the Markov chain Monte Carlo sampler emcee32 within the 
least-squares minimization framework of lmfit. We use 1,000 steps and 
uniform priors with extremely wide bounds that encapsulate the limits 
of physicality to ensure that there is no bias introduced by the prior. 
Our fitting approach accounts for non-Gaussian degeneracies in the 
posterior distribution, thereby addressing the known linear correlation 
between impact parameter (b) and the scaled semimajor axis (a/R*)

We excluded the first 3,000 integrations as they showed a slight 
non-linear baseline flux trend, and integrations 20,750–20,758 because 
of a high-gain antenna move that was identified from outliers in the 
photometry that correlated with noticeable trace shifts in the x and 
y directions. To measure the transmission spectrum, we fit the light 
curve at each wavelength channel jointly with a transit model33 and 
a linear combination of systematics vectors composed of the meas-
ured spectral shifts in the x and y directions. At each channel, we fit the 
planet’s transit depth and the stellar limb darkening, while fixing the 
transit centre time T0, affect parameter b and normalized semimajor 
axis a/R* to the values determined in the white light curve fit. We also 
fix the orbital period to the published value of 4.0552941 days (ref. 34). 
With the orbital system parameters fixed, we find the posterior distribu-
tion is well-fit by a multivariate Gaussian distribution, and therefore 
use a Levenberg–Marquart least-squares minimization algorithm24 to 
efficiently determine the best-fit parameters. In each channel, we inflate 
the transit depth error bars in quadrature with the measured residual 
red noise in the photometry as measured by the binning technique35. 
Measured uncertainties on the transit depths vary from 50 to 200 ppm, 
with a median of 99 ppm (Extended Data Fig. 4). As the noise levels are 
very close to the limit with what is expected including only photon and 
read noise sources, tools such as PandExo36 should accurately predict 
what is achievable for other planets. We measure an increase in red noise 
for a few select spectral channels, but otherwise the light curves show 
no significant systematic errors, with some channels binning down to 



precision levels of a few ppm. We measure x and y jitter systematics at 
the roughly 100 ppm level. We see differences in the central transit 
time as a function of wavelength on the order of 10 s, which may be 
attributable to limb asymmetries in the atmospheric temperature and 
composition. We show these signatures in Extended Data Fig. 3. Notably, 
we see a significant timing structure in the 2–3 µm range, which may 
arise from limb asymmetries in temperature and/or cloud coverage at 
the altitude probed by the water vapour absorption feature at 2.7 µm 
(ref. 37). Further analysis of the spectrophotometry could be warranted 
to investigate limb asymmetries in more detail.

We fit the transit light curves using a quadratic function to model 
stellar limb darkening given as,

I µ
I

a µ b µ
( )
(1)

= 1 − (1 − ) − (1 − ) (1)2

where I(1) is the intensity at the centre of the stellar disc, µ = cos(θ) where 
θ is the angle between the line of sight and the emergent intensity, and 
a and b are the limb darkening coefficients. We tested a four-parameter 
non-linear limb darkening function38 as well, which provided equivalent 
results. In practice, we first fit for both u+ = a + b and u− = a − b for the 
quadratic law. When comparing the limb darkening coefficients to 
theoretical values, we find an offset between the theoretically derived 
values of u+ from the 3D stellar models from ref. 39 and the JWST val-
ues derived from the transit light curve fits (Extended Data Fig. 5). 
This offset suggests the limb of WASP-39A is brighter than the stellar 
models predict. We fit for this offset and find it to be −0.065 ± 0.022. 
As the wavelength-to-wavelength shape of u+ is well described by the 
model, we then apply this offset to the theoretical limb darkening coef-
ficients and then subsequently fix u+ while allowing only u− to be free 
(Extended Data Fig. 5). This procedure helps reduce degeneracies when 
fitting several limb darkening coefficients and increases the precision 
of the transmission spectrum, as the limb darkening is often not well 
constrained, particularly at long wavelengths where the limb darken-
ing is weak39 (Extended Data Fig. 5). The main effect of fitting for limb 
darkening over fixing the coefficients to the 3D models is the transit 
depth level of the optical spectrum, which is lower with values fixed to 
the model. We compare the optical spectrum with fixed limb darken-
ing to the HST data from ref. 6 in Extended Data Fig. 6, which was also 
fit with limb darkening fixed to the same model. Overall, we find good 
agreement between the two spectra. We note that the assumptions 
around limb darkening can affect the optical spectra continuum wthat 
particularly affects the interpreted levels of aerosol scattering: further 
investigations are warranted.

tshirt. We use the tshirt pipeline, for example, ref. 40, to extract an 
independent set of light curves and spectrum. We begin with the 
uncalibrated ‘uncal’ data product and apply a custom set of processing 
steps on stage 1 that build on the existing jwst stage 1 pipeline software 
v.1.6.0 with reference files CRDS (Calibration Reference Data System) 
jwst_0930.pmap. We use a custom bias file shared by the instrument 
team (S. Birkmann, private communication), which is the same file that 
was delivered to the JWST CRDS.

We attempt to minimize the biasing effects of count rate non-linearity 
by modifying the quality flags of pixels surpassing 90% of full-well depth 
at the group stage. To ensure that there are no systematic differences 
between pixels within the spectral trace and in the background region, 
we adjust the quality flags uniformly along the entire pixel column at 
each group for all integrations. We skip the ‘jump’ and ‘dark’ steps of 
stage 1.

The tshirt code includes a row, odd-even by amplifier correction 
to reduce 1/f noise. We first identify source pixels by choosing pix-
els with more than five data numbers per second (DN s−1) in the rate 
file and expanding this region out by 8 pixels. We then identify back-
ground pixels for 1/f corrections by choosing all non-source pixels 

and pipeline flagged non-‘DO NOT USE’ pixels. We loop through every 
group and subtract the median of odd (even) row background pixels 
from all odd (even) rows. We next find a column-by-column median of 
all background pixels to calculate a 1/f stripe correction and subtract 
this from each column.

After calculating rate files in DN s−1, we use tshirt to perform 
covariance-weight extraction of the spectrum31. We do a column-by- 
column linear background subtraction using pixels 0–7 and 25–32. We 
use a rectangular source extraction region centred on Y = 16 pixels with 
a width of 14 pixels. We assume the correlation between pixels to be 
8% from previous studies of background pixels31. We use a spline with 
30 knots to estimate a smooth spectrum of the star at the source pixels 
and identify bad pixels as ones that deviate by more than 50σ from the 
spline. Pixels that are more than 50σ or else marked as DO NOT USE are 
flagged and then the spatial profile is interpolated over those pixels. No 
corrections were made to the centroid or wavelength solution because 
of the exceptional pointing stability of the observatory41.

When fitting the light curves, we exclude all time samples between UT 
2022-07-10T23:20:01 and 2022-07-10T23:21:08 to avoid the effects of 
the high-gain antenna move. We first fit the broadband light curve with 
all wavelengths. We assume zero eccentricity and the orbital parameters 
from ref. 34 for a/R∗ and period. We try fitting the white light curve with 
eccentricity and argument of periastron set free and find that eccen-
tricity is consistent with 0. We therefore assume zero eccentricity and 
a transit centre projected to the time of observations from a fit to the 
TESS data. We also assume an exponential temporal baseline in time to 
the data and a second-order polynomial trend in time. We fit the quad-
ratic limb darkening parameters with uninformative priors42 and the 
exoplanet code43–45 with 3,000 burn-in steps and 3,000 sampling steps 
and two No U Turns Sampling chains46. We next binned the spectra into 
116 bins, each 4 pixels wide. We fit all the individual spectroscopic chan-
nels with the orbital parameter fixed from the broadband light curve 
fit and only allowed the transit depth and limb darkening parameters 
to be free. Our resulting transit depth uncertainties ranged from 35 to 
732 ppm, with a median of 90 ppm.

Eureka! and ExoTEP. We use the Eureka! pipeline47 for the data reduc-
tion steps of detector processing, data calibration and stellar spectrum 
extraction, and the ExoTEP pipeline48–50 to generate light curves in each 
wavelength bin and perform light curve fitting.

We start our data reduction using the uncalibrated uncal outputs of 
the jwst pipeline’s stage 0. From there, Eureka! acts as a wrapper for the 
first two stages of the jwst pipeline, v.1.6.0. We use the jwst pipeline to 
fit slopes to the ramp in each pixel and perform data calibration, and 
follow the default pipeline steps unless otherwise stated. We skip the 
jump detection step, meant to correct the ramps for discontinuities 
in the slopes of group count rates as a function of time. Owing to the 
small number of groups up the ramp, performing this step leads to a 
large fraction of the detector pixels being incorrectly flagged as outliers 
and we therefore rely on the time series outlier-clipping steps in the 
subsequent stages to correct for cosmic rays. A custom bias frame is 
used, rather than the default one available on CRDS at the time of reduc-
tion. We also expand the saturation flags in stage 1 to ignore saturated 
pixels more conservatively than allowed by the default jwst pipeline 
settings: in each group, we flag pixels as saturated if they reach roughly 
85% of the full well in the median image across all integrations for that 
group and expand the saturation flag such that in a given detector 
column (constant wavelength) all pixels are marked as saturated if 
any one pixel in that column is flagged. This is implemented by input-
ting the indices of columns to mask on the basis of an inspection of 
the uncal data products, rather than an internal calculation of the full 
well percentage. We include a version of the row, odd-even by ampli-
fier correction described above, using the top and bottom six rows. 
We further add a custom background correction at the group level 
before ramp fitting, and subtract from each column the median of 
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the six pixels at the top and at the bottom of the detector, excluding 
outliers at more than the 3-σ level. We skip the ‘photom’ step in stage 2 
of the STScI detector pipeline because absolute fluxes are not needed 
in our analysis. We also skip the ‘extract1d’ step as we perform custom 
spectral extraction using Eureka!.

For 1D spectral extraction, we trim the array to include only columns 
14 to 495 in the dispersion direction, as NIRSpec’s throughput is neg-
ligible beyond this range. We then use the median detector frame to 
construct the weights used in the optimal extraction based on ref. 51. 
Pixels are masked if they have an marked data quality flag (that is, bad 
pixels that are flagged by the jwst pipeline as ‘DO NOT USE’ for various 
reasons) or if they are clipped by two iterations of 10-σ-clipping of the 
time series. We perform the optimal extraction over eight rows centred 
on the source position (corresponding to a spectral half-width aperture 
of 4 pixels). The source position is identified from the maximum of a 
Gaussian fitted to the summed spatial profile from all detector columns 
over the entire integration.

We use ExoTEP to generate median-normalized light curves at the 
native pixel resolution from each detector column, using the stellar 
spectra outputs from stage 3 of Eureka!. We then perform further 
clipping of outliers in time in the white and wavelength-dependent 
light curves by computing a running median with a window 
size of 20 and excluding 3σ outliers in several time series. This 
outlier-clipping was applied to the flux, source position and width 
in the cross-dispersion direction in each frame and spectrum shifts 
in the dispersion direction.

We jointly fit astrophysical and systematics model parameters to the 
white (0.5–5.5 µm) light curves and each of the wavelength-dependent 
light curves. Our astrophysical transit model is calculated using the 
batman package33. Using the white light curve, we fit for the two coef-
ficients of a quadratic limb darkening law (equation (1)), WASP-39b’s 
impact parameter, scaled semimajor axis a/R*, time of transit centre 
and the planet-to-star radius ratio. In each of the wavelength channels 
we then fix the planet’s impact parameter, semimajor axis and transit 
time to the values derived from the white light curve and fit only for 
the planet-to-star radius ratio and the two quadratic limb darkening 
coefficients. For the systematics model, we assume a linear trend with 
time that can be different in each spectroscopic channel, and fit for its 
slope and y intercept. Last, we fit a single-point scatter to each light 
curve, which illustrates the level of scatter required for our joint model 
to reach a reduced chi-squared of 1. The fitted light curve scatter in both 
the white light curve and wavelength-dependent channels is within a 
few percent of the expectation from the high-frequency scatter in the 
raw light curves, which attests to the lack of systematics. We bin the 
final transmission spectrum (four points binned together throughout 
the spectrum) for visual comparison with the other reductions in Fig. 3.

Tiberius. The Tiberius pipeline builds on the LRG-BEASTS spectral 
reduction and analysis pipelines introduced in refs. 16,52,53. The Tiberius 
pipeline operates on the stage 1 JWST data products to obtain 1D stellar 
spectra through tracing of the stellar spectra, fitting and removal of 
the background noise and simple aperture photometry. We used the 
FIREFLy-processed stage 0 data.

Before tracing the spectra, we interpolate each column of the detec-
tor onto a finer grid, 10× the initial spatial resolution. This step improves 
the extraction of flux at the subpixel level, particularly where the edges 
of the photometric aperture bisect a pixel, and leads to a 14% reduction 
in the noise in the data. We also interpolate over the bad pixels using 
their nearest neighbouring pixels in x and y. We identify bad pixels by 
combining 5σ outlying pixels found by means ofrunning medians oper-
ating along the pixel rows with bad pixels identified by visual inspection. 
We trace the spectrum by fitting a Gaussian distribution at each column 
(in which a column refers to the cross-dispersion direction) to the stellar 
spectra. We then use a running median, calculated with a moving box 
with a width of five data points, to smooth the measured centres of the 

trace. We fit these smoothed centres with a fourth-order polynomial, 
removed five median absolute deviation outliers and refitted with a 
fourth-order polynomial.

To remove residual background flux not captured by the 1/f cor-
rection, we fit a linear polynomial along each column in the spatial 
direction. We mask the stellar spectrum, defined by an aperture with 
a full width of 4 pixels centred on the trace we found in the previous 
step, from this background fit. We also mask an extra 7 pixels on either 
side of this aperture so that the background fit is not affected by the 
wings of the stellar point spread function. This left us with 7 pixels at 
each edge of the detector (a total of 14 pixels) with which to estimate 
the background. We also clipped any pixels within the background 
that deviate by more than three standard deviations from the mean 
for that particular column and frame to avoid residual bad pixels and 
cosmic rays affecting our background estimation. We found that this 
extra background step led to a 3% improvement in the precision of the 
transmission spectrum.

The stellar spectra are then extracted by summing the flux within 
a 4-pixel-wide aperture following the removal of the background at 
each column. The background count level, as estimated by the JWST 
Exposure Time Calculator is on the order of a few counts per second, 
meaning the background is negligible. Further, because we perform 1/f 
subtraction, this faint background is subtracted column-by-column. 
We experimented with the choice of the aperture width, also run-
ning reductions with 8- and 16-pixel-wide apertures. The 8-pixel-wide 
aperture gave a median uncertainty 1% larger than a 4-pixel aperture 
and a 16-pixel aperture gave an uncertainty 15% larger than 4 pixels. 
This same change was reflected in the median root mean square of the 
residuals to the light curve fits. As the stellar point spread function 
is so narrow in PRISM data, we believe that the increase in noise with 
increasing aperture width is related to the increasing influence of 
photon noise, read noise and bad pixels where the stellar flux is lower. 
Following the extraction of the stellar spectra, we divide the measured 
count rates by a factor of ten to correct for our pixel oversampling, 
as described above.

To remove residual cosmic rays, we identify outliers in each stellar 
spectrum through comparison with the median stellar spectrum. We 
did this in three iterations, each of which involves making a median 
spectrum, identifying outliers (10, 9, 8 σ) and replacing pixels contain-
ing a cosmic ray with a linear interpolation between neighbouring 
pixels. We tested this interpolation against assigning the cosmic ray 
pixels zero weight and found that this led to a negligible difference in 
the transmission spectrum. To correct for shifts in the stellar spectra 
and align each spectrum in pixel space, we cross-correlate each stellar 
spectrum with the first spectrum of the observation and linearly resa-
mple each spectrum onto a common wavelength grid. We adopt the 
custom wavelength solution calculated by the tshirt pipeline, which 
uses the jwst pipeline to evaluate the wavelengths at pixel row 16 using 
the world coordinate system.

Our white light curves are created by summing over the full wave-
length range between 0.518 and 5.348 µm. We make two sets of spec-
troscopic light curves: one set of 440 light curves at 1-pixel resolution 
and one set of 147 light curves at 3-pixel resolution. We mask integra-
tions 20,751–20,765 because of a high-gain antenna move that leads to 
increased noise in the light curves. We also mask the first 2,000 integra-
tions from our analysis because of a systematic ramp. This means our 
light curves each contained 19,486 data points.

To fit our light curves, we began by fitting the white light curve to 
determine the system parameters.

We fit for the following parameters: the scaled planetary radius 
(Rp /R*), the planet’s orbital inclination (i), the time of mid-transit (TC), 
the scaled separation (a/R*), the linear limb darkening coefficient (u1) 
and the parameters defining the systematics model. We fix the plan-
et’s orbital period to 4.0552941d and eccentricity to 0 (ref. 34). For the 
remaining parameters, we use the values from ref. 34 as initial guesses.



For the analytic transit light curve model, we use batman33 with 
a quadratic limb darkening law. We use ExoTiC-LD54,55, with 3D stel-
lar models39 to determine the appropriate limb darkening coeffi-
cients (LDs), adopting the stellar parameters (Teff = 5,512 ± 55 K, log 
g = 4.47 ± 0.03 cgs, [Fe/H] = 0.01 ± 0.09 dex) from ref. 34 and Gaia DR3 
(refs. 56,57). For our final fits, we fix the quadratic coefficient, u2, to the 
values determined by ExoTiC-LD. However, we also run a set of fits with 
neither u1 nor u2 fixed and find this leads to a transmission spectrum 
that is qualitatively similar to the one in which LDs are fixed. For the 
systematics model, we sum the following three polynomials: quadratic 
in time, linear in x position of the star on the detector and linear in y posi-
tion of the star on the detector. The final fit model, M, was of the form:

( )∑M t T t p S a s( ) = ( , ) × ( ( , ) ) (2)
i i i

ni

where t is time, p are the parameters of the transit model, T, a are the 
ancillary data and s are the parameters (polynomial coefficients) of the 
systematics model, S. The systematics model is the sum of the polyno-
mials operating over each ancillary input, ai, with ni defining the order 
of the polynomial used for each input.

We fit our white light curve in three steps: a first fit to remove any 
4σ outliers from the light curves, a second fit that is used to rescale 
the photometric uncertainties such that the best-fitting model gives 
χν

2 = 1 and a third fit with the rescaled photometric uncertainties, from 
which our final parameter values and uncertainties are estimated. The 
parameter uncertainties were calculated as the standard deviation of 
the diagonal of the covariance matrix that was in turn calculated from 
the Jacobian returned by scipy.optimize.

Following the white light curve, we fit our spectroscopic, wavelength- 
binned, light curves. For these fits, we held a/R*, i and TC fixed to the  
values determined from the white light curve fit: 11.462 ± 0.014, 
87.847 ± 0.015°, 2,459,770.835623 ± 0.000008 Barycentric Julian 
Date Dynamical Time (BJDTDB.). These values are different from the 
FIREFLy-reduced white light parameters, and these differences will 
be explored in greater detail in a future work. To zeroth order, offsets 
in orbital parameters result in simple vertical offsets in the resulting 
transmission spectrum. The remaining fit parameters were the same 
as for the white light curve fit. We perform the same iteration of fits 
using a Levenberg–Marquardt algorithm to determine Rp/Rs as a func-
tion of wavelength.

Reduction comparison
Procedural differences exist across the four main reductions of the data-
set, which may account for the subtle qualitative differences between 
the final reduced spectra. A careful investigation of these nuances 
is warranted and will be presented in a future paper. Extended Data 
Table 2 highlights some key procedural differences between the reduc-
tions. We note that, despite these differences, the resulting exoplanet 
spectra are qualitatively in excellent agreement with each other (Fig. 3) 
because of the stability of the data and the self-calibrating nature of 
the transit technique.

Stellar activity
WASP-39b has a reported low activity level8, with a Ca II H and K stellar 
activity index of logR’HK = −4.994 (ref. 4). NGTS and TESS photometric 
monitoring of WASP-39A is reported in ref. 22, which finds low modu-
lations at the 0.06% level with no apparent star-spot crossings. With 
low stellar activity levels, the transit observations are unlikely to be 
affected by stellar activity.

Forward model grids
We use four different 1D RCTE model grids to assess atmospheric proper-
ties such as detection of individual gases, metallicity, carbon-to-oxygen 
(C/O) elemental abundance ratio, and the presence/absence of clouds. 

The ScCHIMERA58,59, PICASO 3.0 (refs. 60–63), ATMO54,64,65 and PHOE-
NIX66,67 models were used to generate these grids specifically for 
WASP-39b. Whereas the ATMO and the PHOENIX grids were used to 
fit the data with a reduced χ2 based grid search method, the PICASO 3.0 
and ScCHIMERA grids were used in a grid retrieval framework using a 
nested sampler68,69. Within each nested sample likelihood calculation, 
the transmission spectra are generated on-the-fly by postprocessing 
the precomputed 1D RCTE model atmospheres. The SO2 volume mix-
ing ratio and cloud properties are injected into spectrum during this 
postprocessed transmission calculation. Extended Data Fig. 7 shows 
best-fit models obtained by each of the four grids compared with the 
transmission spectrum obtained with the FIREFLy data reduction pipe-
line. ScCHIMERA, PICASO 3.0 and ATMO produce fits with reduced χ2 
between 3.2 and 3.3, while the PHOENIX grid obtains a reduced χ2 of 
4.3. The reduced χ2 is defined as the total χ2 calculated from all the data 
points divided by the total number of data points. Although PICASO 
3.0, ScCHIMERA and ATMO predict the metallicity of the atmosphere 
to be about 10× solar, PHOENIX finds a best-fit metallicity to be a 100× 
solar that might be due to the larger grid spacing of the PHOENIX grid 
along both the cloud and metallicity dimensions. Although the models 
qualitatively match the data, the reduced χ2 obtained by the best-fitting 
models from these grids are also greater than three, which suggests 
that these are not fitting the data particularly well. These poor fits 
could arise for many reasons, such as the region of the data affected by 
saturation, the presence of disequilibrium chemistry in the atmosphere 
due to vertical mixing or photochemistry and the non-grey nature of 
scattering in the upper atmosphere. Extended Data Table 3 provides a 
summary of the best-fit atmospheric parameters obtained by the four 
different grids with different fitting methods (grid retrievals and grid 
search). To explore the effect of the saturated region on the best-fit 
parameters, we inflate the transit depth errors in the saturated regions 
(0.68–1.91 µm) by a factor of 1,000 and recompute the best-fit models 
using the grid retrieval framework with both the PICASO v.3.0 and 
ScCHIMERA grids. We find that this did not significantly change any 
of the best-fit parameters including the metallicity and the C/O ratio. 
Extended Data Table 3 lists the best-fit parameters obtained when the 
saturated region error bars were inflated by a factor of 1,000. We sum-
marize the main results obtained by these 1D grids here and refer the 
reader to ref. 29 for detailed descriptions of each of these model grids.

Detection significance of gases
We quantify the detection significance of each species through a Bayes 
factor analysis, for example ref. 70. To do so within the ScCHIMERA 
grid retrieval framework, we remove each gas during the transmission 
spectrum computation step (the 1D RCTE atmosphere models remain 
unchanged) one at a time and re-run the nested sampler. We compare 
the Bayesian evidence of each removed-gas run to that of grid retrieval 
with all the gases. There is no change in the number of parameters 
except the cloud and SO2 mixing ratio parameters. Extended Data 
Table 4 shows the result of this exercise summarized as the log-Bayes 
factor and a conversion to the detection significance: for example ref. 71.

We also quantify the detection significances of different gases follow-
ing the procedure used in ref. 29. To calculate the detection significance 
of each gas, the best-fit transmission spectrum model from the PICASO 
3.0 grid ([M/H] = +1.0, C/O = 0.68) is recalculated without that gas. The 
wavelength ranges in which the particular gas has the most prominent 
effect are first identified and then a residual spectrum is calculated 
by subtracting the model without the gas from the data. The residual 
spectra for H2O, CO2, CO, Na, SO2 and CH4 are shown in the six panels 
of Extended Data Fig. 8. We fit each of these residual spectra with two 
functions, a Gaussian–double Gaussian–Voigt function and a constant 
line. We use the Dynesty nested sampling routine68 to perform the fits 
and to determine the Bayesian evidence associated with each fit. The 
Bayes factor between the fits of the residual spectrum with the Gauss-
ian–Voigt function and the constant line is then used to determine 
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the detection significance of a gas. For example, for computing the 
detection significance of H2O, two adjacent H2O features between 1 
and 2.2 µm are used. We note that H2O is expected to be the dominant 
opacity source in other wavelength ranges (for example, 2.2–3 µm) as 
well, so choosing two features for this analysis would produce a lower 
limit on the detection significance of H2O. The best-fit double Gaussian 
function to these features along with its 1σ and 2σ envelopes are shown 
with the red line and shaded regions in Extended Data Fig. 8 top-left 
panel. The same residual spectrum is also fitted with a straight line 
shown with blue colour in Extended Data Fig. 8. The logarithm of the 
Bayes factor between the two models is found to be lnB = 242, which 
shows that the model with H2O is significantly favoured over a model 
without any H2O. The detection significance of H2O corresponding 
to this Bayes factor is calculated using the prescription in ref. 71 and is 
found to be 22σ. The same methodology, but with a single Gaussian 
function, is also followed for CO2, CO, SO2, H2S and CH4 to get their 
detection significance summarized in Extended Data Table 4, in the 
last column. Our Gaussian residual fit significance for CO2 matches the 
initial analysis of the NIRSpec PRISM data presented in ref. 29.

As shown in Extended Data Table 4, the detection significance of 
all gases increases with the Bayes factor analysis technique relative to 
the Gaussian–Voigt function technique. This is notably also the case 
for SO2, lending confidence to the detection and identification of the 
molecule, as the feature is better fit by its respective opacity profile.

Resolution bias and the detection significance of CO
The resolution-linked bias effect serves to dilute the measured ampli-
tudes of planetary atmospheric features because of overlapping 
absorption lines in the stellar atmosphere. Although this effect is negli-
gible for most stars earlier than M dwarfs, some stellar CO absorption is 
expected in WASP-39, meaning the measured planetary CO abundance 
may be biased. Following equation 4 in ref. 72 and using high-resolution 
(R of roughly 105) PHOENIX models of the planet and the star, we quan-
tify an upper limit on the magnitude of this bias effect. We find that the 
planetary CO feature is biased by 30 to 40 ppm in the 4.5–5.1 µm region, 
leading to as much as a roughly 1 − σ underestimate of the planetary 
CO absorption strength, and subsequently a similar underestimate 
of its abundance. We note that this effect is potentially weakened by 
Doppler broadening of the molecular lines (which is unaccounted 
for by PHOENIX) because of stellar rotation, planetary orbital radial 
velocity and planetary winds. Future work, which may benefit from 
more detailed modelling and high-resolution observations of WASP-
39’s CO band heads, will better quantify the magnitude of this dilution.

Metallicity, C/O ratio and CH4 abundance
The best-fitting atmospheric metallicity for WASP-39b is found to 
be roughly ten times the solar metallicity using the model grids. The 
top panel in Extended Data Fig. 9 shows the observed transmission 
spectrum of the planet between 2.0 and 5.3 µm (in which variations 
due to metallicity are most prominent), along with several transmis-
sion spectrum models assuming different atmospheric metallicities 
ranging from subsolar values (for example, 0.3× solar) to super-solar 
values (for example, 100× solar). The bottom panel demonstrates the 
effect of different atmospheric C/O ratios at ten times solar metal-
licity on many transmission spectrum models along with the data. 
As the star WASP-39 has near-solar elemental abundances73, scaled 
solar abundances are a reasonable choice for this star. The CH4 feature 
between 3.1–4 and 2.2–2.5 µm is very prominent in subsolar and solar 
metallicity thermochemical equilibrium models shown in Extended 
Data Fig. 9. The absence of such a CH4 feature in the data is evident. 
This, combined with the large CO2 feature between 4.3 and 4.6 µm and 
measurable CO feature at 4.7 µm, led to a super-solar (10×) metallicity 
estimate for the planet. The C/O ratio of the RCTE models significantly 
affects the predicted gas abundances, and therefore the calculated 
transmission spectrum. Extended Data Fig. 9 bottom panel shows that 

for metal-rich atmospheres (for example, >10× solar) with C/O ratios 
lower than 0.7, the transmission spectrum is dominated by features 
of oxygen-bearing gases (H2O, CO2, CO): for example, refs. 65,74,75. But 
for higher C/O ratios (for example, 0.916), the transmission spectrum 
becomes CH4 dominated at wavelengths greater than 1.5 µm. We obtain 
an upper limit on the C/O ratio of WASP-39b at about 0.7. However, these 
interpretations are based on single-best fits from model grids assuming 
thermochemical equilibrium. Other chemical disequilibrium processes 
such as atmospheric mixing and high-energy stellar radiation-induced 
photochemistry can also potentially affect this interpretation. These 
disequilibrium chemistry effects require further exploration in the 
context of WASP-39b and will be discussed in future work (Welbanks 
et al. (in prep), Tsai et al. (submitted)).

The best-fitting metallicity models can be used to place an upper limit 
on the CH4 abundance, if the pressure ranges probed by the transmis-
sion spectrum are estimated. To estimate the pressure ranges probed by 
the data, we use the best-fit PICASO 3.0 model to calculate a pressure- 
and wavelength-dependent transmission contribution function of the 
atmosphere76. This contribution function for the best-fit 10× solar 
metallicity PICASO v.3.0 model is shown as a heat map in Extended 
Data Fig. 10. This shows that the data mostly probes pressure ranges 
between 0.1 and 2 mbar. We also computed contribution functions for 
models with solar metallicity and find that they probe similar pressure 
ranges as well. Extended Data Fig. 10 also shows the pressure depend-
ent CH4 abundances in models with different metallicities presented in 
Extended Data Fig. 9 top panel. As only super-solar metallicity thermo-
chemical equilibrium models are preferred by the data, the abundance 
profiles in Extended Data Fig. 10 help us in putting an upper limit of 
5 × 10−6 on the CH4 volume mixing ratio between 0.1 and 2 mbar.

Clouds
The observed spectrum shows slightly muted transit depths, across 
the entire wavelength range, compared with the depths expected 
from clear atmospheric models. This hints towards some extra opacity 
source in the atmosphere with weak wavelength dependence. Opacity 
sources such as clouds can mute the spectral features in a transmis-
sion spectrum2,4. We postprocess the transmission spectrum models 
with grey (that is, wavelength-independent) cloud opacities to check 
whether they are preferred over clear atmospheric models by the data. 
However, the treatment of clouds differ between the four 1D RCTE 
model grids. PICASO 3.0 and ScCHIMERA grids implemented the cloud 
opacities using the following equation,

τ κ
δP

g
= (3)i

i
,cld cld

where τi,cld is the cloud optical depth of the ith atmospheric layer in 
the model with pressure width δPi and g represents the gravity of the 
planet. The best-fit value of the grey cloud opacity κcld = 10−2.07 cm2 g−1 is 
calculated in a Bayesian framework by postprocessing the RCTE model 
grid with this cloud opacity and comparing these postprocessed mod-
els with the data. The ATMO grid includes grey cloud decks at several 
pressures between 1 and 50 mbar, but with variable factors 0, 0.5, 1 and 
5 governing cloud opacity with respect to H2’s scattering cross-section 
at 0.35 µm, where a factor 0 indicates a cloud-free model spectrum. The 
PHOENIX grid includes similar cloud decks but between 0.3 and 10 mbar 
with cloud optical depth enhancement factors (identically defined as 
the ATMO grid) 0 and 10. We find that the cloudy models better fit the 
data than clear models across all four model grids. The contribution of 
clouds in limiting the depths of the gaseous features across the entire 
wavelength range is also shown in Fig. 4 with the grey shaded region.

4 µm SO2 feature identification
None of the 1D RCTE models capture the 4 µm absorption feature seen 
in the data. We searched for several candidate gas species that could 



produce this feature if their abundances differ from the expected 
abundances from thermochemical equilibrium. The list of searched 
chemical species include C-bearing gases such as C2H2, CS, CS2, C2H6, 
C2H4, CH3, CH, C2, CH3Cl, CH3F, CN and CP. Various metal hydrides, 
bromides, flourides and chlorides such as LiH, AlH, FeH, CrH, BeH, TiH, 
CaH, HBr, LiCl, HCl, HF, AlCl, NaF and AlF were also searched as poten-
tial candidates to explain the feature. SO2, SO3, SO and SH are among 
the sulfur-based gases that were considered. Other species that were 
considered include gases such as PH3, H2S, HCN, N2O, GeH4, SiH4, SiO, 
AsH3, H2CO, H+

3, OH+, KOH, Brα-H, AlO, CN, CP, CaF, H2O2, H3O+, HNO3, 
KF, MgO, PN, PO, PS, SiH, SiO2, SiS, TiO and VO.

Among all these gases, SO2 was the most promising candidate in 
terms of its spectral shape and chemical plausibility, although the 
expected chemical equilibrium abundance of SO2 is too low to produce 
the absorption signal seen in the data. However, previous work explor-
ing photochemistry in exoplanetary atmospheres25,26 have shown 
that higher amounts of SO2 can be created in the upper atmospheres 
of irradiated planets through photochemical processes. Therefore, 
we postprocess the PICASO 3.0 and ScCHIMERA chemical equilib-
rium models with varying amounts of SO2 in a Bayesian framework to 
estimate the SO2 abundance required to explain the strength of the 
4-µm feature. The required volume mixing ratio of SO2 was found to 
be roughly 10−5–10−6. Note that in obtaining this estimate we assumed 
that the SO2 volume mixing ratio does not vary with pressure for sim-
plicity. In a photochemical scenario this assumption is probably not 
realistic, although the pressure range probed by SO2 is also limited. 
Whether photochemical models can produce this amount of SO2 in 
the atmospheric conditions of WASP-39b is a pressing question that 
the ERS team is now exploring (Welbanks et al. (in prep), Tsai et al. 
(submitted)). Whether this feature can be better explained by any 
other gaseous absorber is also at present under investigation by the 
ERS team.

Data availability
The data used in this paper are associated with JWST program ERS 
1366 and are available from the Mikulski Archive for Space Telescopes 
(https://mast.stsci.edu). The data products required to generate 
Figs. 1, 2, 3, and Extended Data Figs. 1, 3 and 5 are available here: 
https://zenodo.org/record/7388032. All additional data are avail-
able upon request.

Code availability
The codes used in this publication to extract, reduce, and analyse the 
data are as follows; STScI JWST Calibration pipeline (https://github.
com/spacetelescope/jwst), FIREFLy23, tshirt40, Eureka!47 (https://
eurekadocs.readthedocs.io/en/latest/) and Tiberius16,52,53. In addi-
tion, these made use of Exoplanet43 (https://docs.exoplanet.codes/
en/latest/), Pymc3 (ref. 77) (https://docs.pymc.io/en/v3/index.html), 
ExoTEP48–50, Batman33, (http://lkreidberg.github.io/batman/docs/html/
index.html), ExoTiC-ISM54 (https://github.com/Exo-TiC/ExoTiC-ISM), 
ExoTiC-LD55 (https://exotic-ld.readthedocs.io/en/latest/), Emcee32 
(https://emcee.readthedocs.io/en/stable/), Dynesty68 (https://dynesty.
readthedocs.io/en/stable/index.html) and chromatic (https://zkbt.
github.io/chromatic/), which use the python libraries scipy78, numpy79, 
astropy80,81 and matplotlib82. The atmospheric models used to fit the 
data can be found at PICASO60–63 (https://natashabatalha.github.io/
picaso/), Virga85 (https://natashabatalha.github.io/virga/), ScCHI-
MERA58,59 (https://github.com/mrline/CHIMERA), ATMO65,83 and  
PHOENIX66,67.
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Extended Data Fig. 1 | A comparison of the extracted 1D spectrophotometry 
across the four reductions. Plotted is the spectrophotometry with time on  
the x-axis and wavelength on the y-axis, with color indicating the relative flux. 

The transit is visible as a dark band in the middle of the observation. All four 
reductions show nearly identical noise properties.



Article

Extended Data Fig. 2 | Demonstration of the impact of saturation. Shown 
are the group-level median frames from the uncalibrated data products across 
the entire integration. The dashed blue line represents the empirically derived 

saturation level, with the orange dotted line representing 85% saturation, the 
level adopted in the Eureka! reduction. Grey shaded regions represent columns 
that reach 85% full well in a given group.



Extended Data Fig. 3 | The wavelength-dependent central transit time in 
seconds. Structure is apparent–the prominent water and carbon dioxide 
absorption features at 2.7 µm and 4.2 µm, respectively, appear to arrive ∼20 s 

after the optical continuum. A slope is also apparent from the blue side to the 
red. The error bars are 1-σ standard deviations.
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Extended Data Fig. 4 | A summary of the positional shifts of the trace, the 
wavelength-dependent light curve scatter, and the transit depth noise. 
(Top) The X- and Y-shift vectors as measured by 1D cross correlation with 
FIREFLy. (Middle) The residual spectrophotometric light curves are shown for 
four representative spectral channels spanning the PRISM wavelength range 
with no temporal binning. The residual scatter is approximately Gaussian for 
each, as indicated by the histogram on the right y-axis. We validate this by 
performing Anderson-Darling tests on the residuals of the spectral and 
white-light curves, and find that all of the Anderson-Darling test statistics lie 
below the respective critical values 1% significance level. Therefore, we find 
that there is not sufficient evidence that the residuals are not normally 
distributed. (Bottom) The top two purple curves show the expected and 

measured normalised light curve root mean square (RMS) residuals, with no 
temporal binning. Longward of 2 µm, the scatter in each light curve matches 
well with the expected noise as estimated by the jwst pipeline, which is 
dominated by photon noise. This agreement indicates the majority of the light 
curves reach near the photon limit. The transit depth uncertainties are also 
plotted below, including the white noise (blue, σw), red noise (red, σred), and total 
noise components (grey, σtot). Some wavelength bins have enhanced red noise, 
but the majority of the transmission spectrum is consistent with minimal red 
noise from residual systematic errors. The wavelengths affected by detector 
saturation are indicated by the grey shaded bar, with darker colors 
corresponding to quicker saturation. The colored dots are the measured RMS 
values from the light curves shown in the top panel.



Extended Data Fig. 5 | Empirically derived stellar limb darkening 
coefficients fit with a quadratic law. a, the fit u+ coefficients (black) along 
with the theoretically predicted values derived from a 3D stellar model (red). 
The theoretical u+ values with a constant offset of −0.065 ± 0.022 (purple) is 
also shown. The theoretical models predict the wavelength-to-wavelength 

shape of u+ well. As u+ is directly related to the intensity of the star at the stellar 
limb ref. 84, these findings suggest WASP-39A is 6% brighter at the limb than 
models predict. b, similar as a, but for the u− coefficient. As the shape of the 
derived coefficients differs from the model prediction, u− was left free to vary 
in the transmission spectral fits. The error bars are 1-σ standard deviations.
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Extended Data Fig. 6 | Comparison of the JWST NIRSpec PRISM data (black) 
to HST and VLT data from ref. 6,15 and WHT data from ref. 16, respectively. The 
JWST spectrum was derived with the limb darkening fixed to the same 3D stellar 
model as in6 to aid comparisons. With fixed limb darkening, the JWST 
transmission spectrum has lower overall transit depths especially at optical 

wavelengths. The broadband spectrum from the two space telescopes 
compares well, including the amplitude of the 1.4 µm water feature first 
observed by HST/WFC3 and the Na feature near 0.6 µm observed by HST/STIS. 
The error bars are 1-σ standard deviations.



Extended Data Fig. 7 | Best-fit models from ScCHIMERA, PICASO 3.0, 
ATMO, and Phoenix 1D RCTE model grids for WASP-39b. The FIREFLy 
reduction is overlaid in the top panel. The top left inset panel shows the data 
and the models between 0.5—1.2 µm. All these models prefer super-solar 
atmospheric metallicities and cloudy atmospheres for WASP-39 b. The C/O 
ratio estimated by these models lies in the range 0.6– 0.7. Additional SO2 was 
injected in the PICASO 3.0 and ScCHIMERA grids to estimate the abundance of 

SO2 required to explain the 4.0 µm feature, in a Bayesian framework. The ATMO 
and PHOENIX models are shown without any additionally injected SO2 to 
emphasize that RCTE models do not predict such an SO2 feature and chemical 
disequilibrium effects are required to explain the observed feature. The 
bottom panel shows the residuals from each best-fit model divided by the noise 
in the transit depth as a function of wavelength. The error bars are 1-σ standard 
deviations.
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Extended Data Fig. 8 | Each panel shows the residual spectrum of a 
particular gas. This residual spectrum was obtained by removing one gas at a 
time from the best-fit model atmosphere and subtracting the recalculated 
model transmission spectrum without that gas from the data. This residual 
spectrum was then fitted with a Gaussian distribution (and a Voigt profile for 
Na) and a constant offset, in a Bayesian framework. The median fit (solid lines) 

along with the 1σ and 2σ confidence intervals are shown with shaded red and 
blue regions for the Gaussian fits and the constant offset fits, respectively. The 
Bayes factor between the two functional fits was used to determine the 
detection significance of each gas. Note that the wavelength range covered in 
each panel is different. The error bars are 1-σ standard deviations.



Extended Data Fig. 9 | Models of varying metallicity (top) and C/O ratio 
(bottom) compared to the FIREFLy reduction. A comparison of cloud-free 
PICASO 3.0 RCTE models across a span of metallicities with the best-fit C/O 
ratio (0.68) is shown in the top panel. Each line coloured from faded to deep 
pink represents models with different metallicities between sub-solar to 
super-solar values. The simultaneous lack of a prominent CH4 feature at 2.3 and 
3.3 µm and the presence of a strong CO2 feature indicate that the observations 

disfavor a low-metallicity atmosphere. The bottom panel shows transmission 
spectrum models with different C/O ratios from sub-solar to super-solar values 
at 10×solar metallicity compared with the observed spectrum. The cloudy 
best-fit model obtained with the grid retrieval framework also has been shown 
in both the panels with the grey line. As before, the errorbars are 1σ standard 
deviations.
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Extended Data Fig. 10 | The wavelength-dependent contribution function. 
The shaded regions highlight the parts of the atmosphere probed by the 
observed transmission data as a function of wavelength, as calculated from the 
best-fit model. This shows that the data mostly probe pressure ranges between 

0.1 to 2 mbars. The CO2 feature shows contribution at pressures approaching a 
microbar. The various shaded lines in pink show the volume mixing ratio of CH4 
(upper x-axis), from thermochemical equilibrium models, with different 
atmospheric metallicities at the best-fit C/O ratio of 0.68.



Extended Data Table 1 | Best-fit orbital parameters as measured from the FIREFLy white light curve

The scaled semimajor axis and impact parameter are fixed when fitting for the transmission spectrum.
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Extended Data Table 2 | An overview of the analysis procedures used by the independent data reductions

The spectrophotometric scatter is estimated from the standard deviation of the pre-transit data between 0.62-5.42 µm with only a linear baseline trend removed.



Extended Data Table 3 | Overview of the best-fit model parameters obtained from each grid

PICASO 3.0 and ScCHIMERA grids follow the grid retrieval (GR) framework to obtain the best-fit models whereas ATMO and PHOENIX use the reduced χ2 minimization based grid search method 
(GS). To test the effect of the saturated region on the obtained best-fit parameters, the PICASO 3.0 and ScCHIMERA grid were used to also do a fit with the error bars in the saturated region (0.68 
µm – 1.91 µm) inflated 1000 times. The best-fit parameters did not show any significant change due to this exercise but are still listed in the table under the w/o SR column. The best-fit param-
eters obtained by fitting the full spectrum are listed under the w/ SR column. Note that even though the w/o SR fits were obtained by inflating the errorbars in the saturated region, the reduced 
χ2 reported in the w/o SR column are computed without the points in the saturated region for direct comparison with the reduced χ2 obtained from fitting the full spectrum. Also, note that the 
ATMO models include cloud opacities with an adjustable multiple of the H2 Rayleigh scattering opacity at 350 nm. Therefore the 5×H2 in this table for the ATMO grid corresponds to a gray cloud 
opacity which is 5× the H2 Rayleigh scattering opacity at 350 nm between 1 to 50 mbar pressures.
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Extended Data Table 4 | Detection significances of individual opacity sources with our two techniques: Bayes factor analysis 
with gas removal, and Gaussian/Voigt fits to the residual absorption profiles85–92

Note, a negative ln(B) indicates that that specific opacity source is not preferred by the data.
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