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Measuring the abundances of carbon and oxygen in exoplanet atmospheres is 
considered a crucial avenue for unlocking the formation and evolution of 
exoplanetary systems1,2. Access to the chemical inventory of an exoplanet requires 
high-precision observations, often inferred from individual molecular detections 
with low-resolution space-based3–5 and high-resolution ground-based6–8 facilities. 
Here we report the medium-resolution (R ≈ 600) transmission spectrum of an 
exoplanet atmosphere between 3 and 5 µm covering several absorption features  
for the Saturn-mass exoplanet WASP-39b (ref. 9), obtained with the Near Infrared 
Spectrograph (NIRSpec) G395H grating of JWST. Our observations achieve 1.46 times 
photon precision, providing an average transit depth uncertainty of 221 ppm per 
spectroscopic bin, and present minimal impacts from systematic effects. We detect 
significant absorption from CO2 (28.5σ) and H2O (21.5σ), and identify SO2 as the source 
of absorption at 4.1 µm (4.8σ). Best-fit atmospheric models range between 3 and 
10 times solar metallicity, with sub-solar to solar C/O ratios. These results, including 
the detection of SO2, underscore the importance of characterizing the chemistry in 
exoplanet atmospheres and showcase NIRSpec G395H as an excellent mode for 
time-series observations over this critical wavelength range10.

We obtained a single-transit observation of WASP-39b using the NIR-
Spec11,12 G395H grating on 30–31 July 2022 between 21:45 and 06:21 
UTC using the Bright Object Time Series mode. WASP-39b is a hot 
(Teq = 1,120 K), low-density giant planet with an extended atmosphere. 
Previous spectroscopic observations have shown prominent atmos-
pheric absorption by Na, K and H2O (refs. 3,4,13–15), with tentative evidence 
of CO2 from infrared photometry4. Atmospheric models fitted to the 
spectrum have inferred metallicities (amount of heavy elements relative 

to the host star) from 0.003 to 300 times solar3,15–20, which makes it dif-
ficult to ascertain the formation pathway of the planet21,22. The host, 
WASP-39, is a G8-type star that shows little photometric variability23 and 
has nearly solar elemental abundance patterns24. The quiet host and 
extended planetary atmosphere make WASP-39b an ideal exoplanet for 
transmission spectroscopy25. The transmission spectrum of WASP-39b 
was observed as part of the JWST Transiting Exoplanet Community 
Director’s Discretionary Early Release Science ( JTEC ERS) Program26,27 
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(ERS-1366; principal investigators Natalie M. Batalha, Jacob L. Bean 
and Kevin B. Stevenson), which uses four instrument configurations to 
test their capabilities and provide lessons learned for the community.

The NIRSpec G395H data were recorded with the 1.6″ × 1.6″ fixed slit 
aperture using the SUB2048 subarray and NRSRAPID readout pattern, 
with spectra dispersed across both the NRS1 and NRS2 detectors. Over 
the roughly 8-h duration of the observation, a total of 465 integrations 
were taken, centred around the 2.8-h transit. We obtained 70 groups per 
integration, resulting in an effective integration time of 63.14 s. During 
the observation, the telescope experienced a ‘tilt event’, a spontaneous 
and abrupt change in the position of one or more mirror segments, 
causing changes in the point spread function (PSF) and hence jumps in 
flux28. The tilt event occurred mid-transit, affecting approximately three 
integrations and resulted in a noticeable step in the flux time series, 
the size of which is dependent on wavelength (Fig. 1 and Methods). 
The tilt event also affects the PSF, with the full width at half maximum 
(FWHM) of the spectral trace showing a step-function-like shape (see 
Extended Data Figs. 2 and 3).

We produced several reductions of the observations using inde-
pendent analysis pipelines (see Methods). For each reduction, we 

created broadband and spectroscopic light curves in the ranges 2.725–
3.716 µm for NRS1 and 3.829–5.172 µm for NRS2 using 10-pixel-wide 
bins (≈0.007 µm, median resolution R ≈ 600), excluding the detector 
gap between 3.717–3.823 µm. The light curves show a settling ramp 
during the first ten integrations (≈631.4 s), with a linear slope across the 
entire observation for NRS1. We otherwise see no substantial systematic 
trends and achieve improvements in precision from raw uncorrected to 
fitted broadband light curves of 1.63 to 1.03 times photon noise for NRS1 
and 1.95 to 1.31 times for NRS2. The flux jump caused by the mirror-tilt 
event could be corrected by detrending against the spectral trace x and 
y positional shifts, normalizing the light curves or fitting the light curves 
with a step function (see Methods). We produced several fits from each 
set of light curves, resulting in a total of 11 independently measured 
transmission spectra. Figure 1 demonstrates that our spectroscopic 
light curves achieve precisions close to photon noise, with a median 
precision of 1.46 times photon noise across the full wavelength range 
(see Extended Data Fig. 4).

We show transmission spectra from several combinations of inde-
pendent reductions and light-curve-fitting routines in Fig. 2, along 
with the weighted average of all 11 transmission spectra with the 
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Fig. 1 | Light-curve precisions achieved for WASP-39b with NIRSpec G395H. 
a, Raw, uncorrected broadband light curves from the NRS1 (purple) and NRS2 
(red) detectors, demonstrating the lack of dominant systematic trends in the 
light curves. The inset shows the drop in flux (grey-shaded region) caused by a 
mirror-tilt event, resulting in a distinct change in flux between NRS1 and NRS2 
after the tilt event (see Extended Data Figs. 2 and 3). b, Pixel intensity map of the 

spectroscopic light curves after correction for the tilt event and further 
instrument systematics. c, Light-curve precision obtained per spectroscopic 
bin (black) compared with 1 and 2 times photon noise expectations (grey 
dashed lines) and the measured precision on the transit depth (blue). The gap 
between the two detectors (3.72–3.82 µm) is highlighted in the middle and 
bottom plots. All data shown are from fitting pipeline 1 (see Methods).
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unweighted mean uncertainty produced by our analyses (see Meth-
ods). We find that using different combinations of reduction and 
fitting methods results in consistent transmission spectra (see Meth-
ods and Extended Data Fig. 5). Although we see some artefacts at the 
edges of the detectors (see Fig. 3, bottom panel) that may be caused 
by uncharacterized systematics, these only affect a small number of 
wavelength bins. Our resulting averaged NIRSpec G395H spectrum 
shows increased absorption towards bluer wavelengths short of 3.7 µm 
and a prominent absorption feature between 4.2 and 4.5 µm, along 
with a smaller-amplitude absorption feature at 4.1 µm and a narrow 
feature around 4.56 µm.

We compared the weighted-average G395H transmission spectrum 
to three grids of 1D radiative–convective–thermochemical equilib-
rium (RCTE) atmosphere models of WASP-39b (see Methods and 
Extended Data Table 2), containing a total of 10,308 model spectra. 
The best-fit models from each grid provide a reduced chi-square per 
data point (χ2/N) of 1.08–1.20 for our 344-data-point transmission 
spectrum (Fig. 3). The increased absorption at blue wavelengths across 
NRS1 is consistent with absorption from H2O (at 21.5σ; see Methods), 
whereas the large bump in absorption between 4.2 and 4.5 µm (ref. 29) 
can be attributed to CO2 (28.5σ). H2O and CO2 are expected atmos-
pheric constituents for near-solar atmospheric metallicities, with the 
CO2 abundance increasing nonlinearly with higher metallicity30. The 
spectral feature at 4.56 µm (3.3σ) is unidentified at present but does 
not correlate with any obvious detector artefacts and is reproduced 
by several independent analyses. The absorption feature at 4.1 µm is 
also not seen in the RCTE model grids. After an exhaustive search for 
possible opacity sources (S.-M. Tsai et al., manuscript in preparation), 
described in the corresponding NIRSpec PRISM analysis31, we interpret 
this feature as SO2 (4.8σ), as it is the best candidate at this wavelength.

Although SO2 would have volume mixing ratios (VMRs) of less than 
10−10 throughout most of the observable atmosphere in thermochemi-
cal equilibrium, coupled photochemistry of H2S and H2O can produce 
SO2 on giant exoplanets, with the resulting SO2 mixing ratio expected 
to increase with increasing atmospheric metallicity32–34. We find that 
a VMR of approximately 10−6 of SO2 is required to fit the spectral fea-
ture at 4.1 µm in the transmission spectrum of WASP-39b, consistent 
with lower-resolution NIRSpec PRISM observations of this planet31 and 
previous photochemical modelling of super-solar metallicity giant 
exoplanets34,35. Figure 4 shows a breakdown of the contributing opacity 
sources for the lowest χ2/N best-fit model (PICASO 3.0) with VMR = 10−5.6 
injected SO2. The inclusion of SO2 in the models results in an improved 
χ2/N and is detected at 4.8σ (see Methods), confirming its presence in 
the atmosphere of WASP-39b.

We also look for evidence of CH4, CO, H2S and OCS (carbonyl sulfide) 
because their near-solar chemical equilibrium abundances could result 
in a contribution to the spectrum. We see no evidence of CH4 in our 
spectrum between 3.0 and 3.6 µm (ref. 23), which is indicative of C/O < 1 
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Fig. 2 | WASP-39b transmission spectra measured at 10-pixel resolution 
(≈7-nm-wide bins, R ≈ 600) using several fitting pipelines. We show the 
resultant spectra from five out of 11 independent fitting pipelines, which used 
distinct analysis methods to demonstrate the robust structure of the spectrum 
(see Methods for details on each fitting pipeline and comparative statistics). 
The black points show the weighted-average transmission spectrum computed 
from the transit depth values in each bin weighted by 1/σ2, in which σ is the 
uncertainty on the data point from each of the 11 fitting pipelines. The error 
bars were computed from the unweighted mean uncertainty in each bin (see 
Extended Data Fig. 5). All spectra show consistent broadband absorption short 
of 3.7 µm, around 4.1 µm and from 4.2 to 4.5 µm.
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Fig. 3 | Spectra from three independent 1D RCTE models and their residuals, 
fit to the weighted-average WASP-39b G395H transmission spectrum.  
a, Spectra from the three models. b, Their residuals. The models are dominated 
by absorption from H2O and CO2 with a grey-cloud-top pressure corresponding 

to ≈1 mbar. The models find that the data are best explained by 3–10 times  
solar metallicity (M/H) and sub-solar to solar C/O (C/O = 0.30–0.46). The extra 
absorption owing to SO2, seen in the spectrum around 4.1 µm, is not included in 
the RCTE model grids and causes a marked impact on the χ2/N (see Fig. 4).
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(ref. 36) and/or photochemical destruction34,37. With regards to CO, H2S 
and OCS, we were unable to conclusively confirm their presence with 
these data. In particular, CO, H2O, OCS and our modelled cloud deck all 
have overlapping opacity, which creates a pseudo-continuum from 4.6 
to 5.1 µm (see Figs. 3 and 4). Therefore, we were unable to unambigu-
ously identify the individual contributions from CO and other molecules 
over this wavelength region at the resolution presented in this work.

Our models show an atmosphere enriched in heavy elements, with 
best-fit parameters ranging from 3 to 10 times solar metallicity, given 
the spacing of individual model grids (see Methods). The spectra also 
indicate C/O ratios ranging from sub-solar to solar depending on 
the grid used, informed by the relative strength of absorption from 
carbon-bearing molecules to oxygen-bearing molecules. The inter-
pretation of the relatively high resolution and precision of the G395H 
spectrum seems to be sensitive to the treatment of aerosols in the 
model, with one grid preferring 3 times solar metallicity when using a 
wavelength-dependent cloud opacity and physically motivated verti-
cal cloud distribution38 but 10 times solar metallicity when assuming 
a grey cloud. In general, forward model grids fit the main features of 
the data but do not place statistically significant constraints on many 

of the atmospheric parameters (see Methods). Future interpretation 
of the JTEC ERS WASP-39b data with Bayesian retrieval analyses will 
provide robust confidence intervals for these planetary properties 
and explore the degree to which these data are sensitive to modelling 
assumptions (for example, chemical equilibrium versus disequilibrium) 
and parameter degeneracies (for example, clouds versus atmospheric 
metallicity).

We are able to strongly rule out an absolute C/O ≥ 1 scenario 
(χ2/N ≥ 3.97), which has previously been proposed for gas-dominated 
accretion at wide orbital radii beyond the CO2 ice line at which the 
gas may be carbon-rich39. Our C/O upper limit, therefore, suggests 
that WASP-39b may have either formed at smaller orbital radii with 
gas-dominated accretion or that the accretion of solids enriched the 
atmosphere of WASP-39b with oxygen-bearing species2. The level of 
metal enrichment (3–10 times solar) is consistent with similar measure-
ments of Jupiter and Saturn40,41, potentially suggesting core-accretion 
formation scenarios42, and is consistent with upper limits from 
interior-structure modelling43. These NIRSpec G395H transmission 
spectroscopy observations demonstrate the promise of robustly 
characterizing the atmospheric properties of exoplanets with JWST 
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molecular opacity from the spectrum (shaded region). Our best-fit model is 
also affected by minor opacities from CO, H2S, OCS and CH4, although their 
spectral features cannot be robustly detected in the spectrum. We show a 
model without CO and CH4 in a to demonstrate this, with the minor 
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unburdened by substantial instrumental systematics, unravelling the 
nature and origins of exoplanetary systems.
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Methods
Data reduction
We produced several analyses of stellar spectra from the Stage 1 2D 
spectral images produced using the default STScI JWST Calibration 
Pipeline44 (‘rateints’ files) and by means of customized runs of the STScI 
JWST Calibration Pipeline with user-defined inputs and processes for 
steps such as the ‘jump detection’ and ‘bias subtraction’ steps.

Each pipeline starts with the raw ‘uncal’ 2D images that contain 
group-level products. As we noticed that the default superbias images 
were of poor quality, we produced two customized runs of the JWST 
Calibration Pipeline, using either the default bias step or a customized 
version. The customized step built a pseudo-bias image by computing 
the median pixel value in the first group across all integrations and 
then subtracted the new bias image from all groups. We note that the 
poor quality of the default superbias images affects NRS1 more notably 
than NRS2, and this method could be revised once a better superbias 
is available.

Before ramp fitting, both our standard and custom bias step runs 
of the edited JWST Calibration Pipeline ‘destriped’ the group-level 
images to remove so-called ‘1/f noise’ (correlated noise arising from 
the electronics of the readout pattern, which appears as column strip-
ing in the subarray images11,12). Our group-level destriping step used a 
mask of the trace 15σ from the dispersion axis for all groups within an 
integration, ensuring that a consistent set of pixels is masked within 
a ramp. The median values of non-masked pixels in each column were 
then computed and subtracted for each group.

The results of our customized runs of the JWST Calibration Pipe-
line are a set of custom group-level destriped products and custom 
bias-subtracted group-level destriped products. In both cases, the 
ramp-jump detection threshold of the JWST Calibration Pipeline was 
set to 15σ (as opposed to the default of 4σ), as it produced the most 
consistent results at the integration level. In both custom runs of the 
JWST Calibration Pipeline, all other steps and inputs were left at the 
default values.

For all analyses, wavelength maps from the JWST Calibration Pipe-
line were used to produce wavelength solutions, verified against stel-
lar absorption lines, for both detectors. The mid-integration times in 
BJDTDB were extracted from the image headers for use in producing light 
curves. None of our data-reduction pipelines performed a flat-field 
correction, as the available flat fields were of poor quality and unex-
pectedly removed portions of the spectral trace. In general, we found 
that 1/f noise can be corrected at either the group or integration levels 
to similar effect; however, correction at the group level with a repeated 
column-by-column cleaning step at the integration level probably 
results in cleaner 1D stellar spectra. This was particularly true for NRS2, 
owing to the limited number of columns in which the unilluminated 
region on the detector extends both above and below the spectral 
trace, as shown in Extended Data Fig. 1.

Below we detail each of the independent data-reduction pipelines 
used to produce the time series of stellar spectra from our G395H 
observations.

ExoTiC-JEDI pipeline. We used the Exoplanet Timeseries Characteri-
sation - JWST Extraction and Diagnostics Investigator (ExoTiC-JEDI45) 
pipeline on our custom group-level destriped products, treating each 
detector separately. Using the data-quality flags produced by the JWST 
Calibration Pipeline, we replaced any pixels identified as bad, saturated, 
dead, hot, low quantum efficiency or no gain value with the median 
value of surrounding pixels. We also searched each integration for 
pixels that were spatial outliers from the median of the surrounding 
20 pixels in the same row by 6σ (to remove permanently affected ‘bad’ 
pixels) or outliers from the median of that pixel in the surrounding 
ten integrations in time by 20σ (to identify high-energy short-term 
effects such as cosmic rays) and replaced the outliers with the median 

values. To obtain the trace position and FWHM, we fitted a Gaussian 
to each column of an integration, finding a median standard deviation 
of 0.7 pixels. A fourth-order polynomial was fitted through the trace 
centres and the widths, which were smoothed with a median filter, 
to obtain a simple aperture region. This region extended 5 times the 
FWHM of the spectral trace, above and below the centre, corresponding 
to a median aperture width of 7 pixels. To remove any remaining 1/f and 
background noise from each integration, we subtracted the median 
of the unilluminated region in each column by masking all pixels that 
were 5 pixels away from the aperture. For each integration, the counts 
in each row and column of the aperture region were summed using an 
intrapixel extraction, taking the relevant fractional flux of the pixels at 
the edge of the aperture and cross-correlated to produce x-pixel and 
y-pixel shifts for detrending (see Extended Data Fig. 2). On average, 
the x-pixel shift represents movement of 1 × 10−4 and 8 × 10−6 of a pixel 
for NRS1 and NRS2, respectively. The aperture column sums resulted 
in 1D stellar spectra with errors calculated from photon noise after 
converting from data numbers using the gain factor. This reduction 
is denoted hereafter as ExoTiC-JEDI [V1].

We produced further 1D stellar spectra from both the custom 
group-level destriped product and custom bias-subtracted group-level 
destriped products using the ExoTiC-JEDI pipeline as described above, 
but with further cleaning by repeating the spatial outliers step. The 
reduction with further cleaning using the custom group-level destriped 
products is hence denoted as ExoTiC-JEDI [V2] and the reduction 
with further cleaning using the custom bias-subtracted group-level 
destriped products is hence denoted as ExoTiC-JEDI [V3].

Tiberius pipeline. We used the Tiberius pipeline, which builds on the 
LRG-BEASTS spectral reduction and analysis pipelines15,46,47, on our 
custom group-level destriped products. For each detector, we created 
bad-pixel masks by manually identifying hot pixels in the data. We then 
combined them with pixels flagged as greater than 3σ above the defined 
background. Before identifying the spectral trace, we interpolated each 
column of the detectors onto a grid 10 times finer than the initial spatial 
resolution. This step reduces the noise in the extracted data by improv-
ing the extraction of flux at the sub-pixel level, particularly where the 
edges of the photometric aperture bisect a pixel. We also interpolated 
over the bad pixels using their nearest-neighbouring pixels in x and y.

We traced the spectra by fitting Gaussians at each column and used a 
running median, calculated with a moving box with a width of five data 
points, to smooth the measured centres of the trace. We fitted these 
smoothed centres with a fourth-order polynomial, removed points 
that deviated from the median by 3σ and refitted with a fourth-order 
polynomial. To remove any residual background flux not captured by 
the group-level destriping, we fitted a linear polynomial along each 
column, masking the stellar spectrum. This was defined by an aper-
ture with a width of 4 pixels centred on the trace. We also masked an 
extra 7 pixels on either side of the aperture so that the background 
was not fitting the wings of the stellar PSF and we clipped any pixels 
in the background that deviated by more than 3σ from the mean for 
that particular column and frame. After removing the background 
in each column, the stellar spectra were then extracted by summing 
within a 4-pixel-wide aperture and correcting for pixel oversampling 
caused by the interpolation onto a finer grid, as described above. The 
uncertainties in the stellar spectra were calculated from the photon 
noise before background subtraction.

transitspectroscopy pipeline. We used the transitspectroscopy pipe-
line48 on the ‘rateints’ products of the JWST Calibration Pipeline, treat-
ing each detector separately. The trace position was found from the 
median integration by cross-correlating each column with a Gaussian 
function, removing outliers using a median filter with a 10-pixel-wide 
window and smoothing the trace with a spline. We removed 1/f noise 
from the ‘rateints’ products by masking all pixels within 10 pixels from 



the centre of the trace and calculating and removing the median value 
from all columns. We then used optimal extraction49 to obtain the 1D 
stellar spectra, with a 5-pixel-wide aperture above and below the trace. 
This allowed us to treat bad pixels and cosmic rays that had not been 
accounted for or masked in the ‘rateints’ products in an automated 
fashion. To monitor systematic trends in the observations, we also 
calculated the trace centre as described above and the FWHM for all 
integrations. The FWHM was calculated at each column and at each 
integration by first subtracting each column to half the maximum value 
in it, with a spline used to interpolate the profile. The roots of this profile 
were then found to estimate the FWHM.

Eureka! pipeline. We used two customized versions of the Eureka! 
pipeline50, which combines standard steps from the JWST Calibration 
Pipeline with an optimal extraction scheme to obtain the time series 
of stellar spectra.

The first Eureka! reduction used our custom group-level destriped 
products and applied Stages 2 and 3 of Eureka! Stage 2, a wrapper of the 
JWST Calibration Pipeline, followed the default settings up to the flat 
fielding and photometric calibration steps, which were both skipped. 
Stage 3 of Eureka! was then used to perform the background subtraction 
and extraction of the 1D stellar spectra. We started by correcting for the 
curvature of NIRSpec G395H spectra by shifting the detector columns 
by whole pixels, to bring the peak of the distribution of the counts in 
each column to the centre of our subarray. To ensure that this curvature 
correction was smooth, we computed the shifts in each column for each 
integration from the median integration frame in each segment and 
applied a running median to the shifts obtained for each column. The 
pixel shifts were applied with periodic boundary conditions, such that 
pixels shifted upwards from the top of the subarray appeared at the 
bottom after the correction, ensuring no pixels were lost. We applied 
a column-by-column background subtraction by fitting and subtract-
ing a flat line to each column of the curvature-corrected data frames, 
obtained by fitting all pixels further than six pixels from the central row. 
We also performed a double iteration of outlier rejection in time with 
a threshold of 10σ, along with a 3σ spatial outlier-rejection routine, to 
ensure that bad pixels were not biasing our background correction. 
These outlier-rejection thresholds were selected to remove clear outli-
ers in the data and provide a balance with the background subtraction 
step. We performed optimal extraction using an extraction profile 
defined from the median frame, the central nine rows of our subarray 
(four rows on either side of the central row). We also measured the 
vertical shift in pixels of the spectrum from one integration to the other 
using cross-correlation and the average PSF width at each integration, 
obtained by adding all columns together and fitting a Gaussian to the 
profile to estimate its width. This reduction is henceforth denoted as 
Eureka! [V1].

The second Eureka! reduction (Eureka! [V2]) used the ‘rateints’ out-
puts of the JWST Calibration Pipeline and applied Stage 2 of Eureka! 
as described above, with a modified version of Stage 3. In this reduc-
tion, we corrected the curvature of the trace using a spline and found 
the centre of the trace using the median of each column. We removed 
1/f noise by subtracting the mean from each column, excluding the 
region 6 pixels away from the trace, sigma-clipping outliers at 3σ. We 
extracted the 1D stellar spectra using a 4-pixel-wide aperture on either 
side of the trace centre.

Limb-darkening
Limb-darkening is a function of the physical structure of the star that 
results in variations in the specific intensity of the light from the centre 
of the star to the limb, such that the limb looks darker than the centre. 
This is because of the change in depth of the stellar atmosphere being 
observed. At the limb of the star, the region of the atmosphere being 
observed at slant geometry is at higher altitudes and lower density, 
and thus lower temperatures, compared with the deeper atmosphere 

observed at the centre of the star, at which hotter, denser layers are 
observed. The effect of limb-darkening is most prominent at shorter 
wavelengths, resulting in a more U-shaped light curve compared 
with the flat-bottomed light curves observed at longer wavelengths. 
To account for the effects of limb-darkening on the time-series light 
curves, we used analytical approximations for computing the ratio of 
the mean intensity to the central intensity of the star. The most com-
monly used limb-darkening laws for exoplanet transit light curves 
are the quadratic, square-root and nonlinear four-parameter laws51:

Quadratic:
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in which I(1) is the specific intensity in the centre of the disk, u1, u2, s1, 
s2, c1, c2, c3 and c4 are the limb-darkening coefficients and µ = cos(γ), in 
which γ is the angle between the line of sight and the emergent intensity.

The limb-darkening coefficients depend on the particular stellar 
atmosphere and therefore vary from star to star. For consistency across 
all of the light-curve fitting, we used 3D stellar models52 for Teff = 5,512 K, 
log(g) = 4.47 cgs and Fe/H = 0.0, along with the instrument through-
put to determine I and µ. As instrument commissioning showed that 
the throughput was higher than the pre-mission expectations53, a 
custom throughput was produced from the median of the measured 
ExoTiC-JEDI [V2] stellar spectra, divided by the stellar model and Gauss-
ian smoothed.

For the limb-darkening coefficients that were held fixed, we used 
the values computed using the ExoTiC-LD54,55 package, which can com-
pute the linear, quadratic and three-parameter and four-parameter 
nonlinear limb-darkening coefficients51,56. To compute and fit for the 
coefficients from the square-root law, we used previously outlined 
formalisms57,58. We highlight that we do not see any dependence in our 
transmission spectra on the limb-darkening procedure used across our 
independent reductions and analyses.

Light-curve fitting
From the time series of extracted 1D stellar spectra, we created our 
broadband transit light curves by summing the flux over 2.725–3.716 µm 
for NRS1 and 3.829–5.172 µm for NRS2. For the spectroscopic light 
curves, we used a common 10-pixel binning scheme within these wave-
length ranges to generate a total of 349 spectroscopic bins (146 for 
NRS1 and 203 for NRS2). We also tested wider and narrower binning 
schemes but found that 10-pixel-wide bins achieved the best compro-
mise between the noise in the spectrum and showcasing the abilities of 
G395H across analyses. In our analyses, we treated the NRS1 and NRS2 
light curves independently to account for differing systematics across 
the two detectors. To construct the full NIRSpec G395H transmission 
spectrum of WASP-39b, we fitted the NRS1 and NRS2 broadband and 
spectroscopic light curves using 11 independent light-curve-fitting 
codes, which are detailed below. When starting values were required, 
all analyses used the same system parameters37. In many of our analyses, 
we detrended the raw broadband and spectroscopic light curves using 
the time-dependent decorrelation parameters for the change in the 
FWHM of the spectral trace or the shift in x-pixel and y-pixel positions 
(Extended Data Fig. 2). We also used various approaches to account for 
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the mirror-tilt event, which we found to have a smaller effect at longer 
wavelengths (Extended Data Fig. 3).

Using fitting pipeline 1, we measured a centre of transit time (T0) of 
T0 = 2,459,791.612039 ± 0.000017 BJDTDB and T0 = 2,459,791.6120689 ± 
0.000021 BJDTDB computed from the NRS1 and NRS2 broadband light 
curves, respectively; most of the fitting pipelines obtained T0 within 
1σ of the quoted uncertainty.

For each of our analyses, we computed the expected photon noise 
from the raw counts taking into account the instrument read noise 
(16.18 e− on NRS1 and 17.75 e− on NRS2), gain (1.42 for NRS1 and 1.62 for 
NRS2) and the background counts (which are found to be negligible after 
cleaning) and compared it to the final signal-to-noise ratio in our light 
curves (see Fig. 1). We also determine the level of white and red noise in 
our spectroscopic light curves by computing the Allan deviation59, which 
is used to measure the deviation from the expected photon noise by bin-
ning the data into successively smaller bins (that is, fewer data points per 
bin) and calculating the signal-to-noise ratio achieved60. Extended Data 
Fig. 4 shows the Allan deviation for three of the 11 reductions performed 
on the data (see the ExoTiC-ISM noise_calculator function54).

Although there is a general consensus across each of the data analy-
ses, by comparing the results of each fitting pipeline, we were better 
able to evaluate the impact of different approaches to the data reduc-
tion, such as the removal of bad pixels. For future studies, we recom-
mend the application of several pipelines that use differing analysis 
methods, such as the treatment of limb-darkening, systematic effects 
and noise removal. No single pipeline presented on its own can fully 
evaluate the measured impact of each effect, given the differing strate-
gies, targets and potential for chance events such as a mirror tilt with 
each observation. In particular, attention should be paid to 1/f noise 
removal at the group versus integration levels for observations with 
fewer groups per integration than this study.

Below, we detail each of our 11 fitting pipelines and summarise them 
in Extended Data Table 1.

Fitting pipeline 1: ExoTiC-JEDI. We fitted the broadband and spec-
troscopic light curves produced from the ExoTIC-JEDI [V3] stellar 
spectra using the least-squares optimizer, scipy.optimize lm (ref. 61). 
We simultaneously fitted a batman transit model62 with a constant 
baseline and systematics models for data pre-tilt and post-tilt event, 
fixing the centre of transit time T0, the ratio of the semi-major axis to 
stellar radius a/R⋆ and the inclination i to the broadband light-curve 
best-fit values. The systematics models included a linear regression on 
x and y, for which x and y are the measured trace positions in the dis-
persion and cross-dispersion directions, respectively. We accounted 
for the tilt event by normalizing the light curve pre-tilt by the me-
dian pre-transit flux and normalizing the light curve post-tilt by the 
median post-transit flux. We discarded the first 15 integrations and  
the three integrations during the tilt event. Fourteen-pixel columns 
were discarded owing to outlier pixels directly on the trace. We fixed 
the limb-darkening coefficients to the four-parameter nonlinear law.

Fitting pipeline 2: Tiberius. We used the broadband light curves 
generated from the Tiberius stellar spectra and fitted for the ratio of 
the planet to stellar radii Rp/R⋆, as well as i, T0, a/R⋆, the quadratic law 
limb-darkening coefficient u1 and the systematics model parameters, 
the x-pixel and y-pixel shifts, FWHM and sky background, with the 
period P, the eccentricity e and u2 fixed. We used uniform priors for 
all the fitted parameters. Our analytic transit light-curve model was 
generated with batman. We fitted our broadband light curve with a 
transit + systematics model using a Gaussian process (GP)63,64, imple-
mented through george65, and a Markov chain Monte Carlo method, 
implemented through emcee66. For our Tiberius spectroscopic light 
curves, we held a/R⋆, i and T0 fixed to the values determined from the 
broadband light-curve fits and applied a systematics correction from 
the broadband light-curve fit to aid in fitting the mirror-tilt event. We 

fitted the spectroscopic light curves using a GP with an exponential 
squared kernel for the same systematics detrending parameters de-
tailed above. We used a Gaussian prior for a/R⋆ and uniform priors for 
all other fitted parameters.

Fitting pipeline 3: Aesop. We used transit light curves from the 
ExoTiC-JEDI [V1] stellar spectra and fit the broadband and spectro-
scopic light curves using the least-squares minimizer LMFIT67. We fitted 
each light curve with a two-component function consisting of a transit 
model (generated using batman) multiplied by a systematics model. 
Our systematics model included the x-pixel and y-pixel positions on the 
detector (x, y, xy, x2 and y2). To capture the amplitude of the tilt event in 
our systematics model, we carried out piecewise linear regression on 
the out-of-transit baseline pre-tilt and post-tilt. We first fit the broad-
band light curve by fixing P and e and fitting for T0, a/R⋆, i, Rp/R⋆, stellar 
baseline flux and systematic trends using wide uniform priors. For the 
spectroscopic light curves, we fixed T0, a/R⋆ and i to the best-fit values 
from the broadband light curve and fit for Rp/R⋆. We held the nonlinear 
limb-darkening coefficients fixed.

Fitting pipeline 4: transitspectroscopy. We fit the broadband and 
spectroscopic light curves produced from the transitspectroscopy 
stellar spectra, running juliet68 in parallel with the light-curve-fitting 
module of the transitspectroscopy pipeline48 with dynamic nested 
sampling through dynesty69 and analytical transit models computed 
using batman. We fit the broadband light curves for NRS1 and NRS2 
individually, fixing P, e and ω and fitting for the impact parameter b, as 
well as T0, a/R⋆, Rp/R⋆, extra jitter and the mean out-of-transit flux. We 
also fitted two linear regressors, a simple slope and a ‘jump’ (a regressor 
with zeros before the tilt event and ones after the tilt event), scaled to 
fit the data. We fitted the square-root-law limb-darkening coefficients 
using the Kipping sampling scheme. We fitted the spectroscopic light 
curves at the native resolution of the instrument, fixing T0, a/R⋆ and b. 
We used the broadband light-curve systematics model for the spectro-
scopic light curve, with wide uniform priors for each wavelength bin, 
and set truncated normal priors for the square-root-law limb-darkening 
coefficients. We also fitted a jitter term added in quadrature to the er-
ror bars at each wavelength with a log-uniform prior between 10 and 
1,000 ppm. We computed the mean of the limb-darkening coefficients 
by first computing the nonlinear coefficients from ATLAS models70 and 
passing them through the SPAM algorithm71. We binned the data into 
10-pixel-wavelength bins after fitting the native-resolution light curves.

Fitting pipeline 5: ExoTEP. We fitted the transit light curves from the 
Eureka! [V1] stellar spectra using the ExoTEP analysis framework72–75. 
ExoTEP uses batman to generate analytical light-curve models, adds 
an analytical instrument systematics model along with a photometric 
scatter parameter and fits for the best-fit parameters and their uncer-
tainties using emcee. Before fitting, we cleaned the light curves by 
running ten iterations of 5σ clipping using a running median of window 
length 20 on the flux, x-pixel and y-pixel shifts and the ‘ydriftwidth’ data 
product from Eureka! Stage 3 (the average spatial PSF width at each 
integration). Our systematics model consisted of a linear trend in time 
with a ‘jump’ (constant offset) after the tilt event. The ‘ydriftwidth’ was 
used before the fit to locate the tilt event. We used a running median 
of ‘ydriftwidth’ to search for the largest offset and flagged every data 
point after the tilt event so that they would receive a constant ‘jump’ 
offset in our systematics model. We also removed the first point of the 
tilt event in our fits, as it was not captured by the ‘jump’ model. We fit-
ted the broadband light curves, fitting for Rp/R⋆, photometric scatter,  
T0, b, a/R⋆, the quadratic limb-darkening coefficients and the system-
atics model parameters (normalization constant, slope in time and 
constant ‘jump’ offset). We used uninformative flat priors on all the 
parameters. The orbital parameters were fixed to the best-fit broadband 
light curve values for the subsequent spectroscopic light-curve fits.



Fitting pipeline 6. We fitted transit light curves from the ExoTiC-JEDI 
[V1] stellar spectra using a custom lmfit light-curve-fitting code. The 
final systematic detrending model included a batman analytical transit 
model multiplied by a systematics model consisting of a linear stel-
lar baseline term, a linear term for the x-pixel and y-pixel shifts and 
an exponential ramp function. The tilt event was accounted for by 
decorrelating the light curves with the y-pixel shifts, using a (1 + con-
stant × y-shift) term with the constant fitted for in each light curve. 
For the broadband light-curve fits, we fixed P and fitted for T0, i, Rp/R⋆,  
a/R⋆, x-pixel and y-pixel shifts and the exponential ramp amplitude 
and timescale. We fixed the nonlinear limb-darkening coefficients. For 
the spectroscopic light-curve fits, we fixed the values of T0, i and a/R⋆ 
and the exponential ramp timescale to the broadband light-curve-fit 
values, and fitted for Rp/R⋆, the x-pixel and y-pixel shifts and the ramp 
amplitude. Wide, uniform priors were used on all the fitting parameters 
in both the broadband and spectroscopic light-curve fits.

Fitting pipeline 7. We fitted transit light curves from the Eureka! [V2] 
stellar spectra, using PyLightcurve (ref. 75) to generate the transit model 
with emcee as the sampler. We calculated the nonlinear four-parameter 
limb-darkening coefficients using ExoTHETyS (ref. 76), which relies on 
PHOENIX 2012–2013 stellar models77,78, and fixed these in our fits to the 
precomputed theoretical values. Our full transit + systematics model 
included a transit model multiplied by a second-order polynomial in 
the time domain. We accounted for the tilt event by subtracting the 
mean of the last 30 integrations of the pre-transit data from the mean 
of the first 30 integrations of the post-transit data, to account for the 
jump in flux, shifting the post-transit light curve upwards by the jump 
value. We fitted for the systematics (the parameters of the second-order 
polynomial), Rp/R⋆ and T0. We used uniform priors for all the fitted 
parameters. We adopted the root mean square of the out-of-transit 
data as the error bars for the light-curve data points to account for 
the scatter in the data.

Fitting pipeline 8. We used the transit light curves generated from 
the ExoTiC-JEDI [V1] stellar spectra. We fit the broadband light curves 
with a batman transit model multiplied by a second-order systematics 
model as a function of x-pixel and y-pixel shifts. We fixed both of the 
quadratic limb-darkening coefficients for each wavelength bin. We 
fitted for Rp/R⋆, i, T0 and a/R⋆, using wide uninformed priors, and ran 
our fits using emcee. For the spectroscopic light-curve fits, we fixed i 
and a/R⋆ to the broadband light-curve best-fit values and fitted for an 
extra error term added in quadrature.

Fitting pipeline 9. We used the transit light curves from the ExoTiC-JEDI 
[V1] stellar spectra. We fixed both of the quadratic limb-darkening 
coefficients and fitted the light curves with a batman transit model 
multiplied by a systematics model of a second-order function of x-pixel 
and y-pixel shifts. We fixed the best-fit broadband light-curve values 
for T0, a/R⋆ and i for the spectroscopic light-curve fits and fitted for 
Rp/R⋆ using emcee for each 10-pixel bin, with the walkers initialized in a 
tight cluster around the best-fit solution from a Levenberg–Marquardt 
minimization. For both the broadband and spectroscopic light curves, 
we also fit for an extra per-point error term.

Fitting pipeline 10. We fitted the transit light curves from the 
ExoTiC-JEDI [V2] stellar spectra and performed our model fitting 
using automatic differentiation implemented with JAX (ref. 79). We 
used a GP systematics model with a time-dependent Matérn (ν = 3/2) 
kernel and a variable white-noise jitter term. The mean function con-
sists of a linear trend in time plus a sigmoid function to account for 
the drop in measured flux that occurred mid-transit owing to the 
mirror-tilt event. For the transit model, we used the exoplanet pack-
age80, making use of previously developed light-curve models81,82. 

For the GP systematics component, a generalization of the algorithm 
used by the celerite package83 was adapted for JAX. We fixed both of 
the quadratic limb-darkening coefficients. For the initial broadband 
light-curve fit, both NRS1 and NRS2 were fitted simultaneously. All 
transit parameters were shared across both light curves, except for 
Rp/R⋆, which was allowed to vary for NRS1 and NRS2 independently. 
We fitted for T0, the transit duration b and both Rp/R⋆ values. For the 
spectroscopic light-curve fits, all transit parameters were then fixed to 
the maximum-likelihood values determined from the broadband fit, 
except for Rp/R⋆, which was allowed to vary for each wavelength bin. 
Uncertainties for the transit model parameters, including Rp/R⋆, were 
assumed to be Gaussian and estimated using the Fisher information 
matrix at the location of the maximum-likelihood solution, which was 
computed exactly using the JAX automatic differentiation framework.

Fitting pipeline 11: Eureka!. We used transit light curves from the Eu-
reka! [V2] time-series stellar spectra with the open-source Eureka! code 
to estimate the best-fit transit parameters and their uncertainties using 
a Markov chain Monte Carlo method fit to the data (implemented by 
emcee). A linear trend in time was used as a systematics model and a step 
function was used to account for the tilt event. We fixed a/R⋆, i, T0 and 
the time of the tilt event to the best-fit values from the NRS1 broadband 
light curve, with the three integrations during the tilt event clipped 
from the light curve. We fitted for Rp/R⋆, both quadratic limb-darkening 
coefficients, the linear time trend and the magnitude of the step from 
the tilt event, with uniform priors for both the magnitude of the step 
and the limb-darkening coefficients.

Transmission spectral analysis
On the basis of the independent light-curve fits described above, we 
produced 11 transmission spectra from our NIRSpec G395H obser-
vations using several analyses and fitting methods. Extended Data 
Table 1 shows a breakdown of the different steps used in each fitting 
pipeline. In this work, three different 2D spectral image products were 
used, producing seven different 1D stellar spectra. Eleven different fit-
ting pipelines using five different limb-darkening methods were then 
applied. Each of these fitting pipelines resulted in an independent 
analysis of the observations and 11 comparative transmission spectra. 
Extended Data Fig. 5 details comparative information for all 11 analyses 
to quantify their similarities and differences.

We computed the standard deviation of the 11 spectra in each wave-
length bin and compared this to the mean uncertainty obtained in that 
bin. The average standard deviation in each bin across all fitting pipe-
lines was 199 ppm, compared with an average uncertainty of 221 ppm 
(which ranged from 131 to 625 ppm across the bins). The computed 
standard deviation in each bin across all pipelines ranged from 85 to 
1,040 ppm, with greater than 98% of the bins having a standard devia-
tion lower than 500 ppm. We see an increase in scatter at longer wave-
lengths, with the structure of the scatter following closely with the 
measured stellar flux, for which throughput beyond 3.8 µm combines 
with decreasing stellar flux. The unweighted mean uncertainty of all 11 
transmission spectra follows a similar structure to the standard devia-
tion, with the uncertainty increasing at longer wavelengths. The uncer-
tainties from each fitting pipeline are consistent to within 3σ of each 
other, with the uncertainty per bin typically overestimated compared 
with the mean uncertainty across all reductions.

From all 11 transmission spectra, we computed a weighted-average 
transmission spectrum using the transit depth values from all reduc-
tions in each bin weighted by 1/variance (1/σ2, in which σ is the uncer-
tainty on the data point from each reduction). For this weighted-average 
transmission spectrum, the unweighted mean of the uncertainties in 
each bin was used to represent the error bar on each point. By using 
the weighted average of all 11 independently obtained transmission 
spectra, we therefore do not apply infinite weight to any one reduc-
tion in our interpretation of the atmosphere. Although the weighted 
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average could be sensitive to any one spectrum with underestimated 
uncertainties, we find that our uncertainties are typically overestimated 
compared with the average. Similarly, we chose to use the mean rather 
than the median of the transmission spectral uncertainties, as this 
results in a more conservative estimate of the uncertainties in each 
bin. We find that all of the 11 transmission spectra are within 2.95σ of 
the weighted-average transmission spectrum without applying offsets.

We calculated normalized transmission spectrum residuals for each 
fitting pipeline by subtracting the weighted-average spectrum and 
dividing by the uncertainty in each bin. We generated histograms of the 
normalized transmission spectrum residuals and used the mean and 
standard deviation of the residuals to compute a normalized probability 
density function (PDF). We performed a Kolmogorov–Smirnov test on 
each of the normalized residuals and found that they are all approxi-
mately symmetric around their means, with normal distributions. This 
confirms that they are Gaussian in shape, with the null hypothesis that 
they are not Gaussian strongly rejected in the majority of cases (see 
Extended Data Fig. 5).

The PDFs of the residuals indicate three distinct clusters of computed 
spectra based on their deviations from the mean and their spreads. 
The first cluster is negatively offset by less than 200 ppm and corre-
sponds to fitting pipelines that used extracted stellar spectra and that 
underwent further cleaning steps (for example, ExoTiC-JEDI [V3]). The 
second cluster is positively offset from the mean by about 120 ppm and 
contains most of the transmission spectra produced. We see no obvious 
trends in this group to any specific reduction or fitting process. The final 
cluster is centred around the mean but has a broad distribution, sug-
gesting a larger scatter both above and below the average transmission 
spectrum. This is probably the result of uncleaned outliers or marginal 
offsets between NRS1 and NRS2. These transmission spectra demon-
strate that the 11 independent fitting pipelines are able to accurately 
reproduce the same transmission spectral feature structures, further 
highlighting the minimized impact of systematics on the time-series 
light curves. We suspect that the minor differences resulting from 
different reduction products and fitting pipelines are linked to the 
superbias and treatment of 1/f noise. We anticipate that the impacts 
of these will be improved with new superbias images, expected to be 
released soon by STScI, and with more detailed investigation into the 
impact of 1/f noise at the group level beyond the scope of this work.

Model comparison
To identify spectral absorption features, we compared the resulting 
weighted-average transmission spectrum of WASP-39b to several 1D 
RCTE atmosphere models from three independent model grids. Each 
forward model is computed on a set of common physical parameters 
(for example, metallicity, C/O ratio, internal temperature and heat 
redistribution), shown in Extended Data Table 2. Additionally, each 
model grid contains different prescriptions for treating certain physical 
effects (for example, scattering aerosols). Although each grid contains 
different opacity sources from varying line lists (see Extended Data 
Table 2), they each consider all of the main molecular and atomic spe-
cies84. Each model transmission spectrum from the grids was binned 
to the same resolution as that of the observations to compute the χ2 
per data point, with a wavelength-independent transit depth offset 
as the free parameter. In general, the forward model grids fit the main 
features of the data but are unable to place statistically significant 
constraints on many of the atmospheric parameters, owing to both the 
finite nature of the forward model grid spacing13 and the insensitivity 
of some of these parameters to the 3–5-µm transmission spectrum of 
WASP-39b (for example, >100 K differences in interior temperature 
provided nearly identical χ2/N).

ATMO. We used the ATMO RCTE grid85–88, which consists of model 
transmission spectra for different day–night energy redistribution fac-
tors, atmospheric metallicities, C/O ratios, haze factors and grey cloud 

factors with a range of line lists and pressure-broadening sources88. 
In total, there were 5,160 models. Within this grid, we find the best-fit 
model to have 3 times solar metallicity, with a C/O ratio of 0.35 and a 
grey cloud opacity 5 times the strength of H2 Rayleigh scattering at 
350 nm and a χ2/N = 1.098 for N = 344 data points and only fitting for 
an absolute altitude change in y.

PHOENIX. We calculated a grid of transmission spectra using the 
PHOENIX atmosphere model89–91, varying the heat redistribution of 
the planet, atmospheric metallicity, C/O ratio, internal temperature, 
the presence of aerosols and the atmospheric chemistry (equilibrium 
or rainout). Opacities used include the BT2 H2O line list92, as well as 
HITRAN for 129 other main molecular absorbers93 and Kurucz and 
Bell data for atomic species94. The HITRAN line lists available in this 
version of PHOENIX are often complete only at room temperature, 
which may be the cause of the apparent shift in the CO2 spectral feature 
compared with the other grids that primarily use HITEMP and ExoMol 
lists. This shift is the cause of the difference in χ2 between PHOENIX 
and the other model grids. In total, there were 1,116 models. Within 
this grid, the best-fit model has 10 times solar metallicity, a C/O ratio 
of 0.3, an internal temperature of 400 K, rainout chemistry and a cloud 
deck top at 0.3 mbar. The best-fit model has a χ2/N = 1.203 for N = 344  
data points.

PICASO 3.0 and Virga. We used the open-source radiative–convective 
equilibrium model PICASO 3.0 (refs. 95,96), which has its heritage in the 
Fortran-based EGP mode97,98, to compute a grid of 1D pressure–tempera-
ture models for WASP-39b. The opacity sources included in PICASO 3.0 
are listed in Extended Data Table 2. Of the 29 molecular opacity sources 
included, the line lists of notable molecules used were: H2O (ref. 99), 
CO2 (ref. 100), CH4 (ref. 101) and CO (ref. 102). The parameters varied in 
this grid of models include the interior temperature of the planet (Tint), 
atmospheric metallicity, C/O ratio and the dayside-to-nightside heat 
redistribution factor (see Extended Data Table 2), with correlated-k 
opacities98,103. In total, there were 192 cloud-free models. We include the 
effect of clouds in two ways. First, we post-processed the pressure–tem-
perature profile using the cloud model Virga95,104, which follows from 
previously developed methodologies38, in which we included three 
condensable species (MnS, Na2S and MgSiO3). Virga requires a vertical 
mixing parameter, Kzz (cm2 s−1), and a vertically constant sedimentation 
efficiency parameter, fsed. In general, fsed controls the vertical extent 
of the cloud opacity, with low values (fsed < 1) creating large, vertically 
extended cloud decks with small particle sizes. In total, there were 
3,840 cloudy models. The best fit from our grid with Virga-computed 
clouds has 3 times solar metallicity, solar C/O (0.458) and fsed = 0.6, 
which results in a χ2/N = 1.084.

As well as the grid fit, we also use the PICASO framework to quantify 
the feature-detection significance. In this method, we are able to incor-
porate clouds on the fly using the fitting routine PyMultiNest105. We fit 
for each of the grid parameters using a nearest-neighbour technique 
and a radius scaling to account for the unknown reference pressure, 
giving five parameters in total. When fitting for clouds, we either fit 
for Kzz and fsed in the Virga framework (seven parameters in total) or we 
fit for the cloud-top pressure corresponding to a grey cloud deck with 
infinite opacity (six parameters in total). These results are described 
in the following section.

Feature-detection significance
From the chemical equilibrium results of the single best-fit models, 
the molecules that could potentially contribute to the spectrum based 
on their abundances and 3–5-µm opacity sources are H2 and He (via 
continuum) and CO, H2O, H2S, CO2 and CH4. More minor sources of 
opacity with VMR abundances <1 ppm are molecules such as OCS and 
NH3. For example, removing H2S, NH3 and OCS from the single best-fit 
PICASO 3.0 model increases the chi-square value by less than 0.002. 



Therefore, we focus on computing the statistical significance of only 
H2O, SO2, CO2, CH4 and CO.

To quantify the statistical significance, we performed two differ-
ent tests. First, we used a Gaussian residual fitting analysis, as used in 
other JTEC ERS analyses23,29,31. In this method, we subtracted the best-fit 
model without a specific opacity source from the weighted-average 
spectrum of WASP-39b, isolating the supposed spectral feature. We 
then fit a three-parameter or four-parameter Gaussian curve to the 
residual data using a nested sampling algorithm to calculate the Bayes-
ian evidence106. For H2O and CO, the extra transit depth offset param-
eter for the Gaussian fit was necessary to account for local mismatch 
of the fit to the continuum, whereas only a mean, standard deviation 
and scale parameter were required for a residual fit to the other mol-
ecules. We then compared this to the Bayesian evidence of a flat line 
to find the Bayes factor between a model that fits the spectral feature 
versus a model that excludes the spectral feature. These fits are shown 
in Extended Data Fig. 6.

Although the Gaussian residual fitting method is useful for quan-
tifying the presence of potentially unknown spectral features, it can-
not robustly determine the source of any given opacity. We therefore 
used the Bayesian fitting routine from PyMultiNest in the PICASO 3.0 
framework to refit the grid parameters, while excluding the opacity 
contribution from the species in question. Then, we compared the 
significance of the molecule through a Bayes factor analysis107. Those 
values are shown in Extended Data Table 3.

We find significant evidence (>3σ) for H2O, CO2 and SO2. In general, 
the two methods only agree well for molecules whose contribution has 
a Gaussian shape (that is, SO2 and CO2). For example, for CO2, we find 
decisive 28.5σ and 26.9σ detections for the Bayes factor and Gaussian 
analysis, respectively. Similarly, for H2O, we find 21.5σ and 16.5σ detec-
tions, respectively. The evidence for SO2 is less substantial, but both 
methods give significant detections of 4.8σ and 3.5σ, respectively. 
Although the Gaussian fitting method found a broad 1-µm-wide residual 
in the region of CO (that is, >4.5 µm), its shape was unlike that seen with 
the PRISM data31. CO remained undetected with the Bayesian fitting 
analysis and therefore we are unable to robustly confirm evidence 
of CO. Similarly, no evidence for CH4 was found23. Gaussian residual  
fitting in the region of CH4 absorption only found a very broad inverse 
Gaussian and so is not included in Extended Data Table 3.

SO2 absorption
We performed an injection test with the PICASO best-fit model in the 
PyMultiNest fitting framework to determine the abundance of SO2 
required to match the observations. We add SO2 opacity using the Exo-
Mol line list108, without rerunning the RCTE model to self-consistently 
compute a new climate profile. Fitting for the cloud deck dynamically, 
without SO2, produces a single best estimate of 10 times solar metallic-
ity, sub-solar C/O (0.229), resulting in a marginally worse χ2/N = 1.11. With 
SO2, the single best fit tends back to 3 times solar metallicity, solar C/O. 
This suggests that cloud treatment and the exclusion of spectrally active 
molecules have an effect on the resultant physical interpretation of bulk 
atmospheric parameters. Ultimately, if we fit for SO2 in our PyMulti-
Nest framework with the Virga cloud treatment, we obtain 3 times 
solar metallicity, solar C/O, log SO2 = −5.6 ± 0.1 (SO2 = 2.5 ± 0.65 ppm) 
and χ2/N = 1.02, which is our single best-fit model (shown in Fig. 4). For 
context, an atmospheric metallicity of 3–10 times solar would provide 
a thermochemical equilibrium abundance of 72–240 ppm H2S, the 
presumed source for photochemically produced SO2 (ref. 36).

To confirm the plausibility of SO2 absorption to explain the 4.1-µm 
spectral feature, we also computed models with prescribed, verti-
cally uniform SO2 VMRs of 0, 1, 5 and 10 ppm using the structure from 
the best-fit PHOENIX model (10 times solar metallicity, C/O = 0.3). 
We calculated ad hoc spectra using the gCMCRT radiative transfer 
code109 with the ExoMol SO2 line list108 (see Extended Data Fig. 7).  
Linearly interpolating the models with respect to the SO2 abundance 

and performing a Levenberg–Marquardt regression gave a best-fit 
value of 4.6 ± 0.67 ppm. Inserting this abundance of SO2 into the best-fit 
PHOENIX model improves the χ2/N from 1.2 to 1.08.

Future atmospheric retrievals can provide a more statistically robust 
measurement for the SO2 abundance and add extra information from 
the similar absorption seen in the PRISM transmission spectrum29,31.

4.56-µm feature
A 0.08-µm-wide bump in transit depth centred at 4.56 µm is not fit 
by any of the model grids. This feature, picked up by the resolution 
of G395H, is not clearly seen in other ERS observations of WASP-39b. 
Following the same Gaussian residual fitting procedure as described 
above, we found a feature significance of 3.3σ (see Extended Data Fig. 6). 
To identify possible opacity sources in the atmosphere of WASP-39b 
that might be the cause of this absorption, we compared the feature 
with CH4 (ref. 110), C2H2 (ref. 111), C2H4 (ref. 112), C2H6 (ref. 113), CO (ref. 114), 
CO2 (ref. 100), CS2 (ref. 113), CN (ref. 115), HCN (ref. 116), HCl (ref. 113), H2S 
(ref. 117), HF (ref. 118), H3

+ (ref. 119), LiCl (ref. 115), NH3 (ref. 120), NO (ref. 114), 
NO2 (ref. 113), N2O (ref. 114), N2 (ref. 121), NaCl (ref. 122), OCS (ref. 113), PH3 
(ref. 123), PN (ref. 124), PO (ref. 125), SH (ref. 126), SiS (ref. 127), SiH4 (ref. 128), 
SiO (ref. 129), the X–X state of SO (ref. 130), SO2 (ref. 108), SO3 (ref. 108) and 
isotopologues of H2O, CH4, CO2 and CO, but did not find a convincing 
candidate that showed opacity at the correct wavelength or the cor-
rect width. The narrowness of the feature suggests that it could be a 
very distinct Q-branch, in which the rotational quantum number in 
the ground state is the same as the rotational quantum number in the 
excited state. However, of the molecules we explored, there were no can-
didates with a distinct Q-branch at this wavelength whose P-branch and 
R-branch did not obstruct the neighbouring CO2 and continuum-like 
CO + H2O opacity.

We also note that many of these species lack high-temperature 
line-list data, making it difficult to definitively rule out such species. 
For example, OCS, SO and CS2 are available in HITRAN2020 (ref. 113) 
but not in ExoMol131. Furthermore, if photochemistry is important for 
WASP-39b, as indicated by the presence of SO2, then there may be many 
species out of equilibrium that may contribute to the transit spectrum, 
some of which do not have high-temperature opacity data at present 
(such as OCS, NH2 or HSO). Future observations over this wavelength 
region of this and other planets may confirm or refute the presence of 
this unknown absorber.

Data availability
The data used in this paper are associated with JWST programme ERS 
1366 (observation #4) and are available from the Mikulski Archive for 
Space Telescopes (MAST; https://mast.stsci.edu). Science data pro-
cessing version (SDP_VER) 2022_2a generated the uncalibrated data 
that we downloaded from MAST. We used JWST Calibration Pipeline 
software version (CAL_VER) 1.5.3 with modifications described in the 
text. We used calibration reference data from context (CRDS_CTX) 0916, 
except as noted in the text. All the data and models presented in this 
publication can be found at https://doi.org/10.5281/zenodo.7185300.

Code availability
The codes used in this publication to extract, reduce and analyse the 
data are as follows; STScI JWST Calibration Pipeline44 (https://github.
com/spacetelescope/jwst), Eureka!50 (https://eurekadocs.readthedocs.
io/en/latest/), ExoTiC-JEDI45 (https://github.com/Exo-TiC/ExoTiC-JEDI), 
juliet68 (https://juliet.readthedocs.io/en/latest/), Tiberius15,46,47, tran-
sitspectroscopy48 (https://github.com/nespinoza/transitspectros-
copy). Furthermore, these made use of batman62 (http://lkreidberg.
github.io/batman/docs/html/index.html), celerite83 (https://celer-
ite.readthedocs.io/en/stable/), chromatic (https://zkbt.github.io/
chromatic/), dynesty69 (https://dynesty.readthedocs.io/en/stable/
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Extended Data Fig. 1 | The throughput and spectral trace for WASP-39 
across NRS1 and NRS2. a, Normalized throughput of NRS1 and NRS2 detectors 
(as custom produced; see Methods, ‘Limb-darkening’), which shows the cutoff 
at short wavelengths. b, 2D spectral images of the trace produced from the 
ExoTiC-JEDI [V1] reduction before cleaning steps. The aspect ratio has been 

stretched in the y direction to show the structure of the trace over the 
32-pixel-wide subarray more clearly. The NRS2 spectral position is slightly 
offset from that of NRS1, as the NRS2 subarray was moved following 
commissioning to ensure that the centre of the spectral trace fell fully on the 
detector and did not fall off the top-right corner139.



Extended Data Fig. 2 | Time-dependent decorrelation parameters.  
a, The change in the FWHM of the spectral trace at selected wavelengths. This 
change does not correspond to any high-gain antenna movements and is 
attributed to a large mirror-tilt event. These measurements demonstrate that 
the mirror-tilt event has a wavelength dependence. Changes to the PSF have a 
larger impact at short wavelengths, as the PSF of the spectrum increases with 

wavelength139. b,c, The change in the x-pixel and y-pixel position of the spectral 
trace as functions of time, respectively. Positional shifts are calculated by 
cross-correlating the spectral trace with a template to measure sub-pixel 
movement on the detector. The y-position shift clearly shows a link to the 
mirror-tilt event.
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Extended Data Fig. 3 | Normalized flux offset of the stellar baseline before 
and after the tilt event as a function of wavelength for NRS1 and NRS2. 
Purple denotes NRS1 and orange denotes NRS2. The normalized flux offset is 
calculated per pixel by measuring the median flux in the stellar baseline before 
and after the transit and calculating the difference. These differences are then 
normalized by the before-transit flux and plotted on a common scale. 

Overplotted are the data binned to a resolution of 10 pixels to match our 
presented transmission spectra (Fig. 2). We also show a linear fit to each 
detector to better quantify the decreasing tilt flux amplitude with increasing 
wavelength (NRS1 = −0.00073374x + 0.00707344, 
NRS2 = −0.00067165x + 0.00588128).



Extended Data Fig. 4 | Normalized root-mean-squared binning statistic for 
three of the 11 reductions detailed in Methods. In each subplot, the red line 
shows the expected relationship for perfect Gaussian white noise. The black 

lines show the observed noise from each spectroscopic light curve for 
pipelines 1, 3 and 5. To compare bins and noise levels, values for all bins in each 
pipeline are normalized by dividing by the value for a bin width of 1.
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Extended Data Fig. 5 | Comparison between all fitting pipelines performed 
on the spectroscopic light curves. a, The underlying grey data points show 
the standard deviation between all transmission spectra per spectral bin. The 
black line shows the unweighted mean uncertainty on the transit depth per bin. 
Spikes in the uncertainties correspond to spectral bins with higher standard 
deviations, probably because of differences in pixel-flagging or sigma-clipping 
at the light-curve level. b, Gaussian PDFs of the normalized transmission 
spectrum residuals, showing the mean offset and the spread relative to the 

weighted-average transmission spectrum. c, Histograms of the normalized 
transmission spectrum residuals aligned to zero by subtracting the mean of the 
distribution that was used to generate the PDF above. In panels b and c, the 
coloured lines and numbers correspond to the fitting pipeline used to obtain 
each transmission spectrum, as summarized in Extended Data Table 1. The 
dashed lines correspond to the fitting pipeline results presented in Fig. 2, 
demonstrating that they are drawn from across the distribution.



Extended Data Fig. 6 | Gaussian versus flat-line fits to the residual 
transmission spectrum for CO2, H2O, SO2 and the 4.56-µm feature. Shown 
after all other absorption from the best-fit model is subtracted from the data. 

Each of the Gaussian fits has a higher Bayesian evidence than the flat-line fits, 
indicating a detection, although to varying degrees of significance.
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Extended Data Fig. 7 | Model transmission spectra of WASP-39b with 
PHOENIX and gCMCRT with varying abundances of SO2. Model transmission 
spectra compared with the observed spectral feature at 4.1 µm in the G395H 
data. At wavelengths short of 3.95 µm, which is outside the SO2 band, all models 
overlap, further suggesting that the data can be explained by the presence of 

SO2 in the atmosphere. By interpolating these 10 times solar metallicity 
models, we find a best-fit SO2 abundance of 4.6 ± 0.67 ppm. With the best-fit 
PICASO 3.0 at 3 times solar metallicity, we find an SO2 abundance of 
2.5 ± 0.65 ppm.



Extended Data Table 1 | Summary of transit light-curve fitting

An outline of the combined products and fitting pipelines used to compute each transmission spectrum.
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Extended Data Table 2 | RCTE model grids

The parameter space explored by each RCTE model grid. The best-fit model for each grid is shown in bold. Ref. 140–142.



Extended Data Table 3 | Detection significances

Feature-detection significance for dominant sources of opacity with two different methods. B is the Bayes factor.
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