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Autonomous robots that understand human instructions can significantly enhance the efficiency in human-
robot assembly operations where robotic support is needed to handle unknown objects and/or provide on-
demand assistance. This paper introduces a vision Al-based method for human-robot collaborative (HRC)
assembly, enabled by a large language model (LLM). Upon 3D object reconstruction and pose establishment
through neural object field modelling, a visual servoing-based mobile robotic system performs object manip-
ulation and navigation guidance to a mobile robot. The LLM model provides text-based logic reasoning and

high-level control command generation for natural human-robot interactions. The effectiveness of the pre-
sented method is experimentally demonstrated.
© 2024 The Author(s). Published by Elsevier Ltd on behalf of CIRP. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

Autonomous robot-driven collaborative assembly promotes human-robot
interaction and control for on-demand robot assistance, especially for personal-
ised product assembly scenarios [1]. These scenarios involve operations that can-
not be predefined but need to be dynamically adapted to. While it is natural for
humans to instruct a robot to pick up a spare part when a component is broken
or missed during assembly operations, having the robot to not only autono-
mously recognise the needed part but also parse and decompose human instruc-
tions into executable actions to provide assistance has remained a challenge.
Establishing the 3D model and 6D pose of an object is the first step toward part
recognition and manipulation [2]. In general, the existing methods rely on avail-
able CAD models and category /instance-level prior knowledge or known camera
poses to create the object pose. This is unpractical for handling objects that are
previously unknown [3]. In recent years, vision artificial intelligence (Al) has
been introduced for 3D reconstruction of unknown objects and pose tracking [4].
Recently, neural rendering has been investigated for 3D modelling of unknown
products [5], however, to achieve on-demand assistance, pose tracking will have
to be integrated with 3D rendering and reconstruction techniques.

To assist a robot in understanding human language commands for assem-
bly, natural language processing (NLP) models enable sentence parsing for
cause-and-effect analysis [6]. However, traditional NLP models lack the ability
for assembly contextual understanding and high-level text instruction analysis.
Recently, large language models (LLMs) have demonstrated the capabilities of
text understanding and reasoning [7]. As an example, Figure 01 humanoid
robots powered by OpenAl's visual-language models can converse, reason and
plan their actions as they work [8]. Also, leveraging LLMs in high-level plan-
ning, robot manipulation and code generation was investigated [9,10], but
without exploring logic reasoning behind text instructions. With understand-
ing of the text commands, autonomous mobile robots (AMRs) supported by
vision and navigation capabilities can achieve motion control, object detection,
and manipulation when executing assembly tasks [11]. These functions are
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critical to reliable assembly operations to enable handling the right objects in
the right way [12].

This paper presents a vision Al-based HRC assembly technique supported
by an LLM and AMR. A neural object field-based model is presented for accurate
3D reconstruction and 6D pose estimate of objects. The model enables a visual
servoing-based autonomous mobile robotic system with object mapping capa-
bility to navigate around the assembly environment for object detection, track-
ing and manipulation. Finally, LLM-driven logic reasoning of text instructions
and high-level robot control commands is presented for natural human-robot
interactions in assembly.

2. 3D modelling and pose estimate of unknown objects
2.1. Vision Al-based HRC assembly

As shown in Fig. 1, the vision Al-based HRC assembly starts with RGB-D
video collection of an object (e.g., a valve cover) along scanning paths, with the
output being object frames and masks (a video frame includes a colour and a
depth image). The frames and masks serve as the input for training a network
to build the 3D model of the object with an optimised pose. The object is subse-
quently detected by a camera-driven visual servoing system installed on the
AMR. Separately, a laser scanner (Lidar) creates a simultaneous localisation and
mapping (SLAM) map of the assembly environment along the moving path of
the robot, enabling it to navigate safely around the assembly environment.
Since the robot does not know initially what objects to be acted upon, object
mapping with labelling is taken as landmarks. To control the robot for task exe-
cution, new capabilities of the LLM are explored to reason and extract control
logic steps behind text instructions issued by a human operator. Finally, high-
level control commands with vocabulary-based object indexing and mapping
are used for the robot motion control and assembly task execution.

2.2. Neural representation of unknown objects

The goal of neural representation of an unknown object is to build its opti-
mal pose estimate for robotic manipulation when the CAD model and instance-
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Fig. 1. Workflow of the vision Al-based HRC assembly process.

level prior information of the object as well as camera poses are not available
[3]. As shown in Fig. 2, four modules have been developed to realise 3D recon-
struction and 6D pose of the unknown objects [4]. Specifically, Module @
receives RGB-D video streams of an object from a depth camera and produces
object frames and masks by using a segmentation network. Subsequently,
pixel-wise dense match features between the current and previous frames,
together with their masks, are extracted to generate a coarse pose of the cur-
rent frame.
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Fig. 2. Workflow of 3D reconstruction and 6D pose for unknown objects.

Meanwhile, the current frame and its coarse pose are transmitted to Mod-
ule @ to perform pose comparison with a set of key frames provided by Module
®, which is a frame pool storing frames with informative object features and
adds the first frame to set a canonical coordinate system for next frames. If sig-
nificant feature changes between the current frame and existing key frames in
the pool are detected, online pose graph optimisation is performed to refine
and update the pose, and the current frame is taken as a key frame and added
into the frame pool. Otherwise, the current frame is discarded. By iterating
each frame, key frames of all the frames and their pose estimates are obtained.
Given that real-time neural processing of all the frames takes significant
computational resources, only key frames are stored in Module ®, while other
frame information is discarded. Next, Module @ receives all the posed key
frames from Module ® as inputs to the neural object field [5]. The training net-
work learns to accumulate information into a consistent 3D representation that
captures both the geometry and appearance of the object by using a neural
signed distance function (Neural SDF). Finally, the 3D model of the object with
a 6D pose is built for robotic manipulation.

2.3. Object reconstruction and manipulation with 6D pose

Fig. 3 shows the results of 3D reconstruction and 6D pose establishment of a
valve cover with complex and textureless surfaces, based on its photographic
image that serves as the ground truth. Here, RGB-D video streams of the valve
cover are collected by a RealSense D435 camera with a 640480 resolution at a
sampling rate of 30 Hz. An object pose (P;) is calculated by Eq. (1) [4], where k
is the index of the frames. A coarse pose (P;) of the object is computed between
the frames F(k) and F(k — 1), taking colour (I.) and depth images (I;), their
mask (Mg), and intrinsic parameters (C) of the camera as inputs. Then, the
frame F(k) with its coarse pose (P;) and a set of N key frames FX from the frame
pool are provided to the online pose optimiser f to refine the pose (P, ) if signifi-
cant feature differences are detected. Meanwhile, the frame F(k) as a key frame
is added into the frame pool. Finally, all the key frames FX in the pool are used
to learn the neural object field (NF) depicted by Eq. (2), which is rendered by an
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object representation function (R). The function takes object’s geometry (G)
and appearance (A) as inputs to construct 3D shape and appearance of the
object while adjusting the pose of key frames. In this study, a recorded video
with 708 frames and 229 key frames are used to obtain the 3D model and pose
of a valve cover, implemented in a CUDA environment. The outcome of the 3D
reconstruction of the valve cover is shown in Figs. 3(b) and (c). The mesh mod-
els rendered by point clouds (front & back) provide precise 3D neural rendering
with detailed representations of the object’s complex structure (i.e., reflected
by a red circle in Fig 3(c)).

(a) (b) (©) (d)

Fig. 3. 3D reconstruction and pose estimate for an object (valve cover): (a) object
image as ground truth; (b) & (c): mesh models rendered by point cloud (front & back);
(d) object’s 6D pose with a grasping point (white dot).
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With the 3D model created, its fine 6D pose is built simultaneously as
shown in Fig. 3(d), which provides the location and orientation of the object as
inputs to robotic grasping. Since the object’s pose centre is computed from the
visible point cloud and may not represent an appropriate grasping point, the
centre of its re-defined coordinate frame, which is created by taking the centre
and oriented box of the mesh model of the object’s surface structure model and
geometry, is selected as the grasping point (indicated by a white dot in Fig. 3
(d)). Finally, object’s 6D pose with a proper grasping point is identified and
tacked for object grasping.

3. LLM-driven assembly execution
3.1. SLAM map for robot motion control and object mapping

An AMR assisting humans in assembly tasks (e.g., material handling) needs
to know where the tasks are to be executed in the workspace, what tools/parts
are needed, and when to deliver them to the operator at what spatial coordi-
nates. By using Lidar data of scanning work environments, a Lidar-based SLAM
system is developed to enable the robot in building a spatial map and localise
itself on the map. Combining the robot’s position and pose with the location
data of the object, the robot will know the obstacle’s spatial location and its
geometrical profile, as illustrated in Fig. 4.

To further define the object properties (e.g., table vs shelf) and assist the
robot in understanding text-based input commands (e.g., place a tool on the
table), object indexing and mapping from an RGB-D camera (as shown in the
inset at the upper-right corner of Fig. 4) is performed to associate real objects
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Fig. 4. Lidar-based SLAM map for robot navigation and object indexing.

(e.g., table, engine, and shelf) with the detected obstacles, which serve as
the landmarks for robot navigation. Since the home position of the robot is
defined by the centre of the robot coordinate system at the initial time-
stamp (tp) on the map (see Fig. 4), the specifics of the objects are known to
the robot for indexing.

3.2. Visual servoing-based autonomous mobile robot system

For motion control of the mobile robot in object manipulation, a visual ser-
voing-based closed-loop control scheme is developed. As shown in Fig. 5, two
cameras are installed on the robot, with the top one for observing assembly
operation whereas the bottom one for workspace scanning at the ground level
to assist the robot in navigation. The 6D pose of the target object (Obj) is built
by a pose estimate algorithm, once the object is detected by the bottom camera.
Meanwhile, relative position and orientation of the object in the robotic coordi-
nate system (i.e., robot odometry (Odom)) are continuously calculated by the
0bj20dom transformation as the robot moves to the object. The position infor-
mation is simultaneously sent to the robot controller and the top camera for
robot navigation and object pose calculation in the Odom based on the kine-
matics of the robot (i.e., End20dom transformation).
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Fig. 5. Visual servoing-based object manipulation and robot control.

From the top camera view, the object pose is tracked in real time and
passed to an ROS (robot operating system)-based motion planner that gener-
ates the robot trajectories. The robot arm is controlled to grasp the object at the
customised grasping point. This forms a closed-loop of visual servoing to estab-
lish object-camera-robot data streams for robot control and object manipula-
tion. It further provides the capability of handling dynamic situations (e.g.,
moving objects).

3.3. LLM-driven logic reasoning of texts and command generation

To assist the robot in understanding text-based human commands for
assembly, new capabilities of the LLM are investigated to build logic reasoning
behind text input as commands and generate high-level control codes for natu-
ral human-robot interactions (see Fig. 6). Prompting with exact protocols is a
crucial component to generate the desired behaviours in LLMs. It starts with
creating a scenario content that describes assembly scenarios, components,
and possible assembly schemes in the form of prompts. This enables the LLM to
gain an initial understanding of assembly situations and provide uniform for-
mat outputs through in-context examples. Scenarios with a higher level of
detail and grounding with additional contexts will result in more accurate
extraction of context-aware control logic. After in-context learning, the fine-
tuned model is saved and used to interpret text commands and obtain task
plans in the form of code generation by skills grounding, with human
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Fig. 6. LLM-driven logic reasoning of texts and high-level control codes.

intervention as necessary. Here, the operator’s audio commands are served as
input to a voice transcriber that outputs texts, executed by GPT-4.

As an example, if the text commands are given by ‘pick up ignition coil on
the shelf of spare parts’ and then ‘place ignition coil on table near engine’ or simi-
lar texts, it is divided into small actionable steps for the robot to execute. Firstly,
the control logic is reasoned, given the text into the fine-tuned model, and the
text objects (e.g., ignition coil) are extracted by language reasoning that associ-
ates object names with text descriptions and categories. Next, the control logic
is formulated as 1) ‘move to shelf of spare parts’, 2) ‘pick up ignition coil’, 3) ‘move
to table’, 4) ‘place ignition coil on table’. The outcome is depicted by the five steps
in Fig. 6 (left side).

The extracted text objects are subsequently used for object indexing of
high-level control codes, where the format is defined by the scenario content.
The control code for object manipulation is represented by ‘robot.move_to_ob-
ject’ or ‘robot.pickup_object’, which is determined by the types of tasks and
manipulation actions. The parts that the robot manipulates are defined as the
indexed objects in the form of vocabularies. As shown in Fig. 6, GPT-4 performs
object indexing of the control logic extracted from the text and defines ‘shelf’
as the object of the control codes (robot.move_to_object(“shelf”)). These high-
level control codes include physical information of the indexed object (e.g.,
position and height) and are then mapped to low-level robot control com-
mands for robot movement and gripper control. As a result, the robot knows
where the object is located in the robotic coordinate system, and finds a path
towards the target.

4. System implementation

The performance of the developed system is evaluated in an experiment of
component assembly of an engine block. As shown in Fig. 7, an operator
instructs a mobile robot (Robotnik Summit-XL Gen with a Kinova arm) to hand-
over spare parts for replacing a broken ignition coil and a missed valve cover
when assembling a fuel injector tube and ignition coil A in parallel, followed by
securing the components. The system is controlled by an open architecture
ROS-integrated computer connected to OpenAl GPT-4. The RGB-D steams for
visual servoing are taken by a top-down camera system.
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Fig. 7. Experimental setup.

The HRC assembly process is shown in Fig. 8 and includes six control steps.
It starts with assembly component check given the assembly plan in Step (D),
where the operator identified a broken ignition coil and a missed valve cover.
Next, the operator’s voice instruction to the robot, “pick up ignition coil on the
shelf of spare parts”, triggers the pre-trained LLM, and then it performs logic
reasoning of the text and generates control steps, followed by outputting
uniformed control codes with the indexed object as shown in Fig. 6. The
indexed vocabulary of ‘shelf is mapped to the built SLAM map (in Fig. 4), to
load its location to the robot for docking to the object (‘shelf’). The visual
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Fig. 8. Assembly process and control steps.

servoing system of the robot simultaneously recognises the ignition coil and
builds its pose by calling the part recognition and pose estimate algorithms as
depicted in Fig. 2. It should be noted that no rigidly defined format is needed
for the operator to define a control command for the robot. What is shown in
the case study is a representative example only.

The robot arm is finally controlled to grasp and handover the spare part.
The text input ‘place ignition coil on table’ indexes the table location, and navi-
gates the robot to the table for placing the object by following an ROS-based
motion planner-generated path (marked by a red line) in Step (2). When exe-
cuting these two steps, the operator works in parallel to finish the assembly of
the fuel injector tube and ignition coil A as shown in the inset. Step (3) is to con-
trol the robot to handover the missed valve cover by a voice command of ‘pick
up valve cover on the shelf of spare parts’. In Step (4), the robot is instructed to
‘place valve cover on table’.

While assembling the valve cover in Step (5), the operator accidentally
dropped the tool on the floor, which is an unexpected change, and asked the
robot to ‘pick up tool on the floor near table’. The indexed vocabularies of ‘table’
and ‘floor’ to the LLM generate high- level control codes to navigate the robot
towards the table and call the bottom camera system to recognise ‘tool’ and
estimate its pose (as shown in the inset). During navigation towards the tool’s
position, the robot arm is controlled to adjust its position to make the tool visi-
ble from the top camera when it is out of the field of view of the bottom cam-
era. The built pose of the recognised tool is sent to the robot arm to pick it up.
During the assembly process, the visual servoing system tracks the tool at a
sampling rate of 30 Hz, ensuring a robust operation under dynamic situations.

In Step (6), the input text of ‘place tool on table’ only indexes the table’s
position on the map. The generated commands control the robot in placing
actions triggered by a preset stop distance of 150 mm of the mobile base
between the bottom camera and the table for collision-free robot navigation.
The valve cover assembly operation is completed when the operator has
secured the objects. The role of geometry in HRC assembly is comprehensively
reflected in the presented study, including control, manipulation, etc. Handling
different tasks during the process illustrates the model’s ability in generalisa-
tion to new tasks in assembly.

5. Conclusions and future work

This paper presents a novel vision Al-based approach to human-robot col-
laborative assembly supported by an autonomous mobile robot and a large lan-
guage model implemented in GPT-4. Specific contributions of this work
include:

® Developed a method for the neural 3D representation and 6D pose estimate
of objects that are unknown to the robot in advance to enable visual servo-
ing-based object manipulation to assist in the assembly operation.

® Developed a large language model-driven reasoning method for text-based
assembly task description and robot control commands interpretation and
execution.

® Demonstrated effective communication and interaction between a human
operator and an autonomous mobile robot through natural language input.

The developed techniques expand the boundary of human interactions
with robots beyond the traditional “silent” communication mode. Natural lan-
guage-based human commands to a robot that are accurately interpreted by
the LLM enable the robot to more flexibly respond to real-world assembly sce-
narios where not every part and/or tool can be assumed to have been seen in
advance. Such a natural mode of communication can be highly desirable in a
batch and/or personalised production environment where an increased level of
situation awareness, on-demand response, and adaptability to changing work-
flows is called. Such scenarios may be increasingly encountered as on-site
repair and remanufacture are playing an increasingly important role to
enhance sustainability in manufacturing. However, human-in-the-loop check-
ing and intervention in case of unexpected behaviours generated by LLMs is
necessary to ensure the accuracy and robustness of task execution. Future effort
will focus on lightweight development by investigating the 1-bit quantisation
technique, more autonomous and proactive robot cooperations, LLM-driven
low-level robot programming and continuous feedback-based action correction
as well as model generalisation.
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