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Abstract. We study how to optimally match agents in a dynamic matching market with
heterogeneous match cardinalities and values. A network topology determines the feasible
matches in the market. In general, a fundamental tradeoff exists between short-term
value—which calls for performing matches frequently—and long-term value—which calls,
sometimes, for delaying match decisions in order to perform better matches. We find that
in networks that satisfy a general position condition, the tension between short- and long-
term value is limited, and a simple periodic clearing policy (nearly) maximizes the total
match value simultaneously at all times. Central to our results is the general position gap €;
a proxy for capacity slack in the market. With the exception of trivial cases, no policy can
achieve an all-time regret that is smaller, in terms of order, than €~!. We achieve this lower
bound with a policy, which periodically resolves a natural matching integer linear pro-
gram, provided that the delay between resolving periods is of the order of e 1. Examples
illustrate the necessity of some delay to alleviate the tension between short- and long-term

value.
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1. Introduction

We study a centralized dynamic matching market, in
which agents arrive stochastically over time, matches
can be multilateral, and match values are heterogeneous.
Uncertainty in agents’ arrivals creates an inherent trade-
off between short- and long-term allocative efficiency;
being overly greedy may compromise opportunities to
perform valuable matches in the future.

Carpooling platforms delay match decisions to better
pool passengers with each other, yet passengers may
wait longer to be served. Kidney exchange platforms,
which arrange exchanges between incompatible patient-
donor pairs, can form a match as soon as it becomes fea-
sible, or wait for more pairs to generate exchanges that
yield more life years from transplants.' Programs in the
Netherlands, the United Kingdom, Canada, and Austra-
lia form matches every three or four months (Johnson
et al. 2008, Ferrari et al. 2014, Malik and Cole 2014). In
contrast, programs in the United States have gradually
moved toward daily matching; this practice raised con-
cerns that matching frequently may harm efficiency
(Gentry and Segev 2015).
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To better understand this tension between short- and
long-term objectives, and to speak to the reality de-
scribed previously, we seek to address the following
questions. (i) How do we formally measure this tension,
and how does it depend on the market primitives? (ii)
How should a planner match agents dynamically to
achieve the best possible balance between short- and
long-term objectives? (iii) If a periodic matching policy is
applied, what is the right delay between consecutive
match decisions?

We introduce a queueing perspective to study these
questions and model the market as a network of match-
ing queues. In our model agents arrive sequentially to
the market, and the type of an arrival is drawn from a
known distribution over finitely many types. A given
network topology determines the set of feasible matches.
Matches include two or more agent types, and match
values are heterogeneous (Figure 1). We impose no a pri-
ori assumptions on the underlying network topology; it
may be acyclic, or it may include cycles. A matching pol-
icy determines when and which matches to perform,
and agents leave the market once they are matched.
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Figure 1. Matching Network Graphs

Notes. Circles and rectangles represent agent types and matches, respectively. Agents arrive sequentially, and an arrival is of type i with proba-
bility A;. When match m is performed once, a value of r,, is collected. (Left) A network with three agent types and two (two-way) matches. The
leftmost match includes one agent of each of types 1 and 2, and generates a value of ry. (Right) A network with seven agent types and four
matches. The (multiway) match yields a value of r, and includes one agent from each of four different agent types.

To study the tradeoff between short- and long-term
allocative efficiency, we use a notion of all-time regret.
Given a fixed horizon of length ¢, the maximum alloca-
tive efficiency is achieved by waiting until time ¢ and
only then forming an optimal set of matches. The static
planning problem is a deterministic counterpart of this
upper bound where the arrivals are replaced by their
means. For the network in Figure 1 (left) with0 <0 < A,
the deterministic counterpart performs 6 many match 1
and A many match 2 per time unit; it collects a match
value of 716 + oA per time unit. The regret of a matching
policy at a fixed time f, measures the difference between
this upper bound and the value generated by the match-
ing policy by time f; the all-time regret measures the
supremum over all times ¢. In general, a smaller regret in
the short term may yield larger regret in the long term;
in that case, the all-time regret will be large. If it is possi-
ble to have a small regret simultaneously at all times,
then the tension between the short term and long term
is moot.

We prove that this is indeed possible for matching net-
works that satisfy a general position condition. General
position is nothing but the requirement that the deter-
ministic counterpart has a nondegenerate optimal solu-
tion. In a matching network, the nondegeneracy implies
(loosely speaking) some “imbalance” in the market.

Before describing the main results, it will be helpful
to discuss a couple of examples. Consider the network
in Figure 1 (left), where 0 <6 < A. Because r, > rq, the
deterministic counterpart matches A many type 2 agents
with type 3 agents, and matches the remaining 6 >0
many with type 1 agents. Now consider the dynamic
(stochastic) market, where the planner adopts a periodic
clearing policy: every 7 time periods, the planner solves
a static matching problem given the number of agents in
each queue. In expectation, there are 6T more arrivals of
agent type 2 than those of type 3. However, the smaller
the 0, the greater the probability that the number of type 2
arrivals will not suffice to match all type 3 arrivals dur-
ing the period of length 7. Conversely, the greater the o,

the greater the probability that we will be able to match
all arriving type 3 agents, in alignment with the deter-
ministic upper bound. If =0 (in violation of the gen-
eral position condition), regret inevitably—regardless
of T—grows over time (see Section 2).

For fixed 6 the greater the 7, the greater the probability
that the number of type 2 arrivals over the interaction
delay 7 exceeds that of type 3. This 7 is a design choice
and, in some networks, this choice matters. Consider the
network in Figure 2, and assume that the planner is
using a periodic clearing policy with an interaction delay
7. When 0 = 0.05, we note that the regret grows when
7=05, but it is bounded when 7 =20. When 6 = 0.01, the
period length 7=20 no longer maintains a bounded
regret, but =100 does. To maintain a bounded all-time
regret, T cannot be too small. Picking 7 to be too large is
also a problem because we might be unnecessarily giv-
ing up on short-term value.

1.1. Main Contributions

First, we introduce the general position gap, denoted by
€, that quantifies the (in)stability of the network, and it
is characterized explicitly in terms of the network pri-
mitives. Loosely speaking, this quantity captures the
“inherent thickness” in the market via the imbalance in
the arrival probabilities. Mathematically, the general
position gap is the minimum over sizes of matches and
unmatched agents in each queue based on the optimal
static solution. For the network in Figure 1 (left), € =
min{6,A,2A — 6}; in Figure 2, e =min{0.1,0.1,0.15,6,
0.3 —26}.

Second, we show that with the exception of trivial
cases, no matching policy (periodic clearing or not) can
achieve an all-time regret that is smaller, in terms of
order, than e ~!. We introduce a periodic resolving policy
that achieves this lower bound and therefore not only
maintains the regret uniformly bounded simultaneously
at all times but also achieves the optimal scaling for the
all-time regret. At each clearing period, one resolves a
simple integer linear program that maximizes the total



Kerimov, Ashlagi, and Gurvich: Constant Regret in Dynamic Matching

Management Science, 2024, vol. 70, no. 5, pp. 2799-2822, © 2023 INFORMS 2801
Figure 2. (Color online) Regret of Our Proposed Periodic Clearing Policy Applied to the Network on the Left
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Notes. Both the period length 7 and the parameter 6 are varied. For any ¢ < 0.05, the optimal static solution is (0.1,0.1,0.15,0) for the four
matches, respectively. The plotted regret is based on 10 replications. Because the x axis corresponds to decision epochs, the time horizon is

4,0007.

match value given the state of the market (the number
of agents in each queue). The lower bound is attained
by this policy, provided that the interaction delay, that
is, the length between two consecutive resolving peri-
ods is of the order of e~1. In other words, under a care-
fully designed resolving policy, the market is just thick
enough at each clearing period (without unnecessary
waiting) to achieve high allocative efficiency at all times.
Overall, the general position gap prescribes a precise
operational measure for market “thickness”; it is in-
versely proportional to the attainable regret and the
ideal clearing period length.

Delaying actions, we show, is generally necessary to
maintain bounded regret at all times. Consider, for ex-
ample, the network in Figure 1 (right) and suppose that
match 2 is a high-value match. This introduces a comple-
mentarity that prevents greedy-like policies to perform
well; acting greedily (over)uses other matches abun-
dantly at the expense of match 2 (see Example 3.2).

Finally, we prove that in acyclic matching networks,
the general position gap € can be formalized as a mea-
sure of capacity slack (the excess of capacity above
demand) akin to similar notions in standard queueing
networks. In these networks, the optimal static solution
effectively “labels” a subset of agent types as servers
(and their total arrival rate as capacity) and the remain-
ing set of agent types as customers (and their total
arrival rate as demand).

1.2. Related Literature

Value maximization, as well as the tension between
value and delay, have received significant attention in
the matching literature. At the risk of being a bit coarse,
we divide the related literature into two streams charac-
terized by their modeling language.

The first stream is based on random graphs, where
agents arrive over time and form an edge with existing
agents with some exogenous probabilities. A large sub-
set of this stream, motivated by kidney exchange, is
concerned with dynamic matching under homoge-
neous values—maximizing the total match value is the
same, in this case, as maximizing the total number of
matched agents. Anderson et al. (2017) and Ashlagi
et al. (2019) focus on the average waiting time of agents
and show that greedy policies achieve near optimality
as the exogenous match probability tends to zero,
which suggests that waiting to thicken the market is
not beneficial. Ashlagi et al. (2023) and Akbarpour et al.
(2020) explicitly model agents” departures (abandon-
ments) and find that greedy policies maximize the total
number of matches in large markets. If departure times
(agents” patience levels) are observed, matching just
before departures yields an improvement over greedy
matching (Akbarpour et al. 2020).

A growing amount of literature considers dynamic
matching under heterogeneous match values. Blanchet
et al. (2022) studies a two-sided market model with de-
partures, in which the value from matching a single
buyer to a single seller (a two-way match) is drawn
from a given distribution. The optimal frequency of
match decisions depends on the tail of the value distri-
bution, where the policies that are studied include pop-
ulation and utility threshold policies. In our model,
there is a finite number of match types (rather than a
continuum), and the feasibility of matches is deter-
mined, instead, by a given network topology. In addi-
tion, our model allows for matches to include more
than two agent types (multiway matches). Ashlagi et al.
(2022) and Collina et al. (2020) also identify the need of
delaying actions in a model with departures. Dynamic
policies based on heuristics for continuation values were
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studied in the context of kidney exchange (Dickerson
etal. 2016 and Li et al. 2019).

Other papers in this stream consider incentives and
decentralized decisions (Arnosti and Shi 2019, Baccara
et al. 2020, Leshno 2022). Our model is of a central deci-
sion maker, and in that sense, we are closer to Dickerson
et al. (2012), who develop a heuristic to approximate the
full dynamic program and overcome the “curse of di-
mensionality,” and to Karp et al. (1990), Goel and Mehta
(2008), Feldman et al. (2009), and Manshadi et al. (2012),
who benchmark against an offline upper bound.

Our work uses the modeling language of queueing
networks rather than that of random graphs. It considers
environments, in which match values are not binary, and
the number of agent and match types are finite.

Within the queueing literature, a subset of papers
focuses on performance evaluation of specific important
policies (Caldentey et al. 2009, Adan et al. 2018, Afeche
et al. 2021, and references therein). Several recent papers
succeeded in reducing the control problem’s complexity
by relying on heavy-traffic approximations (BuSic and
Meyn 2014, Gurvich and Ward 2014, Nazari and Stolyar
2019). Gurvich and Ward (2014) and BuSic and Meyn
(2014) study the minimization of heterogeneous delay
costs. For homogeneous delay costs, Unver (2010) estab-
lishes the optimality of a greedy policy, if all matches are
two-way (involving one donor and one recipient, in the
context of kidney exchange); it also underscores the
value of delaying match decisions in networks with mul-
tiway matches. Nazari and Stolyar (2019), like us, study
value maximization, but focus on the long-run average
value. Our main focus is on finite horizon optimization
and on the tradeoff between short- and long-term value.
The policy we devise is, in particular, long-run average
optimal.

Aouad and Saritac (2022) study matching networks
when agent departures are allowed. These departures
make the problem more difficult, as any delay between
actions may sacrifice value when agents are suffi-
ciently impatient. The authors introduce algorithms
that achieve, in the long run, a constant percent of the
upper bound (the optimality gap then grows with the
horizon). By considering a more limited family of net-
works and assuming that agents are patient, we make
headway in the refined understanding of matching
networks that, we believe, can subsequently inform
the design of algorithms for networks with departures;
we revisit this in the concluding remarks.

This paper is also related to recent work on achieving
constant regret in dynamic resource allocation problems
(Bumpensanti and Wang 2020, Vera and Banerjee 2021,
Vera et al. 2021). In these papers, it is proved that poli-
cies, which resolve at each arrival an intuitive linear pro-
gram, can achieve constant regret in the online packing
context, where an initial supply of inventory is depleted
over a finite horizon by arriving requests. Requests must

be accepted or rejected on the spot (there is no queue),
and the criterion is to maximize the value collected by
the end of the horizon. Of conceptual importance is Jasin
and Kumar (2012), where a nondegeneracy assumption
supports the optimality of such greedy resolving policies
in the packing setting. While the differences are signifi-
cant, both dynamic matching and online packing pro-
blems can be conceptually framed as specific instances
of online linear programming (see Li and Ye (2020) and
the references therein).

1.3. Notation

For real numbers x and y, we use x Ay :=min{x,y},
(x)" := max{0,x} and (x)” :=max{0, —x}. We follow
the accepted meaning of little o, big O and big Q. For
example a; = Q(b;) for all +>0 (for nonnegative a;, by)
means that liminf;_,a¢/b; > 0. We write [1, 1] to denote
the set of positive integers {1,2, ..., n}.

2. Model

2.1. Matching Network and Dynamics

There is a finite set of agent types A={1,2,...,n} and a
finite set of matches M ={1,...,d}. Each match m € M
corresponds to a subset of at least two agent types. We
denote by A(m) the set of agent types participating in
match m. The network topology is given by a matching
matrix M€ {0,1}", where M;,=1 if and only if i€
A(m). We assume that each agent type is participating in
at least one match.

Agents arrive in discrete time following a multinomial
distribution: at each time ¢ € N, an arrival is of type i
with probability A; >0, where >, 4A; = 1. Match m is
feasible at time t, if there is at least one agent type i pre-
sent in the market at time ¢, for all i € A(m). When match
m is performed once, it includes one agent of each type
in A(m) and generates a value of r,, > 0. We refer to the
tuple G := (M, A, r) as the matching network.

To track the state of the market, we maintain a queue
for each agent type, and agents join their type-dedicated
queues upon arrival. All queues are empty at =0, and
we denote by A! the number of arrivals to queue i by
time t. Matches are performed instantaneously (after
which the matched agents leave the market), and we
denote the prematch queue-length vector at time ¢ by Q'.
At most, minye 4(,yQ} many matches of m € M can be
performed at time ¢.

2.2. Matching Network Graph

The network topology is a hypergraph, where each
agent type is a vertex and each match is a collection of
vertices—which are the agent types that participate in
the match. We represent this hypergraph by a simple
bipartite graph, where agent types and matches are the
vertices, and there is an edge between agent type i and
match m if and only if i € A(m). We refer to this bipartite
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graph as the matching network graph, and we denote this
graph by G as a slight abuse of notation. Figure 1 is the
first instance of multiple matching network graphs that
we will use throughout the paper. In the figures, circles
and rectangles represent agent types and matches,
respectively, and we indicate the arrival probabilities
and match values in their corresponding shapes.

2.3. Performance Measure

A matching policy maps histories of arrivals and per-
formed matches to a (possibly empty) set of matches
and determines how many times each of these matches
will be performed at each time t. Such a policy can be
represented by a right-continuous with left limits nonan-
ticipative increasing process Dy, := (D!, t>0), where
D! is the total number of times match m is performed by
time t; AD!, :=D! — D! is then the number of times
match m is performed at time t. An admissible matching
policy D must satisfy the following:

Q' =A"'—MD" forall t>0. (1)

Denote by IT the set of all admissible matching policies.
We add the superscript D on expectations to make ex-
plicit the dependence on the policy. We use Q" to de-
note the postmatch queue-length vector at time £, that is,
Q" = Q' — MAD!,.

The expected total value collected by time ¢, under a
matching policy D, is given by

RP = EP[r- D'].

The optimal value for fixed t, R = maxpe R, is triv-
ially attained by the ultimate batching policy, which takes
no action until time ¢, and performs matches according
to an optimal solution of the (static) weighted matching
problem at time t. The optimal value R is then the
expectation of the following static problem:

max -y
R =E|st My<A
UAS Zio

Conceptually, it is useful to think of R™" as tracking the
total collected value of a decision maker that makes deci-
sions continuously, but the decision maker is allowed, at
all times, to correct past decisions (unmatch some agents
and match new ones); this is a hindsight upper bound. A
matching policy is hindsight optimal if it is, at all £, almost
as good as this upper bound.

Definition 2.1 (Hindsight Optimality). A matching pol-
icy D is hindsight optimal if

Ret—RPt=0(1) forall t>0,

which implies, in particular, RP"//R*! =1~ O(1/t) for
allt>0.

This notion of optimality—with its focus on the
total collected value at all times—allows us to concen-
trate on the tension between short- and long- term
value; whether it is possible to act frequently and
remain near-optimal at all times. Explicit delay penal-
ties naturally encourage taking frequent actions. We
explicitly model delay penalties/holding costs in Sec-
tion 6 and show that our proposed matching policies
achieve near-optimality in that case as well.

Remark 2.1. Hindsight optimality implies optimality
under other criteria. For instance, given a finite horizon
T, a hindsight optimal matching policy makes a con-
stant number of “mistakes” that does not grow with the
horizon, that is, R*T — RP'T = O(1). In particular, the
policy is optimal in the long-run average sense, because

R* T __ RD, T

T =0(1/T)—0 as T — oo,

with a convergence rate of 1/T.

Another instance is a discounted infinite horizon
model, where the discounted collected value with a dis-
count factor € (0,1) under a matching policy D is
defined as

e8]

> B(r-AD")

t=0

D._mD
Rg:=E

for any matching policy D, we have Ry >R > RE LA
hindsight optimal matching policy D satisfies Rg —
ngj = O(1), and in particular, R; —RP =0(1). Because
Ry =0Q(1/(1 - B)), the relative error satisfies

Let Rj; := maxpenRY and Ry := (1 — P> B'R*!. Then

KR o
T/; =0(1-p),
and shrinks as the effective horizon becomes longer (as

B11).

2.4. Static Planning Problem (SPP) and the
General Position Condition

A natural upper bound for the optimal value R*' is

given by the following optimization problem, where sto-

chastic arrivals are replaced by their rates:

max 7r- y max 71r-X
R'=E|st. My<A'|<st Mx<At )
yE Zio X E Rio.

An optimal solution x;, of the problem on the right-hand
side of (2) provides a first-order proxy for optimal match
rate of match m. The inequality in (2) simply follows
from relaxing the integrality constraints and applying
Jensen’s inequality. With the change of variables z = x /¢,
we arrive at a deterministic relaxation, which we write



Kerimov, Ashlagi, and Gurvich: Constant Regret in Dynamic Matching
Management Science, 2024, vol. 70, no. 5, pp. 2799-2822, © 2023 INFORMS

2804
in standard form as
max r-z
s.t. Mz+s=A (SPP)

zeRY),seRY,.

We refer to this formulation as the static planning prob-
lem (SPP). Given an optimal solution (z*,s*) of (SPP), z;,
is the (per period) number of times match m is per-
formed under the optimal solution, whereas s; corre-
sponds to the leftovers (slack) added to queue j per
period. We partition the set of matches and queues as
follows:

My ={meM:z, >0}, My:= M\M,,
Q,:={jeA: s; >0} and Qp:= A\Q,,

where M, is the set of active matches, M, is the set of
redundant matches, Q, is the set of under-demanded (none-
mpty) queues, and Qy is the set of over-demanded (empty)
queues.

We expect “good” policies to be consistent with this
partition. It should perform those matches with z;, > 0,
but avoid performing the redundant matches. Similarly,
over-demanded/empty queues should be as empty as
possible, whereas those queues with s]*. > 0 should grow
with time. We formalize this intuition in Section 4.

A simple property of the optimal solution of (SPP)
determines, as we will prove, whether it is possible to
achieve hindsight optimality.

Definition 2.2 (General Position). A matching network
G satisfies the general position condition (GP) if (SPP)
has a unique nondegenerate optimal solution (z*,s*),

that is, all n basic variables in this solution are strictly
positive.

GP is straightforward to verify. Nondegeneracy
means that | M| + | Q.| =n and is, thus, easy to verify
by inspection. As to uniqueness, if the dual of (SPP) has
a nondegenerate optimal solution, then the primal has a
unique optimal solution by complementary slackness.

Uniqueness is mathematically useful and comes at
no practical restriction. When there are multiple solu-
tions, a small perturbation of the match value vector
r—1r+O(/T)—where T is the horizon length in
consideration—guarantees uniqueness. This does not
affect hindsight optimality because this perturbation,
for any t < T, changes the benchmark R*' at most by a
constant.

General position is in fact necessary to maintain a
uniformly bounded regret. To see this, consider the
network in Figure 3 (left). Observe that match 2 is
used by the ultimate batching policy (that achieves
the optimal value) for any fixed time t>0 only if
Al > Al. Because A1 = Ay, whether A! > Ab or A} <A}
is discovered only late in the horizon. Thus, any opti-
mal policy for a fixed t, must withhold performing
match 2 until time t. This inevitably means suboptim-
ality for subintervals [0,s], for any s>0 sufficiently
smaller than f (say s = t/2). Therefore, a policy D that
is optimal for s=¢/2 must have R*' — RPf = Q(Vt).
Figure 3 (right) illustrates this, and a formal proof ap-
pears in the appendix.

The growing regret in Figure 3 stems from having
equal arrival probabilities of agent types 1 and 2. Con-
sider some perturbation on A, now. Intuitively, the larger
the difference between A, and A4, the earlier one can
decide whether to perform match 2, and one should also

Figure 3. (Color online) General Position is Necessary to Maintain a Uniformly Bounded Regret

35

30

m=3] [a=]] :

3 4 5 6 7 8

9 10 11 12 13 14 15 16 17 18 19 20
Time Horizon

Notes. (Left) A network that violates GP. (Right) The policy D performs one batched optimal solution at time /2, and then another at time t. R**
is obtained by the ultimate batching policy at time t; we vary  (the time horizon is scaled down by 10%). This captures a regret that is of the order
of VE optimizing total value at time s < t necessitates a Ot optimality gap at time .
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expect a smaller regret. The general position gap, which
is defined next, captures the inherent imbalance in the
network, or the “distance” from degeneracy.

Definition 2.3 (General Position Gap). Suppose that the
matching network G satisfies GP. We define the gen-
eral position gap as

€ = min z,, Amins;.

meM. m j€Qs ]

The general position gap € is, by definition, strictly
positive, and because A is a probability vector, z,,s; <1
for all m € M, and j € 9, so that 0 < e < 1. Mathemati-
cally, the general position captures the minimum entry
among basic variables. For example in Figure 3, if one
increases A, by a sufficiently small constant 6 >0 and
decreases Ay by o, then GP holds, where (SPP) has a
unique optimal solution z* = (1/3 — §,20) and s* = (0,0,
1/3 —26) with e = 20.

For a large family of matching networks, € can be
thought of as a measure of capacity slack; see Section
5. Loosely speaking, the larger the general position
gap €, the larger the region of queue lengths in the
dynamic system that will enable performing “correct”
matches by acting more frequently. As we will show
later, the general position gap will be inversely pro-
portional to the achievable regret and the desirable
delay between decision epochs.

3. Main Results

Our proposed matching policy—the exhaustive resolving
policy—is a periodic clearing policy, where matches are
performed at each decision epoch following an optimal
solution of a natural linear integer program.

1. Preprocessing and removal of redundant matches. Solve
(SPP) and identify the set My. All redundant matches
are removed from the network and never used (D!, =0
for all t >0 and m € M,).” This decomposes the network
into (possibly) multiple connected components, and the
policy is applied to each component separately. Alterna-
tively, the policy can be applied directly to the original
network with an extra constraint that the matches in
M, are never used.

2. Decision epochs. Matches are performed only at
decision epochs,

te=kt, k€N,

where 7 € N is the interaction delay.

3. Solving a linear (integer) program. At each decision
epoch t;, perform z;,(Q) many matches for all m € M.,
where

z'(Q%) € arg max r-z
s.t. Mz < Qh
zeZ4, 3)

where, we recall, Q* is the prematch length of queue i:
The number of agents in queue i right before the matches
are performed at time .

Observe that immediately after a decision epoch f;, no
feasible matches remain to perform; otherwise, one
could increase the objective value in (3) by forming an
additional match.

In our analysis, we will assume that immediately after
the matches are performed, all remaining unmatched
agents from queues j€ Q. (under-demanded queues)
are removed. This is done for mathematical exposition
and without loss of generality; we will show that these
removals are not necessary (see proof of Theorem 3.1 in
Appendix D). Arguably, removals are practically rea-
sonable in order to prevent agents of these types from
waiting indefinitely.

Definition 3.1 (Trivial Networks). A matching network
that satisfies GP is trivial if the general position gap
equals the arrival probability of some agent type. That
is, for some i€ A,

€= min z, Amins; = A;.

meM, j€Q4 /

In trivial networks, as illustrated in Figure 4, it is pos-
sible to keep the regret small at all times (in particular,
in terms of order, smaller than Q(e1)).

Theorem 3.1 (Hindsight Optimality). Assume that G satis-
fies GP and let € be the GP gap. Then, there exists a match-
ing policy D such that

R —RPt <Te™! forall t >0, (upper bound)

where T > 0 is a constant that may depend on n, d, M, and r
(but not A or €). This performance is achieved by the exhaustive

Figure 4. (Color online) Example of a Trivial Network,
Where (SPP) Has a Unique Optimal Solution z* = (3/15,2/15,
1/15) and s* =(0,0,0,3/15) So Thate =z; =1/15= A3

Notes. Because Ay > A1 +A>+ A3, queue 4 will grow with time
regardless of the matching policy. After some initial time £y, queue 4
will be nonempty with probability close to one. In particular, we will
be able to immediately match any arriving agents of type 1, 2, or 3.
The regret is zero at all large enough times ¢.
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resolving policy with an interaction delay T =[xe 1=
O(e™1), where x> 0 is some constant that does not depend
one.

If the network is nontrivial, any matching policy D has

sup (R' —RP!) > ye™,
>0

(lower bound)

where y > 0 is a constant that may depend on n, d, M, and r
(but not A or e).

Our main theorem states that an interaction delay pro-
portional to e ! is sufficient to achieve the optimal regret
scaling. By the lower bound result, a smaller T cannot
improve this achieved regret scaling. It can, however,
make it worse; see Example 3.1. Picking 7 larger, in terms
of order, compromises the regret; for example with
T=0(e?), the regret scales with € 2> ¢! This is
because just before a decision epoch, there are (of the
order of) e 2 unmatched agents waiting in queues. Thus,
at that point in time the regret is of the order of e 72

3.1. Queueing Intuition for the Lower Bound

The proof of the lower bound appears in Appendix E.
We provide here some intuition using a simple example.
Consider the network in Figure 5. Let us pretend that
upon arrival, an agent type 2 is lost if it is not used to
form a match with queue 1, and match 1 is performed
otherwise. Then queue 1 behaves like a single-server
queue with arrival rate A;, and service rate A, = A; +¢;
the utilization is p =A1/(A1 +¢€). Then the stationary
mean queue-length of queue 1 is given by

Y _Al 1

1-p € €

Thus, although the upper bound (SPP) makes queue 1
empty at all times, we will, in the stochastic system,
have of the order of e ! unmatched type 1 agents, which
will constitute an unrealized value of ~ r1 /€. The main
challenge in formalizing this intuition is that not only
the arrivals to queue 2 are not “lost” if not immediately
matched but also that we must allow the matching pol-
icy to be arbitrary.

3.2. Discussion

3.2.1. On the Policy Ingredients. The exhaustive resolv-
ing policy uses (SPP) to identify which matches to avoid

Figure 5. Simple Network for the Lower Bound Intuition

and what delay to impose between decision epochs. In
particular, our results require the knowledge of the para-
meters A and r. Next, we discuss the importance of these
ingredients under our resolving policy.

Remark 3.1 (Preremoval of Redundant Matches). Avoid-
ing matches in M), is necessary for the resolving policy
to achieve hindsight optimality. To see this consider the
network in Figure 6. Independent of the size of 7, the
figure showcases the linear growth (in f) of the regret
R*' —RP!. In this example, (SPP) has z; =0, but the
static problem (3) uses it occasionally (even if not fre-
quently). Regardless of the fixed 7, there is a positive
probability (that decreases with 7, but is constant once 7
is fixed) that both queues 4 and 5 will be nonempty at a
decision epoch, where queues 3 and 6 will be empty. In
such a case, our exhaustive resolving policy will perform
match 4. This is a “mistake,” and it will be repeated at a
fixed frequency.

The next two examples illustrate the necessity of some
delay between decision epochs under our resolving pol-
icy (regardless of how ties are broken).

Example 3.1 (Frequency of Resolving in Two-Way
Networks). As briefly discussed in the introduction,
Figure 2 considers our resolving policy for a two-way
network and captures the regret for multiple values of
the “batching” parameter 7 € {5,20,100}. Even in this
simple (two-way) network, 7 cannot be too small; if it
is too small, the performance of the resolving policy is
suboptimal.

Example 3.2 (Necessity of Some Delay in Multiway
Networks). In Figure 7, the tuple G = (M, A,r) satisfies
GP. Because match 1 has a relatively high value, it is
important to use agent types 1, 2, 4, and 6 toward per-
forming this match. Any greedy policy “fails,” because
agents of types 2, 4, and 6 (required to perform match 1)
“disappear” before they can be used to perform match
1. For instance, because Ay = 641 > Ag = 321, there will
be (after some initial transient horizon) available agents
waiting to be matched in queue 7, with high probability.
Under any greedy policy, any arriving type 6 agent will
then immediately be matched to an agent of type 7 and
disappear. Our resolving policy with a suitable interac-
tion delay prevents this and performs match 1 suffi-
ciently many; see its constant regret in Figure 7 (bottom
left). In Figure 7 (bottom right), we can see that resolving
too frequently results in a large regret.

We do not offer a precise recipe to pick 7. However,
an initial preprocessing step based on simulations can
help to fine tune this parameter; a simple heuristic
would be to initialize 7 to € ! and keep increasing it
“slightly” as long as the regret grows. Such simula-
tions, like the exhaustive resolving policy, rely on
knowing the arrival probabilities and match values.
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Figure 6. (Color online) Resolving Without Removing All Matches in M Does Not Achieve Hindsight Optimality
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Notes. The network in this figure exhibits a regret that grows linearly with time. (Top left) The performance of the exhaustive resolving policy
without removing match 4 with 7 = 20. The solid line represents the optimal value of (SPP) (where the arrivals are replaced with their expecta-
tions) scaled with ¢, and the dashed line represents the optimal match value given the actual arrival realizations (not in expectation). (Top right)
The performance without removing match 4 with 7 = 200. The regret grows slower, but it nevertheless grows. (Bottom left) The performance
with removing match 4 and 7 = 20. (Bottom right) The performance with removing match 4 and 7 = 200.

3.2.2. Further Comments. Insome applications, the main
objective is to maximize the total number of matched
agents, that is, the value of a match equals the number of
agent types participating in the match. Similar arguments
to those in Example 3.2 imply that in multiway networks,
even such a simple cardinality maximizing objective
requires delaying match decisions to achieve hindsight
optimality; this can be illustrated by extending the net-
work in Figure 7 by adding new agent types with rela-
tively large arrival probabilities to align match values

with their cardinalities. Finally, in Section 5, we identify
an alternative periodic clearing policy, which is also
hindsight optimal for a large family of networks.

4. Upper Bound: Regret of

Exhaustive Resolving
In this section, we prove the first part of our main result
Theorem 3.1, that is, the exhaustive resolving policy
achieves the desired regret O(e~!). We first present in
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Figure 7. (Color online) Necessity of Some Delay in Multiway Networks
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Notes. (Top left) A (multiway) network, where A is chosen so that ), ,A; = 1. (Top right) The percent optimality gap (regret) as a function of the
interaction delay 7. For each 7, the reported gap is an average of 1,000 replications. With 7 = 1 (acting every period), the gap is as high as 60%; it
decreases to less than 1.5% with a delay of 7 = 20. (Bottom left) Hindsight optimality: the regret as a function of decision epochs with T = 20. A
regret of 300 corresponds to not performing match 1 three times throughout the horizon. (Bottom right) The queues of type i € Q, = {3,5,7} grow
linearly with time. All the queues in Q) remain bounded in expectation, and these queues are not visible in this scale.

Lemma 4.1 a sufficient condition for a matching policy
to be hindsight optimal. Next, we present structural
properties of the optimal solution of (SPP), which will be
useful to analyze the dynamic system including proving
Lemma 4.1. Finally, the proof uses Lyapunov arguments
to establish that the conditions of Lemma 4.1 hold.

4.1. Optimality Test

The following lemma provides a sufficient condition
for hindsight optimality. Essentially, the nondegene-
racy provided by GP guarantees that any matching
policy, whose set of bounded queues coincides with
the set of over-demanded queues (the set Q) is hind-
sight optimal.

Lemma 4.1 (Optimality Test). Suppose that GP holds. Let
(z*,s") be the unique nondegenerate optimal solution of
(SPP). Then a matching policy D that

(i) Does not reject any agents of type i € Qy,

(ii) Does not perform any matches in Mo, that is, D!, = 0
forall m € Mg and for all t >0, and

(iii) Has ]ED[Qf] =O(e ) foralli € Qg and for all t > 0,
is hindsight optimal, and R*" — RP"* = O(e™") for all t > 0.

Lemma 4.1 translates Theorem 3.1 to the constancy—
uniformly in f—of the queues in the set Qp. Indeed,
if the policy avoids redundant matches and keeps
the expected lengths of over-demanded queues suffi-
ciently “small” at all times, then hindsight optimality is
achieved.

4.2. Structure of the Optimal Solution of (SPP)

The optimality test uses properties of the optimal solu-
tion of (SPP), which will be key to our analysis for the
dynamic system. Without loss of generality, assume that
Mi={1,2,...,d—potand Q, ={d—p+1,d—0+2,...,
n}, where we let g:= | Mp|. Then the optimal basis
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matrix takes the form

0
. [M 0] ’
Mt I
where M” has the rows of M corresponding to the queues
in Qp, M" has the remaining 1 —d + ¢ rows, and B has
the columns corresponding to M, and Q. in order; I
is an (n —d + p) X (n —d + p) identity matrix, and 0 is a
(d — o) X (n — d + o) zero matrix. Being the basis matrix,
Bis invertible, and Y = B! has the following form:

Y? 0
Yt I

7

Bl=Y:= [

where [Y?, 0] is a (d — p) X n matrix and [Y™, I] is an
(n —d + p) X n matrix, where
1. The mth row of [Y?, 0] is y"" for each m € M., and
2. The jth row of [Y*, I] is y*~¢* for each d — g +j
€9,.

In turn, the optimal solution of (SPP) can be written as

Z*
[ M*] =B A=Y,
So,

which implies
Zy, =y"A >0 for all m € M,, and
si=yA>0forallje Q,, 4)

where strict inequalities follow from the nondegeneracy
of (z*,s") under GP. Finally, because G is a finite match-
ing network, that is, 7 < oo, we must have max; je[1, ]
|Y; ;| <, for some constant @ >0, where w may de-
pend on n and M. The matrix Y (and in turn, the vectors
y"s and ’s) can be explicitly constructed for a special
family of networks (see Section 5).

Nondegeneracy implies (Bertsimas and Tsitsiklis 1997,
section 5.1) that the same basis remains optimal for any
A >0 such that A = A + {, where ||C||, <, for all suffi-
ciently small (; > 0. The dual of (SPP) will also be useful
in what follows. It readily follows that under GP, 0; :=
(O mert,Tmy™); 20, i € A, are the corresponding optimal
dual variables. In particular, uniqueness of (z*,s*) implies
0; > 0forallie Q.

4.3. Lyapunov Arguments for Analyzing the
Exhaustive Resolving Policy

Because the first two conditions of Lemma 4.1 are
clearly satisfied under the exhaustive resolving policy,
our main focus in this section to provide tools to ana-
lyze the third condition. Intuitively, we want to show
that whenever the queue-length of an over-demanded
queue hits a certain threshold, the exhaustive resolving
policy is able to “pull back” the length below the thresh-
old in the next decision epoch, as the nondegeneracy
provided by GP allows the exhaustive resolving policy
to approximately “mimic” the optimal solution of (SPP).

Drift arguments, as the one we are going to use, are
common in the study of stochastic networks and queues.
The following result (Glynn and Zeevi 2008, corollary 4)
is useful to bound stationary expectations of Markov
processes.

Lemma 4.2. Let X = (X' : t > 0) be a discrete-time S-valued
Markov chain with transition kernel P, and suppose f : S — R
is nonnegative. If there exists a nonnegative function g : S —
R and a constant c for which

/P(x, dy)g(y) — g(x) < —f(x) +c forall x € S, (5)
s

then
/5 r(df () <c, 6)

for any stationary distribution 1 of X.

The challenge lies in identifying a suitable Lyapunov
function g—a “norm” of the total process—that de-
creases when the queues in Qg are large. This is nontri-
vial and relies in subtle ways on the network structure
and the detailed analysis of the optimal solution of
(SPP). As we will formulate our Lyapunov function
next, the construction is based on the dual of (SPP), in
particular our Lyapunov function originates from a
weighted sum of the queue lengths, where weights are
determined by the dual variables.

Minimal Markov chain notation is needed before
we proceed. Under the exhaustive resolving policy, the
process (Q, ke N) is clearly a Markov chain. We let
IP;{-} be the probability law of this Markov chain initial-
ized at g € Z%,, and we write ;[ -] for the corresponding
expectation.

Because the policy is applied separately to each con-
nected component of the network (recall that all matches
in My are removed from the network), without loss of
generality, we assume that there is a single component,
that is, Mo =0. Recall that at each decision period
tr = k1, k € N, the exhaustive resolving policy solves the
following linear integer program

max r-z
st. Mz+s=Qk
zeZ8,s€Z,
where Q' is the prematch queue-length vector. Because

Y is invertible and 1M = 0 for all j € Q, this linear pro-
gram can be rewritten as

max 7r-z
st. y"Mz+y"s=y"Q" forall me M,
Ys=1y/Q forallje Q,

zeZ8,s€7,.
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Recalling that y"Mz = z,, for all m € M., we have z,, =
y"™(Q' —s) for all m e M,. Hence, the previous linear
program can be rewritten as

max Z rmym(Qt“ —5)

meM.

st zu+y"s=y"Q" for all m € M,
yjs = ijtk forallje Q.
zeZ8,s€7,.

Finally, because (y");=0 for all me€ M, and for all
j € Q., we obtain, with u := Q', the following equivalent
problem (in terms of optimizers):

h* (1) := min Z Z (rmy™);si

i€QymeM,
st. zy+y"s=y"uforallme M,
Ys=yuforallje Q.

ze78),seZl,. )

For ease of exposition, without loss of generality, we ini-
tialize the prematch queue-length vector at g € Z%, and
let g* € ZZ,, be the postmatch queue-length vector right
after the exhaustive resolving policy is executed at time
0. Thus, with this notation, we have Q" = g* + A", that s,
Q" is the prematch queue-length vector at time 7.

The following proposition provides bounds on the
drift, which will allow us to apply the optimality test
(Lemma 4.1) and complete the proof of the upper bound.
The proof is given in Appendix B.

Proposition 4.1. Take t = [xe ] for some constant x >0
(not dependent on €). Then, the process h*(Q'), with h*(-)
as in (7), decreases in expectation:

T
Egll Q) =1 (@)l < =y +~Lywg<y, (8)

where B,y,I' >0 do not depend on €. Consequently, there
exist constants c1,c; > 0, not dependent on €, such that the
process L£(Q') := ¢! Q%) also decreases in expectation:

E,[£(Q°) — L(q)] < —%E(q) O sy )

Observe that Inequality (9) follows from a standard mech-
anism, which derives an exponential Lyapunov function
from a given linear one. Lemma 4.1 immediately implies
that under the Markov chain’s unique stationary distribu-
tion, which we denote by 77, we have

2c 1
—e

EA[£(Q)] < y r, (10)

where Q° ~ 7. Because T = [ke 1], by Jensen’s inequal-
ity, we have

Eq[17(Q°)] = O(e™). (11)

The reason behind considering an exponential Lyapu-
nov function is to be able to use geometric recurrence of
the process (Q,k € N), which is crucial to prove that
E[Y ic0,Qi] = O(e™!) for all £ >0, not only in the station-
ary distribution. The proof of the upper bound in Theo-
rem 3.1 can be found in Appendix D.

5. (SPP) Acyclicity and the General

Position Gap
In this section, we focus on a special family of matching
networks to extend some of our main results, as well as
providing more intuition about the general position gap €.

Definition 5.1 ((SPP) Acyclic Networks). Suppose that
G satisfies GP and let (z*,s") be the unique optimal
solution of (SPP). The (SPP)-residual graph is obtained
by removing all redundant matches m e M, (with
z,, =0) from G. We say that G is (SPP) acyclic, if the
(SPP)-residual graph is acyclic.

If G (the bipartite graph representation of the hyper-
graph) is acyclic itself, then § is trivially (SPP) acyclic.
More interestingly, this is also the case if G itself is a
simple bipartite graph (where only even cycles are
allowed) with two-way matches only.

Lemma 5.1 (Two-Way Two-Sided Networks). Suppose
that G satisfies GP. Let (z*,s") be the unique nondegenerate
optimal solution of (SPP). If | A(m)| =2 for all m € M (all
matches are two way), and G is bipartite (any cycle in G con-
tains an even number of matches), then G is (SPP) acyclic.

It is important to notice that other than the network
structure, (SPP) acyclicity also depends on the optimal
solution of (SPP). In turn, whether this notion of acycli-
city holds or not depends not only on the matching
matrix M, but also on the arrival probability vector A
and the match value vector r. Because of this depen-
dence, one should not expect other sufficient conditions
as simple and insightful as the one in Lemma 5.1.

5.1. General Position Gap in (SPP)-Acyclic
Networks

As discussed in Section 2, the general position gap can

be intuitively thought of as a measure of slack in the

network. In (SPP)-acyclic networks, as the next lemma

shows, this slack can be viewed as an imbalance be-

tween arrival probabilities.

Lemma 5.2. Assume that G is (SPP) acyclic. If for every
two subsets Ay + A, C A, we have

ieA; j€A>
then (SPP) has a nondegenerate optimal basic feasible solution.’
If the arrival rates are drawn from a continuous distri-

bution, then (12) holds almost surely. Intuitively, (GP) is
then likely to hold in any practical setting.
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We can be more precise compared with Lemma 5.2
regarding mapping the general position gap to an intui-
tive notion of slack. Recall that the optimal solution of
(SPP) is given simply in terms of the inverse of the basis
matrix as in (4). Therefore, the first step in that direction
is to explicitly construct the inverse matrix Y of the
optimal basis matrix. For some intuition of this con-
struction when G is (SPP) acyclic, consider the network
in Figure 2. Under the optimal solution, all slack vari-
ables are zero, except s > 0. Then it must be that z] =
A (all type 1 agents are matched). Then match 2 uses
the leftovers of type 2 agents, and z; = Ay —z] = Ax — Ay;
match 3 uses the leftovers (those that are not used toward
match-2) of type 3 agents, and z;=A3 —z; = A3 — A,
+ A1. Defining row vectors y1 =1[1,0,0,0,0], yz =[-1,1,
0,0,0], ¥*=[1, -1,1,0,0], and y* =[-1,1, —1,1,0], we
have the representation z, =y”A for all me M, =
{1,2,3,4}. Similarly, we have s; = A5 —z, = y°A, where
v’ =[1,-1,1, - 1,1] (Q4 = {5}). This demonstrates an
instance for the general construction of the optimal so-
lution of (SPP).

Theorem 5.1 (Explicit Optimal Solution of (SPP)).
Assume that GP holds and G is (SPP) acyclic. Let (z*,s") be
the unique nondegenerate optimal solution of (SPP) with
Mi={meM:z, >0} and Q+:{jEA:s}‘>O}. Then
there exist | M| vectors y™ € {—1,0,1}" and | Q.| vectors
v € {=1,0,1}" such that

z,,(A) =2, =y"A >0 forallme M., and
s;()\) = s; =yA>0forallje Q,.

Any right-hand side A >0 with y'A >0 for all € M, U
Q., induces the optimal solution (z*(A),s*(7)).

Recall that, also in general matching networks (not nec-
essarily (SPP) acyclic), the optimal solution of (SPP) takes
the form as in Theorem 5.1, where /s and /s are the
rows of the inverse of the optimal basis matrix (see Sec-
tion 4.2). What is new here is that when G is (SPP) acyclic,
the matrix Y can be constructed explicitly; all entries of Y
are either —1, 0, or —1. We prove Theorem 5.1 and pro-
vide the explicit construction of Y in Appendix C.

Without the uniqueness requirement, Lemma 5.2 has
a sufficient condition for GP that requires the sum of
total arrival probabilities—for any two subsets A; and
A,—+to be different. However, it should be clear that this
requirement is too stringent. For instance, in Figure 2,
we would still have GP if A, = A4 = 0.2, but that would
clearly violate the requirement of Lemma 5.2. In other
words, it is clear that the sets 4; and A, need not be
arbitrary.

Let us revisit the network in Figure 2. The “capacity”
available to agent type 1 is A,. If A1 > A, then queue 1
must grow with time under any matching policy. Simi-
larly, the capacity available for agent types 2 and 4 com-
bined is at most A1 + A3 + As; the capacity slack for these

two types is then A1 + A3 + A5 — (A2 + A4). More gener-
ally, for each subset of agent types S C A, we can define
N (S) to be the set of agent types participating in a match
with some agent type i € S and so that V'(S) N S = 0. The
capacity slack for Sis then €(S) := |37,y = 2jes 1,
and the network capacity slack is the minimum over all
subsets:

e/ = . ’ — . o |
mine’®) =min| > =D 4
iEN(S) jes

This would be an intuitive notion of capacity slack, but it
is still too stringent. It turns out that we do not need to
consider all subsets S as we do in defining €”. The explicit
construction of the inverse matrix Y identifies for us the
“relevant” subsets. Indeed, take the vector 1" as in Theo-
rem 5.1 for some m € M, Let

AT (y"):={ie A: (y"™);=1} and
A" o= (e A ("), = 1),

Then we have

y'A= > L= YA

i€ A" (ym) €A™ (y")

and

> - 2

€= . min
f U
MU iy e

In turn, for (SPP)-acyclic matching networks, we can see
the general position gap as a measure of capacity slack,
where for each £ € M, U Q,, itidentifies, via y", a subset
of agent types (those in A~ (y")) as “customers,” and a
subset of agent types (those in A*(y")) as the “servers”
who serve these agent types. It then compares the total
capacity to the total input.

Once € is understood as a capacity slack, it is intui-
tively clear that achievable regret should depend on this
measure. Having a large capacity slack increases the
decision maker’s ability to control the dynamic system
and perform matches that are aligned with the deter-
ministic counterpart (SPP). Theorem 3.1 establishes that
it is feasible to achieve a regret of the order of ¢!, and a
smaller regret is not attainable.

The following remark shows that the explicit con-
struction of the inverse matrix Y when G is (SPP) acyclic
allows us to give a more explicit characterization of the
interaction delay 7 in Theorem 3.1 by showing that 7
linearly depends on the number of agent types n. The
proof reveals how the negative drift (y) in Proposition
4.1 depends on Y, and in turn this dependence deter-
mines 7.

Remark 5.1. An immediate extension of Theorem 3.1
when G is (SPP) acyclic is that the exhaustive resolving
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policy with x = ©(n) (so that T = ©(ne™!)) is hindsight
optimal. This directly follows from the proof of Propo-
siton 4.1 by noticing that w=1 because any entry of
the surplus vector y’ is in {—1,0,1} for all le M, U
Q,, where w is an upper bound for the maximum
entry in Y, that is, max; je1, 1| Y| < .

5.2. Alternative Hindsight Optimal Policy

The match value vector plays a key role in determining
the basic feasible activities under (SPP), as well as the
match decisions that the exhaustive resolving policy
makes. It is a natural question to ask whether good pol-
icies must further take into account the match value
vector when determining which matches to perform.
We are now ready to propose an alternative policy to
the exhaustive resolving policy, which is also hindsight
optimal when G is (SPP) acyclic, where this policy does
not take into account the match value vector while
making match decisions. Consider the following peri-
odic matching policy D’, which acts exactly the same as
the exhaustive resolving policy, except at each decision
epoch t;, we perform z;,(Q) many matches for all m €
M., where

z'(Q') € arg min Z Q?

i€Qy
s.t. Mz < Qf

zeZl,, (13)

where Q' € Z" is the postmatch queue-length vector
right after the policy is executed at time f. That is,
we minimize the number of agents waiting in over-
demanded queues at each decision epoch.

Theorem 5.2. Let G be an (SPP)-acyclic network that
satisfies GP and let € be the GP gap. Then D’ is hindsight
optimal with the interaction delay ©=[xe 1]1=0(e}),
where x > 0 is some constant that does not depend on e:

R¥ —RP <Te™ forallt>0,

where I' > 0 is a constant that may depend on n, d, M, and r
(but not A or €).

The proof depends in explicit ways on the acyclicity
(see Appendix C). We do not know if this is true for
cyclic networks where the main challenge is that we do
not know how to explicitly construct the inverse matrix
Y of the optimal basis matrix.

6. Delay Costs

The problem of minimizing delay penalties/holding
costs has been studied in earlier papers (Busic and Meyn
2014, Gurvich and Ward 2014). This is a complex ques-
tion in general, but our results have some immediate
implications on optimal delay cost scaling.

Suppose at the end of each period (after observing an
arrival and possibly performing matches), we incur a
delay cost c; per type i agent in the system. Then the
expected total delay cost by time t under a matching pol-
icy D is given by

el
u=1

The minimal delay cost for fixed t is then H*' := minper
HPt. Given delay costs c;s, define r=cM; r,, is an “in-
direct” value per match m. Each time that we perform
match m once, the total delay cost decreases by r,, =
Y i A(m)Ci- With this notation, let us rewrite HP! as
follows:

t t
HP'=EP|> Q" | =EP|) c- A" —c-MD"
u=1 u=1
t t
=E|> c-A*| -E|) r-D"
u=1 u=1
t t
=E|) c-A"| = > RP™
u=1 u=1
In turn,
t t
«t _ D AU D,u
H"'=E Zc A rggﬁ(ZR ,
u=1 u=1
and

mell u=1 u=1
t t

< § :R*,u o § :RD,u
u=1 u=1

Under GP, our resolving policy achieves R*' — RP/! =
O(e™1) forall t >0, so that

HPt = H + O(te ™) for all £ >0,
or, in terms of time-average delay cost, we have
1 1
FHY = O,

In the proof of the lower bound in Theorem 3.1 (see
Appendix E), we show that under any matching policy,
for any ¢t such that ZEQOQEO < e, there exists some
constant B>0 (that does not depend on €) such that

ZiEQOE[QEOJrBeiZ]:Q(e‘l). Because of this “constant
shift,” the set of all times when the expected sum of
lengths of over-demanded queues is Q(e~!) has a posi-

tive density, that s,

T _ -1
?Lg}f > i1 H{E[Zze%Qf] =Q(e )} S

li 0.
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In turn, it must be the case that " = Q(te™!). We con-
clude then that the exhaustive resolving policy achieves
the optimal delay scaling.

Allowing objectives that combine both match value
and delay cost is an interesting but nontrivial research
direction. Given network parameters c, r, and M, con-
sider (SPP) twice: once with r and once with 1’ = cM (the
match value maximization reformulation of the delay
cost minimization). If these two instances have the same
optimal basis, then it follows—from Theorem 3.1 and
the previous delay cost derivations—that our resolving
policy achieves ! all time regret for the total (match
value minus scaled delay cost) objective R — -1 HP.

If the two bases are different, however, a possible
conflict arises between match value maximization and
delay cost minimization. Whether hindsight optimal-
ity is attainable in this setting and, if yes, whether it
is achievable by simple policies is a worthy goal for
future work.

7. Concluding Remarks

The problem of dynamically allocating resources to
incoming requests is central to operations research. In
this paper, we seek to contribute to the study of those
special settings, where requests have a dual role as
demand and capacity. Our results speak to the tension
between short- and long-term value maximization.
We characterize networks, where maximal values can
be achieved in the long term without sacrificing maxi-
mal values in the short term. We prescribe an appeal-
ingly simple dynamic matching policy that achieves
this desired balance. We find that the best optimality
gap that can be achieved simultaneously at all times is
inversely proportional to the general position gap e.
The proposed periodic resolving policy achieves this
optimality gap, where the delay between consecutive
decision periods is of the order of e !. The general
position gap in acyclic networks can be interpreted as
an inherent thickness or capacity slack in the network.

This work raises several research directions. One di-
rection is allowing objectives that combine both value
and holding costs. Another direction is incorporating
agents’ departures. The tension between value and delay
is endogenized when agents depart (abandon) without
being matched. Without departures, delaying actions
increases the collected value. With departures, this is no
longer the case. The upper bound—given by infinitely
patient agents and a decision maker that waits until the
end of the horizon—is not generally achievable.

This paper reveals the importance of the general
position gap in the study of departures. Because over-
demanded queue lengths are of the order of ! (so are
their corresponding waiting times), if the patience is
of the order of magnitude longer than this, the results
should not change. In other words, the smaller the

general position gap, the more patient we need agents
to be to achieve hindsight optimality.

Appendix A. Proofs from Section 2

Proof for Figure 3. Some preprocessing is useful here. Itis a
simple observation that under the optimal total value for a
fixed t—realizable by taking no action until time ¢, and per-
forming matches according to an optimal solution at that
point—the optimal solution is given by setting

Zy' = Al a A and z3' = AL A (AL — AT, (A1)
so that
R = nE[A] » AS] + rB[AS A (A5 — A (A2)

Fix f = at for some « € (0,1). Then the optimal value at time £
is the same as (A.2), where t is replaced by f. We also use the
following simple fact: the multivariate central limit theorem
(Van der Vaart 1998, example 2.1.8) applied to the multino-
mial random vector (A}, A}, AL) and the continuity of the map
(x1,%2,x3) = (x1 — x2) implies that

P{A! — AL <6V} — D(5/VA) as t — oo, (A.3)

where @ is the cumulative density function of the standard
normal distributionand A = A; = A, = A3.

The proof now proceeds in two parts. We first show that
any nonanticipating policy D that has the optimality guaran-
tee R*' — RDP* = o(+/t), must not perform match 2 until late in
the horizon. A consequence of this, as we will show, is that
any such policy must have R*! — RP'! = Q(V1).

Part 1. Fix a=1/2 (t =t/2). The proof works for any
a€(0,1), but fixing a =1/2 is notationally convenient. For
some x > 0, let

Ti=inf{t>0: D} > «Vt}

be the first time that match 2 is used more than xVf times and
fix 0 > 2k. The following two events are independent under
any nonanticipating policy D:

- P 0
E1:={t<Hn {A§ — AL > _E\ﬁ} and
& = {A - AP > 5V,

where we introduced the increments A"} := A¥ — A3. On the
intersection &1 N &, we have A} — AL > oVt /2, which implies
Al > AL Per (A.1), we have z;t =0 so that, on this event, the
policy loses (r; — r2)xVt relative to the optimal. Using the
independence of the events £; and &, we have
Rt —RPt > (r1 — ?’2)7(‘/2]?{51 P{&E>}
Per (A.3), P{&:} = n>0 as t — co. For the policy to have
Rt — RPt = o(V}), it must be that
P{&1} > 0ast— oo.

Then for large enough t, we have
P{t < F} <P{&} + p{A; — Al < —gw/i} <21

Recalling the definition of 7, this shows that a policy D that
has RPf — R*! = o(V/t) will, with high probability, avoid per-
foming match 2 until time = #/2.
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Part 2. We claim that any policy that has the optimality
guarantee o(\/? ) at time ¢, must have for all ¥ > 0 that

P{ng\/?}—)()ast—wo. (A4)

Before proving this claim, we will use the arguments in part 1
to show that if a policy is value optimal at ¢, we contradict
(A.4) and thus the near optimality at .

Because Dj < A for all u>0, we have that forall s < 7,

Q5 =A5 —Dj — D5 > (A5 — A — VD).
Thus,
B{Qh >« } 2 P{(A) - At — VB 2 Vo> T )
P{(A;—AQ—KW)*zKﬁ}—P{Ts?}
> P{(Ag — AL — VD > kVE } ~ o,

v

Per (A.3), there exists y = y(x) such that P{A} — A} > 2kVE)}
> 7. Choosing 6 large (and consequently, 1 small) so that
2n<y, we have that a policy that has R*' — R”! =o(V}),
must also have P{Q}, > kVE} > (y —2n) > 0 for all >0, which
contradicts (A.4) as required.

To conclude the proof, it remains to show that any policy
with the suboptimality gap o(Vf ), must have P{Q} > 'V }
— Oast(and thent =t/2) — oo.

Because DY + D3 < Aj for all u>0, we have Qf +Qj = Af
+A§ — DY — Dy > Af + A — A} for all u>0. Because A; + A3
> Ay, we have by the strong law of large numbers that

P{Q§+Q§ZK\/§}zP{A§+A§—A§zKﬁ}—>1ast—>oo.

If in contrast to our claim, there exists 0 > 0 such that P{QE >
KVE } > 6, then for all sufficiently large ¢, we have

P{(@+Q)nQhz Vi b2 02

On the event {(QE + Qg) A Q?2 >k Vi }, there are *V unused
feasible matches, which implies

R —RPEE[(r A 12)((Q) +Q5) A Q5)]
> (r n 2V ER{(Q) + Q5 n Q> VE }
> (r1 A Tz)Kﬁ 0/2,

contradicting the optimality guarantee o(VE ) of the policy at
timef. O

Appendix B. Proofs from Section 4

Proof of Lemma 4.1. Let B be the corresponding optimal
basis to (z*,s*). Recall that Qy ={i€ A:s; =0} and M= {m €
Mz, =0} are the corresponding sets of over-demanded
queues and redundant matches, respectively.

Let (z, s) be any feasible solution of (SPP) that has s;=0 for
all ie Qy and z,,=0 for all m € M,. Then it must be that
(z,5) =B7'A, and in particular, z,, = y" A for all m € M,.. This
immediately follows, because the linear system {Mz+s=
A,z>0,s >0} with the condition we set on s;,i€ Qy, and
Zm, M € My, has a unique solution.

Recall also that (z*,5*) has a nondegenerate basis. In partic-
ular, the same conclusion holds if A is replaced by A=A+C

for a suitably small C € R". That is, any feasible solution to the
linear system {Mz +s = A,z>0,5> 0} with s;=0 for all i € Qy
and z,=0 for all me My, must satisfy z, = ym;\ for all
me M,.

Fix t = Q(e~2). Consider a policy D that does not execute
any matches in M. Let g;:=EP[Q!"] < EP[Q!] = O(e ") be
the postmatch queue length vector and z,, := D!,. Let z := z/¢
and g := g/t. Using the fact that Mz + g = At, we have

Mz+g=A,
whereq; = O(e) forall i € Qp and z,, = 0 for all m € M. For all
i€ A, define
Aii= A= Tileoy)-

Let z,, :=Z,, for all me M., and zero otherwise. Then (Z,7)
satisfies Mz +§ = A, where G;=0foralli€ QyandZz, =0 for
all m € M. Per the previous arguments, then it must be that
Zu=y"A for all me M,. Because RP'! =t(r-z)>t(r-2)=
tzme/wrmy’";\ and R*! <t(r-z*), we have

R*”—RD"st(r-z*—r-,%):t< Z Py A — Z rmy’”;\>

meM, meM,

< trmaxw“/\ - ji”l;

where 74, := maXyem, ¥, and we used the fact that the~vec-
tors y"" have all entries in [~w, w]. Recalling that |A; — A;| =
q,14ic,y, we conclude that

R =R < trpapwl|d — A = tO(€) = O(e ),

asrequired. O

B.1. Proof of Proposition 4.1
We first prove (8). Recall the problem

(1) = min Z Z (rmy™):si

i€Qy meM.,

stz +y"s =y"u for all m e M,
Ys=yuforallje Q,
zZ € Z‘;O,s € Z5,. (B.1)

Because q* is the postmatch queue-length vector, no more
matches can be performed from q+ itself. Thus, we have
(q) =h(q*) =3 ico,0iq7 - Tt is also immediate that for all
x€[0",A"] N ZL,, we have

W (g +AT) SH(g" +x) + (A" = x). (B.2)

For h*(A™ — x), if y'(A™ —x) > 0 for all [ € M, U Q,, then set-
ting z,, = y"(A" —x) for all m e M., s;=0 for all i € Qy, and
sj = Y/(A" —x) for all j € Q., is feasible for (B.1) with the objec-
tive function value of zero. Then it is also optimal, because
the objective function is nonnegative. Let

X:=X(A"):={xeZ, ‘Y (A" —x) >0 foralll € M, U Q,}.
Then we have "(A™ — x) = 0 for all x € X, and (B.2) implies
(gt +A") <infh'(g" +x). (B.3)
xex

Our goal is to show that when /() > B, for a suitable choice
of T = [ke1], we have 0 € X’ with high probability, and Inequality
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(B.3) is strict for x=0. To that end, consider the following
event:

C:=C(1):= {|y1AT —y’/\T| S%y’/\’[ forallle M, U Q+}.

Because y’)\ >¢forallle M, U Q,, we have on C that ylAT
et/2foralll € M, U Q.. Thus, for any x € [0",A"] N ZZ, such
that [|x]|; < {7 (in particular, ly'x| <et/4 forallle M, U Q,),
on C, we have

yl(AT —X) Z%T forallle M, U Q,.
In particular, we have 0 € X on C, and (B.3) implies /(" +
AT) <h(g").
Let i € Q such that g > B/0; (such i must exists if 1*(q) =
l*(g*) > B). Consider m € M, such that i € A(m), and set x; =

lz] > 0 for all qﬁ i such that j € A(m) and 0 otherwise. Note
that x; = |7~ < £&and [lx]|; < {%. Then B can be chosen suffi-

ciently large so that it is feasible to perform an additional

l7=] many match m’s without changing any of the other

queues. Because x € X', we have on C that

* T % % K
W@ +A) <K@ +x) <k (g -6, 7|
K

<H@)-0| 5]

dnw

where 0 := min;eg,6; > 0.
A simple extension of Chernoff bounds for the sums y'A*
le M, U Q,,yields

]P’{ [y AT —y'At| > %y’/\f} < cae” WA < ppoueT
forallle M, U Q,,

for some constants c3,c4 > 0, where recall that € = min,,e v, Y™
A Amingeg, ¥ A. By the union bound, we have

P{C} < ncze™™".

Now we use the following lemma, which provides an upper
bound for the expectation in (8) when we are outside of the
event C.

Lemma B.1. For some constant K> 0, which does not depend on
€, we have

Egl((07(Q7) = (@) )’] < KPP,
Holder’s inequality then implies that
E[(h'(g+A") — h‘(q))*]l(cc}] < Ketneze ",

Given 6 € (0,1), set T =[xe™'] with large enough x > 8nw such
that

nese € < and Ketnese " < (1 — ‘”Q{%J '

Recalling that /*(g) = h*(q*), we can then conclude that if
I*(g) > B, then

E, [ (Q7) ~ I (g)] < —P{C}O| |
FE[( (g +AD) = (@) 1)
<— (1—5)6{ J+(1—5)9{ wJ

<-v,

where y := 909 > 0. If i*(q) < B, then clearly

l6nw

Eq[(Q) —h*(9)] <B+Z@/\T<—<B+Z@/\(K+l)>

i€Qo i€Qo

where for the last inequality, we used the fact that € <1 and
« +1 > et. This establishes the drift property (8), and we turn
to prove (9). This follows from a standard mechanism, which
derives an exponential Lyapunov function from a given lin-
ear one. Under the exhaustive resolving policy, any match
that is performed at any decision period #, must contain at
least one agent type that arrived between f;_; and #. Thus,
we have Y .. (Dl — D)<y (A — A%). Merging
this fact with (1) immediately implies the following auxiliary
lemma.

Lemma B.2. Under the exhaustive resolving policy, we have

Z IQ?*1 - Q§Z| < Z(At“1 — A') < nt for all k € N.

icA iceA

Let 0 := max;0; > 0. Then by Lemma B.2, we have

e < oo,

C= Suqu[elh*(QT) —h (‘7)']
qes
In particular, the second condition of (Robert 2003, proposi-
tion 8.8) is satisfied with A =1 there. It also follows from the
proof of Robert (2003, proposition 8.8) that

E,[" Q)] < "@(1 ~y/2), if g € F.
Because the linear program (7) that defines /*(-) is Lipschitz
continuous in the right-hand side, we have #"(Q7) < maxcr
h*(q) + cs7 for some constant c5 > 0. Letting cg := e™®4=r (@) we
have

E,[" Q)] <cge™, if g€ F.

Overall, we obtain (9):
E[7Q) _ i@y < _ Y i)
qle e\ < 26

]l{quc} + C(,ECST ]]-{qu}

Y (g s
< —Eel 1 +C7€C T]l{qEF}

for some constant c; > cg. O

Proof of Lemma B.1. We will first show that given x € ZZ,
we have
(g +x) —h (@) < K,_max (y ) <K Y o
leQ.u 1€Q, UM,

(B.4)
The proof than follows immediately by setting x = A* and
using the following auxiliary result with a redefined constant
K, which we prove in the end of this section.

Proposition B.1. We have,

(min, Gy )2

[€Q. UL,

E < K?e*7?

for some constant K> 0, which does not depend on €.

We turn then to prove (B.4). Recall that i*(g +x) <h*(q) +
I*(x), where I*(x) >0, and we have 1*(x) = 0 if y'x > 0 for all
le My U Q,. Then (h'(g+x) —h'(g))" <h*(x), and it suffices
to show that for any x € Z, not necessarily satisfying y'x > 0
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forallle M, U Q,, we have

* I \—
h*(x) < Klergﬁz + (yx)". (B.5)
Given x € Z%, let C € Z%, be such that y'x =y/C for all [ € P* =
{le M, U Q, :yx >0}, and /T =0 foralll € (M, U Q)\P*.
The linear program (7) has for all / € P* the same right-hand
side for either x or C. The right-hand side differs only for
le (MU Q,)\P", and because ' =0 for such indices, the
difference in the right-hand side is |y'C — y'x| = |y'x|. By the
Lipschitz continuity of (SPP) (Mangasarian and Shiau 1987),
we have

|h"(x) = (Q)] <K

! I N\~
max x| =K max x),
le(MLUQ)\P* vl leM,UQ, )

where we used the fact that (y'x)” =0 for all € P*. Finally,
because y'C > 0 for all [ € M, U Q,, we have 1*({) = 0 so that
we arrive at (B.5).

That existence of C is straightforward. Construct a “matching
increment” u € Zio as follows:

a { 0, if me P,
H= (y"x)", ifme M \P*.
Let ¢ = My, and observe that y" ¢ = y" My = p,, forallm € M.
Letting

C=x+¢>0,

we then have that y"C=y"x for all meP* and y"C=
y"x+ (y"x)” =0forallme M, \P* asrequired. O

Proof of Proposition B.1. Because
E i ZAT -\? <K E ]AT —\2
{(IE%IH‘Q o/Ay) } < MZULQ (@A) 7)),

it suffices to establish that the bound holds for each [ € M, U
Q, separately. Note that

YA =AD) =) (AL - 1),
t=1

where AA" = A" — A'~1. Observe that the variables in the sum
are i.i.d., and each variable is bounded by n. Then by Hoeffd-
ing’s inequality, for any k>0, we have

1 2
P{|y (A" — A1)| 2 y' AT+ ket} <2 exp ( W)

<2exp <f%(y7/\’[ + keT)> .

Notice that n here is the number of agent types, which does
not change with € or 7. In turn,

P{(y)/A7)” = ket} = P{y/ AT < —ket} < P{|y}(A" — A1)
>y At +ket}
<exp (— %(yl)\’[ + keT)) <exp (— %keT) ,
n n
where the last inequality uses the fact that yA > 0. This expo-

nential tail then implies the result of the lemma by a simple
integration. O

Appendix C. Proofs from Section 5

Proof of Lemma 5.1. The task here is to prove that under
the assumption of the lemma, (SPP) can be equivalently
represented by a suitable minimum-cost network flow prob-
lem. Because such a flow problem always has an acyclic opti-
mal solution (Ahuja et al. 1993, theorem 11.1), the lemma then
follows from the assumed uniqueness under GP.

First, let us create the partition. Having only two-way
matches allows us to represent the matching network graph
as a simple graph. That is, we will have a vertex correspond-
ing to each agent type (but not for matches), and there exists
an edge between i,j € A if and only if there exists m € M such
that M, = M, = 1. Thus, each edge (i, j) in this simple graph
representation is uniquely identified by a match, and we will
write r; j for the value of that match.

Our assumption—that any cycle contains an even number
of matches—translates in this simple graph representation to
assuming that any cycle is of even length. Because a simple
graph is bipartite if and only if it does not contain any odd
cycles, we have a partition of A into two disjoint subsets 4;
and A such that all edges in the graph are between some i €
Ajandje A,.

As it is customary, we augment this graph with an origin
(or supply) node s, and a destination (or target) node t. There
will be directed outgoing edges from s to each i € Ay, as well
as outgoing edges from each j € A to t, and each edge (i, j) in
this graph is directed from i € A; toj € A,.

The resulting directed graph, by construction, has no
directed cycles. For each edge (i, j) in this graph, we place a
negative cost —7;; (i € A1,j € Az). We also put upper bounds
X, < A; for all i € A; and x;j,; < A; for all j € A;. Consider the
following minimum-cost network flow problem:

min — Z 7’1',]‘9(,‘,]‘

i€ Ay, jeAr
s.t. Zx,-,]‘ —x;,;=0forallie A
]'E.Az
in'f —xjy=0forallje A,
ieAq

Xs,i < A forall i e Ay
Xt <Ajforallje Ay

x>0.

This problem has a cycle free solution (Ahuja et al. 1993, chap-
ter 11.1). In particular, because the variables x; ; (i € Ay, j € A)
have no upper or lower bounds, there is no (undirected) cycle
consists of edges such that x;; >0 for all edges (i, j) in the
cycle.

Recall that these edges correspond to matches in the origi-
nal matching network. Let z,, = x;; for all m = (i,j) € M, s; =
Ai —x,,; foralli€ Aj, and s; = A; — x; ; for all j € A,. Then it is
immediate that the minimum-cost network flow problem is
equivalent to (SPP). In turn, the optimal solution to the latter
problem is acyclic, where the uniqueness is assumed under
GP. O

Proof of Lemma 5.2. Let (z*,s*) be an optimal basic feasible
solution of (SPP) such that the corresponding LP-residual
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graph is acyclic. By Theorem 5.1, we know that for any m € M
that is a basic variable, we have z}, = ¥ A > 0, and for any i € A
that is a basic variable, we have s} ='A > 0. If z;, =y"A =0,
then Condition (12) is violated, because y" is a vector with all
entries in {—1,0,1}. Similarly, we must have s} >0, which
implies that the optimal basis is nondegenerate. [

C.1. Construction of the Surplus Vectors
Removing all redundant matches m € M, from G, decomposes
the network into (possibly) multiple connected components.
Throughout the construction in this section, we assume, with-
out loss of generality, that there is a single component, that is,
My = 0. Otherwise, the following procedure is applied sepa-
rately to each component.

Let Up:={i€ Qu: > ,,cyMim = 1}. This is the set of queues
in Qp participating in exactly one match; U is a subset of the
leaves in G. The following lemma shows that ¢/, is nonempty.

Lemma C.1. The number of leaves in G is at least n —d + 1.
Because | Q.| = n —d, at least one of the leaves must be in Qy, and
inturn, |Up| > 1.

For each pair of vertices j € Q, and i € Uy, we traverse the
unique path between j and i in the (SPP)-residual graph G.
Starting from j € Q,, any edge from some i’ € A to some m’ €
M on this path is marked with the direction it is traversed,
i" —m’ or m" — i’. An edge can be marked with both direc-
tions if it is traversed i’ — m’ on one path, bllt m’ — i on
another. Denote the resulting directed graph by G.

Lemma C.2. For each match m € M, there is a unique queue
i(m) € A(m), such that the edge between m and i(m) has a single
direction in the G, which is directed from m to i(m).

Given G, we say that a path from j € A to i € Uy is uniquely
directed if for any match m € M on this path, the only outgo-
ing edge from m is to i(m). For example, in Figure C.1, the
path from queue 7 to queue 1 is uniquely directed, whereas
the path from queue 6 to queue 2 is not.

Figure C.1. (Color online) Example of a Directed Graph G

Based on these uniquely directed paths, we build subtrees
as follows. For each i € A, we let 7; be the subtree rooted at i,
where 7 is the union of all uniquely directed paths starting
from i. 7;, by construction, is a two-way tree: for each match
m in the subtree, we have A(m) =2; see Figure C.1 for an
example of a subtree. Let A(7 ;) be the set of queues in 7 ;.

Let d(i, j) be the length of the directed path fromi€ Atoje€
A in G. For each i € A, we then define the surplus vector y' €
{-1,0,1}" as follows:

0, ifjeA\A(T)),
(yi)j =< 1, ifd@i,j)=0 (mod4),
-1, ifd@i,j)=2 (mod4).
Because d(i, i) = 0, in particular, we have (y'); = 1. Finally, we

identify the surplus vector for each m € M with the vector
i(m).
y

y" = yi(’”) for all m e M.
Proof of Theorem 5.1. Following the arguments on the
structure of the optimal solution of (SPP) in Section 4.2,
assume that M, ={1,2,...,d —potand Q, ={d —p+1,d — o+

2,...,n}, where we let p:=|Mg|. Then the optimal basis
matrix takes the form

B=

M° 0
M 1|

where M has the rows of M corresponding to the queues in Qy,
M has the remaining 1 —d + o rows, and B has the columns
corresponding to M. and Q. in order; I here is an (1 — d + g) X
(n —d + p) identity matrix, and 0 is a (d — 0) X (n —d + o) zero
matrix.

Being the basis matrix, B is invertible and we claim that Y =
B! has the following form:

Bl=Y:=

Notes. In this network, Q, = {6,7,8} and U = {1,2}. (Left) The edge between match 1 and queue 4 is marked with both directions, because it is
traversed on both paths 7 — 1 and 6 — 2. (Right) The subtrees rooted at queue 7 (77) and queue 8 (73), respectively.
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where [Y?, 0]is a (d — ) X n matrix and [Y*,
0) X n matrix, where
1. mth row of [Y?, 0]is y" for each m € M., and
2. jthrow of [Y*, I]is y?~¢* for eachd — p+j € Q.
In turn, the optimal solution of (SPP) can be written as

Z‘M+
So.
which implies z}, = y"A >0 for all m € M., and s} = YA>0
for all j € Q,, where strict inequalities follow from the nonde-

generacy of (z*,s*).
To prove the previous claim,

M ool M o0
M I M
is equivalent (and hence implied) by the following two
properties:

Ilisan (n —d+

=B A=Y},

Yo o
Yt oI

YO
Y+

YB = =1, (C1l)

MO
M+
for all m € M., where y" is the mth row of Y, and ¢, is the
mth row of I,

2. The second property is that Y*M? + M* =0,
which we will prove next. Take any two matches m, m’ € M.,
and consider the subtree 7 y,. If m’ is included in T y,, then
the queues j € A(T ) N A(m’) appear in the vector y/") = y™
with opposite signs. If 1’ is not included in 7 y,,), then the queues
that are participating in m’ have zero values in the vector i
Finally, because (y’”)i(m) has a positive sign, we have y"M = e,
and the first property holds.

For the second property, for each j € Q,, the vector 3/ M°
has —1 for each match m that j participates in and 0 otherwise.
Thus, Y*M? + M* =0, and property 2 holds as well. O

1. The first property is that [Y?, 0] [ } =L ory"M=e,

Proof of Lemma C.1. We use induction on the number of
queue vertices n.

C.2. Basis

Assume that n=2. Then G is unique with d=1, and both
queues correspond to a leaf in G. Thus, G contains n —d +1 =2
leaves.

C.3. Inductive Step

Assume that the induction hypothesis holds for all G with n
queue vertices, n > 2. Consider G with n+1 queue vertices.
Because G is connected and acyclic, there exists a queue vertex
v that participates in exactly one matching, that is, v is a leaf
in G. Otherwise, because all queue and match vertices have
degree of at least two, there would exist a cycle.

Denote the unique match vertex that v participates in G by
m. First, assume that the number of queues participating in m
is exactly two. Denote the other queue vertex participating in
mby v'. Remove v and m from G and let G’ = G — {v,m} be the
residual graph, which is clearly a matching network. By the
induction hypothesis, G’ contains at least (n —1) — (d — 1) +
1=n—d+1leaves. If v’ isnot a leaf in ¢, then adding back v
and m increases the number of leaves by one. Thus, G contains
atleast n —d + 2 leaves. If ¢’ is a leaf in G, then adding back v
and m does not change the number of leaves. Thus, G contains
atleastn —d + 1 leaves.

Similarly, if the number of queues participating in m is at
least three, then removing v from G results in a matching net-
work with n —1 queue vertices. By the induction hypothesis,
the residual graph G’ contains at least (1 —1) —d+1=n—d
leaves. Thus, adding back v increases the number of leaves by
one, and G contains at least n — d + 1 leaves. Thus, the induc-
tion hypothesis holds for all G with nn+ 1 queue vertices.

Finally, because | Q.| =n —d, wehave |Uy| >1. O

Proof of Lemma C.2. We first start with proving the follow-
ing claim: G satisfies (i) all matches in G are two way, that is,
[ A(m)| =2 for all m € M, or (ii) |Uo| =1 if and only if all the
edges in G have a single direction. The necessity part is imme-
diate. If G only contains two-way matches, then we have
|Q+| =n—(n—1)=1. Thus, by the construction of G, all the
edges are assigned with a single direction. Similarly if
[Uo| =1, all the edges in Ghavea single direction by construc-
tion (otherwise, G would contain an undirected cycle). For the
sufficiency part, assume to the contrary that there exists m €
M such that | A(m)| >3 and |Uy| > 2. Because n —d > 2, we
also have |Q, | > 2. Let v1,v; € Q. and uy, u € Uy. By the con-
struction of g there i isa directed path from v; to 14, v1 to 1y, V5
to 1y, and v, to u, in g If all the edges have a single direction,
then there exists a cycle in G that contains vy, v, 11 and uy,
which is a contradiction. ~

Now let & be the set of all edges in G, which are assigned
with both directions. Then removing £ from G, decomposes G
into (possibly) multiple connected components that satisfy
either (i) or (ii) in the previous claim. In both cases, for each
match m, there is a unique queue i in its component, such that
the edge between m and i has a single direction, which is
directed fromm toi. O

Proof of Theorem 5.2. Let us argue that we can construct a
match value vector ” such that the optimal basis of (SPP) is
unchanged, and all the coefficients of the objective function in
(7) are equal to one. Then, Theorem 5.2 immediately follows
from the proof of Theorem 3.1 because under the new match
value vector 7/, the policy D’ simply resolves (7) at each deci-
sion period f;. It is straightforward to check that the desired
match value vector is the following:

1, if A(m)N Q4 £0,
1y, = 2,

| A(m)],

if Am)N Q, =0 and |A(m)| =2, O

otherwise.

Appendix D. Proof of the Upper Bound in
Theorem 3.1

Recalling that under the exhaustive resolving policy, agents

of type i€ Q, are removed postmatch if not used, it is

straightforward to verify that the discrete time Markov chain

(Q', k € N) is irreducible and aperiodic on its state space

S={QeZi,:Qi<tforallje Q,}.

Let F:={Q e S:h*(Q) <B}.Because 0 = 3 (. rmy™ >0, and
in particular, 0; > 0 for all i € Qy, F is clearly finite. Then the
drift property (8) implies that the Markov chain is positive
recurrent (Robert 2003, theorem 8.6). It also follows from
Lemma 4.2 that under the Markov chain’s unique stationary
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distribution, which we denote by 7, we have

&wmk%%ﬂ (D.1)

where Q¥ ~ 1. Because T = [ke~!], by Jensen’s inequality, we
have

EA[1"(Q")]=Oe™).

We next show that with the initial state g = 0, (D.2) holds for
allt>0.Letf%(q) := 2L(q)- Then (9) can be rewritten as

(D.2)

E([£Q)] < (1-F) @) @), ifg< F

It then follows from Meyn and Tweedie (1992, theorem 6.2)
(withe=1andr=(1— )//4)71 there) that

i kaO(th’1 ):| < { 5(‘7)/ qe FC/

E
li= (1—y/4) (@) + E[LQ)]), g€,

where tr := inf{k > 1: Q% € F}.

Because of the Lipschitz continuity of h*(-), we have
L(Q") < L(g)e™ for some ¢>0. Setting the initial state 4 =0,
we then have a sufficiently large constant o >0 such that
Eo[Y i AO(Q%1)] < ae?™.

Applying Meyn and Tweedie (1992, theorem 6.1) (with
m =1 there), we conclude that for all k > 1, we have

IBolf°(Q)] — Ex[f(Q)]]
= LB £(Q)] ~ Ex[£(Q")]] < ae™,

for a redefined constant a. Combining this with (10), we con-
clude that for all k > 1, we have

[Eolf*(QM)]] < ae™,

for a redefined constant . Then by Jensen’s inequality, we
have

Eo[h(Q%)] = O(e™?) for all k> 1.

Finally, for t € (tx, fx41), the Lipschitz continuity of /*(-) implies
that, because |Qf — Q°| < |t —s|, we have

Eo[*(Q")] < v(Eo[1*(Q")] + 1) = O(e™}) for all k> 1,

for some constant v > 0. Using the optimality test (Lemma
4.1), this proves the upper bound in Theorem 3.1.

Removing agents of type i€ Q, under the exhaustive
resolving policy is without loss of generality. It is immediate
to see that if one imposes any finite buffer size (the buffer size
is 7 in the proof) for the under-demanded queues, then the
proof does not change because the set F is still finite. There-
fore, if one focuses on finite horizon (say T) value maximiza-
tion, then one can set the buffer sizetobe T. O

Appendix E. Proof of the Lower Bound

in Theorem 3.1
Throughout the proof, we use superscripts on expectations
and probabilities to make explicit the dependence on e.

Assume to the contrary that there exists a matching policy,
which has

]EE

Z Qf} =o(e!) forall t > 0.

i€Qy

Markov’s inequality then implies that for all t > 0, P°{} ", Qi
>e '} =o0(e) > 0as e | 0. In particular, given £>0 and 0 < &;
< 1, for all sufficiently small € > 0, we have

Pf{ZQf.Sel} >1-56 >0.

i€Qp

(E.1)

For ease of exposition, let us fix some fy > 0, and assume that
> ico, Qi <e! throughout the analysis. We will argue that
this is without loss of generality at the end of the proof. First
consider the case when the general position gap is deter-
mined by some active match, that is, e =y™A for some
m € M.. Consider the process I° := y"Q* for all s > ty. Then
we have

F=T0+y"Al — D% foralls>t,

where for any >0 and s>f, we define A"®:= A% — A and
DL :=Ds — D! . Because D} >0, wehave

F <Y +y" A" for all s > t. (E.2)

Define a stopping time
vi=inf{tg+u: [ < —e71,u > 0}.

We claim, and will later prove, that given 0 <0, < %, there
exists B> 0 (that does not depend on €) such that

P{v <ty +B/e*} =1 —25,>0, (E.3)
for all sufficiently small e > 0.

Next, we use the fact that if the network is nontrivial, then
y™ contains at least one negative entry. To see this, let NV'(m)
be the set of all active matches that share a queue with m, that
is, N'(m) := {m’ € M, : A(m) N A(m’) # 0}. Because the net-
work is nontrivial, any i € A(m) participates in at least two
active matches in A/ (m). Let ¢,y be the column of M corre-
sponding to m’ € M. Assume to the contrary that (y"), >0
for all i € A. Because y" - ¢,y =0 for all m” € N'(m), we must
have (y"); =0 for all i e A(m)N A(m’), which implies that
(y™); =0 for all i € A(m). However, this contradicts to the fact
that y™ - ¢,; = 1. Thus, ¥ contains at least one negative entry.

Let S* be the set of all indices of " that has a positive entry,
and let S~ be the set of all indices of ' that has a negative entry.
Because I = 1"Q" = 3" s ("), Q5 + s (") Q) < ! im-
plies that —>"..¢ (y);Q¢ > e}, we have = ;.5 (¥™),Q! > €}
on the event

E:={v<ty+B/e*}.

Because —3 ", s ("), Q5 > =315 (Y, Q0 —y"Als for all s > to

by (E.2), we have

_Z (ym)info+B/ez > inf 1_ ymAv’”,

s v<u<ty+B/e? €
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on the event £. In particular,

{ Z( m) Qf0+B/e2 5}

€S
zpe{ inf (LyMA"'“> -1 5}
v<u<ty+B/e? \ € €

1 1
> P€ inf T AR ) > — )
B {05323/52 (e Y ) B Ze’g}

The process S" := (—y" A" :

(E.4)

U € Zsp) is a lazy random walk
on Z, with transition probabilities P{S**1 = S" + 1} = >, s
(y™);A; and P{S*1 = §* — 1} = 3,5+ (¥"");Ai, which yields E[S*+!
—5§"|S"] = —y"A = —e. Donsker’s theorem (Donsker 1951)
(see also Whitt (2002), p. 102) guarantees that

() = e(—y" Ay = W,

where W is a Brownian motion with drift of —1 and squared
diffusion coefficient 02 =3 ;s ¥ Ai — 35~ ¥"Ai. Moreover,
the convergence is uniform over compact intervals. Using the
continuity of the infimum map (Whitt 2002, section 13.4), we

have
1 1
P€ inf I ymAt ) >
{OSEB/EZ( y ) - 26}

ef g 1010 23 2

for some 03 > 0. Finally, using (E.4) and (E.5), choosing 6, suf-
ficiently small (and then B large) yields

{ ST = 8}

ieS™

(E5)

1 03
> e T M Al —1>=_
> P {0<1}£13f/62< y A ) % }+]P {E} 1 5 209 > 04
for some 64 > 0. We conclude that

[ S 2 } > {

ieS™

St 5} L,

ieS™ €

which is a contradiction to the assumption that E[} ", Qf]
=o(e~!) forall t>0, and for all € > 0 sufficiently small.

Thus far, the analysis assumes that > ;.o QP <e! for some
fixed t,. However, this assumption is without loss of generality
because the choice of 9, in (E.1) is arbitrary. It remains to estab-
lish (E.3). Because

v<vgi=inf{s >ty : [0 +y" Al < —e71},

we will study vy instead. Under any nonanticipating matching
policy, the law of y™ A"® is independent of I', and the process
is a random walk with upward probability —» ", - (y");A; and
downward probability » ;.o (y")iAi = = s Y™)idi +€. We
use again the convergence of
fe(u) =e(I — y’"A[“/€2]).

Our initialization t, is such that el'® = 0. Hence, I (u) con-
verges, as before, to a Brownian motion starting at zero. From
continuity of the first passage time map (Whitt 2002, section

13.6.3), we have
€2 (vg —tg) = ¥ :=inf{s > 0: W(s) < —1}.

It is known that P{¥ < oo} >0 so that given 0 < 6, <1, there
exists B>0 (that does not depend on ¢€) such that ]P’{v <B}
>1—6;. In turn, by the weak convergence of €*(vy — tg), P
{vo—tg <B/e’} =128, >0foralle >0 sufficiently small, as
stated.

Thus far, we considered the effect of €=z for some
me M,, which determined the general position gap. To
cover the case when the general position gap is determined
by a slack variable, now we show that the case when € = s]f for
somej € Q. has a similar implication.

Similar to the previous case, 1 must contain at least one
negative entry, because y¥’M =0 and y/A =s; > 0. Note that
y¥M = 0 also implies that 1/ Q! = 1/ A! for all £>0. Let S* be the
set of all indices of i/ that has a positive entry, and let S~ be
the set of all indices of i/ that has a negative entry. Because
Y Q! < —e ! implies that -3+ (1/),Q! > €7, we have

PS{Z(yf)fo- e
ieS*t

Notice that E°[y/A’] = te = ts;. Redefining the process I' :=
—yfA’, we have as before that [ = W, where WV is a Brownian
motion with drift of —1. In particular, there exists 6,5 > 0 such
that P{W(s) < —1} > 6. Similarly, for any initialization fo,
there exists t >t such that, for all € > 0 sufficiently small, we
have

} >P{yA' <e '} forall t>0.

{ Z(y])Q‘>—} g

i€S*
which implies B[, s+ (v/),Qf] > 5e*

E.1. Implication to Lower Bound

Thus far, the arguments imply that over-demanded queues
(queues in Qp) cannot be made permanently small. It remains
to prove that sup,. ,(R"" — RP") > yeL.

We will use the following lemma, which argues that R,
the optimal value at time ¢, is constant away from the optimal
value of (SPP) when the right-hand side is scaled by ¢. This
follows readily from the assumed nondegeneracy of (SPP)
and Lipschitz continuity of (SPP) in the right-hand side.

Lemma E.1. Suppose that GP holds. Let (z*,s*) be the unique
optimal solution of (SPP). Then (r-z*)t —R"' < A for all +>0,
where A > 0 is a constant that may depend on n, d, M, and r (but
noton A or€).

A policy that has the state of queues Q' at time  (such that
E[Y ic0,Qi] = ye 1), can collect at most the value given by the
following LP upper bound

B (QH, AN :=max r-z
st. Mz<A-Qf
zZ € Zio-

This linear program is concave in its right-hand side so that
by Jensen’s inequality, we have RP! < EP[g7(Q!, Ah)] < p*(EP
[Q], At). Per the derivation in Section 4, we can rewrite the
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previous linear program as

B (EP[Q'], At) =
max Z rmym(AthD[Qt])fZ Z (rmy™);si
meM i€QymeM,

st zy+y"s=y"(At—EP[Q']) forallme L,
y's = y/(At — EP[Q]) for all j€ Q.
zZ € Zio,s € Z5,.

Recall that 6, = (Zmrmy’")i >0 foralli € Qp. Because E[} .o,
Q'] > ye~!, wehave

RPP<BEPIQIAD S Y ruy"At— Qe ) <RV = Qe ),
meM,

where the last inequality follows from Lemma E.1. It only
remains to prove Lemma E.1. Using standard arguments, for
all t sufficiently large, we have

P{IA! — Aty > /%) < cre @,

for some constants c;,c; > 0. In the event [|Af — At]); < 374, we
have for all ¢ sufficiently large that y™A' > 0 for all m € M.
Then the optimal solution of (SPP) with the right-hand side
A" has z;,(A") =y"A! for all me M, and z;,(A") =0 for all
m € M. Outside of this event, the optimality gap is at most
7t, where 7 = max,,ep 7. Thus, we have

(r-z)—R" <O1) +7tere @ =0(1). O

Endnotes

! For example, fewer tissue type mismatches or better age matches
may increase life years from transplants.

2 That we remove the matches in M, from the network is, in fact,
necessary; see Remark 3.1.

3 The opposite is not generally true.
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