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Abstract. We study how to optimally match agents in a dynamic matching market with 
heterogeneous match cardinalities and values. A network topology determines the feasible 
matches in the market. In general, a fundamental tradeoff exists between short-term 
value—which calls for performing matches frequently—and long-term value—which calls, 
sometimes, for delaying match decisions in order to perform better matches. We find that 
in networks that satisfy a general position condition, the tension between short- and long- 
term value is limited, and a simple periodic clearing policy (nearly) maximizes the total 
match value simultaneously at all times. Central to our results is the general position gap ɛ; 
a proxy for capacity slack in the market. With the exception of trivial cases, no policy can 
achieve an all-time regret that is smaller, in terms of order, than ɛ�1. We achieve this lower 
bound with a policy, which periodically resolves a natural matching integer linear pro
gram, provided that the delay between resolving periods is of the order of ɛ�1. Examples 
illustrate the necessity of some delay to alleviate the tension between short- and long-term 
value.
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1. Introduction
We study a centralized dynamic matching market, in 
which agents arrive stochastically over time, matches 
can be multilateral, and match values are heterogeneous. 
Uncertainty in agents’ arrivals creates an inherent trade
off between short- and long-term allocative efficiency; 
being overly greedy may compromise opportunities to 
perform valuable matches in the future.

Carpooling platforms delay match decisions to better 
pool passengers with each other, yet passengers may 
wait longer to be served. Kidney exchange platforms, 
which arrange exchanges between incompatible patient- 
donor pairs, can form a match as soon as it becomes fea
sible, or wait for more pairs to generate exchanges that 
yield more life years from transplants.1 Programs in the 
Netherlands, the United Kingdom, Canada, and Austra
lia form matches every three or four months (Johnson 
et al. 2008, Ferrari et al. 2014, Malik and Cole 2014). In 
contrast, programs in the United States have gradually 
moved toward daily matching; this practice raised con
cerns that matching frequently may harm efficiency 
(Gentry and Segev 2015).

To better understand this tension between short- and 
long-term objectives, and to speak to the reality de
scribed previously, we seek to address the following 
questions. (i) How do we formally measure this tension, 
and how does it depend on the market primitives? (ii) 
How should a planner match agents dynamically to 
achieve the best possible balance between short- and 
long-term objectives? (iii) If a periodic matching policy is 
applied, what is the right delay between consecutive 
match decisions?

We introduce a queueing perspective to study these 
questions and model the market as a network of match
ing queues. In our model agents arrive sequentially to 
the market, and the type of an arrival is drawn from a 
known distribution over finitely many types. A given 
network topology determines the set of feasible matches. 
Matches include two or more agent types, and match 
values are heterogeneous (Figure 1). We impose no a pri
ori assumptions on the underlying network topology; it 
may be acyclic, or it may include cycles. A matching pol
icy determines when and which matches to perform, 
and agents leave the market once they are matched.

2799 

MANAGEMENT SCIENCE 
Vol. 70, No. 5, May 2024, pp. 2799–2822 

ISSN 0025-1909 (print), ISSN 1526-5501 (online) https://pubsonline.informs.org/journal/mnsc 

mailto:kerimov@rice.edu
https://orcid.org/0000-0003-3127-7523
mailto:iashlagi@stanford.edu
https://orcid.org/0000-0003-2124-738X
mailto:i-gurvich@kellogg.northwestern.edu
https://orcid.org/0000-0001-9746-7755


To study the tradeoff between short- and long-term 
allocative efficiency, we use a notion of all-time regret. 
Given a fixed horizon of length t, the maximum alloca
tive efficiency is achieved by waiting until time t and 
only then forming an optimal set of matches. The static 
planning problem is a deterministic counterpart of this 
upper bound where the arrivals are replaced by their 
means. For the network in Figure 1 (left) with 0 < δ < λ, 
the deterministic counterpart performs δ many match 1 
and λ many match 2 per time unit; it collects a match 
value of r1δ+ r2λ per time unit. The regret of a matching 
policy at a fixed time t, measures the difference between 
this upper bound and the value generated by the match
ing policy by time t; the all-time regret measures the 
supremum over all times t. In general, a smaller regret in 
the short term may yield larger regret in the long term; 
in that case, the all-time regret will be large. If it is possi
ble to have a small regret simultaneously at all times, 
then the tension between the short term and long term 
is moot.

We prove that this is indeed possible for matching net
works that satisfy a general position condition. General 
position is nothing but the requirement that the deter
ministic counterpart has a nondegenerate optimal solu
tion. In a matching network, the nondegeneracy implies 
(loosely speaking) some “imbalance” in the market.

Before describing the main results, it will be helpful 
to discuss a couple of examples. Consider the network 
in Figure 1 (left), where 0 < δ < λ. Because r2 > r1, the 
deterministic counterpart matches λ many type 2 agents 
with type 3 agents, and matches the remaining δ > 0 
many with type 1 agents. Now consider the dynamic 
(stochastic) market, where the planner adopts a periodic 
clearing policy: every τ time periods, the planner solves 
a static matching problem given the number of agents in 
each queue. In expectation, there are δτ  more arrivals of 
agent type 2 than those of type 3. However, the smaller 
the δ, the greater the probability that the number of type 2 
arrivals will not suffice to match all type 3 arrivals dur
ing the period of length τ. Conversely, the greater the δ, 

the greater the probability that we will be able to match 
all arriving type 3 agents, in alignment with the deter
ministic upper bound. If δ� 0 (in violation of the gen
eral position condition), regret inevitably—regardless 
of τ—grows over time (see Section 2).

For fixed δ the greater the τ, the greater the probability 
that the number of type 2 arrivals over the interaction 
delay τ exceeds that of type 3. This τ is a design choice 
and, in some networks, this choice matters. Consider the 
network in Figure 2, and assume that the planner is 
using a periodic clearing policy with an interaction delay 
τ. When δ � 0:05, we note that the regret grows when 
τ� 5, but it is bounded when τ� 20. When δ � 0:01, the 
period length τ� 20 no longer maintains a bounded 
regret, but τ� 100 does. To maintain a bounded all-time 
regret, τ cannot be too small. Picking τ to be too large is 
also a problem because we might be unnecessarily giv
ing up on short-term value.

1.1. Main Contributions
First, we introduce the general position gap, denoted by 
ɛ, that quantifies the (in)stability of the network, and it 
is characterized explicitly in terms of the network pri
mitives. Loosely speaking, this quantity captures the 
“inherent thickness” in the market via the imbalance in 
the arrival probabilities. Mathematically, the general 
position gap is the minimum over sizes of matches and 
unmatched agents in each queue based on the optimal 
static solution. For the network in Figure 1 (left), ɛ �

min{δ,λ, 2λ� δ}; in Figure 2, ɛ � min{0:1, 0:1, 0:15,δ, 
0:3 � 2δ}:

Second, we show that with the exception of trivial 
cases, no matching policy (periodic clearing or not) can 
achieve an all-time regret that is smaller, in terms of 
order, than ɛ�1. We introduce a periodic resolving policy 
that achieves this lower bound and therefore not only 
maintains the regret uniformly bounded simultaneously 
at all times but also achieves the optimal scaling for the 
all-time regret. At each clearing period, one resolves a 
simple integer linear program that maximizes the total 

Figure 1. Matching Network Graphs 

Notes. Circles and rectangles represent agent types and matches, respectively. Agents arrive sequentially, and an arrival is of type i with proba
bility λi. When match m is performed once, a value of rm is collected. (Left) A network with three agent types and two (two-way) matches. The 
leftmost match includes one agent of each of types 1 and 2, and generates a value of r1. (Right) A network with seven agent types and four 
matches. The (multiway) match yields a value of r2 and includes one agent from each of four different agent types.
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match value given the state of the market (the number 
of agents in each queue). The lower bound is attained 
by this policy, provided that the interaction delay, that 
is, the length between two consecutive resolving peri
ods is of the order of ɛ�1. In other words, under a care
fully designed resolving policy, the market is just thick 
enough at each clearing period (without unnecessary 
waiting) to achieve high allocative efficiency at all times. 
Overall, the general position gap prescribes a precise 
operational measure for market “thickness”; it is in
versely proportional to the attainable regret and the 
ideal clearing period length.

Delaying actions, we show, is generally necessary to 
maintain bounded regret at all times. Consider, for ex
ample, the network in Figure 1 (right) and suppose that 
match 2 is a high-value match. This introduces a comple
mentarity that prevents greedy-like policies to perform 
well; acting greedily (over)uses other matches abun
dantly at the expense of match 2 (see Example 3.2).

Finally, we prove that in acyclic matching networks, 
the general position gap ɛ can be formalized as a mea
sure of capacity slack (the excess of capacity above 
demand) akin to similar notions in standard queueing 
networks. In these networks, the optimal static solution 
effectively “labels” a subset of agent types as servers 
(and their total arrival rate as capacity) and the remain
ing set of agent types as customers (and their total 
arrival rate as demand).

1.2. Related Literature
Value maximization, as well as the tension between 
value and delay, have received significant attention in 
the matching literature. At the risk of being a bit coarse, 
we divide the related literature into two streams charac
terized by their modeling language.

The first stream is based on random graphs, where 
agents arrive over time and form an edge with existing 
agents with some exogenous probabilities. A large sub
set of this stream, motivated by kidney exchange, is 
concerned with dynamic matching under homoge
neous values—maximizing the total match value is the 
same, in this case, as maximizing the total number of 
matched agents. Anderson et al. (2017) and Ashlagi 
et al. (2019) focus on the average waiting time of agents 
and show that greedy policies achieve near optimality 
as the exogenous match probability tends to zero, 
which suggests that waiting to thicken the market is 
not beneficial. Ashlagi et al. (2023) and Akbarpour et al. 
(2020) explicitly model agents’ departures (abandon
ments) and find that greedy policies maximize the total 
number of matches in large markets. If departure times 
(agents’ patience levels) are observed, matching just 
before departures yields an improvement over greedy 
matching (Akbarpour et al. 2020).

A growing amount of literature considers dynamic 
matching under heterogeneous match values. Blanchet 
et al. (2022) studies a two-sided market model with de
partures, in which the value from matching a single 
buyer to a single seller (a two-way match) is drawn 
from a given distribution. The optimal frequency of 
match decisions depends on the tail of the value distri
bution, where the policies that are studied include pop
ulation and utility threshold policies. In our model, 
there is a finite number of match types (rather than a 
continuum), and the feasibility of matches is deter
mined, instead, by a given network topology. In addi
tion, our model allows for matches to include more 
than two agent types (multiway matches). Ashlagi et al. 
(2022) and Collina et al. (2020) also identify the need of 
delaying actions in a model with departures. Dynamic 
policies based on heuristics for continuation values were 

Figure 2. (Color online) Regret of Our Proposed Periodic Clearing Policy Applied to the Network on the Left 

Notes. Both the period length τ and the parameter δ are varied. For any δ ≤ 0:05, the optimal static solution is (0:1, 0:1, 0:15,δ) for the four 
matches, respectively. The plotted regret is based on 10 replications. Because the x axis corresponds to decision epochs, the time horizon is 
4,000τ.
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studied in the context of kidney exchange (Dickerson 
et al. 2016 and Li et al. 2019).

Other papers in this stream consider incentives and 
decentralized decisions (Arnosti and Shi 2019, Baccara 
et al. 2020, Leshno 2022). Our model is of a central deci
sion maker, and in that sense, we are closer to Dickerson 
et al. (2012), who develop a heuristic to approximate the 
full dynamic program and overcome the “curse of di
mensionality,” and to Karp et al. (1990), Goel and Mehta 
(2008), Feldman et al. (2009), and Manshadi et al. (2012), 
who benchmark against an offline upper bound.

Our work uses the modeling language of queueing 
networks rather than that of random graphs. It considers 
environments, in which match values are not binary, and 
the number of agent and match types are finite.

Within the queueing literature, a subset of papers 
focuses on performance evaluation of specific important 
policies (Caldentey et al. 2009, Adan et al. 2018, Afeche 
et al. 2021, and references therein). Several recent papers 
succeeded in reducing the control problem’s complexity 
by relying on heavy-traffic approximations (Bušic and 
Meyn 2014, Gurvich and Ward 2014, Nazari and Stolyar 
2019). Gurvich and Ward (2014) and Bušic and Meyn 
(2014) study the minimization of heterogeneous delay 
costs. For homogeneous delay costs, Ünver (2010) estab
lishes the optimality of a greedy policy, if all matches are 
two-way (involving one donor and one recipient, in the 
context of kidney exchange); it also underscores the 
value of delaying match decisions in networks with mul
tiway matches. Nazari and Stolyar (2019), like us, study 
value maximization, but focus on the long-run average 
value. Our main focus is on finite horizon optimization 
and on the tradeoff between short- and long-term value. 
The policy we devise is, in particular, long-run average 
optimal.

Aouad and Saritac (2022) study matching networks 
when agent departures are allowed. These departures 
make the problem more difficult, as any delay between 
actions may sacrifice value when agents are suffi
ciently impatient. The authors introduce algorithms 
that achieve, in the long run, a constant percent of the 
upper bound (the optimality gap then grows with the 
horizon). By considering a more limited family of net
works and assuming that agents are patient, we make 
headway in the refined understanding of matching 
networks that, we believe, can subsequently inform 
the design of algorithms for networks with departures; 
we revisit this in the concluding remarks.

This paper is also related to recent work on achieving 
constant regret in dynamic resource allocation problems 
(Bumpensanti and Wang 2020, Vera and Banerjee 2021, 
Vera et al. 2021). In these papers, it is proved that poli
cies, which resolve at each arrival an intuitive linear pro
gram, can achieve constant regret in the online packing 
context, where an initial supply of inventory is depleted 
over a finite horizon by arriving requests. Requests must 

be accepted or rejected on the spot (there is no queue), 
and the criterion is to maximize the value collected by 
the end of the horizon. Of conceptual importance is Jasin 
and Kumar (2012), where a nondegeneracy assumption 
supports the optimality of such greedy resolving policies 
in the packing setting. While the differences are signifi
cant, both dynamic matching and online packing pro
blems can be conceptually framed as specific instances 
of online linear programming (see Li and Ye (2020) and 
the references therein).

1.3. Notation
For real numbers x and y, we use x ∧ y :� min{x, y}, 
(x)

+
:� max{0, x} and (x)

�
:� max{0, � x}. We follow 

the accepted meaning of little o, big O and big Ω. For 
example at � Ω(bt) for all t> 0 (for nonnegative at, bt) 
means that liminft→∞at=bt > 0. We write [1, n] to denote 
the set of positive integers {1, 2, : : : , n}.

2. Model
2.1. Matching Network and Dynamics
There is a finite set of agent types A � {1, 2, : : : , n} and a 
finite set of matches M � {1, : : : , d}. Each match m ∈ M 

corresponds to a subset of at least two agent types. We 
denote by A(m) the set of agent types participating in 
match m. The network topology is given by a matching 
matrix M ∈ {0, 1}

n×d, where Mim � 1 if and only if i ∈

A(m). We assume that each agent type is participating in 
at least one match.

Agents arrive in discrete time following a multinomial 
distribution: at each time t ∈ N, an arrival is of type i 
with probability λi > 0, where 

P
i∈Aλi � 1. Match m is 

feasible at time t, if there is at least one agent type i pre
sent in the market at time t, for all i ∈ A(m). When match 
m is performed once, it includes one agent of each type 
in A(m) and generates a value of rm > 0. We refer to the 
tuple G :� (M,λ, r) as the matching network.

To track the state of the market, we maintain a queue 
for each agent type, and agents join their type-dedicated 
queues upon arrival. All queues are empty at t � 0, and 
we denote by At

i the number of arrivals to queue i by 
time t. Matches are performed instantaneously (after 
which the matched agents leave the market), and we 
denote the prematch queue-length vector at time t by Qt. 
At most, mini∈A(m)Qt

i many matches of m ∈ M can be 
performed at time t.

2.2. Matching Network Graph
The network topology is a hypergraph, where each 
agent type is a vertex and each match is a collection of 
vertices—which are the agent types that participate in 
the match. We represent this hypergraph by a simple 
bipartite graph, where agent types and matches are the 
vertices, and there is an edge between agent type i and 
match m if and only if i ∈ A(m). We refer to this bipartite 
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graph as the matching network graph, and we denote this 
graph by G as a slight abuse of notation. Figure 1 is the 
first instance of multiple matching network graphs that 
we will use throughout the paper. In the figures, circles 
and rectangles represent agent types and matches, 
respectively, and we indicate the arrival probabilities 
and match values in their corresponding shapes.

2.3. Performance Measure
A matching policy maps histories of arrivals and per
formed matches to a (possibly empty) set of matches 
and determines how many times each of these matches 
will be performed at each time t. Such a policy can be 
represented by a right-continuous with left limits nonan
ticipative increasing process Dm :� (Dt

m, t ≥ 0), where 
Dt

m is the total number of times match m is performed by 
time t; ∆Dt

m :� Dt
m � Dt�

m is then the number of times 
match m is performed at time t. An admissible matching 
policy D must satisfy the following:

Qt � At � MDt� for all t > 0: (1) 

Denote by Π the set of all admissible matching policies. 
We add the superscript D on expectations to make ex
plicit the dependence on the policy. We use Qt+ to de
note the postmatch queue-length vector at time t, that is, 
Qt+

� Qt � M∆Dt
m.

The expected total value collected by time t, under a 
matching policy D, is given by

RD, t :� ED[r · Dt]:

The optimal value for fixed t, R∗, t :� maxD∈ΠRD, t, is triv
ially attained by the ultimate batching policy, which takes 
no action until time t, and performs matches according 
to an optimal solution of the (static) weighted matching 
problem at time t. The optimal value R∗, t is then the 
expectation of the following static problem:

R∗, t � E
max r · y
s:t: My ≤ At

y ∈ Zd
≥0

2

6
4

3

7
5:

Conceptually, it is useful to think of R∗, · as tracking the 
total collected value of a decision maker that makes deci
sions continuously, but the decision maker is allowed, at 
all times, to correct past decisions (unmatch some agents 
and match new ones); this is a hindsight upper bound. A 
matching policy is hindsight optimal if it is, at all t, almost 
as good as this upper bound.

Definition 2.1 (Hindsight Optimality). A matching pol
icy D is hindsight optimal if

R∗, t � RD, t � O(1) for all t > 0, 

which implies, in particular, RD, t=R∗, t � 1 � O(1=t) for 
all t> 0.

This notion of optimality—with its focus on the 
total collected value at all times—allows us to concen
trate on the tension between short- and long- term 
value; whether it is possible to act frequently and 
remain near-optimal at all times. Explicit delay penal
ties naturally encourage taking frequent actions. We 
explicitly model delay penalties/holding costs in Sec
tion 6 and show that our proposed matching policies 
achieve near-optimality in that case as well.

Remark 2.1. Hindsight optimality implies optimality 
under other criteria. For instance, given a finite horizon 
T, a hindsight optimal matching policy makes a con
stant number of “mistakes” that does not grow with the 
horizon, that is, R∗, T � RD, T � O(1). In particular, the 
policy is optimal in the long-run average sense, because

R∗, T � RD, T

R∗, T � O(1=T) → 0 as T → ∞, 

with a convergence rate of 1=T.
Another instance is a discounted infinite horizon 

model, where the discounted collected value with a dis
count factor β ∈ (0, 1) under a matching policy D is 
defined as

RD
β :� ED

X∞

t�0
βt(r · ∆Dt)

" #

:

Let R∗
β :� maxD∈ΠRD

β and RU
β :� (1 � β)

P∞
t�0 β

tR∗, t: Then 
for any matching policy D, we have RU

β ≥ R∗
β ≥ RD

β . A 
hindsight optimal matching policy D satisfies RU

β �

RD
β � O(1), and in particular, R∗

β� RD
β � O(1): Because 

R∗
β � Ω(1=(1 � β)), the relative error satisfies

R∗
β� RD

β

R∗
β

� O(1 � β), 

and shrinks as the effective horizon becomes longer (as 
β ↑ 1).

2.4. Static Planning Problem (SPP) and the 
General Position Condition

A natural upper bound for the optimal value R∗, t is 
given by the following optimization problem, where sto
chastic arrivals are replaced by their rates:

R∗, t � E
max r · y
s:t: My ≤ At

y ∈ Zd
≥0

2

6
4

3

7
5≤

max r · x
s:t: Mx ≤ λt

x ∈ Rd
≥0:

(2) 

An optimal solution x∗
m of the problem on the right-hand 

side of (2) provides a first-order proxy for optimal match 
rate of match m. The inequality in (2) simply follows 
from relaxing the integrality constraints and applying 
Jensen’s inequality. With the change of variables z � x=t, 
we arrive at a deterministic relaxation, which we write 
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in standard form as

max r · z

s:t: Mz + s � λ

z ∈ Rd
≥0, s ∈ Rn

≥0:

(SPP) 

We refer to this formulation as the static planning prob
lem (SPP). Given an optimal solution (z∗, s∗) of (SPP), z∗

m 
is the (per period) number of times match m is per
formed under the optimal solution, whereas s∗

j corre
sponds to the leftovers (slack) added to queue j per 
period. We partition the set of matches and queues as 
follows:

M+ :� {m ∈ M : z∗
m > 0}, M0 :� M\M+,

Q+ :� {j ∈ A : s∗
j > 0} and Q0 :� A\Q+, 

where M+ is the set of active matches, M0 is the set of 
redundant matches, Q+ is the set of under-demanded (none
mpty) queues, and Q0 is the set of over-demanded (empty) 
queues.

We expect “good” policies to be consistent with this 
partition. It should perform those matches with z∗

m > 0, 
but avoid performing the redundant matches. Similarly, 
over-demanded/empty queues should be as empty as 
possible, whereas those queues with s∗

j > 0 should grow 
with time. We formalize this intuition in Section 4.

A simple property of the optimal solution of (SPP) 
determines, as we will prove, whether it is possible to 
achieve hindsight optimality.

Definition 2.2 (General Position). A matching network 
G satisfies the general position condition (GP) if (SPP) 
has a unique nondegenerate optimal solution (z∗, s∗), 

that is, all n basic variables in this solution are strictly 
positive.

GP is straightforward to verify. Nondegeneracy 
means that |M+ | + |Q+ | � n and is, thus, easy to verify 
by inspection. As to uniqueness, if the dual of (SPP) has 
a nondegenerate optimal solution, then the primal has a 
unique optimal solution by complementary slackness.

Uniqueness is mathematically useful and comes at 
no practical restriction. When there are multiple solu
tions, a small perturbation of the match value vector 
r ← r + O(1=T)—where T is the horizon length in 
consideration—guarantees uniqueness. This does not 
affect hindsight optimality because this perturbation, 
for any t ≤ T, changes the benchmark R∗, t at most by a 
constant.

General position is in fact necessary to maintain a 
uniformly bounded regret. To see this, consider the 
network in Figure 3 (left). Observe that match 2 is 
used by the ultimate batching policy (that achieves 
the optimal value) for any fixed time t > 0 only if 
At

2 > At
1. Because λ1 � λ2, whether At

1 ≥ At
2 or At

1 < At
2 

is discovered only late in the horizon. Thus, any opti
mal policy for a fixed t, must withhold performing 
match 2 until time t. This inevitably means suboptim
ality for subintervals [0, s], for any s > 0 sufficiently 
smaller than t (say s � t=2). Therefore, a policy D that 
is optimal for s � t=2 must have R∗, t � RD, t � Ω(

ffiffi
t

√
). 

Figure 3 (right) illustrates this, and a formal proof ap
pears in the appendix.

The growing regret in Figure 3 stems from having 
equal arrival probabilities of agent types 1 and 2. Con
sider some perturbation on λ2 now. Intuitively, the larger 
the difference between λ2 and λ1, the earlier one can 
decide whether to perform match 2, and one should also 

Figure 3. (Color online) General Position is Necessary to Maintain a Uniformly Bounded Regret 

Notes. (Left) A network that violates GP. (Right) The policy D performs one batched optimal solution at time t=2, and then another at time t. R∗, t 

is obtained by the ultimate batching policy at time t; we vary t (the time horizon is scaled down by 103). This captures a regret that is of the order 
of 

ffiffi
t

√
: optimizing total value at time s < t necessitates a O(

ffiffi
t

√
) optimality gap at time t.
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expect a smaller regret. The general position gap, which 
is defined next, captures the inherent imbalance in the 
network, or the “distance” from degeneracy.

Definition 2.3 (General Position Gap). Suppose that the 
matching network G satisfies GP. We define the gen
eral position gap as

ɛ � min
m∈M+

z∗
m ∧ min

j∈Q+

s∗
j :

The general position gap ɛ is, by definition, strictly 
positive, and because λ is a probability vector, z∗

m, s∗
j < 1 

for all m ∈ M+ and j ∈ Q+ so that 0 < ɛ < 1. Mathemati
cally, the general position captures the minimum entry 
among basic variables. For example in Figure 3, if one 
increases λ2 by a sufficiently small constant δ > 0 and 
decreases λ1 by δ, then GP holds, where (SPP) has a 
unique optimal solution z∗ � (1=3 � δ, 2δ) and s∗ � (0, 0, 
1=3 � 2δ) with ɛ � 2δ.

For a large family of matching networks, ɛ can be 
thought of as a measure of capacity slack; see Section 
5. Loosely speaking, the larger the general position 
gap ɛ, the larger the region of queue lengths in the 
dynamic system that will enable performing “correct” 
matches by acting more frequently. As we will show 
later, the general position gap will be inversely pro
portional to the achievable regret and the desirable 
delay between decision epochs.

3. Main Results
Our proposed matching policy—the exhaustive resolving 
policy—is a periodic clearing policy, where matches are 
performed at each decision epoch following an optimal 
solution of a natural linear integer program. 

1. Preprocessing and removal of redundant matches. Solve 
(SPP) and identify the set M0. All redundant matches 
are removed from the network and never used (Dt

m � 0 
for all t> 0 and m ∈ M0).2 This decomposes the network 
into (possibly) multiple connected components, and the 
policy is applied to each component separately. Alterna
tively, the policy can be applied directly to the original 
network with an extra constraint that the matches in 
M0 are never used.

2. Decision epochs. Matches are performed only at 
decision epochs,

tk � kτ, k ∈ N, 

where τ ∈ N is the interaction delay.
3. Solving a linear (integer) program. At each decision 

epoch tk, perform z∗
m(Qtk ) many matches for all m ∈ M+, 

where

z∗(Qtk ) ∈ arg max r · z

s:t: Mz ≤ Qtk

z ∈ Zd
≥0, (3) 

where, we recall, Qtk
i is the prematch length of queue i: 

The number of agents in queue i right before the matches 
are performed at time tk.

Observe that immediately after a decision epoch tk, no 
feasible matches remain to perform; otherwise, one 
could increase the objective value in (3) by forming an 
additional match.

In our analysis, we will assume that immediately after 
the matches are performed, all remaining unmatched 
agents from queues j ∈ Q+ (under-demanded queues) 
are removed. This is done for mathematical exposition 
and without loss of generality; we will show that these 
removals are not necessary (see proof of Theorem 3.1 in 
Appendix D). Arguably, removals are practically rea
sonable in order to prevent agents of these types from 
waiting indefinitely.

Definition 3.1 (Trivial Networks). A matching network 
that satisfies GP is trivial if the general position gap 
equals the arrival probability of some agent type. That 
is, for some i ∈ A,

ɛ � min
m∈M+

z∗
m ∧ min

j∈Q+

s∗
j � λi:

In trivial networks, as illustrated in Figure 4, it is pos
sible to keep the regret small at all times (in particular, 
in terms of order, smaller than Ω(ɛ�1)).

Theorem 3.1 (Hindsight Optimality). Assume that G satis
fies GP and let ɛ be the GP gap. Then, there exists a match
ing policy D such that

R∗, t � RD, t ≤ Γɛ�1 for all t > 0, (upper bound) 

where Γ > 0 is a constant that may depend on n, d, M, and r 
(but not λ or ɛ). This performance is achieved by the exhaustive 

Figure 4. (Color online) Example of a Trivial Network, 
Where (SPP) Has a Unique Optimal Solution z∗ � (3=15, 2=15, 
1=15) and s∗ � (0, 0, 0, 3=15) So That ɛ � z∗

3 � 1=15 � λ3 

Notes. Because λ4 > λ1 +λ2 +λ3, queue 4 will grow with time 
regardless of the matching policy. After some initial time t0, queue 4 
will be nonempty with probability close to one. In particular, we will 
be able to immediately match any arriving agents of type 1, 2, or 3. 
The regret is zero at all large enough times t.
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resolving policy with an interaction delay τ � ⌈κɛ�1⌉ �

Θ(ɛ�1), where κ > 0 is some constant that does not depend 
on ɛ.

If the network is nontrivial, any matching policy D has

sup
t>0

(R∗, t � RD, t) ≥ γɛ�1, (lower bound) 

where γ > 0 is a constant that may depend on n, d, M, and r 
(but not λ or ɛ).

Our main theorem states that an interaction delay pro
portional to ɛ�1 is sufficient to achieve the optimal regret 
scaling. By the lower bound result, a smaller τ cannot 
improve this achieved regret scaling. It can, however, 
make it worse; see Example 3.1. Picking τ larger, in terms 
of order, compromises the regret; for example with 
τ �Θ(ɛ�2), the regret scales with ɛ�2 ≫ ɛ�1. This is 
because just before a decision epoch, there are (of the 
order of) ɛ�2 unmatched agents waiting in queues. Thus, 
at that point in time the regret is of the order of ɛ�2.

3.1. Queueing Intuition for the Lower Bound
The proof of the lower bound appears in Appendix E. 
We provide here some intuition using a simple example. 
Consider the network in Figure 5. Let us pretend that 
upon arrival, an agent type 2 is lost if it is not used to 
form a match with queue 1, and match 1 is performed 
otherwise. Then queue 1 behaves like a single-server 
queue with arrival rate λ1, and service rate λ2 � λ1 + ɛ; 
the utilization is ρ � λ1=(λ1 + ɛ). Then the stationary 
mean queue-length of queue 1 is given by

ρ

1 � ρ
�
λ1

ɛ
~ 1

ɛ
:

Thus, although the upper bound (SPP) makes queue 1 
empty at all times, we will, in the stochastic system, 
have of the order of ɛ�1 unmatched type 1 agents, which 
will constitute an unrealized value of ~ r1=ɛ: The main 
challenge in formalizing this intuition is that not only 
the arrivals to queue 2 are not “lost” if not immediately 
matched but also that we must allow the matching pol
icy to be arbitrary.

3.2. Discussion
3.2.1. On the Policy Ingredients. The exhaustive resolv
ing policy uses (SPP) to identify which matches to avoid 

and what delay to impose between decision epochs. In 
particular, our results require the knowledge of the para
meters λ and r. Next, we discuss the importance of these 
ingredients under our resolving policy.

Remark 3.1 (Preremoval of Redundant Matches). Avoid
ing matches in M0 is necessary for the resolving policy 
to achieve hindsight optimality. To see this consider the 
network in Figure 6. Independent of the size of τ, the 
figure showcases the linear growth (in t) of the regret 
R∗, t � RD, t. In this example, (SPP) has z∗

4 � 0, but the 
static problem (3) uses it occasionally (even if not fre
quently). Regardless of the fixed τ, there is a positive 
probability (that decreases with τ, but is constant once τ 
is fixed) that both queues 4 and 5 will be nonempty at a 
decision epoch, where queues 3 and 6 will be empty. In 
such a case, our exhaustive resolving policy will perform 
match 4. This is a “mistake,” and it will be repeated at a 
fixed frequency.

The next two examples illustrate the necessity of some 
delay between decision epochs under our resolving pol
icy (regardless of how ties are broken).

Example 3.1 (Frequency of Resolving in Two-Way 
Networks). As briefly discussed in the introduction, 
Figure 2 considers our resolving policy for a two-way 
network and captures the regret for multiple values of 
the “batching” parameter τ ∈ {5, 20, 100}. Even in this 
simple (two-way) network, τ cannot be too small; if it 
is too small, the performance of the resolving policy is 
suboptimal.

Example 3.2 (Necessity of Some Delay in Multiway 
Networks). In Figure 7, the tuple G � (M,λ, r) satisfies 
GP. Because match 1 has a relatively high value, it is 
important to use agent types 1, 2, 4, and 6 toward per
forming this match. Any greedy policy “fails,” because 
agents of types 2, 4, and 6 (required to perform match 1) 
“disappear” before they can be used to perform match 
1. For instance, because λ7 � 64λ≫ λ6 � 32λ, there will 
be (after some initial transient horizon) available agents 
waiting to be matched in queue 7, with high probability. 
Under any greedy policy, any arriving type 6 agent will 
then immediately be matched to an agent of type 7 and 
disappear. Our resolving policy with a suitable interac
tion delay prevents this and performs match 1 suffi
ciently many; see its constant regret in Figure 7 (bottom 
left). In Figure 7 (bottom right), we can see that resolving 
too frequently results in a large regret.

We do not offer a precise recipe to pick τ. However, 
an initial preprocessing step based on simulations can 
help to fine tune this parameter; a simple heuristic 
would be to initialize τ to ɛ�1 and keep increasing it 
“slightly” as long as the regret grows. Such simula
tions, like the exhaustive resolving policy, rely on 
knowing the arrival probabilities and match values.

Figure 5. Simple Network for the Lower Bound Intuition 
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3.2.2. Further Comments. In some applications, the main 
objective is to maximize the total number of matched 
agents, that is, the value of a match equals the number of 
agent types participating in the match. Similar arguments 
to those in Example 3.2 imply that in multiway networks, 
even such a simple cardinality maximizing objective 
requires delaying match decisions to achieve hindsight 
optimality; this can be illustrated by extending the net
work in Figure 7 by adding new agent types with rela
tively large arrival probabilities to align match values 

with their cardinalities. Finally, in Section 5, we identify 
an alternative periodic clearing policy, which is also 
hindsight optimal for a large family of networks.

4. Upper Bound: Regret of 
Exhaustive Resolving

In this section, we prove the first part of our main result 
Theorem 3.1, that is, the exhaustive resolving policy 
achieves the desired regret O(ɛ�1). We first present in 

Figure 6. (Color online) Resolving Without Removing All Matches in M0 Does Not Achieve Hindsight Optimality 

Notes. The network in this figure exhibits a regret that grows linearly with time. (Top left) The performance of the exhaustive resolving policy 
without removing match 4 with τ � 20. The solid line represents the optimal value of (SPP) (where the arrivals are replaced with their expecta
tions) scaled with t, and the dashed line represents the optimal match value given the actual arrival realizations (not in expectation). (Top right) 
The performance without removing match 4 with τ � 200. The regret grows slower, but it nevertheless grows. (Bottom left) The performance 
with removing match 4 and τ � 20. (Bottom right) The performance with removing match 4 and τ � 200.
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Lemma 4.1 a sufficient condition for a matching policy 
to be hindsight optimal. Next, we present structural 
properties of the optimal solution of (SPP), which will be 
useful to analyze the dynamic system including proving 
Lemma 4.1. Finally, the proof uses Lyapunov arguments 
to establish that the conditions of Lemma 4.1 hold.

4.1. Optimality Test
The following lemma provides a sufficient condition 
for hindsight optimality. Essentially, the nondegene
racy provided by GP guarantees that any matching 
policy, whose set of bounded queues coincides with 
the set of over-demanded queues (the set Q0) is hind
sight optimal.

Lemma 4.1 (Optimality Test). Suppose that GP holds. Let 
(z∗, s∗) be the unique nondegenerate optimal solution of 
(SPP). Then a matching policy D that 

(i) Does not reject any agents of type i ∈ Q0,

(ii) Does not perform any matches in M0, that is, Dt
m � 0 

for all m ∈ M0 and for all t> 0, and
(iii) Has ED[Qt

i] � O(ɛ�1) for all i ∈ Q0 and for all t > 0,
is hindsight optimal, and R∗, t � RD, t � O(ɛ�1) for all t > 0.

Lemma 4.1 translates Theorem 3.1 to the constancy— 
uniformly in t—of the queues in the set Q0. Indeed, 
if the policy avoids redundant matches and keeps 
the expected lengths of over-demanded queues suffi
ciently “small” at all times, then hindsight optimality is 
achieved.

4.2. Structure of the Optimal Solution of (SPP)
The optimality test uses properties of the optimal solu
tion of (SPP), which will be key to our analysis for the 
dynamic system. Without loss of generality, assume that 
M+ � {1, 2, : : : , d � ϱ} and Q+ � {d � ϱ + 1, d � ϱ + 2, : : : , 
n}, where we let ϱ :� |M0 | . Then the optimal basis 

Figure 7. (Color online) Necessity of Some Delay in Multiway Networks 

Notes. (Top left) A (multiway) network, where λ is chosen so that 
P

i∈Aλi � 1. (Top right) The percent optimality gap (regret) as a function of the 
interaction delay τ. For each τ, the reported gap is an average of 1,000 replications. With τ � 1 (acting every period), the gap is as high as 60%; it 
decreases to less than 1.5% with a delay of τ � 20. (Bottom left) Hindsight optimality: the regret as a function of decision epochs with τ � 20. A 
regret of 300 corresponds to not performing match 1 three times throughout the horizon. (Bottom right) The queues of type i ∈ Q+ � {3, 5, 7} grow 
linearly with time. All the queues in Q0 remain bounded in expectation, and these queues are not visible in this scale.
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matrix takes the form

B �
M0 0
M+ I

" #

, 

where M0 has the rows of M corresponding to the queues 
in Q0, M+ has the remaining n � d + ϱ rows, and B has 
the columns corresponding to M+ and Q+ in order; I 
is an (n � d + ϱ) × (n � d + ϱ) identity matrix, and 0 is a 
(d � ϱ) × (n � d + ϱ) zero matrix. Being the basis matrix, 
B is invertible, and Y � B�1 has the following form:

B�1 � Y :�
Y0 0
Y+ I

" #

, 

where [Y0, 0] is a (d � ϱ) × n matrix and [Y+, I] is an 
(n � d + ϱ) × n matrix, where 

1. The mth row of [Y0, 0] is ym for each m ∈ M+, and
2. The jth row of [Y+, I] is yd�ϱ+j for each d � ϱ + j 

∈ Q+.
In turn, the optimal solution of (SPP) can be written as

z∗
M+

s∗
Q+

" #

� B�1λ � Yλ, 

which implies

z∗
m � ymλ > 0 for all m ∈ M+, and
s∗

j � yjλ > 0 for all j ∈ Q+, (4) 

where strict inequalities follow from the nondegeneracy 
of (z∗, s∗) under GP. Finally, because G is a finite match
ing network, that is, n < ∞, we must have maxi, j∈[1, n]

|Yi, j | ≤ ω, for some constant ω > 0, where ω may de
pend on n and M. The matrix Y (and in turn, the vectors 
yms and yjs) can be explicitly constructed for a special 
family of networks (see Section 5).

Nondegeneracy implies (Bertsimas and Tsitsiklis 1997, 
section 5.1) that the same basis remains optimal for any 
λ̃ > 0 such that λ̃ � λ+ ζ, where ‖ζ‖∞ ≤ ζ0 for all suffi
ciently small ζ0 > 0. The dual of (SPP) will also be useful 
in what follows. It readily follows that under GP, θi :�

(
P

m∈M+
rmym)i ≥ 0, i ∈ A, are the corresponding optimal 

dual variables. In particular, uniqueness of (z∗, s∗) implies 
θi > 0 for all i ∈ Q0.

4.3. Lyapunov Arguments for Analyzing the 
Exhaustive Resolving Policy

Because the first two conditions of Lemma 4.1 are 
clearly satisfied under the exhaustive resolving policy, 
our main focus in this section to provide tools to ana
lyze the third condition. Intuitively, we want to show 
that whenever the queue-length of an over-demanded 
queue hits a certain threshold, the exhaustive resolving 
policy is able to “pull back” the length below the thresh
old in the next decision epoch, as the nondegeneracy 
provided by GP allows the exhaustive resolving policy 
to approximately “mimic” the optimal solution of (SPP).

Drift arguments, as the one we are going to use, are 
common in the study of stochastic networks and queues. 
The following result (Glynn and Zeevi 2008, corollary 4) 
is useful to bound stationary expectations of Markov 
processes.

Lemma 4.2. Let X � (Xt : t ≥ 0) be a discrete-time S-valued 
Markov chain with transition kernel P, and suppose f : S → R 
is nonnegative. If there exists a nonnegative function g : S →

R and a constant c for which
Z

S
P(x, dy)g(y) � g(x) ≤ �f (x) + c forall x ∈ S, (5) 

then
Z

S
π(dx)f (x) ≤ c, (6) 

for any stationary distribution π of X.

The challenge lies in identifying a suitable Lyapunov 
function g—a “norm” of the total process—that de
creases when the queues in Q0 are large. This is nontri
vial and relies in subtle ways on the network structure 
and the detailed analysis of the optimal solution of 
(SPP). As we will formulate our Lyapunov function 
next, the construction is based on the dual of (SPP), in 
particular our Lyapunov function originates from a 
weighted sum of the queue lengths, where weights are 
determined by the dual variables.

Minimal Markov chain notation is needed before 
we proceed. Under the exhaustive resolving policy, the 
process (Qtk , k ∈ N) is clearly a Markov chain. We let 
Pq{·} be the probability law of this Markov chain initial
ized at q ∈ Zn

≥0, and we write Eq[·] for the corresponding 
expectation.

Because the policy is applied separately to each con
nected component of the network (recall that all matches 
in M0 are removed from the network), without loss of 
generality, we assume that there is a single component, 
that is, M0 � ∅. Recall that at each decision period 
tk � kτ, k ∈ N, the exhaustive resolving policy solves the 
following linear integer program

max r · z

s:t: Mz + s � Qtk

z ∈ Zd
≥0, s ∈ Zn

≥0, 

where Qtk is the prematch queue-length vector. Because 
Y is invertible and yjM � 0 for all j ∈ Q+, this linear pro
gram can be rewritten as

max r · z

s:t: ymMz + yms � ymQtk for all m ∈ M+

yjs � yjQtk for all j ∈ Q+

z ∈ Zd
≥0, s ∈ Zn

≥0:
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Recalling that ymMz � zm for all m ∈ M+, we have zm �

ym(Qtk � s) for all m ∈ M+. Hence, the previous linear 
program can be rewritten as

max
X

m∈M+

rmym(Qtk � s)

s:t: zm + yms � ymQtk for all m ∈ M+

yjs � yjQtk for all j ∈ Q+

z ∈ Zd
≥0, s ∈ Zn

≥0:

Finally, because (ym)j � 0 for all m ∈ M+ and for all 
j ∈ Q+, we obtain, with u :� Qtk , the following equivalent 
problem (in terms of optimizers):

h∗(u) :� min
X

i∈Q0

X

m∈M+

(rmym)isi

s:t: zm + yms � ymu for all m ∈ M+

yjs � yju for all j ∈ Q+

z ∈ Zd
≥0, s ∈ Zn

≥0: (7) 

For ease of exposition, without loss of generality, we ini
tialize the prematch queue-length vector at q ∈ Zn

≥0, and 
let q+ ∈ Zn

≥0 be the postmatch queue-length vector right 
after the exhaustive resolving policy is executed at time 
0. Thus, with this notation, we have Qτ � q+ + Aτ, that is, 
Qτ is the prematch queue-length vector at time τ.

The following proposition provides bounds on the 
drift, which will allow us to apply the optimality test 
(Lemma 4.1) and complete the proof of the upper bound. 
The proof is given in Appendix B.

Proposition 4.1. Take τ � ⌈κɛ�1⌉ for some constant κ > 0 
(not dependent on ɛ). Then, the process h∗(Qtk ), with h∗(·)

as in (7), decreases in expectation:

Eq[h∗(Qτ) � h∗(q)] ≤ �γ+
Γ

ɛ
1{h∗(q)≤B}, (8) 

where B,γ,Γ > 0 do not depend on ɛ. Consequently, there 
exist constants c1, c2 > 0, not dependent on ɛ, such that the 
process L(Qtk ) :� eh∗(Qtk ) also decreases in expectation:

Eq[L(Qτ) � L(q)] ≤ �
γ

2 L(q) + c1ec2τ1{h∗(q)≤B}: (9) 

Observe that Inequality (9) follows from a standard mech
anism, which derives an exponential Lyapunov function 
from a given linear one. Lemma 4.1 immediately implies 
that under the Markov chain’s unique stationary distribu
tion, which we denote by π, we have

Eπ[L(Q0)] ≤
2c1

γ
ec2τ, (10) 

where Q0 ~ π. Because τ � ⌈κɛ�1⌉, by Jensen’s inequal
ity, we have

Eπ[h∗(Q0)] � O(ɛ�1): (11) 

The reason behind considering an exponential Lyapu
nov function is to be able to use geometric recurrence of 
the process (Qtk , k ∈ N), which is crucial to prove that 
E[
P

i∈Q0
Qt

i] � O(ɛ�1) for all t> 0, not only in the station
ary distribution. The proof of the upper bound in Theo
rem 3.1 can be found in Appendix D.

5. (SPP) Acyclicity and the General 
Position Gap

In this section, we focus on a special family of matching 
networks to extend some of our main results, as well as 
providing more intuition about the general position gap ɛ.

Definition 5.1 ((SPP) Acyclic Networks). Suppose that 
G satisfies GP and let (z∗, s∗) be the unique optimal 
solution of (SPP). The (SPP)-residual graph is obtained 
by removing all redundant matches m ∈ M0 (with 
z∗

m � 0) from G. We say that G is (SPP) acyclic, if the 
(SPP)-residual graph is acyclic.

If G (the bipartite graph representation of the hyper
graph) is acyclic itself, then G is trivially (SPP) acyclic. 
More interestingly, this is also the case if G itself is a 
simple bipartite graph (where only even cycles are 
allowed) with two-way matches only.

Lemma 5.1 (Two-Way Two-Sided Networks). Suppose 
that G satisfies GP. Let (z∗, s∗) be the unique nondegenerate 
optimal solution of (SPP). If |A(m) | � 2 for all m ∈ M (all 
matches are two way), and G is bipartite (any cycle in G con
tains an even number of matches), then G is (SPP) acyclic.

It is important to notice that other than the network 
structure, (SPP) acyclicity also depends on the optimal 
solution of (SPP). In turn, whether this notion of acycli
city holds or not depends not only on the matching 
matrix M, but also on the arrival probability vector λ 
and the match value vector r. Because of this depen
dence, one should not expect other sufficient conditions 
as simple and insightful as the one in Lemma 5.1.

5.1. General Position Gap in (SPP)-Acyclic 
Networks

As discussed in Section 2, the general position gap can 
be intuitively thought of as a measure of slack in the 
network. In (SPP)-acyclic networks, as the next lemma 
shows, this slack can be viewed as an imbalance be
tween arrival probabilities.

Lemma 5.2. Assume that G is (SPP) acyclic. If for every 
two subsets A1 ≠ A2 ⊆ A, we have

X

i∈A1

λi ≠
X

j∈A2

λj, (12) 

then (SPP) has a nondegenerate optimal basic feasible solution.3

If the arrival rates are drawn from a continuous distri
bution, then (12) holds almost surely. Intuitively, (GP) is 
then likely to hold in any practical setting.
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We can be more precise compared with Lemma 5.2
regarding mapping the general position gap to an intui
tive notion of slack. Recall that the optimal solution of 
(SPP) is given simply in terms of the inverse of the basis 
matrix as in (4). Therefore, the first step in that direction 
is to explicitly construct the inverse matrix Y of the 
optimal basis matrix. For some intuition of this con
struction when G is (SPP) acyclic, consider the network 
in Figure 2. Under the optimal solution, all slack vari
ables are zero, except s∗

5 > 0. Then it must be that z∗
1 �

λ1 (all type 1 agents are matched). Then match 2 uses 
the leftovers of type 2 agents, and z∗

2 � λ2 � z∗
1 � λ2 �λ1; 

match 3 uses the leftovers (those that are not used toward 
match–2) of type 3 agents, and z∗

3 � λ3 � z∗
2 � λ3 �λ2 

+λ1. Defining row vectors y1 � [1, 0, 0, 0, 0], y2 � [�1, 1, 
0, 0, 0], y3 � [1, �1, 1, 0, 0], and y4 � [�1, 1, �1, 1, 0], we 
have the representation z∗

m � ymλ for all m ∈ M+ �

{1, 2, 3, 4}. Similarly, we have s∗
5 � λ5 � z∗

4 � y5λ, where 
y5 � [1, �1, 1, � 1, 1] (Q+ � {5}). This demonstrates an 
instance for the general construction of the optimal so
lution of (SPP).

Theorem 5.1 (Explicit Optimal Solution of (SPP)). 
Assume that GP holds and G is (SPP) acyclic. Let (z∗, s∗) be 
the unique nondegenerate optimal solution of (SPP) with 
M+ � {m ∈ M : z∗

m > 0} and Q+ � {j ∈ A : s∗
j > 0}. Then 

there exist |M+ | vectors ym ∈ {�1, 0, 1}
n and |Q+ | vectors 

yj ∈ {�1, 0, 1}
n such that

z∗
m(λ) :� z∗

m � ymλ > 0 for all m ∈ M+, and

s∗
j (λ) :� s∗

j � yjλ > 0 for all j ∈ Q+:

Any right-hand side λ > 0 with ylλ > 0 for all l ∈ M+ ∪

Q+, induces the optimal solution (z∗(λ), s∗(λ)).

Recall that, also in general matching networks (not nec
essarily (SPP) acyclic), the optimal solution of (SPP) takes 
the form as in Theorem 5.1, where yms and yjs are the 
rows of the inverse of the optimal basis matrix (see Sec
tion 4.2). What is new here is that when G is (SPP) acyclic, 
the matrix Y can be constructed explicitly; all entries of Y 
are either �1, 0, or �1. We prove Theorem 5.1 and pro
vide the explicit construction of Y in Appendix C.

Without the uniqueness requirement, Lemma 5.2 has 
a sufficient condition for GP that requires the sum of 
total arrival probabilities—for any two subsets A1 and 
A2—to be different. However, it should be clear that this 
requirement is too stringent. For instance, in Figure 2, 
we would still have GP if λ2 � λ4 � 0:2, but that would 
clearly violate the requirement of Lemma 5.2. In other 
words, it is clear that the sets A1 and A2 need not be 
arbitrary.

Let us revisit the network in Figure 2. The “capacity” 
available to agent type 1 is λ2. If λ1 > λ2, then queue 1 
must grow with time under any matching policy. Simi
larly, the capacity available for agent types 2 and 4 com
bined is at most λ1 +λ3 +λ5; the capacity slack for these 

two types is then λ1 +λ3 +λ5 � (λ2 +λ4). More gener
ally, for each subset of agent types S ⊂ A, we can define 
N (S) to be the set of agent types participating in a match 
with some agent type i ∈ S and so that N (S) ∩ S � ∅. The 
capacity slack for S is then ɛ′(S) :� |

P
i∈N (S)λi �

P
j∈Sλj | , 

and the network capacity slack is the minimum over all 
subsets:

ɛ′ :� min
S⊂A

ɛ′(S) � min
S⊆A

X

i∈N (S)

λi �
X

j∈S
λj

�
�
�
�
�
�

�
�
�
�
�
�
:

This would be an intuitive notion of capacity slack, but it 
is still too stringent. It turns out that we do not need to 
consider all subsets S as we do in defining ɛ′. The explicit 
construction of the inverse matrix Y identifies for us the 
“relevant” subsets. Indeed, take the vector ym as in Theo
rem 5.1 for some m ∈ M+. Let

A+(ym) :� {i ∈ A : (ym)i � 1} and

A�(ym) :� {i ∈ A : (ym)i � �1}:

Then we have

ymλ �
X

i∈A+(ym)

λi �
X

i∈A�(ym)

λi, 

and

ɛ � min
ℓ∈M+∪Q+

X

i∈A+(yℓ)
λi �

X

i∈A�(yℓ)
λi

0

@

1

A:

In turn, for (SPP)-acyclic matching networks, we can see 
the general position gap as a measure of capacity slack, 
where for each ℓ ∈ M+ ∪ Q+, it identifies, via yℓ, a subset 
of agent types (those in A�(yℓ)) as “customers,” and a 
subset of agent types (those in A+(yℓ)) as the “servers” 
who serve these agent types. It then compares the total 
capacity to the total input.

Once ɛ is understood as a capacity slack, it is intui
tively clear that achievable regret should depend on this 
measure. Having a large capacity slack increases the 
decision maker’s ability to control the dynamic system 
and perform matches that are aligned with the deter
ministic counterpart (SPP). Theorem 3.1 establishes that 
it is feasible to achieve a regret of the order of ɛ�1, and a 
smaller regret is not attainable.

The following remark shows that the explicit con
struction of the inverse matrix Y when G is (SPP) acyclic 
allows us to give a more explicit characterization of the 
interaction delay τ in Theorem 3.1 by showing that τ 
linearly depends on the number of agent types n. The 
proof reveals how the negative drift (γ) in Proposition 
4.1 depends on Y, and in turn this dependence deter
mines τ.

Remark 5.1. An immediate extension of Theorem 3.1
when G is (SPP) acyclic is that the exhaustive resolving 
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policy with κ �Θ(n) (so that τ �Θ(nɛ�1)) is hindsight 
optimal. This directly follows from the proof of Propo
siton 4.1 by noticing that ω� 1 because any entry of 
the surplus vector yj is in {�1, 0, 1} for all l ∈ M+ ∪

Q+, where ω is an upper bound for the maximum 
entry in Y, that is, maxi, j∈[1, n] |Yi, j | ≤ ω.

5.2. Alternative Hindsight Optimal Policy
The match value vector plays a key role in determining 
the basic feasible activities under (SPP), as well as the 
match decisions that the exhaustive resolving policy 
makes. It is a natural question to ask whether good pol
icies must further take into account the match value 
vector when determining which matches to perform. 
We are now ready to propose an alternative policy to 
the exhaustive resolving policy, which is also hindsight 
optimal when G is (SPP) acyclic, where this policy does 
not take into account the match value vector while 
making match decisions. Consider the following peri
odic matching policy D′, which acts exactly the same as 
the exhaustive resolving policy, except at each decision 
epoch tk, we perform z∗

m(Qtk ) many matches for all m ∈

M+, where

z∗(Qtk ) ∈ arg min
X

i∈Q0

Qt+
k

i

s:t: Mz ≤ Qtk

z ∈ Zd
≥0, (13) 

where Qt+
k ∈ Zn

≥0 is the postmatch queue-length vector 
right after the policy is executed at time tk. That is, 
we minimize the number of agents waiting in over- 
demanded queues at each decision epoch.

Theorem 5.2. Let G be an (SPP)-acyclic network that 
satisfies GP and let ɛ be the GP gap. Then D′ is hindsight 
optimal with the interaction delay τ � ⌈κɛ�1⌉ �Θ(ɛ�1), 
where κ > 0 is some constant that does not depend on ɛ:

R∗, t � RD′, t ≤ Γɛ�1 for all t > 0, 

where Γ > 0 is a constant that may depend on n, d, M, and r 
(but not λ or ɛ).

The proof depends in explicit ways on the acyclicity 
(see Appendix C). We do not know if this is true for 
cyclic networks where the main challenge is that we do 
not know how to explicitly construct the inverse matrix 
Y of the optimal basis matrix.

6. Delay Costs
The problem of minimizing delay penalties/holding 
costs has been studied in earlier papers (Bušic and Meyn 
2014, Gurvich and Ward 2014). This is a complex ques
tion in general, but our results have some immediate 
implications on optimal delay cost scaling.

Suppose at the end of each period (after observing an 
arrival and possibly performing matches), we incur a 
delay cost ci per type i agent in the system. Then the 
expected total delay cost by time t under a matching pol
icy D is given by

HD, t :� ED
Xt

u�1
c · Qu+

" #

:

The minimal delay cost for fixed t is then H∗, t :� minD∈Π 

HD, t. Given delay costs cis, define r� cM; rm is an “in
direct” value per match m. Each time that we perform 
match m once, the total delay cost decreases by rm �P

i∈A(m)ci. With this notation, let us rewrite HD, t as 
follows:

HD, t � ED
Xt

u�1
c · Qu+

" #

� ED
Xt

u�1
c · Au � c · MDu

" #

� E
Xt

u�1
c · Au

" #

�E
Xt

u�1
r · Du

" #

� E
Xt

u�1
c · Au

" #

�
Xt

u�1
RD, u:

In turn,

H∗, t � ED
Xt

u�1
c · Au

" #

� max
D∈Π

Xt

u�1
RD, u, 

and

HD, t � H∗, t � max
π∈Π

Xt

u�1
Rπ, u �

Xt

u�1
RD, u

≤
Xt

u�1
R∗, u �

Xt

u�1
RD, u:

Under GP, our resolving policy achieves R∗, t � RD, t �

O(ɛ�1) for all t> 0, so that

HD, t � H∗, t + O(tɛ�1) for all t > 0, 

or, in terms of time-average delay cost, we have
1
t HD, t �

1
t H∗, t + O(ɛ�1):

In the proof of the lower bound in Theorem 3.1 (see 
Appendix E), we show that under any matching policy, 
for any t0 such that 

P
i∈Q0

Qt0
i ≤ ɛ�1, there exists some 

constant B> 0 (that does not depend on ɛ) such that 
P

i∈Q0
E[Qt0+Bɛ�2

i ] � Ω(ɛ�1). Because of this “constant 
shift,” the set of all times when the expected sum of 
lengths of over-demanded queues is Ω(ɛ�1) has a posi
tive density, that is,

lim inf
T→∞

PT
t�1 1{E[

P
i∈Q0

Qt
i] � Ω(ɛ�1)}

T > 0:
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In turn, it must be the case that H∗, t � Ω(tɛ�1): We con
clude then that the exhaustive resolving policy achieves 
the optimal delay scaling.

Allowing objectives that combine both match value 
and delay cost is an interesting but nontrivial research 
direction. Given network parameters c, r, and M, con
sider (SPP) twice: once with r and once with r′ � cM (the 
match value maximization reformulation of the delay 
cost minimization). If these two instances have the same 
optimal basis, then it follows—from Theorem 3.1 and 
the previous delay cost derivations—that our resolving 
policy achieves ɛ�1 all time regret for the total (match 
value minus scaled delay cost) objective RD, t � t�1HD, t.

If the two bases are different, however, a possible 
conflict arises between match value maximization and 
delay cost minimization. Whether hindsight optimal
ity is attainable in this setting and, if yes, whether it 
is achievable by simple policies is a worthy goal for 
future work.

7. Concluding Remarks
The problem of dynamically allocating resources to 
incoming requests is central to operations research. In 
this paper, we seek to contribute to the study of those 
special settings, where requests have a dual role as 
demand and capacity. Our results speak to the tension 
between short- and long-term value maximization. 
We characterize networks, where maximal values can 
be achieved in the long term without sacrificing maxi
mal values in the short term. We prescribe an appeal
ingly simple dynamic matching policy that achieves 
this desired balance. We find that the best optimality 
gap that can be achieved simultaneously at all times is 
inversely proportional to the general position gap ɛ. 
The proposed periodic resolving policy achieves this 
optimality gap, where the delay between consecutive 
decision periods is of the order of ɛ�1. The general 
position gap in acyclic networks can be interpreted as 
an inherent thickness or capacity slack in the network.

This work raises several research directions. One di
rection is allowing objectives that combine both value 
and holding costs. Another direction is incorporating 
agents’ departures. The tension between value and delay 
is endogenized when agents depart (abandon) without 
being matched. Without departures, delaying actions 
increases the collected value. With departures, this is no 
longer the case. The upper bound—given by infinitely 
patient agents and a decision maker that waits until the 
end of the horizon—is not generally achievable.

This paper reveals the importance of the general 
position gap in the study of departures. Because over- 
demanded queue lengths are of the order of ɛ�1 (so are 
their corresponding waiting times), if the patience is 
of the order of magnitude longer than this, the results 
should not change. In other words, the smaller the 

general position gap, the more patient we need agents 
to be to achieve hindsight optimality.

Appendix A. Proofs from Section 2
Proof for Figure 3. Some preprocessing is useful here. It is a 
simple observation that under the optimal total value for a 
fixed t—realizable by taking no action until time t, and per
forming matches according to an optimal solution at that 
point—the optimal solution is given by setting

z∗, t
1 :� At

1 ∧ At
2 and z∗, t

2 :� At
3 ∧ (At

2 � At
1)

+, (A.1) 

so that

R∗, t � r1E[At
1 ∧ At

2] + r2E[At
3 ∧ (At

2 � At
1)

+
]: (A.2) 

Fix t � αt for some α ∈ (0, 1). Then the optimal value at time t 
is the same as (A.2), where t is replaced by t. We also use the 
following simple fact: the multivariate central limit theorem 
(Van der Vaart 1998, example 2.1.8) applied to the multino
mial random vector (At

1, At
2, At

3) and the continuity of the map 
(x1, x2, x3) → (x1 � x2) implies that

P{At
1 � At

2 ≤ δ
ffiffi
t

√
} → Φ(δ=

ffiffiffi
λ

√
) as t → ∞, (A.3) 

where Φ is the cumulative density function of the standard 
normal distribution and λ � λ1 � λ2 � λ3.

The proof now proceeds in two parts. We first show that 
any nonanticipating policy D that has the optimality guaran
tee R∗, t � RD, t � o(

ffiffi
t

√
), must not perform match 2 until late in 

the horizon. A consequence of this, as we will show, is that 
any such policy must have R∗, t � RD, t � Ω(

ffiffi
t

√
):

Part 1. Fix α � 1=2 (t � t=2). The proof works for any 
α ∈ (0, 1), but fixing α � 1=2 is notationally convenient. For 
some κ > 0, let

τ :� inf{t ≥ 0 : Dt
2 ≥ κ

ffiffi
t

√
}

be the first time that match 2 is used more than κ
ffiffi
t

√
times and 

fix δ > 2κ. The following two events are independent under 
any nonanticipating policy D:

E1 :� {τ ≤ t} ∩ At
1 � At

2 ≥ �
δ

2
ffiffi
t

√
� �

and

E2 :� {A(t, t]
1 � A(t , t]

2 ≥ δ
ffiffi
t

√
}, 

where we introduced the increments A(s, u]
i :� Au

i � As
i . On the 

intersection E1 ∩ E2, we have At
1 � At

2 ≥ δ
ffiffi
t

√
=2, which implies 

At
1 ≥ At

2. Per (A.1), we have z∗, t
2 � 0 so that, on this event, the 

policy loses (r1 � r2)κ
ffiffi
t

√
relative to the optimal. Using the 

independence of the events E1 and E2, we have

R∗, t � RD, t ≥ (r1 � r2)κ
ffiffi
t

√
P{E1}P{E2}:

Per (A.3), P{E2} → η > 0 as t → ∞. For the policy to have 
R∗, t � RD, t � o(

ffiffi
t

√
), it must be that

P{E1} → 0 as t → ∞:

Then for large enough t, we have

P{τ ≤ t} ≤ P{E1} + P Aτ1 � Aτ2 ≤ �
δ

2
ffiffi
t

√
� �

≤ 2η:

Recalling the definition of τ, this shows that a policy D that 
has RD, t � R∗, t � o(

ffiffi
t

√
) will, with high probability, avoid per

foming match 2 until time t � t=2.

Kerimov, Ashlagi, and Gurvich: Constant Regret in Dynamic Matching 
Management Science, 2024, vol. 70, no. 5, pp. 2799–2822, © 2023 INFORMS 2813 



Part 2. We claim that any policy that has the optimality 
guarantee o(

ffiffi
t

√
) at time t, must have for all κ > 0 that

P Qt
2 > κ

ffiffi
t

pn o
→ 0 as t → ∞: (A.4) 

Before proving this claim, we will use the arguments in part 1 
to show that if a policy is value optimal at t, we contradict 
(A.4) and thus the near optimality at t.

Because Du
1 ≤ Au

1 for all u> 0, we have that for all s ≤ τ,

Qs
2 � As

2 � Ds
1 � Ds

2 ≥ (As
2 � As

1 � κ
ffiffi
t

√
)
+

:

Thus,

P Qt
2 > κ

ffiffi
t

pn o
≥ P (At

2 � At
1 � κ

ffiffi
t

√
)
+

≥ κ
ffiffi
t

p
, τ > t

n o

≥ P (At
2 � At

1 � κ
ffiffi
t

√
)
+

≥ κ
ffiffi
t

pn o
� P{τ ≤ t }

≥ P (At
2 � At

1 � κ
ffiffi
t

√
)
+

≥ κ
ffiffi
t

pn o
� 2η:

Per (A.3), there exists γ � γ(κ) such that P{At
2 � At

1 ≥ 2κ
ffiffi
t

√
)}

≥ γ. Choosing δ large (and consequently, η small) so that 
2η < γ, we have that a policy that has R∗, t � RD, t � o(

ffiffi
t

√
), 

must also have P{Qt
2 > κ

ffiffi
t

√
} ≥ (γ� 2η) > 0 for all t> 0, which 

contradicts (A.4) as required.
To conclude the proof, it remains to show that any policy 

with the suboptimality gap o(
ffiffiffiffi
t

√
), must have P{Qt

2 ≥ κ
ffiffi
t

√
}

→ 0 as t (and then t � t=2) → ∞.
Because Du

1 + Du
2 ≤ Au

2 for all u> 0, we have Qu
1 + Qu

3 � Au
1 

+ Au
3 � Du

1 � Du
2 ≥ Au

1 + Au
3 � Au

2 for all u> 0. Because λ1 +λ3 
> λ2, we have by the strong law of large numbers that

P Qt
1 + Qt

3 ≥ κ
ffiffi
t

pn o
≥P At

1 + At
3 � At

2 ≥ κ
ffiffi
t

pn o
→ 1 as t → ∞:

If in contrast to our claim, there exists θ > 0 such that P{Qt
2 ≥

κ
ffiffi
t

√
} ≥ θ, then for all sufficiently large t, we have

P (Qt
1 + Qt

3) ∧ Qt
2 ≥ κ

ffiffi
t

pn o
≥ θ=2:

On the event {(Qt
1 + Qt

3) ∧ Qt
2 ≥ κ

ffiffi
t

√
}, there are κ

ffiffi
t

√
unused 

feasible matches, which implies

R∗, t � RD, t ≥ E[(r1 ∧ r2)((Qt
1 + Qt

3) ∧ Qt
2)]

≥ (r1 ∧ r2)κ
ffiffi
t

p
P (Qt

1 + Qt
3) ∧ Qt

2 ≥ κ
ffiffi
t

pn o

≥ (r1 ∧ r2)κ
ffiffi
t

p
θ=2, 

contradicting the optimality guarantee o(
ffiffi
t

√
) of the policy at 

time t. w

Appendix B. Proofs from Section 4
Proof of Lemma 4.1. Let B be the corresponding optimal 
basis to (z∗, s∗). Recall that Q0 � {i ∈ A : s∗

i � 0} and M0 � {m ∈

M : z∗
m � 0} are the corresponding sets of over-demanded 

queues and redundant matches, respectively.
Let (z, s) be any feasible solution of (SPP) that has si � 0 for 

all i ∈ Q0 and zm � 0 for all m ∈ M0. Then it must be that 
(z, s) � B�1λ, and in particular, zm � ymλ for all m ∈ M+. This 
immediately follows, because the linear system {Mz + s �

λ, z ≥ 0, s ≥ 0} with the condition we set on si, i ∈ Q0, and 
zm, m ∈ M0, has a unique solution.

Recall also that (z∗, s∗) has a nondegenerate basis. In partic
ular, the same conclusion holds if λ is replaced by λ̃ � λ+ ζ 

for a suitably small ζ ∈ Rn. That is, any feasible solution to the 
linear system {Mz + s � λ̃, z ≥ 0, s ≥ 0} with si � 0 for all i ∈ Q0 
and zm � 0 for all m ∈ M0, must satisfy zm � ymλ̃ for all 
m ∈ M+.

Fix t � Ω(ɛ�2). Consider a policy D that does not execute 
any matches in M0. Let qi :� ED[Qt+

i ] ≤ ED[Qt
i] � O(ɛ�1) be 

the postmatch queue length vector and zm :� Dt
m. Let z :� z=t 

and q :� q=t. Using the fact that Mz + q � λt, we have

Mz + q � λ, 

where qi � O(ɛ) for all i ∈ Q0 and zm � 0 for all m ∈ M0. For all 
i ∈ A, define

λ̃i :� λi � qi1{i∈Q0}:

Let z̃m :� zm for all m ∈ M+ and zero otherwise. Then (z̃, q̃)

satisfies Mz̃ + q̃ � λ̃, where q̃i � 0 for all i ∈ Q0 and z̃m � 0 for 
all m ∈ M0. Per the previous arguments, then it must be that 
z̃m � ymλ̃ for all m ∈ M+. Because RD, t � t(r · z) ≥ t(r · z̃) �

t
P

m∈M+
rmymλ̃ and R∗, t ≤ t(r · z∗), we have

R∗, t � RD, t ≤ t(r · z∗ � r · z̃) � t
X

m∈M+

rmymλ�
X

m∈M+

rmymλ̃

 !

≤ trmaxω‖λ� λ̃‖1, 

where rmax :� maxm∈M+
rm, and we used the fact that the vec

tors ym have all entries in [�ω,ω]. Recalling that |λi � λ̃i | �

qi1{i∈Q0}, we conclude that

R∗, t � RD, t ≤ trmaxω‖λ� λ̃‖ � tO(ɛ) � O(ɛ�1), 

as required. w

B.1. Proof of Proposition 4.1
We first prove (8). Recall the problem

h∗(u) � min
X

i∈Q0

X

m∈M+

(rmym)isi

s:t: zm + yms � ymu for all m ∈ M+

yjs � yju for all j ∈ Q+

z ∈ Zd
≥0, s ∈ Zn

≥0: (B.1) 

Because q+ is the postmatch queue-length vector, no more 
matches can be performed from q+ itself. Thus, we have 
h∗(q) � h∗(q+) �

P
i∈Q0
θiq+

i . It is also immediate that for all 
x ∈ [0n, Aτ] ∩ Zn

≥0, we have

h∗(q+ + Aτ) ≤ h∗(q+ + x) + h∗(Aτ� x): (B.2) 

For h∗(Aτ� x), if yl(Aτ� x) > 0 for all l ∈ M+ ∪ Q+, then set
ting zm � ym(Aτ� x) for all m ∈ M+, si � 0 for all i ∈ Q0, and 
sj � yj(Aτ � x) for all j ∈ Q+, is feasible for (B.1) with the objec
tive function value of zero. Then it is also optimal, because 
the objective function is nonnegative. Let

X :� X(Aτ) :� {x ∈ Zn
≥0 : yl(Aτ� x) > 0 for all l ∈ M+ ∪ Q+}:

Then we have h∗(Aτ� x) � 0 for all x ∈ X , and (B.2) implies

h∗(q+ + Aτ) ≤ inf
x∈X

h∗(q+ + x): (B.3) 

Our goal is to show that when h∗(q) > B, for a suitable choice 
of τ � ⌈κɛ�1⌉, we have 0 ∈ X with high probability, and Inequality 
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(B.3) is strict for x � 0. To that end, consider the following 
event:

C :� C(τ) :� |ylAτ � ylλτ | ≤
1
2 ylλτ for all l ∈ M+ ∪ Q+

� �

:

Because ylλ ≥ ɛ for all l ∈ M+ ∪ Q+, we have on C that ylAτ ≥

ɛτ=2 for all l ∈ M+ ∪ Q+. Thus, for any x ∈ [0n, Aτ] ∩ Zn
≥0 such 

that ‖x‖1 ≤ ɛτ
4ω (in particular, |ylx | ≤ ɛτ=4 for all l ∈ M+ ∪ Q+), 

on C, we have

yl(Aτ� x) ≥
ɛτ

4 for all l ∈ M+ ∪ Q+:

In particular, we have 0 ∈ X on C, and (B.3) implies h∗(q+ +

Aτ) ≤ h∗(q+).
Let i ∈ Q0 such that q+

i > B=θi (such i must exists if h∗(q) �

h∗(q+) > B). Consider m ∈ M+ such that i ∈ A(m), and set xj �

⌊ κ4nω⌋ > 0 for all j ≠ i such that j ∈ A(m) and 0 otherwise. Note 
that xj � ⌊ κ4nω⌋ ≤ ɛτ

4nω and ‖x‖1 ≤ ɛτ
4ω. Then B can be chosen suffi

ciently large so that it is feasible to perform an additional 
⌊ κ4nω⌋ many match m’s without changing any of the other 
queues. Because x ∈ X , we have on C that

h∗(q+ + Aτ) ≤ h∗(q+ + x) ≤ h∗(q+) �θi

j κ

4nω

k

≤ h∗(q+) �θ
j κ

4nω

k
, 

where θ :� mini∈Q0θi > 0.
A simple extension of Chernoff bounds for the sums ylAτ, 

l ∈ M+ ∪ Q+, yields

P |ylAτ � ylλτ | ≥
1
2 ylλτ

� �

≤ c3e�c4ylλτ ≤ c3e�c4ɛτ

for all l ∈ M+ ∪ Q+, 

for some constants c3, c4 > 0, where recall that ɛ � minm∈M+
ym 

λ ∧ minj∈Q+
yjλ. By the union bound, we have

P{Cc} ≤ nc3e�c4ɛτ:

Now we use the following lemma, which provides an upper 
bound for the expectation in (8) when we are outside of the 
event C.

Lemma B.1. For some constant K > 0, which does not depend on 
ɛ, we have

Eq[((h∗(Qτ) � h∗(q))
+

)
2
] ≤ K2ɛ2τ2:

Hölder’s inequality then implies that

E[(h∗(q + Aτ) � h∗(q))
+

1{Cc}] ≤ Kɛτnc3e�c4ɛτ:

Given δ ∈ (0, 1), set τ � ⌈κɛ�1⌉ with large enough κ ≥ 8nω such 
that

nc3e�c4ɛτ ≤ δ and Kɛτnc3e�c4ɛτ ≤ (1 � δ)θ
j κ

8nω

k
:

Recalling that h∗(q) � h∗(q+), we can then conclude that if 
h∗(q) > B, then

Eq[h∗(Qτ) � h∗(q)] ≤ �P C{ }θ
j κ

4nω

k

+E[(h∗(q + Aτ) � h∗(q))
+

1{Cc}]

≤ �(1 � δ)θ
j κ

4nω

k
+ (1 � δ)θ

j κ

8nω

k

≤ �γ, 

where γ :� θ (1�δ)
16nω > 0. If h∗(q) ≤ B, then clearly

Eq[h∗(Qτ) � h∗(q)] ≤ B +
X

i∈Q0

θiλiτ ≤
1
ɛ

B +
X

i∈Q0

θiλi(κ+ 1)

 !

, 

where for the last inequality, we used the fact that ɛ < 1 and 
κ+ 1 ≥ ɛτ. This establishes the drift property (8), and we turn 
to prove (9). This follows from a standard mechanism, which 
derives an exponential Lyapunov function from a given lin
ear one. Under the exhaustive resolving policy, any match 
that is performed at any decision period tk must contain at 
least one agent type that arrived between tk�1 and tk. Thus, 
we have 

P
m∈M+

(Dtk+1
m � Dtk

m) ≤
P

i∈A(Atk+1 � Atk ). Merging 
this fact with (1) immediately implies the following auxiliary 
lemma.

Lemma B.2. Under the exhaustive resolving policy, we have
X

i∈A

|Qt+
k+1

i � Qt+
k

i | ≤
X

i∈A

(Atk+1 � Atk ) ≤ nτ for all k ∈ N:

Let θ :� maxiθi > 0. Then by Lemma B.2, we have

C � sup
q∈S

Eq[e | h∗(Qτ)�h∗(q) | ] ≤ eθnτ < ∞:

In particular, the second condition of (Robert 2003, proposi
tion 8.8) is satisfied with λ� 1 there. It also follows from the 
proof of Robert (2003, proposition 8.8) that

Eq[eh∗(Qτ)] ≤ eh∗(q)(1 � γ=2), if q ∈ Fc:

Because the linear program (7) that defines h∗(·) is Lipschitz 
continuous in the right-hand side, we have h∗(Qτ) ≤ maxq∈F 
h∗(q) + c5τ for some constant c5 > 0. Letting c6 :� emaxq∈Fh∗(q), we 
have

Eq[eh∗(Qτ)] ≤ c6ec5τ, if q ∈ F:

Overall, we obtain (9):

Eq[eh∗(Qτ) � eh∗(q)] ≤ �
γ

2 eh∗(q)1{q∈Fc} + c6ec5τ1{q∈F}

≤ �
γ

2 eh∗(q) + c7ec5τ1{q∈F}

for some constant c7 > c6. w

Proof of Lemma B.1. We will first show that given x ∈ Zn
≥0, 

we have
(h∗(q + x) � h∗(q))

+
≤ K max

l∈Q+∪M+

(ylx)
�

≤ K
X

l∈Q+∪M+

(ylx)
�

:

(B.4) 
The proof than follows immediately by setting x � Aτ and 
using the following auxiliary result with a redefined constant 
K, which we prove in the end of this section.

Proposition B.1. We have, 

E min
l∈Q+∪L+

(ylAτ)�

� �2
" #

≤ K2ɛ2τ2, 

for some constant K > 0, which does not depend on ɛ.

We turn then to prove (B.4). Recall that h∗(q + x) ≤ h∗(q) +

h∗(x), where h∗(x) ≥ 0, and we have h∗(x) � 0 if ylx ≥ 0 for all 
l ∈ M+ ∪ Q+. Then (h∗(q + x) � h∗(q))

+
≤ h∗(x), and it suffices 

to show that for any x ∈ Zn
≥0, not necessarily satisfying ylx ≥ 0 
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for all l ∈ M+ ∪ Q+, we have

h∗(x) ≤ K max
l∈Q+∪L+

(ylx)
�

: (B.5) 

Given x ∈ Zn
≥0, let ζ ∈ Zn

≥0 be such that ylx � ylζ for all l ∈ P+ �

{l ∈ M+ ∪ Q+ : ylx ≥ 0}, and ylζ � 0 for all l ∈ (M+ ∪ Q+)\P+. 
The linear program (7) has for all l ∈ P+ the same right-hand 
side for either x or ζ. The right-hand side differs only for 
l ∈ (M+ ∪ Q+)\P+, and because ylζ � 0 for such indices, the 
difference in the right-hand side is |ylζ� ylx | � |ylx | . By the 
Lipschitz continuity of (SPP) (Mangasarian and Shiau 1987), 
we have

|h∗(x) � h∗(ζ) | ≤ K max
l∈(M+∪Q+)\P+

|ylx | � K max
l∈M+∪Q+

(ylx)
�, 

where we used the fact that (ylx)
�

� 0 for all l ∈ P+. Finally, 
because ylζ ≥ 0 for all l ∈ M+ ∪ Q+, we have h∗(ζ) � 0 so that 
we arrive at (B.5).

That existence of ζ is straightforward. Construct a “matching 
increment” µ ∈ Zd

≥0 as follows:

µ �
0, if m ∈ P+,
(ymx)

�, if m ∈ M+\P+:

�

Let φ � Mµ, and observe that ymφ � ymMµ � µm for all m ∈ M+. 
Letting

ζ � x +φ ≥ 0, 

we then have that ymζ � ymx for all m ∈ P+ and ymζ �

ymx + (ymx)
�

� 0 for all m ∈ M+\P+ as required. w

Proof of Proposition B.1. Because

E
�

min
l∈L+∪Q+

(ylAτ)�
�2

� �

≤ K
X

l∈L+∪Q+

E[((ylAτ)�
)
2
]

 !

, 

it suffices to establish that the bound holds for each l ∈ M+ ∪

Q+ separately. Note that

yl(Aτ�λτ) �
Xτ

t�1
yl(∆Al �λ), 

where ∆At � At � At�1. Observe that the variables in the sum 
are i.i.d., and each variable is bounded by n. Then by Hoeffd
ing’s inequality, for any k> 0, we have

P{ |yl(Aτ �λτ) | ≥ ylλτ+ kɛτ} ≤ 2 exp �
2(ylλτ+ kɛτ)2

τn2

 !

≤ 2 exp �
2
n2 (ylλτ+ kɛτ)

� �

:

Notice that n here is the number of agent types, which does 
not change with ɛ or τ. In turn,

P{(ylAτ)�
≥ kɛτ} � P{ylAτ ≤ �kɛτ} ≤ P{ |yl(Aτ�λτ) |

≥ ylλτ+ kɛτ}

≤ exp �
2
n2 (ylλτ+ kɛτ)

� �

≤ exp �
2
n2 kɛτ

� �

, 

where the last inequality uses the fact that ylλ ≥ 0. This expo
nential tail then implies the result of the lemma by a simple 
integration. w

Appendix C. Proofs from Section 5
Proof of Lemma 5.1. The task here is to prove that under 
the assumption of the lemma, (SPP) can be equivalently 
represented by a suitable minimum-cost network flow prob
lem. Because such a flow problem always has an acyclic opti
mal solution (Ahuja et al. 1993, theorem 11.1), the lemma then 
follows from the assumed uniqueness under GP.

First, let us create the partition. Having only two-way 
matches allows us to represent the matching network graph 
as a simple graph. That is, we will have a vertex correspond
ing to each agent type (but not for matches), and there exists 
an edge between i, j ∈ A if and only if there exists m ∈ M such 
that Mim � Mjm � 1. Thus, each edge (i, j) in this simple graph 
representation is uniquely identified by a match, and we will 
write ri, j for the value of that match.

Our assumption—that any cycle contains an even number 
of matches—translates in this simple graph representation to 
assuming that any cycle is of even length. Because a simple 
graph is bipartite if and only if it does not contain any odd 
cycles, we have a partition of A into two disjoint subsets A1 
and A2 such that all edges in the graph are between some i ∈

A1 and j ∈ A2.
As it is customary, we augment this graph with an origin 

(or supply) node s, and a destination (or target) node t. There 
will be directed outgoing edges from s to each i ∈ A1, as well 
as outgoing edges from each j ∈ A2 to t, and each edge (i, j) in 
this graph is directed from i ∈ A1 to j ∈ A2.

The resulting directed graph, by construction, has no 
directed cycles. For each edge (i, j) in this graph, we place a 
negative cost �ri, j (i ∈ A1, j ∈ A2). We also put upper bounds 
xs, i ≤ λi for all i ∈ Ai and xj, t ≤ λj for all j ∈ A2. Consider the 
following minimum-cost network flow problem:

min �
X

i∈A1, j∈A2

ri, jxi, j

s:t:
X

j∈A2

xi, j � xs, i � 0 for all i ∈ A1

X

i∈A1

xi, j � xj, t � 0 for all j ∈ A2

xs, i ≤ λi for all i ∈ A1

xj, t ≤ λj for all j ∈ A2

x ≥ 0:

This problem has a cycle free solution (Ahuja et al. 1993, chap
ter 11.1). In particular, because the variables xi, j (i ∈ A1, j ∈ A2) 
have no upper or lower bounds, there is no (undirected) cycle 
consists of edges such that xi, j > 0 for all edges (i, j) in the 
cycle.

Recall that these edges correspond to matches in the origi
nal matching network. Let zm � xi, j for all m � (i, j) ∈ M, si �

λi � xs, i for all i ∈ A1, and sj � λj � xj, t for all j ∈ A2. Then it is 
immediate that the minimum-cost network flow problem is 
equivalent to (SPP). In turn, the optimal solution to the latter 
problem is acyclic, where the uniqueness is assumed under 
GP. w

Proof of Lemma 5.2. Let (z∗, s∗) be an optimal basic feasible 
solution of (SPP) such that the corresponding LP-residual 
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graph is acyclic. By Theorem 5.1, we know that for any m ∈ M 

that is a basic variable, we have z∗
m � ymλ ≥ 0, and for any i ∈ A 

that is a basic variable, we have s∗
i � yiλ ≥ 0. If z∗

m � ymλ � 0, 
then Condition (12) is violated, because ym is a vector with all 
entries in {�1, 0, 1}. Similarly, we must have s∗

i > 0, which 
implies that the optimal basis is nondegenerate. w

C.1. Construction of the Surplus Vectors
Removing all redundant matches m ∈ M0 from G, decomposes 
the network into (possibly) multiple connected components. 
Throughout the construction in this section, we assume, with
out loss of generality, that there is a single component, that is, 
M0 � ∅. Otherwise, the following procedure is applied sepa
rately to each component.

Let U0 :� {i ∈ Q0 :
P

m∈MMim � 1}. This is the set of queues 
in Q0 participating in exactly one match; U0 is a subset of the 
leaves in G. The following lemma shows that U0 is nonempty.

Lemma C.1. The number of leaves in G is at least n � d + 1. 
Because |Q+ | � n � d, at least one of the leaves must be in Q0, and 
in turn, |U0 | ≥ 1.

For each pair of vertices j ∈ Q+ and i ∈ U0, we traverse the 
unique path between j and i in the (SPP)-residual graph G. 
Starting from j ∈ Q+, any edge from some i′ ∈ A to some m′ ∈

M on this path is marked with the direction it is traversed, 
i′ → m′ or m′ → i′. An edge can be marked with both direc
tions if it is traversed i′ → m′ on one path, but m′ → i′ on 
another. Denote the resulting directed graph by G

→

.

Lemma C.2. For each match m ∈ M, there is a unique queue 
i(m) ∈ A(m), such that the edge between m and i(m) has a single 
direction in the G

→

, which is directed from m to i(m).

Given G
→

, we say that a path from j ∈ A to i ∈ U0 is uniquely 
directed if for any match m ∈ M on this path, the only outgo
ing edge from m is to i(m). For example, in Figure C.1, the 
path from queue 7 to queue 1 is uniquely directed, whereas 
the path from queue 6 to queue 2 is not.

Based on these uniquely directed paths, we build subtrees 
as follows. For each i ∈ A, we let T i be the subtree rooted at i, 
where T i is the union of all uniquely directed paths starting 
from i. T i, by construction, is a two-way tree: for each match 
m in the subtree, we have A(m) � 2; see Figure C.1 for an 
example of a subtree. Let A(T i) be the set of queues in T i.

Let d(i, j) be the length of the directed path from i ∈ A to j ∈

A in G
→

. For each i ∈ A, we then define the surplus vector yi ∈

{�1, 0, 1}
n as follows:

(yi)j :�

0, if j ∈ A\A(T i),
1, if d(i, j) ≡ 0 (mod 4),

�1, if d(i, j) ≡ 2 (mod 4):

8
><

>:

Because d(i, i) � 0, in particular, we have (yi)i � 1. Finally, we 
identify the surplus vector for each m ∈ M with the vector 
yi(m):

ym :� yi(m) for all m ∈ M:

Proof of Theorem 5.1. Following the arguments on the 
structure of the optimal solution of (SPP) in Section 4.2, 
assume that M+ � {1, 2, : : : , d � ϱ} and Q+ � {d � ϱ + 1, d � ϱ +

2, : : : , n}, where we let ϱ :� |M0 | . Then the optimal basis 
matrix takes the form

B �
M0 0
M+ I

" #

, 

where M0 has the rows of M corresponding to the queues in Q0, 
M+ has the remaining n � d + ϱ rows, and B has the columns 
corresponding to M+ and Q+ in order; I here is an (n � d + ϱ) ×

(n � d + ϱ) identity matrix, and 0 is a (d � ϱ) × (n � d + ϱ) zero 
matrix.

Being the basis matrix, B is invertible and we claim that Y �

B�1 has the following form:

B�1 � Y :�
Y0 0
Y+ I

" #

, 

Figure C.1. (Color online) Example of a Directed Graph G
→

Notes. In this network, Q+ � {6, 7, 8} and U0 � {1, 2}. (Left) The edge between match 1 and queue 4 is marked with both directions, because it is 
traversed on both paths 7 → 1 and 6 → 2. (Right) The subtrees rooted at queue 7 (T7) and queue 8 (T8), respectively.
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where [Y0, 0] is a (d � ϱ) × n matrix and [Y+, I] is an (n � d +

ϱ) × n matrix, where 
1. mth row of [Y0, 0] is ym for each m ∈ M+, and
2. jth row of [Y+, I] is yd�ϱ+j for each d � ϱ + j ∈ Q+.
In turn, the optimal solution of (SPP) can be written as

z∗
M+

s∗
Q+

" #

� B�1λ � Yλ, 

which implies z∗
m � ymλ > 0 for all m ∈ M+, and s∗

j � yjλ > 0 
for all j ∈ Q+, where strict inequalities follow from the nonde
generacy of (z∗, s∗).

To prove the previous claim,

YB �
Y0 0
Y+ I

" #
M0 0
M+ I

" #

�
M0 0
M+ I

" #
Y0 0
Y+ I

" #

� I, (C.1) 

is equivalent (and hence implied) by the following two 
properties: 

1. The first property is that [Y0, 0]
′ M0

M+

� �

� I, or ymM � em 

for all m ∈ M+, where ym is the mth row of Y, and em is the 
mth row of I,

2. The second property is that Y+M0 + M+ � 0,
which we will prove next. Take any two matches m, m′ ∈ M+, 
and consider the subtree T i(m). If m′ is included in T i(m), then 
the queues j ∈ A(T i(m)) ∩ A(m′) appear in the vector yi(m) � ym 

with opposite signs. If m′ is not included in T i(m), then the queues 
that are participating in m′ have zero values in the vector ym. 
Finally, because (ym)i(m) has a positive sign, we have ymM � em, 
and the first property holds.

For the second property, for each j ∈ Q+, the vector yjM0 

has �1 for each match m that j participates in and 0 otherwise. 
Thus, Y+M0 + M+ � 0, and property 2 holds as well. w

Proof of Lemma C.1. We use induction on the number of 
queue vertices n.

C.2. Basis
Assume that n � 2. Then G is unique with d� 1, and both 
queues correspond to a leaf in G. Thus, G contains n � d + 1 � 2 
leaves.

C.3. Inductive Step
Assume that the induction hypothesis holds for all G with n 
queue vertices, n ≥ 2. Consider G with n + 1 queue vertices. 
Because G is connected and acyclic, there exists a queue vertex 
v that participates in exactly one matching, that is, v is a leaf 
in G. Otherwise, because all queue and match vertices have 
degree of at least two, there would exist a cycle.

Denote the unique match vertex that v participates in G by 
m. First, assume that the number of queues participating in m 
is exactly two. Denote the other queue vertex participating in 
m by v′. Remove v and m from G and let G′ � G � {v, m} be the 
residual graph, which is clearly a matching network. By the 
induction hypothesis, G′ contains at least (n � 1) � (d � 1) +

1 � n � d + 1 leaves. If v′ is not a leaf in G′, then adding back v 
and m increases the number of leaves by one. Thus, G contains 
at least n � d + 2 leaves. If v′ is a leaf in G′, then adding back v 
and m does not change the number of leaves. Thus, G contains 
at least n � d + 1 leaves.

Similarly, if the number of queues participating in m is at 
least three, then removing v from G results in a matching net
work with n � 1 queue vertices. By the induction hypothesis, 
the residual graph G′ contains at least (n � 1) � d + 1 � n � d 
leaves. Thus, adding back v increases the number of leaves by 
one, and G contains at least n � d + 1 leaves. Thus, the induc
tion hypothesis holds for all G with n+ 1 queue vertices.

Finally, because |Q+ | � n � d, we have |U0 | ≥ 1. w

Proof of Lemma C.2. We first start with proving the follow
ing claim: G satisfies (i) all matches in G are two way, that is, 
|A(m) | � 2 for all m ∈ M, or (ii) |U0 | � 1 if and only if all the 
edges in G

→

have a single direction. The necessity part is imme
diate. If G only contains two-way matches, then we have 
|Q+ | � n � (n � 1) � 1. Thus, by the construction of G

→

, all the 
edges are assigned with a single direction. Similarly if 
|U0 | � 1, all the edges in G

→

have a single direction by construc
tion (otherwise, G

→

would contain an undirected cycle). For the 
sufficiency part, assume to the contrary that there exists m ∈

M such that |A(m) | ≥ 3 and |U0 | ≥ 2. Because n � d ≥ 2, we 
also have |Q+ | ≥ 2. Let v1, v2 ∈ Q+ and u1, u2 ∈ U0. By the con
struction of G

→

, there is a directed path from v1 to u1, v1 to u2, v2 
to u1, and v2 to u2 in G

→

. If all the edges have a single direction, 
then there exists a cycle in G that contains v1, v2, u1 and u2, 
which is a contradiction.

Now let E be the set of all edges in G
→

, which are assigned 
with both directions. Then removing E from G

→

, decomposes G
→

into (possibly) multiple connected components that satisfy 
either (i) or (ii) in the previous claim. In both cases, for each 
match m, there is a unique queue i in its component, such that 
the edge between m and i has a single direction, which is 
directed from m to i. w

Proof of Theorem 5.2. Let us argue that we can construct a 
match value vector r′ such that the optimal basis of (SPP) is 
unchanged, and all the coefficients of the objective function in 
(7) are equal to one. Then, Theorem 5.2 immediately follows 
from the proof of Theorem 3.1 because under the new match 
value vector r′, the policy D′ simply resolves (7) at each deci
sion period tk. It is straightforward to check that the desired 
match value vector is the following:

r′
m :�

1, if A(m) ∩ Q+ ≠ ∅,

2, if A(m) ∩ Q+ � ∅ and |A(m) | � 2,

|A(m) | , otherwise:

w

8
>>><

>>>:

Appendix D. Proof of the Upper Bound in 
Theorem 3.1

Recalling that under the exhaustive resolving policy, agents 
of type i ∈ Q+ are removed postmatch if not used, it is 
straightforward to verify that the discrete time Markov chain 
(Qtk , k ∈ N) is irreducible and aperiodic on its state space

S :� {Q ∈ Zn
≥0 : Qj ≤ τ for all j ∈ Q+}:

Let F :� {Q ∈ S : h∗(Q) ≤ B}. Because θ �
P

m∈M+
rmym ≥ 0, and 

in particular, θi > 0 for all i ∈ Q0, F is clearly finite. Then the 
drift property (8) implies that the Markov chain is positive 
recurrent (Robert 2003, theorem 8.6). It also follows from 
Lemma 4.2 that under the Markov chain’s unique stationary 
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distribution, which we denote by π, we have

Eπ[L(Q0)] ≤
2c1

γ
ec2τ, (D.1) 

where Q0 ~ π. Because τ � ⌈κɛ�1⌉, by Jensen’s inequality, we 
have

Eπ[h∗(Q0)] � O(ɛ�1): (D.2) 

We next show that with the initial state q � 0, (D.2) holds for 
all t> 0. Let f 0(q) :�

γ
4 L(q). Then (9) can be rewritten as

Eq[L(Qτ)] ≤ 1 �
γ

4

� �
L(q) � f 0(q), if q ∈ Fc:

It then follows from Meyn and Tweedie (1992, theorem 6.2) 
(with ε � 1 and r � (1 � γ=4)

�1 there) that

Eq
XτF

k�1
rkf 0(Qtk�1 )

" #

≤
L(q), q ∈ Fc,
(1 � γ=4)

�1
(f 0(q) +E[L(Qτ)]), q ∈ S,

(

where τF :� inf{k ≥ 1 : Qtk ∈ F}.
Because of the Lipschitz continuity of h∗(·), we have 

L(Qτ) ≤ L(q)ecτ for some c> 0. Setting the initial state q � 0, 
we then have a sufficiently large constant α > 0 such that 
E0
PτF

k�1 rkf 0(Qtk�1 )
� �

≤ αeατ:
Applying Meyn and Tweedie (1992, theorem 6.1) (with 

m � 1 there), we conclude that for all k ≥ 1, we have

|E0[f 0(Qtk )] �Eπ[f 0(Q0)] |

�
γ

4 |E0[L(Qtk )] �Eπ[L(Q0)] | ≤ αeατ, 

for a redefined constant α. Combining this with (10), we con
clude that for all k ≥ 1, we have

|E0[f 0(Qtk )] | ≤ αeατ, 

for a redefined constant α. Then by Jensen’s inequality, we 
have

E0[h∗(Qtk )] � O(ɛ�1) for all k ≥ 1:

Finally, for t ∈ (tk, tk+1), the Lipschitz continuity of h∗(·) implies 
that, because |Qt � Qs | ≤ | t � s | , we have

E0[h∗(Qt)] ≤ υ(E0[h∗(Qtk )] + τ) � O(ɛ�1) for all k ≥ 1, 

for some constant υ > 0. Using the optimality test (Lemma 
4.1), this proves the upper bound in Theorem 3.1.

Removing agents of type i ∈ Q+ under the exhaustive 
resolving policy is without loss of generality. It is immediate 
to see that if one imposes any finite buffer size (the buffer size 
is τ in the proof) for the under-demanded queues, then the 
proof does not change because the set F is still finite. There
fore, if one focuses on finite horizon (say T) value maximiza
tion, then one can set the buffer size to be T. w

Appendix E. Proof of the Lower Bound 
in Theorem 3.1

Throughout the proof, we use superscripts on expectations 
and probabilities to make explicit the dependence on ɛ:

Assume to the contrary that there exists a matching policy, 
which has

Eɛ
X

i∈Q0

Qt
i

" #

� o(ɛ�1) for all t > 0:

Markov’s inequality then implies that for all t > 0, Pɛ{
P

i∈Q0
Qt

i 
≥ ɛ�1} � o(ɛ) → 0 as ɛ ↓ 0. In particular, given t> 0 and 0 < δ1 
< 1, for all sufficiently small ɛ > 0, we have

Pɛ
X

i∈Q0

Qt
i ≤ ɛ�1

( )

≥ 1 � δ1 > 0: (E.1) 

For ease of exposition, let us fix some t0 > 0, and assume that 
P

i∈Q0
Qt0

i ≤ ɛ�1 throughout the analysis. We will argue that 
this is without loss of generality at the end of the proof. First 
consider the case when the general position gap is deter
mined by some active match, that is, ɛ � ymλ for some 
m ∈ M+. Consider the process Is :� ymQs for all s ≥ t0. Then 
we have

Is � It0 + ymAt0, s � Dt0, s�

m for all s ≥ t0, 

where for any t> 0 and s> t, we define At, s :� As � At and 
Dt, s�

m :� Ds�

m � Dt
m. Because Dt, s�

m ≥ 0, we have

Is ≤ It0 + ymAt0, s for all s ≥ t0: (E.2) 

Define a stopping time

ν :� inf{t0 + u : It0+u ≤ �ɛ�1, u ≥ 0}:

We claim, and will later prove, that given 0 < δ2 < 1
2, there 

exists B> 0 (that does not depend on ɛ) such that

Pɛ{ν ≤ t0 + B=ɛ2} ≥ 1 � 2δ2 > 0, (E.3) 

for all sufficiently small ɛ > 0.
Next, we use the fact that if the network is nontrivial, then 

ym contains at least one negative entry. To see this, let N (m)

be the set of all active matches that share a queue with m, that 
is, N (m) :� {m′ ∈ M+ : A(m) ∩ A(m′) ≠ ∅}. Because the net
work is nontrivial, any i ∈ A(m) participates in at least two 
active matches in N (m). Let cm′ be the column of M corre
sponding to m′ ∈ M+. Assume to the contrary that (ym)i ≥ 0 
for all i ∈ A. Because ym · cm′ � 0 for all m′ ∈ N (m), we must 
have (ym)i � 0 for all i ∈ A(m) ∩ A(m′), which implies that 
(ym)i � 0 for all i ∈ A(m): However, this contradicts to the fact 
that ym · cm � 1. Thus, ym contains at least one negative entry.

Let S+ be the set of all indices of ym that has a positive entry, 
and let S� be the set of all indices of ym that has a negative entry. 
Because Is � ymQs �

P
i∈S+ (ym)iQs

i +
P

i∈S� (ym)iQs
i ≤ �ɛ�1 im

plies that �
P

i∈S� (ym)iQs
i ≥ ɛ�1, we have �

P
i∈S� (ym)iQνi ≥ ɛ�1 

on the event

E :� {ν ≤ t0 + B=ɛ2}:

Because �
P

i∈S� (ym)iQs
i ≥ �

P
i∈S� (ym)iQ

t0
i � ymAt0, s for all s ≥ t0 

by (E.2), we have

�
X

i∈S�

(ym)iQ
t0+B=ɛ2

i ≥ inf
ν≤u≤t0+B=ɛ2

1
ɛ

� ymAν, u, 
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on the event E. In particular,

Pɛ �
X

i∈S�

(ym)iQ
t0+B=ɛ2

i ≥
1
ɛ

,E
( )

≥ Pɛ inf
ν≤u≤t0+B=ɛ2

1
ɛ

� ymAν, u
� �

≥
1
ɛ

,E
� �

≥ Pɛ inf
0≤u≤B=ɛ2

1
ɛ

� ymAu
� �

≥
1
2ɛ

,E
� �

: (E.4) 

The process Su :� (�ymAu : u ∈ Z≥0) is a lazy random walk 
on Z, with transition probabilities P{Su+1 � Su + 1} � �

P
i∈S�

(ym)iλi and P{Su+1 � Su � 1} �
P

i∈S+ (ym)iλi, which yields E[Su+1 

�Su |Su] � �ymλ � �ɛ. Donsker’s theorem (Donsker 1951) 
(see also Whitt (2002), p. 102) guarantees that

Îɛ
(u) :� ɛ(�ymA⌈u=ɛ2⌉) ⇒ W, 

where W is a Brownian motion with drift of �1 and squared 
diffusion coefficient σ2 �

P
i∈S+ ymλi �

P
i∈S� ymλi. Moreover, 

the convergence is uniform over compact intervals. Using the 
continuity of the infimum map (Whitt 2002, section 13.4), we 
have

Pɛ inf
0≤u≤B=ɛ2

1
ɛ

� ymAu
� �

≥
1
2ɛ

� �

→ P inf
0≤u≤B

�
1 + Î(u)

�
≥

1
2

� �

≥ δ3, (E.5) 

for some δ3 > 0. Finally, using (E.4) and (E.5), choosing δ2 suf
ficiently small (and then B large) yields

Pɛ �
X

i∈S�

(ym)iQ
t0+B=ɛ2

i ≥
1
ɛ

,E
( )

≥ Pɛ inf
0≤u≤B=ɛ2

1
ɛ

� ymAu
� �

≥
1
2ɛ

� �

+Pɛ{E} � 1 ≥
δ3

2 � 2δ2 > δ4 

for some δ4 > 0. We conclude that

Eɛ

"

�
X

i∈S�

(ym)iQ
t0+B=ɛ2

i

#

≥
1
ɛ
Pɛ �

X

i∈S�

(ym)iQ
t0+B=ɛ2

i ≥
1
ɛ

,E
( )

≥
δ4

ɛ
, 

which is a contradiction to the assumption that Eɛ[
P

i∈Q0
Qt

i]

� o(ɛ�1) for all t> 0, and for all ɛ > 0 sufficiently small.
Thus far, the analysis assumes that 

P
i∈Q0

Qt0
i ≤ ɛ�1 for some 

fixed t0. However, this assumption is without loss of generality 
because the choice of δ1 in (E.1) is arbitrary. It remains to estab
lish (E.3). Because

ν ≤ ν0 :� inf{s ≥ t0 : It0 + ymAt0, s ≤ �ɛ�1}, 

we will study ν0 instead. Under any nonanticipating matching 
policy, the law of ymAt0, s is independent of It0 , and the process 
is a random walk with upward probability �

P
i∈S� (ym)iλi and 

downward probability 
P

i∈S+ (ym)iλi � �
P

i∈S� (ym)iλi + ɛ. We 
use again the convergence of

Îɛ
(u) :� ɛ(It0 � ymA⌈u=ɛ2⌉):

Our initialization t0 is such that ɛIt0 ⇒ 0. Hence, Îɛ
(u) con

verges, as before, to a Brownian motion starting at zero. From 
continuity of the first passage time map (Whitt 2002, section 

13.6.3), we have

ɛ2(ν0 � t0) ⇒ ν̂ :� inf{s ≥ 0 : W(s) ≤ �1}:

It is known that P{ν̂ < ∞} > 0 so that given 0 < δ2 < 1
2, there 

exists B> 0 (that does not depend on ɛ) such that P{ν̂ ≤ B}

≥ 1 � δ2. In turn, by the weak convergence of ɛ2(ν0 � t0), Pɛ

{ν0 � t0 ≤ B=ɛ2} ≥ 1 � 2δ2 > 0 for all ɛ > 0 sufficiently small, as 
stated.

Thus far, we considered the effect of ɛ � z∗
m for some 

m ∈ M+, which determined the general position gap. To 
cover the case when the general position gap is determined 
by a slack variable, now we show that the case when ɛ � s∗

j for 
some j ∈ Q+ has a similar implication.

Similar to the previous case, yj must contain at least one 
negative entry, because yjM � 0 and yjλ � s∗

j > 0. Note that 
yjM � 0 also implies that yjQt � yjAt for all t> 0. Let S+ be the 
set of all indices of yj that has a positive entry, and let S� be 
the set of all indices of yj that has a negative entry. Because 
yjQt ≤ �ɛ�1 implies that �

P
i∈S+ (yj)iQt

i ≥ ɛ�1, we have

Pɛ �
X

i∈S+

(yj)iQt
i ≥ ɛ�1

( )

≥ Pɛ{yjAt ≤ ɛ�1} for all t > 0:

Notice that Eɛ[yjAt] � tɛ � ts∗
j . Redefining the process It :�

�yjAt, we have as before that Î ⇒ W, where W is a Brownian 
motion with drift of �1. In particular, there exists δ, s > 0 such 
that P{W(s) ≤ �1} ≥ δ. Similarly, for any initialization t0, 
there exists t ≥ t0 such that, for all ɛ > 0 sufficiently small, we 
have

Pɛ �
X

i∈S+

(yj)iQt
i ≥

1
ɛ

( )

≥
δ

2 , 

which implies Eɛ �
P

i∈S+ (yj)iQt
i

� �
≥ δ2 ɛ�1.

E.1. Implication to Lower Bound
Thus far, the arguments imply that over-demanded queues 
(queues in Q0) cannot be made permanently small. It remains 
to prove that supt>0(R∗, t � RD, t) ≥ γɛ�1.

We will use the following lemma, which argues that R∗, t, 
the optimal value at time t, is constant away from the optimal 
value of (SPP) when the right-hand side is scaled by t. This 
follows readily from the assumed nondegeneracy of (SPP) 
and Lipschitz continuity of (SPP) in the right-hand side.

Lemma E.1. Suppose that GP holds. Let (z∗, s∗) be the unique 
optimal solution of (SPP). Then (r · z∗)t � R∗, t ≤Λ for all t > 0, 
where Λ > 0 is a constant that may depend on n, d, M, and r (but 
not on λ or ɛ).

A policy that has the state of queues Qt at time t (such that 
E[
P

i∈Q0
Qt

i] ≥ γɛ�1), can collect at most the value given by the 
following LP upper bound

β∗(Qt, At) :� max r · z
s:t: Mz ≤ At � Qt

z ∈ Zd
≥0:

This linear program is concave in its right-hand side so that 
by Jensen’s inequality, we have RD, t ≤ ED[β∗(Qt, At)] ≤ β∗(ED 

[Qt],λt). Per the derivation in Section 4, we can rewrite the 
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previous linear program as

β∗(ED[Qt],λt) �

max
X

m∈M+

rmym(λt �ED[Qt]) �
X

i∈Q0

X

m∈M+

(rmym)isi

s:t: zm + yms � ym(λt �ED[Qt]) for all m ∈ L+

yis � yj(λt �ED[Qt]) for all j ∈ Q+

z ∈ Zd
≥0, s ∈ Zn

≥0:

Recall that θi �
P

mrmym� �

i > 0 for all i ∈ Q0. Because E[
P

i∈Q0 
Qt

i] ≥ γɛ�1, we have

RD, t ≤ β∗(ED[Qt],λt) ≤
X

m∈M+

rmymλt � Ω(ɛ�1) ≤ R∗, t � Ω(ɛ�1), 

where the last inequality follows from Lemma E.1. It only 
remains to prove Lemma E.1. Using standard arguments, for 
all t sufficiently large, we have

P{‖At �λt‖1 ≥ t3=4} ≤ c1e�c2t1=4 , 

for some constants c1, c2 > 0. In the event ‖At �λt‖1 < t3=4, we 
have for all t sufficiently large that ymAt > 0 for all m ∈ M+. 
Then the optimal solution of (SPP) with the right-hand side 
At has z∗

m(At) � ymAt for all m ∈ M+ and z∗
m(At) � 0 for all 

m ∈ M0. Outside of this event, the optimality gap is at most 
rt, where r � maxm∈Mrm. Thus, we have

(r · z∗)t � R∗, t ≤ O(1) + rtc1e�c2t1=4
� O(1): w 

Endnotes
1 For example, fewer tissue type mismatches or better age matches 
may increase life years from transplants.
2 That we remove the matches in M0 from the network is, in fact, 
necessary; see Remark 3.1.
3 The opposite is not generally true.
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