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Abstract. We study centralized dynamic matching markets with finitely many agent types
and heterogeneous match values. A network topology describes the pairs of agent types
that can form a match and the value generated from each match. A matching policy is
hindsight optimal if the policy can (nearly) maximize the total value simultaneously at all
times. We find that suitably designed greedy policies are hindsight optimal in two-way
matching networks. This implies that there is essentially no positive externality from hav-
ing agents waiting to form future matches. We first show that the greedy longest-queue
policy with a minor variation is hindsight optimal. Importantly, the policy is greedy rela-
tive to a residual network, which includes only nonredundant matches with respect to the
static optimal matching rates. Moreover, when the residual network is acyclic (e.g., as in
two-sided networks), we prescribe a greedy static priority policy that is also hindsight opti-
mal. The priority order of this policy is robust to arrival rate perturbations that do not alter
the residual network. Hindsight optimality is closely related to the lengths of type-specific
queues. Queue lengths cannot be smaller (in expectation) than of the order of €1, where €
is the general position gap that quantifies the stability in the network. The greedy longest-
queue policy achieves this lower bound.
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1. Introduction

We study centralized dynamic matching markets with
finitely many agent types and heterogeneous match
values. Delaying actions to accumulate “inventory” cre-
ates a positive externality from forming future matches
that generate high value. This delay, however, inevitably
compromises short-term value. The goal of this paper is
to shed light on this tension within the family of two-
way matching networks.

In our model, agents arrive sequentially to the mar-
ket. The type of an agent is observed upon arrival and
independently drawn from a given distribution over
finitely many types; we associate each type with a
queue that holds waiting agents of that type. A net-
work topology describes which pairs of agent types
can match. We assume that agents leave the market
when they are matched. A matching policy determines
when and which matches to form.

To evaluate a matching policy and the tension be-
tween short- and long-term value, we use the notion of
all-time regret. The regret at a given time t is measured
by the difference between the (expected) total value

that can possibly be generated and the (expected) total
value generated by the policy until time t. The exis-
tence of a policy that achieves a “small” regret at all
times suggests that the tension between short- and
long-term value is essentially moot. We refer to such a
policy as hindsight optimal.

The networks considered in this paper are two-way
(each match includes two agents) and satisfy a general
position condition. General position is a weak (but neces-
sary) condition that holds when the static-planning
problem (a linear program that optimizes the first-
order matching rates) has a unique and nondegenerate
optimal solution.

1.1. Optimality of Greedy Policies

Our main contribution is identifying that for the family of
two-way matching networks, suitably designed greedy
policies are hindsight optimal. This implies that two-way
matching networks that satisfy general position are sim-
ple in the sense that they can be managed locally (in time)
without concern for long-term implications and using
intuitive matching rules.
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The greedy policies require a minimal preprocessing
that includes the removal of all redundant matches
from the network. Redundant matches are those that
are not used by the static-planning problem. For hind-
sight optimality, any matching policy must mostly
avoid performing redundant matches. Our policies
operate on a residual network that is obtained from
removing these matches from the original network.

An important group of agent types are those that are
under-demanded. The static-planning problem—and hence,
any “reasonable” matching policy—matches only a frac-
tion of under-demanded agent types. In every component
of a residual network, we show that there is at most one
such agent type, and there is exactly one in every acyclic
component. These types anchor the policies.

The first greedy policy we prescribe is the longest-
queue policy, with a minor variation. When an agent of
a given type arrives and enables possibly multiple fea-
sible (and nonredundant) matches, it is matched to an
agent from the longest neighboring queue. One excep-
tion is that ties are never broken in favor of an under-
demanded agent type. Naturally, the longest-queue
policy is a state-dependent policy.

Static (hence, state-independent) priority policies are
also appealing and common in practice. These policies
are also greedy, and ties are broken according to an
exogenous priority order. We construct a static priority
policy that is hindsight optimal for two-way matching
networks, whose residual networks (after removal of
all redundant matches) are acyclic. Bipartite networks,
which capture two-sided matching markets, fall into
this family regardless of whether the network is cyclic.

The (static) priority orders that achieve hindsight
optimality are easy to describe for each acyclic compo-
nent, where we refer to the under-demanded agent
type as the root. The design rule is that if two matches
are on the same path from the root, a higher priority is
assigned to the match that is farther away from the
root.

Both policies, we show, are locally robust. That is,
both policies that operate relative to a (mis)estimated
arrival-rate vector remain hindsight optimal as long as
this demand vector lies in the same (explicitly charac-
terized) cone as the true arrival-rate vector.

Our findings do not extend to multiway matching net-
works. In Kerimov et al. (2023), we studied multiway
matching networks, those where matches may include
more than two agent types. In such networks, hindsight
optimality is achievable under a periodic clearing policy
with a carefully chosen period length. Greedy policies
that do not wait to form matches are not hindsight opti-
mal. This is because of complementarities that arise in
multiway matching networks. To perform a high-value
match that requires multiple types, we must wait for
arrivals to multiple queues to be simultaneously none-
mpty. Greedy policies rush to consume these agents by

performing neighboring low-value matches instead;
see example 3.2 in Kerimov et al. (2023). It is important
that for two-way matching networks there exist greedy
policies that achieve hindsight optimality; in these,
waiting is not necessary for hindsight optimality. From
a mathematical standpoint, two-way networks allow
us to express the optimality gap explicitly in terms of
the network parameters.

Our proofs are based on inferring bounds on regret
from bounds on queue lengths. This creates an intimate
connection between the optimal scaling for regret and
the optimal scaling for queue lengths as a function of
the network primitives.

In a classic single-server queueing system with utili-
zation p, the stationary queue length is, in expectation,
proportional to 1/(1 — p). It is generally true that one
cannot achieve smaller stationary queue length than
1/(1 - p) as long as there is some stochasticity in the
arrival rates or service times. In general networks, p is
the network utilization and typically identified via a
deterministic static-planning problem akin to the one
we use in this paper.

Matching networks like the one we study in this paper
are fundamentally different. In the single-server queue,
capacity is “wasted” if there are no customers. In our
matching networks, capacity can be “inventoried.” An
arriving agent that finds all queues empty will wait to be
matched later. Nevertheless, we find such a fundamental
lower bound on queue length. In Kerimov et al. (2023),
we proved that (except for trivial networks) the long-run
average queue length is at least of the order of e !, where
€ is the general position gap—a parameter that arises natu-
rally from our matching version of the static-planning
problem. In this paper, we establish that the greedy
longest-queue policy achieves this lower bound at all
times in two-way matching networks. Our narrower
focus also facilitates crisper regret bounds. That is, we are
able to identify the constant before the optimal scaling
e ! and, in turn, reflect its dependence on the number of
agent types in the network. From a technical/analysis
perspective, there is some unavoidable overlap with
our earlier paper. The key mathematical ingredient that
we import from our earlier paper is the aforementioned
connection between queue lengths and regret. Once
that connection is made, however, the current paper—
because of the algorithms/policies that did not appear
in our earlier paper—requires its own separate analysis
to bound the queue lengths. This analysis draws on
both new graph-related results and stochastic (Lyapunov
function) results. The proof that the static priority policy
achieves hindsight optimality requires recursively creat-
ing a Lyapunov function, which might be of independent
interest.

Beyond anchoring the policy construction (through
the under-demanded agent types) and revealing the
optimal scaling for regret, the static-planning problem
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plays a central role in our analysis of the stochastic sys-
tem. The Lyapunov functions that we construct use
our explicit characterization of the optimal solution of
the static-planning problem. Our Lyapunov function
arguments for longest-queue optimality are simpler
than analogous proofs for capacitated queueing net-
works and stability of general class of max-weight pol-
icies (e.g., see Jonckheere et al. 2022). As such, it serves
to introduce methods from the queueing theory tool-
box to a broader (non-queueing) community studying
matching networks.

1.2. Related Literature

Two streams of literature are closely related to this
work. The first stream concerns matching in random
graphs, and the other stream concerns matching in
queueing systems.

1.2.1. Matching in Random Graphs. This literature
studies random graphs, where agents arrive over time
and form an edge with existing agents in the system
with some exogenous probabilities. A large subset of
this literature focuses on matching, where all matches
generate the same value in contrast to our heteroge-
neous setting. Several studies find greedy policies to
be asymptotically optimal (either when the matching
probability vanishes or when the arrival rates grow
large) when the objective is to minimize waiting times
(Anderson et al. 2017, Ashlagi et al. 2019a), or, in the
presence of departures, when the objective is to maxi-
mize the number of matches (Akbarpour et al. 2020)
(unless departure times are observable), or under both
measures (Ashlagi et al. 2019b).

In our paper, we consider heterogeneous match
values so that greediness alone does not specify the pol-
icy completely. One must specify which match to per-
form when multiple matches are available. Still, we are
able to show that—in two-way matching networks—
being greedy with respect to a pre-optimized network
is hindsight optimal at all times (and truly optimal in
the long-run average sense). The network being two-
way is a necessary condition for hindsight optimality of
greedy policies in our case, because greedy policies are
suboptimal in general networks (Kerimov et al. 2023).

Several papers study dynamic matching in two-
sided networks with heterogeneous match values and
departures. Blanchet et al. (2022) considered a model in
which match values were generated from a continuous
distribution (in contrast to our finite setting). Their
paper found that greedy threshold policies, which
assure that the market is sufficiently thick, are (nearly)
asymptotically optimal as the market grows large. Col-
lina et al. (2020) interpolated between immediate and
delayed actions in order to achieve an approximation
guarantee.

1.2.2. Matching in Queues. Intuitively speaking, agents
waiting in queues at a given time correspond to match
values that have not yet been realized. Achieving the
optimal scaling for regret, as a function of the general
position gap ¢, is thus intimately linked to the minimal
achievable queue-length scaling. Within our analysis,
we establish that € ! is the minimal scaling for queue
length, and it is achievable.

This question of minimal stationary queue-length
scaling has a long history in the capacitated queueing
networks literature. In the simplest of these—the single-
station single-server queue—the stationary delay is of
the order of 1/(1 — p), where p is the utilization. The sin-
gle server is “perfectly efficient,” because the server idles
only when there is no work. In more general networks,
in contrast, some servers might be idle and have nothing
to work on, although there is work (somewhere else)
in the network. The natural question is then whether
there is a centralized policy, under which a scaling of
1/(1—p) is achievable. In capacitated queueing net-
works, p is identified by a static planning problem; see,
for example, Harrison and Lopez (1999). Shah et al.
(2014) and Maguluri and Srikant (2016) showed that
max-weight policies are those that achieve the optimal
scaling. In matching networks, agents play the dual role
of demand and capacity. Nevertheless, a static matching
problem characterizes the general position gap and, in
turn, the optimal stationary queue-length scaling. We
prove that a suitably defined longest-queue policy (an
instance of max-weight) achieves the optimal stationary
queue-length scaling.

Stationarity is, itself, nonobvious in matching mod-
els. Networks of the type that we study here—where
arrivals are sequential—are generally unstable. Condi-
tions on the model and primitives that guarantee stabil-
ity are studied in, for example, Busi¢ et al. (2013) and
Mairesse and Moyal (2016). The control policy matters
for stability. It is sometimes fixed, as in the growing
body of work on the stability of first-come-first-serve
two-way matching networks (see, e.g.,, Adan et al.
2018), and sometimes chosen explicitly to stabilize the
network (Jonckheere et al. 2022). It is a by-product of
our analysis that with sequential arrivals, the network
is stabilizable as long as the static planning problem
solution induces a residual network with odd cycles
(which makes the network, in particular, nonbipartite).

The minimization of holding costs has been studied
in the literature; see, for example, Gurvich and Ward
(2014), Busi¢ and Meyn (2015), and Cadas et al. (2019),
who focused on holding-cost minimization. Our focus
is on match value maximization, similar to Nazari
and Stolyar (2019). The goals, however, are different.
Nazari and Stolyar (2019) developed a policy that max-
imized the long-run average value while stabilizing
the queues. They were able to do so without knowing
the arrival rates in advance; see also Aveklouris et al.
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(2021). Instead, we assume that arrival rates are known,
and we focus on all-time regret—a stronger notion
than long-run average optimality—and its scaling.

This paper is a follow-up to Kerimov et al. (2023),
where we studied multiway matching networks and
proposed a batching policy that achieves the minimal
all-time regret scaling. In general, we showed there that
acting greedily is suboptimal. In this paper, we show
that when restricting attention to two-way matching
networks, there exist greedy policies that can achieve
the optimal all-time regret scaling. The restriction to
two-way networks allows for a more explicit character-
ization of the regret bound in terms of the network
parameters. Finally, we show how the network struc-
ture can be used to define a static priority policy that
achieves constant regret. Of independent interest may
be our recursive construction of a Lyapunov function
for the static priority policy.

In our paper, we prove that—in two-way matching
networks—one can achieve constant regret while being
truly greedy. Under our policies, matches are performed
as long as there is at least one feasible match available.
The only choice is which of the multiple feasible matches
to perform. A subsequent work Gupta (2022) introduced
a weaker version of greediness, where the policy com-
mitted an item to a match upon arrival even if that match
was not available at that point in time. This policy might
have left items in queues even when there were matches
available, but the weaker definition supported near opti-
mality beyond two-way networks. Importantly, the poli-
cies are structurally different.

1.2.3. Notation. For real numbers x and y, we use x A y
=min{x,y}. We use [n] to denote the set of integers
{1,2,...,n}. We follow the accepted meaning of little o,
big O, and big Q. For example, a; = Q(b;) for all >0
(for nonnegative a;, b;) means that lim inf;_,.a;/b; > 0.
Missing proofs in the body of the paper appear in
the Appendix.

2. Model
2.1. Matching Network
There is a finite set of agent types A ={1,2,...,n}, a finite
set of matches M ={1,...,d}, and a match value r,, >0
for each match m € M. Each match m € M is character-
ized by two participating agent types, denoted by the
set A(m). The network topology is specified by a matching
matrix M € {0,1}™, where M,,=1 if and only if i€
A(m). There is no harm in assuming that each agent
type participates in at least one match. Each agent type
i € Ais associated with an arrival probability A; > 0; >, 4
Ai = 1. We refer to the tuple G = (M, A, r) as the matching
network.

The matching network induces a weighted undi-
rected simple graph, where the set of vertices is A and

the set of edges is M; there is an edge between i,j € A
with weight 7, if and only if there exists m € M such
that A(m) = {i,j}. We say that i,j € A are neighbors if
A(m)={i,j} for some me M. With slight abuse of
notation, we denote this induced simple graph also
by G. We assume without loss of generality that G is
connected.

2.2. Dynamics

Time is discrete, and there is a single agent arrival every
period. The arriving agent is of type i € A with proba-
bility A;. We maintain a separate queue for each agent
type, and agents join their type-dedicated queues upon
arrival. All queues are empty at time £ =0.

Match m € M is available at time ¢ if and only if the
queues of both agent types in A(m) are nonempty at
that time. Performing m € M once requires one agent
from each type in A(m) and generates a value of r,,.
Matched agents leave the market immediately.

The process A! counts the number of arrivals to queue
i € A until (and including) time ¢. The sequence of events
in a time period is as follows: an agent arrival is realized,
then matches are performed, and queue-lengths are
updated. The process Q! tracks the number of agents
waiting in queue i € A at time ¢ after all matches for this
period have been performed.

2.3. Matching Policy

A matching policy is a mapping from histories of arrivals
and performed matches to a (possibly empty) set of
matches. Given the history, the matching policy deter-
mines how many times each match is performed at each
time period. An admissible matching policy is an increas-
ing non-anticipative process D':= (D! :m e M,t >0),
where D!, is the number of times match m € M is per-
formed by time t; D' must satisfy

Q' =A! — MD' for all t > 0. 1)

We assume that D' is right-continuous with left limits
(RCLL). AD!, := D! — D!-1 is then the number of times
match m € M is performed at time t>0. We add the
superscript D on expectations to make explicit the depen-
dence on the policy, where the superscript is omitted
when the context is clear. The family of all admissible
matching policies is denoted by I'L.

Greedy policies are a large family of admissible poli-
cies. These policies perform, whenever possible, a match
among those available within a prespecified set.

Definition 2.1. (Greedy Policy). Given a matching net-
work G and a subset S € M (not necessarily strict), we
say that a policy D is a greedy policy with respect to S, if

(i) a match is performed whenever at least one
match becomes available to perform in S, and
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(ii) matches in M\S are never performed, that is,
D! =0forallme M\Sand forall t > 0.

Note that under any greedy policy, at most one
match can be performed at any time period, because
exactly one agent arrives every period. Note that when
a match is performed, it must include the arriving
agent. Definition 2.1 does not specify which match to
perform when multiple matches are available, which
can happen upon an agent arrival. Which available
match to perform remains as a degree of freedom in the
policy definition. This choice will differ between two
greedy policies that we will introduce.

Defining a greedy policy relative to a set S, which
could be M or a strict subset thereof, gives us flexibil-
ity. Our proposed policies will be greedy relative to a
strict subset of M.

2.4. Optimality Criterion
The expected total value generated by time t under a
policy D is given by

RV = EP[r- D'].
For any fixed t, the optimal value R"" := maxpeyRY! is
trivially attained by the policy, which takes no action

until time t and follows an optimal (static) weighted
matching at time ¢. That is,

max 71y
R :=E|st My<A
yEeZi,

where the expectation is taken over all realizations
of A",

The function R*' can be interpreted as the hindsight
upper bound at time t; that is, the decision maker is
allowed to correct past decisions so that previously per-
formed matches may be revoked to perform new ones
at all times. A matching policy is hindsight optimal if it
is, at all times, almost as good as the optimal value.

Definition 2.2. (Hindsight Optimality). A matching pol-
icy D is hindsight optimal if

R¥t —RP*=0O1) for all t > 0,

which implies, in particular, that RPf/R*" =1 - O(1/t)
forallt>0.

The existence of a hindsight optimal matching policy
means that the tension between short- and long-term
objectives is essentially moot; a good performance at
time t, does not necessitate a significant compromise at
time ¢y > to. Observe that a hindsight optimal matching
policy is also optimal in the long-run average sense:

R*, T RD, T

T O1/T)—0as T — co. (2)

3. Main Results

We identify two greedy policies that are hindsight opti-
mal; one is state dependent, and the other one is state
independent. The policies (and their analyses) use prop-
erties of the optimal solution of a static (offline) linear
matching problem.

3.1. Preliminaries
We begin with some preliminaries before presenting
our main results.

3.1.1. Static-Planning and General Position. Relaxing
the integrality constraints and applying Jensen’s inequal-
ity gives the following upper bound on R*":

max r- y max 7r-X
R'=E|st. My<A'|<st Mx<At
yE Zgo X € RiO'

With the change of variables z = x/f, we can write the
upper bound in standard form as follows:

max 7r-zZ

st. Mz+s=A (SPP)

zeRY),seRY.

We refer to this formulation as the static-planning problem
(SPP). The following definition introduces the notion of
general position that captures the level of stability in a
matching network and plays a crucial role in our main
results. In fact, general position is a necessary condition
to achieve hindsight optimality (Kerimov et al. 2023,
example 3.1).

Definition 3.1. (General Position). A matching network
G satisfies the general position condition (GP) if (SPP)
has a unique nondegenerate optimal solution (z*,s*),
that is, all n basic variables in this solution are strictly
positive. Define the sets

M, i={me M:z, >0}, Mo:= M\M,,
Q.:={je A:s; >0} and Qp := A\Qy,

where M, is the set of active matches, M, is the set
of redundant matches, Q. is the set of under-demanded
(nonempty) queues, and Qy is the set of over-demanded
(empty) queues. The general position gap is defined as
€:= min z,, A }‘gél;lsj.

3.1.2. Residual Graph. To achieve hindsight optimal-
ity, any matching policy must mostly avoid perform-
ing redundant matches (Kerimov et al. 2023, remark
3.1). Accordingly, the policies that we will propose are
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greedy with respect to the set S= M, C M. Let G’ :=¢G
— M be the (SPP)-residual graph, which is obtained from
G by removing all redundant matches (every m € M
with z}, = 0). The (SPP)-residual graph G’ is then a union
of (possibly) multiple components, and we write G’ =
Ukerk]Cr, where Cy is the kth component of G’. Because G
is a simple graph, any edge (match) removal can in-
crease the number of components at most by 1; K <
|Mo| + 1. Let A(Cy) be the set of all vertices (queues) in
Ck, and let M(Cy) be the set of all edges (matches) in Cy
forall k € [K].

The (SPP)-residual graph G" has some useful proper-
ties, which will be crucial in the design and analysis of
our policies.

Lemma 3.1. Assume that G satisfies GP. Then, each com-
ponent Cy, k € [K], of the (SPP)-residual graph G’ satisfies
the following properties: (i) Cy contains at most one cycle,
(ii) if Cy does not contain a cycle, then Cy is a tree and
|A(Ck) N Q4| =1, and (iii) if Cy contains a cycle, then the
cycle is of odd length and | A(Cx) N Q| =0.

The proof of Lemma 3.1 appears in Appendix A and
uses simple linear programming variable-counting argu-
ments. This lemma will be crucial for the construction of
our static priority policy. When each component of G’ is a
tree, the single under-demanded queue will serve as an

Figure 1. (Color online) Obtaining the Residual Graph

anchor in determining the priority order over matches.
Informally, the priority order of a match will be propor-
tional to the distance from this queue.

3.2. Optimality of the Longest-Queue Policy
Recall that that under a greedy policy, in the sense of
Definition 2.1, a match can be performed only upon an
arrival of an agent. The longest-queue policy is a
greedy state-dependent policy defined as follows.

Definition 3.2. (Longest-Queue Policy). Given a match-
ing network G, the longest-queue policy, denoted by
LQ(M.), is a greedy policy with respect to M. such that

(i) Atany time t> 0, upon arrival of an agent (say type— i),
perform the available match m € M, such that A(m) = {i,j}
and j € arg max{Q} : A(m’) = {i,k} for some m’' € M.},
where ties are broken arbitrarily, and

(if) at the end of each time period (after a match is performed),
all agents of types i € Q.. leave the market unmatched.

Upon arrival, the arriving agent is matched to an
agent in a neighboring queue (given that there is a
nonempty one) that contains the greatest number of
agents. Consider, for example, the cyclic component in
Figure 1(bottom). Suppose that Q) > QL >0 at some
time ¢, and there is an arrival to queue 6 next. Both
matches 6 and 7 can be performed upon arrival, but

Notes. Top: a matching network that satisfies GP with My ={2,5} and Q. = {3}. The scalar A is chosen so that >, ,A; = 1. Bottom: the corre-
sponding (SPP)-residual graph G'. In all figures, arrival probabilities and match values are indicated on vertices and edges, respectively.
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match 7 will be performed because Q> QL >0. If
QL = QL >0, the choice between performing match 6
and match 7 is arbitrary.

In Definition 3.2, all agents of type i, i€ Q,, are
“rejected” at the conclusion of a period. In particular, an
agent of type i € Q. can be matched only upon arrival,
which happens if one of its neighboring queues is none-
mpty. These rejections simplify our analysis because we
do not have to keep track of the number of agents in
queues in the set Q.. The process (Q!:i€ Qp,t>0) is
itself a Markov chain and, we show, stable under our
policies.

Our analysis reveals that such rejections do not sacri-
fice optimality, and it is practically reasonable to reject
these agents. Otherwise, corresponding queues will
grow without a bound; see Lemma 5.1.

Our first result is that LQ(M ) is hindsight optimal
with a €7! regret scaling. This, with the exception of
trivial cases, is also a lower bound on regret scaling (see
Kerimov et al. 2023 and Theorem 3.1).

Theorem 3.1. (Hindsight Optimality for Two-Way Match-
ing Networks). Assume that G satisfies GP, and let € be the
GP gap. Then, LQ(M.) is hindsight optimal,

R*,f_RDrfgrmaxn<1+Am}n]l{ts n })/
€ e/\min

where r'max = MaXpmep, Ty ANA Apin = Minjeg, A;.

3.3. Optimality of a Static Priority (State-
Independent) Policy in Bipartite
Matching Networks
We are also interested in greedy policies that follow a
static priority order over nonredundant matches and, in
particular, make decisions independent of the state of
the network. We will establish that there exists a hind-
sight optimal static priority policy, given that GP is satis-
fied and any component in the (SPP)-residual graph G’
is a tree; an important family of matching networks satis-
fying this condition is bipartite matching networks.

Definition 3.3. (Static Priority Policy). Given a matching
network G, the static priority policy, denoted by SP(M,,
p), is a greedy policy with respect to M, such that

(i) p: My —{1,...,| M|} is a bijective static prior-
ity order. We say that m € M, has a higher priority
than m’ € M, if and only if p(m) < p(m’),

(ii) atany time t> 0, upon arrival of an agent (say type-
i), perform the highest priority match m € M, among
those available, where m € arg min{p(m’) : i € A(m’)}, and

(iii) at the end of each time period (after a match is
performed), all agents of type-1i, i € Q., leave the mar-
ket unmatched.

3.3.1. Determining the Static Priority Order p(-). Assume
that any component Cy, k € [K], in the (SPP)-residual

graph G’ is a tree. Fix some C;, where the following
procedure is applied on each component separately.
Per Lemma 3.1, there is a unique queue, denoted by
ky, such that A(Cy) N Q; = {k.}. We say that p(-) is a
topological order if given any path starting from k, to
any i€ A(Cy)\{ks}, for any two matches (edges) on
this path m,m’ € M(Cy), we have p(m) < p(m’) if and
only if m is farther away from k, than m’” when we trav-
erse the path starting from k. to i. Note that there is at
least one topological order p(:), because the path between
ks toanyi e A(Cy)\{k,+} is unique, because Cy is an acyclic
component.

Our second result shows that there exists a static pri-
ority policy, which is hindsight optimal.

Theorem 3.2. (Hindsight Optimality for Two-Way Match-
ing Networks with Acyclic Residual Graphs). Assume that
G satisfies GP, and any component in the (SPP)-residual
graph G’ is a tree. Then SP(M., p), where p is any topolog-
ical order and is hindsight optimal, and

R —RPI<T forall t >0,

whereI" > 0 is a constant that does not depend on t.

We conclude this section with some remarks regard-
ing Theorems 3.1 and 3.2.

Remark 3.1.

(i) Theorem 3.2 holds for any bipartite matching net-
work G that satisfies GP. This is because per Lemma
3.1, any component Cy in the (SPP)-residual graph G’ is
a tree, because G does not contain any odd cycles.

(ii) In contrast to Theorem 3.1, where we identified
the dependence of the constant regret on the general
position gap €, in Theorem 3.2 we could only establish
that the regret is constant at all times. However, this
result still implies that SP(M., p) is optimal in the long-
run average sense; see (2). We believe that SP(M.,p)
also achieves the optimal scaling of e~! for regret, as
simulations in Example 6.1 suggest.

(iii) We do not know whether there exists a hind-
sight optimal static priority policy when there is a com-
ponent C in the (SPP)-residual graph G’ that contains
an odd cycle. Note that the tree structure is central to
the design of a priority policy.

(iv) The topological order for the static priority pol-
icy is generally not unique (unless G is a path). For
example, in Figure 2, another possible topological order
is5>1>4>2>3>6>7. O

The rest of the paper is organized as follows. In Sec-
tion 4, we explicitly characterize the optimal solution of
(SPP), which plays a key role in the design and analysis
of our matching policies. In Section 5, we prove hind-
sight optimality of our matching policies. Finally, in
Section 6, we provide numerical examples to provide
further insights about our matching policies.
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Figure 2. (Color online) A Tree Component C; withk, =6

Note. One possible topological order p(-) is indicated on the matches:
1>5>2>4>6>3>7 wherem>m’ means p(m) < p(m’).

4. Properties of the (Deterministic) Static-
Planning Problem

This section uncovers properties of the matching net-

work and the static-planning problem (SPP), which are

essential in the design and (stochastic) analysis of our

matching policies.

The following theorem gives an explicit characteriza-
tion of the optimal solution of (SPP). The characterization
is instrumental because it captures permitted perturba-
tion for A to maintain the optimal basis in terms of the
general position gap €. This is a generalization of (Keri-
mov et al. 2023 and Theorem 4.1) to matching networks
with cyclic components.

Theorem 4.1. (Explicit Optimal Solution of (SPP)). As-
sume that G satisfies GP. Let (z*,s") be the unique nondegene-
rate optimal solution of (SPP) with M, ={me M :z,, >0}

and Q. ={je A: 57 > 0}. Then, there exist | M. | vectors y™
e{-1,-1/2,0,1/2,1}" and |Q,| vectors v € {-1,0,1}"
such that

z,,(A) :==y"A > 0 for all m € M. and
si(A):=y/A>0foralljeQ,.

4.1. Surplus Vectors

The explicit construction of the y vectors (surplus vec-
tors) in Theorem 4.1 plays a key role in the design and
analysis of our matching policies. The following proce-
dure describes the construction for each of the compo-
nents in the SPP-residual graph G'. Fix a component C,
be it cyclic or a tree; see Lemma 3.1.

e Tree components. First, assume that Cy is a tree.
The corresponding surplus vectors are already con-
structed in (Kerimov et al. 2023, section 4), but we repeat
it here for completeness. Let k, be the unique queue in
A(Cr) N Q4 per Lemma 3.1. Let Uy :={i€ A(Cy) N Qp:
> mem, Mim = 1}. This is the set of queues in A(Cy) N Qo
participating in exactly one nonredundant match; # is
a subset of the leaves of Ci. Because Cj is a tree, U is
clearly a nonempty set. For all i € Uy, we first traverse
the unique path between k. and i in C starting from k..
Any edge between i’ € A(Cx) and j’ € A(Ck) on this path
is marked with the direction it is traversed, i’ — )" or
j" — 1. Denote the resulting directed graph by Ci; for
example, see Figure 3. We refer to k, as the root of Cr.
Because Cy is a tree and the root k. is unique, every edge
in this component is marked with a unique direction.

For each i € A(Cy), we let 7; be the subtree rooted at
i, where 7; is the union of all directed paths from i
to j € Up. Note that T, is Cy itself. Let A(T;) be the set
of queues in 7;. Let d(i, j) be the length of the directed
path from i € A(Cy) to j € A(Cy) in Cx with the conven-
tion d(i,i) = 0. For each i € A(Cy), we then define the

Figure 3. (Color online) Left: A Tree Component Cy with k, =6 and U, = {1,5,7,8} € A(C); Right: The Corresponding Directed

Graph (?k
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surplus vector ' € {—1,0,1}" as follows:

0, ifjeAVAT),
/), =% 1, ifd(i,j)=0 (mod2), 3)
-1, ifd@G,j)=1 (mod 2).

Note that because d(k.,k;) =0, in particular, we have
(¥ ), = 1. Finally, by the construction of Cx, for each
m € M(Cy), there is a unique queue i(m) € A(Cy) such
that the marked direction on m is incoming to i(m).
Then, we define the surplus vector for each m € M(Cy)
with the vector /")

y" =y for all m e M(Cy).

For example, in Figure 3, the surplus vector for queue 3
is y3 =[1,-1,1,-1,1,0,0,0], and the surplus vector
for match 2 is equal to the surplus vector for queue 2,
whichis y* =[-1,1,0,0,0,0,0,0].

e Cyclic components. Let us first consider the case
when Cj is just a cycle of odd length. Let A(Cy) = {1,
..,2n+ 1} and M(Cy) ={1,...,2n+ 1}, where A(m) =
{m,m+1} for all me[2n] and AQ2n+1)={1,2n+1}.
Because A(C) N Q4 =0 per Lemma 3.1, we must have
that A; =z | +zjforall2<i<2n+1land Ay =2z, 4 +2].

This yields >>75" A; = 252! 2% and solving these equa-
tions, we get
1 2n+1
Z; = E Ai — Z A]' + Z /\j
i=1 j<m+1 j>m
j=m (mod 2) j=m (mod 2)
for all m € [2n], 4
1 2n+1

Zne1 =5 ) Ni— Z Aj ] ©)
=1 j=0 (mod 2)

Using (4) and (5), for any m € [2n], we define the sur-
plus vector y™ € {—1/2,0,1/ 22" as follows:

-1/2, ifj<m+landj=m (mod ?2),
W");=4 -1/2, ifj>mandj=m (mod2),
1/2, otherwise.

Similarly, we define the surplus vector for match (2n + 1)
as follows:

(), = {

By construction, observe that we have z;, = y"A for all
me M(Ck)

Let us now expand and consider a component C; that
is cyclic. Per Lemma 3.1, this component contains exactly
one cycle, and this cycle is of odd length. Denote this

~1/2,
1/2,

ifj=0 (mod?2),
otherwise.

odd cycle by Coqq, and let A(Coqq) be the set of queues
included in this odd cycle. Define the set Us3:={i €
A(Codq) : deg(i) > 3}, that is, the set of queues in A(Copqq)
participating in at least three nonredundant matches in
Cr. Fix some i € Us3. In other words, i participates in at
least three nonredundant matches in Ck, and in particu-
lar, i participates in at least one nonredundant match
that is not a part of Coqgq.

Remove both edges (matches) that i participates in
Codd- This decomposes Cj into two subgraphs and sepa-
rates 7 from Coqq. Consider the resulting subgraph that
contains i. By construction, this component is a tree.
Temporarily, we will assume that i plays the role of k.
in the construction of the surplus vectors for tree com-
ponents. Hence, we define the surplus vectors for all
matches contained in this subgraph as in the previous
construction for tree components, and we let yi be the
temporary surplus vector for i under this setting, where
i plays the role of k.. After applying this procedure for
all i €Us3, we define A;:= yi)\, and we construct the
remaining surplus vectors for all matches included in
Codd by replacing A; by A" in (4) and (5); for example,
see Figure 4.

The proof of Theorem 4.1 is now immediate.

Proof of Theorem 4.1. Per Kerimov et al. 2023 and
Theorem 4.1), for any tree component Ci, we have z}, =
y"A for all me M(Cy) and s} = ki A, where k. is the
unique queue in A(Cy) N Q. For any cyclic component
Cr, we have A(Cy) N Q4 =0, and the construction based
on (4) and (5) immediately yields z;, =y A for all m €
M(Cy). Finally, strict positivity follows from the as-
sumed nondegeneracy under GP. O

We next characterize permitted perturbation for A
in terms of the general position gap €, under which
the optimal basis remains the same. By Theorem 4.1,

for any other arrival-probability vector A, where A is in

Figure 4. A Cyclic Component with ¢/>3 = {3}

Notes. We remove match 3 and match 5, and we consider the result-
ing subgraph that contains queue 3, which is a tree. Our procedure
first yields the vectors y' =[1,0,0,0,0] and y*>=[-1,1,0,0,0] for
match 1 and match 2, respectively. Then, the temporary surplus vec-
tor for queue 3 is ]73 =[1, —1,1,0,0]. Following the procedure, we set
As = y3)\ = A3 —A> +Ay. Finally, solving (4) and (5), where A; is
replaced by 13, giveszy =1(—As+As+ A3 — Ao+ 11),25 =3(As + A4
—A3+Ay— A1) and z; = %(A5 — A4+ A3 — Ay + Aq). Hence, the surplus
vectors for matches 3, 4, and 5 are y° = [1/2, —1/2,1/2,1/2, —1/2],
vt =[-1/2,1/2, —1/2,1/2,1/2]andy’ =[1/2, — 1/2,1/2, —1/2,1/2],
respectively.
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the cone
Y:={NeR}:y"A' >0 forall me M, and
YA >0forallje Q,},

the optimal basis remains the same. Thus, the following
is an immediate corollary.

Corollary 4.1. (Right-Hand Side Perturbations). Assume
that G satisfies GP. Let (z*,s*) be the unique nondegenerate
optimal solution of (SPP) with M, ={m e Mz, >0} and
Q. ={je M:s;>0}. Then, the same basis remains optimal
for any A >0 such that A = A+, where CeR" satisfies
y"C> —eforallme M, and y/C> —e forall j € Q..

5. Analysis

5.1. Preliminary Results

To establish the hindsight optimality of any matching
policy, it suffices that all queues in Qy remain bounded
in expectation. This is shown in the following lemma,
which is an analog of the optimality test in Kerimov
etal. (2023) (Lemma 4.1).

Lemma 5.1. (Optimality Test). Suppose that GP holds. Let
(z*,5") e the unique nondegenerate optimal solution of (SPP).
Suppose the following conditions hold under a policy D:

(i) no agent of type i € Qy leaves the market unmatched,

(ii) no matches in My are performed, that is, D!, =0 for
all m € M and for all t>0, and

(iii) Z,EQOED[QH <B for all t>0, where B>0 is a
constant.

Then, D is hindsight optimal and R — RPt < raxB
for all t>BA_}

mins Where Tmay = maXyep, Fy A1d Amin i=
minjeg,A;.

Observe that, by construction, LQ(M.) satisfies the
first two conditions of Lemma 5.1. We will use Lyapu-
nov function arguments to establish that condition (iii)
of Lemma 5.1 holds under our policies. The following
is a useful version of a standard tool.

Lemma 5.2. (Glynn and Zeevi 2008, corollary 4). Let
X = (X':t>0) be a discrete-time S-valued Markov chain
with transition kernel P, and suppose f : S — R is nonneg-
ative. If there exists a nonnegative function g:S — R and
a constant c for which

/P(x, dy)gly) —g(x) < —f(x)+cforallxe S, (6)
s

then
/S r(d0f(x) <c, %)

for any stationary distribution 1 of X.

The function g in (6) is a so-called Lyapunov func-
tion. As is often the case, the key challenge is to identify
suitable functions fand g.

Note that Lemma 5.2 gives a moment bound in sta-
tionary distribution. We will be interested in generating
moment bounds on the expected size of queues in Qg
for any time ¢ > 0. The following lemma will be useful
to establish this. The lemma couples two stochastic sys-
tems; one is initialized with Q° = 0, and the other one is
initialized arbitrarily and relates the total number of
agents waiting in both systems at any time ¢.

The next lemma shows that greedy matching poli-
cies are non-expansive. Namely, the gap between two
greedy-operated systems that differ only in their initial
queue lengths does not grow with time; see Moyal and
Perry (2017) for a related result.

Lemma 5.3. Let D be any greedy policy as in Definition
2.1 such that at the end of each time period (after a match is
performed), all agents of type—i, i € Q, leave the market
unmatched. Let H be a matching network that is identical
to G except for the initialization of the queue-length vector
at t=0. Let (H' : t > 0) be the corresponding queue-length
vector to 'H, and consider an arbitrary initialization for H.

Leth := ZiEQOH?. Then, under D, we have
> Q= Hi| <hforallt>0. 8)
i€Qq i€Qq

Proof of Lemma 5.3. We refer to agents present at
t=0 in H as labeled. We also say that a performed
match is labeled if it contains a labeled agent, and the
match is unlabeled otherwise.

Let us first prove that ), o Hf Sh+3",.0 Qf for all
t > 0. Given the same arrival process, observe that the
first ever match in both systems cannot be performed
only in G; it is possible that the first-ever match will be
performed in both systems at the same time. Consider
all times when a match is performed in G but not in 4.
Consider such a time, say f, and assume that the arriv-
ing agent at time t (that makes at least one match
available to perform in G) is of type— i and matches
to some agent of type—j. Because both systems are
equipped with the same arrival process and j is not
present in H at time ¢ (otherwise there would be at
least one available match to perform in H), this im-
plies that j was already matched in H at some time
t' < t. Therefore, at any time ¢ >0, the total number of
performed matches in H is greater than or equal to the
total number of performed matches in G. Note that
there are only two types of matches, where either an
arriving agent type is in Qp and matches another
agent type in Qp that is present in the system, or an
arriving agent type is in Q, and matches an agent
type in Q. Thus, if a match is performed in G or H,
then Y, Qf or 3o Hi, respectively, decreases by 1.
This proves that ..o Hf <h+ 3o Qf forall £ > 0.

Next, we show that }, o Qi <h+3 o Hi for all
t > 0. Given the same arrival process, observe that the
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first-ever unlabeled match in both systems cannot be
performed only in H. We claim that the total number
of performed unlabeled matches in G is greater than
or equal to the total number of performed unlabeled
matches in ‘H. Consider a time ¢ such that an unlabeled
match is performed in H (say type-i arrives and matches
to type—) but not in G. Similar to the previous argu-
ments, this implies that j was already matched in H
at some time t’ <t. Because any performed match in
G is unlabeled by definition, this proves the claim.
Finally, because one can perform at most 1 many labeled
matches in H under any arrival process, we must have

that ZiEQOQ§ <h+ ZiEQOHf. O

5.2. Proof of Theorem 3.1.

The proof will apply the optimality test Lemma 5.1.
Recall that by construction, LQ(M.) satisfies the first
two conditions of Lemma 5.1. It remains to prove the
third condition, which will be done by leveraging Lya-
punov function arguments.

Recall that the (SPP)-residual graph §" = Uy Cx con-
sists of components such that for any k € [K], Cy is either
a tree with |A(Cy) N Q4| =1 or cyclic, in which case
|A(Cr) N Q4| =0; see Lemma 3.1. Because our aim is to
prove that all queues in Q remain bounded in expecta-
tion, we focus then on a single component in our analy-
sis and treat G as the only component. The analysis is
then the same for all the other components. The follow-
ing is the main ingredient in the proof of Theorem 3.1.

Lemma 5.4. Assume that G satisfies GP with My = 0.
Define L£(Q') := ZiEQU(Qﬁ)Z, t > 0. Then, under LQ(M,),
the Markov chain (Qf. 1i€ Qo,t >0) is ergodic. Moreover,
L(Q") decreases in expectation:

E[£(Q") — £(Q")]Q'] < —2%||Qf||1 +1forall t >0.
)

The proof of Lemma 5.4 is given in the next subsection.
We first apply it to complete the proof of Theorem 3.1.

Proof of Theorem 3.1. We first prove the upper
bound. The drift property (9) in Lemma 5.4 implies
that the Markov chain (Q!:i€ Qo,t>0) is positive
recurrent; for example, see Robert 2003, corollary 8.7.
Given Lemma 5.4, moment bounds in the steady state
follow trivially from Lemma 5.2, where the functions f
and g are 2£]|Q'|l; and £(Q'), respectively. In particu-
lar, under the Markov chain’s unique stationary distri-
bution, which we denote by 77, we have

n
ET( 0 S_r
Q%I < -

where Q° ~ 1. Note that we still need to establish a sim-
ilar moment bound for any time >0 (not only for the
steady state). Per Lemma 5.3 and (10), we conclude that

(10)

under LQ(M,), we have )., E[Q{] <n/e for all t>0.
Then by Lemma 5.1, we have

Ryt — REQMat LTl gy s

- € €Amin
Note that regret is upper bounded by rmat for any
fixed time t>0. Hence, LQ(M.) is hindsight optimal
as stated. O

Remark 5.1. (Maximizing the Number of Matched Agents
in Nonbipartite Setting). If each component in the
(SPP)-residual graph G’ is cyclic, then Theorem 3.1 has
an immediate implication for the objective of maxi-
mizing the total number of matched agents in the
long-run average sense.

A matching policy D matches (MD'); many agents of
type i by time . Recall that MD' = A" — Q' for all t >0
per (1) so that the long-run average number of matched
agents is given by

1
lim infTED
T—eo i€ A i€ A

ZMFZQ]

> Z)\i —lim sup%ZED[QiT].
ieA Tooo = ed

Within the proof of Theorem 3.1, we showed that under
LQ(M.), we have Y. Ex[Q)] = O(e™"), where 7t de-
notes the steady state of the Markov chain (Q!: i€ Qy,
t>0), and Q° ~ 7. In particular, we have lim sup;_, _ +
> ico, BIQ] 1 =0 (note that it is sufficient to have Y,
E,[QY] = O(1) to have this limit).

Because each component of G’ is cyclic, we have
Qo = A per Lemma 3.1 so that Y, JE-[Q?] = O(e™),
and in turn, we have

> AT - ZQL-T] >3

icA icA icA

.1
hﬂglffE

Because ;. 4A; is an upper bound on the long-run
average number of matched agents, LQ(M) is opti-
mal for this objective. [0

Remark 5.2. (Stability of Matching Models). If each
component of the matching network has odd cycles,
then Q, is an empty set, and the process Q(f) is (with-
out any rejections) stationary with the expected queue
length bounded as in (10). This stability is consistent
with the general stabilizability, proven in Mairesse
and Moyal (2016), of dynamic matching in nonbipar-
tite graphs. O

5.3. Proof of Lemma 5.4

Throughout this subsection, we simplify the notation
by assuming that g € Z, is the initial state of the queues
(tf=0), where there are no available matches to per-
form. Let Q' be the state of the queues at time t =1 after



12

Kerimov, Ashlagi, and Gurvich: Greedy Policies in Dynamic Matching
Operations Research, Articles in Advance, pp. 1-23, © 2023 INFORMS

all matches for this period have been performed. We
also write the conditional expectation given a matching
policy D and the initial state g as ]Ef; [].

Without loss of generality, we assume that G satisfies
GP with M =0 so that the proof focuses on a single
component. We use the following quadratic Lyapunov
function:

L@)=Y a7, q€Z%
i€Qq

It will be convenient in this subsection to denote match
m € M sometimes by (i, j), where A(m) = {i,j}. Also, it
will be convenient to write with some abuse of notation
Mi,(i,j) = M,’j.

Finally, we also define AA!:= A' — A? and AD':=
D! — DY, that is, the vector that tracks the number of arri-
vals at time =1 and the vector that tracks the number of
matches performed at time ¢ =1, respectively.

Fix an arbitrary initial state of the queues g€ ZY,.
Note that under any greedy policy, ¢ must satisfy that
for any two queues i and j that are neighbors of each
other, we cannot have g;,g; > 0. In other words, for any
m e M with A(m) = {i,j}, at most one of these queues i
or j can be nonempty in q.

The first simple result is generic and applies to any
stationary policy. Define the sets

Ut(q):={ie A:q; >0} and U’(q) := A\U.

These are, respectively, the set of nonempty and empty
queues in q. We also define

M(q) :={m e M : A(m) N U (q) # 0}.

This is the set of matches that have a participating
nonempty queue in 4.

The following proposition is the first step to analyze
the one-step transition of the quadratic Lyapunov func-
tion £(q). Define x(q) to be the expected number of
times match m € M is performed in the first period
under a greedy policy D. That is,

x(q) :=EP[AD},]

Proposition 5.1. Under any stationary greedy policy D,
we have

E7[£(QY) — L(g)] < 294 — MxP(q)) + 1.

Moreover, xD(q) must satisfy that
x,(q) € 2(q)

- {Z@ € By :20(q) =0 for all m & M*(g) and

Z zZm(q) < A forallie Z/lo(q)}. (11)

meM:
M =1

Proof of Proposition 5.1. Because Q' = g + AA! — MAD!,
we have

£QY) - £g) = 3(Q! +)(Q! — )

i€Qq
=2g(AA' — MAD")
+(AA' — MAD'YY (AA' — MADY).

Under any stationary greedy policy, we have |AD} | <1
for all m € M, and because there is a single agent arrival
every period, we have (AA' — MAD')'(AA' — MAD')
<1 with probability 1. This proves the first assertion of
the proposition after taking expectations.

For the second assertion, first observe that if m ¢
M™(q), because there is a single agent arrival every
period, m is unavailable to be performed after any
agent arrival in the next period f=1. Thus, we have
Xm(q) = IE? [AD} ] = 0. Secondly, taking an empty queue
i € U°(q), we have that

> AD;, <T{AA] =1},
meM:
Min=1
and, in turn, taking expectations yields

> EPIAD) ] <EP[1{AA] =1}] = A;
meM:
Mi=1
asstated. O

Recall that under LQ(M. ), we break ties arbitrarily,
if any. Moreover, an arriving agent of type i € U’ (9) at
time £ =1 matches to the longest queue among those in
the set

AT(i) == {j e U (q) : My = My, = 1 for some m € M. }.

The next proposition formalizes this fact within this
subsection’s framework.

Proposition 5.2. For all i € U°(q) with A” (i) # 0, we have

x(Li%(M*)(q) = A, for j=arg max{qx}, (12)
’ keA* (i)
and xf,,Q(M*)(q) =0 for allm € M\{(i,)}. I the arg max set
in (12) contains multiple queues, choose one arbitrarily.

Proof of Proposition 5.2. Consider i € 4°(q) such that
A*(i) # 0; that is, the empty queue i has at least one none-
mpty neighbor at £=0. Let j = arg max; 4+({q;} be the
longest-queue neighbor of i. If there are multiple such
queues, choose one arbitrarily. Then, under LQ(M.), an
arriving agent of type i matches with queue j at time t=1:
AD}, = 1{A} =1} for match m satisfying M, = M, = 1.
In turn, x%Q(MJf)(q) — EQQ(M*) [AD}n] =A;.

To show that all other matches have x%Q(M*)(q) =0,
consider first m ¢ M™(g). Because agent arrivals happen
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one at a time, we have that if m ¢ M™(g), then m is una-
vailable to perform at time t=1. Thus, we have IE;Q(M”
[ADL] =0 for such m’s.

Consider now (i,j') € M™(q) with i e U°(q), A (i) # 0
and j’ € U*(q) but such that j* ¢ arg maxyc 4+ {q;}. As

before, we have Y, i, - AD;, < T{A} =1} so that

> mem EOMY) < ) Because we already showed that

Min=1

LQ(M.)
i)

that x

(q) = A; for j = arg maxe 4+(;{q;}, we must have

LQ(M
@)

Per Proposition 5.1, under LQ(M..), we then have that
E;PMIILQY) — L(9)] <29(A — Mx"OM(g)) +1,

)(q) =0asstated. O

where x!9M+)(g) is as in Proposition 5.2. Then to estab-
lish Lemma 5.4, it remains to show that

€
2g(A — MxtCM)(g)) < —2;”’7”1-

This is proven in two steps. Proposition 5.3 below shows
that LQ(M.,), specifically its immediate (expected) allo-
cation x!9M+)(g), minimizes the instantaneous drift,
which is already characterized in Proposition 5.1. Fi-
nally, Proposition 5.4 shows that the instantaneous drift
of the quadratic Lyapunov function £(g) has the desired
form, which will directly imply Lemma 5.4. Recall the
definition of the set Z(g) in (11).

Proposition 5.3. Under LQ(M.), the expected one-period
allocation x"CM+)(q) satisfies

xEQM(g) € arg min{g(A — ME)}.
Ee2(9)

Proof of Proposition 5.3. Consider the following linear
optimization problem in the statement of the lemma

min q(A — M&)
s.t. &€ Z(g),
where Z(g) is the linear constraint set in (11). We will
rewrite the objective function, which will make the
claim straightforward. First, because gA is a constant in
this problem, the problem is equivalent (in terms of
optimizers) to the following problem:
max gM¢&
st. £€ Z(q).
Under any stationary greedy policy, because each none-

mpty queue can have only empty neighboring queues
at any time, we can rewrite the objective function as

gME& = Z gi Z Miic,j) = Z Z G (i)

U@ jeu(q) jeu (q) i€ (q)

(13)

where recall that we slightly abuse the notation by M;; =
M, j)- Thus, solving the optimization problem (13) is the

same (in terms of optimizers) as solving a family of inde-
pendent problems, one for each j € 1°(q):

max Z 9i€i,j)

i€ (q)
s.t. Z cf(i,]') S/\]‘
i€l (q)

Gij) 20 forall iel*(q).

This is a relaxation of the knapsack problem with a
well-known simple optimal solution in the form

&j = A for i € arg max{qi},
ke A*(j)
and &(; ;) =0 otherwise; let & be the unified solution

(across all individual problems for each j € 4°(q)). Per
Proposition 5.2, & = x!QM+)(g) as stated. [

Proposition 5.4. Assume that G satisfies GP. Then, there
exists & € Z(q) such that

91 —M&) < =gl

Proof of Proposition 5.4. Per Theorem 4.1, (Mz"); = A
for all i € Q. Define A as

Ai=A;forallie U°(q), and A=A +% foralliel*(q),

where € is the general position gap. Then by Corollary
4.1, there exists Z* such that (Mz*); = A; for all i € Q,
where z* and Z* have the same optimal basis. This is
because the perturbation satisfies the condition /(A —
A) > —¢ forall I € M, U Q,, because ' € {—1, —1/2,0,
1/2,1} per Theorem 4.1. Note that Z* also satisfies

S mem:Zh, < A= A for all i € U°(q). Now, we construct
Min=1

&based onZ*. Let

Z
ém = { 0,
Clearly, we have & € Z(g). Note that for all i e U*(g),

by definition we have m € M*(g) for all m € M such
that M,,, =1. This implies that for all i € &/*(q), we have

if me M*(g),
otherwise.

(Mg)i:;\i:)\i+%~

Thus,
gA—ME) = > A — (ME),)
iUt (q)
€ €
R IL i
n iel* (q) n i€Q
asstated. O

The proof of Lemma 5.4 is now immediate.
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Proof of Lemma 5.4. Given Propositions 5.3 and 5.4, we
have

€
q(A — MM () < — —lall,

which implies that under LQ(M.), per Proposition 5.1,
we have

€
EQQ(MJ[/;(Ql) —L(g)] < —2E||q||1 +1
as stated. O

5.4. Proof of Theorem 3.2

Throughout this subsection, we assume without loss of
generality that G is a tree that satisfies GP with M =0,
and we fix an arbitrary topological order p(-). Let j. be
the unique queue such that Q, = {j;} per Lemma 3.1.

5.4.1. The Lyapunov Function. The quadratic Lyapu-
nov function, which is used in our analysis of LQ(M.),
does not work for SP(M.,p). To see this, consider the
network in Figure 2. Note that for any topological order
p(-), we have p(1) < p(2); that is, match 1 has a higher
priority than match 2. Take t, where all queues are
empty, except for queue 1. Then, under SP(M.,p),
L(QY) = Z,-EQO(QD2 does not necessarily decrease in
expectation, because ||Q'||; decreases by 1 with proba-
bility A,, whereas ||Q'||; increases by 1 with probability
1— Ay — A4, and A; < (1/2)(1 — Ag) does not violate the
assumed GP.

Instead, we construct a Lyapunov function using the
specific algebraic structure of the optimal solution of
(SPP) given in Theorem 4.1. Before introducing the Lya-
punov function, we introduce some useful definitions.
Recall that d(j, j) is the length of the directed path from
ieAtojeAin G. We define the set B(i):={je A:
d(i,j) = 1}. An intuitive way to interpret the set (i) is as
follows. Consider “hanging” G by the root j,. Then B(i)
contains all agent types that are directly belowi€ Ain G.
For example, in Figure 2, we have B(3) = {2,4} € A.

Recalling that Q' = A" — MD' for all t > 0 per (1), con-
sider the stochastic variant of (SPP) at a given time f:

max r-z
st. Mz+Q'=A!

zeRY,Q eRY,.

It is a simple observation that by the construction of the
surplus vectors, we have y"Mz =z, for all m e M,.
Multiplying both sides of the linear constraint set of this
stochastic variant with y™, m € M., yields z,, + y" Q" =
y"A! for all m € M,. Per Theorem 4.1, we should have
zm ~ 0 for all m e My and z" ~ y"™A! for all m e M, to
achieve optimality for (SPP). This suggests that we
should have y"Q" ~ 0 for allm € M,.

It is then natural to construct a function f(Q') such that
when f(Q') = 0, then we have y" Q' = 0 for allm € M. or,
equivalently, y'Q" = 0 foralli € Qy. To that end, define

Zi:=y'Q" forall i€ Q.

The setUy ={i€ Qo:,,cpyMim = 1}—the queues in Q
that are leaves of G—must be a nonempty set. Other-
wise, G must contain a cycle, and here, recall that we are
assuming that G is a tree. Trivially, B(i) = 0 for all i € Uo.
We take, for our Lyapunov function, the mapping

f@Q)= > at(z Zf) /

i€ A\Uo jEB(i)

(14)

where a; >0 for all i € A\Uy. For example, the corre-
sponding Lyapunov function to the matching network

in Figure 2 is f(Q") = a2(Q})* + aa(QL)* + as(Q, — Q4 +
Qf — QL) +a6(Qh + (Q4 — Q5 — Q) + Q) + Q) + Q)™

The following is the main ingredient in the proof of
Theorem 3.2.

Lemma 5.5. Assume that G is a tree that satisfies GP with
Mg =0. Then, under SP(My,p), the Markov chain (Q :
i€ Qo,t>0) is ergodic. Moreover, there exist strictly posi-
tive coefficients a;, i € Qp, and constants 0,y > 0 such that
f(Q") in (14) decreases in expectation:

E[f(Q"") — £(Q) Q'] < —y\/f(Q!) + 0 for all t > 0.
(15)

The proof of Lemma 5.5 is given in the Appendix. Next,
we apply it to complete the proof of Theorem 3.2.

Proof of Theorem 3.2. The drift property (15) in Lemma
5.5 implies that the Markov chain (Q!:i€ Qo,t>0) is
positive recurrent; for example, see Robert 2003, corollary
8.7. Given Lemma 5.5, moment bounds in the steady
state follow trivially from Theorem 5.2. In particular,

Figure 5. (Color online) A Matching Network that Satisfies GP with My = 0 and Q. = {6}, Where the Scalar A is Chosen so that

S =1 (A ~0.03)

Notes. The optimal solution of (SPP) has z* = (1, 4,3A,31,51) and s* = (0,0,0,0,0,2A), and the general position gap is € = A. In general, for any

A1 €[A,21), wehavee =25 =1, — A1 =21 — Ay
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Figure 6. (Color online) We Consider the Network in
Figure 5
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Notes. The x-axis corresponds to the inverse of the general position
gap for each scenario, €1 =1/(2A —A;), where A, takes values
sequentially in the set {A,1.1A,...,1.9A}, and e~ ! increases as Ay
increases. For the first scenario (1; = A), we have e ! ~ 28, and for the
last scenario (11 = 1.91), we have €' ~ 289. The y-axis corresponds
to the regret under SP(M,,p) at time  =5- 10*, where the time hori-
zonis T = 10°.

under the Markov chain’s unique stationary distribution,
which we denote by 7, we have

> 7| < 1/iforaul'eA\uo,
aiy

jeB(i)
where Q° ~ 7. This implies that for all i € A\Up, we
have E[| ZjeB(i)Zf. |]=0O(1) for all t>0. Note that by the
construction of the surplus vectors, we have

SNz=3 =Y 0= > v

jeB(i) jeB(i) jeB(i) jeB(i) keB(j)

=2 Q-2 > %

jeB(i) jeB(i) keB(j)

Er

for all i € A\U and for all t> 0. Therefore, we conclude
that under SP(M., p), we have

> E[Q!]=0(1) for all t > 0.

i€Qp

Then, per Lemma 5.1, SP(M,, p) is hindsight optimal
as stated. O

The proof of Lemma 5.5 reveals that ;s depend on
y’s,and 6 depends on ¢;’s in a complicated way (in con-
trast to (9)), which is the reason why we cannot estab-
lish the optimal scaling ! for regret under SP(M., p).

6. Numerical Examples

In this section, we present some simulation results to
provide further insights about our greedy policies. All
simulations are based on 10,000 replications.

Example 6.1. (Regret Scaling of SP(M.,p)). Consider
the network in Figure 5. The priority order under
SP(My,p) is my > my >mz > my > ms, where m>m’
means that p(m) < p(m’) (m has a higher priority than
m’). We consider 10 separate scenarios, where A, takes
values sequentially in the set {A,1.14,...,1.91}. For any
given scenario, the optimal basis remains unchanged,
and the general position gap is € =1, — A3 =21 — A5.
Figure 6 suggests that the scaling for the achieved con-
stant regret under SP(M,,p) in Theorem 3.2 is e 1, asin
Theorem 3.1. O

Remark 6.1. (Dependence of p(-) on A). The construction
of the static priority order p(-) reflects the arrival proba-
bilities only through their implication on the sets M.
and Q.. Given two different arrival-probability vectors,
as long as they result in the same optimal basis for
(SPP), the set of all possible topological orders p(-)’s are
the same.

Figure 7. (Color online) We Consider the Network in Figure 5, Where € ~ 0.03
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Notes. Left: SP(M..,p) is hindsight optimal. Right: the alternative greedy static priority policy achieves a higher regret than SP(M.,p), but it is

still hindsight optimal.
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Figure 8. (Color online) We Consider the Network in Figure 5, Where A; = 1.9 Instead, and € ~ 0.003 Now
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Notes. Left: SP(M,,p) is still hindsight optimal given the perturbation on the arrival-probability vector. Right: under the proposed perturbation,
the alternative policy is no longer hindsight optimal, and its regret grows with ¢.

Given A, consider the optimal basis of (SPP) and the
induced sets M, and Q. under GP. Then, per Theo-
rem 4.1, we know that any other arrival-probability
vector, say A, such that A is in the cone

Y:={N eR}:y"A" >0 forall me M, and
YA >0forallje Q,},

results in the same set of all topological orders. [

Example 6.2. (Robustness of SP(M,,p)). Consider the
network in Figure 5. Our priority order is my > m,
> mgz > my > ms, where m>m’ means that m has a
higher priority than m’, that is, p(m) < p(m’). Consider
an alternative static priority policy with the priority order
my > my > mz > my > ms; that is, the priority assignment

between m; and m, is altered. Note that this alternative
priority order is not a topological order. Figure 7 shows
that both policies achieve constant regret, that is, one that
does not grow with time.

Next, let us change a bit the arrival probabilities
and consider A1 =1.9A (instead of Ay = A) with all else
remaining the same. This perturbation on A does not
change the optimal basis—the sets M, and Q,—and
neither does it change our prescribed priority order. As
Figure 8 illustrates, although our SP(M,, p) still achieves
constant regret, the alternative policy has a regret that
grows with time. As argued in Remark 6.1, if the pertur-
bation on A does not affect the optimal basis, SP(M., p)
remains hindsight optimal, whereas a deviation in the
priority order may result in suboptimality. O

Figure 9. (Color online) We Consider the Network in Figure 5, Where € ~ 0.03
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Figure 10. (Color online) A Matching Network that Satisfies
GP with My =0 and Q, = {5}, Where the Scalar A Is Chosen
sothat ), ,A; =1 (A ~0.08)

'r1—1 Ay = 2 7‘2—2@7’3—3@7‘4_
Note. The optimal solution of (SPP) has z* = (A, 1,2A,21) and s* = (0,
0,0,0,0.174), and the general position gap is € = 53 = 0.1A.

The next example illustrates that there exist matching
networks, where LQ(M.,) generates a higher total value
than SP(M,, p), and vice versa.

Example 6.3. (Comparison of LQ(M.) and SP(M.,p)).
Consider the network in Figure 5 again. Per Theorems
3.1 and 3.2, both LQ(M.) and SP(M,,p) are hindsight
optimal. Intuitively, the priority order under SP(M_,p)
coincides with the order of matches with respect to their
values, and one can expect that SP(M_, p) may result in
a smaller regret than LQ(M,), and Figure 9 supports
this intuition.

Now consider the network in Figure 10. Figure 11
illustrates that LQ(M) results in a smaller regret than
SP(M.,p). Hence, both simulations suggest that there
exist matching networks and network primitives so
that LQ(M) achieves smaller regret than SP(M.,,p),
and vice versa. O

Remark 6.2. (Scaling of the Lower Bound on Regret with
the Number of Agent Types). Our current work, together
with the work (Kerimov et al. 2023) that preceded it,
concerns scaling of regret as a function of €. The gen-
eral lower bound in Kerimov et al. (2023) stipulates
that no policy can do better than Q(e!); this lower
bound is not explicit as to dependence on the network
structure or, more specifically, the number of agent

types. Our Theorem 3.1 shows that LQ(M)’s regret is
at most 7,,.11/€, a bound that grows with the number of
agent types n. Whether—or more specifically, under
which conditions—the best achievable regret grows with
n remains an open question. [J

7. Concluding Remarks

We found that in the general class of two-way matching
networks that satisfy a general position condition, greedy
policies (whose design is) based on static optimal matching
rates achieve constant regret at all times; they are hindsight
optimal. In these networks, in particular, there is no posi-
tive externality from waiting to form future matches.
Moreover, greediness offers local and simple matching
rules that, other than identifying static optimal matching
rates a priori, do not require any additional optimization.

The greedy policies we prescribe, longest-queue and
static priority, differ in whether they depend on the
state of the network or not. Therefore, these policies
may be appealing in different contexts.

These results complement those in our previous paper
(Kerimov et al. 2023), where we found that in multiway
matching networks, greedy policies are not hindsight
optimal, but carefully designed periodic clearing match-
ing policies do achieve hindsight optimality.

General position is a weak but necessary condition
for hindsight optimality (Kerimov et al. 2023). More-
over, the optimal scaling for constant regret is given by
e~!, where € is a simple quantity that arises from the
static-planning problem (a deterministic counterpart)
that also provides the optimal matching rates. This
quantity is intimately linked with stability; if queues of
types that are not under-demanded (queues in Q) are
bounded by e! (in expectation) at all times, then the
policy is hindsight optimal, and the scaling for constant

Figure 11. (Color online) We Consider the Network in Figure 10, Where € = 0.008
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regret is the same as the moment bound on the queue
lengths.

We hope that what we learned in this paper can be
leveraged to expand the results to include several prac-
tical yet challenging considerations.

The simplest is the inclusion of holding costs. In
matching networks, like the ones we consider in this
paper, there is an intimate connection between value
maximization and holding-cost minimization; we refer
the reader to Kerimov et al. (2023) for a detailed discus-
sion of this correspondence. Less immediate are expan-
sions of the models to capture agent departures and
decentralized matching networks. When agents aban-
don the market without matching after some agent-
specific (possibly random) time, it is no longer clear—
even in networks with two-way matches—that there
exists a greedy hindsight optimal policy. In such net-
works, it might be important to build an inventory in
anticipation of “short-fuse” agents that participate in
high-value matches and are highly impatient. In decen-
tralized dynamic matching markets, agents wish to max-
imize their own payoffs (Baccara et al. 2020, Leshno
2022), and agents might act in a way that compromise
global optimality. Combining the queueing modeling in
this paper with mechanism design tools might help to
shed further light on how to regulate such settings.

Appendix A. Proofs of Auxiliary Lemmas

Proof of Lemma 3.1. Let (z*,s*) be the unique nondegenerate
optimal solution of (SPP) under GP. Note that the projection
of (z*,s") remains as a nondegenerate optimal basic feasible
solution when restricted to each component Cy, k € [K]. This
immediately follows from the construction of the (SPP)-resid-
ual graph @', because any component Cj is “disconnected”
from G by removing all redundant matches in M, (m e M
with z, = 0). Assume that C; contains 1 > 1 vertices (queues)
and my > 0 edges (matches) for all k € [K].

(i) Because Cx does not contain any redundant matches,
nondegeneracy implies that 7 >y, because there are 1y
many basic variables in the projection of (z*,s*), and all m
variables corresponding to active matches in Cy are basic. If Cx
contains at least two cycles, then we must have > 1, which
is a contradiction. Thus, C; contains at most one cycle.

(ii) Because Ci is a component, it is connected, and if it
does not contain a cycle, then it must be a tree. Thus, we
have ny = my + 1. Then nondegeneracy implies that |.A(Cy) N
Q:]=1

(iii) Per (i), Cx contains exactly one cycle. Then, we must
have n=my. Assume to the contrary that this cycle is of even
length. Consider the projection of (z*,s*) when restricted to
Ck, which remains as a nondegenerate optimal basic feasible
solution, as argued above. Because 1=y, all slack variables
in the projection are non-basic. Consider all the matches that
are included in this even cycle and the corresponding column
vectors of these matches in the matching matrix M. Because
the cycle is of even length, these column vectors are not line-
arly independent, which is a contradiction to the fact that
the optimal solution is a basic feasible solution. Thus, C; can

contain only an odd cycle, where we note that the corre-
sponding columns to the matches included in the cycle are
linearly independent. Finally, nondegeneracy and =y
imply that |A(C,) N Q4| =0. O

Proof of Lemma 5.1. The proof follows immediately as in
Kerimov et al. (2023, lemma 4.1) with the following modifica-
tions. Because we must have A; >0 for all i € Q,, fix t such
that A > Bt~!. Per Theorem 4.1, we have w=1. Therefore,
we conclude that R*' — RP! < trpaxcl||d — A|| < trmax B! =
TmaxB. O

Appendix B. Proof of Lemma 5.5

Before proving Lemma 5.5, we begin with some preliminar-
ies. We define a family of functions g;, i € A, as follows. Let
gh:=0foralli el and forall t > 0, and sequentially define

2
(Z Zf) +a; Z g; for all i € A\Uy and for all t >0,

jeB(i) jeBi)

where the coefficients «; >0, i € A\Uy, will be determined
later in the section. To prove Lemma 5.5, we prove the follow-
ing slightly more general result.

Lemma B.1. Assume that G is a tree that satisfies GP with Mg = 0.
Then, under SP(M,p), the Markov chain (Q!:i€ Qy,t>0) is
ergodic. Moreover, there exist strictly positive coefficients a;, i € Qy,
and constants y,, 0; > 0, i € Qu, such that

E[g* —¢l1Q] < yl\/;+6forullt>0 (B.1)

Observe that Lemma 5.5 follows immediately from Lemma
B.1, noting that f(Q') is g;,_itself with coefficients redefined,
where recall that j, is the root of G.

Recall that d(i, ) is the length of the directed path from i €
AtojeAin G and that B(i) = {j € A:d(i,j) = 1}, which con-
tains the agent types that are directly below i € A in G. Define
B(i) := {m e M : A(m) = {i,k} and k € B(i)}, that is, the set that
contains all matches that are directly below i€ A in G. For
example, in Figure 2, we have B(6)=1{3,6,7} C M.

For any i€ Qp, let i! be the unique queue in G such that
d(i",i) = 1. In words, ' is the queue that is directly above i €
Qp in g that is, the direction on m such that A(m) = {i,i'} is
incoming to i. Note that such a queue does not exist for the
rootj, € Q..

The following remark is crucial in the proof of Lemma 5.5,
and it follows directly from the definition of a topological
order p(-).

Remark B.1. Fix some i € Q,, and let m! € M be the match
that i and i' participates, that is, A(m') = {i,i'}. Given any
topological order p(-), we have p(m) < p(m') for all m € B().
In words, any match that is directly below i has a higher pri-
ority than the match that is directly above i.

Finally, define d; := maxjey,n4(7,)d(i, ) for all i € A. One can
intuitively view d; as the parameter indicating the position of
queue i relative to the root j, of G; the larger the d;, the closer
queue i is to the root j,. For example, in Figure 2, we have
Uy={1,5,7,8 C A dy=1,d; =2 and dg = 3. Now we prove
Lemma B.1.
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Proof of Lemma B.1. We will first establish (B.1), and we then
prove the ergodicity of the Markov chain (Q!:i€ Qp,t>0).
We will also use the following three aids in the proof. Propo-
sitions B.1 and B.2 are proven at the end of this section, and
Proposition B.3 is a known standard result that appears, for
example, in (Robert 2003, corollary 8.7). Throughout the
proof, for ease of exposition, for all i € A\l and for all £ >0,
we let

Zigy = Z Z]/ Shi) = Zg], and Q) =

jeB(i)

>_Q

jeB(i) jeB(i)

Proposition B.1 (Bounded Jumps). Under the assumptions of
Theorem B.1, for all i € A\Uy, for all t >0, and for any constant
B; > 0, we have

E[g§+l

for some constant 0; > 0, which depends only on n and B;.

—-¢11Q', ¢ <Bi]<6;

Proposition B.2. Under the assumptions of Theorem B.1, for all
i€ A\Up and for all t > 0, we have
[(ZHl )

— (Zgy)*1Q', Quy > 01 = =11, Zigy + 01,

where 1; :=2y' A and 6; := Siearyh-

Proposition B.3 (Robert 2003, corollary 8.7). Let (M; : t > 0) be
a discrete-time, homogeneous, irreducible, and aperiodic Markov
chain with values in a countable state space X. If there exist a func-
tion f : X — R, and constants K, n > 0 such that

(i) EJfM) —f()] < — when fx) > K,

(i) Ey[f(M;1)] < oo when f(x) <K, and

(iii) the set {x € X : f(x) < K} is finite,
then the Markov chain (M, : t > 0) is ergodic.

We use strong induction on d;, i € A\Uy, where recall that
d; = maxjey,na7)d(i, f)- The following simple observation is
used repeatedly in the analy51s which follows from the defi-
nition ¢! = (Z¢ B(r)) + 8"

\/g2 | Zigi |-
B.1. Basis

Consider i € A\Uy such that d;=1. This implies B(i) C Uy so
that Q' = Qf for all j € B(i). By definition, because gf =0 for
all j € B(i) € Up, we have

2
gf = (Zg(i))z + aigi;(i) = (Z ]/th) = (Qg(i))z-

jeB(0)

(B.2)

Fix B; > 0 (its specific value will be determined later), and
consider the following two cases:

e 1: (¢t > B;). Note that g = (Qg(i))2 and Qj, > VB; > 0.
Per Lemma B.2, we have

Elgi" —gl1Q' 8! > Bil =El(Z) - (Z4)*1Q 8 > Bi)

= —Uizis(i) +0;

—qi\/g+6i.

Choose any 7, € (0,7,) and update B; to a sulfficiently large
¢t >+/B; > UOV This implies

_Ui\/g"' 0i < _)/i\/g‘

e 2: (¢t <B;, where B; is chosen as in case 1). Per Lemma
B.1, we have

constant such that

E[gi* —gi1Q", g > Bil =

E[gi* —¢/1Q', ¢ <Bi] <0

for some constant 0; > 0, which depends only on 72 and B;.
Combining both cases above, we have

\/87-4'9[,

for all t > 0, where 0; is a redefined constant. This concludes
the basis of the induction.

[gt+l g | Qt

B.2. Inductive Step

Assume that the induction hypothesis holds for all i € A\l
such that d; <d, d > 1. Consider i € A\U, such that d; =d + 1.
By the induction hypothesis, for all j € B(i), there exist con-
stants a, Yy Bj,0; > 0 such that

Elgi"" —¢/1Q"] < V]\/g7+6,,

forallt > 0, because d; <d.

For now, fix some a; > 0 and B; > 0 at the beginning of each
of the following cases. These constants are placeholders, and
their values will be determined at the end of each case analy-
sis. It might be helpful here to point out that a; will be a func-
tion of y,, B; will be a function of a;, and 0; will be a function
of B;. We divide the analysis into three cases: (1) g} > B; and

|Z§3(i)| < ZjEB(i) g]t/ (2) gf > B; and |Zig(,')| > ZjeB(z‘) \/g' and
(3)gi <B.

°o1: <gf > B; and |Zg<i)| < Z]-GB(Z-) \/g7> Denote this case by
&1. Because

8i = (Z;S(i))z + “igis(z) > Bj,

and |Zg;) | <37 ep)1/8j, We can choose B; sufficiently large

so that if g} > B;, then also g; > B; for at least one j € B(i).
Define the sets

J>:={jeB(i):g > B;} and
<= Bi)\J> = {j € B(i): g} <By}.

Because |B(i)| <|A|=n and |Qf*! —Qj| <1 for all j € B(i),
we have |Zg}) B()| <n for all t+>0. By the definition of

J< Zfefg\/gf <Yjes /By = th and
|ZB;)| < Z\/g7<ul+z\/g7

jeB(i) j€T>

(B.3)
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Combining these altogether, we have
E[(Zz})

_ 41
=E[(Zg;

— (Zge)’ 1 Q1]

— Za)Zgiy + Zis) 1 @, &1

Sn<n+2U1+2Z \/37;)

j€T>
<U, (ul +3 \/g7> (B.4)
j€T >

for some constant U, > 0, which depends only on n and U;.
Forallj € 7, we have by the induction hypothesis that

Elg" - g/1Q" €11 <~y /8], (B5)
and per Lemma B.1, for all j € 7 <, we have that
Elg" —¢!1Q, &< Us (B6)

for some constant Us > 0, which depends only on n and B;.
We want to show that there exist constants «;,7,,B; > 0 such
that

E[gi‘ﬂ g”Qt, 5]]
<U2<U1+Z\/g7>a,< \/§;>+|JS|Q[U3
j€T>
(B.7)
<u1 Y \/g‘]> — ( \/g7> +nal;  (BS)
j€T > €T >

/e (B.9)

holds, where (B.7) follows from (B.4), (B.5), and (B.6), and
(B.8) follows from the fact that | 7<| < |.A| = n. First, we have
that

\/gs |Zis| +\/0‘—1'\/25’%—(“S (z(: \/g7> +‘/"(ZB(:)\/;])
jeB(i) SR
<(1+V—)<U1+Z\/g7>

JSVAS

where the first inequality follows from the definition g! =
(Z%(l.))2 + g, the second inequality follows from the re-

quirement of this case (case 1), and the last inequality follows
from (B.3). Thus, for any y; > 0, we have

—V(1+\F)<U1+Z\/§,> \f

j€T>

(B.10)

Fixing an arbitrary ¢! > 0, take a1 > 0 sufficiently large

eB(z)V]) > <u2 + yCase !
(1+,/acasel>). Setting B; to a sufficiently large constant

such that ¢ ! (minje 7. V) > at?e 1 (min

B&®el (recalling that g/t. >B; for all j€J,), we have the
inequality

a?asel QZ y]\/g>]t> (u2+yCase1(1+ /al_Case 1))
SVAS
<U1+Z\/87> Caselu320/

jeT>

(B.11)

because Zie 7 \/ng can be made sufficiently large.

Thus, if we update the previously fixed constants «; and B;
to at®e 1l and B& ! respectively, then (B.11) implies that the
left-hand side of (B.10) is greater than or equal to the right-
hand side of (B.7). Therefore, (B.9) holds for y<el, gfasel
and B,

°2 (gf > B; and |Z;3(,~)| > Z]'Eg(,') gj) Denote this case by
&>. We claim that in this case we have

(i) Qi > 0, and (i) Zjg; >0, (B.12)

where both claims are proven at the end of this case. We have
Qps(py > 0 by (B.12)(i), and clearly, &; = 37 y7)Aj < Dieadj = 1.
Thus Lemma B.2 yields

E[(Zy5)" — (Z)*1Q' €21 < —nZigy +1, (B.13)
where recall that 17, = 2'A. By the induction hypothesis, for
allje J-, wehave

Elg)"! - 8/1Q" &1 < -7,/ (B.14)
and per (B.6), for all j € 7 <, we have that
E[gi*! —¢/1Q", €21 < Us. (B.15)

Similar to the previous case, we want to show that there exist
constants a;,y;, B; > 0 such that

[ng 85|Qt/ 82]
< —NZpy+1—a (Z Vf\/§f> + | T <|ailUs (B.16)
i€ >
<0 Zy +1 - QZ yj\/gT‘.) +na;Us (B.17)
e
¥/ (B.18)

holds, where (B.16) follows from (B.13), (B.14), and (B.15),
and (B.17) follows from the fact that | 7<| < | A| =n.

Recall from the previous case that . jﬁ\/gjt- <U;. By
(B.12)(ii), we have Zt

\/;<|ZB(1|+\/_< Zg] ZB +\/—‘ Zg]

jeB(i) jeB()

<ZB<1>+W(Z \/g7> <zB(1)+\/“<u1+Z\/§]>

jeB(i) j€T>

) > 0 and
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Thus, for any y; > 0 we have that

(ZB,)+\/__<U1+Z\/§]>>

j€T >

Y/

Pick an arbitrary y©¢2¢€(0,1,) and af**2>0 such that

(B.19)

Case 2

a$™e 2 Note

af®e A (mingey, ;) > af ™ 2 (minjes)y;) > ¥
that Z! 5y can be made arbitrarily large by updating B; to a suf-
(Zéi(i))z + ai(g%(i)) >
g by the assumption

ficiently large constant B&%¢ 2, because gt =

By and |Zly, | = Zly, > Ejeg(i)\/é?; >
of this case (case 2). Hence, the following inequality holds:

0=k o )

€T~
leaseZ / CaseZ(Ul_,’_Z\/(;]) Casezu > 0.
jeT>
(B.20)

Thus, if we update the previously fixed constants ; and B; to
a®e2 and BS*e2 respectively, then (B.20) implies that the
left-hand side of (B.19) is greater than or equal to the right-
hand side of (B.16). Therefore, (B.18) holds for ]/icase 2, qfase2)
and B¢,
We now prove the two claims in (B.12).
— Claim (i). Note that by the construction of the sur-
plus vectors ', i € A, we have

Zoy=) Zi=» yQ=) Q-3 > v

jEB(i) jeB(i) jeB(i) jeB(i) keB(j)
_ 0Nt
= Qi) — D Zay
jeBl(i)
which implies

t t t
|Zisy| < Qb + Y 1Z5s |-
j<B0)

By our simple observation (B.2), we have \/gj > Ingl for

all j € B(i), which yields Zjeg(i)\/g} > > s | 2 |- Because
| Z5 | > ZjeB(,.)\/gjf by the assumption of this case (case 2),

we have

o<y \/87]< |1 Zw| < Qo+ > 1 Z3s5|

jeB(i) jeB(i)

< Qoyt D \/375

JjeB()

which implies Q) > 0 as stated.
— Claim (ii). Note that we cannot have Zj;, =0 by the
assumption of this case (case 2). Assume to the contrary
that Zt ) < 0. Then, the assumption of this case yields

Zgy <= \/gjf

jeB(i)

(B.21)

Because QB 0> 0 per (B.12)@i), and 2]65(1)\/5 2]65(0
|Z;)()| per (B.2), we have
SN

Zi?(i) = Qia(l Z ZB(/ 2 QB
jeB(i) jeB( 1) jeB(i)

which contradicts (B.21). Therefore, we have Z! 5@ > 0as stated.
e 3: (¢! < By). Denote this event by £;. Per Lemma B.1, we
have

E[g —¢i1Q', &1 <06;,

for some constant 6; > 0, which depends only on 7 and B;.

B.3. Combining Cases 1 —3
Let y, = min{yase !, yCase 2} g, = max{al
max{B&ae ! BEase 2} ‘We can then write

Elgi™ — gl1Q' <~y /8 + 6

for all t >0, where 0; is a redefined constant. Hence, the
induction hypothesis also holds for i € A\Uy with d; =d +1.
This concludes the proof for the drift condition (B.1).

For the ergodicity result, note that the Markov chain (Q! :
i€ Qy,t>0) is clearly homogeneous, irreducible, and aperi-
odic. Because we already established the drift condition (B.1),
the first two conditions of Proposition B.3 hold. Because
| A| =n < oo, the third condition of Lemma B.3 is also satis-
fied. Thus, the Markov chain is ergodic. O

We conclude this section with the proofs of Propositions
B.1and B.2.

Casel Case 2} and B,' —

Proof of Proposition B.1. We use strong induction on d,,
i € A\Up, where recall that d; = maXjey,n (7)) d (i, )-

B.4. Basis

Consider i € A\Uy such that d;=1. This implies B(i) C Uy so
that Q" = Qf for all j € B(i). By definition, because g = 0 for
allj € B(i) € Uy, we have

2
8= (ZtB(i))z + (Xig%(i) = (Z ijf> = (Q%(i))z'
jeB(i)

Because |B(i)| < |A| =n and |Q}+1 —Qjl <1 for all jeB(i),
we have |Qj — Qj, | <n for all t > 0. By the assumption of

this proposition, we have +/g! = Qfs(i) < VB;. Combining these
altogether, we have

Elgi*" —81Q" g <Bil
= E[(Q5))" — (Q)’1Q"8i < Bil
= E[(Qj) — Quso Qi) + Qi) 1 Q'8 < Bi]
<n(VB; + VB; +n) =: 0;
which concludes the basis of the induction.

B.5. Inductive Step

Assume that the induction hypothesis holds for all i € A\U
such that d;<d,d>1. Consider i€ A\Uy such that d;=
d+1. Recall that = (ZB(l ) +a,g3(l) < B;. By the induction
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hypothesis, because d; < d for all j € B(i), we have

@Bl —&up Q8 <Bl<U

for some constant U>0, which depends only on «a; and B..
Because |Zi! B) ZtB(Z.)| <n (see case 1 in the proof of Lemma

B.1)and |Zj, | < vB;, we have

E[(Zig))” -

=E[(Zg) -

— (Zjs))*1Q', 8! < Bi]
Z%(i))(Z?(}) +Zp) Q'8 < B
<n(VB; +VB; +n),
which implies
E[g*! — ¢t Q' ¢! < Bi] < n(VBi + VB; +n) + U =: 0.

Hence, the induction hypothesis holds for ie A\l with
dl' =d+1. O

Proof of Proposition B.2. For each match me M with
A(m) = {i,j}, let D ; be the number of times match m is per-
formed under SP(M,,p) by time ¢. We first claim that for all
ie Aand >0, we have

=yAf - (B.22)

11T

The proof of this claim is given at the end of the current proof;

(B.22) implies that Z[B(i) = Zjeg(i)Z; = ZjeB(i)(yjAt - D]t-, ;). Thus,
forallt > 0, we have
Zih —Zey = > (/AA' = AD} ), (B.23)

jeB(i)

where AA’ = A" — Afand AD} ; = D! — D} .. Because Qj; ;) > 0
by the assumption of this lemma we must have Q! =0 (other-
wise a match would be executed between i and some j € B(i)

; t+1
due to the greedy nature of the policy). Per (B.23), Z BZ)
ZtB(l,) # 0ifand only if the arriving agent at time t + 1 is of type k,
k € A(7;). Consider such an arrival:

e If d(i, k) is odd, then by the construction of the surplus
vectors, AA! has a positive sign in the summation (B.23).
Because there is a single agent arrival per period, AA] = 0 for
alll € A(T;)\{k}. Because Q! = 0, no matches with agent type j
can be performed so that also ADt.’k =0 for all j € B(i). Overall,
we have Zif} — Zj; ) = AA] = 1.

o If d(i, k) is even and k # i, then AA] has a negative sign in
the summation (B.23). Following the same argument as
above, we conclude that Zg}) — ng(l) AA} = —1.

e If k=i, then AA]‘. =0 for all j € B(i). Because Qia(i) >0,
agent type i will be matched with some /€ B(i)) upon
arrival; see Remark B.1. Thus, AD;/Z. =1 and AD;J =0 for
all je B(i)\{l}. Plugging into (B.23), we have that Zg;}) —
Zg(l) —1.

An agent of type k arrives at time f +1 with probability
Ak so that we can conclude the from the three cases above

that
E[(Zi5)

= E[(Zi) -

— (Zlg1Q", Qi) > 01
Z 1))(Zt+ +Zj 1))|Qt QB @ > 0]
= —NQZgy — D+ Y A2Zp + 1)

ke A(Ty)\{i} :

d(i, k) is odd
M(2Zig) — 1)

ke A(T)\{i} :

d(i, k) is even

==2{ - >

ke A(T)\{i} :
d(i, k) is odd

= (2N Zgy + Y M
ke A(T;)

Ap + Z
ke A(TH\{i} -
d(i,k)is even

M| Zgay + D M

ke A(T;)

= *T[,Z%(i) + él

as stated. Now we prove the claim (B.22). We use strong in-
duction on d;, i € A, where recall that d; = max;ey,nv(7)d(i, f)-

B.6. Basis

Consider i € A such that d;=0. This implies i € Uy so that Z! =
yQ =Qi=(Ai-Dj;)=y'A"
cludes the basis of tﬁe induction.

D!, as required. This con-

B.7. Inductive Step
Assume that the induction hypothesis holds for all i € A such
that d; <d, d > 0. Consider i € A such that d; =d +1. By the
induction hypothesis, for all j € 5(i), we have

= y]‘ Al —
By the construction of the surplus vectors, we have Z!=
y'Q = Qit) - Z]es(z)]/]Qt =Qi— ZjeB(i)Z]t" Because Qf = Af -

¢
D} i = e »D} ;» we have

> 7

jeB(i)

( l ,T Z ) Z (y]A'
jeB(i) jeB(i)

Zi(=Q; -

A= yA ) - (> D, - > Dj D},
jeB(i) jeB(i) jeB(i)
=y'A' =D} ;.
Hence, the induction hypothesis holds for i€ A with d; =
d+1. O
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