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Abstract. We study centralized dynamic matching markets with finitely many agent types 
and heterogeneous match values. A network topology describes the pairs of agent types 
that can form a match and the value generated from each match. A matching policy is 
hindsight optimal if the policy can (nearly) maximize the total value simultaneously at all 
times. We find that suitably designed greedy policies are hindsight optimal in two-way 
matching networks. This implies that there is essentially no positive externality from hav
ing agents waiting to form future matches. We first show that the greedy longest-queue 
policy with a minor variation is hindsight optimal. Importantly, the policy is greedy rela
tive to a residual network, which includes only nonredundant matches with respect to the 
static optimal matching rates. Moreover, when the residual network is acyclic (e.g., as in 
two-sided networks), we prescribe a greedy static priority policy that is also hindsight opti
mal. The priority order of this policy is robust to arrival rate perturbations that do not alter 
the residual network. Hindsight optimality is closely related to the lengths of type-specific 
queues. Queue lengths cannot be smaller (in expectation) than of the order of ɛ�1, where ɛ
is the general position gap that quantifies the stability in the network. The greedy longest- 
queue policy achieves this lower bound.
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1. Introduction
We study centralized dynamic matching markets with 
finitely many agent types and heterogeneous match 
values. Delaying actions to accumulate “inventory” cre
ates a positive externality from forming future matches 
that generate high value. This delay, however, inevitably 
compromises short-term value. The goal of this paper is 
to shed light on this tension within the family of two- 
way matching networks.

In our model, agents arrive sequentially to the mar
ket. The type of an agent is observed upon arrival and 
independently drawn from a given distribution over 
finitely many types; we associate each type with a 
queue that holds waiting agents of that type. A net
work topology describes which pairs of agent types 
can match. We assume that agents leave the market 
when they are matched. A matching policy determines 
when and which matches to form.

To evaluate a matching policy and the tension be
tween short- and long-term value, we use the notion of 
all-time regret. The regret at a given time t is measured 
by the difference between the (expected) total value 

that can possibly be generated and the (expected) total 
value generated by the policy until time t. The exis
tence of a policy that achieves a “small” regret at all 
times suggests that the tension between short- and 
long-term value is essentially moot. We refer to such a 
policy as hindsight optimal.

The networks considered in this paper are two-way 
(each match includes two agents) and satisfy a general 
position condition. General position is a weak (but neces
sary) condition that holds when the static-planning 
problem (a linear program that optimizes the first- 
order matching rates) has a unique and nondegenerate 
optimal solution.

1.1. Optimality of Greedy Policies
Our main contribution is identifying that for the family of 
two-way matching networks, suitably designed greedy 
policies are hindsight optimal. This implies that two-way 
matching networks that satisfy general position are sim
ple in the sense that they can be managed locally (in time) 
without concern for long-term implications and using 
intuitive matching rules.
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The greedy policies require a minimal preprocessing 
that includes the removal of all redundant matches 
from the network. Redundant matches are those that 
are not used by the static-planning problem. For hind
sight optimality, any matching policy must mostly 
avoid performing redundant matches. Our policies 
operate on a residual network that is obtained from 
removing these matches from the original network.

An important group of agent types are those that are 
under-demanded. The static-planning problem—and hence, 
any “reasonable” matching policy—matches only a frac
tion of under-demanded agent types. In every component 
of a residual network, we show that there is at most one 
such agent type, and there is exactly one in every acyclic 
component. These types anchor the policies.

The first greedy policy we prescribe is the longest- 
queue policy, with a minor variation. When an agent of 
a given type arrives and enables possibly multiple fea
sible (and nonredundant) matches, it is matched to an 
agent from the longest neighboring queue. One excep
tion is that ties are never broken in favor of an under- 
demanded agent type. Naturally, the longest-queue 
policy is a state-dependent policy.

Static (hence, state-independent) priority policies are 
also appealing and common in practice. These policies 
are also greedy, and ties are broken according to an 
exogenous priority order. We construct a static priority 
policy that is hindsight optimal for two-way matching 
networks, whose residual networks (after removal of 
all redundant matches) are acyclic. Bipartite networks, 
which capture two-sided matching markets, fall into 
this family regardless of whether the network is cyclic.

The (static) priority orders that achieve hindsight 
optimality are easy to describe for each acyclic compo
nent, where we refer to the under-demanded agent 
type as the root. The design rule is that if two matches 
are on the same path from the root, a higher priority is 
assigned to the match that is farther away from the 
root.

Both policies, we show, are locally robust. That is, 
both policies that operate relative to a (mis)estimated 
arrival-rate vector remain hindsight optimal as long as 
this demand vector lies in the same (explicitly charac
terized) cone as the true arrival-rate vector.

Our findings do not extend to multiway matching net
works. In Kerimov et al. (2023), we studied multiway 
matching networks, those where matches may include 
more than two agent types. In such networks, hindsight 
optimality is achievable under a periodic clearing policy 
with a carefully chosen period length. Greedy policies 
that do not wait to form matches are not hindsight opti
mal. This is because of complementarities that arise in 
multiway matching networks. To perform a high-value 
match that requires multiple types, we must wait for 
arrivals to multiple queues to be simultaneously none
mpty. Greedy policies rush to consume these agents by 

performing neighboring low-value matches instead; 
see example 3.2 in Kerimov et al. (2023). It is important 
that for two-way matching networks there exist greedy 
policies that achieve hindsight optimality; in these, 
waiting is not necessary for hindsight optimality. From 
a mathematical standpoint, two-way networks allow 
us to express the optimality gap explicitly in terms of 
the network parameters.

Our proofs are based on inferring bounds on regret 
from bounds on queue lengths. This creates an intimate 
connection between the optimal scaling for regret and 
the optimal scaling for queue lengths as a function of 
the network primitives.

In a classic single-server queueing system with utili
zation ρ, the stationary queue length is, in expectation, 
proportional to 1=(1 � ρ). It is generally true that one 
cannot achieve smaller stationary queue length than 
1=(1 � ρ) as long as there is some stochasticity in the 
arrival rates or service times. In general networks, ρ is 
the network utilization and typically identified via a 
deterministic static-planning problem akin to the one 
we use in this paper.

Matching networks like the one we study in this paper 
are fundamentally different. In the single-server queue, 
capacity is “wasted” if there are no customers. In our 
matching networks, capacity can be “inventoried.” An 
arriving agent that finds all queues empty will wait to be 
matched later. Nevertheless, we find such a fundamental 
lower bound on queue length. In Kerimov et al. (2023), 
we proved that (except for trivial networks) the long-run 
average queue length is at least of the order of ɛ�1, where 
ɛ is the general position gap—a parameter that arises natu
rally from our matching version of the static-planning 
problem. In this paper, we establish that the greedy 
longest-queue policy achieves this lower bound at all 
times in two-way matching networks. Our narrower 
focus also facilitates crisper regret bounds. That is, we are 
able to identify the constant before the optimal scaling 
ɛ�1 and, in turn, reflect its dependence on the number of 
agent types in the network. From a technical/analysis 
perspective, there is some unavoidable overlap with 
our earlier paper. The key mathematical ingredient that 
we import from our earlier paper is the aforementioned 
connection between queue lengths and regret. Once 
that connection is made, however, the current paper— 
because of the algorithms/policies that did not appear 
in our earlier paper—requires its own separate analysis 
to bound the queue lengths. This analysis draws on 
both new graph-related results and stochastic (Lyapunov 
function) results. The proof that the static priority policy 
achieves hindsight optimality requires recursively creat
ing a Lyapunov function, which might be of independent 
interest.

Beyond anchoring the policy construction (through 
the under-demanded agent types) and revealing the 
optimal scaling for regret, the static-planning problem 
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plays a central role in our analysis of the stochastic sys
tem. The Lyapunov functions that we construct use 
our explicit characterization of the optimal solution of 
the static-planning problem. Our Lyapunov function 
arguments for longest-queue optimality are simpler 
than analogous proofs for capacitated queueing net
works and stability of general class of max-weight pol
icies (e.g., see Jonckheere et al. 2022). As such, it serves 
to introduce methods from the queueing theory tool
box to a broader (non-queueing) community studying 
matching networks.

1.2. Related Literature
Two streams of literature are closely related to this 
work. The first stream concerns matching in random 
graphs, and the other stream concerns matching in 
queueing systems.

1.2.1. Matching in Random Graphs. This literature 
studies random graphs, where agents arrive over time 
and form an edge with existing agents in the system 
with some exogenous probabilities. A large subset of 
this literature focuses on matching, where all matches 
generate the same value in contrast to our heteroge
neous setting. Several studies find greedy policies to 
be asymptotically optimal (either when the matching 
probability vanishes or when the arrival rates grow 
large) when the objective is to minimize waiting times 
(Anderson et al. 2017, Ashlagi et al. 2019a), or, in the 
presence of departures, when the objective is to maxi
mize the number of matches (Akbarpour et al. 2020) 
(unless departure times are observable), or under both 
measures (Ashlagi et al. 2019b).

In our paper, we consider heterogeneous match 
values so that greediness alone does not specify the pol
icy completely. One must specify which match to per
form when multiple matches are available. Still, we are 
able to show that—in two-way matching networks— 
being greedy with respect to a pre-optimized network 
is hindsight optimal at all times (and truly optimal in 
the long-run average sense). The network being two- 
way is a necessary condition for hindsight optimality of 
greedy policies in our case, because greedy policies are 
suboptimal in general networks (Kerimov et al. 2023).

Several papers study dynamic matching in two- 
sided networks with heterogeneous match values and 
departures. Blanchet et al. (2022) considered a model in 
which match values were generated from a continuous 
distribution (in contrast to our finite setting). Their 
paper found that greedy threshold policies, which 
assure that the market is sufficiently thick, are (nearly) 
asymptotically optimal as the market grows large. Col
lina et al. (2020) interpolated between immediate and 
delayed actions in order to achieve an approximation 
guarantee.

1.2.2. Matching in Queues. Intuitively speaking, agents 
waiting in queues at a given time correspond to match 
values that have not yet been realized. Achieving the 
optimal scaling for regret, as a function of the general 
position gap ɛ, is thus intimately linked to the minimal 
achievable queue-length scaling. Within our analysis, 
we establish that ɛ�1 is the minimal scaling for queue 
length, and it is achievable.

This question of minimal stationary queue-length 
scaling has a long history in the capacitated queueing 
networks literature. In the simplest of these—the single- 
station single-server queue—the stationary delay is of 
the order of 1=(1 � ρ), where ρ is the utilization. The sin
gle server is “perfectly efficient,” because the server idles 
only when there is no work. In more general networks, 
in contrast, some servers might be idle and have nothing 
to work on, although there is work (somewhere else) 
in the network. The natural question is then whether 
there is a centralized policy, under which a scaling of 
1=(1 � ρ) is achievable. In capacitated queueing net
works, ρ is identified by a static planning problem; see, 
for example, Harrison and Lopez (1999). Shah et al. 
(2014) and Maguluri and Srikant (2016) showed that 
max-weight policies are those that achieve the optimal 
scaling. In matching networks, agents play the dual role 
of demand and capacity. Nevertheless, a static matching 
problem characterizes the general position gap and, in 
turn, the optimal stationary queue-length scaling. We 
prove that a suitably defined longest-queue policy (an 
instance of max-weight) achieves the optimal stationary 
queue-length scaling.

Stationarity is, itself, nonobvious in matching mod
els. Networks of the type that we study here—where 
arrivals are sequential—are generally unstable. Condi
tions on the model and primitives that guarantee stabil
ity are studied in, for example, Bušić et al. (2013) and 
Mairesse and Moyal (2016). The control policy matters 
for stability. It is sometimes fixed, as in the growing 
body of work on the stability of first-come-first-serve 
two-way matching networks (see, e.g., Adan et al. 
2018), and sometimes chosen explicitly to stabilize the 
network (Jonckheere et al. 2022). It is a by-product of 
our analysis that with sequential arrivals, the network 
is stabilizable as long as the static planning problem 
solution induces a residual network with odd cycles 
(which makes the network, in particular, nonbipartite).

The minimization of holding costs has been studied 
in the literature; see, for example, Gurvich and Ward 
(2014), Bušić and Meyn (2015), and Cadas et al. (2019), 
who focused on holding-cost minimization. Our focus 
is on match value maximization, similar to Nazari 
and Stolyar (2019). The goals, however, are different. 
Nazari and Stolyar (2019) developed a policy that max
imized the long-run average value while stabilizing 
the queues. They were able to do so without knowing 
the arrival rates in advance; see also Aveklouris et al. 
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(2021). Instead, we assume that arrival rates are known, 
and we focus on all-time regret—a stronger notion 
than long-run average optimality—and its scaling.

This paper is a follow-up to Kerimov et al. (2023), 
where we studied multiway matching networks and 
proposed a batching policy that achieves the minimal 
all-time regret scaling. In general, we showed there that 
acting greedily is suboptimal. In this paper, we show 
that when restricting attention to two-way matching 
networks, there exist greedy policies that can achieve 
the optimal all-time regret scaling. The restriction to 
two-way networks allows for a more explicit character
ization of the regret bound in terms of the network 
parameters. Finally, we show how the network struc
ture can be used to define a static priority policy that 
achieves constant regret. Of independent interest may 
be our recursive construction of a Lyapunov function 
for the static priority policy.

In our paper, we prove that—in two-way matching 
networks—one can achieve constant regret while being 
truly greedy. Under our policies, matches are performed 
as long as there is at least one feasible match available. 
The only choice is which of the multiple feasible matches 
to perform. A subsequent work Gupta (2022) introduced 
a weaker version of greediness, where the policy com
mitted an item to a match upon arrival even if that match 
was not available at that point in time. This policy might 
have left items in queues even when there were matches 
available, but the weaker definition supported near opti
mality beyond two-way networks. Importantly, the poli
cies are structurally different.

1.2.3. Notation. For real numbers x and y, we use x ∧ y 
� min{x, y}. We use [n] to denote the set of integers 
{1, 2, : : : , n}. We follow the accepted meaning of little o, 
big O, and big Ω. For example, at � Ω(bt) for all t> 0 
(for nonnegative at, bt) means that lim inft→∞at=bt > 0. 
Missing proofs in the body of the paper appear in 
the Appendix.

2. Model
2.1. Matching Network
There is a finite set of agent types A � {1, 2, : : : , n}, a finite 
set of matches M � {1, : : : , d}, and a match value rm > 0 
for each match m ∈ M. Each match m ∈ M is character
ized by two participating agent types, denoted by the 
set A(m). The network topology is specified by a matching 
matrix M ∈ {0, 1}

n×d, where Mim � 1 if and only if i ∈

A(m). There is no harm in assuming that each agent 
type participates in at least one match. Each agent type 
i ∈ A is associated with an arrival probability λi > 0; 

P
i∈A 

λi � 1. We refer to the tuple G � (M,λ, r) as the matching 
network.

The matching network induces a weighted undi
rected simple graph, where the set of vertices is A and 

the set of edges is M; there is an edge between i, j ∈ A 

with weight rm if and only if there exists m ∈ M such 
that A(m) � {i, j}. We say that i, j ∈ A are neighbors if 
A(m) � {i, j} for some m ∈ M. With slight abuse of 
notation, we denote this induced simple graph also 
by G. We assume without loss of generality that G is 
connected.

2.2. Dynamics
Time is discrete, and there is a single agent arrival every 
period. The arriving agent is of type i ∈ A with proba
bility λi. We maintain a separate queue for each agent 
type, and agents join their type-dedicated queues upon 
arrival. All queues are empty at time t� 0.

Match m ∈ M is available at time t if and only if the 
queues of both agent types in A(m) are nonempty at 
that time. Performing m ∈ M once requires one agent 
from each type in A(m) and generates a value of rm. 
Matched agents leave the market immediately.

The process At
i counts the number of arrivals to queue 

i ∈ A until (and including) time t. The sequence of events 
in a time period is as follows: an agent arrival is realized, 
then matches are performed, and queue-lengths are 
updated. The process Qt

i tracks the number of agents 
waiting in queue i ∈ A at time t after all matches for this 
period have been performed.

2.3. Matching Policy
A matching policy is a mapping from histories of arrivals 
and performed matches to a (possibly empty) set of 
matches. Given the history, the matching policy deter
mines how many times each match is performed at each 
time period. An admissible matching policy is an increas
ing non-anticipative process Dt :� (Dt

m : m ∈ M, t ≥ 0), 
where Dt

m is the number of times match m ∈ M is per
formed by time t; Dt must satisfy

Qt � At � MDt for all t ≥ 0: (1) 

We assume that Dt is right-continuous with left limits 
(RCLL). ∆Dt

m :� Dt
m � Dt�1

m is then the number of times 
match m ∈ M is performed at time t> 0. We add the 
superscript D on expectations to make explicit the depen
dence on the policy, where the superscript is omitted 
when the context is clear. The family of all admissible 
matching policies is denoted by Π.

Greedy policies are a large family of admissible poli
cies. These policies perform, whenever possible, a match 
among those available within a prespecified set.

Definition 2.1. (Greedy Policy). Given a matching net
work G and a subset S ⊆ M (not necessarily strict), we 
say that a policy D is a greedy policy with respect to S, if 

(i) a match is performed whenever at least one 
match becomes available to perform in S, and
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(ii) matches in M\S are never performed, that is, 
Dt

m � 0 for all m ∈ M\S and for all t ≥ 0.

Note that under any greedy policy, at most one 
match can be performed at any time period, because 
exactly one agent arrives every period. Note that when 
a match is performed, it must include the arriving 
agent. Definition 2.1 does not specify which match to 
perform when multiple matches are available, which 
can happen upon an agent arrival. Which available 
match to perform remains as a degree of freedom in the 
policy definition. This choice will differ between two 
greedy policies that we will introduce.

Defining a greedy policy relative to a set S, which 
could be M or a strict subset thereof, gives us flexibil
ity. Our proposed policies will be greedy relative to a 
strict subset of M.

2.4. Optimality Criterion
The expected total value generated by time t under a 
policy D is given by

RD, t :� ED[r · Dt]:

For any fixed t, the optimal value R∗, t :� maxD∈ΠRD, t is 
trivially attained by the policy, which takes no action 
until time t and follows an optimal (static) weighted 
matching at time t. That is,

R∗, t :� E
max r · y
s:t: My ≤ At

y ∈ Zd
≥0

2

6
4

3

7
5, 

where the expectation is taken over all realizations 
of At.

The function R∗, t can be interpreted as the hindsight 
upper bound at time t; that is, the decision maker is 
allowed to correct past decisions so that previously per
formed matches may be revoked to perform new ones 
at all times. A matching policy is hindsight optimal if it 
is, at all times, almost as good as the optimal value.

Definition 2.2. (Hindsight Optimality). A matching pol
icy D is hindsight optimal if

R∗, t � RD, t � O(1) for all t > 0, 

which implies, in particular, that RD, t=R∗, t � 1 � O(1=t)
for all t> 0.

The existence of a hindsight optimal matching policy 
means that the tension between short- and long-term 
objectives is essentially moot; a good performance at 
time t0 does not necessitate a significant compromise at 
time t1 > t0. Observe that a hindsight optimal matching 
policy is also optimal in the long-run average sense:

R∗, T � RD, T

R∗, T � O(1=T) → 0 as T → ∞: (2) 

3. Main Results
We identify two greedy policies that are hindsight opti
mal; one is state dependent, and the other one is state 
independent. The policies (and their analyses) use prop
erties of the optimal solution of a static (offline) linear 
matching problem.

3.1. Preliminaries
We begin with some preliminaries before presenting 
our main results.

3.1.1. Static-Planning and General Position. Relaxing 
the integrality constraints and applying Jensen’s inequal
ity gives the following upper bound on R∗, t:

R∗, t � E

max r · y

s:t: My ≤ At

y ∈ Zd
≥0

2

6
6
4

3

7
7
5 ≤

max r · x

s:t: Mx ≤ λt

x ∈ Rd
≥0:

With the change of variables z � x=t, we can write the 
upper bound in standard form as follows:

max r · z

s:t: Mz + s � λ

z ∈ Rd
≥0, s ∈ Rn

≥0:

(SPP) 

We refer to this formulation as the static-planning problem 
(SPP). The following definition introduces the notion of 
general position that captures the level of stability in a 
matching network and plays a crucial role in our main 
results. In fact, general position is a necessary condition 
to achieve hindsight optimality (Kerimov et al. 2023, 
example 3.1).

Definition 3.1. (General Position). A matching network 
G satisfies the general position condition (GP) if (SPP) 
has a unique nondegenerate optimal solution (z∗, s∗), 
that is, all n basic variables in this solution are strictly 
positive. Define the sets

M+ :� {m ∈ M : z∗
m > 0}, M0 :� M\M+,

Q+ :� {j ∈ A : s∗
j > 0} and Q0 :� A\Q+, 

where M+ is the set of active matches, M0 is the set 
of redundant matches, Q+ is the set of under-demanded 
(nonempty) queues, and Q0 is the set of over-demanded 
(empty) queues. The general position gap is defined as

ɛ :� min
m∈M+

z∗
m ∧ min

j∈Q+

s∗
j :

3.1.2. Residual Graph. To achieve hindsight optimal
ity, any matching policy must mostly avoid perform
ing redundant matches (Kerimov et al. 2023, remark 
3.1). Accordingly, the policies that we will propose are 
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greedy with respect to the set S � M+ (M. Let G′ :� G 

�M0 be the (SPP)-residual graph, which is obtained from 
G by removing all redundant matches (every m ∈ M 

with z∗
m � 0). The (SPP)-residual graph G′ is then a union 

of (possibly) multiple components, and we write G′ �

∪k∈[K]Ck, where Ck is the kth component of G′. Because G 

is a simple graph, any edge (match) removal can in
crease the number of components at most by 1; K ≤

|M0 | + 1. Let A(Ck) be the set of all vertices (queues) in 
Ck, and let M(Ck) be the set of all edges (matches) in Ck 
for all k ∈ [K].

The (SPP)-residual graph G′ has some useful proper
ties, which will be crucial in the design and analysis of 
our policies.

Lemma 3.1. Assume that G satisfies GP. Then, each com
ponent Ck, k ∈ [K], of the (SPP)-residual graph G′ satisfies 
the following properties: (i) Ck contains at most one cycle, 
(ii) if Ck does not contain a cycle, then Ck is a tree and 
|A(Ck) ∩ Q+ | � 1, and (iii) if Ck contains a cycle, then the 
cycle is of odd length and |A(Ck) ∩ Q+ | � 0.

The proof of Lemma 3.1 appears in Appendix A and 
uses simple linear programming variable-counting argu
ments. This lemma will be crucial for the construction of 
our static priority policy. When each component of G′ is a 
tree, the single under-demanded queue will serve as an 

anchor in determining the priority order over matches. 
Informally, the priority order of a match will be propor
tional to the distance from this queue.

3.2. Optimality of the Longest-Queue Policy
Recall that that under a greedy policy, in the sense of 
Definition 2.1, a match can be performed only upon an 
arrival of an agent. The longest-queue policy is a 
greedy state-dependent policy defined as follows.

Definition 3.2. (Longest-Queue Policy). Given a match
ing network G, the longest-queue policy, denoted by 
LQ(M+), is a greedy policy with respect to M+ such that 

(i) At any time t > 0, upon arrival of an agent (say type– i), 
perform the available match m ∈ M+ such that A(m) � {i, j}
and j ∈ arg max{Qt

k : A(m′) � {i, k} for some m′ ∈ M+}, 
where ties are broken arbitrarily, and

(ii) at the end of each time period (after a match is performed), 
all agents of types i ∈ Q+ leave the market unmatched.

Upon arrival, the arriving agent is matched to an 
agent in a neighboring queue (given that there is a 
nonempty one) that contains the greatest number of 
agents. Consider, for example, the cyclic component in 
Figure 1(bottom). Suppose that Qt

7 > Qt
5 > 0 at some 

time t, and there is an arrival to queue 6 next. Both 
matches 6 and 7 can be performed upon arrival, but 

Figure 1. (Color online) Obtaining the Residual Graph 

Notes. Top: a matching network that satisfies GP with M0 � {2, 5} and Q+ � {3}. The scalar λ is chosen so that 
P

i∈Aλi � 1. Bottom: the corre
sponding (SPP)-residual graph G′. In all figures, arrival probabilities and match values are indicated on vertices and edges, respectively.
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match 7 will be performed because Qt
7 > Qt

5 > 0. If 
Qt

7 � Qt
5 > 0, the choice between performing match 6 

and match 7 is arbitrary.
In Definition 3.2, all agents of type i, i ∈ Q+, are 

“rejected” at the conclusion of a period. In particular, an 
agent of type i ∈ Q+ can be matched only upon arrival, 
which happens if one of its neighboring queues is none
mpty. These rejections simplify our analysis because we 
do not have to keep track of the number of agents in 
queues in the set Q+. The process (Qt

i : i ∈ Q0, t ≥ 0) is 
itself a Markov chain and, we show, stable under our 
policies.

Our analysis reveals that such rejections do not sacri
fice optimality, and it is practically reasonable to reject 
these agents. Otherwise, corresponding queues will 
grow without a bound; see Lemma 5.1.

Our first result is that LQ(M+) is hindsight optimal 
with a ɛ�1 regret scaling. This, with the exception of 
trivial cases, is also a lower bound on regret scaling (see 
Kerimov et al. 2023 and Theorem 3.1).

Theorem 3.1. (Hindsight Optimality for Two-Way Match
ing Networks). Assume that G satisfies GP, and let ɛ be the 
GP gap. Then, LQ(M+) is hindsight optimal,

R∗, t � RD, t ≤
rmaxn

ɛ
1 +λ�1

min1 t ≤
n

ɛλmin

� �� �

, 

where rmax � maxm∈M+
rm and λmin � mini∈Q0λi.

3.3. Optimality of a Static Priority (State- 
Independent) Policy in Bipartite 
Matching Networks

We are also interested in greedy policies that follow a 
static priority order over nonredundant matches and, in 
particular, make decisions independent of the state of 
the network. We will establish that there exists a hind
sight optimal static priority policy, given that GP is satis
fied and any component in the (SPP)-residual graph G′

is a tree; an important family of matching networks satis
fying this condition is bipartite matching networks.

Definition 3.3. (Static Priority Policy). Given a matching 
network G, the static priority policy, denoted by SP(M+, 
p), is a greedy policy with respect to M+ such that 

(i) p : M+ → {1, : : : , |M+ |} is a bijective static prior
ity order. We say that m ∈ M+ has a higher priority 
than m′ ∈ M+ if and only if p(m) < p(m′),

(ii) at any time t> 0, upon arrival of an agent (say type– 
i), perform the highest priority match m ∈ M+ among 
those available, where m ∈ arg min{p(m′) : i ∈ A(m′)}, and

(iii) at the end of each time period (after a match is 
performed), all agents of type– i, i ∈ Q+, leave the mar
ket unmatched.

3.3.1. Determining the Static Priority Order p(·). Assume 
that any component Ck, k ∈ [K], in the (SPP)-residual 

graph G′ is a tree. Fix some Ck, where the following 
procedure is applied on each component separately. 
Per Lemma 3.1, there is a unique queue, denoted by 
k+, such that A(Ck) ∩ Q+ � {k+}. We say that p(·) is a 
topological order if given any path starting from k+ to 
any i ∈ A(Ck)\{k+}, for any two matches (edges) on 
this path m, m′ ∈ M(Ck), we have p(m) < p(m′) if and 
only if m is farther away from k+ than m′ when we trav
erse the path starting from k+ to i. Note that there is at 
least one topological order p(·), because the path between 
k+ to any i ∈ A(Ck)\{k+} is unique, because Ck is an acyclic 
component.

Our second result shows that there exists a static pri
ority policy, which is hindsight optimal.

Theorem 3.2. (Hindsight Optimality for Two-Way Match
ing Networks with Acyclic Residual Graphs). Assume that 
G satisfies GP, and any component in the (SPP)-residual 
graph G′ is a tree. Then SP(M+, p), where p is any topolog
ical order and is hindsight optimal, and

R∗, t � RD, t ≤ Γ for all t > 0, 

where Γ > 0 is a constant that does not depend on t.

We conclude this section with some remarks regard
ing Theorems 3.1 and 3.2.

Remark 3.1.
(i) Theorem 3.2 holds for any bipartite matching net

work G that satisfies GP. This is because per Lemma 
3.1, any component Ck in the (SPP)-residual graph G′ is 
a tree, because G does not contain any odd cycles.

(ii) In contrast to Theorem 3.1, where we identified 
the dependence of the constant regret on the general 
position gap ɛ, in Theorem 3.2 we could only establish 
that the regret is constant at all times. However, this 
result still implies that SP(M+, p) is optimal in the long- 
run average sense; see (2). We believe that SP(M+, p)

also achieves the optimal scaling of ɛ�1 for regret, as 
simulations in Example 6.1 suggest.

(iii) We do not know whether there exists a hind
sight optimal static priority policy when there is a com
ponent Ck in the (SPP)-residual graph G′ that contains 
an odd cycle. Note that the tree structure is central to 
the design of a priority policy.

(iv) The topological order for the static priority pol
icy is generally not unique (unless G is a path). For 
example, in Figure 2, another possible topological order 
is 5 ≻ 1 ≻ 4 ≻ 2 ≻ 3 ≻ 6 ≻ 7. w

The rest of the paper is organized as follows. In Sec
tion 4, we explicitly characterize the optimal solution of 
(SPP), which plays a key role in the design and analysis 
of our matching policies. In Section 5, we prove hind
sight optimality of our matching policies. Finally, in 
Section 6, we provide numerical examples to provide 
further insights about our matching policies.
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4. Properties of the (Deterministic) Static- 
Planning Problem

This section uncovers properties of the matching net
work and the static-planning problem (SPP), which are 
essential in the design and (stochastic) analysis of our 
matching policies.

The following theorem gives an explicit characteriza
tion of the optimal solution of (SPP). The characterization 
is instrumental because it captures permitted perturba
tion for λ to maintain the optimal basis in terms of the 
general position gap ɛ. This is a generalization of (Keri
mov et al. 2023 and Theorem 4.1) to matching networks 
with cyclic components.

Theorem 4.1. (Explicit Optimal Solution of (SPP)). As
sume that G satisfies GP. Let (z∗, s∗) be the unique nondegene
rate optimal solution of (SPP) with M+ � {m ∈ M : z∗

m > 0}

and Q+ � {j ∈ A : s∗
j > 0}. Then, there exist |M+ | vectors ym 

∈ {�1, � 1=2, 0, 1=2, 1}
n and |Q+ | vectors yj ∈ {�1, 0, 1}

n 

such that

z∗
m(λ) :� ymλ > 0 for all m ∈ M+ and

s∗
j (λ) :� yjλ > 0 for all j ∈ Q+:

4.1. Surplus Vectors
The explicit construction of the y vectors (surplus vec
tors) in Theorem 4.1 plays a key role in the design and 
analysis of our matching policies. The following proce
dure describes the construction for each of the compo
nents in the SPP-residual graph G′. Fix a component Ck, 
be it cyclic or a tree; see Lemma 3.1. 

• Tree components. First, assume that Ck is a tree. 
The corresponding surplus vectors are already con
structed in (Kerimov et al. 2023, section 4), but we repeat 
it here for completeness. Let k+ be the unique queue in 
A(Ck) ∩ Q+ per Lemma 3.1. Let U0 :� {i ∈ A(Ck) ∩ Q0 :P

m∈M+
Mim � 1}. This is the set of queues in A(Ck) ∩ Q0 

participating in exactly one nonredundant match; U0 is 
a subset of the leaves of Ck. Because Ck is a tree, U0 is 
clearly a nonempty set. For all i ∈ U0, we first traverse 
the unique path between k+ and i in Ck starting from k+. 
Any edge between i′ ∈ A(Ck) and j′ ∈ A(Ck) on this path 
is marked with the direction it is traversed, i′ → j′ or 
j′ → i′. Denote the resulting directed graph by Ck

→

; for 
example, see Figure 3. We refer to k+ as the root of Ck

→

. 
Because Ck is a tree and the root k+ is unique, every edge 
in this component is marked with a unique direction.

For each i ∈ A(Ck), we let T i be the subtree rooted at 
i, where T i is the union of all directed paths from i 
to j ∈ U0. Note that T k+

is Ck
→

itself. Let A(T i) be the set 
of queues in T i. Let d(i, j) be the length of the directed 
path from i ∈ A(Ck) to j ∈ A(Ck) in Ck

→

with the conven
tion d(i, i) � 0. For each i ∈ A(Ck), we then define the 

Figure 2. (Color online) A Tree Component Ck with k+ � 6 

Note. One possible topological order p(·) is indicated on the matches: 
1 ≻ 5 ≻ 2 ≻ 4 ≻ 6 ≻ 3 ≻ 7, where m ≻ m′ means p(m) < p(m′).

Figure 3. (Color online) Left: A Tree Component Ck with k+ � 6 and U0 � {1, 5, 7, 8} ⊆ A(Ck); Right: The Corresponding Directed 

Graph Ck
→

. 
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surplus vector yi ∈ {�1, 0, 1}
n as follows:

(yi)j �

0, if j ∈ A\A(T i),
1, if d(i, j) ≡ 0 (mod 2),

�1, if d(i, j) ≡ 1 (mod 2):

8
><

>:
(3) 

Note that because d(k+, k+) � 0, in particular, we have 
(yk+ )k+

� 1. Finally, by the construction of Ck
→

, for each 
m ∈ M(Ck), there is a unique queue i(m) ∈ A(Ck) such 
that the marked direction on m is incoming to i(m). 
Then, we define the surplus vector for each m ∈ M(Ck)

with the vector yi(m):

ym :� yi(m) for all m ∈ M(Ck):

For example, in Figure 3, the surplus vector for queue 3 
is y3 � [1, � 1, 1, �1, 1, 0, 0, 0], and the surplus vector 
for match 2 is equal to the surplus vector for queue 2, 
which is y2 � [�1, 1, 0, 0, 0, 0, 0, 0].

• Cyclic components. Let us first consider the case 
when Ck is just a cycle of odd length. Let A(Ck) � {1, 
: : : , 2n + 1} and M(Ck) � {1, : : : , 2n + 1}, where A(m) �

{m, m + 1} for all m ∈ [2n] and A(2n + 1) � {1, 2n + 1}. 
Because A(Ck) ∩ Q+ � ∅ per Lemma 3.1, we must have 
that λi � z∗

i�1 + z∗
i for all 2 ≤ i ≤ 2n + 1 and λ1 � z∗

2n+1 + z∗
1. 

This yields 
P2n+1

i�1 λi � 2
P2n+1

m�1 z∗
m, and solving these equa

tions, we get

z∗
m �

1
2
X2n+1

i�1
λi �

X

j<m+1
j≡m (mod 2)

λj +
X

j>m
j≡m (mod 2)

λj

0

B
B
@

1

C
C
A

for all m ∈ [2n], (4) 

z∗
2n+1 �

1
2
X2n+1

i�1
λi �

X

j≡0 (mod 2)

λj

0

@

1

A: (5) 

Using (4) and (5), for any m ∈ [2n], we define the sur
plus vector ym ∈ {�1=2, 0, 1=2}

2n+1 as follows:

(ym)j �

�1=2, if j < m + 1 and j ≡ m (mod 2),
�1=2, if j > m and j ≡ m (mod 2),

1=2, otherwise:

8
><

>:

Similarly, we define the surplus vector for match (2n + 1)

as follows:

(y2n+1)j �
�1=2, if j ≡ 0 (mod 2),

1=2, otherwise:

�

By construction, observe that we have z∗
m � ymλ for all 

m ∈ M(Ck).
Let us now expand and consider a component Ck that 

is cyclic. Per Lemma 3.1, this component contains exactly 
one cycle, and this cycle is of odd length. Denote this 

odd cycle by Codd, and let A(Codd) be the set of queues 
included in this odd cycle. Define the set U≥3 :� {i ∈

A(Codd) : deg(i) ≥ 3}, that is, the set of queues in A(Codd)

participating in at least three nonredundant matches in 
Ck. Fix some i ∈ U≥3. In other words, i participates in at 
least three nonredundant matches in Ck, and in particu
lar, i participates in at least one nonredundant match 
that is not a part of Codd.

Remove both edges (matches) that i participates in 
Codd. This decomposes Ck into two subgraphs and sepa
rates i from Codd. Consider the resulting subgraph that 
contains i. By construction, this component is a tree. 
Temporarily, we will assume that i plays the role of k+

in the construction of the surplus vectors for tree com
ponents. Hence, we define the surplus vectors for all 
matches contained in this subgraph as in the previous 
construction for tree components, and we let yi be the 
temporary surplus vector for i under this setting, where 
i plays the role of k+. After applying this procedure for 
all i ∈ U≥3, we define λi :� yiλ, and we construct the 
remaining surplus vectors for all matches included in 
Codd by replacing λi by λi in (4) and (5); for example, 
see Figure 4.

The proof of Theorem 4.1 is now immediate.

Proof of Theorem 4.1. Per Kerimov et al. 2023 and 
Theorem 4.1), for any tree component Ck, we have z∗

m �

ymλ for all m ∈ M(Ck) and s∗
k+

� yk+λ, where k+ is the 
unique queue in A(Ck) ∩ Q+. For any cyclic component 
Ck, we have A(Ck) ∩ Q+ � ∅, and the construction based 
on (4) and (5) immediately yields z∗

m � ymλ for all m ∈

M(Ck). Finally, strict positivity follows from the as
sumed nondegeneracy under GP. w

We next characterize permitted perturbation for λ 
in terms of the general position gap ɛ, under which 
the optimal basis remains the same. By Theorem 4.1, 
for any other arrival-probability vector λ̃, where λ̃ is in 

Figure 4. A Cyclic Component with U≥3 � {3}

Notes. We remove match 3 and match 5, and we consider the result
ing subgraph that contains queue 3, which is a tree. Our procedure 
first yields the vectors y1 � [1, 0, 0, 0, 0] and y2 � [�1, 1, 0, 0, 0] for 
match 1 and match 2, respectively. Then, the temporary surplus vec
tor for queue 3 is y3 � [1, � 1, 1, 0, 0]. Following the procedure, we set 
λ3 � y3λ � λ3 �λ2 +λ1. Finally, solving (4) and (5), where λ3 is 
replaced by λ3, gives z∗

3 � 1
2 (�λ5 +λ4 +λ3 �λ2 +λ1), z∗

4 � 1
2 (λ5 +λ4 

�λ3 +λ2 �λ1) and z∗
5 � 1

2 (λ5 �λ4 +λ3 �λ2 +λ1). Hence, the surplus 
vectors for matches 3, 4, and 5 are y3 � [1=2, � 1=2, 1=2, 1=2, � 1=2], 
y4 � [�1=2, 1=2, � 1=2, 1=2, 1=2]and y5 � [1=2, � 1=2, 1=2, � 1=2, 1=2], 
respectively.
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the cone

Y :� {λ′ ∈ Rn
+ : ymλ′ > 0 for all m ∈ M+ and

yjλ′ > 0 for all j ∈ Q+}, 

the optimal basis remains the same. Thus, the following 
is an immediate corollary.

Corollary 4.1. (Right-Hand Side Perturbations). Assume 
that G satisfies GP. Let (z∗, s∗) be the unique nondegenerate 
optimal solution of (SPP) with M+ � {m ∈ M : z∗

m > 0} and 
Q+ � {j ∈ M : s∗

j > 0}. Then, the same basis remains optimal 
for any λ̃ > 0 such that λ̃ � λ+ ζ, where ζ ∈ Rn satisfies 
ymζ ≥ �ɛ for all m ∈ M+ and yjζ ≥ �ɛ for all j ∈ Q+.

5. Analysis
5.1. Preliminary Results
To establish the hindsight optimality of any matching 
policy, it suffices that all queues in Q0 remain bounded 
in expectation. This is shown in the following lemma, 
which is an analog of the optimality test in Kerimov 
et al. (2023) (Lemma 4.1).

Lemma 5.1. (Optimality Test). Suppose that GP holds. Let 
(z∗, s∗) be the unique nondegenerate optimal solution of (SPP). 
Suppose the following conditions hold under a policy D: 

(i) no agent of type i ∈ Q0 leaves the market unmatched,
(ii) no matches in M0 are performed, that is, Dt

m � 0 for 
all m ∈ M0 and for all t> 0, and

(iii) 
P

i∈Q0
ED[Qt

i] ≤ B for all t> 0, where B> 0 is a 
constant.

Then, D is hindsight optimal and R∗, t � RD, t ≤ rmaxB 
for all t > Bλ�1

min, where rmax :� maxm∈M+
rm and λmin :�

mini∈Q0λi.

Observe that, by construction, LQ(M+) satisfies the 
first two conditions of Lemma 5.1. We will use Lyapu
nov function arguments to establish that condition (iii) 
of Lemma 5.1 holds under our policies. The following 
is a useful version of a standard tool.

Lemma 5.2. (Glynn and Zeevi 2008, corollary 4). Let 
X � (Xt : t ≥ 0) be a discrete-time S-valued Markov chain 
with transition kernel P, and suppose f : S → R is nonneg
ative. If there exists a nonnegative function g : S → R and 
a constant c for which
Z

S
P(x, dy)g(y) � g(x) ≤ �f (x) + c for all x ∈ S, (6) 

then
Z

S
π(dx)f (x) ≤ c, (7) 

for any stationary distribution π of X.

The function g in (6) is a so-called Lyapunov func
tion. As is often the case, the key challenge is to identify 
suitable functions f and g.

Note that Lemma 5.2 gives a moment bound in sta
tionary distribution. We will be interested in generating 
moment bounds on the expected size of queues in Q0 
for any time t > 0. The following lemma will be useful 
to establish this. The lemma couples two stochastic sys
tems; one is initialized with Q0 � 0, and the other one is 
initialized arbitrarily and relates the total number of 
agents waiting in both systems at any time t.

The next lemma shows that greedy matching poli
cies are non-expansive. Namely, the gap between two 
greedy-operated systems that differ only in their initial 
queue lengths does not grow with time; see Moyal and 
Perry (2017) for a related result.

Lemma 5.3. Let D be any greedy policy as in Definition 
2.1 such that at the end of each time period (after a match is 
performed), all agents of type–i, i ∈ Q+, leave the market 
unmatched. Let H be a matching network that is identical 
to G except for the initialization of the queue-length vector 
at t � 0. Let (Ht : t ≥ 0) be the corresponding queue-length 
vector to H, and consider an arbitrary initialization for H. 
Let h :�

P
i∈Q0

H0
i . Then, under D, we have

X

i∈Q0

Qt
i �
X

i∈Q0

Ht
i

�
�
�
�
�

�
�
�
�
�

≤ h for all t ≥ 0: (8) 

Proof of Lemma 5.3. We refer to agents present at 
t � 0 in H as labeled. We also say that a performed 
match is labeled if it contains a labeled agent, and the 
match is unlabeled otherwise.

Let us first prove that 
P

i∈Q0
Ht

i ≤ h +
P

i∈Q0
Qt

i for all 
t ≥ 0. Given the same arrival process, observe that the 
first ever match in both systems cannot be performed 
only in G; it is possible that the first-ever match will be 
performed in both systems at the same time. Consider 
all times when a match is performed in G but not in H. 
Consider such a time, say t, and assume that the arriv
ing agent at time t (that makes at least one match 
available to perform in G) is of type– i and matches 
to some agent of type–j. Because both systems are 
equipped with the same arrival process and j is not 
present in H at time t (otherwise there would be at 
least one available match to perform in H), this im
plies that j was already matched in H at some time 
t′ < t. Therefore, at any time t > 0, the total number of 
performed matches in H is greater than or equal to the 
total number of performed matches in G. Note that 
there are only two types of matches, where either an 
arriving agent type is in Q0 and matches another 
agent type in Q0 that is present in the system, or an 
arriving agent type is in Q+ and matches an agent 
type in Q0. Thus, if a match is performed in G or H, 
then 

P
i∈Q0

Qt
i or 

P
i∈Q0

Ht
i , respectively, decreases by 1. 

This proves that 
P

i∈Q0
Ht

i ≤ h +
P

i∈Q0
Qt

i for all t ≥ 0.
Next, we show that 

P
i∈Q0

Qt
i ≤ h +

P
i∈Q0

Ht
i for all 

t ≥ 0. Given the same arrival process, observe that the 
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first-ever unlabeled match in both systems cannot be 
performed only in H. We claim that the total number 
of performed unlabeled matches in G is greater than 
or equal to the total number of performed unlabeled 
matches in H. Consider a time t such that an unlabeled 
match is performed in H (say type-i arrives and matches 
to type–j) but not in G. Similar to the previous argu
ments, this implies that j was already matched in H 

at some time t′ < t. Because any performed match in 
G is unlabeled by definition, this proves the claim. 
Finally, because one can perform at most h many labeled 
matches in H under any arrival process, we must have 
that 

P
i∈Q0

Qt
i ≤ h +

P
i∈Q0

Ht
i . w

5.2. Proof of Theorem 3.1.
The proof will apply the optimality test Lemma 5.1. 
Recall that by construction, LQ(M+) satisfies the first 
two conditions of Lemma 5.1. It remains to prove the 
third condition, which will be done by leveraging Lya
punov function arguments.

Recall that the (SPP)-residual graph G′ � ∪k∈[K]Ck con
sists of components such that for any k ∈ [K], Ck is either 
a tree with |A(Ck) ∩ Q+ | � 1 or cyclic, in which case 
|A(Ck) ∩ Q+ | � 0; see Lemma 3.1. Because our aim is to 
prove that all queues in Q0 remain bounded in expecta
tion, we focus then on a single component in our analy
sis and treat G as the only component. The analysis is 
then the same for all the other components. The follow
ing is the main ingredient in the proof of Theorem 3.1.

Lemma 5.4. Assume that G satisfies GP with M0 � ∅. 
Define L(Qt) :�

P
i∈Q0

(Qt
i)

2, t ≥ 0. Then, under LQ(M+), 
the Markov chain (Qt

i : i ∈ Q0, t ≥ 0) is ergodic. Moreover, 
L(Qt) decreases in expectation:

E[L(Qt+1) � L(Qt) |Qt] ≤ �2 ɛ

n ‖Qt‖1 + 1 for all t ≥ 0:

(9) 

The proof of Lemma 5.4 is given in the next subsection. 
We first apply it to complete the proof of Theorem 3.1.

Proof of Theorem 3.1. We first prove the upper 
bound. The drift property (9) in Lemma 5.4 implies 
that the Markov chain (Qt

i : i ∈ Q0, t ≥ 0) is positive 
recurrent; for example, see Robert 2003, corollary 8.7. 
Given Lemma 5.4, moment bounds in the steady state 
follow trivially from Lemma 5.2, where the functions f 
and g are 2 ɛ

n ‖Qt‖1 and L(Qt), respectively. In particu
lar, under the Markov chain’s unique stationary distri
bution, which we denote by π, we have

Eπ[‖Q0‖1] ≤
n
2ɛ

, (10) 

where Q0 ~ π. Note that we still need to establish a sim
ilar moment bound for any time t> 0 (not only for the 
steady state). Per Lemma 5.3 and (10), we conclude that 

under LQ(M+), we have 
P

i∈Q0
E[Qt

i] ≤ n=ɛ for all t> 0. 
Then by Lemma 5.1, we have

R∗, t � RLQ(M+), t ≤
rmaxn

ɛ
for all t >

n
ɛλmin

:

Note that regret is upper bounded by rmaxt for any 
fixed time t > 0. Hence, LQ(M+) is hindsight optimal 
as stated. w

Remark 5.1. (Maximizing the Number of Matched Agents 
in Nonbipartite Setting). If each component in the 
(SPP)-residual graph G′ is cyclic, then Theorem 3.1 has 
an immediate implication for the objective of maxi
mizing the total number of matched agents in the 
long-run average sense.

A matching policy D matches (MDt)i many agents of 
type i by time t. Recall that MDt � At � Qt for all t ≥ 0 
per (1) so that the long-run average number of matched 
agents is given by

lim inf
T→∞

1
TE

D
X

i∈A

AT
i �

X

i∈A

QT
i

" #

≥
X

i∈A

λi � lim sup
T→∞

1
T
X

i∈A

ED[QT
i ]:

Within the proof of Theorem 3.1, we showed that under 
LQ(M+), we have 

P
i∈Q0

Eπ[Q0
i ] � O(ɛ�1), where π de

notes the steady state of the Markov chain (Qt
i : i ∈ Q0, 

t ≥ 0), and Q0 ~ π. In particular, we have lim supT→∞
1
T P

i∈Q0
E[QT

i ] � 0 (note that it is sufficient to have 
P

i∈Q0 

Eπ[Q0
i ] � O(1) to have this limit).

Because each component of G′ is cyclic, we have 
Q0 � A per Lemma 3.1 so that 

P
i∈AEπ[Q0

i ] � O(ɛ�1), 
and in turn, we have

lim inf
T→∞

1
T
E
X

i∈A

AT
i �

X

i∈A

QT
i

" #

≥
X

i∈A

λi:

Because 
P

i∈Aλi is an upper bound on the long-run 
average number of matched agents, LQ(M+) is opti
mal for this objective. w

Remark 5.2. (Stability of Matching Models). If each 
component of the matching network has odd cycles, 
then Q+ is an empty set, and the process Q(t) is (with
out any rejections) stationary with the expected queue 
length bounded as in (10). This stability is consistent 
with the general stabilizability, proven in Mairesse 
and Moyal (2016), of dynamic matching in nonbipar
tite graphs. w

5.3. Proof of Lemma 5.4
Throughout this subsection, we simplify the notation 
by assuming that q ∈ Zn

≥0 is the initial state of the queues 
(t � 0), where there are no available matches to per
form. Let Q1 be the state of the queues at time t� 1 after 

Kerimov, Ashlagi, and Gurvich: Greedy Policies in Dynamic Matching 
Operations Research, Articles in Advance, pp. 1–23, © 2023 INFORMS 11 



all matches for this period have been performed. We 
also write the conditional expectation given a matching 
policy D and the initial state q as ED

q [·].
Without loss of generality, we assume that G satisfies 

GP with M0 � ∅ so that the proof focuses on a single 
component. We use the following quadratic Lyapunov 
function:

L(q) �
X

i∈Q0

q2
i , q ∈ Zn

≥0:

It will be convenient in this subsection to denote match 
m ∈ M sometimes by (i, j), where A(m) � {i, j}. Also, it 
will be convenient to write with some abuse of notation 
Mi, (i, j) :� Mij:

Finally, we also define ∆A1 :� A1 � A0 and ∆D1 :�

D1 � D0, that is, the vector that tracks the number of arri
vals at time t� 1 and the vector that tracks the number of 
matches performed at time t� 1, respectively.

Fix an arbitrary initial state of the queues q ∈ Zn
≥0. 

Note that under any greedy policy, q must satisfy that 
for any two queues i and j that are neighbors of each 
other, we cannot have qi, qj > 0. In other words, for any 
m ∈ M with A(m) � {i, j}, at most one of these queues i 
or j can be nonempty in q.

The first simple result is generic and applies to any 
stationary policy. Define the sets

U+(q) :� {i ∈ A : qi > 0} and U0(q) :� A\U:

These are, respectively, the set of nonempty and empty 
queues in q. We also define

M+(q) :� {m ∈ M : A(m) ∩ U+(q) ≠ ∅}:

This is the set of matches that have a participating 
nonempty queue in q.

The following proposition is the first step to analyze 
the one-step transition of the quadratic Lyapunov func
tion L(q). Define xD

m(q) to be the expected number of 
times match m ∈ M is performed in the first period 
under a greedy policy D. That is,

xD
m(q) :� ED

q [∆D1
m]:

Proposition 5.1. Under any stationary greedy policy D, 
we have

ED
q [L(Q1) � L(q)] ≤ 2q(λ� MxD(q)) + 1:

Moreover, xD
m(q) must satisfy that

xD
m(q) ∈ Z(q)

:�

(

z(q) ∈ Rd
≥0 : zm(q) � 0 for all m ∉ M+(q) and

X

m∈M :
Mim �1

zm(q) ≤ λi for all i ∈ U0(q)

)

: (11) 

Proof of Proposition 5.1. Because Q1 � q + ∆A1 � M∆D1, 
we have

L(Q1) � L(q) �
X

i∈Q0

(Q1
i + qi)(Q1

i � qi)

� 2q(∆A1 � M∆D1)

+ (∆A1 � M∆D1)
′
(∆A1 � M∆D1):

Under any stationary greedy policy, we have |∆D1
m | ≤ 1 

for all m ∈ M, and because there is a single agent arrival 
every period, we have (∆A1 � M∆D1)

′
(∆A1 � M∆D1)

≤ 1 with probability 1. This proves the first assertion of 
the proposition after taking expectations.

For the second assertion, first observe that if m ∉ 
M+(q), because there is a single agent arrival every 
period, m is unavailable to be performed after any 
agent arrival in the next period t� 1. Thus, we have 
xm(q) � ED

q [∆D1
m] � 0. Secondly, taking an empty queue 

i ∈ U0(q), we have that
X

m∈M :
Mim �1

∆D1
m ≤ 1{∆A1

i � 1}, 

and, in turn, taking expectations yields
X

m∈M :
Mim �1

ED
q [∆D1

m] ≤ ED
q [1{∆A1

i � 1}] � λi 

as stated. w

Recall that under LQ(M+), we break ties arbitrarily, 
if any. Moreover, an arriving agent of type i ∈ U0(q) at 
time t � 1 matches to the longest queue among those in 
the set

A+(i) :� {j ∈ U+(q) : Mjm � Mim � 1 for some m ∈ M+}:

The next proposition formalizes this fact within this 
subsection’s framework.

Proposition 5.2. For all i ∈ U0(q) with A+(i) ≠ ∅, we have

xLQ(M+)

(i, j) (q) � λi for j � arg max
k∈A+(i)

{qk}, (12) 

and xLQ(M+)
m (q) � 0 for all m ∈ M\{(i, j)}. If the arg max set 

in (12) contains multiple queues, choose one arbitrarily.

Proof of Proposition 5.2. Consider i ∈ U0(q) such that 
A+(i) ≠ ∅; that is, the empty queue i has at least one none
mpty neighbor at t� 0. Let j � arg maxk∈A+(i){qk} be the 
longest-queue neighbor of i. If there are multiple such 
queues, choose one arbitrarily. Then, under LQ(M+), an 
arriving agent of type i matches with queue j at time t� 1: 
∆D1

m � 1{A1
i � 1} for match m satisfying Mjm � Mim � 1. 

In turn, xLQ(M+)
m (q) � ELQ(M+)

q [∆D1
m] � λi.

To show that all other matches have xLQ(M+)
m (q) � 0, 

consider first m ∉ M+(q). Because agent arrivals happen 
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one at a time, we have that if m ∉ M+(q), then m is una
vailable to perform at time t� 1. Thus, we have ELQ(M+)

q 
[∆D1

m] � 0 for such m’s.
Consider now (i, j′) ∈ M+(q) with i ∈ U0(q), A+(i) ≠ ∅

and j′ ∈ U+(q) but such that j′ ∉ arg maxk∈A+(i){qk}. As 

before, we have 
P

m∈M:Mim�1∆D1
m ≤ 1{A1

i � 1} so that 
P

m∈M :
Mim �1

xLQ(M+)
m ≤ λi. Because we already showed that 

xLQ(M+)

(i, j) (q) � λi for j � arg maxk∈A+(i){qk}, we must have 

that xLQ(M+)

(i, j′) (q) � 0 as stated. w

Per Proposition 5.1, under LQ(M+), we then have that

ELQ(M+)
q [L(Q1) � L(q)] ≤ 2q(λ� MxLQ(M+)(q)) + 1, 

where xLQ(M+)(q) is as in Proposition 5.2. Then to estab
lish Lemma 5.4, it remains to show that

2q(λ� MxLQ(M+)(q)) ≤ �2 ɛ

n ‖q‖1:

This is proven in two steps. Proposition 5.3 below shows 
that LQ(M+), specifically its immediate (expected) allo
cation xLQ(M+)(q), minimizes the instantaneous drift, 
which is already characterized in Proposition 5.1. Fi
nally, Proposition 5.4 shows that the instantaneous drift 
of the quadratic Lyapunov function L(q) has the desired 
form, which will directly imply Lemma 5.4. Recall the 
definition of the set Z(q) in (11).

Proposition 5.3. Under LQ(M+), the expected one-period 
allocation xLQ(M+)(q) satisfies

xLQ(M+)
m (q) ∈ arg min

ξ∈Z(q)

{q(λ� Mξ)}:

Proof of Proposition 5.3. Consider the following linear 
optimization problem in the statement of the lemma

min q(λ� Mξ)
s:t: ξ ∈ Z(q), 

where Z(q) is the linear constraint set in (11). We will 
rewrite the objective function, which will make the 
claim straightforward. First, because qλ is a constant in 
this problem, the problem is equivalent (in terms of 
optimizers) to the following problem:

max qMξ
s:t: ξ ∈ Z(q): (13) 

Under any stationary greedy policy, because each none
mpty queue can have only empty neighboring queues 
at any time, we can rewrite the objective function as

qMξ �
X

i∈U+(q)

qi
X

j∈U0(q)

Mijξ(i, j) �
X

j∈U0(q)

X

i∈U+(q)

qiξ(i, j), 

where recall that we slightly abuse the notation by Mij �

Mi, (i, j). Thus, solving the optimization problem (13) is the 

same (in terms of optimizers) as solving a family of inde
pendent problems, one for each j ∈ U0(q):

max
X

i∈U+(q)

qiξ(i, j)

s:t:
X

i ∈U+(q)

ξ(i, j) ≤ λj

ξ(i, j) ≥ 0 for all i ∈ U+(q):

This is a relaxation of the knapsack problem with a 
well-known simple optimal solution in the form

ξ∗
(i, j) � λj for i ∈ arg max

k∈A+(j)
{qk}, 

and ξ∗
(i, j) � 0 otherwise; let ξ∗ be the unified solution 

(across all individual problems for each j ∈ U0(q)). Per 
Proposition 5.2, ξ∗ � xLQ(M+)(q) as stated. w

Proposition 5.4. Assume that G satisfies GP. Then, there 
exists ξ ∈ Z(q) such that

q(λ� Mξ) ≤ �
ɛ

n
‖q‖1:

Proof of Proposition 5.4. Per Theorem 4.1, (Mz∗)i � λi 
for all i ∈ Q0. Define λ̃ as

λ̃i � λi for all i ∈ U0(q), and λ̃i � λi +
ɛ

n
for all i ∈ U+(q), 

where ɛ is the general position gap. Then by Corollary 
4.1, there exists z̃∗ such that (Mz̃∗)i � λ̃i for all i ∈ Q0, 
where z∗ and z̃∗ have the same optimal basis. This is 
because the perturbation satisfies the condition yl(λ̃�

λ) ≥ �ɛ for all l ∈ M+ ∪ Q+, because yl ∈ {�1, �1=2, 0, 
1=2, 1} per Theorem 4.1. Note that z̃∗ also satisfies 
P

m∈M :
Mim �1

z̃∗
m ≤ λi � λ̃i for all i ∈ U0(q). Now, we construct 

ξ based on z̃∗. Let

ξm �
z̃∗

m, if m ∈ M+(q),
0, otherwise:

�

Clearly, we have ξ ∈ Z(q). Note that for all i ∈ U+(q), 
by definition we have m ∈ M+(q) for all m ∈ M such 
that Mim � 1. This implies that for all i ∈ U+(q), we have

(Mξ)i � λ̃i � λi +
ɛ

n
:

Thus,

q(λ� Mξ) �
X

i∈U+(q)

qi(λi � (Mξ)i)

� �
ɛ

n
X

i∈U+(q)

qi � �
ɛ

n
X

i∈Q0

qi 

as stated. w

The proof of Lemma 5.4 is now immediate.
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Proof of Lemma 5.4. Given Propositions 5.3 and 5.4, we 
have

q(λ� MxLQ(M+)(q)) ≤ �
ɛ

n ‖q‖1, 

which implies that under LQ(M+), per Proposition 5.1, 
we have

ELQ(M+)
q [L(Q1) � L(q)] ≤ �2 ɛ

n ‖q‖1 + 1 

as stated. w

5.4. Proof of Theorem 3.2
Throughout this subsection, we assume without loss of 
generality that G is a tree that satisfies GP with M0 � ∅, 
and we fix an arbitrary topological order p(·). Let j+ be 
the unique queue such that Q+ � {j+} per Lemma 3.1.

5.4.1. The Lyapunov Function. The quadratic Lyapu
nov function, which is used in our analysis of LQ(M+), 
does not work for SP(M+, p). To see this, consider the 
network in Figure 2. Note that for any topological order 
p(·), we have p(1) < p(2); that is, match 1 has a higher 
priority than match 2. Take t, where all queues are 
empty, except for queue 1. Then, under SP(M+, p), 
L(Qt) �

P
i∈Q0

(Qt
i)

2 does not necessarily decrease in 
expectation, because ‖Qt‖1 decreases by 1 with proba
bility λ2, whereas ‖Qt‖1 increases by 1 with probability 
1 �λ2 �λ6, and λ2 < (1=2)(1 �λ6) does not violate the 
assumed GP.

Instead, we construct a Lyapunov function using the 
specific algebraic structure of the optimal solution of 
(SPP) given in Theorem 4.1. Before introducing the Lya
punov function, we introduce some useful definitions. 
Recall that d(i, j) is the length of the directed path from 
i ∈ A to j ∈ A in G

→

. We define the set B(i) :� {j ∈ A :

d(i, j) � 1}. An intuitive way to interpret the set B(i) is as 
follows. Consider “hanging” G

→

by the root j+. Then B(i)
contains all agent types that are directly below i ∈ A in G

→

. 
For example, in Figure 2, we have B(3) � {2, 4} ⊆ A.

Recalling that Qt � At � MDt for all t ≥ 0 per (1), con
sider the stochastic variant of (SPP) at a given time t:

max r · z

s:t: Mz + Qt � At

z ∈ Rd
≥0, Qt ∈ Rn

≥0:

It is a simple observation that by the construction of the 
surplus vectors, we have ymMz � zm for all m ∈ M+. 
Multiplying both sides of the linear constraint set of this 
stochastic variant with ym, m ∈ M+, yields zm + ymQt �

ymAt for all m ∈ M+. Per Theorem 4.1, we should have 
zm ≈ 0 for all m ∈ M0 and zm ≈ ymAt for all m ∈ M+ to 
achieve optimality for (SPP). This suggests that we 
should have ymQt ≈ 0 for all m ∈ M+.

It is then natural to construct a function f (Qt) such that 
when f (Qt) � 0, then we have ymQt � 0 for all m ∈ M+ or, 
equivalently, yiQt � 0 for all i ∈ Q0. To that end, define

Zt
i :� yiQt for all i ∈ Q0:

The set U0 � {i ∈ Q0 :
P

m∈MMim � 1}—the queues in Q0 
that are leaves of G—must be a nonempty set. Other
wise, G must contain a cycle, and here, recall that we are 
assuming that G is a tree. Trivially, B(i) � ∅ for all i ∈ U0.

We take, for our Lyapunov function, the mapping

f (Qt) :�
X

i∈A\U0

αi
X

j∈B(i)
Zt

i

0

@

1

A

2

, (14) 

where αi > 0 for all i ∈ A\U0. For example, the corre
sponding Lyapunov function to the matching network 
in Figure 2 is f (Qt) � α2(Qt

1)
2

+ α4(Qt
5)

2
+ α3(Qt

2 � Qt
1 +

Qt
4 � Qt

5)
2

+ α6(Qt
7 + (Qt

3 � Qt
2 � Qt

4 + Qt
1 + Qt

5) + Qt
8)

2.
The following is the main ingredient in the proof of 

Theorem 3.2.

Lemma 5.5. Assume that G is a tree that satisfies GP with 
M0 � ∅. Then, under SP(M+, p), the Markov chain (Qt

i :

i ∈ Q0, t ≥ 0) is ergodic. Moreover, there exist strictly posi
tive coefficients αi, i ∈ Q0, and constants θ,γ > 0 such that 
f (Qt) in (14) decreases in expectation:

E[f (Qt+1) � f (Qt) |Qt] ≤ �γ
ffiffiffiffiffiffiffiffiffiffiffi

f (Qt)
q

+θ for all t ≥ 0:

(15) 

The proof of Lemma 5.5 is given in the Appendix. Next, 
we apply it to complete the proof of Theorem 3.2.

Proof of Theorem 3.2. The drift property (15) in Lemma 
5.5 implies that the Markov chain (Qt

i : i ∈ Q0, t ≥ 0) is 
positive recurrent; for example, see Robert 2003, corollary 
8.7. Given Lemma 5.5, moment bounds in the steady 
state follow trivially from Theorem 5.2. In particular, 

Figure 5. (Color online) A Matching Network that Satisfies GP with M0 � ∅ and Q+ � {6}, Where the Scalar λ is Chosen so that 
P

i∈Aλi � 1 (λ ≈ 0:03) 

Notes. The optimal solution of (SPP) has z∗ � (λ,λ, 3λ, 3λ, 5λ) and s∗ � (0, 0, 0, 0, 0, 2λ), and the general position gap is ɛ � λ. In general, for any 
λ1 ∈ [λ, 2λ), we have ɛ � z∗

2 � λ2 �λ1 � 2λ�λ1.
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under the Markov chain’s unique stationary distribution, 
which we denote by π, we have

Eπ

�
�
�
�
�

X

j∈B(i)
Z0

i

�
�
�
�
�

2

4

3

5 ≤

ffiffiffiffiffiffiffi
θ

αiγ

s

for all i ∈ A\U0, 

where Q0 ~ π. This implies that for all i ∈ A\U0, we 
have E[ |

P
j∈B(i)Zt

i | ] � O(1) for all t> 0. Note that by the 
construction of the surplus vectors, we have

X

j∈B(i)
Zt

i �
X

j∈B(i)
yiQt �

X

j∈B(i)
Qt

j �
X

j∈B(i)

X

k∈B(j)
yjQt

�
X

j∈B(i)
Qt

j �
X

j∈B(i)

X

k∈B(j)
Zt

k, 

for all i ∈ A\U0 and for all t> 0. Therefore, we conclude 
that under SP(M+, p), we have

X

i∈Q0

E[Qt
i] � O(1) for all t > 0:

Then, per Lemma 5.1, SP(M+, p) is hindsight optimal 
as stated. w

The proof of Lemma 5.5 reveals that αi’s depend on 
γ’s, and θ depends on αi’s in a complicated way (in con
trast to (9)), which is the reason why we cannot estab
lish the optimal scaling ɛ�1 for regret under SP(M+, p).

6. Numerical Examples
In this section, we present some simulation results to 
provide further insights about our greedy policies. All 
simulations are based on 10,000 replications.

Example 6.1. (Regret Scaling of SP(M+, p)). Consider 
the network in Figure 5. The priority order under 
SP(M+, p) is m1 ≻ m2 ≻ m3 ≻ m4 ≻ m5, where m ≻ m′

means that p(m) < p(m′) (m has a higher priority than 
m′). We consider 10 separate scenarios, where λ1 takes 
values sequentially in the set {λ, 1:1λ, : : : , 1:9λ}. For any 
given scenario, the optimal basis remains unchanged, 
and the general position gap is ɛ � λ2 �λ1 � 2λ�λ1. 
Figure 6 suggests that the scaling for the achieved con
stant regret under SP(M+, p) in Theorem 3.2 is ɛ�1, as in 
Theorem 3.1. w

Remark 6.1. (Dependence of p(·) on λ). The construction 
of the static priority order p(·) reflects the arrival proba
bilities only through their implication on the sets M+

and Q+. Given two different arrival-probability vectors, 
as long as they result in the same optimal basis for 
(SPP), the set of all possible topological orders p(·)’s are 
the same.

Figure 6. (Color online) We Consider the Network in 
Figure 5

Notes. The x-axis corresponds to the inverse of the general position 
gap for each scenario, ɛ�1 � 1=(2λ�λ1), where λ1 takes values 
sequentially in the set {λ, 1:1λ, : : : , 1:9λ}, and ɛ�1 increases as λ1 
increases. For the first scenario (λ1 � λ), we have ɛ�1 ≈ 28, and for the 
last scenario (λ1 � 1:9λ), we have ɛ�1 ≈ 289. The y-axis corresponds 
to the regret under SP(M+, p) at time t � 5 · 104, where the time hori
zon is T � 105.

Figure 7. (Color online) We Consider the Network in Figure 5, Where ɛ ≈ 0:03 
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Notes. Left: SP(M+, p) is hindsight optimal. Right: the alternative greedy static priority policy achieves a higher regret than SP(M+, p), but it is 
still hindsight optimal.
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Given λ, consider the optimal basis of (SPP) and the 
induced sets M+ and Q+ under GP. Then, per Theo
rem 4.1, we know that any other arrival-probability 
vector, say λ̃, such that λ̃ is in the cone

Y :� {λ′ ∈ Rn
+ : ymλ′ > 0 for all m ∈ M+ and

yjλ′ > 0 for all j ∈ Q+}, 

results in the same set of all topological orders. w

Example 6.2. (Robustness of SP(M+, p)). Consider the 
network in Figure 5. Our priority order is m1 ≻ m2 
≻ m3 ≻ m4 ≻ m5, where m ≻ m′ means that m has a 
higher priority than m′, that is, p(m) < p(m′). Consider 
an alternative static priority policy with the priority order 
m2 ≻ m1 ≻ m3 ≻ m4 ≻ m5; that is, the priority assignment 

between m1 and m2 is altered. Note that this alternative 
priority order is not a topological order. Figure 7 shows 
that both policies achieve constant regret, that is, one that 
does not grow with time.

Next, let us change a bit the arrival probabilities 
and consider λ1 � 1:9λ (instead of λ1 � λ) with all else 
remaining the same. This perturbation on λ does not 
change the optimal basis—the sets M+ and Q+—and 
neither does it change our prescribed priority order. As 
Figure 8 illustrates, although our SP(M+, p) still achieves 
constant regret, the alternative policy has a regret that 
grows with time. As argued in Remark 6.1, if the pertur
bation on λ does not affect the optimal basis, SP(M+, p)

remains hindsight optimal, whereas a deviation in the 
priority order may result in suboptimality. w

Figure 8. (Color online) We Consider the Network in Figure 5, Where λ1 � 1:9λ Instead, and ɛ ≈ 0:003 Now 
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Notes. Left: SP(M+, p) is still hindsight optimal given the perturbation on the arrival-probability vector. Right: under the proposed perturbation, 
the alternative policy is no longer hindsight optimal, and its regret grows with t.

Figure 9. (Color online) We Consider the Network in Figure 5, Where ɛ ≈ 0:03 
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Notes. Left: SP(M+, p) is hindsight optimal. Right: the difference in the generated total value (performance gap) between SP(M+, p) and 
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The next example illustrates that there exist matching 
networks, where LQ(M+) generates a higher total value 
than SP(M+, p), and vice versa.

Example 6.3. (Comparison of LQ(M+) and SP(M+, p)). 
Consider the network in Figure 5 again. Per Theorems 
3.1 and 3.2, both LQ(M+) and SP(M+, p) are hindsight 
optimal. Intuitively, the priority order under SP(M+, p)

coincides with the order of matches with respect to their 
values, and one can expect that SP(M+, p) may result in 
a smaller regret than LQ(M+), and Figure 9 supports 
this intuition.

Now consider the network in Figure 10. Figure 11
illustrates that LQ(M+) results in a smaller regret than 
SP(M+, p). Hence, both simulations suggest that there 
exist matching networks and network primitives so 
that LQ(M+) achieves smaller regret than SP(M+, p), 
and vice versa. w

Remark 6.2. (Scaling of the Lower Bound on Regret with 
the Number of Agent Types). Our current work, together 
with the work (Kerimov et al. 2023) that preceded it, 
concerns scaling of regret as a function of ɛ. The gen
eral lower bound in Kerimov et al. (2023) stipulates 
that no policy can do better than Ω(ɛ�1); this lower 
bound is not explicit as to dependence on the network 
structure or, more specifically, the number of agent 

types. Our Theorem 3.1 shows that LQ(M+)’s regret is 
at most rmaxn=ɛ, a bound that grows with the number of 
agent types n. Whether—or more specifically, under 
which conditions—the best achievable regret grows with 
n remains an open question. w

7. Concluding Remarks
We found that in the general class of two-way matching 
networks that satisfy a general position condition, greedy 
policies (whose design is) based on static optimal matching 
rates achieve constant regret at all times; they are hindsight 
optimal. In these networks, in particular, there is no posi
tive externality from waiting to form future matches. 
Moreover, greediness offers local and simple matching 
rules that, other than identifying static optimal matching 
rates a priori, do not require any additional optimization.

The greedy policies we prescribe, longest-queue and 
static priority, differ in whether they depend on the 
state of the network or not. Therefore, these policies 
may be appealing in different contexts.

These results complement those in our previous paper 
(Kerimov et al. 2023), where we found that in multiway 
matching networks, greedy policies are not hindsight 
optimal, but carefully designed periodic clearing match
ing policies do achieve hindsight optimality.

General position is a weak but necessary condition 
for hindsight optimality (Kerimov et al. 2023). More
over, the optimal scaling for constant regret is given by 
ɛ�1, where ɛ is a simple quantity that arises from the 
static-planning problem (a deterministic counterpart) 
that also provides the optimal matching rates. This 
quantity is intimately linked with stability; if queues of 
types that are not under-demanded (queues in Q0) are 
bounded by ɛ�1 (in expectation) at all times, then the 
policy is hindsight optimal, and the scaling for constant 

Figure 10. (Color online) A Matching Network that Satisfies 
GP with M0 � ∅ and Q+ � {5}, Where the Scalar λ Is Chosen 
so that 

P
i∈Aλi � 1 (λ ≈ 0:08) 

Note. The optimal solution of (SPP) has z∗ � (λ,λ, 2λ, 2λ) and s∗ � (0, 
0, 0, 0, 0:1λ), and the general position gap is ɛ � s∗

5 � 0:1λ.

Figure 11. (Color online) We Consider the Network in Figure 10, Where ɛ ≈ 0:008 
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regret is the same as the moment bound on the queue 
lengths.

We hope that what we learned in this paper can be 
leveraged to expand the results to include several prac
tical yet challenging considerations.

The simplest is the inclusion of holding costs. In 
matching networks, like the ones we consider in this 
paper, there is an intimate connection between value 
maximization and holding-cost minimization; we refer 
the reader to Kerimov et al. (2023) for a detailed discus
sion of this correspondence. Less immediate are expan
sions of the models to capture agent departures and 
decentralized matching networks. When agents aban
don the market without matching after some agent- 
specific (possibly random) time, it is no longer clear— 
even in networks with two-way matches—that there 
exists a greedy hindsight optimal policy. In such net
works, it might be important to build an inventory in 
anticipation of “short-fuse” agents that participate in 
high-value matches and are highly impatient. In decen
tralized dynamic matching markets, agents wish to max
imize their own payoffs (Baccara et al. 2020, Leshno 
2022), and agents might act in a way that compromise 
global optimality. Combining the queueing modeling in 
this paper with mechanism design tools might help to 
shed further light on how to regulate such settings.

Appendix A. Proofs of Auxiliary Lemmas
Proof of Lemma 3.1. Let (z∗, s∗) be the unique nondegenerate 
optimal solution of (SPP) under GP. Note that the projection 
of (z∗, s∗) remains as a nondegenerate optimal basic feasible 
solution when restricted to each component Ck, k ∈ [K]. This 
immediately follows from the construction of the (SPP)-resid
ual graph G′, because any component Ck is “disconnected” 
from G by removing all redundant matches in M0 (m ∈ M 

with z∗
m � 0). Assume that Ck contains nk ≥ 1 vertices (queues) 

and mk ≥ 0 edges (matches) for all k ∈ [K]. 
(i) Because Ck does not contain any redundant matches, 

nondegeneracy implies that nk ≥ mk, because there are nk 
many basic variables in the projection of (z∗, s∗), and all mk 
variables corresponding to active matches in Ck are basic. If Ck 
contains at least two cycles, then we must have mk > nk, which 
is a contradiction. Thus, Ck contains at most one cycle.

(ii) Because Ck is a component, it is connected, and if it 
does not contain a cycle, then it must be a tree. Thus, we 
have nk � mk + 1. Then nondegeneracy implies that |A(Ck) ∩

Q+ | � 1.
(iii) Per (i), Ck contains exactly one cycle. Then, we must 

have nk � mk. Assume to the contrary that this cycle is of even 
length. Consider the projection of (z∗, s∗) when restricted to 
Ck, which remains as a nondegenerate optimal basic feasible 
solution, as argued above. Because nk � mk, all slack variables 
in the projection are non-basic. Consider all the matches that 
are included in this even cycle and the corresponding column 
vectors of these matches in the matching matrix M. Because 
the cycle is of even length, these column vectors are not line
arly independent, which is a contradiction to the fact that 
the optimal solution is a basic feasible solution. Thus, Ck can 

contain only an odd cycle, where we note that the corre
sponding columns to the matches included in the cycle are 
linearly independent. Finally, nondegeneracy and nk � mk 
imply that |A(Ck) ∩ Q+ | � 0. w

Proof of Lemma 5.1. The proof follows immediately as in 
Kerimov et al. (2023, lemma 4.1) with the following modifica
tions. Because we must have λ̃i > 0 for all i ∈ Q0, fix t such 
that λmin > Bt�1. Per Theorem 4.1, we have ω� 1. Therefore, 
we conclude that R∗, t � RD, t ≤ trmaxω‖λ� λ̃‖ ≤ trmaxBt�1 �

rmaxB. w

Appendix B. Proof of Lemma 5.5
Before proving Lemma 5.5, we begin with some preliminar
ies. We define a family of functions gi, i ∈ A, as follows. Let 
gt

i :� 0 for all i ∈ U0 and for all t ≥ 0, and sequentially define

gt
i :�

X

j∈B(i)
Zt

j

0

@

1

A

2

+ αi
X

j∈B(i)
gt

j for all i ∈ A\U0 and for all t ≥ 0, 

where the coefficients αi > 0, i ∈ A\U0, will be determined 
later in the section. To prove Lemma 5.5, we prove the follow
ing slightly more general result.

Lemma B.1. Assume that G is a tree that satisfies GP with M0 � ∅. 
Then, under SP(M+, p), the Markov chain (Qt

i : i ∈ Q0, t ≥ 0) is 
ergodic. Moreover, there exist strictly positive coefficients αi, i ∈ Q0, 
and constants γi,θi > 0, i ∈ Q0, such that

E[gt+1
i � gt

i |Qt] ≤ �γi

ffiffiffiffi

gt
i

q

+θi for all t ≥ 0: (B.1) 

Observe that Lemma 5.5 follows immediately from Lemma 
B.1, noting that f (Qt) is gt

j+ itself with coefficients redefined, 
where recall that j+ is the root of G

→

.
Recall that d(i, j) is the length of the directed path from i ∈

A to j ∈ A in G
→

and that B(i) � {j ∈ A : d(i, j) � 1}, which con
tains the agent types that are directly below i ∈ A in G

→

. Define 
B̂(i) :� {m ∈ M : A(m) � {i, k} and k ∈ B(i)}, that is, the set that 
contains all matches that are directly below i ∈ A in G

→

. For 
example, in Figure 2, we have B̂(6) � {3, 6, 7} ⊆ M.

For any i ∈ Q0, let i↑ be the unique queue in G
→

such that 
d(i↑, i) � 1. In words, i↑ is the queue that is directly above i ∈

Q0 in G
→

, that is, the direction on m such that A(m) � {i, i↑} is 
incoming to i. Note that such a queue does not exist for the 
root j+ ∈ Q+.

The following remark is crucial in the proof of Lemma 5.5, 
and it follows directly from the definition of a topological 
order p(·).

Remark B.1. Fix some i ∈ Q0, and let m↑ ∈ M be the match 
that i and i↑ participates, that is, A(m↑) � {i, i↑}. Given any 
topological order p(·), we have p(m) < p(m↑) for all m ∈ B̂(i). 
In words, any match that is directly below i has a higher pri
ority than the match that is directly above i.

Finally, define di :� maxj∈U0∩A(T i)d(i, j) for all i ∈ A. One can 
intuitively view di as the parameter indicating the position of 
queue i relative to the root j+ of G

→

; the larger the di, the closer 
queue i is to the root j+. For example, in Figure 2, we have 
U0 � {1, 5, 7, 8} ⊆ A, d2 � 1, d3 � 2 and d6 � 3. Now we prove 
Lemma B.1.
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Proof of Lemma B.1. We will first establish (B.1), and we then 
prove the ergodicity of the Markov chain (Qt

i : i ∈ Q0, t ≥ 0). 
We will also use the following three aids in the proof. Propo
sitions B.1 and B.2 are proven at the end of this section, and 
Proposition B.3 is a known standard result that appears, for 
example, in (Robert 2003, corollary 8.7). Throughout the 
proof, for ease of exposition, for all i ∈ A\U0 and for all t ≥ 0, 
we let

Zt
B(i) :�

X

j∈B(i)
Zt

j , gt
B(i) :�

X

j∈B(i)
gt

j , and Qt
B(i) :�

X

j∈B(i)
Qt

j :

Proposition B.1 (Bounded Jumps). Under the assumptions of 
Theorem B.1, for all i ∈ A\U0, for all t ≥ 0, and for any constant 
Bi > 0, we have

E[gt+1
i � gt

i |Qt, gt
i ≤ Bi] ≤ θi 

for some constant θi > 0, which depends only on n and Bi.

Proposition B.2. Under the assumptions of Theorem B.1, for all 
i ∈ A\U0 and for all t ≥ 0, we have

E[(Zt+1
B(i))

2
� (Zt

B(i))
2

|Qt, Qt
B(i) > 0] � �ηiZ

t
B(i) + δi, 

where ηi :� 2yiλ and δi :�
P

j∈A(T i)
λj.

Proposition B.3 (Robert 2003, corollary 8.7). Let (Mt : t ≥ 0) be 
a discrete-time, homogeneous, irreducible, and aperiodic Markov 
chain with values in a countable state space X . If there exist a func
tion f : X → R+ and constants K,η > 0 such that 

(i) Ex[f (M1) � f (x)] ≤ �η when f(x)> K,
(ii) Ex[f (M1)] < ∞ when f (x) ≤ K, and
(iii) the set {x ∈ X : f (x) ≤ K} is finite,

then the Markov chain (Mt : t ≥ 0) is ergodic.

We use strong induction on di, i ∈ A\U0, where recall that 
di � maxj∈U0∩A(T i)d(i, j). The following simple observation is 
used repeatedly in the analysis, which follows from the defi
nition gt

i � (Zt
B(i))

2
+ αigt

B(i):
ffiffiffiffi

gt
i

q

≥ |Zt
B(i) | : (B.2) 

B.1. Basis
Consider i ∈ A\U0 such that di � 1. This implies B(i) ⊆ U0 so 
that yjQt � Qt

j for all j ∈ B(i). By definition, because gt
j � 0 for 

all j ∈ B(i) ⊆ U0, we have

gt
i � (Zt

B(i))
2

+ αigt
B(i) �

X

j∈B(i)
yjQt

0

@

1

A

2

� (Qt
B(i))

2
:

Fix Bi > 0 (its specific value will be determined later), and 
consider the following two cases: 

• 1: (gt
i > Bi). Note that gt

i � (Qt
B(i))

2 and Qt
B(i) >

ffiffiffiffiffi
Bi

√
> 0. 

Per Lemma B.2, we have

E[gt+1
i � gt

i |Qt, gt
i > Bi] � E[(Zt+1

B(i))
2

� (Zt
B(i))

2
|Qt, gt

i > Bi]

� �ηiZ
t
B(i) + δi

� �ηi

ffiffiffiffi

gt
i

q

+ δi:

Choose any γi ∈ (0,ηi) and update Bi to a sufficiently large 
constant such that 

ffiffiffiffi
gt

i
p

>
ffiffiffiffiffi
Bi

√
≥ δi
ηi�γi

. This implies

E[gt+1
i � gt

i |Qt, gt
i > Bi] � �ηi

ffiffiffiffi

gt
i

q

+ δi ≤ �γi

ffiffiffiffi

gt
i

q

:

• 2: (gt
i ≤ Bi, where Bi is chosen as in case 1). Per Lemma 

B.1, we have

E[gt+1
i � gt

i |Qt, gt
i ≤ Bi] ≤ θi, 

for some constant θi > 0, which depends only on n and Bi.
Combining both cases above, we have

E[gt+1
i � gt

i |Qt] ≤ �γi

ffiffiffiffi

gt
i

q

+ θi, 

for all t ≥ 0, where θi is a redefined constant. This concludes 
the basis of the induction.

B.2. Inductive Step
Assume that the induction hypothesis holds for all i ∈ A\U0 
such that di ≤ d, d ≥ 1. Consider i ∈ A\U0 such that di � d + 1. 
By the induction hypothesis, for all j ∈ B(i), there exist con
stants αj,γj, Bj,θj > 0 such that

E[gt+1
j � gt

j |Qt] ≤ �γj

ffiffiffiffi
gt

j

q
+θj, 

for all t ≥ 0, because dj ≤ d.
For now, fix some αi > 0 and Bi > 0 at the beginning of each 

of the following cases. These constants are placeholders, and 
their values will be determined at the end of each case analy
sis. It might be helpful here to point out that αi will be a func
tion of γi, Bi will be a function of αi, and θi will be a function 
of Bi. We divide the analysis into three cases: (1) gt

i > Bi and 
|Zt

B(i) | ≤
P

j∈B(i)

ffiffiffiffi
gt

j

q
, (2) gt

i > Bi and |Zt
B(i) | >

P
j∈B(i)

ffiffiffiffi
gt

j

q
, and 

(3) gt
i ≤ Bi:

• 1: 
�

gt
i > Bi and |Zt

B(i) | ≤
P

j∈B(i)

ffiffiffiffi
gt

j

q �
. Denote this case by 

E1. Because

gt
i � (Zt

B(i))
2

+αigt
B(i) > Bi, 

and |Zt
B(i) | ≤

P
j∈B(i)

ffiffiffiffi
gt

j

q
, we can choose Bi sufficiently large 

so that if gt
i > Bi, then also gt

j > Bj for at least one j ∈ B(i). 
Define the sets

J > :� {j ∈ B(i) : gt
j > Bj} and

J ≤ :� B(i)\J > � {j ∈ B(i) : gt
j ≤ Bj}:

Because |B(i) | ≤ |A | � n and |Qt+1
j � Qt

j | ≤ 1 for all j ∈ B(i), 
we have |Zt+1

B(i) � Zt
B(i) | ≤ n for all t ≥ 0. By the definition of 

J ≤, 
P

j∈J ≤

ffiffiffiffi
gt

j

q
≤
P

j∈B(i)
ffiffiffiffiffi
Bj

p
≕ U1 and

|Zt
B(i) | ≤

X

j∈B(i)

ffiffiffiffi
gt

j

q
≤ U1 +

X

j∈J >

ffiffiffiffi
gt

j

q
: (B.3) 
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Combining these altogether, we have

E[(Zt+1
B(i))

2
� (Zt

B(i))
2

| Qt,E1]

� E[(Zt+1
B(i) � Zt

B(i))(Z
t+1
B(i) + Zt

B(i)) | Qt,E1]

≤ n n + 2U1 + 2
X

j∈J >

ffiffiffiffi
gt

j

q
 !

≤ U2 U1 +
X

j∈J >

ffiffiffiffi
gt

j

q
 !

(B.4) 

for some constant U2 > 0, which depends only on n and U1. 
For all j ∈ J >, we have by the induction hypothesis that

E[gt+1
j � gt

j |Qt,E1] ≤ �γj

ffiffiffiffi
gt

j

q
, (B.5) 

and per Lemma B.1, for all j ∈ J ≤, we have that

E[gt+1
j � gt

j |Qt,E1] ≤ U3 (B.6) 

for some constant U3 > 0, which depends only on n and Bj. 
We want to show that there exist constants αi,γi, Bi > 0 such 
that

E[gt+1
i � gt

i |Qt,E1]

≤ U2 U1 +
X

j∈J >

ffiffiffiffi
gt

j

q
 !

� αi
X

j∈J >

γj

ffiffiffiffi
gt

j

q
 !

+ |J ≤ |αiU3

(B.7) 

≤ U2 U1 +
X

j∈J >

ffiffiffiffi
gt

j

q
 !

� αi
X

j∈J >

γj

ffiffiffiffi
gt

j

q
 !

+ nαiU3 (B.8) 

≤ �γi

ffiffiffiffi

gt
i

q

(B.9) 

holds, where (B.7) follows from (B.4), (B.5), and (B.6), and 
(B.8) follows from the fact that |J ≤ | ≤ |A | � n. First, we have 
that

ffiffiffiffi

gt
i

q

≤ |Zt
B(i) | +

ffiffiffiffiffi
αi

√ ffiffiffiffiffiffiffiffiffi
gt

B(i)

q
≤

X

j∈B(i)

ffiffiffiffi
gt

j

q
0

@

1

A+
ffiffiffiffiffi
αi

√ X

j∈B(i)

ffiffiffiffi
gt

j

q
0

@

1

A

≤ (1 +
ffiffiffiffiffi
αi

√
) U1 +

X

j∈J >

ffiffiffiffi
gt

j

q
 !

, 

where the first inequality follows from the definition gt
i �

(Zt
B(i))

2
+ αigt

B(i), the second inequality follows from the re
quirement of this case (case 1), and the last inequality follows 
from (B.3). Thus, for any γi > 0, we have

�γi(1 +
ffiffiffiffiffi
αi

√
) U1 +

X

j∈J >

ffiffiffiffi
gt

j

q
 !

≤ �γi

ffiffiffiffi

gt
i

q

: (B.10) 

Fixing an arbitrary γCase 1
i > 0, take αCase 1

i > 0 sufficiently large 
such that αCase 1

i (minj∈J >
γj) > αCase 1

i (minj∈B(i)γj) >
�

U2 + γCase 1
i 

�
1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffi

αCase 1
i

q ��
: Setting Bi to a sufficiently large constant 

BCase 1
i (recalling that gt

j > Bj for all j ∈ J >), we have the 
inequality

αCase 1
i

X

j∈J >

γj

ffiffiffiffi
gt

j

q
 !

� U2 + γCase 1
i 1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffi

αCase 1
i

q� �� �

U1 +
X

j∈J >

ffiffiffiffi
gt

j

q
 !

� nαCase 1
i U3 ≥ 0, (B.11) 

because 
P

j∈J >

ffiffiffiffi
gt

j

q
can be made sufficiently large.

Thus, if we update the previously fixed constants αi and Bi 
to αCase 1

i and BCase 1
i , respectively, then (B.11) implies that the 

left-hand side of (B.10) is greater than or equal to the right- 
hand side of (B.7). Therefore, (B.9) holds for γCase 1

i , αCase 1
i , 

and BCase 1
i .

• 2: 
�

gt
i > Bi and |Zt

B(i) | >
P

j∈B(i)

ffiffiffiffi
gt

j

q �
. Denote this case by 

E2. We claim that in this case we have

(i) Qt
B(i) > 0, and (ii) Zt

B(i) > 0, (B.12) 

where both claims are proven at the end of this case. We have 
Qt

B(i) > 0 by (B.12)(i), and clearly, δi �
P

j∈A(T i)
λj ≤

P
j∈Aλj � 1:

Thus, Lemma B.2 yields

E[(Zt+1
B(i))

2
� (Zt

B(i))
2

|Qt,E2] ≤ �ηiZ
t
B(i) + 1, (B.13) 

where recall that ηi � 2yiλ. By the induction hypothesis, for 
all j ∈ J >, we have

E[gt+1
j � gt

j |Qt,E2] ≤ �γj

ffiffiffiffi
gt

j

q
, (B.14) 

and per (B.6), for all j ∈ J ≤, we have that

E[gt+1
j � gt

j |Qt,E2] ≤ U3: (B.15) 

Similar to the previous case, we want to show that there exist 
constants αi,γi, Bi > 0 such that

E[gt+1
i � gt

i |Qt,E2]

≤ �ηiZ
t
B(i) + 1 �αi

X

j∈J >

γj

ffiffiffiffi
gt

j

q
 !

+ |J ≤ |αiU3 (B.16) 

≤ �ηiZ
t
B(i) + 1 �αi

X

j∈J >

γj

ffiffiffiffi
gt

j

q
 !

+ nαiU3 (B.17) 

≤ �γi

ffiffiffiffi

gt
i

q

(B.18) 

holds, where (B.16) follows from (B.13), (B.14), and (B.15), 
and (B.17) follows from the fact that |J ≤ | ≤ |A | � n.

Recall from the previous case that 
P

j∈J ≤

ffiffiffiffi
gt

j

q
≤ U1. By 

(B.12)(ii), we have Zt
B(i) > 0 and

ffiffiffiffi

gt
i

q

≤ |Zt
B(i) | +

ffiffiffiffiffi
αi

√
ffiffiffiffiffiffiffiffiffiffiffiffiffiX

j∈B(i)
gt

j

s

� Zt
B(i) +

ffiffiffiffiffi
αi

√
ffiffiffiffiffiffiffiffiffiffiffiffiffiX

j∈B(i)
gt

j

s

≤ Zt
B(i) +

ffiffiffiffiffi
αi

√ X

j∈B(i)

ffiffiffiffi
gt

j

q
0

@

1

A ≤ Zt
B(i) +

ffiffiffiffiffi
αi

√
U1 +

X

j∈J >

ffiffiffiffi
gt

j

q
 !

:
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Thus, for any γi > 0 we have that

�γi Zt
B(i) +

ffiffiffiffiffi
αi

√
U1 +

X

j∈J >

ffiffiffiffi
gt

j

q
 ! !

≤ �γi

ffiffiffiffi

gt
i

q

: (B.19) 

Pick an arbitrary γCase 2
i ∈ (0,ηi) and αCase 2

i > 0 such that 

αCase 2
i (minj∈J >

γj) > αCase 2
i (minj∈B(i)γj) > γCase 2

i

ffiffiffiffiffiffiffiffiffiffiffiffiffi

αCase 2
i

q

. Note 
that Zt

B(i) can be made arbitrarily large by updating Bi to a suf
ficiently large constant BCase 2

i , because gt
i � (Zt

B(i))
2

+αi(gt
B(i)) >

Bi and |Zt
B(i) | � Zt

B(i) >
P

j∈B(i)

ffiffiffiffi
gt

j

q
≥

ffiffiffiffiffiffiffiffiffi
gt

B(i)

q
by the assumption 

of this case (case 2). Hence, the following inequality holds:

(ηi � γCase 2
i )Zt

B(i) +αCase 2
i

X

j∈J >

γj

ffiffiffiffi
gt

j

q
 !

� γCase 2
i

ffiffiffiffiffiffiffiffiffiffiffiffiffi

αCase 2
i

q

U1 +
X

j∈J >

ffiffiffiffi
gt

j

q
 !

� 1 � nαCase 2
i U3 ≥ 0:

(B.20) 

Thus, if we update the previously fixed constants αi and Bi to 
αCase 2

i and BCase 2
i , respectively, then (B.20) implies that the 

left-hand side of (B.19) is greater than or equal to the right- 
hand side of (B.16). Therefore, (B.18) holds for γCase 2

i ,αCase 2
i , 

and BCase 2
i .

We now prove the two claims in (B.12). 
� Claim (i). Note that by the construction of the sur

plus vectors yi, i ∈ A, we have

Zt
B(i) �

X

j∈B(i)
Zt

j �
X

j∈B(i)
yjQt �

X

j∈B(i)
Qt

j �
X

j∈B(i)

X

k∈B(j)
ykQt

� Qt
B(i) �

X

j∈B(i)
Zt

B(j), 

which implies

|Zt
B(i) | ≤ Qt

B(i) +
X

j∈B(i)
|Zt

B(j) | :

By our simple observation (B.2), we have 
ffiffiffiffi
gt

j

q
≥ |Zt

B(j) | for 

all j ∈ B(i), which yields 
P

j∈B(i)

ffiffiffiffi
gt

j

q
≥
P

j∈B(i) |Zt
B(j) | . Because 

|Zt
B(i) | >

P
j∈B(i)

ffiffiffiffi
gt

j

q
by the assumption of this case (case 2), 

we have

0 ≤
X

j∈B(i)

ffiffiffiffi
gt

j

q
< |Zt

B(i) | ≤ Qt
B(i) +

X

j∈B(i)
|Zt

B(j) |

≤ Qt
B(i) +

X

j∈B(i)

ffiffiffiffi
gt

j

q
, 

which implies Qt
B(i) > 0 as stated.

� Claim (ii). Note that we cannot have Zt
B(i) � 0 by the 

assumption of this case (case 2). Assume to the contrary 
that Zt

B(i) < 0. Then, the assumption of this case yields

Zt
B(i) < �

X

j∈B(i)

ffiffiffiffi

gt
i

q

: (B.21) 

Because Qt
B(i) > 0 per (B.12)(i), and 

P
j∈B(i)

ffiffiffiffi
gt

j

q
≥
P

j∈B(i)
|ZB(j)(t) | per (B.2), we have

Zt
B(i) � Qt

B(i) �
X

j∈B(i)
Zt

B(j) ≥ Qt
B(i) �

X

j∈B(i)

ffiffiffiffi
gt

j

q
≥ �

X

j∈B(i)

ffiffiffiffi
gt

j

q
, 

which contradicts (B.21). Therefore, we have Zt
B(i) > 0 as stated.

• 3: (gt
i ≤ Bi). Denote this event by E3. Per Lemma B.1, we 

have

E[gt+1
i � gt

i |Qt,E3] ≤ θi, 

for some constant θi > 0, which depends only on n and Bi.

B.3. Combining Cases 1 2 3
Let γi � min{γCase 1

i ,γCase 2
i }, αi � max{αCase 1

i ,αCase 2
i } and Bi �

max{BCase 1
i , BCase 2

i }. We can then write

E[gt+1
i � gt

i |Qt] ≤ �γi

ffiffiffiffi

gt
i

q

+θi, 

for all t ≥ 0, where θi is a redefined constant. Hence, the 
induction hypothesis also holds for i ∈ A\U0 with di � d + 1:

This concludes the proof for the drift condition (B.1).
For the ergodicity result, note that the Markov chain (Qt

i :

i ∈ Q0, t ≥ 0) is clearly homogeneous, irreducible, and aperi
odic. Because we already established the drift condition (B.1), 
the first two conditions of Proposition B.3 hold. Because 
|A | � n < ∞, the third condition of Lemma B.3 is also satis
fied. Thus, the Markov chain is ergodic. w

We conclude this section with the proofs of Propositions 
B.1 and B.2.

Proof of Proposition B.1. We use strong induction on di, 
i ∈ A\U0, where recall that di � maxj∈U0∩A(T i)d(i, j).

B.4. Basis
Consider i ∈ A\U0 such that di � 1. This implies B(i) ⊆ U0 so 
that yjQt � Qt

j for all j ∈ B(i). By definition, because gt
j � 0 for 

all j ∈ B(i) ⊆ U0, we have

gt
i � (Zt

B(i))
2

+ αigt
B(i) �

X

j∈B(i)
yjQt

0

@

1

A

2

� (Qt
B(i))

2
:

Because |B(i) | ≤ |A | � n and |Qt+1
j � Qt

j | ≤ 1 for all j ∈ B(i), 
we have |Qt+1

B(i) � Qt
B(i) | ≤ n for all t ≥ 0. By the assumption of 

this proposition, we have 
ffiffiffiffi
gt

i
p

� Qt
B(i) ≤

ffiffiffiffiffi
Bi

√
. Combining these 

altogether, we have

E[gt+1
i � gt

i |Qt, gt
i ≤ Bi]

� E[(Qt+1
B(i))

2
� (Qt

B(i))
2

|Qt, gt
i ≤ Bi]

� E[(Qt+1
B(i) � Qt

B(i))(Q
t+1
B(i) + Qt

B(i)) |Qt, gt
i ≤ Bi]

≤ n(
ffiffiffiffiffi
Bi

√
+

ffiffiffiffiffi
Bi

√
+ n) ≕ θi, 

which concludes the basis of the induction.

B.5. Inductive Step
Assume that the induction hypothesis holds for all i ∈ A\U0 
such that dj ≤ d, d ≥ 1. Consider i ∈ A\U0 such that di �

d + 1. Recall that gt
i � (Zt

B(i))
2

+ αigt
B(i) ≤ Bi. By the induction 
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hypothesis, because dj ≤ d for all j ∈ B(i), we have

αiE[gt+1
B(i) � gt

B(i) |Qt, gt
i ≤ Bi] ≤ U 

for some constant U > 0, which depends only on αi and Bi. 
Because |Zt+1

B(i) � Zt
B(i) | ≤ n (see case 1 in the proof of Lemma 

B.1) and |Zt
B(i) | ≤

ffiffiffiffiffi
Bi

√
, we have

E[(Zt+1
B(i))

2
� (Zt

B(i))
2

|Qt, gt
i ≤ Bi]

� E[(Zt+1
B(i) � Zt

B(i))(Z
t+1
B(i) + Zt

B(i)) |Qt, gt
i ≤ Bi]

≤ n(
ffiffiffiffiffi
Bi

√
+

ffiffiffiffiffi
Bi

√
+ n), 

which implies

E[gt+1
i � gt

i |Qt, gt
i ≤ Bi] ≤ n(

ffiffiffiffiffi
Bi

√
+

ffiffiffiffiffi
Bi

√
+ n) + U ≕ θi:

Hence, the induction hypothesis holds for i ∈ A\U0 with 
di � d + 1. w

Proof of Proposition B.2. For each match m ∈ M with 
A(m) � {i, j}, let Dt

i, j be the number of times match m is per
formed under SP(M+, p) by time t. We first claim that for all 
i ∈ A and t ≥ 0, we have

Zt
i � yiAt � Dt

i, i↑ : (B.22) 

The proof of this claim is given at the end of the current proof; 
(B.22) implies that Zt

B(i) �
P

j∈B(i)Zt
j �
P

j∈B(i)(yjAt � Dt
j, i). Thus, 

for all t ≥ 0, we have

Zt+1
B(i) � Zt

B(i) �
X

j∈B(i)
(yj∆At � ∆Dt

j, i), (B.23) 

where ∆At � At+1 � At and ∆Dt
j, i � Dt+1

j, i � Dt
j, i. Because Qt

B(i) > 0 
by the assumption of this lemma, we must have Qt

i � 0 (other
wise a match would be executed between i and some j ∈ B(i)
due to the greedy nature of the policy). Per (B.23), Zt+1

B(i) �

Zt
B(i) ≠ 0 if and only if the arriving agent at time t+ 1 is of type k, 

k ∈ A(T i). Consider such an arrival: 
• If d(i, k) is odd, then by the construction of the surplus 

vectors, ∆At
k has a positive sign in the summation (B.23). 

Because there is a single agent arrival per period, ∆At
l � 0 for 

all l ∈ A(T i)\{k}. Because Qt
i � 0, no matches with agent type j 

can be performed so that also ∆Dt
j, k � 0 for all j ∈ B(i). Overall, 

we have Zt+1
B(i) � Zt

B(i) � ∆At
k � 1.

• If d(i, k) is even and k ≠ i, then ∆At
k has a negative sign in 

the summation (B.23). Following the same argument as 
above, we conclude that Zt+1

B(i) � Zt
B(i) � ∆At

k � �1.
• If k � i, then ∆At

j � 0 for all j ∈ B(i). Because Qt
B(i) > 0, 

agent type i will be matched with some l ∈ B(i) upon 
arrival; see Remark B.1. Thus, ∆Dt

l, i � 1 and ∆Dt
j, i � 0 for 

all j ∈ B(i)\{l}. Plugging into (B.23), we have that Zt+1
B(i) �

Zt
B(i) � �1.
An agent of type k arrives at time t + 1 with probability 

λk so that we can conclude the from the three cases above 

that

E[(Zt+1
B(i))

2
� (Zt

B(i))
2

|Qt, Qt
B(i) > 0]

� E[(Zt+1
B(i) � Zt

B(i))(Z
t+1
B(i) + Zt

B(i)) |Qt, Qt
B(i) > 0]

� �λi(2Zt
B(i) � 1) +

X

k∈A(T i)\{i} :

d(i, k) is odd

λk(2Zt
B(i) + 1)

�
X

k∈A(T i)\{i} :

d(i, k) is even

λk(2Zt
B(i) � 1)

� �2 λi �
X

k∈A(T i)\{i} :

d(i, k) is odd

λk +
X

k∈A(T i)\{i} :

d(i, k) is even

λk

0

B
B
@

1

C
C
AZt

B(i) +
X

k∈A(T i)

λk

� (�2yiλ)Zt
B(i) +

X

k∈A(T i)

λk

� �ηiZ
t
B(i) + δi:

as stated. Now we prove the claim (B.22). We use strong in
duction on di, i ∈ A, where recall that di � maxj∈U0∩V(T i)d(i, j).

B.6. Basis
Consider i ∈ A such that di � 0. This implies i ∈ U0 so that Zt

i �

yiQt � Qt
i � (At

i � Dt
i, i↑ ) � yiAt � Dt

i, i↑ as required. This con
cludes the basis of the induction.

B.7. Inductive Step
Assume that the induction hypothesis holds for all i ∈ A such 
that di ≤ d, d ≥ 0. Consider i ∈ A such that di � d + 1: By the 
induction hypothesis, for all j ∈ B(i), we have

Zt
j � yjAt � Dt

j, i:

By the construction of the surplus vectors, we have Zt
i �

yiQt � Qi(t) �
P

j∈B(i)yjQt � Qt
i �
P

j∈B(i)Zt
j : Because Qt

i � At
i �

Dt
i, i↑ �

P
j∈B(i)Dt

j, i, we have

Zi(t) � Qt
i �
X

j∈B(i)
Zt

j

� At
i � Dt

i, i↑ �
X

j∈B(i)
Dt

j, i

0

@

1

A�
X

j∈B(i)
(yjAt � Dt

j, i)

� At
i �
X

j∈B(i)
yjAt

0

@

1

A�
X

j∈B(i)
Dt

j, i �
X

j∈B(i)
Dt

j, i

0

@

1

A� Dt
i, i↑

� yiAt � Dt
i, i↑ :

Hence, the induction hypothesis holds for i ∈ A with di �

d + 1: w
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