
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

A Normative Approach for Resilient

Multiagent Systems

Geeta Mahala1*, Özgür Kafalı2, Hoa Dam1, Aditya Ghose1

and Munindar P. Singh3

1*School of Computing and Information Technology, University of
Wollongong, Wollongong, NSW, Australia.

2School of Computing, University of Kent, Canterbury, Kent,
United Kingdom.

3Department of Computer Science, North Carolina State
University, Street, Raleigh, North Carolina, USA.

*Corresponding author(s). E-mail(s): gm168@uowmail.edu.au;
Contributing authors: ozgurkafali@gmail.com; hoa@uow.edu.au;

aditya@uow.edu.au; mpsingh@ncsu.edu;

Abstract

We model a multiagent system (MAS) in socio-technical terms, combin-
ing a social layer consisting of norms with a technical layer consisting
of actions that the agents execute. This approach emphasizes auton-
omy, and makes assumptions about both the social and technical
layers explicit. Autonomy means that agents may violate norms. In our
approach, agents are computational entities, with each representing a
different stakeholder. We express stakeholder requirements of the form
that a MAS is resilient in that it can recover (sufficiently) from a failure
within a (sufficiently short) duration. We present ReNo, a framework
that computes probabilistic and temporal guarantees on whether the
underlying requirements are met or, if failed, recovered. ReNo supports
the refinement of the specification of a socio-technical system through
methodological guidelines to meet the stated requirements. An important
contribution of ReNo is that it shows how the social and technical layers
can be modeled jointly to enable the construction of resilient systems of
autonomous agents. We demonstrate ReNo using a manufacturing sce-
nario with competing public, industrial, and environmental requirements.

Keywords: Norms, multiagent systems, resilience

1

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092

1 Introduction

Models of social interaction are central to artificial intelligence (AI) and have
long drawn interest from the research community, especially in the field of
multiagent systems (MAS) [1–4]. Socio-technical systems (STS) are a power-
ful way of expressing social interaction among agents and provide a way of
governing MAS [5, 6]. In a socio-technical system (STS), autonomous agents
act on behalf of the stakeholders and represent their needs [7–9]. We adopt
a conception of an STS [10, 11] in which agents interact with each other and
with the underlying technical architecture. Such an STS can be represented as
a multiagent system (MAS) and governed via norms [12] that regulate inter-
actions among the agents and help guide the agents towards the achievement
of their stakeholders’ needs.

This paper falls into the broad area of socio-technical systems. It goes
beyond previous research by introducing the notion of resilient socio-technical
systems. A resilient STS is one that seeks to meet stakeholder requirements
and can recover from requirement failures. In this way, resilience is an essential
element of the trustworthiness of an STS, especially in regards to its ability
[13].

Our intuitive reading of the resilience of an STS takes the following form:
Within some deadline, if an undesirable condition, or a condition that flags a
departure from normal operating states, comes to pass, then within k steps a
desirable state (or one that represents a return to normal operating conditions)
can be achieved with a probability higher than a specified threshold. We identify
three important aspects of resilience: (1) Resilience involves recovery from an
undesirable state; (2) Resilience involves recovery within a deadline (or a pre-
specified number of steps); (3) Resilience involves recovery with a probability
exceeding some (sufficiently high) threshold.

We tackle the above intuitions by extending STS specifications to include
time and quantities, providing a formalization and algorithm for automatically
translating STS specifications to models that can be input into model-checking
tools such as PRISM [14], introducing probabilistic model-checking to STS
specifications to reason about the probability of meeting requirements, provid-
ing a means to evaluate trade-offs between achieving technical objectives and
meeting social regulations, and finally, implementing a prototype of the entire
framework.

1.1 Research Objectives and Contributions

Our goal is to aid the design of resilient STSs by providing a technique and
tooling for evaluating alternative STS specifications with respect to the stated
requirements. Specifically, we have the following objectives:
O1 To incorporate a rich model (time and quantities) of computational norms

into STS specifications as a means to regulate agent behavior and guide
which actions an agent should take.

093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

O2 To verify at a specified level of likelihood that an STS meets its stake-
holders’ requirement and can recover from a requirement failure within a
specified period of time.

O3 To develop techniques (supported by methodological guidelines) for lever-
aging probabilistic model checking to explore the trade-off space involving
alternative STS designs and alternative formulations (particularly relax-
ations) of stakeholder requirements.

Accordingly, we present ReNo (short for Resilience via Norms), a prob-
abilistic framework that evaluates how resilient an STS specification is by
verifying to what extent the MAS meets its stakeholders’ requirements and
evaluating the speed and extent to which the MAS recovers from a requirement
failure.

Our contributions include (i) a formal STS specification including social
norms and technical actions, and associated requirements expressed with quan-
tities and time—achieves O1; (ii) a transformation algorithm that takes a
given STS specification and associated requirements, and produces a PRISM
(Probabilistic Symbolic Model Checker) [14] model and associated properties
in Probabilistic Computation Tree Logic (PCTL) [15, 16]—provides the means
to achieve O2; and (iii) a formal probabilistic verification process stating how
likely a given STS specification meets stakeholder requirements and recovers
from requirements failures—achieves O2 and O3.

1.2 Practical Usage, as Envisioned

We envision ReNo being deployed in practice via the following steps. First,
the designer specifies an initial version of the STS specification. Second, the
stakeholder provides the requirements expressed in PCTL. The requirements
may include resilience requirements (formalized in Section 3 as system proper-
ties) where we show how the specified MAS world recovers from requirement
failures. Third, ReNo generates a PRISM model from the given STS specifica-
tion. Fourth, the designer runs the verification process. Fifth, ReNo produces
an output demonstrating how likely the STS specification meets the stated
requirements. Sixth, the designer refines the STS specification based on the
output produced by ReNo. The process iterates until the requirements are
satisfied. If there is a situation where the requirements are not satisfied, the
stakeholders would have the option to relax the requirements suitably. Seventh,
the STS designer and stakeholders can analyse the various state variables or
other parameters to produce a new relaxed requirement based on the output
produced by ReNo.

1.3 Organization

The rest of the document is organized as follows. Section 2 defines socio-
technical systems (STSs) and introduces the relevant background. Section 3
describes the computational elements of ReNo. Section 4 describes the
methodological guidelines. Section 5 presents our prototype implementation

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

and verification experiments. The complete replication package, which encom-
passes all the artifacts and experimental data, including the outcomes of
actions and their corresponding execution probabilities can be accessed at [17].
Section 6 describes the related work. Section 7 concludes the paper.

2 Background

2.1 Socio-Technical Systems

Our overarching objective is to develop a framework for handling resilience
requirements in multiagent systems (MAS) composed of agents that are
afforded autonomy and self-interest and where these interests might conflict
with those of other agents. This notion is a departure from traditional work on
engineering multiagent systems, where a significant body of work assumes that
the agents involved have the same interests and have limited autonomy [18].

An important challenge in such settings is managing the aggregate
behaviour of the participating agents and, in particular, ensuring that the
aggregate behaviour meets certain requirements imposed on the MAS. One
effective strategy for addressing this challenge involves incorporating norms.
Norms constrain the behavior of individual agents in group settings (e.g.,
societies and communities), and regulate the interactions between those indi-
viduals. Norms in multiagent systems specify social controls on an agent’s
actions and can help achieve the overall objectives of the system.

We conceive of a multiagent system in normative terms and, in particular,
as a socio-technical system (STS) consisting of a social and a technical layer.

The technical layer of an STS is composed of software components support-
ing various agent actions. The social layer comprises the stakeholders and, for
our purposes, the agents who represent those stakeholders. Norms regulate the
interactions among the entities (agents and humans) in the social layer. For
our purposes, the stakeholders are not formally modeled and the agents (which
are formally modeled) capture all the relevant actions. Specifically, the norms
here are directed from one agent to another and state what one agent may
legitimately expect of another and under what conditions. That is, the agents,
being autonomous parties, can violate any norm that applies to them but if
they do so, they are identified as being in violation of the norm. Sometimes,
an agent must violate a norm to achieve a greater objective [19]. The techni-
cal layer (actions) and social layer (norms) are specified by an STS designer,
in accordance with stakeholders’ requirements.

The distinction between the social and technical layers is important
throughout the technical development we present below. The Methodological
guidelines (in Section 4) are provided that support the design and implemen-
tation of resilient STS. In methodological guidelines, it is demonstrated that
updating the STS can involve changes to both the social and technical lay-
ers in order to meet stakeholder requirements. Changes at the technical layer
involve substantial changes to agent capabilities while changes in the social
layer involve changes to the norms guiding agent interactions. For example, if

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

a given STS specification does not meet the stated requirements then either
the STS specification can be refined by adding or removing agents’ actions at
the technical layer or adding or removing norms at the social layer.

To explain what we mean by an STS, let’s describe a simple use case that
illustrates how the social and technical layers arise and interplay in a practical
multiagent scenario.

Example of an STS with agents, norms, and software
components

Consider a scenario involving the manufacture of personal protective equip-
ment (PPE) where different stakeholders have potentially conflicting functional
and sustainability requirements. Imagine there are two textile companies for
manufacturing PPE units, one (CompanyNear) located near a population cen-
ter and the other company (CompanyFar) located far from the population
center. This STS has four agents: (1) a textile manufacturing firm Company-
Near; (2) another textile manufacturing firm CompanyFar; (3) a Hospital with
a requirement for varying quantities of PPE units (this demand can go up if
there is an outbreak of a virus such as Covid-19); (4) an environmental Regula-
tor that imposes rules governing the extent of permitted pollution and which
it enforces through occasional inspections.

The companies have different kinds of environmental impacts. The regulator
imposes stricter prohibitions on CompanyNear relative to CompanyFar since
CompanyNear is located near the city and pollution generated by it will have a
potentially greater adverse impact on the health of city residents. These norms
govern this STS:

• A norm governing the amount of pollution CompanyNear is permitted to
generate.

• A similar norm governing the amount of pollution CompanyFar is permit-
ted to generate (which, in general, can be higher than for CompanyNear
since CompanyFar is farther from the population center).

• Norms governing the quantities of PPE that CompanyNear and Com-
panyFar are committed to producing for the Hospital (in our example,
both companies commit to producing equal quantities of PPE, but these
amounts could be different in general).

Both CompanyNear and CompanyFar can act to manufacture varying quan-
tities of PPE units (we provide details on how these actions are represented
in Section 3.3). The Hospital agent performs only one action which involves
creating demand for PPE units, which is manifested via the commitments
that CompanyNear and CompanyFar make to the Hospital. In order to miti-
gate the potential increase in pollution associated with increased production
of PPE units. The CompanyNear and CompanyFar agents execute actions
that involve decreasing pollution. These actions are manifested via the com-
mitments that CompanyNear and CompanyFar make to the Regulator. The
Regulator agent performs a variety of actions including specifying regulatory

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

limits on the permitted pollution level for each company, occasional monitor-
ing of pollution levels, and fining firms that violate pollution limits. For the
purposes of our example, we focus on the specification of regulatory limits on
pollution, and this action manifests only in the form of prohibitions that the
PPE manufacturers must abide by.

In contrast to norms, requirements are distinct as they are specific condi-
tions or constraints that must be met to achieve a particular goal or objective.
In our work, we evaluate whether the stated requirement will be satisfied based
on the norms and actions involved. Given the above STS specification, we can
assert a variety of requirements. An example requirement is that both Com-
panyNear and CompanyFar should produce 1000 units of PPE per week and
both companies should not exceed a pollution level of 50 ppm (parts per mil-
lion). Another example requirement, regarding the resilience of the STS, is
that both CompanyNear and CompanyFar should reduce the pollution level
from above 100 ppm (an unacceptable level of pollution) to below 60 ppm (an
acceptable level of pollution) of the chemical in question.

2.2 PCTL

Our goal is to create a practical framework to govern multiagent systems that
meet specified resilience requirements (along with functional requirements).
A practical approach to specifying such requirements is to state them in
probabilistic rather than absolute terms. With the probability as a tunable
parameter set to a high value, it is possible to require that a system be resilient
most of the time even if not all the time.

There is a growing realization in the literature that for reasons similar to
those that make it worthwhile to consider actions with uncertain outcomes, it is
important to support probabilistic goals [20]. Properties such as resilience are
especially amenable to a probabilistic specification since they do not concern
the object-level behaviour of the system (even if these must meet hard, non-
probabilistic, requirements).

Our framework emphasises STS specifications to understand the probabil-
ity of meeting requirements and recovering from a requirement failure within a
specified time. PCTL is used for specifying properties of discrete-time models
such as discrete-time Markov chains (DTMCs) [21]. In ReNo, a PRISM model
is generated from the given STS specification and is also a discrete-time model,
whose state space is discrete and transitions are discrete steps between states.
Therefore, we use temporal PCTL to specify the properties of the system to
be checked.

We operationalize an STS via Probabilistic Computation Tree Logic
(PCTL). PCTL is derived from CTL and includes a probabilistic operator P
[15]. PCTL is equipped with temporal operators with time bounds where time
is discrete and one time unit corresponds to one transition along an execu-
tion path. In PCTL, each atomic proposition is a state formula, which involves

277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

assertions that are true in a single state (i.e., state properties). Path formu-
las describe properties of paths (i.e., sequences of states). Formally, state and
path formulas in PCTL are defined as follows:

State formulas ϕ ::= true | a | ¬ϕ | ϕ ∧ ϕ | P∼prob(Ψ)

Path formulas Ψ ::= Xϕ | ϕU≤tϕ | ϕUϕ
Where a is an atomic proposition and Ψ represents a path formula, ϕ

represents a state formula and P is a probabilistic operator (details below),
∼ is an inequality (i.e., ∼∈ {<,≤, >,≥}), and prob ∈ [0, 1] is a probability
bound and t ∈ N.

Path formulas Ψ use the Next (X), Bounded Until U≤t, and Unbounded
Until (U) operators. Similar to “always □” and “eventually ♢” operators in
CTL, there are temporal operators in PCTL [16]. In the literature, the tem-
poral operators □ and G have been interchangeably used for “always” and ♢
and F have been interchangeably used for “eventually”. Here, we use G and
F to align with PRISM syntax.

[F≤tϕ]∼p ≡ [trueU≤tϕ]∼p

[G≤tϕ]∼p ≡ ¬[trueU≤t¬ϕ]∼(1−p)

A state formula is used to express the property of a model. A path formula
may occur only as the parameter of the probabilistic path operator P∼prob(Ψ).
Intuitively, a state s satisfies P∼prob(Ψ) if the probability of taking a path from
s satisfying Ψ is in the interval specified by ∼ prob.

PRISM is a probabilistic model checker [14]. Properties of the system are
represented formally in a probabilistic temporal logic (such as PCTL) and
automatically verified against an input probabilistic state transition model.
PRISM takes two inputs: (i) a probabilistic model (such as a Markov decision
process (MDP)) and (ii) a property specification. PRISM then conducts model
checking to determine which states of the system satisfy the specification.
PRISM supports path properties that can be used inside the P operator such as
[F≤10q]≥0.6 states that with at least 60% probability q will become true within
10 time units, while [G≤20 r]≥0.99 states that with at least 99% probability r
will hold at least for 20 time units.

The syntax of the PRISM property specification language includes var-
ious probabilistic temporal logics, including PCTL, within PRISM. In the
informal PRISM property specification language, a property is written as
Pbound[pathprop], stating that the probability of being satisfied by the paths
from the current state meets the bound bound.

An example of a bound would be P0.75[pathprop] which means that the
probability that the path property pathprop is satisfied by the paths from state
s is greater than 0.75. To consider the nondeterministic behaviour of a sys-
tem then the meaning of Pbound[pathprop] is that the probability of pathprop
being satisfied by the paths from the current state meets the bound bound for
all possible resolutions of the nondeterminism. Therefore, we need to reason

323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368

about minimum and maximum probability over all the possible resolutions of
the nondeterminism. The minimum and maximum probabilities are calculated
using Pmin=?[pathprop] and Pmax=?[pathprop], respectively. Additionally, we
need to include parentheses when using logical operators in a path property
(pathprop) because logical operators have precedence over temporal ones. An
example of a property is P0.90[(G “A”)&(F “B”)].

3 The ReNo Framework

Figure 1 shows ReNo’s main components, each of which is explained below:

STS
Designer

1

Social layer
Technical layer

STS Specification
into PRISM Model

2

Probabilistic Model
Checking: PRISM

Probabilistic Temporal
Logic Specification
(PCTL) Properties

Stakeholder
Requirements

Analysis

3

Outcomes

Probabilistic
System Model

Not satisfied: Refine the STS Specification

Not satisfied: Relax applicable requirements

STS Specification

Translate

Automatic

Translation

System Model

System Property
Satisfied

Fig. 1 The ReNo Framework.

Stakeholders Stakeholders define the requirements that the STS must satisfy.
How they do so is not in our present scope but can involve a combination
of creativity [22] or argumentation [23]. If it turns out that satisfying a
given set of requirements is not possible, then the stakeholders would have
little choice but to relax their requirements (ideally as little as possible)
to make it feasible to design an STS that satisfies these (relaxed) require-
ments. The reason for this, e.g., the number of steps being too small, is
something that is hard to know ahead of time and is explored under the
methodological guidelines as an iterative process in Section 4. In addition
to the usual achievement and maintenance requirements, we introduce a
new class of resilience requirements. Using the syntax of PCTL described
above, a resilience requirement takes the following general form:

⟨UStateCond⟩ → P⟨ineq⟩probabilisticConst[F
⟨ineq⟩integerConst⟨DStateCond⟩]

369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414

Here ⟨ineq⟩ is an operator (such as ≤, <,≥, or =). probabilisticConst
is any real number between 0 and 1, representing a probability value.
Here, integerConst is, as the name suggests, an integer constant, used to
denote the number of steps. UStateCond abbreviates a condition repre-
senting an undesirable state (such as a state in which the level of pollution
exceeds an acceptable threshold). DStateCond abbreviates a condition
representing a desirable state (such as one in which pollution levels are
below an acceptable threshold). The generic resilience requirement thus
states that if an undesirable state (denoted by UStateCond) transpires,
then the system can return to a desirable state (denoted by DStateCond)
at some future state but before or after, depending on the nature of the
inequality, the system has transitioned through integerConst states, with
a probability that satisfies ⟨ineq⟩probabilisticConst. The above equation
captures the essence of resilience requirements, ensuring that the system
has both the timing and the probability factors considered to facilitate
the transition from an undesirable state to a desirable state. It provides
a quantifiable measure for assessing the system’s ability to recover and
adapt in the face of undesired conditions. We provide concrete examples
of resilience requirements later in the paper.

STS Designer The designer specifies an STS as two layers. The social layer
describes the agents and the norms among them, whereas the technical
layer provides the operational actions by which the agents act. The social
layer consists of a set of norms that govern the interactions among the
agents. Note that norms [24] in our model are directed from one party
to another. In our example, each PPE manufacturer would commit to
the Regulator to meet certain pollution standards. That is, the norms are
pair-wise, even with multiple agents. Actions in the technical tier allow or
restrict specific agent actions as they represent hard constraints. Actions
describe relevant facts about the operating environment, e.g., what will
(potentially) happen when an action is executed.

Translation of an STS Specifcation to a PRISM Model ReNo takes
the STS specification as input to generate a PRISM model. A PRISM
model is a probabilistic state transition model. A probabilistic state tran-
sition model associates a transition probability with each transition. What
we generate is a small variation in the form of augmented probabilistic state
transition models explained in Section 3.3.1. In this case, an augmented
probabilistic state transition model takes into account both the proba-
bility of selecting an action and the probability of executing an action.
The process of translating an STS specification into a PRISM model is
explained in Section 3.3.2.

Analysis ReNo verifies the STS against the requirements to understand how
the STS would fare, i.e., with what probability it would violate or sat-
isfy each requirement. If the analysis suggests that refinement is required,

415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460

the STS designer leverages this understanding to refine the STS specifica-
tion. If the analysis determines that it is not possible to modify the STS
in a way that would satisfy the requirements, the stakeholder proceeds
to analyze the various state variables or parameters to identify relaxed
requirements, as explained in Section 4.2.

3.1 ReNo Syntax

The ReNo uses a language for specifying norms and actions. Table 1 shows
ReNo’s syntax for specifying STSs. AG = {α1, α2, . . . , αn} is a finite set of
agents and Φ = {Attr1,Attr2, . . . ,Attrm} is a finite set of attributes. Here,
attributes are variables that are assigned values or appear in inequalities used
in action specifications or in the antecedent and consequent conditions used
in the various norm types (PPE and pollution in the discussion below are
examples of attributes). A superscript of + indicates one or more repetitions
whereas superscript ∗ indicates zero or more. The operator += and −= can be
best understood with the following example: x+= y updates x by adding y to
its current value while x−=y updates x by subtracting y from its current value.
If y is a numeric range (NRange) as opposed to a single value, then we update
x by adding (resp. subtracting) a value chosen from NRange. Li represents the
line number corresponding to the ith line in Table 1. Table 1 begins with the
core concepts of ReNo and ends with primitive concepts such as Num.

Table 1 ReNo Syntax.

L1 Specification −→ Norm+ | Action+

L2 Norm −→ Commitment | Prohibition
L3 Commitment −→ c(AG,AG,Cond,Cond)
L4 Prohibition −→ p(AG,AG,Cond,Cond)
L5 Action −→ m(Cond, Stmt+, Stmt+)
L6 Cond −→ Expr | Cond ∧ Cond | Cond ∨ Cond |∼ Cond
L7 Expr −→ ⊤ | ⊥ | Attr ≥ Num | Attr ≤ Num | Attr = Val
L8 Stmt −→ Attr += NRange | Attr −= NRange | Attr = Val | Attr
L9 NRange −→ Num | [Num,Num]
L10 Val −→ Num | ⊤ | ⊥
L11 Num −→ Any numeric literal (drawn from R)

L8 Stmt can be either the update of the value of Attr using them += or −=
operators, the assignment of a value val to Attr or a reference to Attr
in isolation. For example, if Stmt is PPE+=[100,220] where PPE is an
attribute, then the current value of PPE is increased by adding a value
between 100 and 220.

L7 An expression Expr evaluates to the logical true or false constant or an
inequality involving Attr and Num.

L6 A condition Cond can be an expression (Expr) or a conjunction or
disjunction of expressions.

L5 An action m consists of condition Cond and two lists (as discussed later,
these are the DeleteList and AddList, respectively). The elements of each

461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506

list are comma-separated. An example of an action is m(true, {PPE,
pollution}, {PPE+=[50, 100], pollution+=PPE∗[0.2, 0.4]}). Here the
condition is the logical constant true. The DeleteList consists of the prior
values of PPE and pollution. The AddList consists of the updated values
of PPE and pollution. For example, let’s assume the current state s has
a PPE value of 10. After executing the action, the new value of the state
variable PPE can be updated with any value in the range [50, 100], plus
the previous value. If we consider a PPE value of 60 from the range, the
next PPE value in the next state s′ would be 70.

L3-L4 A commitment consists of two agents (debtor and creditor) and a pair
of conditions, with the debtor promising the creditor that it will make
the second condition true if the first condition is made true. Similarly, a
prohibition involves the debtor agent promising the creditor agent to not
let the second condition become true if the first condition is made true.
Consider the following example prohibition: p(CompanyNear, Regulator,
true, pollution ≥ 60). Here, the debtor is CompanyNear and the creditor
is Regulator. CompanyNear promises Regulator that it will always (the
first condition is always true) ensure that the second condition does not
become true (pollution exceeding 60ppm).

L2 A norm may be a prohibition or a commitment.
L1 An STS specification consists of one or more norms and one or more

actions.
We will use Listing 1 to explain the technical and social layers of an STS

specification in the following sections.

3.2 Social Layer: Norms

Following Kafalı et al. [11] and Singh [12], we define a norm as a tuple
⟨n, SBJ,OBJ, ant, con⟩, where n represents the norm type from {c, p}; SBJ ∈
AG is its subject; OBJ ∈ AG is its object; ant and con are conditions (Cond
in Table 1 above) that represent the antecedent and consequent of the norm,
respectively. The set of norm types {c, p} consists of commitments (c) and
prohibitions (p).

A commitment indicates that the subject is committed to its object to
making the consequent true if the antecedent holds. Consider the following
commitment from Listing 1: C1(CompanyNear, Hospital, true, PPE ≥ 100).
The CompanyNear is committed to the Hospital to always (note that the
antecedent is true) producing 100 units of PPE or more. The company is the
“debtor” for this commitment, and it would violate its commitment if it fails
to produce the specified amount of PPE.

A prohibition (p) indicates that its subject is prohibited by its object from
making the consequent true when the antecedent holds. Consider the following
prohibition from Listing 1: P1(CompanyNear, Regulator, true, pollution ≥ 60).
For example, the regulator prohibits the company from polluting above 60
ppm at any time. CompanyNear would violate its prohibition if pollution goes
above the specified level of the chemical in question.

507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552

As seen in Listing 1, we have used a subscript number with each norm
type, where the subscript denotes the instance of each norm type (e.g., C1 and
C2 are two instances of commitments). For example, in Listing 1 each com-
pany has one commitment, so we have defined commitment C1(CompanyNear,
Hospital, true, PPE ≥ 100) for CompanyNear and C2(CompanyFar, Hospital,
true, PPE≥100) for CompanyFar. Similarly, each company has one prohibi-
tion, so we have defined P1(CompanyNear, Regulator, true, pollution≥60)
for CompanyNear and P2(CompanyFar, Regulator, true, pollution≥80) for
CompanyFar.

3.3 Technical Layer: Actions and State Transitions

The technical layer consists of a finite set of operational actions A =
{a1, a2, . . . , ak} for each agent to execute. In our use case, CompanyNear can
choose to manufacture 100 PPE units (a11) or 120 PPE units (a12) and sim-
ilarly, CompanyFar can choose to manufacture 100 PPE units (a21) or 120
PPE units (a22).

An action is represented as m(condition, DeleteList, AddList), where con-
dition is a Cond (in the sense of Table 1) while each of AddList and DeleteList
is a List (also in the sense of Table 1). If an action is applicable (i.e., the condi-
tion holds in the current state), the action is executed, leading to a transition
to a new state where the old values of the attributes contained in DeleteList are
removed and the new values of the attributes specified in AddList are added.
The outcome of an action can be either deterministic or nondeterministic. The
AddList can specify deterministic or nondeterministic outcomes. The use of a
range indicates that the outcome of the execution of that action can lead to a
state where the variable in question is assigned any value within its range. In
Listing 1 below, the execution of the action a11 can lead to a state where the
new value of the state variable PPE can be any value in the range [50,100] and
the new value of the state variable pollution is the value of PPE multiplied by
any step-size in the real interval [0.2, 0.4].

3.3.1 Selection probability

The ReNo should support agent autonomy; agents are free to select which
action they wish to execute, but this choice is informed by the applicable
norms. We would like to select an action which has the most compliant
behaviour. We consider how likely an action is compliant to each norm. Because
an action may be more compliant to a particular norm but at same time, not
compliant to any other norms. Our framework ReNo helps the agent to select
an action from a set of actions that has the most compliant behaviour. For
instance, in a given state, CompanyFar can execute either a21 and a22 to man-
ufacture 100 PPE. In a given state, let’s assume that there is a 100% chance
of action a21 complying with a commitment, while there is a 10% chance of
action a21 complying with a prohibition. Similarly, let’s assume that there is
a 50% chance of action a22 complying with a commitment, while there is an

553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598

Listing 1 STS specification for PPE manufacturing.

1 P1(CompanyNear , Regulator , true , pollution≥60)

2 C1(CompanyNear , Hospital , true , PPE≥100)

3 P2(CompanyFar , Regulator , true , pollution≥80)

4 C2(CompanyFar , Hospital , true , PPE≥100)

5
6 a11: m(true , {PPE , pollution}, {PPE+=[50, 100],

pollution+=PPE∗[0.2, 0.4]})

7 a12: m(true , {PPE , pollution}, {PPE+=[80, 120],

pollution+=PPE∗[0.5, 0.7]})

8 a10: m(true , {PPE , pollution}, {PPE+=[0, 0],

pollution+=PPE∗[0.0, 0.0]})

9
10 a21: m(true , {PPE , pollution}, {PPE+=[50, 100],

pollution+=PPE∗[0.2, 0.4]})

11 a22: m(true , {PPE , pollution}, {PPE+=[80, 120],

pollution+=PPE∗[0.5, 0.7]})

12 a20: m(true , {PPE , pollution}, {PPE+=[0, 0],

pollution+=PPE∗[0.0, 0.0]})

80% chance of action a21 complying with a prohibition. In this scenario, the
ReNo will select action a21, which demonstrates the highest level of compli-
ant behavior by considering both commitment and prohibition for execution
in that particular state.

Therefore, we wish to model both agent choice (i.e., which action to
execute) and transition probabilities (uncertain outcomes accruing from the
execution of an action). We make a distinction between selection probability
and execution (or transition) probability. The selection probability is impor-
tant because we use selection probability to determine the norm-compliant
behaviour.

We use the common mathematical form “softmax” to map weights to
probabilities. Softmax or normalized exponential function is a mathematical
function used to convert a vector of R real numbers into a probability dis-
tribution of R possible outcomes. The softmax function normalizes the input
vector, making sure that the resulting values range between 0 and 1 and that
their sum adds up to 1, which is a requirement for a probability distribution.
Consequently, the output vector obtained from softmax can be interpreted as
a probability distribution over the different classes or categories. The essential
intuition is that selection is a means to deal with autonomy while execution
probabilities are a way to deal with a stochastic environment. Here, a stochas-
tic environment means one in which instructing an agent to take a particular
action does not necessarily lead to that action being carried out.

We define a function prob(ak, s, A,N) (Equation 1) which calculates the
likelihood of an agent choosing an action from a given state (i.e., selection
probability). This function computes the propensity of an agent selecting an

599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644

action for execution, given the impact of one execution of the action on com-
pliance with the applicable set of norms. When propensity is computed for all
actions, we transform the resulting probabilities into a probability distribution
for the set of actions.

prob(ak, s, A,N) =

|N |∏
i=1

w
sat(ak,ni)
i∑

a∈A w
sat(a,ni)
i

(1)

where prob(ak, s, A,N) indicates the probability of selecting action ak from
a set of actions A in a state s, sat(ak, ni) indicates the probability that action
ak satisfies the current target set out by norm ni, and w is a parameter that
indicates our willingness to permit the norms that instantiate ni to be violated
(e.g., a higher w indicates that a norm violating action is less likely to be
picked). The weight wi is not a part of the norm ni. The willingness to violate
the norm could be contingent on the agent, the current state or the potential
norm-violating action, or all three. We do not propose to be prescriptive here
about which intuition needs to be adopted. Indeed, any of these intuitions
might be valid. We simply provide machinery in this equation to obtain a
selection probability based on the willingness to violate the norm.

Now we will describe the process of computing sat(ak, ni). The Equation 2
is used to capture the likelihood of an action being compliant with prohibi-
tions. Equation 3 captures the likelihood of an action being compliant with
commitments.

For an action ak, a norm ni, and an attribute Attr that is common to ak
and ni, we set the probability of ak satisfying ni to 0 if the upper-bound for
Attr as described in ak is less than the current target for Attr as described
in ni (as for a commitment) or the lower-bound for Attr as described in ak
is greater than or equal to the current target for Attr as described in ni (as
for a prohibition). Similarly, we set the probability of ak satisfying ni to 1 if
the lower-bound for Attr as described in ak is greater than or equal to the
current target for Attr as described in ni (commitment) or the upper bound
for Attr as described in ak is less than the current target for Attr as described
in ni (prohibition). Note that by computing sat(ak, ni) as a probability, we
eliminate cases where (unnecessarily) increasing or decreasing the amount of
a given attribute beyond the target value might have an undesired effect on
calculating the likelihood of a given action. For example, the probability of
satisfaction is the same if the action produces exactly the target value or twice
the target value. If the current target for Attr as described in ni is within
the interval for Attr as described in ak, then we compute the probability of
satisfaction based on a uniform distribution of values from the interval for Attr
as described in ak. For example, if 40% of the values for Attr within the lower
bound and upper bound satisfies the current target, then sat(ak, ni) is 0.4.

c target(Attr) = ni target(Attr)− current(Attr)

645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690

sat(ak, ni) =


1, if uAttr ≤ c target(Attr)

0, if lAttr ≥ c target(Attr)
c target(Attr)− lAttr

uAttr − lAttr
, otherwise

(2)

sat(ak, ni) =


1, if lAttr ≥ c target(Attr)

0, if uAttr ≤ c target(Attr)
uAttr − c target(Attr)

uAttr − lAttr
, otherwise

(3)

where ni target(Attr) is the target value for the consequent of norm ni,
current(Attr) is the value of the attribute in the current state, lAttr and uAttr

are lower bound and upper bound of attribute Attr in the DeleteList or AddList
of ak.

Now, we provide a proof for the Equation 1 that it provides a probability
distribution for the set of actions in a given state s.

Theorem 1 To prove that the sum of probabilities of all actions for state s is equal
to 1, we need to sum the probabilities of all actions over the set of available actions A:∑

ak∈A prob(ak, s, A,N) = 1

Proof Let’s substitute the value of
∑

ak∈A prob(ak, s, A,N) from equation 1.

∑
ak∈A

prob(ak, s, A,N) =
∑
ak∈A

|N |∏
i=1

w
sat(ak,ni)
i∑

a∈A w
sat(a,ni)
i

=

|N |∏
i=1

∑
ak∈A

w
sat(ak,ni)
i∑

a∈A w
sat(a,ni)
i

(A)

|N |∏
i=1

∑
ak∈A

w
sat(ak,ni)
i∑

a∈A w
sat(a,ni)
i

=

|N |∏
i=1

∑
ak∈A w

sat(ak,ni)
i∑

a∈A w
sat(a,ni)
i

(B)

Now let’s take

∑
ak∈A w

sat(ak,ni)

i∑
a∈A w

sat(a,ni)

i

from equation B and using the properties of

summation, we can split the sum into two parts.

∑
ak∈A w

sat(ak,ni)
i∑

a∈A w
sat(a,ni)
i

=
w
sat(a1,ni)
i∑

a∈A w
sat(a,ni)
i

+
w
sat(a2,ni)
i∑

a∈A w
sat(a,ni)
i

+ ...+
w
sat(an,ni)
i∑

a∈A w
sat(a,ni)
i

Now, let’s bring the common denominator,
∑

a∈A w
sat(a,ni)
i , inside each term:

w
sat(a1,ni)
i + w

sat(a2,ni)
i + ...+ w

sat(an,ni)
i∑

a∈A w
sat(a,ni)
i

Since the denominator
∑

a∈A w
sat(a,ni)
i is the sum of the exponential values of

all actions in the A so it can be canceled out.

w
sat(a1,ni)
i + w

sat(a2,ni)
i + ...+ w

sat(an,ni)
i∑

a∈A w
sat(a,ni)
i

= 1

691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736

So, ∑
ak∈A w

sat(ak,ni)
i∑

a∈A w
sat(a,ni)
i

= 1 (C)

Now put value of

∑
ak∈A w

sat(ak,ni)

i∑
a∈A w

sat(a,ni)

i

from equation C in equation B.

|N |∏
i=1

∑
ak∈A w

sat(ak,ni)
i∑

a∈A w
sat(a,ni)
i

=

|N |∏
i=1

∗1 = 1

Hence, ∑
ak∈A

prob(ak, s, A,N) = 1

□

3.3.2 Translation of an STS specification to a PRISM model

The PRISM model is constructed as a probabilistic state transition model.
In the following algorithms, c target(Attr), n target(Attr), and current(Attr)
have the same denotations as in Equation 1, Equation 2, and Equation 3. In
Algorithm 1, we compute a PRISMmodel that includes a transition probability
for every feasible transition ⟨s, s′⟩ where s′ is one of the states that could
result from executing action a in state s. We also note that although our state
schema includes a variable that denotes the agent whose turn to act, this is
entirely an artifact of the round-robin agent execution technique we are using
for approximately checking an STS specification. In the algorithms defined
below, we can ignore the state variable called agent except in situations where
we explicitly refer to it.

We also note that for many of the actions we specify their resulting states
in terms of the deltas (i.e., the operations performed) on the prior values of the
state variables. In the algorithms below, we avoid this complexity by simply
assuming that the actions are specified in terms of the values of the state
variables in the resulting state instead of explicitly describing the changes
or operations applied to the state variables. Thus, the algorithms avoid the
complexity of detailing how the state variables are updated. They focus on the
end result, rather than the specific steps involved in achieving that result.

Algorithm 1 translates an STS specification into a PRISM model. The
algorithm takes two inputs: 1) An STS specification consisting of a set of
agents, where each agent has a set of norms N and a set of actions A. 2) The
set of action execution probabilities given by ActionExecProb (these are
the probabilities associated with the action execution transitions). In practical
settings, we expect these probabilities to be obtained from past execution data
(for this paper’s experimental purposes, these values are randomly generated).

• We create the initial state s0 by assigning 1 to variable agent and assigning
random values to other state variables (Line 2).

• The consequences of actions always lie in that range. The number of
outcomes of each action is calculated based on a step size. If we use a small

737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782

Algorithm 1 Generating PRISM model from an STS specification.

Input: An STS specification consisting of a set of agents, where each agent is
specified via:
A set of norms N
A set of actions A
Input: w is a user defined parameter that indicates our willingness to permit
the norms that instantiate n where n ∈ N to be violated.
Input: A function ActionExecProb : A × S → R which is the probability
of arriving in a given state in S by executing an action in A, independent of
which state we are in when this action is executed.
Output: A PRISM model (S,A, TransitionProb) where S is a set of states,
A is a set of actions and a function TransitionProb : S × S → R
1: Create an initial state s0 by assigning to agent the ID of the first agent in

the input STS specification and assigning the value 0 to all the other state
variables (note that all of these are necessarily numeric valued).

2: S:= {s0}
3: while S ̸= ∅ do
4: Let s ∈ S
5: for each a ∈ A for the agent denoted by the current value of agent do
6: if agent ̸= last agent in the STS specification then
7: s′ is obtained from s by removing value assignments to vari-

ables that appear in the DeleteList of a and adding variable
value pairs that appear in the AddList of a;

8: agent := next agent in the STS specification.
9: else if agent=last agent in the STS specification then

10: s′ is obtained from s by removing value assignments to vari-
ables that appear in the DeleteList of a and adding variable
value pairs that appear in the AddList of a;

11: agent := first agent in the STS specification.
12: end if
13: TransitionProb(s, s′) :=

ActionSelectionProbability(s,w,a,A,N)
*ActionExecProb(a, s′)

14: end for
15: S:= S-{s}
16: end while

value for step-size, then we have more number of outcomes of an action
as compared to a large value for step-size. For example, the consequences
of the action a11 always lie between 50 and 100. If the STS designer
chooses the step size as 10 then this action has six consequences, i.e., 50,
60, 70, 80, 90, and 100 whereas if the step size is 20 then it has only
three consequences, i.e., 50, 70, and 90. It can be noticed that action a11
has six consequences when step-size is 10 whereas action a11 has three
consequences when step-size is 20.

783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828

• In Line 5, when a specific agent is selected in a state then all transitions
from this state lead to the states where we execute the set of actions
(determined by the non-zero value of an agent, which serves as an identi-
fier for the selected agent). Then, we add transitions corresponding to all
non-deterministic outcomes of executions of the actions identified by the
value of the agent variable (Line 6 or Line 9).

• We build a PRISM model as a probabilistic state transition model. Hence,
we need to compute the transition probability for each state transi-
tion. Each state’s state transition probability is calculated by multiplying
the selection probability of an action we execute with the associated
probabilities for that action as defined by the input ActionExecProb
(Algorithm 1). For a state where a specific agent is selected, we calculate
the action selection probability for each action in the set of actions A for
that agent using Equation 1.

• Algorithm 2 is used to calculate an action selection probability in a given
state.
– We go through each action a′ in the set of actions A (Line 2 in

Algorithm 2).
– Then for each action a′, we go through each norm n in the set of

normsN to compute action a′’s probability which satisfies the current
target set out by the norm n (Line 3 in Algorithm 2).

– If norm n is prohibition then we use line 4 to line 7 in Algorithm 2
to compute action a′’s probability which satisfies the current target
set out by the norm prohibition.

– Similarly, if norm n is commitment then line 8 to line 11 in Algo-
rithm 2 are used to compute the actions a′ that satisfies the current
target set out by the norm commitment. For example, agent Com-
panyNear is selected in the current state s. Then, we calculate the
action selection probability for each action a11, a12, and a10 based
on the norms P1 and C1 (from Listing 1).

– Finally, we get the action selection probability for each action using
Equation 1 (Line 14 in Algorithm 2).

• Finally, Line 13 in Algorithm 1 will be used to compute the transition
probability for the updated state which is added using either Line 7 or
Line 10 in Algorithm 1.

• For example, the current agent is CompanyNear in state s. For each
action, such as a11, the state variables are updated (which results in
the current state being updated to the next state) and state transition
probability for the next state is computed in Line 13 in Algorithm 1.

• Line 13 computes the state transition probability which is equal to the
multiplication of the selection probability of a11 with its action execu-
tion probability. This process is repeated for the remaining actions, i.e.,
a12 and a10. As discussed in Section 3.3, the states resulting from these
transitions are obtained from the corresponding prior states by removing

829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874

the value assignments to variables in the DeleteList and adding the new
values to these variables as specified in the AddList of the action.

Algorithm 2 Calculating selection probability in a given state s.

1: function ActionSelectionProbability(s,a,w,A,N) where a is the
action of interest (i.e., the action whose probability of selection we wish to
compute), s is the current state and N is the currently applicable set of
norms

2: for each a′ ∈ A for the applicable agent in s do
3: for each n ∈ N for the applicable agent in s do
4: if n is a prohibition and state variable Attr is common to a and

n then
5: c target(Attr) := n target(Attr) − current(Attr)
6: sat(a′, n) is assigned the value computed using Equation 2
7: end if
8: if n is a commitment and state variable Attr is common to a

and n then
9: c target(Attr) := n target(Attr) −current(Attr)

10: sat(a′, n) is assigned the value computed using Equation 3
11: end if
12: end for
13: end for
14: ActionSelProb(s,a, A,N):= action selection probability computed

using Equation 1.
15: return ActionSelProb(s, a,A,N)
16: end function

Note that we assume that each action and each norm refers to only one
state variable (i.e., only one Attr).

Example of PRISM model generated using Algorithm 1. It would be
easier to visualise the model graphically. In PRISM, the transition matrix of
the model can be exported in the Dot (Dot is a graph description language)
format, which allows easy graphical visualisation of the graph structure of the
model. Figure 2 is constructed based on the transition matrix of a PRISM
model generated using Algorithm 1 from a simplified STS specification with
two agents where each agent has two actions. Figure 2 shows part of a PRISM
model but the complete diagram is provided in the supplementary material.
We describe the application of our algorithm from State 31 (2,3,1)—the red
box in the diagram, where agent = 2, PPE = 3, and pollution = 1. Since the
agent = 2, the CompanyNear agent is selected as a current agent. Two actions
are executed next and each action has two consequences. In State 31, there are
four potential state transitions: with 0.11 probability PPE is increased by one
in the next state (State 1—green box) where agent =1; with 0.235 probability

875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920

Fig. 2 Sample (partial) PRISM model using Algorithm 1.

PPE is increased by four and pollution is increased by one where agent = 1
in the next state (State 3 green box); with 0.265 probability PPE is increased
by four and pollution is increased by two where agent = 1 in the next state
(State 4 green box). In state 4 (1,7,3)—the green box in the diagram where
agent = 1; PPE = 7; and pollution = 3. Since the agent = 1, the CompanyFar
agent is selected as a current agent. There are two actions for CompanyFar
to be executed next. There are four resulting states, such as 37 (2,8,3) and
54 (2,14,5). Then, state 37 (2,8,3) delivers agent = 2 so CompanyFar is again
selected using the round-robin agent execution technique.

3.4 Requirements as PRISM properties

ReNo supports three core types of requirements: achievement and mainte-
nance requirements are essential to the norm literature (e.g., a commitment to
achieve something to a certain level or a prohibition to maintain something at
a certain level). The third type is the resilience requirements (novel to ReNo)
to verify that an STS can recover from requirement failures. We believe these
three types of requirements cover realistic verification scenarios, to help guide
STS designers. In the following, we consider these three types of requirements
and their formalization in PRISM syntax.

921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966

Achievement and Maintenance. Consider the requirement that the prob-
ability that the company can manufacture at least X PPE units within K
timesteps and maintain the pollution level below Y ppm should be no less
than P. We formalize this in PRISM as follows:

Pmin=?[(pollution < Y) U≤K (PPE ≥ X)]

If we achieve minimum probability P (Pmin=? =P), then this requirement
is satisfied.

Resilience Consider a situation where we find the pollution level above some
threshold (say X ppm). Then we wish to achieve a better state (where the
over-pollution problem has been resolved by bringing it down to below Y
ppm) within K steps to be no worse than some threshold value.

We formalize this requirement in PRISM as follows:

filter(print, Pmin=?[F
≤Kpollution ≤ Y], pollution ≥ X)

filter() is a PRISM device that allows us to perform max or min over
multiple states satisfying some property (here that property is pollution ≥
X). If we achieve a min of 0, that tells us that we are not resilient at all while
if we achieve a minimum of 1.0, then we are fully resilient.
For resilience, we are interested in ensuring that our system remains within

the states that satisfy the above property with a minimum probability of
0.75. We formalize the second part of the requirement in PRISM as follows:

Pmin=?[G
≤N (pollution ≥ Y ⇒ P≥1[F

≤K(pollution ≤ X)])]

4 Methodological Guidelines

In this section, we provide methodological guidance to support the design and
implementation of resilient STSs. We provide guidance from two perspectives:

• From the perspective of STS designers. Here, the challenge is to ensure
that the STS meets the specified requirements while preserving agent
autonomy.

• From the perspective of stakeholders specifying requirements for the
overall system. Here, the challenge is to ensure that the requirements are
feasible, i.e., that it is not possible to design an STS that satisfies the
given requirements.

These are deliberately framed as methodological guidelines as opposed to a
procedure because there is significant human input and judgment involved.
There are multiple options available to the STS designer in terms of how the
constituent agents (and in particular available agent actions) are designed and
in terms of the kinds of norms that should be specified. There are, similarly,
multiple options available to stakeholders in terms of how they might design
requirements.

967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012

4.1 The STS Designer Perspective

The steps below serve as a guide for the STS designer to develop an initial
version of the STS specification and conduct an analysis to ensure stakeholder
requirements are satisfied. If the stated stakeholder requirements are not satis-
fied, the STS designer can iterate the specification to refine it and ensure that
stakeholder requirements are satisfied.
Step1: Defining the agents constituting the STS. The STS designer needs to

define each constituent agent as a collection of actions, based on the known
capabilities of each agent.

Step2: Defining the augmented probabilistic state transition model. In gen-
eral, a probabilistic state transition model describes the likelihood of
achieving a resultant state if a specific action is performed in a given
state. These probabilities are either provided as input (in the case of
transition probability) or computed from an agent’s willingness to violate
a norm (the parameter w which is used in computing the selection prob-
ability for an action). In this step, the STS designer needs to create
an augmented probabilistic state transition model that serves as the
model for model-checking PRISM based on the two sets of probabilities:
selection probabilities and transition probabilities.

Step3: Defining the norms governing the STS. There are some common prin-
ciples guiding the specification of the initial set of norms given a set of
available agents and a set of requirements. A resilience requirement spec-
ifies two kinds of conditions: (1) Conditions that flag a departure from
the “normal” operating mode and (2) Conditions that flag the restora-
tion of the normal operating mode. The overall requirement is augmented
with a deadline (in terms of the number of steps) within which normal
operations are restored, and a lower bound on the probability that this
will happen. The normal operating mode can be achieved via a combina-
tion of commitments and prohibitions (e.g., CompanyNear committing to
Hospital to produce at least 100 PPE units per day, but being prohibited
by Regulator from polluting at a rate higher than 60 parts per million
per day). The deviation from the normal operating mode is flagged via
a condition where the minimum PPE production target is not met and
the maximum permitted pollution level is exceeded. Achievement and
maintenance requirements can similarly be specified via combinations of
commitments and prohibitions.

Step4: Using PRISM to determine requirements satisfaction. Our technique
enables the encoding of requirements in the form of PCTL properties that
can be provided to PRISM as input, and an augmented probabilistic state
transition model. When we run PRISM with these inputs, we obtain as
output an indication of whether the PCTL properties (and hence the orig-
inal requirements) are satisfied. If PRISM indicates that these properties
have not been satisfied, it triggers a redesign of the STS.

Step5: Redesigning the STS in light of model checking results. Redesigning
the STS can involve (1) Adding or removing agent actions and (2)

1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058

Adding or removing norms. Adding an action, if feasible, is one approach
to resolving a case of requirements failure. If the analysis using PRISM
reveals that an achievement goal/requirement is not being satisfied, a
new action (for instance to produce PPE at a faster rate) can serve as
a potential (re-design) solution. A violation of a maximum permissible
pollution requirement can similarly be resolved by disallowing/removing
an action that permits a faster rate of PPE production, which comes
with a concomitant higher rate of pollution. Adding a new norm in the
form of a commitment to produce higher levels of PPE can help resolve
a situation where an achievement goal/requirement involving meeting a
production target for PPE is not being satisfied.

4.2 The Stakeholder Perspective

The stakeholder may be required to engage in an iterative process of pro-
gressively relaxing the applicable requirements if the STS designer determines
that revising the STS specification (Step 5 in Section 4.1) cannot meet the
requirements.

Modification of the applicable requirements can involve three kinds of
changes:

• Modifying the associated conditions: In our examples, these mainly
involve inequalities on state variables (such as the number of PPE units,
or the pollution level). These are entirely left to human judgment.

• Modifying the number of steps (i.e., the deadline) and the minimum asso-
ciated probability: Both of these can be conjointly modified and represent
a trade-off space for the stakeholder. Consider, for instance, Figure 3
which shows the minimum probabilities achievable for a given number of
steps. Figure 6 similarly illustrates the trade-off space in the context of a
resilience requirement. Accessing a visualization of the trade-off space will
make it easier for a stakeholder to decide on an appropriate relaxation of
a requirement.

5 Prototype Implementation and Requirement
Verification Results

This section describes the evaluation we carried out, for our approach. We
describe the requirement verification results of our use case. Then, we dis-
cuss our experimental settings, scalability of the implementation, performance
measures, and finally, report our results.

To construct and analyse a model with PRISM, it must be specified in
the PRISM language, a simple, state-based language. Specifically, the PRISM
language is composed of modules and variables. The values of these variables
at any given time constitute the state of the module. The behavior of the
module is described by a set of commands.

[action]guard ⇒ prob1 : update1 + . . .+ probn : updaten

1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104

The guard is a predicate over all the variables in the model. Each update
describes a transition that can be made by a module where the guard is true. A
transition relationship of the system is specified by allocating new values to the
variables in the module. Each update is also assigned a probability (or in some
cases a rate) - assigned to the corresponding transition. If a module has more
than one variable, then updates describe the new value for each one of them.
The initial state of a model is then defined by the initial value of all variables
(see Appendix A.1) for the initial state in the PRISM model). However, the
PRISM input language does not support external functions, such as function
prob(ak, s, A,N) in Equation 1, to dynamically construct a state-transition
model. Therefore, we have connected to PRISM programmatically to create a
model building on the machinery described in Equation 1(see Appendix A.2).

PRISM provides a Java-based interface or API that allows users to interact
with PRISM programmatically. This enables us to automate the construction,
solving, and verification of the PRISM model. Algorithm 1 has been used to
automatically construct the PRISM model by translating an STS specification
into a PRISM model that incorporates dynamic state transitions. That is,
state transition probabilities are recalculated after each transition depending
on the values of the state variables. We show the snippets for state transitions
in the PRISM model in Appendix A.3.

The first step in our framework in Figure 1 is to capture the STS specifi-
cation. Here, Listing 1 describes the STS specification for PPE manufacturing
with two companies. Each company has three actions where two actions are
used to manufacture PPE and one action describes a null action. We intro-
duce a null action where the company does not want to manufacture PPE.
Specifically, actions a10 and a20 are considered as null actions for Compa-
nyNear and CompanyFar, respectively. The second step in our framework,
stakeholder provide a set of requirements. So we use the requirements intro-
duced in Section 3.4. Then, the STS specification is automatically converted
into a PRISM model using Algorithm 1. Finally, we demonstrate the verifica-
tion results for the requirements introduced in Section 3.4 to see how likely
STS satisfies or fails each requirement. Section 5.1 and Section 5.3 have been
used to show that if a requirement is not satisfied then the STS designer can
revise the STS specification. Section 5.2 and Section 5.4 have been used to
show that if a requirement is not possible to satisfy then the stakeholders can
relax the requirement to satisfy with a given STS.

Table 2 and Table 3 illustrate the probability needed to satisfy a given
requirement with a given STS specification. If a requirement is noncompliant
with an STS specification, then the STS specification needs to be refined to
satisfy a given requirement. Table 2 and Table 3 also capture the results where
we design the new requirements by relaxing the value of state variables based
on results from the analysis phase. The results shown in Table 2 and Table 3
have been derived by using methodological guidelines mentioned in Section 4.

We present various cases, each corresponding to an STS specification, and
verify whether the specification satisfies the requirement. In the paper, we

1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150

have provided listings to show an STS specification for each case. However, the
data such as outcomes of actions and execution probabilities used to conduct
experiments is provided in the supplementary material [17].

5.1 Handling Strict Achievement and Maintenance
Requirements

The requirement below is an instance of the achievement and maintenance
requirement discussed above. The minimum probability that the company
manufactures more than 200 PPE units within six timesteps and maintains
the pollution level below the threshold of 70 ppm within six timesteps is 0.75.
If we achieve a minimum probability of 0.75, then this requirement is satis-
fied. Table 2 shows the experimental settings for achievement and maintenance
requirements. Each case in Table 2 corresponds to an STS specification.

We verify whether a case satisfies the requirement.

Pmin=?[(pollution ≤ 70) U≤6 (PPE ≥ 200)] (4)

Requirement Case being verified STS Outcome

Equation 4
Original (Case 1) Listing 1 Not satisfied even if the

requirement is relaxed
CompanyNear is pro-
ductive (Case 2)

Listing 2 Satisfied if relaxed to 8
steps

Both are productive
(Case 3)

Listing 3 Satisfied as stated

Equation 5
Original Listing 1 Satisfied as stated

Table 2 Experimental settings for achievement and maintenance.

Case 1 The STS in this case follows the specification of Listing 1. This require-
ment is only satisfied if both companies produce more than 200 PPE within
six timesteps with a minimum probability of 0.75. The minimum probability
that both companies produce more than 200 PPE within six timesteps is 0.69,
hence, this requirement is not satisfied.

Figure 3 illustrates that the minimum probability to be satisfied for this
property varies with the number of timesteps (k). Moreover, 0.73 is the prob-
ability achieved after increasing the k number of time steps to ten. Hence, this
requirement cannot be satisfied within the timesteps allowed.

Case 2 The STS is revised for CompanyNear. The Listing 2 shows a revised
specification of Listing 1 – commitment C1 is replaced by C3(CompanyNear,
Hospital, true, PPE≥200). After replacing commitment C1 by C3, Company-
Near is more productive in terms of manufacturing more PPEs. Commitment

1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196

Listing 2 Revised STS specification of Listing 1 for CompanyNear to ensure achievement
and Maintenance.

1 Addition of norms or actions are shown in blue and

deleted lines are shown with red strikethrough.

2
3 P1(CompanyNear , Regulator , true , pollution≥60)

4 C1(CompanyNear, Hospital, true, PPE≥100)
5 C3(CompanyNear, Hospital, true, PPE≥200)
6 P2(CompanyFar , Regulator , true , pollution≥80)

7 C2(CompanyFar , Hospital , true , PPE≥100)

8
9 a11: m(true , {PPE , pollution}, {PPE+=[50, 100],

pollution+=PPE∗[0.2, 0.4]})

10 a12: m(true , {PPE , pollution}, {PPE+=[80, 120],

pollution+=PPE∗[0.5, 0.7]})

11 a10: m(true , {PPE , pollution}, {PPE+=[0, 0],

pollution+=PPE∗[0.0, 0.0]})

12
13 a21: m(true , {PPE , pollution}, {PPE+=[50, 100],

pollution+=PPE∗[0.2, 0.4]})

14 a22: m(true , {PPE , pollution}, {PPE+=[80, 120],

pollution+=PPE∗[0.5, 0.7]})

15 a20: m(true , {PPE , pollution}, {PPE+=[0, 0],

pollution+=PPE∗[0.0, 0.0]})

C3 enables the selection of an action for increasing the production of PPEs. The
minimum probability achieved is 0.69 (achieved in six timesteps). Hence, this
requirement is not satisfied. Figure 3 shows that the requirement is satisfied
within eight timesteps with 0.77 minimum probability.

Case 3 As we have seen in Case 2 this requirement is satisfied in eight or more
timesteps and cannot be satisfied within six timesteps, hence, we revise STS
for CompanyFar. STS follows Listing 3, a revision of Listing 2—commitment
C2 is replaced by C4(CompanyFar, Hospital, true, PPE≥200). In this case, the
commitment to manufacture PPE has been increased for both the companies.
Therefore, both companies are productive as they choose the actions that
manufacture more PPE. Figure 3 shows the minimum probability achieved is
0.75 (achieved in six timesteps). Hence, this requirement is satisfied.

It is interesting to note that the minimum probability of satisfying this
requirement is less in Case 2 than in Case 1 with less than six timesteps. Here,
CompanyFar is committed to producing more than 200 PPE, which leads it to
select action a21 with priority, which results in high pollution in the short term.
So, CompanyFar meets the social objective but the probability of choosing
action a21 is expensive in terms of increasing pollution.

1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242

Listing 3 Revised STS specification of Listing 2 to ensure achievement and maintenance.

1 Addition of norms or actions are shown in blue and

deleted lines are shown with red strikethrough.

2
3 P1(CompanyNear , Regulator , true , pollution≥60)

4 C3(CompanyNear , Hospital , true , PPE≥200)

5 P2(CompanyFar , Regulator , true , pollution≥80)

6 C2(CompanyFar, Hospital, true, PPE≥100)
7 C4(CompanyFar, Hospital, true, PPE≥200)
8
9 a11: m(true , {PPE , pollution}, {PPE+=[50, 100],

pollution+=PPE∗[0.2, 0.4]})

10 a12: m(true , {PPE , pollution}, {PPE+=[80, 120],

pollution+=PPE∗[0.5, 0.7]})

11 a10: m(true , {PPE , pollution}, {PPE+=[0, 0],

pollution+=PPE∗[0.0, 0.0]})

12
13 a21: m(true , {PPE , pollution}, {PPE+=[50, 100],

pollution+=PPE∗[0.2, 0.4]})

14 a22: m(true , {PPE , pollution}, {PPE+=[80, 120],

pollution+=PPE∗[0.5, 0.7]})

15 a20: m(true , {PPE , pollution}, {PPE+=[0, 0],

pollution+=PPE∗[0.0, 0.0]})

5.2 Handling Relaxable Achievement and Maintenance
Requirements

As Figure 1 (the ReNo framework) shows, an STS designer can analyze the
various state variables to satisfy the requirements. The STS in this case follows
the specification of Listing 1. After revising the STS specification (as mentioned
in Case 3), we have seen that the minimum probability of achieving more
than 200 PPE and maintaining the pollution below 70 ppm is 0.81. The STS
designer may want to determine which values of PPE and pollution can satisfy
the above property with probability 1.

Figure 4 and Figure 5 show these minimum probabilities when PPE and
pollution vary for a range of values and the number of steps K. Figure 4
describes the minimum probabilities achieved when pollution is less than 70
ppm and PPE varies from 140 to 200. The result shows that the minimum prob-
ability 1 is achieved when we have PPE greater than 160 within 10 timesteps
or PPE greater than 140 within eight timesteps.

Figure 5 indicates the minimum probabilities achieved when PPE exceeds
200 ppm and pollution varies from 70 ppm to 90 ppm. The result shows that
the minimum probability 1 is achieved only when pollution is less than 90 ppm
within 12 timesteps.

1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288

2 4 6 8 10 12

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Number of steps [K]

M
in
im

u
m

P
ro
b
a
b
il
it
y

Probabilities for Achievement and Maintenance

Case 1
Case 2
Case 3

Fig. 3 Probabilities for achievement and maintenance.

These values of PPE and pollution indicate to the STS designer to provide
new requirements by relaxing the value of PPE and pollution. The observations
from Figure 4 and Figure 5 provide valuable insights for the STS designer.
A minimum probability of 0.97 is achieved when we have PPE greater than
140 within six timesteps. Similarly, when pollution is less than 90 within six
timesteps, a minimum probability of 0.92 is achieved. Based on these findings,
the STS designer can express the new requirement as follows using these values
of PPE and pollution.

Pmin=?[(pollution ≤ 90) U≤6 (PPE ≥ 140)] (5)

The minimum probability achieved is 1 (achieved in six timesteps). Hence, the
requirement is satisfied with certainty (minimum probability of 1).

5.3 Handling Strict Resilience Requirements

Informally, we view resilience as an indicator of both the speed and likelihood
with which a desirable property can be restored when the system of interest
is found to be in a state that violates these properties.

This section describes the verification results of the resilience requirement.
We aim to verify how the system reacts when pollution exceeds the given
threshold value. The threshold value of the pollution represents a change in
the operating environment of the system. Then, lowering the pollution level
with probability 1 within a certain number of steps indicates the response to
the system. Table 3 shows the experimental setting for resilience. Each case in
Table 3 corresponds to an STS specification. We verify whether a case satisfies
the requirement.

First, we would like to verify the minimum probability for a system entering
a state where pollution is greater than 180 ppm and the system reduces the
pollution level to below 100 ppm within five timesteps. This property can be
written in PCTL as described in Equation 6.

1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334

2 4 6 8 10 12

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1 0.97

Number of Steps[K]

M
in
im

u
m

P
ro
b
ab

il
it
y

Probabilities (Pollution ≤ 70 & # PPE Varies)

#PPE 200 #PPE 180 #PPE 160 #PPE 140

Fig. 4 Probabilities for achievement and maintenance when varying number of PPE units

2 4 6 8 10 12

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1 0.92

Number of Steps [k]

M
in
im

u
m

P
ro
b
ab

il
it
y

Probabilities (PPE ≥ 200 & Pollution Varies)

PPM = 70 PPM = 75 PPM = 80
PPM = 85 PPM = 90

Fig. 5 Probabilities for achievement and maintenance when the varying amount of pollution
(PPM).

filter(print, Pmin=?[F
≤5pollution ≤ 100], pollution ≥ 180) (6)

Equation 6 is used to examine the minimum probability required for a state
change from a state having pollution greater than 180 ppm to a state having
pollution below 100 ppm within five timesteps. After verification, we get 1.0
as the minimum probability for this property.

1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380

Requirement Case being verified STS Outcome

Equation 7
Original (Case 4) Listing 1 Not satisfied even if the

requirement is relaxed
Both companies are
productive (Case 5)

Listing 4 Satisfied as stated

Equation 8
Both are productive
(Case 5)

Listing 4 Satisfied as stated

Table 3 Experimental settings for resilience.

Second, we are interested in ensuring that our system remains within the
states that satisfy the above property (Equation 6) for seven timesteps with a
minimum probability of 0.75. This property can be written in PCTL as follows:

Pmin=?[G
≤7(pollution ≥ 180 ⇒ P ≥ 1[F≤5(pollution ≤ 100)])] (7)

Equation 7 is a query for the minimum probability of the system staying
in states where pollution goes above 180 ppm (threshold), the probability of
lowering the pollution below 100 ppm in five timesteps with probability 1 for
seven timesteps. Here, the property P ≥ 1[F≤5(pollution ≤ 100)] represents
the response that we are expecting from the system when there is a change in
its operating environment (pollution ≥ 180).

Case 4 The STS in this case follows the specification of Listing 1. The mini-
mum probability achieved for the property of Equation 7 is 0.43. Hence, this
requirement is not satisfied. Figure 6 shows that the minimum probability of
recovering the system varies with the number of timesteps. When the num-
ber of steps increases, additional units of PPE are produced at the cost of
increased pollution. It can be noticed from Figure 6 that the minimum prob-
ability achieved for the property of Equation 7 is 0.43 in seven timesteps, 0.3
in eight timesteps, and so on. Similarly, when the number of steps is decreased
then fewer units of PPE are produced with the benefit of reduced pollution.
There may be a possibility of requirement getting satisfied. Hence, we check
the minimum probability achieved for the property of Equation 7 before seven
timesteps. It can be noticed that even after reducing the number of steps, the
property is not satisfied. For example, once we reduce the number of steps from
seven to six and then to five the minimum probabilities achieved are 0.73 and
0.69, respectively. This property is not satisfied because none of the actions of
the companies (Listing 1) reduce pollution adequately.

Case 5 We revise the STS specification (Listing 4) by adding commitment
C3 and C4 for both companies. Now, both companies are committed to the
Regulator to reduce the pollution level below 40 ppm if pollution increases
above 90 ppm during the manufacturing of PPE. The revised STS specification

1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426

contains actions a13 and a23 for CompanyNear and CompanyFar respectively,
to decrease pollution while manufacturing PPE. The STS in this case follows
the specification (Listing 4) of Listing 1—commitments C3 and C4 are added
for both companies.

Figure 6 shows that minimum probability achieved is 0.89 (achieved in
seven timesteps). Hence, this requirement is satisfied. As we have seen in Case 4
with the original STS specification (Listing 1) the requirement is not satisfied
even after we relax the number of steps but after revising STS specification
(Listing 4) the property gets satisfied even though we increase the number of
steps from seven to ten with 0.77 probability. After revising the STS specifica-
tion (Listing 4), both companies meet the social objective of reducing pollution
below 40 ppm whereas pollution above 90 ppm triggers actions that are less
expensive in terms of environmental pollution. These newly introduced actions
of each company manufacture the PPE and do not pollute the environment.

5 6 7 8 9 10
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0.43

Not Satisfied

0.89

Satisfied

Number of steps [K]

M
in
im

u
m

P
ro
b
ab

il
it
y

Probabilities for Resilience

Case 4
Case 5

Fig. 6 Probabilities for resilience

5.4 Handling Relaxable Resilience Requirements

We now show how an STS designer can use our framework ReNo in Figure 1 to
design the new relaxed requirement. We use both the original STS specification
(Listing 1) and the revised STS specification (Listing 4) to design the relaxed
resilience requirement. The STS designer wants to explore which threshold
value of pollution can satisfy the property (Equation 7) with a probability of
0.85.

Figures 7, 8, 9, and 10 show the probabilities calculated for the original STS
specification (Listing 1) and the revised STS specification (Listing 4) when the
pollution threshold varying for a range of values and number of steps.

Figures 7, 8, 9, and 10 indicate that the original STS specification (List-
ing 1) fails to achieve minimum probability 0.85 for the property of Equation 7

1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472

Listing 4 Revised STS specification for CompanyNear and CompanyFar to ensure
resilience

1 Addition of norms or actions are shown in blue.

2
3
4 P1(CompanyNear , Regulator , true , pollution≥60)

5 C1(CompanyNear , Hospital , true , PPE≥100)

6 C3(CompanyNear , Regulator , pollution≥90,

pollution≤40)

7 P2(CompanyFar , Regulator , true , pollution≥80)

8 C2(CompanyFar , Hospital , true , PPE≥100)

9 C4(CompanyFar , Regulator , pollution≥90,

pollution≤40)

10
11 a10: m(true , {PPE , pollution}, {PPE+=[0, 0],

pollution+=PPE∗[0.0, 0.0]})

12 a11: m(true , {PPE , pollution}, {PPE+=[50, 100],

pollution+=PPE∗[0.2, 0.4]})

13 a12: m(true , {PPE , pollution}, {PPE+=[80 , 120],

pollution+=PPE∗[0.5, 0.7]})

14 a13: m(true , {PPE , pollution},{PPE+=[50, 100],

pollution+=PPE∗[-0.6, 0.0]})

15
16 a20: m(true , {PPE , pollution}, {PPE+=[0, 0],

pollution+=PPE∗[0.0, 0.0]})

17 a21: m(true , {PPE , pollution}, {PPE+=[50, 100],

pollution+=PPE∗[0.2, 0.4]})

18 a22: m(true , {PPE , pollution}, {PPE+=[80, 120],

pollution+=PPE∗[0.5, 0.7]})

19 a23: m(true , {PPE , pollution}, {PPE+=[50, 100],

pollution+=PPE∗[-0.6, 0.0]})

even after we increase the pollution threshold from 180 ppm to 240 ppm. For
instance, a minimum probability of 0.73 is achieved when the pollution thresh-
old is greater than 240 ppm within seven timesteps. However, Figure 7 shows
the minimum probability of 0.89 is achieved when the pollution threshold is
greater than 180 ppm within seven timesteps for the revised STS specification
(Listing 4). Similarly, minimum probabilities 0.93 (Figure 8), 0.95 (Figure 9),
and 0.98 (Figure 10) are achieved (within seven timesteps) when the pollution
threshold is greater than 200 ppm, 220 ppm, and 240 ppm, respectively.

These threshold values of pollution provide an indication to the STS
designer to express a new requirement. Figure 10 illustrates that 90% of the
time, the system reduces the pollution below 100 ppm within five timesteps if
the pollution threshold value is greater than 240 ppm (change in the operat-
ing environment). It means that the system will remain in the state where the

1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518

pollution is below 100 ppm for the next seven, eight, nine, and ten timesteps
with above 0.90 probability. Hence, the STS designer can design the new
requirement for revised STS specification (Listing 4) as follows:

Pmin=?[G ≤ 7(pollution ≥ 240 ⇒ P ≥ 1[F≤5(pollution ≤ 100)])] (8)

6 7 8 9 10

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0.43

0.89

Number of Steps[K]

M
in
im

u
m

P
ro
b
ab

il
it
y

Minimum probabilities for pollution threshold ≥ 180

Original STS (Listing 1) Revised STS (Listing 4)

Fig. 7 Resilience (Equation 7) is not satisfied for the threshold value of pollution ≥ 180
when number of steps increased for original STS specification (Listing 1) but is satisfied for
revised STS specification (Listing 4) within seven timesteps.

5.5 ReNo’s Scalability

In this section, we will show computational cost of algorithms and scalability of
ReNo. Section 5.5.1 has been used to show the time complexity of Algorithm 1.
Section 5.5.2 has been used to show the time complexity of Algorithm 2. The
scalability of ReNo has been explained in Section 5.5.3.

5.5.1 Analysis of time complexity for Algorithm 1

Theorem 2 The time-complexity for the Algorithm 1 building PRISM model is
O(|A|2 ∗ |S| ∗ |N |).

Proof From the initial state s0 ∈ S, we consider each state in a set of states S.
So, the outer loop executes at most |S| times. Then, for each state, we consider
each action in a set of actions A which means the inner loop executes at most |A|
* |S| times. Then, for each action, we compute the state transition probability by
multiplying the action selection probability and action execution probability. The

1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564

6 7 8 9 10

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0.64

0.93

Number of Steps [k]

M
in
im

u
m

P
ro
b
a
b
il
it
y

Minimum probabilities for pollution threshold ≥ 200

Original STS (Listing 1) Revised STS (Listing 4)

Fig. 8 Resilience (Equation 7) is not satisfied for the threshold value of pollution ≥ 200
when number of steps increased for original STS specification (Listing 1) but is satisfied for
revised STS specification (Listing 4) within 7 timesteps.

time-complexity for Algorithm 2 computing selection probability in a given state s
is O(|A| ∗ |N |). Hence, Algorithm 2 executes at most |A| * |S| * O(|A| ∗ |N |). Thus,
the overall execution time is O(|A2| ∗ |S| ∗ |N |).

In a worst-case scenario, the number of states in the augmented probabilistic state
transition model representing the PRISM model can increase exponentially with the
number of state variables and their possible assignments. For example, if there are v
state variables with n possible assignments each, the total number of states becomes
2(v∗n), which grows exponentially as v or n increases.

6 7 8 9 10

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0.64

0.95

Number of Steps[K]

M
in
im

u
m

P
ro
b
ab

il
it
y

Minimum probabilities for pollution threshold ≥ 220

Original STS (Listing 1) Revised STS (Listing 4)

Fig. 9 Resilience (Equation 7) is not satisfied for the threshold pollution ≥ 220 when the
number of steps increased for original STS specification (Listing 1) but is satisfied for revised
STS specification (Listing 4) within 7 timesteps.

1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610

6 7 8 9 10

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0.73

0.98

Number of Steps [k]

M
in
im

u
m

P
ro
b
a
b
il
it
y

Minimum probabilities for pollution threshold ≥ 240

Original STS (Listing 1) Revised STS (Listing 4)

Fig. 10 Resilience (Equation 7) is not satisfied for the threshold value of pollution ≥ 180
when the number of steps increased for original STS specification (Listing 1) but is satisfied
for revised STS specification (Listing 4) within seven timesteps.

However, in our work, we have utilized the PRISM model checker program-
matically to construct a PRISM model from an STS specification. PRISM employs
Multi-Terminal Binary Decision Diagrams (MTBDDs) to represent the state space
efficiently. MTBDDs offer a compact and symbolic representation of sets of states,
transitions, and properties, which facilitates efficient state space exploration and
model checking. Consequently, although the time complexity of MTBDD-based tech-
niques can be exponential in theory, their practical performance is often significantly
improved through optimization strategies like symbolic representation and efficient
state space exploration. As a result, the complexities derived from theoretical worst-
case analysis can be overly pessimistic for MTBDD-based techniques. To gain insights
into the actual model statistics and performance, we conducted experiments, which
are detailed in Section 5.5.3.

□

5.5.2 Analysis of time complexity for Algorithm 2

Theorem 3 The time-complexity for Algorithm 2 computing selection probability in
a given state s is O(|A| ∗ |N |).

Proof In a given state s, we consider each action in a set of actions A. So, the outer
loop executes at most |A| times. Then for each action, we consider each norm in a
set of norms N , which means the inner loop executes at most |N | * |A| times. Thus,
the overall execution time is O(|A| ∗ |N |).

□

1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656

5.5.3 Model Statistics

In this section, we analyse the scalability of our ReNo in terms of agents and
their actions. All experiments were executed on a machine running Windows
10 Enterprise edition with an Intel® Core™ i7-7700 CPU with a 3.60GHz
processor, 16.0 GB RAM, and a 64-bit Operating System. We performed all
experiments on the STS specification in Listing 1, where each agent has three
actions and three consequences except the null actions. We have used PRISM
version 4.6.1 to conduct experiments but any PRISM version can be used to
use our approach.

Table 4 shows the statistics of PRISM models we have built for an increas-
ing number of agents and actions. Table 4 includes the number of agents and
the number of actions executed by all agents. For example, there are four
agents and twelve actions in Table 4 meaning that four agents all together
execute twelve actions.

Table 4 also includes the number of states and transitions in the PRISM
model. The construction time is the time to build the augmented probabilistic
state transition model representing the PRISM model. The verification time
is the time taken to verify the system property written in PCTL.

Table 4 Model Statistics

Agents & Actions Model Time (s)

#Agents #Actions States Transitions Construction
time (s)

Verifica-
tion time
(s)

4 12 100394 961958 264.8 9.419
8 24 143266 1316691 451.649 6.504
12 36 147633 1331552 463.472 17.105
16 48 308512 2931077 1377.17 18.057
20 60 319938 3050028 1442.601 21.732
24 72 340511 3252277 1545.675 31.903

Overall, the construction time is calculated by combining the following: (1)
the time taken by Algorithm 1 to generate a PRISMmodel from an STS specifi-
cation, (2) the time taken by Algorithm 2 to compute the selection probabilities
to select an action in the current state, (3) the time which is equivalent to the
time taken for the system description to be parsed and converted to Multi-
Terminal Binary Decision Diagrams (MTBDD) representing it, 4) the time to
perform reachability, identify the non-reachable states and filter the MTBDD
accordingly. We observe the state space explosion as the number of states of
a model grows exponentially in terms of the number of variables and parallel
components. Yet, they must be represented in a limited computer memory in
some form. For example, symbolic probabilistic model checking uses variants
of binary decision diagrams (BDD) to compactly represent the state spaces
of well-structured models in memory at the cost of verification runtime [25].

1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702

The complexity of PCTL model checking or requirement verification is linear
in the size of a PCTL formula. (The size is defined as the number of logical
connectives and temporal operators plus the sizes of temporal operators [25].)

However, as mentioned earlier, it is worth noting that the worst-case time
complexity of building the PRISM model using Algorithm 1 can be exponential
(see Section 5.5.1). Consequently, when dealing with large models, the compu-
tational time required for analysis may become excessively long. This can result
in the impractical to complete the analysis within a reasonable timeframe.

6 Related Work

We review relevant approaches to ReNo in the context of how to make a mul-
tiagent system more robust. Cheong and Winikoff [26] provide an approach to
designing goal-oriented interactions that result in flexible and robust multia-
gent systems. In contrast, we define a sociotechnical system in computational
terms as combining a social layer (characterized by norms) with a techni-
cal layer (characterized by actions and their effects). Our framework ReNo
provides an approach to make a socio-technical system (STS) more resilient.
Socio-technical systems are an important concept in the study of systems of
autonomous systems, as studied in the fields of multiagent systems and decen-
tralized AI. The significance of sociotechnical systems arises from how they
synthesize social and technical layers to develop a more complete understand-
ing of how AI agents may be developed and deployed to solve problems of
societal significance.

Chopra et al. [27] consider the robustness of an organization with respect to
business contracts. For them, a contract is robust if it helps lead to behaviours
that satisfy an organization’s goals and avoids undesirable outcomes. Their
analysis is qualitative and concerns how an organization may be designed so it,
for example, monitors and responds to potential or actual contract violations.
In contrast, we are concerned with formal methods for evaluating a socio-
technical system that includes multiple organizations.

More recent approaches [28, 29] have brought forth a notion of account-
ability in socio-technical systems. The idea is that, as stated above, the norms
in an STS indicate what an agent may expect from another. Moreover, the
agents can be held to accountable for any violations of the norms that may
occur. An agent who violates a norm can be called upon to explain the viola-
tion or make corrections. Baldoni et al. [29] specify how responsibilities should
be distributed in the STS. Chopra and Singh [28] show how capturing high-
level requirements in terms of who is accountable for ensuring what can help
create an STS that can better serve stakeholder needs by handling exception
conditions more easily than systems where the requirements are at a low level.
These approaches can benefit from the formal verification approach of this
paper. If a multiagent system is verified with a certain probability to have the
capability to recover before its execution, then this can be incorporated into
the accountability mechanisms. Accountability mechanisms can be designed to

1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748

monitor the performance of the system with respect to its requirements. For
example, if the system fails to recover within the specified time frame, this can
trigger an accountability mechanism that reports the failure to the relevant
stakeholders and initiates a corrective action.

In the literature, multiagent systems have addressed exception handling,
but they view it primarily as a mechanism for dealing with specific errors
that may arise in the system. Hæg [30] proposes a fault-handling approach
for multiagent systems that introduce special agents called sentinels. Sentinels
act as a control structure over the system and provide a layer of fault tol-
erance. They do not participate in problem-solving but can intervene when
necessary to choose alternative problem-solving methods. Similarly, Bungie
[31] describes fault-tolerance patterns that can enhance the robustness of infor-
mation protocols in a casual manner. Mandrake [32] is a programming model
for decentralized applications that does not rely on infrastructure guarantees.
It uses an information protocol that can be executed by agents in a shared-
nothing environment using unreliable and unordered transport. Mandrake is
focused on addressing faults that arise from violations of protocol expectations.
In this context, fault handling can be seen as a form of exception handling,
where agents with expectations can initiate recovery procedures to bring the
system back into alignment with the protocol.

Additionally, Baldoni et al. [29] propose the notion of accountability as a
means of achieving robustness in multiagent systems. The concept of account-
ability can aid in implementing effective exception-handling mechanisms.
When an exceptional condition arises, the accountable agent(s) responsible for
handling the situation is automatically notified with a corresponding account
(i.e., exception) to take the necessary actions. Baldoni et al. [33] discuss
how exception handling can be effectively integrated into distributed systems,
which are implemented as multiagent systems, by utilizing the concept of
responsibility at an organizational level. Gutierrez-Garcia’s [34] approach in
the context of normative multiagent systems involves modeling interaction
protocols and exception handlers using obligations in deontic logic to handle
exceptions.

Since norms are crucial to the functioning of an STS, it is important to
consider where they come from. Aydoğan et al. [35] address how stakeholders
can negotiate about which norms to adopt in their STS based on the stake-
holders’ values. Values here refer to the key beliefs and desires of an entity,
such as privacy, freedom, and safety. The negotiation is facilitated by ontology-
based reasoning to promote their respective value. Incorporating stakeholder
values means that the stakeholders will try harder to satisfy the norms of the
STS than if their values were ignored. In their agent-based negotiation frame-
work [35], an agent revises the STS specification by revising a set of norm
revision rules. However, their approach does not provide formal reasoning for
resilience of the sort developed in our paper. Our framework, ReNo, offers
a redesigned STS specification process that incorporates formal probabilis-
tic reasoning. This enables us to satisfy stakeholders’ requirements, including

1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794

resilience, by adding or removing norms or by adding or removing agent
actions. Our approach can potentially be enhanced to accommodate values by
providing additional domain knowledge of how various actions performed by
the agents promote or demote the values of the stakeholders of the STS and
by including ontological reasoning about the application domain.

D’Inverno [3] is relevant to this work, insofar as they define a special class
of multiagent systems called electronic institutions which resemble institutions
in human societies. Their approach doesn’t fully support autonomy in that
a governor agent in an institution can overrule the decisions of a member
agent. Additionally, their framework utilizes the state-based language Z to
formally describe the behavior of a system in terms of its states and state
transitions. State-based languages excel at capturing both the static structure
and dynamic behavior of systems. However, to address the specific needs of
probabilistic behaviors, our framework ReNo incorporates a temporal logic
language PCTL. PCTL enables the specification and reasoning of properties
in systems with probabilistic behaviors.

Ajmeri et al.[36] focus on how norms emerge in a decentralized manner
based on the interactions of the agents and how they give (positive or nega-
tive) sanctions to each other based on their apparent norm violations. In their
approach, an agent who violates a norm can share its context with other agents
as a weak explanation of why it violated the norm. This context can help the
receiving agent decide if the norm violation was justified in the specific con-
text, affecting its sanctioning of the violator. Ajmeri et al. show that the norms
that emerge lead to improved outcomes for the participating agents. Agrawal
et al. [37] address similar intuitions but for explicit norms. Although Ajmeri et
al. and Agrawal et al. provide useful intuitions about the emergence of norms,
they do not produce norms of complex logical forms. Although their approach
enables an individual agent to evaluate a specific execution run based on its
local observation, they do not address the evaluation of an STS as a whole.
Potentially, their approach could be used as another tool for an STS designer
by using simulations to create richer norms. Our approach could be used to
evaluate the norms (i.e., the STS) for resilience.

Gasparini et al. [38] have used the contrary-to-duty structure to design
the normative specification and have used a preference relation over possible
worlds that captures levels of system robustness. A qualitative reward function
has been used to check the levels of compliance. In ReNo, MAS specifica-
tion is defined as a social layer that includes norms and a technical layer
that includes software components. Our framework uses probabilistic analysis
to check resilience. Overall, Gasparini et al. address norm-driven multiagent
planning in a probabilistic setting using Partially Observable Markov Decision
Processes (POMDPs), and make provision for robustness analysis, but do not
address the problems we pose.

Savarimuthu et al. [39–41] have provided an architecture to detect prohi-
bition and obligation norms based on interactions between the agents. The

1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840

prohibition and obligation detection algorithms utilizes association rule min-
ing, a data mining technique, to identify sequences of events that may represent
candidate norms. This architecture helps to modify or remove norms that
are no longer relevant. Their work emphasises norm identification and has
some relevance to our work. Our framework ReNo assumes the existence
of norms and shifts the attention to verifying the resilience of a STS. In
our approach, we evaluate whether an STS can effectively recover and meet
resilience requirements.

Mahmoud et al. [42] propose a resource-aware adaptive punishment tech-
nique that enables norm establishment with larger neighbourhood sizes than
resource-unaware punishment. Their evaluation of the adaptive technique has
been done via a simulation. Dell’Anna et al. [43] propose a mechanism to
revise the norms automatically that consider agents’ preferences. The norms
are revised by revising associated sanctions at runtime. The relationship
between the satisfaction or violation of the norms and the achievement of the
system-level objectives is learned from system execution data using a Bayesian
Network. Then considering the runtime knowledge and the agent’s preference,
they develop heuristic strategies that automatically revise the sanctions asso-
ciated with the enforced norms. They evaluate their mechanism on a traffic
simulator ring-road environment. In ReNo, instead of focusing on sanctions,
we examine commitment and prohibition norms. In terms of system properties,
our focus is on probabilistic system properties, allowing for the consideration
of uncertain system behavior. Within our framework, we have incorporated
resilient requirements alongside achievement and maintenance properties to
establish a resilient Socio-Technical System.

Kafalı et al. [11] propose a formal framework for the verification and refine-
ment of the STS specification via social norms. They provide an agent-based
simulation environment to mimic a social community consisting of multiple
hospitals, physicians, and patients. They use an agent-based simulation to
evaluate candidate STS designs and guide their refinement. A simulation envi-
ronment is set up using parameters related to norms and mechanisms obtained
from the STS specifications and requirements. Our approach is to design
resilient sociotechnical systems by incorporating probabilistic model checking
in a methodology for specifying a sociotechnical system and verifying time
and quantity-constrained resilience requirements. We use probabilistic model
checking to evaluate our approach.

Cámara and De Lemos [44] provide an approach for verifying self-adaptive
systems. The focus is on resilience properties, which assess the system’s abil-
ity to maintain reliable service provision despite environmental changes. They
have considered Discrete-Time Markov Chains (DTMCs) as the probabilistic
model employed to depict the system’s behavior. The system’s environment
is stimulated for collecting execution traces to a build probabilistic model.
PRISM is used to perform probabilistic model checking to evaluate the
resilience of self-adaptive systems. Their framework has only relevance to
our approach is verifying system property using probabilistic model checker

1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886

PRISM. But our framework focuses on how to make resilient STS, by consid-
ering norms and actions. Model checking using PRISM combines probabilistic
analysis and conventional reachability [45]. Unlike a simulation, our approach
produces exact verification results of a property. Typically, there is a tradeoff:
simulation gives us greater modeling realism, e.g., the ability to implement
and experiment with various agent strategies, but it does not handle a for-
mal notion of correctness. Model checking gives formal guarantees by checking
properties against an STS model but requires a more abstract (simpler) model.
Thus, model checking handles more limited phenomena, but with greater rigor.

Ostrom’s notable contribution lies in her comprehensive focus on rules
as the fundamental units of analysis in institutional theory and design. This
emphasis highlights the vital role rules play in shaping institutional behavior
and outcomes. Her work provides valuable insights into effective institutional
design and management [46]. Social rules serve as the fundamental build-
ing blocks of institutional arrangements and are therefore essential elements
in resilience analysis and design. They form the conceptual foundation upon
which the analysis and design of resilient systems are built [46, 47]. Ostrom
emphasizes that in the process of evolutionary institutional change, the vari-
ation in rules and norms is frequently a product of deliberate and rational
design, rather than being driven solely by random factors. The work of Ostrom
on the management of shared resources [48] is an example of how social regula-
tion might provide a solution to problems such as the tragedy of the commons
(the connection of such problems with normative multiagent systems has been
made explicit in a number of papers, such as [49] and [50]). For instance,
the authors [49] have used the perspective of self-governing institutions for
common-pool resource (CPR) management, as defined by Ostrom, the con-
cept of an institution encompasses the set of rules that outline the conditions
governing the allocation and use of resources. These rules should be capable
of being modified by additional rules, allowing for adaptation to the specific
context in which the system operates. Additionally, the actions of individuals
within the system can alter the environment, and external factors may also
impact the system’s dynamics [49]. Our framework ReNo shares conceptual
similarities to Ostrom’s analysis and design of resilient systems, as outlined in
her works ([46, 47]). The objective of our framework is to design and imple-
ment resilient socio-technical systems by adjusting either the social layer or
the technical layer to fulfill the resilient requirements of stakeholders.

7 Conclusions and Future Directions

We propose ReNo, a probabilistic framework for the design and verification
of STSs involving social norms, technical actions, and probabilistic temporal
stakeholder requirements. Our main contribution is to introduce the idea of
socio-technical resilience and incorporate probabilistic model checking in an
overall methodology for specifying STSs and verifying resilience requirements.
Normative behaviour has been incorporated into MDPs by considering norms

1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932

as explicit constraints on agents’ transitions [51], or by expressing norms explic-
itly as part of the state space and action space [52]. Other works on norm
monitoring [53, 54] describe the expected normative behaviours of agents and
resolved conflicts among norms using agents’ objectives and preferences. We
have incorporated norms explicitly into the PRISM model by calculating the
probability of executing an action based on how the potential outcome of the
action contributes towards the satisfaction or violation of the set of norms spec-
ified in the STS. We have also provided an algorithm that translates a formal
STS specification into a probabilistic model. The ReNo framework provides
a probabilistic guarantee that an STS meets its stakeholder requirements and
recovers from failure within a certain period of time.

ReNo supports three core types of requirements: achievement and main-
tenance requirements are essential to the norm literature (e.g., a commitment
to achieve something to a certain level or a prohibition to maintain some-
thing at a certain level). The third type is the resilience requirements (novel
to ReNo) to verify that an STS can recover from requirement failures. We
believe these three types of requirements cover realistic verification scenarios,
to help guide STS designers. Our findings suggest that ReNo helps to build
resilient STSs by demonstrating to the designer the tradeoffs between various
STS specifications.

Future Work

If a requirement is not satisfied, then counterexamples can reveal details about
why the requirement failed and what modifications can be made to the STS
specification to satisfy the requirement. PRISM can produce a violating adver-
sary for a property, for which the verification outcome is false. We will explore
employing such adversaries to guide the designer towards a revised STS.

Another important area of future development is the automation of the
iterative process of STS re-design and requirements relaxation or modifica-
tion based on the results of probabilistic model checking. Figuring out what
relaxations are appropriate for stakeholders can involve sophisticated reason-
ing about goal conflicts [23] as well as creativity [22, 55] more generally. We
currently offer methodological guidelines for doing this (to be followed by the
STS designer and by stakeholders who specify requirements), but there is con-
siderable reliance on human judgment for key decisions such as which STS
re-designs or which requirements relaxations will lead us to a faster resolution
of the problem of an STS design not realizing the specified requirements.

Acknowledgments

We dedicate this article to the memory of Professor Aditya Ghose, who passed
away unexpectedly in February 2023.

This work was initiated with support from a grant from the University of
Wollongong and NC State University through a collaboration network called
the University Global Partnership Network.

1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978

MPS additionally thanks the US National Science Foundation (grant IIS-
1908374) for partial support.

1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024

References

[1] Castelfranchi, C. Modelling social action for AI agents. Artifi-
cial Intelligence 103 (1–2), 157–182 (1998). https://doi.org/10.1016/
S0004-3702(98)00056-3 .

[2] Norman, T. J. & Reed, C. A logic of delegation. Artificial Intelligence
174 (1), 51–71 (2010). https://doi.org/10.1016/j.artint.2009.10.001 .

[3] d’Inverno, M., Luck, M., Noriega, P., Rodŕıguez-Aguilar, J. A. & Sierra, C.
Communicating open systems. Artificial Intelligence 186, 38–94 (2012).
https://doi.org/10.1016/j.artint.2012.03.004 .

[4] Singh, M. P. in Group ability and structure (eds Demazeau, Y. &
Müller, J.-P.) Decentralized Artificial Intelligence, Volume 2 127–145
(Elsevier/North-Holland, Amsterdam, 1991). Revised proceedings of the
2nd European Workshop on Modeling Autonomous Agents in a Multi
Agent World (MAAMAW), St. Quentin en Yvelines, France, August 1990.

[5] Chopra, A. K. & Singh, M. P. Sociotechnical systems and ethics in the
large, 48–53 (ACM, New Orleans, 2018).

[6] Kampik, T. et al. Governance of autonomous agents on the web: Chal-
lenges and opportunities. ACM Transactions on Internet Technology
(TOIT) 22 (4), 104:1–104:31 (2022). https://doi.org/10.1145/3507910 .

[7] Chopra, A. K. et al. Protos: Foundations for engineering innova-
tive sociotechnical systems, 53–62 (IEEE Computer Society, Karlskrona,
Sweden, 2014).

[8] Jones, A. J. I., Artikis, A. & Pitt, J. The design of intelligent socio-
technical systems. Artificial Intelligence Review 39 (1), 5–20 (2013). URL
http://dx.doi.org/10.1007/s10462-012-9387-2. https://doi.org/10.1007/
s10462-012-9387-2 .

[9] Dalpiaz, F., Giorgini, P. & Mylopoulos, J. Adaptive socio-technical sys-
tems: A requirements-based approach. Requirements Engineering 18 (1),
1–24 (2013). https://doi.org/10.1007/S00766-011-0132-1 .

[10] Kafalı, Ö., Ajmeri, N. & Singh, M. P. Revani: Revising and verifying
normative specifications for privacy. IEEE Intelligent Systems (IS) 31 (5),
8–15 (2016). https://doi.org/10.1109/MIS.2016.89 .

[11] Kafalı, Ö., Ajmeri, N. & Singh, M. P. Specification of sociotechnical
systems via patterns of regulation and control. ACM Transactions on
Software Engineering and Methodology (TOSEM) 29 (1), 7:1–7:50 (2020).
https://doi.org/10.1145/3365664 .

https://doi.org/10.1016/S0004-3702(98)00056-3
https://doi.org/10.1016/S0004-3702(98)00056-3
https://doi.org/10.1016/j.artint.2009.10.001
https://doi.org/10.1016/j.artint.2012.03.004
https://doi.org/10.1145/3507910
http://dx.doi.org/10.1007/s10462-012-9387-2
https://doi.org/10.1007/s10462-012-9387-2
https://doi.org/10.1007/s10462-012-9387-2
https://doi.org/10.1007/S00766-011-0132-1
https://doi.org/10.1109/MIS.2016.89
https://doi.org/10.1145/3365664

2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070

[12] Singh, M. P. Norms as a basis for governing sociotechnical systems. ACM
Transactions on Intelligent Systems and Technology (TIST) 5 (1), 21:1–
21:23 (2013). https://doi.org/10.1145/2542182.2542203 .

[13] Singh, A. M. & Singh, M. P. Wasabi: A conceptual model for trustworthy
artificial intelligence. IEEE Computer 56 (2), 20–28 (2023). https://doi.
org/10.1109/MC.2022.3212022 .

[14] Kwiatkowska, M., Norman, G. & Parker, D. PRISM: Probabilistic
symbolic model checker, 200–204 (Springer, London, 2002).

[15] Hansson, H. & Jonsson, B. A logic for reasoning about time and reliability.
Formal Aspects of Computing 6 (5), 512–535 (1994). https://doi.org/10.
1007/BF01211866 .

[16] Ciesinski, F. & Größer, M. in On probabilistic computation tree logic
(eds Baier, C., Haverkort, B. R., Hermanns, H., Katoen, J.-P. & Siegle,
M.) Validation of Stochastic Systems 147–188 (Springer, 2004). URL
https://doi.org/10.1007/978-3-540-24611-4 5.

[17] Mahala, G., Kafalı, O., Dam, H., Ghose, A. & Singh, M. P.
Replication package (2023). URL https://anonymous.4open.science/r/
JAAMAS-ReNO-C6EE.

[18] Verhagen, H., Neumann, M. & Singh, M. P. Normative multi-agent
systems: Foundations and history. Handbook of normative multia-
gent systems. College Publications 3–25 (2018). URL http://www.
collegepublications.co.uk/downloads/handbooks00004.pdf .

[19] Singh, A. M. & Singh, M. P. Norm deviation in multiagent systems: A
foundation for responsible autonomy. Proceedings of the 32nd Interna-
tional Joint Conference on Artificial Intelligence (IJCAI) 289–297 (2023).
https://doi.org/10.24963/ijcai.2023/33 .

[20] Liaskos, S., Khan, S. M. & Mylopoulos, J. Modeling and reason-
ing about uncertainty in goal models: A decision-theoretic approach.
Software and Systems Modeling 1–24 (2022). https://doi.org/10.1007/
S10270-021-00968-W .

[21] Kwiatkowska, M., Norman, G. & Parker, D. PRISM 4.0: Verification of
probabilistic real-time systems, 585–591 (Springer, Snowbird, Utah, 2011).

[22] Murukannaiah, P. K., Ajmeri, N. & Singh, M. P. Acquiring creative
requirements from the crowd: Understanding the influences of personality
and creative potential in crowd RE. Proceedings of the 24th IEEE Inter-
national Requirements Engineering Conference (RE) 176–185 (2016).
https://doi.org/10.1109/RE.2016.68 .

https://doi.org/10.1145/2542182.2542203
https://doi.org/10.1109/MC.2022.3212022
https://doi.org/10.1109/MC.2022.3212022
https://doi.org/10.1007/BF01211866
https://doi.org/10.1007/BF01211866
https://doi.org/10.1007/978-3-540-24611-4_5
https://anonymous.4open.science/r/JAAMAS-ReNO-C6EE
https://anonymous.4open.science/r/JAAMAS-ReNO-C6EE
http://www.collegepublications.co.uk/downloads/handbooks00004.pdf
http://www.collegepublications.co.uk/downloads/handbooks00004.pdf
https://doi.org/10.24963/ijcai.2023/33
https://doi.org/10.1007/S10270-021-00968-W
https://doi.org/10.1007/S10270-021-00968-W
https://doi.org/10.1109/RE.2016.68

2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116

[23] Murukannaiah, P. K., Kalia, A. K., Telang, P. R. & Singh, M. P.
Resolving goal conflicts via argumentation-based analysis of competing
hypotheses. Proceedings of the 23rd IEEE International Requirements
Engineering Conference (RE) 156–165 (2015). https://doi.org/10.1109/
RE.2015.7320418 .

[24] Singh, M. P. Norms as a basis for governing sociotechnical systems. ACM
Transactions on Intelligent Systems and Technology (TIST) 5 (1), 1–23
(2014). https://doi.org/10.1145/2542182.2542203 .

[25] Parker, D. A. Implementation of symbolic model checking for probabilistic
systems. Ph.D. thesis, University of Birmingham (2003).

[26] Cheong, C. & Winikoff, M. P. in Hermes: Designing flexible and robust
agent interactions (ed.Dignum, V.) Handbook of Research on Multi-Agent
Systems: Semantics and Dynamics of Organizational Models Ch. 5, 105–
139 (IGI Global, Hershey, Pennsylvania, 2009). URL https://doi.org/10.
4018/978-1-60566-256-5.ch005.

[27] Chopra, A. K. et al. Analyzing contract robustness through a model of
commitments. Proceedings of the 11th International Workshop on Agent
Oriented Software Engineering (AOSE 2010) (6788), 17–36 (2011). https:
//doi.org/10.1007/978-3-642-22636-6 2 .

[28] Chopra, A. K. & Singh, M. P. Accountability as a foundation for require-
ments in sociotechnical systems. IEEE Internet Computing 25 (6), 33–41
(2021). https://doi.org/10.1109/MIC.2021.3106835 .

[29] Baldoni, M., Baroglio, C., Micalizio, R. & Tedeschi, S. Accountability
in multi-agent organizations: from conceptual design to agent program-
ming. Autonomous Agents and Multi-Agent Systems 37 (1), 7 (2023).
URL https://doi.org/10.1007/s10458-022-09590-6. https://doi.org/10.
1007/s10458-022-09590-6 .

[30] Hägg, S. A sentinel approach to fault handling in multi-agent systems.
Multi-Agent Systems Methodologies and Applications: Second Australian
Workshop on Distributed Artificial Intelligence Cairns, QLD, Australia,
August 27, 1996 Selected Papers 2 181–195 (1997). https://doi.org/10.
1007/BFB0030090 .

[31] Christie V, S. H., Chopra, A. K. & Singh, M. P. Bungie: Improving
fault tolerance via extensible application-level protocols. IEEE Computer
54 (5), 44–53 (2021). https://doi.org/10.1109/MC.2021.3052147 .

[32] Christie, S. H., Chopra, A. K. & Singh, M. P. Mandrake: multiagent
systems as a basis for programming fault-tolerant decentralized applica-
tions. Autonomous Agents and Multi-Agent Systems 36 (1), 16 (2022).

https://doi.org/10.1109/RE.2015.7320418
https://doi.org/10.1109/RE.2015.7320418
https://doi.org/10.1145/2542182.2542203
https://doi.org/10.4018/978-1-60566-256-5.ch005
https://doi.org/10.4018/978-1-60566-256-5.ch005
https://doi.org/10.1007/978-3-642-22636-6_2
https://doi.org/10.1007/978-3-642-22636-6_2
https://doi.org/10.1109/MIC.2021.3106835
https://doi.org/10.1007/s10458-022-09590-6
https://doi.org/10.1007/s10458-022-09590-6
https://doi.org/10.1007/s10458-022-09590-6
https://doi.org/10.1007/BFB0030090
https://doi.org/10.1007/BFB0030090
https://doi.org/10.1109/MC.2021.3052147

2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162

https://doi.org/10.1007/s10458-021-09540-8 .

[33] Baldoni, M., Baroglio, C., Micalizio, R. & Tedeschi, S. Exception han-
dling as a social concern. IEEE Internet Computing 26 (6), 33–40
(2022). URL https://doi.org/10.1109/MIC.2022.3216272. https://doi.
org/10.1109/MIC.2022.3216272 .

[34] Gutierrez-Garcia, J. O., Koning, J.-L. & Ramos-Corchado, F. F. An obli-
gation approach for exception handling in interaction protocols. 2009
IEEE/WIC/ACM International Joint Conference on Web Intelligence
and Intelligent Agent Technology 3, 497–500 (2009). https://doi.org/10.
1109/WI-IAT.2009.334 .

[35] Aydoğan, R., Kafalı, Ö., Arslan, F., Jonker, C. M. & Singh, M. P.
Nova: Value-based negotiation of norms. ACM Transactions on Intelli-
gent Systems and Technology (TIST) 12 (4), 45:1–45:29 (2021). https:
//doi.org/10.1145/3465054 .

[36] Ajmeri, N., Guo, H., Murukannaiah, P. K. & Singh, M. P. Robust norm
emergence by revealing and reasoning about context: Socially intelligent
agents for enhancing privacy. Proceedings of the 27th International Joint
Conference on Artificial Intelligence (IJCAI) 28–34 (2018). https://doi.
org/10.24963/ijcai.2018/4 .

[37] Agrawal, R., Ajmeri, N. & Singh, M. P. Socially intelligent genetic agents
for the emergence of explicit norms. Proceedings of the 31st International
Joint Conference on Artificial Intelligence (IJCAI) 10–16 (2022). https:
//doi.org/10.24963/ijcai.2022/2 .

[38] Gasparini, L., Norman, T. J. & Kollingbaum, M. J. Severity-
sensitive norm-governed multi-agent planning. Autonomous Agents and
Multi-Agent Systems 32 (1), 26–58 (2018). https://doi.org/10.1007/
S10458-017-9372-X .

[39] Savarimuthu, B. T. R., Cranefield, S., Purvis, M. A. & Purvis, M. K. Obli-
gation norm identification in agent societies. Journal of Artificial Societies
and Social Simulation 13 (4), 3 (2010). https://doi.org/10.18564/JASSS.
1659 .

[40] Savarimuthu, B. T. R., Cranefield, S., Purvis, M. A. & Purvis, M. K.
Identifying prohibition norms in agent societies. Artificial intelligence and
law 21 (1), 1–46 (2013). https://doi.org/10.1007/S10506-012-9126-7 .

[41] Savarimuthu, B. T. R. & Cranefield, S. Norm creation, spreading and
emergence: A survey of simulation models of norms in multi-agent sys-
tems. Multiagent and Grid Systems 7 (1), 21–54 (2011). https://doi.org/
10.3233/MGS-2011-0167 .

https://doi.org/10.1007/s10458-021-09540-8
https://doi.org/10.1109/MIC.2022.3216272
https://doi.org/10.1109/MIC.2022.3216272
https://doi.org/10.1109/MIC.2022.3216272
https://doi.org/10.1109/WI-IAT.2009.334
https://doi.org/10.1109/WI-IAT.2009.334
https://doi.org/10.1145/3465054
https://doi.org/10.1145/3465054
https://doi.org/10.24963/ijcai.2018/4
https://doi.org/10.24963/ijcai.2018/4
https://doi.org/10.24963/ijcai.2022/2
https://doi.org/10.24963/ijcai.2022/2
https://doi.org/10.1007/S10458-017-9372-X
https://doi.org/10.1007/S10458-017-9372-X
https://doi.org/10.18564/JASSS.1659
https://doi.org/10.18564/JASSS.1659
https://doi.org/10.1007/S10506-012-9126-7
https://doi.org/10.3233/MGS-2011-0167
https://doi.org/10.3233/MGS-2011-0167

2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208

[42] Mahmoud, S., Miles, S. & Luck, M. Cooperation emergence under
resource-constrained peer punishment, 900–908 (International Foundation
for Autonomous Agents and Multiagent Systems (IFAAMAS), 2016).
URL http://dl.acm.org/citation.cfm?id=2937056.

[43] Dell’Anna, D., Dastani, M. & Dalpiaz, F. Runtime revision of sanctions
in normative multi-agent systems. Journal of Autonomous Agents and
Multi-Agent Systems (JAAMAS) 34 (2), 43.1–43.54 (2020). https://doi.
org/10.1007/s10458-020-09465-8 .

[44] Cámara, J. & De Lemos, R. Evaluation of resilience in self-adaptive sys-
tems using probabilistic model-checking. 7th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems (SEAMS)
53–62 (2012). https://doi.org/10.1109/SEAMS.2012.6224391 .

[45] Kwiatkowska, M., Norman, G. & Parker, D. Quantitative analysis with
the probabilistic model checker PRISM. Electronic Notes in Theoretical
Computer Science 153 (2), 5–31 (2006) .

[46] Ostrom, E. Understanding Institutional Diversity (Princeton University
Press, 2009).

[47] Ostrom, E. in Developing a method for analyzing institutional change
(eds Batie, S. & Mercuro, N.) Alternative Institutional Structures 66–94
(Routledge, 2008).

[48] Ostrom, E. A general framework for analyzing sustainability of social-
ecological systems. Science 325 (5939), 419–422 (2009). https://doi.org/
10.1126/science.1172133 .

[49] Pitt, J., Schaumeier, J. & Artikis, A. Axiomatization of socio-economic
principles for self-organizing institutions: concepts, experiments and chal-
lenges. ACM Transactions on Autonomous and Adaptive Systems (TAAS)
7 (4), 1–39 (2012). https://doi.org/10.1145/2382570.2382575 .

[50] Bevan, C. et al. Factors in the emergence and sustainability of self-
regulation. Social Coordination: Principles, Artefacts and Theories
(2013). AISB Convention .

[51] Oh, J., Meneguzzi, F., Sycara, K. & Norman, T. J. An agent architecture
for prognostic reasoning assistance. Proceedings of the 22nd International
Joint Conference on Artificial Intelligence 2513–2518 (2011). https://doi.
org/10.5591/978-1-57735-516-8/IJCAI11-418 .

[52] Fagundes, M. S., Ossowski, S., Luck, M. & Miles, S. Using normative
Markov decision processes for evaluating electronic contracts. AI Com-
munications 25 (1), 1–17 (2012). https://doi.org/10.3233/AIC-2012-0511

http://dl.acm.org/citation.cfm?id=2937056
https://doi.org/10.1007/s10458-020-09465-8
https://doi.org/10.1007/s10458-020-09465-8
https://doi.org/10.1109/SEAMS.2012.6224391
https://doi.org/10.1126/science.1172133
https://doi.org/10.1126/science.1172133
https://doi.org/10.1145/2382570.2382575
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-418
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-418
https://doi.org/10.3233/AIC-2012-0511

2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254

.

[53] Modgil, S. et al. Monitoring compliance with e-contracts and norms.
Artificial Intelligence and Law 23 (2), 161–196 (2015). https://doi.org/
10.1007/s10506-015-9167-9 .

[54] Dastani, M., Torroni, P. & Yorke-Smith, N. Monitoring norms: A multi-
disciplinary perspective. Knowledge Engineering Review 33, e25 (2018).
https://doi.org/10.1017/S0269888918000267 .

[55] Murukannaiah, P. K., Ajmeri, N. & Singh, M. P. Enhancing creativ-
ity as innovation via asynchronous crowdwork. Proceedings of the 14th
ACM Web Science Conference (WebSci) 66–74 (2022). https://doi.org/
10.1145/3501247.3531555 .

https://doi.org/10.1007/s10506-015-9167-9
https://doi.org/10.1007/s10506-015-9167-9
https://doi.org/10.1017/S0269888918000267
https://doi.org/10.1145/3501247.3531555
https://doi.org/10.1145/3501247.3531555

2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300

Appendix A Java Code: Translation of an STS
specification into a PRISM model

A.1 Code Snippets for the Initial State in the PRISM
Model

The Listing 5 shows java code to return the initial state of the PRISM model.
The list variables have the agent variable and all state variables. The set-
Value(0, 1) in Line 2 in the Listing 5 shows that value 1 has been assigned to
the variable at index 0 in variables list (here the variable agent is at index 0 in
the list named variable). Similarly, random values have been assigned to other
state variables.
Listing 5 Code Snippets for initial state in PRISM model construction

1 public State getInitialState () throws

PrismException {

2 return new State(variables.size()).setValue(0,

3).setValue (1,20).setValue(2, 0); }

A.2 Code Snippets to Calculate the Action Selection
Probability

Listing 6 Code Snippets to calculate action selection probability

1 for(int m=0;m<AgentsMechanism.get(a).size();m++) {

2 if ((normType.equalsIgnoreCase("P"))) {

3 if (n.getValue ().containsKey(varM)) {

4 int nConsquentValue =

Integer.parseInt(n.getValue ().get(AtomName));

5 double currentTarget = nConsquentValue -

valueOfVariable.get(varM) ;

6 if (maxRange <= currentTarget) {

7 prob = 1.0;

8 } else if (minRange >= currentTarget) {

9 prob = 0.0;} else {

10 prob = Double.parseDouble(new

DecimalFormat("##.###").format ((double)

(currentTarget - minRange) / (maxRange -

minRange)));}

11 double result = Double.parseDouble(new

DecimalFormat("##.###").format(Math.pow(w,

prob)));

12 }

13 }

14 }

2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346

A.3 Code Snippets for State Transitions in the PRISM
Model

The Listing 7 shows the snippet of Java code of state transitions in the model.
The function computeTransitionTarget(int i, int offset) is used to compute
non-deterministic outcomes for executing all mechanisms of a selected agent.
The Line 2 in the Listing 7 shows the current state. From Line 3 to Line 5 turns
each agent using round-robin agent execution. In the initial state, the value of
the agent variable is 1 (as explained in the use case) meaning that this agent
is Company. In the next state, the value of the agent is 2 (i.e., Hospital); then
the value of the agent is 3 (i.e., Regulator); and then the value of the agent is
again 1 (i.e., Company). The remaining state variables are updated with new
values in the Line 8 in the Listing 7.

The function computeTransitionTarget(int i, int offset) is used to compute
non-deterministic outcomes of executing all mechanisms for a selected agent
and the function getTransitionProbability(int i, int offset) is used to compute
the state transition probability for each state transition.
Listing 7 Code Snippets for state transitions in PRISM model

1 public State computeTransitionTarget(int i, int

offset) throws PrismException {

2 State target = new State(exploreState) ;

3 if((agent== numberofAgents)&&(sum !=0)) {

target.setValue (0,1);}

4 else if((sum !=0)){

5 target.setValue(0,agent +1);}

6 int newTotalValue =

valueOfVariable.get(variables.get(p+1))

7 +Integer.parseInt(varValue[p]);

8 target.setValue(p+1, newTotalValue) ;

9 return target;

10 }

11 public double getTransitionProbability(int i, int

offset) throws PrismException {

12 int agent = valueOfVariable.get(variables.get(0));

13 for(int t=0;

t<transitionProb.get(action).size();t++){

14 double probTra = transitionProb.get(action).get(t);

15 double prob = probTra * mechSelectionProb;

16 return prob ;}

	Introduction
	Research Objectives and Contributions
	Practical Usage, as Envisioned
	Organization

	Background
	Socio-Technical Systems
	PCTL

	The ReNo Framework
	ReNo Syntax
	Social Layer: Norms
	Technical Layer: Actions and State Transitions
	Selection probability
	Translation of an STS specification to a PRISM model
	Example of PRISM model generated using Algorithm 1.

	Requirements as PRISM properties

	Methodological Guidelines
	The STS Designer Perspective
	The Stakeholder Perspective

	Prototype Implementation and Requirement Verification Results
	Handling Strict Achievement and Maintenance Requirements
	Handling Relaxable Achievement and Maintenance Requirements
	Handling Strict Resilience Requirements
	Handling Relaxable Resilience Requirements
	ReNo's Scalability
	Analysis of time complexity for Algorithm 1
	Analysis of time complexity for Algorithm 2
	Model Statistics

	Related Work
	Conclusions and Future Directions
	Java Code: Translation of an STS specification into a PRISM model
	Code Snippets for the Initial State in the PRISM Model
	Code Snippets to Calculate the Action Selection Probability
	Code Snippets for State Transitions in the PRISM Model

