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ABSTRACT 
AI-powered programming assistants are increasingly gaining popu-
larity, with GitHub Copilot alone used by over a million developers 
worldwide. These tools are far from perfect, however, producing 
code suggestions that may be incorrect in subtle ways. As a result, 
developers face a new challenge: validating AI’s suggestions. This 
paper explores whether Live Programming (LP), a continuous dis-
play of a program’s runtime values, can help address this challenge. 
To answer this question, we built a Python editor that combines an 
AI-powered programming assistant with an existing LP environ-
ment. Using this environment in a between-subjects study (� = 17), 
we found that by lowering the cost of validation by execution, LP 
can mitigate over- and under-reliance on AI-generated programs 
and reduce the cognitive load of validation for certain types of tasks. 

CCS CONCEPTS 
• Human-centered computing → Empirical studies in HCI; 
Graphical user interfaces; • Software and its engineering → 
Automatic programming. 
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1 INTRODUCTION 
Recent advances in large language models have given rise to AI-
powered code suggestion tools like GitHub Copilot [12], Amazon 
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CodeWhisperer [1], and ChatGPT [23]. These AI programming as-
sistants are changing the face of software development, automat-

ing many of the traditional programming tasks, but at the same 
time introducing new tasks into the developer’s workfow—such 
as prompting the assistant and reviewing its suggestions [2, 22]. 
Development environments have some catching up to do in order 
to provide adequate tool support for these new tasks. 

In this paper, we focus on the task of validating AI-generated 
code, i.e., deciding whether it matches the programmer’s intent. 
Recent studies show that validation is a bottleneck for AI-assisted 
programming: according to Mozannar et al. [22], it is the single 
most prevalent activity when using AI code assistants, and other 
studies [3, 21, 32, 36] report programmers having trouble evaluat-
ing the correctness of AI-generated code. Faced with difculties in 
validation, programmers tend to either under-rely on the assistant— 
i.e., lose trust in it—or to over-rely—i.e., blindly accept its sugges-
tions [27, 30, 34, 37]; the former can cause them to abandon the 
assistant altogether [2], while the latter can introduce bugs and secu-
rity vulnerabilities [26]. These fndings motivate the need for better 
validation support in AI-assisted programming environments. 

This paper investigates the use of Live Programming (LP) [13, 31, 
35] as a way to support the validation of AI-generated code. LP en-
vironments, such as Projection Boxes [20], visualize runtime values 
of a program in real-time without any extra efort on the part of the 
programmer. We hypothesize that these environments are a good ft 
for validation, since LP has been shown to encourage more frequent 
testing [4] and facilitate bug fnding [41] and program comprehen-

sion [5, 7, 8]. On the other hand, validation of AI-generated code 
is a new and unexplored domain in program comprehension that 
comes with its unique challenges, such as multiple AI suggestions 
for the programmer to choose from, and frequent context switches 
between prompting, validation, and code authoring [22], which 
cause additional cognitive load [36]. Hence, the application of LP 
to the validation setting warrants a separate investigation. 

To this end, we constructed a Python environment that com-

bines an existing LP environment [20] with an AI assistant similar 
to Copilot’s multi-suggestion pane. Using this environment, we 
conducted a between-subjects experiment (� = 17) to evaluate how 
the availability of LP afects users’ efectiveness and cognitive load 
in validating AI suggestions. Our study shows that Live Program-

ming facilitates validation through lowering the cost of inspecting 
runtime values; as a result, participants were more successful in 
evaluating the correctness of AI suggestions and experienced lower 
cognitive load in certain types of tasks. 
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Figure 1: Leap is a Python environment that enables validating AI-generated code suggestions via Live Programming. 
Users prompt the AI assistant via comments and/or code context. The Suggestion Panel shows the AI-generated suggestions. 
Pressing a Preview button inserts the suggestion into the editor. Users can inspect the runtime behavior of the suggestion 

in Projection Boxes [20], which are updated continuously as the user edits the code. 

2 RELATED WORK 

Validation of AI-Generated Code. A rapidly growing body of 
work analyzes how users interact with AI programming assistants. 
Studies show that programmers spend a signifcant proportion of 
their time validating AI suggestions [2, 3, 22]. Moreover, a large-
scale survey [21] indicates that 23% of their respondents have trouble 
evaluating correctness of generated code, which echoes the fndings 
of lab studies [2, 32] and a need-fnding study [36], where partici-
pants report difculties understanding AI suggestions and express 
a desire for better validation support. Barke et al. [2] and Liang et al. 
[21] fnd that programmers use an array of validation strategies, 
and the prevalence of each strategy is closely related to its time 
cost. Specifcally, despite the help of execution techniques built into 
the IDE for validating AI suggestions [30], execution is used less 
often than quick manual inspection or type checking because it is 
more time-consuming [2, 21] and interrupts programmers’ work-
fows [36]. The lack of validation support designed for AI-assisted 
programming, as Wang et al. [36] identify, leads to a higher cog-
nitive load in reviewing suggestions. The high cost of validating 
AI suggestions, according to some studies [27, 34, 37], can lead to 
both under-reliance—lack of trust—and over-reliance—uncritically 
accepting wrong code—on the part of the programmer. 

Comparatively fewer existing papers explore interface designs to 
support validation of AI-generated code: Ross et al. [27] investigates 
a conversational assistant that allows programmers to ask questions 
about the code, while Vasconcelos et al. [33] targets over-reliance 
by highlighting parts of generated code that might need human 

intervention; our work is complementary to these eforts in that it 
focuses on facilitating validation by execution. 
Validation in Program Synthesis. Another line of related work 
concerns the validation of code generated by search-based (non-
AI-powered) program synthesizers. Several synthesizers help users 
validate generated code by proactively displaying its outputs [9, 16, 
40] and intermediate trace values [25], although none of them use 
a LP environment. The only system we are aware of that combines 
LP and program synthesis is SnipPy [11], but it uses LP to help the 
user specify their intent rather than validate synthesized code. 
Live Programming. Live Programming (LP) provides immediate 
feedback on code edits, often in the form of visualizations of the 
runtime state [13, 31, 35]. Some quantitative studies fnd that pro-
grammers with LP fnd more bugs [41], fx bugs faster [18], and 
test a program more often [4]. Others fnd no efect in knowledge 
gain [15] or efciency in code understanding [5]. Still, qualitative 
evidence points to the helpfulness of LP for program comprehen-

sion [5, 7, 8] and debugging [15, 17]. In contrast to these studies, 
which evaluate the efectiveness of LP for comprehending and de-
bugging human-written code, our work investigates its efectiveness 
for validating AI-generated code, a setting that comes with a number 
of previously unexplored challenges [22, 36]. 

3 LEAP: THE TOOL USED IN THE STUDY 
To study how Live Programming afects the validation of AI-
generated code, we implemented Leap (Live Exploration of AI-
Generated Programs), a Python environment that combines an 
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AI assistant with LP. This section demonstrates Leap via a usage 
example and discusses its implementation. 
Example Usage. Naomi, a biologist, is analyzing some genome 
sequencing data using Python. As part of her analysis, she needs to 
fnd the most common bigram (i.e., two-letter sequence) in a DNA 
strand.

1 
To this end, she creates a function dominant_bigram (line 3 

in Fig. 1); she has a general idea of what this function might look 
like, but she decides to use Leap to help translate her idea into code. 

Naomi adds a docstring (line 5), which conveys her intent in 
natural language, and a test case (line 24), which will help her 
validate the code. With the cursor positioned at line 7, she 
presses and to ask for suggestions. 
Within seconds, a panel opens on the right containing fve AI-
generated code suggestions; Naomi quickly skims through all 
of them. The overall shape of Suggestion 3 looks most similar to 
what she has in mind: it frst collects the counts of all bigrams 
into a dictionary, and then iterates through the dictionary to 
pick a bigram with the maximum count. 
Naomi tries this suggestion, pressing its Preview button; Leap 
inserts the code into the editor and highlights it (lines 8-18). 
As soon as the suggestion is inserted, Projection Boxes [20] 
appear, showing runtime information at each line in the code. 
Inspecting intermediate values helps Naomi understand what 
the code is doing step by step. When she gets to line 18, she 
realizes that the dictionary actually has two dominant bigrams 
with the same count, and the code returns the last one. She real-
izes this is not what she wants: instead, she wants to select the 
dominant bigram that comes frst alphabetically (ag in this case). 

One option Naomi has is to try other suggestions. She clicks on the 
Preview button for Suggestion 2; Leap then inserts Suggestion 2 
into the editor, in place of the prior suggestion, and the Projection 
Boxes update instantly to show its behavior. Naomi immediately 
notices that Suggestion 2 throws an exception inside the second 
loop, so she abandons it and goes back to Suggestion 3, which got 
her closer to her goal. 

To fx Suggestion 3, Naomi realizes that she can accumulate all 
dominant bigrams in a list, sort the list, and return the frst element. 
She does not remember the exact Python syntax for sorting a list, so 
she tries diferent variations—including l = l.sort, l = l.sort(), l 
= sort(l), l = l.sorted(), and so on. Fortunately, Leap’s support 
for LP allows her to get instant feedback on the behavior of each 
edit, so she iterates quickly to fnd one correct option: l = sorted(l). 
Note that Naomi’s workfow for using Suggestion 3—validation, 
fnding bugs, and fxing bugs—relies on full LP support, and would 
not work in traditional environments like computational notebooks, 
which provide easy access to the fnal output of a snippet but not 
the intermediate values or immediate feedback on edits. 
Implementation. To generate code suggestions, Leap uses the 
text-davinci-003 model [24], the largest publicly available code-
generating model at the time of our study. To support live display 
of runtime values (Fig. 1 ), we built Leap on top of Projection 
Boxes, a state-of-the-art LP environment for Python [20] capable 
of running in the browser. The code for Leap can be found at 
https://bit.ly/leap-code. As the control condition for our study, we 
1
This is one of the programming tasks from our user study, and each of Naomi’s 
interactions with Leap has been observed in some of our participants. 

also created a version of Leap, where Projection Boxes are disabled, 
and instead the user can run the code explicitly by clicking a Run 
button and see the output in a terminal-like Output Panel. 

4 USER STUDY 
We conducted a between-subjects study to answer the following 
research questions: 
RQ1) How does Live Programming afect over- and under-reliance 

in validating AI-generated code? 
RQ2) How does Live Programming afect validation strategies? 
RQ3) How does Live Programming afect the cognitive load of 

validating AI-generated code? 

Tasks. Our study incorporates two categories of programming 
tasks, Fixed-Prompt and Open-Prompt tasks. 

In Fixed-Prompt tasks, we provide participants with a fxed set of 
fve AI suggestions that are intended to solve the entire problem. 
We curated the suggestions by querying Copilot [12] and Leap 
with slight variations of the prompt. Fixed-Prompt tasks isolate the 
efects of Live Programming on validation behavior by controlling 
for the quality of suggestions. We created two Fixed-Prompt tasks, 
each with fve suggestions: (T1) Bigram: Find the most frequent 
bigram in a given string, resolving ties alphabetically (same task 
in Sec. 3); (T2) Pandas: Given a pandas data frame with data on dogs 
of three size categories (small, medium, and large), compute various 
statistics, imputing missing values with the mean of the appropriate 
category. These tasks represent two distinct styles: Bigram is a 
purely algorithmic task, while Pandas focuses on using a complex 
API. Pandas has two correct AI suggestions (out of fve) while 
Bigram has none, a realistic scenario that programmers encounter 
with imperfect models. 

In Open-Prompt tasks, participants are free to invoke the AI 
assistant however they want. This task design is less controlled 
than Fixed-Prompt, but more realistic, thus increasing ecological 
validity. We used two Open-Prompt tasks: (T3) String Rewriting: 
parse a set of string transformation rules and apply them fve times 
to a string; (T4) Box Plot: given a pandas data frame containing 
10 experiment data records, create a matplotlib box plot of time 
values for each group, combined with a color-coded scatter plot. 
Both tasks are more complex than the Fixed-Prompt tasks, and 
could not be solved with a single interaction with the AI assistant. 
Participants and Groups. We recruited 17 participants; 5 self-
identifed as women, 10 as men, and 2 chose not to disclose. 6 were 
undergraduate students, 9 graduate students, and 2 professional 
engineers. Participants self-reported experience levels with Python 
and AI assistants: 2 participants used Python ‘occasionally’, 8 ‘reg-
ularly’, and 7 ‘almost every day’; 7 participants declared they had 
‘never’ used AI assistants, and 8 used such tools ‘occasionally’. 

There were two experimental groups: “LP” participants used 
Leap with Projection Boxes, as described in Fig. 1; “No-LP” par-
ticipants used Leap without Projection Boxes, instead executing 
programs in a terminal-like Output Panel. Participants completed 
both Fixed-Prompt tasks and one Open-Prompt task. We used block 
randomization [10] to assign participants to groups while evenly 
distributing across task order and selection and balancing experi-
ence with Python and AI assistants across groups. The LP group 
had 8 participants, and No-LP had 9. 

https://bit.ly/leap-code
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Procedure and Data. We conducted the study over Zoom as each 
participant used Leap in their web browser. Each session was 
recorded and included two Fixed-Prompt tasks (10 minutes each), 
two post-task surveys, one Open-Prompt task (untimed), one post-
study survey, and a semi-structured interview. A replication pack-
age

2 
shows the details of our procedure, tasks, and data collection. 

For quantitative analysis, we performed closed-coding on video 
recordings of study sessions to determine each participant’s sub-
jective assessment of their success on the task; we matched this 
data against the objective correctness of their fnal code to establish 
whether they succeeded in accurately validating AI suggestions. 
We also measured task duration—proportion of time Suggestion 
Panel (Fig. 1 ) was in focus—and participants’ cognitive load (via 
fve NASA Task Load Index (TLX) questions [14]). We used Mann-

Whitney U tests to assess all diferences except for validation suc-
cess, which we analyzed via Fisher’s exact tests. 

In addition, we collected qualitative data from both Fixed-Prompt 
and Open-Prompt tasks. We noted validation-related behavior and 
quotes, which we discussed in memoing meetings [6] after the study. 
Through refexive interpretation, we used category analysis [39] to 
assemble the qualitative data into groups. We then revisited notes 
and recordings to iteratively construct high-level categories. 

5 RESULTS 
5.1 RQ1: Over- And Under-Reliance on AI 
To investigate if Live Programming afects over- and under-reliance, 
we measured whether participants successfully validated the AI 
suggestions in the Fixed-Prompt tasks, as described below. We 
also compared task completion times and participants’ confdence 
in their solutions (collected through post-task surveys). However, 
neither result was signifcantly diferent between the two groups, 
so we do not discuss them below.3 

We found six instances of unsuccessful validation, all from 
the No-LP group. As described in Sec. 4, we compared subjective 
and objective assessments of code correctness on the two Fixed-
Prompt tasks, which resulted in four outcomes: (1) Complete and 
Accurate, where the participant submitted a correct solution within 
the task time limit, (2) Complete and Inaccurate, where the par-
ticipant submitted an incorrect solution without recognizing the 
error, (3) Timeout after Validation, where the participant formed 
an accurate understanding of the correctness of the suggestions 
but reached the time limit before fxing the error in their chosen 
suggestion, and (4) Timeout during Validation, where the partici-
pant reached the time limit before they had fnished validating the 
suggestions. We consider (1) and (3) to be instances of successful val-
idation, (2) to be an instance of over-reliance on the AI suggestions, 
and (3) to be an instance of under-reliance, as the participant did not 

2
https://bit.ly/leap-study-materials 

3
In median times, the LP group completed the Pandas task faster by 35 seconds 
(� = .664,� = 31). For Bigram, LP participants were slower by 3 minutes and 51 
seconds (� = .583,� = 42), though this diference changes to faster by 10 seconds if we 
exclude those who solved the task incorrectly. For Pandas, both groups had the median 
ratings of confdence in correctness as “Agree” on seen inputs (� = .784,� = 30) 
and “Neutral” on unseen inputs (� = .795,� = 33). For Bigram, the LP group had the 
median rating of confdence in correctness on seen inputs as “Agree”, while the No-LP 
group had “Strongly Agree” (� = .097,� = 19.5). As for confdence in correctness 
on unseen inputs, the median for the LP group was “Neutral”, and that for the No-LP 
group was “Agree” (� = .201,� = 22.5). 

4 2 3

4 4

6 3

8

Bigram Pandas

No−LP

LP

Completed, Accurate
Timeout after Validation

Completed, Inaccurate (Over−reliance)
Timeout during Validation (Under−reliance)

Figure 2: Success in validating AI suggestions across groups 
for Fixed-Prompt tasks. “Completed” means the participant 
submitted a solution they were satisfed with by the time 
limit, and “Timeout” means they did not. We deem the vali-
dation successful if a participant submitted a correct solution 
(dark blue) or timed out when attempting to fx the correctly 
identifed bugs in their chosen suggestion (light blue). 

successfully validate the suggestions in the given time. As Fig. 2 
shows, we found three instances of over-reliance in the Bigram task 
and three instances of under-reliance in the Pandas task, all from 
the No-LP group, though the overall between-group diference was 
not signifcant (� = .206 for both tasks). 
Participants with over-reliance did not inspect enough run-
time behavior. The three No-LP participants with over-reliance 
in Bigram (P5, P12, P15) made a similar mistake: they accepted 
one of the mostly-correct suggestions (similar to Suggestion 3 in 
Sec. 3) and failed to notice that ties were not resolved alphabetically. 
Among the three participants, P5 did not run their code at all. P12 
and P15 both tested only one suggestion on the given input and 
failed to notice the presence of two bigrams of the same count 
(and the fact that other suggestions returned diferent results). In 
addition, P15 cited “reading the comments on what it was doing” as 
a key factor for choosing the suggestion they did. That suggestion 
began with a comment stating that it resolved ties alphabetically, 
but the following code did not do so. 
Participants with under-reliance lacked afordances for in-
specting runtime behavior. The three No-LP participants who 
under-relied on AI suggestions (P7, P9, P15) tried to use runtime 
values for validation but struggled with doing so. P9 previewed and 
ran multiple suggestions but did not add any print statements to 
the code, and so they could only see the output of one of the sug-
gestions, which ended in a print statement. P15 ran all suggestions 
and did add a print statement to each to inspect the fnal return 
value, but the need to change the print statement and re-run each 
time made this process difcult, and they lost track of which sug-
gestions they considered the most promising, saying “I forgot which 
ones looked decent.” Finally, P7’s strategy was to print the output 
of subexpressions from various suggestions in order to understand 
their behavior and combine them into a single solution, but this 
was time-consuming, so they did not fnish. 

5.2 RQ2: Validation Strategies 
Our participants had access to two validation strategies: examina-
tion (reading the code) and execution (inspecting runtime values). 
The general pattern we observed was that participants frst did 
some amount of examination inside the Suggestion Panel—ranging 
from a quick glance to thorough reading—and then proceeded to 

https://bit.ly/leap-study-materials
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Pandas

Bigram

0% 25% 50% 75%

LP No−LP

Figure 3: Percentage of time spent in the Suggestion Panel 
across the two groups for Fixed-Prompt tasks. 

preview zero or more suggestions, performing further validation by 
execution inside the editor. To this end, No-LP participants in most 
tasks ran the code and added print statements for both fnal and 
intermediate values; LP participants in all tasks inspected both fnal 
and intermediate runtime values in Projection Boxes (by moving 
the cursor from line to line to bring diferent boxes into focus), and 
occasionally added print statements to see variables not shown by 
default. Below we discuss notable examples of validation behavior, 
as well as diferences between the two groups and across tasks. 
LP participants spent less time reading the code. We use 
the time the Suggestion Panel was in focus as a proxy for ex-
amination time; Fig. 3 shows this time as a percentage of the 
total task duration. The No-LP group spent more time in the 
Suggestion Panel compared to LP for both Fixed-Prompt tasks. 
The diference is signifcant in the Pandas task (� = .02,� = 
11, medianLP = 14.05%, medianNo−LP = 30.47%) but not in Bigram 
(� = .14,� = 20, medianLP = 24.70%, medianNo−LP = 36.57%). We 
also collected this data for the Open-Prompt tasks, although it 
should be interpreted with caution due to the unstructured na-
ture of the tasks (e.g., participant engagement with the assistant 
and suggestion quality varied). The results are consistent with the 
Fixed-Prompt tasks—i.e., No-LP participants spent more time in 
the Suggestion Panel—but the diference is not signifcant, and 
the efect in Box Plot is very small (� = .14,� = 3.5, medianLP = 
6.25%, medianNo−LP = 15.49% for String Rewriting; � = .67,� = 
6, medianLP = 8.10%, medianNo−LP = 8.70% for Box Plot). 
Participants relied on runtime values more in API-heavy, one-
of tasks. According to Fig. 3, both groups spent more time exam-

ining the code in Bigram, while in Pandas they jumped to execu-
tion more immediately (medianPandas = 16.96%, medianBigram = 
31.67%, � = .04,� = 206). This diference in validation strate-
gies between the two tasks was also refected in the interviews. 
For example, P1 described their strategy for Pandas as follows: “I 
didn’t look too closely in the actual code, I was just looking at the 
runtime values on the side.” Instead, in Bigram, participants cared 
more about the code itself, preferring suggestions based on their 
expected algorithm, data structure, or style (e.g. P15 “was really 
looking for the dictionary aspect” ), with the most popular attribute 
being “short”/“readable”, cited by 10 out of 17 participants. One 
explanation participants gave for the diference in behavior is that 
Pandas is an API-heavy task, and when dealing with unfamiliar 
APIs, reading the code is just not very helpful: “When it’s using more 
jargony stuf that doesn’t translate directly into words in your brain, 
then seeing the preview makes it clearer” (P3). Another explanation 

they gave is that Pandas was perceived by the participants as a 
one-of task, i.e., it only needed to work on the one specifed input, 
whereas Bigram was perceived as general, i.e., it needed to work on 
“any sort of string [. . . ] not only [. . . ] the specifc string that was tested” 
(P3); this was not explicit in the instructions, but in retrospect it is 
a reasonable assumption, given the problem domains and structure 
of the starter code. On the other hand, some LP participants con-
jectured that with more familiarity with Live Programming, they 
would rely on runtime values more, even in tasks like Bigram: “If 
I were to use this tool again I would preview more immediately, just 
because I think I was very focused on whether it produced how I would 
solve the problem vs. whether it solved the problem correctly” (P4). 

LP participants benefted from visualizing intermediate val-
ues. We looked into the validation strategies used in Bigram to 
identify the tie-resolution issue in AI suggestions (excluding P17 
because they wrote the code from scratch). In the input we pro-
vided, it was hard to identify the most common bigram at a glance, 
which made it difcult to validate suggestions just by looking at 
the fnal result. Five out of eight LP participants found the issue by 
inspecting intermediate values and noticing that multiple bigrams 
in the input have the same count (the other three relied on custom 
test cases and code examination). In the No-LP group, three out of 
eight participants failed to identify the issue and of the remaining 
fve who succeeded, only one (P6) relied on intermediate values to 
do so. In addition, multiple LP participants (P1, P3, P4) mentioned 
the usefulness of intermediate values in the interview, especially for 
long suggestions. P1 said: “Because it’s a block of text as a suggestion, 
having projection boxes is more important [. . . ] my thought was ‘let 
me go line by line to see what is going on’.” In contrast, a No-LP 
participant (P9) remarked that they “had to really look through the 
code and try to visualize it in [their] mind.” 

LP participants used liveness features for validation and de-
bugging. For validation, LP participants made use of full liveness, 
i.e., the ability to see the immediate efects of their edits. Five par-
ticipants in Pandas added auxiliary calculations to double-check 
the correctness of the fnal output, e.g., the mean of specifc cells in 
the input table, comparing it to the output table. When it comes to 
debugging, LP participants made multiple rounds of trial and error 
guided by liveness. In fact, the example in Sec. 3 was inspired by 
P4’s debugging process in the Bigram task. Also, in Box Plot, P1 
made many repeated edits in an AI suggestion to tune the place-
ment of a label, guided by error messages and incorrect outputs 
to fgure out the precise usage of an unfamiliar API call. In the 
interview, they noted: “I was defnitely using the projections [...] as 
I was editing the suggestions to see if my intended changes actually 
were followed through.” 

5.3 RQ3: Cognitive Load in Validation 

LP participants experienced signifcantly lower cognitive load 
in the Pandas task but not the Bigram task. In Pandas, LP 
participants experienced signifcantly lower cognitive load in four 
out of fve aspects of NASA-TLX [14]: mental demand (� = .039,� = 
14.5), performance (� = .048,� = 15.5), efort (� = .015,� = 11), 
and frustration (� = .0004,� = 0). We fnd no signifcant diferences 
in responses to Bigram, but LP participants reported slightly higher 
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Figure 4: NASA Task Load Index (TLX) results for the Fixed-Prompt tasks: Bigram on the left, and Pandas on the right. Higher 
scores indicate higher cognitive load (in case of Performance this means higher failure rate). 

performance measures (medianLP = 3, medianNo−LP = 2), which 
stand for higher failure rates. 
Participants found LP helpful in distinguishing between mul-
tiple suggestions. Participants from both the No-LP (P9, P14, P17) 
and LP (P3, P16) groups commented on the utility of seeing mul-

tiple suggestions at once: “[Seeing multiple suggestions] gave me 
diferent ways to look at the code and gave me diferent ideas” (P9) 
and “multiple suggestions gave points of comparison that were useful” 
(P14). However, some No-LP participants (P6, P7, P15, P17) said they 
found the suggestions hard to distinguish. They noted the difculty 
of diferentiating just by reading the code because “the suggestions 
[were] all almost the same thing” (P7), and observed that “the tool 
did not really help with choosing between suggestions” (P15). In com-

parison, some in the LP group (P1, P16) specifcally commented 
that Live Programming was helpful in distinguishing and choosing 
between multiple code suggestions; P1 said: “Being able to preview, 
edit, and look at the projection boxes before accepting a snippet was 
very helpful when choosing between multiple suggestions.” As far 
as we are aware, this is a new application of Live Programming, 
specifc to AI programming assistants and not previously explored 
in Live Programming literature. 

6 DISCUSSION 
Live Programming lowers the cost of validation by execution. 
Although both LP and No-LP participants had access to runtime 
values as a validation mechanism, those without LP needed to 
examine the code to decide which values to print, add the print 
statements, run the code, and match each line in the output to 
the corresponding line in the code. If they wanted to inspect a 
diferent suggestion, they had to repeat this process from the start. 
Meanwhile, LP participants could simply click on the suggestion 
to preview it and get immediate access to all the relevant runtime 
information, easily switching between suggestions as necessary. In 
other words, LP lowers the cost—in terms of both time and mental 
efort—of access to runtime values. As a result, we saw LP partici-
pants relied on runtime values more for validation, as they spent 
less time examining the code in general—and signifcantly so for 
the Pandas task—and more often used intermediate values to fnd 

bugs in Bigram (Sec. 5.2). Our fndings are consistent with prior 
work [2, 21], which demonstrated that programmers more often 
use validation strategies with lower time costs. Hence, by lower-
ing the cost of access to runtime values, Live Programming promotes 
validation by execution. 

The lower cost of validation by execution prevents over- and 
under-reliance. As discussed in Sec. 5.1, we found six instances of 
unsuccessful validation in our study, all from the No-LP group, over-
relying on AI suggestions in the Bigram task, and under-relying in 
Pandas. We attribute these failures to the high cost of validation 
by execution: those who over-relied did not inspect the runtime 
behavior of the suggestions in enough detail, while those with 
under-reliance lacked the afordances to do so efectively, and so 
ran out of time before they could validate the suggestions. Our 
results echo prior fndings [34] that relate the cost of a validation 
strategy to its efectiveness in reducing over-reliance on AI. Prior 
work has also shown [11, 36] that programmers often struggle to 
form an appropriate level of trust in code synthesizers, whether 
AI-based or not; our results suggest an important new role for Live 
Programming in addressing this challenge. We conclude that the 
lower cost of validation by execution in Live Programming leads to 
more accurate judgments of the correctness of AI-generated code. 

Validation strategies depend on the task. Sec. 5.2 shows that 
participants overall spent signifcantly more time examining the 
code in Bigram than in Pandas and also paid more attention to 
code attributes in the former. Participants explained the diference 
in their validation strategies by two factors: (1) Pandas contained 
unfamiliar API calls, the meaning of which they could not infer 
from the code alone; and (2) they perceived Pandas as a one-of task, 
which only had to work on the given input. We conjecture that 
(1) is partly due to our participants being LP novices: as they get 
more used to the environment, they are likely to rely on previews 
more, even if they are not forced into it by an unfamiliar API (as 
P4 mentioned in Sec. 5.2). (2), though, is more fundamental: when 
dealing with a general task, correctness is not all that matters; code 
quality becomes important as well, and LP does not help with that. 

In Open-Prompt tasks, code examination was less prevalent 
in the overall task duration, because in these tasks participants 
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spent a signifcant amount of time on activities besides validation 
(e.g., decomposing the problem and crafting prompts). It might 
seem surprising, however, that we did not see any diference in 
examination time between the two groups in Box Plot, which is an 
API-heavy, one-of task, similar to Pandas. This might be because, in 
Box Plot, the cost of validation by execution was already low for No-
LP participants: this task did not require inspecting intermediate 
values, because the efects of each line of code were refected on the 
fnal plot in a compositional manner (i.e., it was easy to tell what 
each line of code was doing just by looking at the fnal plot). 

In conclusion, Live Programming does not completely eliminate 
the need for code examination but reduces it in tasks amenable to 
validation by execution. 

Live Programming lowers the cognitive load of validation by 
execution. In Pandas, LP participants experienced lower cognitive 
load in four out of fve TLX categories (Sec. 5.3). This confrms 
our hypotheses that LP lowers the cost of validation by execu-
tion, and that Pandas is a task amenable to such validation. More 
specifcally, we conjecture that, by automating away the process 
of writing print statements, LP reduces workfow interruptions, 
which were identifed as one of the sources of increased cognitive 
load in reviewing AI-generated code [36]. 

In Bigram, however, we did not observe a similar reduction in 
cognitive load; in fact, LP participants reported higher cognitive 
load in the “performance” category (i.e., they perceived themselves 
as less successful). Our interpretation is that the cognitive load 
in this task was dominated by debugging and not validation, and 
whereas all participants in the LP group engaged in debugging, 
only two-thirds of the No-LP group did so. Finally, the higher “per-
formance” ratings from the LP group were from those who ran out 
of time trying to fx the code, and hence were aware that they had 
failed. These fndings show that Live Programming by itself does 
not necessarily help with debugging a faulty suggestion. As we saw 
in Sec. 5.2, it can be helpful when the user has a set of potential 
fxes in mind, which they can quickly try out and get immediate 
feedback on. But when the user does not have potential fxes in 
mind, they need to rely on other tools, such as searching the web 
or using chat-based AI assistants. 

From these fndings, we conclude that Live Programming low-
ers the cognitive load of validating AI suggestions when the task is 
amenable to validation by execution. 

7 CONCLUSION AND FUTURE WORK 
We investigated an application of Live Programming in the do-
main of AI-assisted programming, fnding that LP can reduce over-
and under-reliance on AI-generated code by lowering the cost of 
validation by execution. Our work highlights new benefts of LP 
specifc to AI-assisted programming, such as building appropri-
ate trust in the assistant and helping to choose between multiple 
suggestions. Our study is necessarily limited in scope: we focused 
on self-contained tasks due to LP’s limited support for complex 
programs [20, 31] and its need for small demonstrative inputs [28]. 
We hope that our fndings inform future studies on code validation 
and motivate further research into AI-LP integration. To that end, 
we highlight key opportunities below. 

To ofer liveness, LP places several burdens on the user. The 
user must provide a complete executable program and a set of test 
cases, and then look through potentially large runtime traces for 
the relevant information. AI may alleviate these burdens by flling 
in missing runtime values [29] for incomplete programs, generating 
test cases [19, 38], and predicting the most relevant information to 
be displayed at each program point. Looking beyond the validation 
of newly generated code, there are also opportunities for AI-LP 
integration for debugging and code repair [38]. In combination, 
AI-LP would tighten the feedback loop of querying and repairing 
AI-generated code: users could validate code via LP, request repair 
using the runtime information from LP [11], and further validate 
the repair in LP. 
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