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ABSTRACT

Al-powered programming assistants are increasingly gaining popu-
larity, with GitHub Copilot alone used by over a million developers
worldwide. These tools are far from perfect, however, producing
code suggestions that may be incorrect in subtle ways. As a result,
developers face a new challenge: validating AT’s suggestions. This
paper explores whether Live Programming (LP), a continuous dis-
play of a program’s runtime values, can help address this challenge.
To answer this question, we built a Python editor that combines an
Al-powered programming assistant with an existing LP environ-
ment. Using this environment in a between-subjects study (N = 17),
we found that by lowering the cost of validation by execution, LP
can mitigate over- and under-reliance on Al-generated programs
and reduce the cognitive load of validation for certain types of tasks.
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1 INTRODUCTION

Recent advances in large language models have given rise to Al-
powered code suggestion tools like GitHub Copilot [12], Amazon
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CodeWhisperer [1], and ChatGPT [23]. These Al programming as-
sistants are changing the face of software development, automat-
ing many of the traditional programming tasks, but at the same
time introducing new tasks into the developer’s workflow—such
as prompting the assistant and reviewing its suggestions [2, 22].
Development environments have some catching up to do in order
to provide adequate tool support for these new tasks.

In this paper, we focus on the task of validating Al-generated
code, i.e., deciding whether it matches the programmer’s intent.
Recent studies show that validation is a bottleneck for Al-assisted
programming: according to Mozannar et al. [22], it is the single
most prevalent activity when using Al code assistants, and other
studies [3, 21, 32, 36] report programmers having trouble evaluat-
ing the correctness of Al-generated code. Faced with difficulties in
validation, programmers tend to either under-rely on the assistant—
i.e., lose trust in it—or to over-rely—i.e., blindly accept its sugges-
tions [27, 30, 34, 37]; the former can cause them to abandon the
assistant altogether [2], while the latter can introduce bugs and secu-
rity vulnerabilities [26]. These findings motivate the need for better
validation support in Al-assisted programming environments.

This paper investigates the use of Live Programming (LP) [13, 31,
35] as a way to support the validation of Al-generated code. LP en-
vironments, such as Projection Boxes [20], visualize runtime values
of a program in real-time without any extra effort on the part of the
programmer. We hypothesize that these environments are a good fit
for validation, since LP has been shown to encourage more frequent
testing [4] and facilitate bug finding [41] and program comprehen-
sion [5, 7, 8]. On the other hand, validation of Al-generated code
is a new and unexplored domain in program comprehension that
comes with its unique challenges, such as multiple Al suggestions
for the programmer to choose from, and frequent context switches
between prompting, validation, and code authoring [22], which
cause additional cognitive load [36]. Hence, the application of LP
to the validation setting warrants a separate investigation.

To this end, we constructed a Python environment that com-
bines an existing LP environment [20] with an Al assistant similar
to Copilot’s multi-suggestion pane. Using this environment, we
conducted a between-subjects experiment (N = 17) to evaluate how
the availability of LP affects users’ effectiveness and cognitive load
in validating Al suggestions. Our study shows that Live Program-
ming facilitates validation through lowering the cost of inspecting
runtime values; as a result, participants were more successful in
evaluating the correctness of Al suggestions and experienced lower
cognitive load in certain types of tasks.
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Suggestion 2

Preview

res = {}
s = s.lower()
for i in range(@, len(s)):
if s[i] in res:
res[s[i]] += 1
else:
res[s[i]] =1
print(res)
for i in res.keys():
if res[i] < 2:
res.pop(i)
print(res)

Suggestion 3
Preview

res = "'
bigrams = {}
for i in range(@, len(s) - 1):
bigram = s[i] + s[i + 1]
if bigram not in bigrams:
bigrams [bigram] = @
bigrams[bigram] += 1
max_value = max(bigrams.values())
for bigram in bigrams:
if bigrams([bigram] == max_value:

Figure 1: LEAP is a Python environment that enables validating AI-generated code suggestions via Live Programming.

(@ Users prompt the Al assistant via comments and/or code context. ) The Suggestion Panel shows the Al-generated suggestions.
(© Pressing a Preview button inserts the suggestion into the editor. ¢) Users can inspect the runtime behavior of the suggestion
in Projection Boxes [20], which are updated continuously as the user edits the code.

2 RELATED WORK

Validation of AI-Generated Code. A rapidly growing body of
work analyzes how users interact with Al programming assistants.
Studies show that programmers spend a significant proportion of
their time validating Al suggestions [2, 3, 22]. Moreover, a large-
scale survey [21] indicates that 23% of their respondents have trouble
evaluating correctness of generated code, which echoes the findings
of lab studies [2, 32] and a need-finding study [36], where partici-
pants report difficulties understanding Al suggestions and express
a desire for better validation support. Barke et al. [2] and Liang et al.
[21] find that programmers use an array of validation strategies,
and the prevalence of each strategy is closely related to its time
cost. Specifically, despite the help of execution techniques built into
the IDE for validating Al suggestions [30], execution is used less
often than quick manual inspection or type checking because it is
more time-consuming [2, 21] and interrupts programmers’ work-
flows [36]. The lack of validation support designed for Al-assisted
programming, as Wang et al. [36] identify, leads to a higher cog-
nitive load in reviewing suggestions. The high cost of validating
Al suggestions, according to some studies [27, 34, 37], can lead to
both under-reliance—lack of trust—and over-reliance—uncritically
accepting wrong code—on the part of the programmer.
Comparatively fewer existing papers explore interface designs to
support validation of Al-generated code: Ross et al. [27] investigates
a conversational assistant that allows programmers to ask questions
about the code, while Vasconcelos et al. [33] targets over-reliance
by highlighting parts of generated code that might need human

intervention; our work is complementary to these efforts in that it
focuses on facilitating validation by execution.

Validation in Program Synthesis. Another line of related work
concerns the validation of code generated by search-based (non-
Al-powered) program synthesizers. Several synthesizers help users
validate generated code by proactively displaying its outputs [9, 16,
40] and intermediate trace values [25], although none of them use
a LP environment. The only system we are aware of that combines
LP and program synthesis is SNIPPy [11], but it uses LP to help the
user specify their intent rather than validate synthesized code.

Live Programming. Live Programming (LP) provides immediate
feedback on code edits, often in the form of visualizations of the
runtime state [13, 31, 35]. Some quantitative studies find that pro-
grammers with LP find more bugs [41], fix bugs faster [18], and
test a program more often [4]. Others find no effect in knowledge
gain [15] or efficiency in code understanding [5]. Still, qualitative
evidence points to the helpfulness of LP for program comprehen-
sion [5, 7, 8] and debugging [15, 17]. In contrast to these studies,
which evaluate the effectiveness of LP for comprehending and de-
bugging human-written code, our work investigates its effectiveness
for validating Al-generated code, a setting that comes with a number
of previously unexplored challenges [22, 36].

3 LEAP: THE TOOL USED IN THE STUDY

To study how Live Programming affects the validation of AI-
generated code, we implemented LEap (Live Exploration of Al-
Generated Programs), a Python environment that combines an
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Al assistant with LP. This section demonstrates LEAP via a usage
example and discusses its implementation.

Example Usage. Naomi, a biologist, is analyzing some genome
sequencing data using Python. As part of her analysis, she needs to
find the most common bigram (i.e., two-letter sequence) in a DNA
strand.! To this end, she creates a function dominant_bigram (line 3
in Fig. 1); she has a general idea of what this function might look
like, but she decides to use LEAP to help translate her idea into code.

Naomi adds a docstring (line 5), which conveys her intent in
natural language, and a test case (line 24), which will help her
validate the code. With the cursor positioned at line 7, she
presses and to ask for suggestions.

:) Within seconds, a panel opens on the right containing five Al-

generated code suggestions; Naomi quickly skims through all

of them. The overall shape of Suggestion 3 looks most similar to

what she has in mind: it first collects the counts of all bigrams

into a dictionary, and then iterates through the dictionary to

pick a bigram with the maximum count.

Naomi tries this suggestion, pressing its Preview button; LEAP

inserts the code into the editor and highlights it (lines 8-18).

©) As soon as the suggestion is inserted, Projection Boxes [20]
appear, showing runtime information at each line in the code.
Inspecting intermediate values helps Naomi understand what
the code is doing step by step. When she gets to line 18, she
realizes that the dictionary actually has two dominant bigrams
with the same count, and the code returns the last one. She real-
izes this is not what she wants: instead, she wants to select the
dominant bigram that comes first alphabetically (ag in this case).

One option Naomi has is to try other suggestions. She clicks on the
Preview button for Suggestion 2; LEAP then inserts Suggestion 2
into the editor, in place of the prior suggestion, and the Projection
Boxes update instantly to show its behavior. Naomi immediately
notices that Suggestion 2 throws an exception inside the second
loop, so she abandons it and goes back to Suggestion 3, which got
her closer to her goal.

To fix Suggestion 3, Naomi realizes that she can accumulate all
dominant bigrams in a list, sort the list, and return the first element.
She does not remember the exact Python syntax for sorting a list, so
she tries different variations—including 1 = 1.sort,1 = 1.sort(),1
= sort(1),1 = 1l.sorted(), and so on. Fortunately, LEAP’s support
for LP allows her to get instant feedback on the behavior of each
edit, so she iterates quickly to find one correct option: 1 = sorted(1).
Note that Naomi’s workflow for using Suggestion 3—validation,
finding bugs, and fixing bugs—relies on full LP support, and would
not work in traditional environments like computational notebooks,
which provide easy access to the final output of a snippet but not
the intermediate values or immediate feedback on edits.

Implementation. To generate code suggestions, LEAP uses the
text-davinci-003 model [24], the largest publicly available code-
generating model at the time of our study. To support live display
of runtime values (Fig. 1)), we built LEap on top of Projection
Boxes, a state-of-the-art LP environment for Python [20] capable
of running in the browser. The code for LEaP can be found at
https://bit.ly/leap-code. As the control condition for our study, we

!This is one of the programming tasks from our user study, and each of Naomi’s
interactions with LEAP has been observed in some of our participants.
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also created a version of LEAP, where Projection Boxes are disabled,
and instead the user can run the code explicitly by clicking a Run
button and see the output in a terminal-like Output Panel.

4 USER STUDY

We conducted a between-subjects study to answer the following
research questions:

RQ1) How does Live Programming affect over- and under-reliance
in validating Al-generated code?

RQ2) How does Live Programming affect validation strategies?

RQ3) How does Live Programming affect the cognitive load of
validating Al-generated code?

Tasks. Our study incorporates two categories of programming
tasks, Fixed-Prompt and Open-Prompt tasks.

In Fixed-Prompt tasks, we provide participants with a fixed set of
five Al suggestions that are intended to solve the entire problem.
We curated the suggestions by querying Copilot [12] and LEar
with slight variations of the prompt. Fixed-Prompt tasks isolate the
effects of Live Programming on validation behavior by controlling
for the quality of suggestions. We created two Fixed-Prompt tasks,
each with five suggestions: (T1) Bigram: Find the most frequent
bigram in a given string, resolving ties alphabetically (same task
in Sec. 3); (T2) Pandas: Given a pandas data frame with data on dogs
of three size categories (small, medium, and large), compute various
statistics, imputing missing values with the mean of the appropriate
category. These tasks represent two distinct styles: Bigram is a
purely algorithmic task, while Pandas focuses on using a complex
API. Pandas has two correct Al suggestions (out of five) while
Bigram has none, a realistic scenario that programmers encounter
with imperfect models.

In Open-Prompt tasks, participants are free to invoke the Al
assistant however they want. This task design is less controlled
than Fixed-Prompt, but more realistic, thus increasing ecological
validity. We used two Open-Prompt tasks: (T3) String Rewriting:
parse a set of string transformation rules and apply them five times
to a string; (T4) Box Plot: given a pandas data frame containing
10 experiment data records, create a matplotlib box plot of time
values for each group, combined with a color-coded scatter plot.
Both tasks are more complex than the Fixed-Prompt tasks, and
could not be solved with a single interaction with the Al assistant.

Participants and Groups. We recruited 17 participants; 5 self-
identified as women, 10 as men, and 2 chose not to disclose. 6 were
undergraduate students, 9 graduate students, and 2 professional
engineers. Participants self-reported experience levels with Python
and Al assistants: 2 participants used Python ‘occasionally’, 8 ‘reg-
ularly’, and 7 ‘almost every day’; 7 participants declared they had
‘never’ used Al assistants, and 8 used such tools ‘occasionally’.

There were two experimental groups: “LP” participants used
Leap with Projection Boxes, as described in Fig. 1; “No-LP” par-
ticipants used LEAP without Projection Boxes, instead executing
programs in a terminal-like Output Panel. Participants completed
both Fixed-Prompt tasks and one Open-Prompt task. We used block
randomization [10] to assign participants to groups while evenly
distributing across task order and selection and balancing experi-
ence with Python and Al assistants across groups. The LP group
had 8 participants, and No-LP had 9.


https://bit.ly/leap-code
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Procedure and Data. We conducted the study over Zoom as each
participant used LEAP in their web browser. Each session was
recorded and included two Fixed-Prompt tasks (10 minutes each),
two post-task surveys, one Open-Prompt task (untimed), one post-
study survey, and a semi-structured interview. A replication pack-
age2 shows the details of our procedure, tasks, and data collection.

For quantitative analysis, we performed closed-coding on video
recordings of study sessions to determine each participant’s sub-
Jjective assessment of their success on the task; we matched this
data against the objective correctness of their final code to establish
whether they succeeded in accurately validating Al suggestions.
We also measured task duration—proportion of time Suggestion
Panel (Fig. 1) was in focus—and participants’ cognitive load (via
five NASA Task Load Index (TLX) questions [14]). We used Mann-
Whitney U tests to assess all differences except for validation suc-
cess, which we analyzed via Fisher’s exact tests.

In addition, we collected qualitative data from both Fixed-Prompt
and Open-Prompt tasks. We noted validation-related behavior and
quotes, which we discussed in memoing meetings [6] after the study.
Through reflexive interpretation, we used category analysis [39] to
assemble the qualitative data into groups. We then revisited notes
and recordings to iteratively construct high-level categories.

5 RESULTS
5.1 RQ1: Over- And Under-Reliance on Al

To investigate if Live Programming affects over- and under-reliance,
we measured whether participants successfully validated the AI
suggestions in the Fixed-Prompt tasks, as described below. We
also compared task completion times and participants’ confidence
in their solutions (collected through post-task surveys). However,
neither result was significantly different between the two groups,
so we do not discuss them below.>

We found six instances of unsuccessful validation, all from
the No-LP group. As described in Sec. 4, we compared subjective
and objective assessments of code correctness on the two Fixed-
Prompt tasks, which resulted in four outcomes: (1) Complete and
Accurate, where the participant submitted a correct solution within
the task time limit, (2) Complete and Inaccurate, where the par-
ticipant submitted an incorrect solution without recognizing the
error, (3) Timeout after Validation, where the participant formed
an accurate understanding of the correctness of the suggestions
but reached the time limit before fixing the error in their chosen
suggestion, and (4) Timeout during Validation, where the partici-
pant reached the time limit before they had finished validating the
suggestions. We consider (1) and (3) to be instances of successful val-
idation, (2) to be an instance of over-reliance on the Al suggestions,
and (3) to be an instance of under-reliance, as the participant did not

Zhttps://bitly/leap-study-materials

3In median times, the LP group completed the Pandas task faster by 35 seconds
(p = .664,U = 31). For Bigram, LP participants were slower by 3 minutes and 51
seconds (p = .583, U = 42), though this difference changes to faster by 10 seconds if we
exclude those who solved the task incorrectly. For Pandas, both groups had the median
ratings of confidence in correctness as “Agree” on seen inputs (p = .784,U = 30)
and “Neutral” on unseen inputs (p = .795, U = 33). For Bigram, the LP group had the
median rating of confidence in correctness on seen inputs as “Agree”, while the No-LP
group had “Strongly Agree” (p = .097, U = 19.5). As for confidence in correctness
on unseen inputs, the median for the LP group was “Neutral”, and that for the No-LP
group was “Agree” (p = .201,U = 22.5).
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Figure 2: Success in validating Al suggestions across groups
for Fixed-Prompt tasks. “Completed” means the participant
submitted a solution they were satisfied with by the time
limit, and “Timeout” means they did not. We deem the vali-
dation successful if a participant submitted a correct solution
(dark blue) or timed out when attempting to fix the correctly
identified bugs in their chosen suggestion (light blue).

successfully validate the suggestions in the given time. As Fig. 2
shows, we found three instances of over-reliance in the Bigram task
and three instances of under-reliance in the Pandas task, all from
the No-LP group, though the overall between-group difference was
not significant (p = .206 for both tasks).

Participants with over-reliance did not inspect enough run-
time behavior. The three No-LP participants with over-reliance
in Bigram (P5, P12, P15) made a similar mistake: they accepted
one of the mostly-correct suggestions (similar to Suggestion 3 in
Sec. 3) and failed to notice that ties were not resolved alphabetically.
Among the three participants, P5 did not run their code at all. P12
and P15 both tested only one suggestion on the given input and
failed to notice the presence of two bigrams of the same count
(and the fact that other suggestions returned different results). In
addition, P15 cited “reading the comments on what it was doing” as
a key factor for choosing the suggestion they did. That suggestion
began with a comment stating that it resolved ties alphabetically,
but the following code did not do so.

Participants with under-reliance lacked affordances for in-
specting runtime behavior. The three No-LP participants who
under-relied on Al suggestions (P7, P9, P15) tried to use runtime
values for validation but struggled with doing so. P9 previewed and
ran multiple suggestions but did not add any print statements to
the code, and so they could only see the output of one of the sug-
gestions, which ended in a print statement. P15 ran all suggestions
and did add a print statement to each to inspect the final return
value, but the need to change the print statement and re-run each
time made this process difficult, and they lost track of which sug-
gestions they considered the most promising, saying ‘I forgot which
ones looked decent.” Finally, P7’s strategy was to print the output
of subexpressions from various suggestions in order to understand
their behavior and combine them into a single solution, but this
was time-consuming, so they did not finish.

5.2 RQ2: Validation Strategies

Our participants had access to two validation strategies: examina-
tion (reading the code) and execution (inspecting runtime values).
The general pattern we observed was that participants first did
some amount of examination inside the Suggestion Panel—ranging
from a quick glance to thorough reading—and then proceeded to
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Figure 3: Percentage of time spent in the Suggestion Panel
across the two groups for Fixed-Prompt tasks.

preview zero or more suggestions, performing further validation by
execution inside the editor. To this end, No-LP participants in most
tasks ran the code and added print statements for both final and
intermediate values; LP participants in all tasks inspected both final
and intermediate runtime values in Projection Boxes (by moving
the cursor from line to line to bring different boxes into focus), and
occasionally added print statements to see variables not shown by
default. Below we discuss notable examples of validation behavior,
as well as differences between the two groups and across tasks.

LP participants spent less time reading the code. We use
the time the Suggestion Panel was in focus as a proxy for ex-
amination time; Fig. 3 shows this time as a percentage of the
total task duration. The No-LP group spent more time in the
Suggestion Panel compared to LP for both Fixed-Prompt tasks.
The difference is significant in the Pandas task (p = .02,U =
11, medianyp = 14.05%, mediann,—rp = 30.47%) but not in Bigram
(p = .14, U = 20, medianyp = 24.70%, mediann,—Lp = 36.57%). We
also collected this data for the Open-Prompt tasks, although it
should be interpreted with caution due to the unstructured na-
ture of the tasks (e.g., participant engagement with the assistant
and suggestion quality varied). The results are consistent with the
Fixed-Prompt tasks—i.e., No-LP participants spent more time in
the Suggestion Panel—but the difference is not significant, and
the effect in Box Plot is very small (p = .14,U = 3.5, medianyp =
6.25%, mediann,—rp = 15.49% for String Rewriting; p = .67,U =
6, medianyp = 8.10%, mediann,—rp = 8.70% for Box Plot).

Participants relied on runtime values more in API-heavy, one-
off tasks. According to Fig. 3, both groups spent more time exam-
ining the code in Bigram, while in Pandas they jumped to execu-
tion more immediately (medianpandas = 16.96%, mediangigram =
31.67%,p = .04, U = 206). This difference in validation strate-
gies between the two tasks was also reflected in the interviews.
For example, P1 described their strategy for Pandas as follows: ‘T
didn’t look too closely in the actual code, I was just looking at the
runtime values on the side.” Instead, in Bigram, participants cared
more about the code itself, preferring suggestions based on their
expected algorithm, data structure, or style (e.g. P15 “was really
looking for the dictionary aspect”), with the most popular attribute
being “short”/“readable”, cited by 10 out of 17 participants. One
explanation participants gave for the difference in behavior is that
Pandas is an API-heavy task, and when dealing with unfamiliar
APIs, reading the code is just not very helpful: “When it’s using more
Jjargony stuff that doesn’t translate directly into words in your brain,
then seeing the preview makes it clearer” (P3). Another explanation
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they gave is that Pandas was perceived by the participants as a
one-off task, i.e, it only needed to work on the one specified input,
whereas Bigram was perceived as general, i.e., it needed to work on
“any sort of string [... ] not only [... ] the specific string that was tested”
(P3); this was not explicit in the instructions, but in retrospect it is
a reasonable assumption, given the problem domains and structure
of the starter code. On the other hand, some LP participants con-
jectured that with more familiarity with Live Programming, they
would rely on runtime values more, even in tasks like Bigram: “If
I were to use this tool again I would preview more immediately, just
because I think I was very focused on whether it produced how I would
solve the problem vs. whether it solved the problem correctly” (P4).

LP participants benefitted from visualizing intermediate val-
ues. We looked into the validation strategies used in Bigram to
identify the tie-resolution issue in Al suggestions (excluding P17
because they wrote the code from scratch). In the input we pro-
vided, it was hard to identify the most common bigram at a glance,
which made it difficult to validate suggestions just by looking at
the final result. Five out of eight LP participants found the issue by
inspecting intermediate values and noticing that multiple bigrams
in the input have the same count (the other three relied on custom
test cases and code examination). In the No-LP group, three out of
eight participants failed to identify the issue and of the remaining
five who succeeded, only one (P6) relied on intermediate values to
do so. In addition, multiple LP participants (P1, P3, P4) mentioned
the usefulness of intermediate values in the interview, especially for
long suggestions. P1 said: “Because it’s a block of text as a suggestion,
having projection boxes is more important [...] my thought was ‘let
me go line by line to see what is going on”” In contrast, a No-LP
participant (P9) remarked that they “had to really look through the
code and try to visualize it in [their] mind.”

LP participants used liveness features for validation and de-
bugging. For validation, LP participants made use of full liveness,
i.e, the ability to see the immediate effects of their edits. Five par-
ticipants in Pandas added auxiliary calculations to double-check
the correctness of the final output, e.g., the mean of specific cells in
the input table, comparing it to the output table. When it comes to
debugging, LP participants made multiple rounds of trial and error
guided by liveness. In fact, the example in Sec. 3 was inspired by
P4’s debugging process in the Bigram task. Also, in Box Plot, P1
made many repeated edits in an Al suggestion to tune the place-
ment of a label, guided by error messages and incorrect outputs
to figure out the precise usage of an unfamiliar API call. In the
interview, they noted: ‘T was definitely using the projections [...] as
I was editing the suggestions to see if my intended changes actually
were followed through.”

5.3 RQ3: Cognitive Load in Validation

LP participants experienced significantly lower cognitive load
in the Pandas task but not the Bigram task. In Pandas, LP
participants experienced significantly lower cognitive load in four
out of five aspects of NASA-TLX [14]: mental demand (p = .039,U =
14.5), performance (p = .048,U = 15.5), effort (p = .015,U = 11),
and frustration (p = .0004, U = 0). We find no significant differences
in responses to Bigram, but LP participants reported slightly higher
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Figure 4: NASA Task Load Index (TLX) results for the Fixed-Prompt tasks: Bigram on the left, and Pandas on the right. Higher
scores indicate higher cognitive load (in case of Performance this means higher failure rate).

performance measures (medianrp = 3, mediany,—rp = 2), which
stand for higher failure rates.

Participants found LP helpful in distinguishing between mul-
tiple suggestions. Participants from both the No-LP (P9, P14, P17)
and LP (P3, P16) groups commented on the utility of seeing mul-
tiple suggestions at once: “[Seeing multiple suggestions] gave me
different ways to look at the code and gave me different ideas” (P9)
and “multiple suggestions gave points of comparison that were useful”
(P14). However, some No-LP participants (P6, P7, P15, P17) said they
found the suggestions hard to distinguish. They noted the difficulty
of differentiating just by reading the code because “the suggestions
[were] all almost the same thing” (P7), and observed that “the tool
did not really help with choosing between suggestions” (P15). In com-
parison, some in the LP group (P1, P16) specifically commented
that Live Programming was helpful in distinguishing and choosing
between multiple code suggestions; P1 said: “Being able to preview,
edit, and look at the projection boxes before accepting a snippet was
very helpful when choosing between multiple suggestions.” As far
as we are aware, this is a new application of Live Programming,
specific to Al programming assistants and not previously explored
in Live Programming literature.

6 DISCUSSION

Live Programming lowers the cost of validation by execution.
Although both LP and No-LP participants had access to runtime
values as a validation mechanism, those without LP needed to
examine the code to decide which values to print, add the print
statements, run the code, and match each line in the output to
the corresponding line in the code. If they wanted to inspect a
different suggestion, they had to repeat this process from the start.
Meanwhile, LP participants could simply click on the suggestion
to preview it and get immediate access to all the relevant runtime
information, easily switching between suggestions as necessary. In
other words, LP lowers the cost—in terms of both time and mental
effort—of access to runtime values. As a result, we saw LP partici-
pants relied on runtime values more for validation, as they spent
less time examining the code in general—and significantly so for
the Pandas task—and more often used intermediate values to find

bugs in Bigram (Sec. 5.2). Our findings are consistent with prior
work [2, 21], which demonstrated that programmers more often
use validation strategies with lower time costs. Hence, by lower-
ing the cost of access to runtime values, Live Programming promotes
validation by execution.

The lower cost of validation by execution prevents over- and
under-reliance. As discussed in Sec. 5.1, we found six instances of
unsuccessful validation in our study, all from the No-LP group, over-
relying on Al suggestions in the Bigram task, and under-relying in
Pandas. We attribute these failures to the high cost of validation
by execution: those who over-relied did not inspect the runtime
behavior of the suggestions in enough detail, while those with
under-reliance lacked the affordances to do so effectively, and so
ran out of time before they could validate the suggestions. Our
results echo prior findings [34] that relate the cost of a validation
strategy to its effectiveness in reducing over-reliance on Al Prior
work has also shown [11, 36] that programmers often struggle to
form an appropriate level of trust in code synthesizers, whether
Al-based or not; our results suggest an important new role for Live
Programming in addressing this challenge. We conclude that the
lower cost of validation by execution in Live Programming leads to
more accurate judgments of the correctness of Al-generated code.

Validation strategies depend on the task. Sec. 5.2 shows that
participants overall spent significantly more time examining the
code in Bigram than in Pandas and also paid more attention to
code attributes in the former. Participants explained the difference
in their validation strategies by two factors: (1) Pandas contained
unfamiliar API calls, the meaning of which they could not infer
from the code alone; and (2) they perceived Pandas as a one-off task,
which only had to work on the given input. We conjecture that
(1) is partly due to our participants being LP novices: as they get
more used to the environment, they are likely to rely on previews
more, even if they are not forced into it by an unfamiliar API (as
P4 mentioned in Sec. 5.2). (2), though, is more fundamental: when
dealing with a general task, correctness is not all that matters; code
quality becomes important as well, and LP does not help with that.

In Open-Prompt tasks, code examination was less prevalent
in the overall task duration, because in these tasks participants
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spent a significant amount of time on activities besides validation
(e.g., decomposing the problem and crafting prompts). It might
seem surprising, however, that we did not see any difference in
examination time between the two groups in Box Plot, which is an
API-heavy, one-off task, similar to Pandas. This might be because, in
Box Plot, the cost of validation by execution was already low for No-
LP participants: this task did not require inspecting intermediate
values, because the effects of each line of code were reflected on the
final plot in a compositional manner (i.e., it was easy to tell what
each line of code was doing just by looking at the final plot).

In conclusion, Live Programming does not completely eliminate
the need for code examination but reduces it in tasks amenable to
validation by execution.

Live Programming lowers the cognitive load of validation by
execution. In Pandas, LP participants experienced lower cognitive
load in four out of five TLX categories (Sec. 5.3). This confirms
our hypotheses that LP lowers the cost of validation by execu-
tion, and that Pandas is a task amenable to such validation. More
specifically, we conjecture that, by automating away the process
of writing print statements, LP reduces workflow interruptions,
which were identified as one of the sources of increased cognitive
load in reviewing Al-generated code [36].

In Bigram, however, we did not observe a similar reduction in
cognitive load; in fact, LP participants reported higher cognitive
load in the “performance” category (i.e., they perceived themselves
as less successful). Our interpretation is that the cognitive load
in this task was dominated by debugging and not validation, and
whereas all participants in the LP group engaged in debugging,
only two-thirds of the No-LP group did so. Finally, the higher “per-
formance” ratings from the LP group were from those who ran out
of time trying to fix the code, and hence were aware that they had
failed. These findings show that Live Programming by itself does
not necessarily help with debugging a faulty suggestion. As we saw
in Sec. 5.2, it can be helpful when the user has a set of potential
fixes in mind, which they can quickly try out and get immediate
feedback on. But when the user does not have potential fixes in
mind, they need to rely on other tools, such as searching the web
or using chat-based Al assistants.

From these findings, we conclude that Live Programming low-
ers the cognitive load of validating Al suggestions when the task is
amenable to validation by execution.

7 CONCLUSION AND FUTURE WORK

We investigated an application of Live Programming in the do-
main of Al-assisted programming, finding that LP can reduce over-
and under-reliance on Al-generated code by lowering the cost of
validation by execution. Our work highlights new benefits of LP
specific to Al-assisted programming, such as building appropri-
ate trust in the assistant and helping to choose between multiple
suggestions. Our study is necessarily limited in scope: we focused
on self-contained tasks due to LP’s limited support for complex
programs [20, 31] and its need for small demonstrative inputs [28].
We hope that our findings inform future studies on code validation
and motivate further research into AI-LP integration. To that end,
we highlight key opportunities below.
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To offer liveness, LP places several burdens on the user. The
user must provide a complete executable program and a set of test
cases, and then look through potentially large runtime traces for
the relevant information. Al may alleviate these burdens by filling
in missing runtime values [29] for incomplete programs, generating
test cases [19, 38], and predicting the most relevant information to
be displayed at each program point. Looking beyond the validation
of newly generated code, there are also opportunities for AI-LP
integration for debugging and code repair [38]. In combination,
AJ-LP would tighten the feedback loop of querying and repairing
Al-generated code: users could validate code via LP, request repair
using the runtime information from LP [11], and further validate
the repair in LP.
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