https://pubsonline.informs.org/journal/mnsc

MANAGEMENT SCIENCE

Articles in Advance, pp. 1-17
ISSN 0025-1909 (print), ISSN 1526-5501 (online)

The Cost of Impatience in Dynamic Matching: Scaling Laws and
Operating Regimes

Angela Kohlenberg,®* Itai Gurvich?®

2Kellogg School of Management, Northwestern University, Evanston, Illinois 60208

*Corresponding author

Contact: angela.kohlenberg@kellogg.northwestern.edu, () https: // orcid.org/0009-0006-0966-6492 (AK); i-gurvich@kellogg.northwestern.edu,
(® https: // orcid.org/0000-0001-9746-7755 (IG)

Received: May 18, 2023

Revised: October 29, 2023; January 10, 2024
Accepted: January 19, 2024

Published Online in Articles in Advance:
July 19, 2024

https://doi.org/10.1287/mnsc.2023.01513

Copyright: © 2024 INFORMS

Abstract. We study matching queues with abandonment. The simplest of these is the two-
sided queue with servers on one side and customers on the other, both arriving dynami-
cally over time and abandoning if not matched by the time their patience elapses. We iden-
tify nonasymptotic and universal scaling laws for the matching loss due to abandonment,
which we refer to as the “cost of impatience.” The scaling laws characterize the way in
which this cost depends on the arrival rates and the (possibly different) mean patience of
servers and customers. Our characterization reveals four operating regimes identified by
an operational measure of patience that brings together mean patience and utilization. The
four regimes subsume the regimes that arise in asymptotic (heavy-traffic) approximations.
The scaling laws, specialized to each regime, reveal the fundamental structure of the cost
of impatience and show that its order of magnitude is fully determined by (i) a “winner-
take-all” competition between customer impatience and utilization, and (ii) the ability to
accumulate inventory on the server side. Practically important is that when servers are
impatient, the cost of impatience is, up to an order of magnitude, given by an insightful
expression where only the minimum of the two patience rates appears. Considering the
trade-off between abandonment and capacity costs, we characterize the scaling of the opti-
mal safety capacity as a function of costs, arrival rates, and patience parameters. We prove
that the ability to hold inventory of servers means that the optimal safety capacity grows
logarithmically in abandonment cost and, in turn, slower than the square-root growth in
the single-sided queue.

History: Accepted by Baris Ata, stochastic models and simulation.
Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287 /mnsc.
2023.01513.
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1. Introduction

or if a donor is found outside the exchange (e.g., Ashlagi

In dynamic matching, participants arrive at a matching
market over time and wait to be matched. The funda-
mental tension in dynamic matching is between the
quality and efficiency of matches. Delaying matches to
“thicken the market” can lead to better matches becom-
ing available, but at the expense of increasing the time
to match. This tension is especially pronounced when
participants are impatient and leave (abandon) the
market if not matched within an amount of time that
they deem acceptable. In such cases, delaying matches
to thicken the market may have the opposite effect of
thinning the market through abandonments.
Abandonments (also called departures) are a key fea-
ture of dynamic matching applications. Examples
include ride hailing, where both riders and drivers may
abandon if the wait time is too long (e.g., Yu et al. 2022),
and organ exchanges, where donor-recipient pairs may
depart the exchange if the recipient’s health deteriorates

et al. 2018 and the references therein). Impatience is simi-
larly important in the allocation of perishable inventory
to impatient demand (e.g., blood banks (Bar-Lev et al.
2017) and food banks (Prendergast 2017)).

Much of the research on dynamic matching to date
assumes infinitely patient participants. This focus
makes sense, as the optimal control of these networks is
sufficiently complicated, even without impatience (e.g.,
Kerimov et al. 2021 and the references therein).

Ignoring impatience will lead to inaccurate evalua-
tion of system performance and may result in subopti-
mal decisions. Yet the extent to which abandonment
impacts system performance and how this depends
jointly on the arrival and impatience rates is not fully
understood. This knowledge is critical for optimal deci-
sion making.

We make a step toward a fuller understanding of
impatience in matching by (re)considering the simplest
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of matching models, as shown in Figure 1. There are
two types of participants: customers and servers. A
match consists of one customer and one server. Custo-
mers and servers with finite (random) patience arrive
dynamically over time and, if not immediately
matched, join their dedicated queue and wait to be
matched. There is no fundamental difference between
customers and servers; for convenience, we label the
participants with the greater arrival rate as servers.

With one possible match, the control that minimizes
abandonment is trivial: it is optimal to perform a match
whenever there is an available customer and an avail-
able server. Under this policy, arriving customers
match immediately with waiting servers, and vice
versa, so there are either customers waiting or servers
waiting, but never both. This is a two-sided (also called
“double-ended”) queue; see Figure 1.

When participants have infinite patience (do not
abandon), the match rate is trivially equal to the mini-
mum of the two arrival rates: min{A., A;}; with impa-
tience, this becomes an upper bound on the match rate.
The difference between this no-abandonment upper
bound and the actual match rate is the cost of impatience
(Col), which depends on the abandonment and arrival
rates of customers and servers.

Explicit steady-state expressions for the abandon-
ment rate can be derived for this model, but these
expressions are not informative beyond allowing for
numerical computations. Instead, we establish scaling
laws that characterize how the cost of impatience
changes as a function of the model parameters. Specifi-
cally, we derive expressions that both upper and lower
bound the true cost of impatience, up to multiplicative
constants that do not depend on the parameters. This
characterization is nonasymptotic and holds regardless
of any notion of asymptotic regime.

The scaling laws reveal four operating regimes that
encompass all combinations of model parameters.
These regimes subsume existing asymptotic regimes
and offer insights into the performance of a two-sided
queue in terms of simple building blocks. The scaling
laws identify the key determinants of match loss from
impatience. The operating regimes provide a simple
framework for identifying when and how settings

Figure 1. The Simplest Matching Model: A Two-Sided
Matching Queue with Abandonment
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are fundamentally different in terms of the impact
of impatience on match loss. We use these results and
scaling laws for the single-sided queue to draw atten-
tion to key properties of the two-sided queue with
abandonment.

1.1. Overview of Results

We establish a universal scaling law for the cost of
impatience as a function of the model parameters. That
is, we identify a function, S, of the arrival and patience
rate vectors, A = (A, As) and 0 = (0., O;), such that

1 Cla0) (Col ~ 8)
r— sae 7

for some constant I" that does not depend on the para-
meters. The function S is tractable and exposes four
operating regimes that are distinguished by the level of
impatience of customers and servers.

The level of impatience is based on a comparison
between the amount of time that a participant is willing
to wait and the amount of time that they have to wait to
match. Informally, customers are “patient” when they
are willing to wait longer than their expected time to
match; they are “impatient” otherwise. This is deter-
mined by a measure of the customer mean patience rel-
ative to utilization, p:=A./As. Servers are similarly
patient or impatient, based on a relative measure of the
server mean patience and utilization.

Three simple metrics determine whether customers
and servers are impatient or patient, which, in turn,
specify the operating regime for a matching market.
These are the utilization, p, and the arrival-to-patience
ratios, A./6. and A;/6s.

Any two-sided queue with abandonment operates
in one of four regimes and has Col proportional to
(upper and lower bounded by) the expression shown
for that regime in Figure 2. This nonasymptotic analysis
exposes a richer picture of the Col than asymptotic
approximations, which yield a single expression for the
Col when patience rates are fixed and arrival rates are
scaled up.

Customer impatience impacts the Col differently
than server impatience (recall that A. < As). To see this,
note that the Col is equal to the expected customer
abandonment rate. Customers abandon their queue,
Q,, at a rate of 6. when the server queue, Q,, is empty.
Therefore,

Col = 0.E[Q,|Qs = 0]P(Qs = 0).

When customers have to wait, the customer queue is
conveniently determined by a “winner-take-all” compe-
tition between customer impatience and excess capacity,
As—A¢ Only one of customer impatience or excess capac-
ity, but not both, matter for the scaling laws of the cus-
tomer queue (conditional on customers having to wait).
If excess capacity is high enough relative to customer
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Figure 2. Cost of Impatience for the Four Operating Regimes Where 6,,;, = min{6,, 65}, p = A/As and
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Note. PC, IC, PS, and IS denote Patient-Customer, Impatient-Customer, Patient-Server, and Impatient-Server, respectively, so that PCN IS

denotes the Patient-Customer, Impatient-Server regime.

impatience, excess capacity “wins,” and impatience
does not matter for scaling. Otherwise, impatience
“wins,” and excess capacity does not matter for scaling.
Mathematically, this is captured by the fact that the
expected customer queue (conditional on customers
having to wait) is proportional to the minimum of the
expected number in either an M/M/1 (no impatience)
queue or a critically loaded (no excess capacity)
M/M/1+ M queue:

E[Q.]Q, = 0] ~min{%, g—}

When customers are patient, they are willing to wait
longer than the expected time to match. Therefore, few
customers abandon, and abandonment has a limited
impact on the customer queue; the customer queue
scales like an M/M/1 queue (proportional to p/(1 — p)).
When customers are impatient, they may have to wait
longer than they are willing. Any excess capacity is
insufficient to have a scaling effect on the customer
queue; the customer queue scales like an M/M/1+M
queue with no excess capacity (proportional to y/A./0.).

Server impatience impacts the likelihood that custo-
mers have to wait. When servers are patient, sufficient
inventory of waiting servers can be accumulated so
that most customers are matched immediately and few
abandon. When servers are impatient, there will be lit-
tle or no inventory of servers, and most customers will
have to wait to be matched. The significant benefit of

server patience is captured by the exponential term in
the second row of Figure 2.

Interestingly, only the minimum abandonment rate
appears when either customers or servers are impatient.
Recall that Col = 0. E[Q.|Qs = 0]P(Qs = 0). The mini-
mum rate, O, ={0.,0;} appears, rather than 6, in
three regimes in Figure 2 is because of the ability to
accumulate inventory of waiting servers.

Practically, this means that to decrease the cost of
impatience, the focus should be on decreasing the mini-
mum patience rate (the maximum mean patience). It
only matters that either customers or servers are patient
enough; the patience of the other type has no order-of-
magnitude effect. Intuitively, items of one participant
type serve as inventory for the other in these matching
markets. The ability to accumulate inventory of one of
the two types, those who abandon less, creates a buffer
protecting against the impatience of the other type. It is
only when both customers and servers are patient, and
the Col is very low, that both patience rates appear in
the Col scaling.

When servers are impatient, the Col is proportional
to an insightful function of the minimum patience rate,
O,,in, the utilization, and the smaller of the arrival rates:

Ac
6min .

Notice that 0,,,;, can be either 0. or 0,. For example, ser-
vers are impatient if either (i) utilization is close to one,
or (ii) the server abandonment rate is greater than their

Col ~ O min{L,
I-p
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arrival rate (05 > A;). In both cases, 0,,,;,, can be either 0,
or 6;.

More generally, the scaling laws identify which para-
meters have the most impact on match loss from impa-
tience and specify the relative impact of a change in
these parameters; this focuses attention on key manage-
rial levers, as we illustrate next.

Table 1 collects examples of dynamic matching appli-
cations that fit each of the operating regimes (Online
Appendix F reports data supporting the classification
of these examples). These settings, and key insights
revealed by the scaling laws, are as follows.

e Blood transfusion (IC N IS). In developing coun-
tries, it is common for the supply of blood to be only
slightly greater than the demand for blood. Therefore,
utilization is close to one, and both customers and ser-
vers are impatient. Individuals who need a blood trans-
fusion are the customers, and blood donations are the
servers. In the IC N IS regime, Col ~ v0,uA.. The Col
scales proportionally to the square root of the arrival
rate of transfusion patients, A.. A small change in the
rate at which blood is collected, A,, does not have an
order-of-magnitude impact on the Col. Blood dona-
tions can be stored for 42 days, but patients may need
blood immediately; small changes in the storage life of
blood donations, 0,,;,, will have a greater impact on the
Col than small increases in supply (donations).

e Cadaveric liver transplant (IC N PS). The demand
for liver transplants is greater than the supply of donor
livers. Livers must be transplanted within 8 to 12 hours,
whereas individuals on the transplant waiting list typi-
cally wait several months or years. Therefore, livers are
the customers, and they are impatient; transplant
patients are the servers, and they are patient. In the
ICNPS regime, Col~ VGn,i,,/\Ce*éz(l*p) HP) A small
change in the arrival rate of transplant patients, A, has
an exponential impact on the Col, whereas a small
change in the storage life of livers (the most impatient
type) does not have an order-of-magnitude impact on
the Col. In other words, it is not the perishability of the
livers that is the main practical challenge in this setting;
it is that—even without abandonment—the number of
transplants is limited by the small rate of cadaveric-
liver arrivals.

e Foster care adoption (PC N IS). In the foster care
system in the state of Pennsylvania, the number of chil-
dren becoming available for adoption annually is less

than the number of families joining the adoption list.
Here, children are the customers and families are the
servers. Children wait to be adopted until they reach
the age of 18; they are patient. Families have other
options available if they are not matched soon enough
(e.g., private or international adoption, adoption from
a different state, or deciding not to adopt); they are
impatient. In the PC N IS regime, Col ~ O, %. Small
changes in both the arrival rate of children and families
have an impact on the Col that is proportional to
p/(1—p).

e Ride hailing (PC N PS). Ride-hailing drivers in
the Manhattan Central Business District (CBD) spend
approximately 20%-25% of their time in the CBD wait-
ing for a ride request." This means that utilization in
the CBD is less than 80%, where passengers are the cus-
tomers, and drivers are the servers. Passengers are not
willing to wait long for each trip to start, but trips start
quickly because utilization is relatively low and arrival
rates are high. Drivers are at least as patient as passen-
gers. Therefore, both passengers and drivers are
patient. In the PC N PS regime, the Col is low, and
small changes in the patience of both passengers and
drivers have a significant impact on the Col.

The scaling laws are consistent with the intuition that
substantial excess capacity (and, in turn, low utiliza-
tion) guarantees low Col. But they also underscore a
property of the two-sided queue: the ability to accumu-
late inventory of servers may result in low Col, even
without substantial excess capacity. We characterize
the safety capacity, As — A., that balances the trade-off
between abandonment and capacity costs. We show
that the optimal safety capacity has the form

AL = Ae ~ /A,

for 6 > 0 that does not depend on A. but is affected by
the relationship between the cost per abandonment, c,,
and the cost per unit of capacity (server arrivals), ¢;.” In
the single-sided M/M/1+M queue, 6 scales propor-
tionally to /c,/cs. As the abandonment cost grows rel-
ative to the capacity cost, the safety capacity grows
proportionally to the square root of cost growth, with
all else fixed. In the two-sided queue, in contrast, 6
grows proportionally to log(c,/cs).

This precise characterization of the capacity scaling
highlights a key difference between the single-sided
and two-sided queue. The ability to build a buffer of

Table 1. Examples of Dynamic Matching Applications That Fit Each of the Four Operating Regimes

Setting Customers Servers Regime
Blood transfusion (in a location with low blood supply) Patients Blood donations ICnIS
Liver transplant Donor livers Patients ICNPS
Adoption Children Families PCNIS
Ride hailing Riders Drivers PCNPS




Kohlenberg and Gurvich: The Cost of Impatience in Dynamic Matching
Management Science, Articles in Advance, pp. 1-17, © 2024 INFORMS

waiting servers in the two-sided queue leads to safety
capacity that scales slower with the abandonment cost.
Our characterization of the optimal capacity scaling
reveals that any of the four operating regimes in Figure 2
can be rationalized from an optimization perspective. It
can be optimal to operate with either high or low utiliza-
tion, depending on the relative costs and patience rates.

Outline of the paper. Section 2 summarizes related liter-
ature. The model is described in Section 3. The scaling
laws and operating regimes are studied in Section 4.
Capacity-sizing results appear in Section 5. We conclude
in Section 6. All proofs appear in the Online Appendix.

2. Related Literature

Our matching model is a two-sided, or double-ended,
queue with abandonment. When one side is completely
impatient, the double-ended queue reduces to a single-
server, single-class queue with abandonment. As such,
our work speaks to both the dynamic matching litera-
ture and the extensive literature on single-class queues
with abandonment.

Analysis of matching queues with abandonment.
Double-ended queues were introduced as the “taxi
model” where taxis queue to wait for a customer, and
customers queue to wait for a taxi (e.g., Kendall 1951,
Kashyap 1966). Conolly et al. (2002) derive exact analyt-
ical results for the transient and steady-state perfor-
mance of the Markovian two-sided queue with Poisson
arrivals and exponential patience times; this two-sided
queue is the same as our model. Aféche et al. (2014) and
Diamant and Baron (2019) derive closed-form expres-
sions for the steady-state queue-length distribution of a
two-sided queue with two types of customers: those
who abandon immediately and those with either some
or infinite patience. Liu et al. (2015) and Biike and Chen
(2017) develop fluid and diffusion approximations for
a two-sided queue in heavy traffic. Exact analysis of the
two-sided queue and variants thereof appear in the
study of organ allocation (Boxma et al. 2011, Elalouf
et al. 2018), blood bank allocation (Bar-Lev et al. 2017),
and general perishable inventory systems (Perry and
Stadje 1999). Beyond a single match, Castro et al.
(2020a) derive explicit expressions for the steady-state
distributions of a two-customer, two-server network
following the first-come first-served policy. Zubeldia
et al. (2022) study the stability region for a matching
network with two matches operated under a max-
weight policy.

Analysis of single-sided queues with abandonment.
When either customers or servers (but not both) are
infinitely impatient, our model reduces to a single-
sided queue with Poisson arrivals, exponential service
times, and exponentially distributed patience.

The single-server queue with abandonment has been
used to study perishable inventory (Graves 1982), public
housing (Kaplan 1986), and organ allocation (Zenios
1999). See Ward (2012) for a survey of results on single-
class queues with abandonment. Of immedjiate relevance
to our work, Ward and Glynn (2003) develop diffusion
approximations for an M/M/1 + M queue under various
asymptotic regimes. Our results, specialized to these
regimes, align with those in Ward and Glynn (2003); this
connection merits (and will receive) further discussion
after we introduce our results.

Capacity planning in double- and single-sided
queues. Lee and Ward (2019) study joint pricing and
capacity sizing for the M/GI/1 + GI queue and derive
asymptotically optimal policies in a regime where the
service distribution is fixed and arrival rates grow
along the sequence of queues.

Other levers for controlling supply and demand in
two-sided queues are considered, for example, in
Nguyen and Stolyar (2018), Chen and Hu (2020), Vaze
and Nair (2022), and Varma et al. (2022).

Optimal control of matching queues with abandon-
ment. Recent progress on the optimal control of dynamic
matching markets with abandonment includes Collina
et al. (2020), Castro et al. (2020b), Aouad and Saritag
(2022), Wang et al. (2022), and Aveklouris et al. (2024),
all of whom study control policies for a network of
matches with impatient participants and introduce
algorithms to determine when to perform matches and
which matches to perform.

Analysis and control of matching queues without
abandonment. The literature on matching queues with-
out abandonment is relatively mature and includes
papers that study performance under specific policies
(e.g., Caldentey et al. 2009, Adan et al. 2018 and the refer-
ences therein), as well as various optimization levers,
such as pricing (e.g., Varma and Maguluri 2021), menu
design (e.g., Aféche et al. 2022), and dynamic control
(e.g., Gurvich and Ward 2014, Ozkan and Ward 2020,
Kerimov et al. 2021).

In this work, we revisit the simplest matching model
with abandonment: the two-sided queue with Poisson
arrivals and exponential patience. Our goal is to deepen
the understanding of this model on its own and as a
necessary building block for networks of matching
queues with impatient customers.

3. Model

We consider a matching queue with two types of parti-
cipants: customers and servers. Customers and servers
arrive according to independent Poisson processes
with rates A, and A, respectively.

Each type has its own dedicated infinite-capacity queue
where participants wait to be matched. Matches are made
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between one customer and one server according to a first-
come-first-served policy. A waiting customer is matched
immediately with an arriving server, and vice versa.
When a match is performed, the matched customer and
server leave the system immediately (there is no proces-
sing time).

Participants are never rejected (or blocked) but may
choose to abandon after they join their queue. Customers
and servers have exponential patience with rates 6. > 0
and 0; > 0, respectively. If participants are not matched
by the time their patience elapses, they abandon the queue.
Patience is independent across participants. To avoid triv-
ialities, we assume that either customers or servers have
at least some patience. That is, O, = min{0,, 0;} < oo,
or equivalently, max{1/60.,1/6,} > 0. If this assumption
is violated, then all arrivals abandon immediately, and
because there are no simultaneous arrivals, no match is
performed.

In the absence of impatience, the expected long-run
average match rate is equal to the minimum of the two
arrival rates: min{A., A;}. The difference between this
upper bound and the actual match rate is the cost of
impatience.

We label the arrival rates, without loss of generality, so
that A. < A,. If this is violated, then we replace custormers
with servers, and vice versa, in all the following results.

3.1. The Two-Sided Queue

Let Q.(f) and Qs(t) denote the number of customers and
servers waiting in their queue at time t, respectively.
Because customers and servers are matched immedi-
ately, only one queue can be positive at any given time.
We define the one-dimensional, continuous-time Markov
chain, Q(t) = Qc(t) — Qs(t), where Q.(t)=[Q(H)]" =
max{0, Q(f)} and Qs(t) = [Q(*)]” = max{0, — Q(#)}, asin
Figure 3. With 6., 0, >0, Q = {Q(t) : t > 0} has a steady-
state distribution; we omit the time index t when consid-
ering the queue in steady state.

Let A.(t) denote the number of customers that arrive
by time ¢ and R.(f) denote the cumulative number of
customers that abandon by time f; As(t) and R,(t) are
defined similarly for servers. Let D(t) denote the num-
ber of matches performed by time . Atallt > 0,

Qi(t) = Ai(t) — Ri(t) — D(t)
fori=c¢,s. Letd = limy } E[D(f)] be the expected long-
run average match rate. It follows that fori = ¢, s,
1 1
ltiTg;E[Qi(t)] = ltiTIQ;E[Ai(t) —Ri(t) — D(t)]

=Ai - OE[Q;] -d=0.
Here, we use the facts that E[A;(f)] = At and that
E[R;(t)] = E[0; [, Qi(s)ds].> Hence,

d=Ac— GCE[QC] =As — QSE[QS]‘ (1)

Recall that the cost of impatience is the difference
between the no-abandonment match rate and the
actual match rate, d. Because A, < A, the no-abandon-
ment match rate is min{A., As} = A.. Therefore, from
(1), we obtain that the Col is equal to the expected long-
run average rate of customer abandonment:

Col = A, —d = 0.E[Q.]. (Col)

We identify expressions that both lower and upper
bound the Col. We write

g, 02f(2, 0) )

when there exists a constant, I' > 1, that does not depend
on either A or 0, such that

% X (A, 0) < g(A,0) < Txf(A,0), forall (A, 0) € M,
(©)

where M is a family of parameters that satisfy certain
restrictions.

Definition 1 formalizes the notion of parameter fami-
lies. The conditions we impose have the same purpose:
to guarantee that the customer queue is not negligible
and, therefore, that we have a real two-sided queue. If
As > A, then an arriving customer matches with a
server before the next customer arrives. Similarly, if
0. > A, then an arriving customer abandons before
the next customer arrives. In either case, there is effec-
tively no customer queue, and the two-sided queue
“collapses” into a single-sided queue.

Condition (i) restricts our focus to settings where
supply (the arrival rate of servers) is not significantly
larger than demand (the arrival rate of customers).
When A, is optimized (see Section 5), condition (i) arises
as an outcome under reasonable conditions on the
problem parameters.

Definition 1 (Queue Families). Fix M > 1. Denote by
M(M) the family of primitives (A, 0) such that

i. Nonnegligible demand relative to supply: A; < MA,,
or equivalently p = (A./A;s) = (1/M), and

ii. Nonnegligible customer patience: 0, < MA,.

Let

As 0.

M= MM) := {(/\,9)20:/\— <M, T < M}
The set of parameters that we allow, and relative to
which the ~ relationship is evaluated, is M(M). The
constant I' in Relationship (2) depends on this M.

4. Scaling Laws and Operating Regimes
Our main mathematical result in Theorem 1 charac-
terizes how the cost of impatience scales with model
parameters.
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Figure 3. The Two-Sided Queue, Q = Q. — Qs

Ae + 30, e+ 20, e+ 0,
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Theorem 1 (Cost of Impatience Scaling). Let M’ = {(A, 0)
1p=Ac/As < 1}. Then,

MoM’ . P &
E[QIQ > 0] mm{—lp, QC}

and

MM’ P 0. . Y &
P(Q>0) <1+[1+1_p/\cmm{1_p,\/;H
-1
\/g’Z(l p)eﬁ—j(l—P)zH(P)>

where H(p) = 321 w1 — p)!
The cost of impatience subsequently satisfies

Col = 0:E[Qc] = O.E[Q|Q = 0]P(Q > 0)

MQM’QCmin{—p &}

1-p"\ 6

P O ) P A

<1+ [1+1—pA mm{l_p, Qc}l
-1

\/7 (]_p)ess(l p) H(p)) )

On M\M’ (when p = 1), the cost of impatience satisfies

Cor"\WM

QminAc-

Theorem 1 identifies how key metrics—utilization, p, and
the patience-to-arrival ratios, A./6. and A,/O,—jointly
determine the performance of a two-sided queue with
abandonment. It draws attention to key properties of the
expected customer queue, conditional on customers hav-
ing to wait, E[Q|Q > 0], and the probability that custo-
mers have to wait, P(Q > 0). These properties reveal key
determinants of the Col.

A “competition” between customer impatience and
excess capacity. Theorem 1 shows that E[Q|Q > 0] ~

mm{lpp \/- } The quantity p/(1 — p) is the expected

number-in-system in an M(A;)/M(A;)/1 queue (a
single-server queue with arrival rate A, service rate A,
and no abandonment). The quantity \/A./0. is, up to a
constant multiplier, the expected number-in-system in

As + 0. As + 20, As + 30,

an M(Ac)/M(Ac)/1+M(6.) queue (a critically loaded,
p=1, queue with patience parameter 0.). Thus, the
customer queue, conditional on customers having to
wait, is determined by a “winner-take-all” competition
between customer impatience and excess capacity,
As — Ac: only one of impatience or excess capacity, but
not both, matters for scaling purposes.

Excess capacity determines how fast matches are
performed (ie., the expected wait time in an

M(Ac)/M(As)/1 queue is y1-). When % = /\S}EA( < \/g:z,
excess capacity is large relative to mean customer impa-
tience, and customers are matched faster than they
abandon. In this case, excess capacity “wins,” and the
customer queue behaves the same as the queue without
abandonment (the M/M/1 queue). Only excess capac-
ity matters for scaling purposes; impatience has, at
most, a constant multiplying effect on the Col.

Conversely, when éf <3 £ ; AA 1, mean customer

impatience is large relative to excess capac1ty The cus-
tomer queue behaves the same as a queue with no
excess capacity (the critically loaded M/M/1+M
queue); only customer impatience matters for scaling
purposes, and excess capacity has, at most, a constant
multiplying effect on the Col.

On the proof of Theorem 1. The proof of Theorem 1 is
based on expansions of the explicit expressions for the
Col, as well as coupling-based comparisons with sim-
pler queues. The explicit expressions for the steady-
state distributions involve infinite sums and products.
To derive the Col approximation (specifically, the
approximation for P(Q > 0)), we truncate these expres-
sions at carefully chosen thresholds and analyze those
truncated expressions. To bound E[Q|Q > 0], we note
that the customer queue, conditional on customers
having to wait, is equal in distribution to an
M(Ac)/M(As)/1+M(6.) queue. It follows from simple
coupling arguments that this queue is upper bounded
by both an M(A;)/M(As)/1 queue (no abandonment)
and an M(A.)/M(A.)/1+ M(6.) queue (no excess capac-
ity). It is the lower bound where more care is needed.
We couple the M(A.)/M(A;)/1+M(6.) queue with an
M(A:)/M(As +6.K)/1/K (a queue with finite waiting
room and a modified service rate). Here, it is the choice
of K that is critical and produces the desired results.

Customer vs. server impatience. Theorem 1 reveals
that customer impatience impacts the Col in a different
way than server impatience. Customer impatience acts
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on the expected customer queue, E[Q|Q > 0] (65 does not
appear in this expression). Server impatience acts, together
with customer impatience, on the probability that there is
a customer queue, P(Q >0). We introduce four opera-
tional regimes that are distinguished by the level of
customer and server impatience. When parameters are
specialized to one of these regimes, the expressions in The-
orem 1 simplify and make explicit how the server impa-
tience, through P(Q > 0), impacts the Col.

4.1. Operating Regimes
The operating regimes are defined in terms of a rela-
tionship between impatience and utilization.

Definition 2 (Operating Regimes). A two-sided match-
ing queue with abandonment has impatient custo-
mers (IC) if

(Impatient-Customer)

&‘

e P
0. 1-p
and has patient customers (PC) otherwise. It has impa-
tient servers (IS) if

As 1
=< —,
\/;_1_9

and has patient servers (PS) otherwise.
We define the corresponding subsets of M:

c p
< —l—p} and

s 1
<— .
95_1—p}

Customers and servers are patient if the no-impatience
case (0; |0 and 6; | 0, respectively) provides a better
approximation of a suitable performance metric than the
no-excess capacity case (As | Ac and A, T A, respectively);
they are impatient otherwise. For customers, the perfor-
mance metric is the expected customer queue (conditional
on customers having to wait), and for servers, it is the
fraction of servers who abandon (or remain unused).
Recall that customer impatience acts on the expected
customer queue, E[Q|Q >0]. As discussed after Theo-
rem 1, the no-impatience case (the M/M/1 queue)
provides a better approximation of E[Q|Q > 0] than
the no-excess capacity case (the critically loaded

M/M/1+M queue) when % <

(Impatient-Server)

Sk

M1c= {(A,O)EM:

==

Mis = {(A,B)EM:

%. Hence, custo-
c

mers are patient if % < g—;. Informally, this means

that customers are willing to wait for a sufficient
amount of time relative to the expected time to match
so that abandonments have little impact on the ex-
pected customer queue.

Server impatience acts on the probability that custo-
mers have to wait, P(Q > 0). This probability is influ-
enced by the fraction of servers who abandon. The
percentage of servers who abandon is lower bounded
by the abandonment in both the case where servers are
infinitely patient (no impatience) and the case where the
customer arrival rate is increased to the server arrival
rate (no excess capacity). At least A; — A, = A5(1 — p) ser-
vers must abandon (or remain unused) because no
more than A. matches can be performed per unit of
time. As 6; | 0, keeping all else constant, the percentage
of servers who remain unused will converge to (1 — p);
this is the no-impatience bound. The expected number
in a critically loaded M(As)/M(As)/1+M(6;) queue is,
up to a multiplicative constant, equal to \/As/0s. Thus,
the percentage of servers who abandon in the no-excess
capacity case is i— \/g: = \/g: If 1-p> \/g:z, the
no-abandonment case provides a better lower bound on
the fraction of servers who abandon; hence, servers are
patient.

One should not expect that near the boundary of a
regime, where the regime condition is held with
equality, the performance will vary significantly; it
will not. Instead, the point of Definition 2 is that cer-
tain “forces” become important as the market para-
meters transition from one regime to another. These
forces have a more pronounced effect, as the para-
meters are farther into the interior of the regime. For

example, when \//G}:Z < %, the effect of customer im-

patience is more pronounced.

For each of the four regimes, there is a simple
approximation for the Col that works for all para-
meters in that regime; these expressions are reported
in Theorem 2.

Theorem 2 (Cost-of-Impatience Scaling by Operating
Regime). Figure 4 characterizes the cost of impatience on

the parameter set M. In addition, in the Impatient-Server

regime,
CoI/\i’SGmm min L, Ac )
1- Y Omin

At the boundaries between conditions (and corre-
sponding parameter sets), the Col expressions collapse
into one expression. That is, if (A, 8) are such that custo-
mers and servers are both “critically” patient, which
means that

()t, 9) e My

_ CfAe__p As_ 1
._{(A,B)EM.\/;_l_p,\/;_l_p},

(Critical-Impatience)
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Figure 4. Col in the Four Operating Regimes

Patient-Customer
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Col’™®\/Orin e (4)

Some observations are useful at this point.

Waiting servers as inventory. When either customers
or servers are impatient, the Col depends only on the
minimum of the two patience parameters (or the maxi-
mum of the mean patience). We show in Theorem 1

that Col = 0.E[Q|Q > 0]P[Q > 0] ~ 6. min{%, \/g:}
P[Q >0]. The fact that 0,,, appears in Theorem 2,
rather than 0, is because of the ability to accumulate
inventory of waiting servers.

Notice that 0,,,;, can be either 6, or 0,, even when cus-
tomers are patient. For example, if utilization is very
low (i.e., p | 0) and both customers and servers have
low mean patience (i.e., 0. > A. and 0; > A;), then custo-
mers are patient and servers are impatient. The Col in
the PC N IS regime is determined by 0,,;,,, which could
be either 6, or 6.,.

If 0. < 0, in the impatient-server regimes (PC N IS

and IC N1S), then Col ~ O, min{%, \/g:;}; the Col is

proportional to the abandonment rate from the single-
sided customer queue. In this case, there is little or no
inventory of waiting servers, and the server-side queue
does not have a scaling effect on the Col. Conversely, if
0; < 6., then the inventory of waiting servers, even if
low, reduces the probability that customers must wait.
The Col scales like the abandonment rate from the
single-sided customer queue, but with 6, replaced by
the minimum abandonment rate, 9,.

Customer Impatience

Impatient-Customer

(Mirc)
—
=]
i)
I
-
@
gmin)‘c § ?r
~
@
g
[ICN1IS] el

[0, o Ao 55 (1= H(p)

(5Iw)
I9AISG-JURI)R ]

[ICN PS]

E[QIQ>0]

“u_n

correspondence. For

A, where A is the expression in that cell.

When servers are patient (the PCN PS and IC N PS
regimes), inventory is high, and the Col is offset
(decreases) by a function of the server’s level of impa-

tience: e 1=P"H0) This term captures the significant
benefit of server inventory. Note that (1 — p)zH(p) =

>t (1~ p)"! is between zero (when p = 1) and

one (when p = 0). Therefore, e~ L=P M) ¢ [3*3—2/ 1]
decreases when either utilization decreases or the ser-
ver’s arrival-to-patience ratio, A;/6s, increases.

When both customers and servers are patient
(PC N PS regime), the Col is very low and is sensitive to
small changes in all parameters. Hence, the patience
rates of both the customer and the server appear in the
Col scaling.

Overview of the key determinants of the Col. Theorem
2 exposes the two key determinants of the Col: (i) the
“competition” between customer impatience and excess
capacity, represented by the p/(1—p) term in the PC
regimes versus the square-root term in the IC regimes,
and (ii) the ability to accumulate inventory of waiting ser-
vers, as reflected by the minimum patience rate in three
regimes and the exponential term in the PS regimes.

o Customer impatience versus excess capacity.
Suppose that the patience rates 6. and 0, are fixed. In
the PC N IS regime, Col ~ %p; the Col is proportional to
the number of customers in an M/M/1 queue and is
impacted by small changes in either A, or As. In the
IC N IS regime, Col ~ VA; the Col scales like the square
root of A, and is not as sensitive to small changes in A;
see Figure 5.
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Figure 5. (Color online) With Fixed Patience Rates, Col ~ ﬁ When Customers Are Patient and Col ~ /A, When Customers Are

Impatient

(a)
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e The minimum patience rate. Suppose that the
arrival rates, A, and A, are fixed. In the PC N IS regime,
Col ~ O,in, whereas in the IC N IS regime, Col ~ VO,
Small changes to the maximum patience rate (the mini-
mum mean patience) do not have an order-of-
magnitude impact on the Col; see Figure 6. Small
changes in the minimum patience rate have a more pro-
nounced impact on the Col when customers are patient
versus impatient; see Figure 7. This is because when
the Col is low, which is the case in the patient-
customer regimes (PCNPS and PCNIS) relative to
the impatient-customer regimes (IC N PS and IC N IS), the
Col is more sensitive to small changes in the parameters.

e Inventory of patient servers. Suppose that the uti-
lization, p, and the patience rates, 0. and 0, are fixed;
only A, and A, can change. Then in the IC N IS regime,

(b)
Impatient-Customer Regime
0.=35,6,=90,p=A/A=1-1/V2]

-10

40 - Exact Col ~+/)\, Q
8
-
. 30- =
5 P
O 6g
- g,
g =)
< 20-
520 -4 3
A S
=}
10+ Col Approximation Ratio Lo g'?
[l
,,,,,,,,,,,,,,,,,,,,,,,,, =
0- -0
1 1 U I I 1 1 I I
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AC

Col ~ v/A., while in the PC N PS regime, Col ~ Ais_e‘“s
for the constant k = 6%(1 — p)*. In the IC N IS regime, the
Col increases with a proportional increase in both A, and
As. However, in the PC N PS regime, the Col decreases
with a proportional increase in A, and A, see Figure 8.
The decrease in the Col when servers are patient is
because of the greater inventory of servers when both
Aq and A, increase; this benefit is not realized when ser-
vers are impatient.

Figures 5-8 confirm that the Col approximation in
Theorem 1 captures the scaling of the true Col up to a
constant. Across all parameters in these examples, the
ratio of the Col approximation to the exact Col (the Col
approximation ratio) is below two. Recall that the con-
stant I' in (3) does not depend on (A,6) but does
depend on M, which defines the queue family M in

Figure 6. (Color online) The Maximum Patience Rate Has a Moderate Impact on the Col, Whereas the Minimum Patience Rate

Has a Significant Impact on the Col
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Figure 7. (Color online) The Col Is More Sensitive to Changes in 0,,,;, in the PC N IS Regime than in the IC N IS Regime

(a)
Patient-Customer, Impatient-Server Regime
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Definition 1. For M < 20, the approximation ratio is
less than four for any combination of parameters (A, 6);
see Figure 9.

The four operating regimes vis-a-vis known asymp-
totic regimes. Consider a sequence of two-sided queues,
indexed by n, where A" = (A7, A) and 6" = (0., 0.) are
the parameters in the nth queue. The heavy-traffic regime
studied in Liu et al. (2015) is the one where 6" is scaled
down, while A" and v/n(1 — p") both approach a constant
as 1 increases: 160" — 0, A" — A, and Vn(1—p") > €
[0,00) as 11 T co.* This scaling can be equivalently written

as
A" A" A
ol P =gV - = \[‘eﬁ =F €l0,).

(b)
Impatient-Customer, Impatient-Server Regime
(A =50, ), = 100,6, = 90)
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In particular, for all 7 large enough,
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Ny
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S

and

Under this heavy-traffic assumption, the spectrum of
regimes collapses, then, to the Critical-Impatience case
in (4) with 0 close to zero and p close to one.”

4.2. The M/M/1+M Queue as a Special Case

In the special case that either 6, = oo or O, = oo, the two-
sided queue becomes a single-sided queue. When
0; = oo, the single-sided queue is under- or critically

Figure 8. (Color online) A Proportional Increase in A. and A, Keeping p and 6 Fixed, Results in a Decrease in the Col When Ser-
vers Are Patient, but an Increase in the Col When Servers Are Impatient
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Figure 9. (Color online) The Col Approximation Ratio (the Col Approximation from Theorem 1 Divided by the Exact Col) Is
Less Than Four When the Conditions in Definition 1, p > 1/M and 6. < MA,, Are Satisfied for M € [1,20]
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loaded (has utilization p < 1); when 0, = oo, the single-
sided queue is over- or critically loaded (has utilization
1/p=>1).

Consider first the case that 6, = co (servers abandon
immediately upon arrival if there are no customers in
the queue to match). In this case, Q;=0 so that
Q=0Q,— Qs =Q.. Let Qf denote the number of custo-
mers in the system in an M(A.)/M(As)/1+M(6.)
queue. The difference between Q, and Q; is that Q7
includes up to one customer in service, and the cus-
tomer in service does not abandon; see Figure 10. Q. is
equal in distribution to the number in the queue (not
including in service) in an M(A.)/M(A;)/1 +M(9)
queue, conditional on the server being busy: Q.= Q+
—1|Qf > 1. The abandonment rate from the M(A.)/
M(As)/1+M(6O.) queueis

Col = 6.E[(QF —1)*].

If, instead, 0. = oo, the two-sided queue reduces to Q..
Let Qf denote the number in the system in an
M(As)/M(Ac)/1+M(O;) queue. Because the match rate
is d=A;—O0E[(Qf —1)"], the Col for an M(A)/
M(Ac)/1+M(6s) queue is the server abandonment rate
minus excess capacity:

Col = QSE[(Q: - 1)+] —(As = Ao).

To establish the Col scaling for the M(A;)/M(A.)/1+
M(6s) queue, condition (ii) in Definition 1 is replaced

<0

with

0s < MA,. (1(ii"))

As is the case for condition (ii), (1(ii")) ensures that the
queue does not degenerate (i.e., the patience rate is not
significantly greater than the arrival rate).

We define Mg —« as the set of parameters (A, A, O)
that satisfy conditions (i) and (ii), and Mg -« as the set
of parameters (A, A, 0;) that satisfy conditions (i) and

1(i'):
MQ:W:: (AC//\S/QC)ZO:&SM/ %SM 7

’ Ac Ac

As 05
Moo= { (A 15,09 20: 55 < M, = < M.

Lemma 1 (Cost-of-Impatience Scaling for the M/M/1 + M
Queue). There exists I' > 1 (not dependent on A, 0) such

that

1
FS(A, ) —Oun < Col < S(A,0),

where the function S(A, 0) is, on the parameter sets Mg, oo
and Meg,=«, as in Table 2.

Alignment with known results for the M/M/1+ M
queue. Ward and Glynn (2003) study the M/M/1+M
queue in various asymptotic regimes. These asymptotic
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Figure 10. The Transition-Rate Diagram for the M(A.) =
M(As) =1+ M(6.) Queue and the Single-Sided Truncation of
the Two-Sided Queue When 6 = oo

(a)

As + 0. As +26,
(b)

Ac Ac Ac

As + 0, As + 26, As + 36,

regimes apply to settings where the traffic intensity
(arrival rate divided by service rate) is close to or greater
than one and the patience rate is close to zero.

The heavy-traffic limit for the under-/critically
loaded queue in Ward and Glynn (2003) is the same as
that of a single-server queue without abandonment
when, using our notation, VO, < 1— p. This is consis-
tent with our result: we prove that universally in A, 0.,
and As > A, E[QF] ~ mm{lpp \/2:2} (see the proof of
Lemma 1 in Online Appendix A). Hence, if % < \/g:i,
then E[QF] ~ %; the expected M/M/1+M queue is
proportional to that of a queue without abandonment.

In a suitably overloaded M/M/1+M queue, the
queue length process asymptotically centers around
gi="2 AC and the stochastic fluctuations around 7 are
of the order of YA (Ward and Glynn 2003, theorem 1,
case 4). In turn, in this asymptotic setting, this queue
rarely visits the empty state (zero). This corresponds to
customers almost always finding an available server,
which translates into very low Col. How low is pre-
cisely captured by the Col result for the over-/critically
loaded M/M/1+ M queue in Table 2. This asymptotic
setting corresponds to, using our notation, p" — p <1
as A" grows large. Our nonasymptotic Col expression
shows that in this setting, the Col converges to zero at a
rate that is subexponential in A”.

Operating regimes for the M/M/1 + M queue. There
are only two relevant operating regimes for each of

Table 2. S(A, 0) for the Under-/Critically Loaded and
Over-/Ceritically Loaded M/M/1+ M Queues

Under-/Critically Loaded
M(A:)/M(A)/1+M(6,) queue

0 mm{lpp \/g}

Over-/Critically Loaded
M(As)/M(Ac)/1+M(6s) queue

N W )

the single-sided M/M/1 + M queues. The under-/ criti-
cally loaded M/M/1+ M queue operates in either the
Patient-Customer or Impatient-Customer regimes in
Definition 2. When customers are patient, Col ~ O, 1%,
when customers are impatient, Col ~ vO.A.. Thus, the
Col is completely determined by the competition
between customer impatience and excess capacity,
as discussed after Theorem 1. The over-/critically
loaded M/M/1+M queue operates in either the
Patient-Server or Impatient-Server regimes in Defini-
tion 2. Note that the arrival rate in this queue is A
the servers in the two-sided queue become the customers
in the single-sided queue. In the Patient-Server regime,

Col ~ VO;A, ¢ 0P HP) I the Impatient-Server regime,
1P M) _ 1, and so, Col ~ VO, A..°

5. Optimal Capacity Scaling

The results in Section 4 highlight two key controls for
decreasing match loss: decrease the minimum patience
rate O, = min{6,, 0;} and increase supply (thereby
decreasing utilization and increasing inventory). In this
section, we focus on the latter. An increase in server
capacity may decrease customer abandonment, but
there is a trade-off between capacity and abandonment
costs when both are costly.

We use the scaling laws in Section 4 to study the scal-
ing of optimal capacity in the two-sided queue with
abandonment and contrast it with the optimal capacity
in a single-sided queue. We are interested in under-
standing how the optimal capacity scales as the aban-
donment cost grows relative to the capacity cost. When
the abandonment cost is sufficiently large relative to
the capacity cost, it is optimal to have supply that is
greater than demand. Therefore, we focus on settings
where supply exceeds demand.

The optimal capacity, A, solves the optimization
problem:

Ay = arg min{c,0.E[Q.] + csAs},
A2
where ¢, and ¢, denote the per-unit cost of abandon-
ment and capacity, respectively.

For simplicity and focus, we assume in this section that
there is a single patience rate, 0, := 0. =0, < co. The
optimal capacity-scaling results for 0. # 0 appear in
Online Appendix D.

Before we proceed, we expand the correspondence
“ to include the cost vector ¢ = (ca,c5):

g(A,0,07f(2,6,0)

when there exists a constant, I' > 1, that does not depend
on any of A, @, ¢ such that

%xf()\, 0,c) <g(A,0,c) <TXf(A,0,c), forall(A,0,c)e M,
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where M is the set of all parameters that satisfy certain
restrictions. We replace condition (i) in Definition 1 with

Ca Ac
— < My
Cs O.

In line with (i), (1(i")) restricts our attention to settings
where the server capacity is constrained enough to pre-
vent the two-sided queue from “collapsing” into a
single-sided queue. This condition guarantees that A; <
MA, (see Lemma A.7 in Online Appendix B) by ensur-
ing that the abandonment cost and patience rate are not
significantly larger than the supply cost and demand
and, therefore, that it is not optimal to have capacity
that is significantly larger than demand.
Henceforth, we consider the family of parameters

(1)

M=MM):= {(/\C,Q.,CH,CS)ZOI% < M,E—” < M, /%}

Finally, we use the abbreviated notation f = (A, ., ¢4, ¢s);
AZ(B) is the optimal capacity when the parameter vec-
tor is B.

Lemma 2 (Optimal Capacity Scaling). The optimal safety
capacity for a two-sided matching queue with patience rate
0. = 0. = 0; satisfies

(B = A=y V/Bulc

fory > 0 that does not depend on A or @ and is characterized by

In particular,

y < max{l, \/M}

For contrast, we state the scaling of the optimal safety
capacity in the single-sided queue with abandonment.
The optimal capacity, A;, for the M(A.)/M(As)/1+
M(6.) queue solves the optimization problem
A% =arg min{c,0. E[(Q] — 1)"] +csAs}.
A2
Going forward, we use the notation g = (A, 6., c,, Cs)
and consider the family of parameters that satisfy con-

ditions (ii) and 1(i"):
Ca [Ac
2 < LN
cs M Hc}

Lemma 3 (Optimal Capacity Scaling for the M/M/1+ M
Queue). The optimal safety capacity for an M(A:)/M(As)/
1+ M(6.) queue satisfies

A(B) — Ay 0,

M&:oo = {(/\cr Gcrcazcs) >0 :% <M,

fory > 0 that does not depend on A or 0. If ¢, > c,, then
Y =1/Cq/Cs.

Slow scaling of capacity in the two-sided queue. In
the M(A)/M(u)/1 queue, the service rate that mini-
mizes total linear waiting and capacity costs takes a

square root form. Thatis, " — A = \/cw/cs VA, where ¢,
and ¢, denote the waiting and capacity costs, respec-
tively (e.g., Allon and Van Mieghem 2010). Two facts
about the M/M/1 queue are important here. First, the
safety capacity grows proportional to the square root of
demand (customer arrival rate) for fixed cost para-
meters. Second, the safety capacity grows proportional
to the square root of the ratio of cost coefficients for
fixed demand. Lemma 3 states that the optimal service
rate in the M/M/1+M queue also scales proportion-
ally to the square root of the ratio of cost coeffi-
cients, \/ca/cs.

Lemma 2 shows that the optimal safety capacity for a
two-sided queue scales proportionally to the square
root of demand and the square root of the patience rate.
But, in contrast to the M/M/1 and M/M/1 + M queues,
it scales proportionally to log(c,/cs) rather than \/c,/cs;
see Figure 11. It is because of the ability to accumulate
inventory of servers in the two-sided queue that safety
capacity is substantially smaller for high abandonment
costs.

Connection to capacity scaling in the M/M/N queue.
(Borst et al. 2004) proved that the asymptotically opti-
mal safety capacity for an M/M/N queue (a single-
sided queue with N servers) has a logarithmic scaling
in the cost ratio (the hourly cost of delay divided by the
hourly cost per server). It is not a coincidence that the
two-sided queue with abandonment shares this feature
with the many-server queue; for a suitable choice of
parameters, both models have the same diffusion
approximation.

5.1. The Optimal Operating Regime
The optimal operating regime for a given set of para-
meters, A, 0, 05, ¢4, ¢, can be determined by identifying
the optimal capacity, A, and the corresponding operat-
ing regime using Definition 2. We identify the optimal
operating regime for any combination of parameters in
Online Appendix E. Any of the four operating regimes
can be optimal, depending on the relationship between
the cost, abandonment, and demand parameters; see
Figure 12.

For instance, it is scale optimal to operate in the IC N

(& 0
IS regimeif &* < min{l + \/geo_i, \/?Tieﬁ}. This is consis-
S s c
tent with intuition: when servers are very patient

(65 | 0) or when the abandonment cost is lower than the
supply cost, it is optimal to operate with low safety
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Figure 11. (Color online) The Optimal Safety Capacity for a
Two-Sided and Single-Sided Queue with Abandonment Has
the Form A; — A, ~ yv0:A, for y >0 That Does Not Depend
onAor 0

8004 [(X.=100,0, =0, =50,c,=1]

M/M/1+ M queue: v=/c./cs

600

400 A

Two-sided queue: v < y/log(c,/cs)
2004 /’/f/
0 20 140 60 80 100

Ca

Note. The ability to hold inventory of servers in the two-sided queue
allows the safety capacity to grow logarithmically in abandonment
cost ¢, /cs, slower than the square root growth in the single-sided
queue.

capacity (high utilization, IC N IS regime). However,
when customers are very impatient (0, T o) and the
abandonment cost is very high relative to the supply
cost, it is optimal to operate with high safety capacity
(low utilization, IC N PS regime). When the customer
and server patience rates 6. and 6, are not too large rela-
tive to the customer arrival rate (6, = 05 < A.), it is opti-
mal to operate with high safety capacity (PC N PS
regime) if the abandonment cost is high enough relative
to the supply cost, but it is optimal to operate with low

safety capacity (PC N IS regime) if the abandonment cost
is not too high relative to the supply cost.

6. Conclusion

In this paper, we establish a universal scaling law for
the match loss in a two-sided matching queue with
abandonment. The scaling law provides direct insights
into how abandonment impacts the match rate for any
model parameters. Our results are nonasymptotic and
hold for any arrival, utilization, and mean patience.

Any matching queue operates in one of four operat-
ing regimes, which are determined by the level of cus-
tomer and server impatience. The level of impatience is
an operational measure that brings together mean
patience and utilization. This characterization shows,
in simple terms, how relative customer impatience and
the ability to accumulate server inventory impact
match loss for each operating regime.

There are interesting questions that remain to be
studied within the two-sided queue (single-match) set-
ting. We illustrated the use of the scaling laws by study-
ing a simple capacity optimization problem. Pricing in
a two-sided queue with abandonment is a natural next
step. This is the “dual” problem where one optimizes
demand instead of capacity.

The study of control problems in more complex
matching networks may benefit from our characteriza-
tion of operational regimes; some regimes might
allow for simpler controls than others. This “regime
sensitivity” has precedent in the queueing network lit-
erature. For example, the optimal policy for a many-

Figure 12. (Color online) The Optimal Operating Regime for Each Set of Parameters A, 6, 6;, ¢4, ¢s, Where

1 0,04\ _c
6\/—97(1+ o ss)_—

100

751

25

Vv €c>\c S A: _)‘c S V 05 (Ac"r(s\/)\_c)

0y (A +6vVA) S A=A S VO

AT — A, > max {\/_00/\0, Eio; +5\/,\_,_,)}

200 400

600 800
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Figure 13. Model with Three Participant Types and Two Matches
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server, multiclass queue is different depending on the
regime: nondegenerate slowdown (Atar and Gurvich
2014) versus the Halfin-Whitt regime (Atar 2005).
Beyond being conceptually useful through the charac-
terization of regimes, the two-sided queue may feed
into the mathematical arguments in the study of scale-
optimal control of networks, specifically in the charac-
terization of a lower bound on the reward that any
matching policy can achieve.

For an informal illustration of this point, consider the
simple network in Figure 13. This network has three
types of participants: customers A and B and servers S.
There are two matches with different rewards, r4 and
rg. Suppose that r4 > rg and Ay < Asg < Ap+Ap. A
matching policy specifies when to match and which
match to perform. The objective is to identify a policy
that maximizes the long-run average reward.

Hidden in this network are two two-sided queues.
The one on the bottom left of Figure 13 is composed of
only customer A and the servers. In the other (on the
bottom right), the servers take the role of customers,
and their “servers” are both customers A and B.

A lower bound on match loss due to abandonment
can be defined for each of the two-sided queues, per
our Theorem 2, based on its operating regime. An over-
all order-of-magnitude lower bound on the reward loss
due to abandonment is the sum of the two lower
bounds. No policy can do order of magnitude better
than this cumulative lower bound, as long as the para-
meters remain within the regimes identified. A policy
that achieves the established lower bound is scale
optimal.

A

The lower bounds, and the policies that attain them,
will take on different forms depending on the underly-
ing regime. As such, our operating regimes and the
detailed arguments in our analysis provide a starting
point for identifying policies for various network
parameters.

Endnotes

1 When considering ride hailing, our model is best suited for the
study of single trips within a single location/neighborhood; hence,
we only consider trips that begin and/or end in the Manhattan
CBD, and we exclude any driver time spent outside of the CBD.

2In the special case that 6, = 6, = 0., 5 = y/@, for y that depends
only on ¢, .

3 This follows from the fact that R;(f) — Gi./éQi(S)ds is a Martingale;
see, for example, Pang et al. (2007).

4 Liu et al. (2015) allow for B € (—00,00). In our labeling A; <A, so
B =0, but this is without loss of generality.

® We define Critical-Impatience with 8’ = §” = 1, but the implication
in (4) is the same for any constants ” > ' > 0.

6 In the M/M/1+M queues, the Col is proportional to the expres-
sions in Table 2 when 0,,,;, is sufficiently small (0, < 15(A, 0) for T
in the proof of Lemma 1); otherwise, the expression in Table 2 is an
upper bound on the Col.
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