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Abstract. We study matching queues with abandonment. The simplest of these is the two- 
sided queue with servers on one side and customers on the other, both arriving dynami
cally over time and abandoning if not matched by the time their patience elapses. We iden
tify nonasymptotic and universal scaling laws for the matching loss due to abandonment, 
which we refer to as the “cost of impatience.” The scaling laws characterize the way in 
which this cost depends on the arrival rates and the (possibly different) mean patience of 
servers and customers. Our characterization reveals four operating regimes identified by 
an operational measure of patience that brings together mean patience and utilization. The 
four regimes subsume the regimes that arise in asymptotic (heavy-traffic) approximations. 
The scaling laws, specialized to each regime, reveal the fundamental structure of the cost 
of impatience and show that its order of magnitude is fully determined by (i) a “winner- 
take-all” competition between customer impatience and utilization, and (ii) the ability to 
accumulate inventory on the server side. Practically important is that when servers are 
impatient, the cost of impatience is, up to an order of magnitude, given by an insightful 
expression where only the minimum of the two patience rates appears. Considering the 
trade-off between abandonment and capacity costs, we characterize the scaling of the opti
mal safety capacity as a function of costs, arrival rates, and patience parameters. We prove 
that the ability to hold inventory of servers means that the optimal safety capacity grows 
logarithmically in abandonment cost and, in turn, slower than the square-root growth in 
the single-sided queue.
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1. Introduction
In dynamic matching, participants arrive at a matching 
market over time and wait to be matched. The funda
mental tension in dynamic matching is between the 
quality and efficiency of matches. Delaying matches to 
“thicken the market” can lead to better matches becom
ing available, but at the expense of increasing the time 
to match. This tension is especially pronounced when 
participants are impatient and leave (abandon) the 
market if not matched within an amount of time that 
they deem acceptable. In such cases, delaying matches 
to thicken the market may have the opposite effect of 
thinning the market through abandonments.

Abandonments (also called departures) are a key fea
ture of dynamic matching applications. Examples 
include ride hailing, where both riders and drivers may 
abandon if the wait time is too long (e.g., Yu et al. 2022), 
and organ exchanges, where donor-recipient pairs may 
depart the exchange if the recipient’s health deteriorates 

or if a donor is found outside the exchange (e.g., Ashlagi 
et al. 2018 and the references therein). Impatience is simi
larly important in the allocation of perishable inventory 
to impatient demand (e.g., blood banks (Bar-Lev et al. 
2017) and food banks (Prendergast 2017)).

Much of the research on dynamic matching to date 
assumes infinitely patient participants. This focus 
makes sense, as the optimal control of these networks is 
sufficiently complicated, even without impatience (e.g., 
Kerimov et al. 2021 and the references therein).

Ignoring impatience will lead to inaccurate evalua
tion of system performance and may result in subopti
mal decisions. Yet the extent to which abandonment 
impacts system performance and how this depends 
jointly on the arrival and impatience rates is not fully 
understood. This knowledge is critical for optimal deci
sion making.

We make a step toward a fuller understanding of 
impatience in matching by (re)considering the simplest 
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of matching models, as shown in Figure 1. There are 
two types of participants: customers and servers. A 
match consists of one customer and one server. Custo
mers and servers with finite (random) patience arrive 
dynamically over time and, if not immediately 
matched, join their dedicated queue and wait to be 
matched. There is no fundamental difference between 
customers and servers; for convenience, we label the 
participants with the greater arrival rate as servers.

With one possible match, the control that minimizes 
abandonment is trivial: it is optimal to perform a match 
whenever there is an available customer and an avail
able server. Under this policy, arriving customers 
match immediately with waiting servers, and vice 
versa, so there are either customers waiting or servers 
waiting, but never both. This is a two-sided (also called 
“double-ended”) queue; see Figure 1.

When participants have infinite patience (do not 
abandon), the match rate is trivially equal to the mini
mum of the two arrival rates: min{λc,λs}; with impa
tience, this becomes an upper bound on the match rate. 
The difference between this no-abandonment upper 
bound and the actual match rate is the cost of impatience 
(CoI), which depends on the abandonment and arrival 
rates of customers and servers.

Explicit steady-state expressions for the abandon
ment rate can be derived for this model, but these 
expressions are not informative beyond allowing for 
numerical computations. Instead, we establish scaling 
laws that characterize how the cost of impatience 
changes as a function of the model parameters. Specifi
cally, we derive expressions that both upper and lower 
bound the true cost of impatience, up to multiplicative 
constants that do not depend on the parameters. This 
characterization is nonasymptotic and holds regardless 
of any notion of asymptotic regime.

The scaling laws reveal four operating regimes that 
encompass all combinations of model parameters. 
These regimes subsume existing asymptotic regimes 
and offer insights into the performance of a two-sided 
queue in terms of simple building blocks. The scaling 
laws identify the key determinants of match loss from 
impatience. The operating regimes provide a simple 
framework for identifying when and how settings 

are fundamentally different in terms of the impact 
of impatience on match loss. We use these results and 
scaling laws for the single-sided queue to draw atten
tion to key properties of the two-sided queue with 
abandonment.

1.1. Overview of Results
We establish a universal scaling law for the cost of 
impatience as a function of the model parameters. That 
is, we identify a function, S, of the arrival and patience 
rate vectors, l � (λc,λs) and u � (θc,θs), such that

(CoI ~ S)1
Γ

≤
CoI(l, u)

S(l, u)
≤ Γ, 

for some constant Γ that does not depend on the para
meters. The function S is tractable and exposes four 
operating regimes that are distinguished by the level of 
impatience of customers and servers.

The level of impatience is based on a comparison 
between the amount of time that a participant is willing 
to wait and the amount of time that they have to wait to 
match. Informally, customers are “patient” when they 
are willing to wait longer than their expected time to 
match; they are “impatient” otherwise. This is deter
mined by a measure of the customer mean patience rel
ative to utilization, ρ :� λc=λs. Servers are similarly 
patient or impatient, based on a relative measure of the 
server mean patience and utilization.

Three simple metrics determine whether customers 
and servers are impatient or patient, which, in turn, 
specify the operating regime for a matching market. 
These are the utilization, ρ, and the arrival-to-patience 
ratios, λc=θc and λs=θs.

Any two-sided queue with abandonment operates 
in one of four regimes and has CoI proportional to 
(upper and lower bounded by) the expression shown 
for that regime in Figure 2. This nonasymptotic analysis 
exposes a richer picture of the CoI than asymptotic 
approximations, which yield a single expression for the 
CoI when patience rates are fixed and arrival rates are 
scaled up.

Customer impatience impacts the CoI differently 
than server impatience (recall that λc ≤ λs). To see this, 
note that the CoI is equal to the expected customer 
abandonment rate. Customers abandon their queue, 
Qc, at a rate of θc when the server queue, Qs, is empty. 
Therefore,

CoI � θcE[Qc |Qs � 0]P(Qs � 0):

When customers have to wait, the customer queue is 
conveniently determined by a “winner-take-all” compe
tition between customer impatience and excess capacity, 
λs�λc. Only one of customer impatience or excess capac
ity, but not both, matter for the scaling laws of the cus
tomer queue (conditional on customers having to wait). 
If excess capacity is high enough relative to customer 

Figure 1. The Simplest Matching Model: A Two-Sided 
Matching Queue with Abandonment 
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impatience, excess capacity “wins,” and impatience 
does not matter for scaling. Otherwise, impatience 
“wins,” and excess capacity does not matter for scaling. 
Mathematically, this is captured by the fact that the 
expected customer queue (conditional on customers 
having to wait) is proportional to the minimum of the 
expected number in either an M=M=1 (no impatience) 
queue or a critically loaded (no excess capacity) 
M=M=1 + M queue:

E[Qc |Qs � 0] ~ min ρ

1 � ρ
,

ffiffiffiffiffi

λc

θc

s( )

:

When customers are patient, they are willing to wait 
longer than the expected time to match. Therefore, few 
customers abandon, and abandonment has a limited 
impact on the customer queue; the customer queue 
scales like an M=M=1 queue (proportional to ρ=(1 � ρ)). 
When customers are impatient, they may have to wait 
longer than they are willing. Any excess capacity is 
insufficient to have a scaling effect on the customer 
queue; the customer queue scales like an M=M=1 + M 
queue with no excess capacity (proportional to 

ffiffiffiffiffiffiffiffiffiffiffiffi
λc=θc

p
).

Server impatience impacts the likelihood that custo
mers have to wait. When servers are patient, sufficient 
inventory of waiting servers can be accumulated so 
that most customers are matched immediately and few 
abandon. When servers are impatient, there will be lit
tle or no inventory of servers, and most customers will 
have to wait to be matched. The significant benefit of 

server patience is captured by the exponential term in 
the second row of Figure 2.

Interestingly, only the minimum abandonment rate 
appears when either customers or servers are impatient. 
Recall that CoI � θcE[Qc |Qs � 0]P(Qs � 0). The mini
mum rate, θmin � {θc,θs} appears, rather than θc, in 
three regimes in Figure 2 is because of the ability to 
accumulate inventory of waiting servers.

Practically, this means that to decrease the cost of 
impatience, the focus should be on decreasing the mini
mum patience rate (the maximum mean patience). It 
only matters that either customers or servers are patient 
enough; the patience of the other type has no order-of- 
magnitude effect. Intuitively, items of one participant 
type serve as inventory for the other in these matching 
markets. The ability to accumulate inventory of one of 
the two types, those who abandon less, creates a buffer 
protecting against the impatience of the other type. It is 
only when both customers and servers are patient, and 
the CoI is very low, that both patience rates appear in 
the CoI scaling.

When servers are impatient, the CoI is proportional 
to an insightful function of the minimum patience rate, 
θmin, the utilization, and the smaller of the arrival rates:

CoI ~ θmin min ρ

1 � ρ
,

ffiffiffiffiffiffiffiffiffi

λc

θmin

s( )

:

Notice that θmin can be either θc or θs. For example, ser
vers are impatient if either (i) utilization is close to one, 
or (ii) the server abandonment rate is greater than their 

Figure 2. Cost of Impatience for the Four Operating Regimes Where θmin � min{θc,θs}, ρ � λc=λs and 
H(ρ) �

P∞
n�1

1
n(n+1)

(1 � ρ)
n�1 

Note. PC, IC, PS, and IS denote Patient-Customer, Impatient-Customer, Patient-Server, and Impatient-Server, respectively, so that PC ∩ IS 
denotes the Patient-Customer, Impatient-Server regime.
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arrival rate (θs > λs). In both cases, θmin can be either θc 
or θs.

More generally, the scaling laws identify which para
meters have the most impact on match loss from impa
tience and specify the relative impact of a change in 
these parameters; this focuses attention on key manage
rial levers, as we illustrate next.

Table 1 collects examples of dynamic matching appli
cations that fit each of the operating regimes (Online 
Appendix F reports data supporting the classification 
of these examples). These settings, and key insights 
revealed by the scaling laws, are as follows. 

• Blood transfusion (IC ∩ IS). In developing coun
tries, it is common for the supply of blood to be only 
slightly greater than the demand for blood. Therefore, 
utilization is close to one, and both customers and ser
vers are impatient. Individuals who need a blood trans
fusion are the customers, and blood donations are the 
servers. In the IC ∩ IS regime, CoI ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θminλc

√
. The CoI 

scales proportionally to the square root of the arrival 
rate of transfusion patients, λc. A small change in the 
rate at which blood is collected, λs, does not have an 
order-of-magnitude impact on the CoI. Blood dona
tions can be stored for 42 days, but patients may need 
blood immediately; small changes in the storage life of 
blood donations, θmin, will have a greater impact on the 
CoI than small increases in supply (donations).

• Cadaveric liver transplant (IC ∩ PS). The demand 
for liver transplants is greater than the supply of donor 
livers. Livers must be transplanted within 8 to 12 hours, 
whereas individuals on the transplant waiting list typi
cally wait several months or years. Therefore, livers are 
the customers, and they are impatient; transplant 
patients are the servers, and they are patient. In the 
IC ∩ PS regime, CoI ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θminλc

√
e�λs
θs(1�ρ)

2
H(ρ). A small 

change in the arrival rate of transplant patients, λs, has 
an exponential impact on the CoI, whereas a small 
change in the storage life of livers (the most impatient 
type) does not have an order-of-magnitude impact on 
the CoI. In other words, it is not the perishability of the 
livers that is the main practical challenge in this setting; 
it is that—even without abandonment—the number of 
transplants is limited by the small rate of cadaveric- 
liver arrivals.

• Foster care adoption (PC ∩ IS). In the foster care 
system in the state of Pennsylvania, the number of chil
dren becoming available for adoption annually is less 

than the number of families joining the adoption list. 
Here, children are the customers and families are the 
servers. Children wait to be adopted until they reach 
the age of 18; they are patient. Families have other 
options available if they are not matched soon enough 
(e.g., private or international adoption, adoption from 
a different state, or deciding not to adopt); they are 
impatient. In the PC ∩ IS regime, CoI ~ θmin

ρ
1�ρ. Small 

changes in both the arrival rate of children and families 
have an impact on the CoI that is proportional to 
ρ=(1 � ρ).

• Ride hailing (PC ∩ PS). Ride-hailing drivers in 
the Manhattan Central Business District (CBD) spend 
approximately 20%–25% of their time in the CBD wait
ing for a ride request.1 This means that utilization in 
the CBD is less than 80%, where passengers are the cus
tomers, and drivers are the servers. Passengers are not 
willing to wait long for each trip to start, but trips start 
quickly because utilization is relatively low and arrival 
rates are high. Drivers are at least as patient as passen
gers. Therefore, both passengers and drivers are 
patient. In the PC ∩ PS regime, the CoI is low, and 
small changes in the patience of both passengers and 
drivers have a significant impact on the CoI.

The scaling laws are consistent with the intuition that 
substantial excess capacity (and, in turn, low utiliza
tion) guarantees low CoI. But they also underscore a 
property of the two-sided queue: the ability to accumu
late inventory of servers may result in low CoI, even 
without substantial excess capacity. We characterize 
the safety capacity, λs �λc, that balances the trade-off 
between abandonment and capacity costs. We show 
that the optimal safety capacity has the form

λ∗
s �λc ~ δ

ffiffiffiffiffi
λc

p
, 

for δ ≥ 0 that does not depend on λc but is affected by 
the relationship between the cost per abandonment, ca, 
and the cost per unit of capacity (server arrivals), cs.2 In 
the single-sided M=M=1 + M queue, δ scales propor
tionally to 

ffiffiffiffiffiffiffiffiffiffi
ca=cs

p
. As the abandonment cost grows rel

ative to the capacity cost, the safety capacity grows 
proportionally to the square root of cost growth, with 
all else fixed. In the two-sided queue, in contrast, δ 
grows proportionally to log(ca=cs).

This precise characterization of the capacity scaling 
highlights a key difference between the single-sided 
and two-sided queue. The ability to build a buffer of 

Table 1. Examples of Dynamic Matching Applications That Fit Each of the Four Operating Regimes

Setting Customers Servers Regime

Blood transfusion (in a location with low blood supply) Patients Blood donations IC ∩ IS
Liver transplant Donor livers Patients IC ∩ PS
Adoption Children Families PC ∩ IS
Ride hailing Riders Drivers PC ∩ PS
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waiting servers in the two-sided queue leads to safety 
capacity that scales slower with the abandonment cost.

Our characterization of the optimal capacity scaling 
reveals that any of the four operating regimes in Figure 2
can be rationalized from an optimization perspective. It 
can be optimal to operate with either high or low utiliza
tion, depending on the relative costs and patience rates.

Outline of the paper. Section 2 summarizes related liter
ature. The model is described in Section 3. The scaling 
laws and operating regimes are studied in Section 4. 
Capacity-sizing results appear in Section 5. We conclude 
in Section 6. All proofs appear in the Online Appendix.

2. Related Literature
Our matching model is a two-sided, or double-ended, 
queue with abandonment. When one side is completely 
impatient, the double-ended queue reduces to a single- 
server, single-class queue with abandonment. As such, 
our work speaks to both the dynamic matching litera
ture and the extensive literature on single-class queues 
with abandonment.

Analysis of matching queues with abandonment. 
Double-ended queues were introduced as the “taxi 
model” where taxis queue to wait for a customer, and 
customers queue to wait for a taxi (e.g., Kendall 1951, 
Kashyap 1966). Conolly et al. (2002) derive exact analyt
ical results for the transient and steady-state perfor
mance of the Markovian two-sided queue with Poisson 
arrivals and exponential patience times; this two-sided 
queue is the same as our model. Afèche et al. (2014) and 
Diamant and Baron (2019) derive closed-form expres
sions for the steady-state queue-length distribution of a 
two-sided queue with two types of customers: those 
who abandon immediately and those with either some 
or infinite patience. Liu et al. (2015) and Büke and Chen 
(2017) develop fluid and diffusion approximations for 
a two-sided queue in heavy traffic. Exact analysis of the 
two-sided queue and variants thereof appear in the 
study of organ allocation (Boxma et al. 2011, Elalouf 
et al. 2018), blood bank allocation (Bar-Lev et al. 2017), 
and general perishable inventory systems (Perry and 
Stadje 1999). Beyond a single match, Castro et al. 
(2020a) derive explicit expressions for the steady-state 
distributions of a two-customer, two-server network 
following the first-come first-served policy. Zubeldia 
et al. (2022) study the stability region for a matching 
network with two matches operated under a max- 
weight policy.

Analysis of single-sided queues with abandonment. 
When either customers or servers (but not both) are 
infinitely impatient, our model reduces to a single- 
sided queue with Poisson arrivals, exponential service 
times, and exponentially distributed patience.

The single-server queue with abandonment has been 
used to study perishable inventory (Graves 1982), public 
housing (Kaplan 1986), and organ allocation (Zenios 
1999). See Ward (2012) for a survey of results on single- 
class queues with abandonment. Of immediate relevance 
to our work, Ward and Glynn (2003) develop diffusion 
approximations for an M=M=1 + M queue under various 
asymptotic regimes. Our results, specialized to these 
regimes, align with those in Ward and Glynn (2003); this 
connection merits (and will receive) further discussion 
after we introduce our results.

Capacity planning in double- and single-sided 
queues. Lee and Ward (2019) study joint pricing and 
capacity sizing for the M=GI=1 + GI queue and derive 
asymptotically optimal policies in a regime where the 
service distribution is fixed and arrival rates grow 
along the sequence of queues.

Other levers for controlling supply and demand in 
two-sided queues are considered, for example, in 
Nguyen and Stolyar (2018), Chen and Hu (2020), Vaze 
and Nair (2022), and Varma et al. (2022).

Optimal control of matching queues with abandon
ment. Recent progress on the optimal control of dynamic 
matching markets with abandonment includes Collina 
et al. (2020), Castro et al. (2020b), Aouad and Saritaç 
(2022), Wang et al. (2022), and Aveklouris et al. (2024), 
all of whom study control policies for a network of 
matches with impatient participants and introduce 
algorithms to determine when to perform matches and 
which matches to perform.

Analysis and control of matching queues without 
abandonment. The literature on matching queues with
out abandonment is relatively mature and includes 
papers that study performance under specific policies 
(e.g., Caldentey et al. 2009, Adan et al. 2018 and the refer
ences therein), as well as various optimization levers, 
such as pricing (e.g., Varma and Maguluri 2021), menu 
design (e.g., Afèche et al. 2022), and dynamic control 
(e.g., Gurvich and Ward 2014, Özkan and Ward 2020, 
Kerimov et al. 2021).

In this work, we revisit the simplest matching model 
with abandonment: the two-sided queue with Poisson 
arrivals and exponential patience. Our goal is to deepen 
the understanding of this model on its own and as a 
necessary building block for networks of matching 
queues with impatient customers.

3. Model
We consider a matching queue with two types of parti
cipants: customers and servers. Customers and servers 
arrive according to independent Poisson processes 
with rates λc and λs, respectively.

Each type has its own dedicated infinite-capacity queue 
where participants wait to be matched. Matches are made 
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between one customer and one server according to a first- 
come-first-served policy. A waiting customer is matched 
immediately with an arriving server, and vice versa. 
When a match is performed, the matched customer and 
server leave the system immediately (there is no proces
sing time).

Participants are never rejected (or blocked) but may 
choose to abandon after they join their queue. Customers 
and servers have exponential patience with rates θc > 0 
and θs > 0, respectively. If participants are not matched 
by the time their patience elapses, they abandon the queue. 
Patience is independent across participants. To avoid triv
ialities, we assume that either customers or servers have 
at least some patience. That is, θmin � min{θc,θs} < ∞, 
or equivalently, max{1=θc, 1=θs} > 0. If this assumption 
is violated, then all arrivals abandon immediately, and 
because there are no simultaneous arrivals, no match is 
performed.

In the absence of impatience, the expected long-run 
average match rate is equal to the minimum of the two 
arrival rates: min{λc,λs}. The difference between this 
upper bound and the actual match rate is the cost of 
impatience.

We label the arrival rates, without loss of generality, so 
that λc ≤ λs. If this is violated, then we replace customers 
with servers, and vice versa, in all the following results.

3.1. The Two-Sided Queue
Let Qc(t) and Qs(t) denote the number of customers and 
servers waiting in their queue at time t, respectively. 
Because customers and servers are matched immedi
ately, only one queue can be positive at any given time. 
We define the one-dimensional, continuous-time Markov 
chain, Q(t) � Qc(t) � Qs(t), where Qc(t) � [Q(t)]+

�

max{0, Q(t)} and Qs(t) � [Q(t)]�
� max{0, � Q(t)}, as in 

Figure 3. With θc,θs > 0, Q � {Q(t) : t ≥ 0} has a steady- 
state distribution; we omit the time index t when consid
ering the queue in steady state.

Let Ac(t) denote the number of customers that arrive 
by time t and Rc(t) denote the cumulative number of 
customers that abandon by time t; As(t) and Rs(t) are 
defined similarly for servers. Let D(t) denote the num
ber of matches performed by time t. At all t ≥ 0,

Qi(t) � Ai(t) � Ri(t) � D(t)
for i � c, s. Let d � limt↑∞

1
tE[D(t)] be the expected long- 

run average match rate. It follows that for i � c, s,

lim
t↑∞

1
t E[Qi(t)] � lim

t↑∞

1
t E[Ai(t) � Ri(t) � D(t)]

� λi �θiE[Qi] � d � 0:

Here, we use the facts that E[Ai(t)] � λit and that 
E[Ri(t)] � E[θi

R t
0Qi(s)ds].3 Hence,

d � λc �θcE[Qc] � λs �θsE[Qs]: (1) 

Recall that the cost of impatience is the difference 
between the no-abandonment match rate and the 
actual match rate, d. Because λc ≤ λs, the no-abandon
ment match rate is min{λc,λs} � λc. Therefore, from 
(1), we obtain that the CoI is equal to the expected long- 
run average rate of customer abandonment:

CoI � λc � d � θcE[Qc]: (CoI) 

We identify expressions that both lower and upper 
bound the CoI. We write

g(l, u)~Mf (l, u) (2) 

when there exists a constant, Γ ≥ 1, that does not depend 
on either l or u, such that

1
Γ

× f (l, u) ≤ g(l, u) ≤ Γ × f (l, u), for all (l, u) ∈ M,

(3) 

where M is a family of parameters that satisfy certain 
restrictions.

Definition 1 formalizes the notion of parameter fami
lies. The conditions we impose have the same purpose: 
to guarantee that the customer queue is not negligible 
and, therefore, that we have a real two-sided queue. If 
λs ≫ λc, then an arriving customer matches with a 
server before the next customer arrives. Similarly, if 
θc ≫ λc, then an arriving customer abandons before 
the next customer arrives. In either case, there is effec
tively no customer queue, and the two-sided queue 
“collapses” into a single-sided queue.

Condition (i) restricts our focus to settings where 
supply (the arrival rate of servers) is not significantly 
larger than demand (the arrival rate of customers). 
When λs is optimized (see Section 5), condition (i) arises 
as an outcome under reasonable conditions on the 
problem parameters.

Definition 1 (Queue Families). Fix M ≥ 1. Denote by 
M(M) the family of primitives (l, u) such that 

i. Nonnegligible demand relative to supply: λs ≤ Mλc, 
or equivalently ρ � (λc=λs) ≥ (1=M), and

ii. Nonnegligible customer patience: θc ≤ Mλc.
Let

M � M(M) :� (λ,θ) ≥ 0 :
λs

λc
≤ M, θc

λc
≤ M

� �

:

The set of parameters that we allow, and relative to 
which the ~ relationship is evaluated, is M(M). The 
constant Γ in Relationship (2) depends on this M.

4. Scaling Laws and Operating Regimes
Our main mathematical result in Theorem 1 charac
terizes how the cost of impatience scales with model 
parameters.
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Theorem 1 (Cost of Impatience Scaling). Let M′ � {(l, u)

: ρ � λc=λs < 1}. Then,

E[Q |Q ≥ 0] ~M∩M′

min ρ

1 � ρ
,

ffiffiffiffiffi

λc

θc

s( )

and

P(Q ≥ 0) ~M∩M′

1+ 1+
ρ

1�ρ

θc

λc
min ρ

1�ρ
,

ffiffiffiffiffi

λc

θc

s( )" # 

ffiffiffiffiffi

λs

θs

s

(1�ρ)e
λs
θs(1�ρ)

2
H(ρ)

!�1 

where H(ρ) �
P∞

n�1
1

n(n+1)
(1 � ρ)

n�1.
The cost of impatience subsequently satisfies

CoI � θcE[Qc] � θcE[Q |Q ≥ 0]P(Q ≥ 0)

~M∩M′

θcmin ρ

1 � ρ
,

ffiffiffiffiffi

λc

θc

s( )

1 + 1 +
ρ

1 � ρ

θc

λc
min ρ

1 � ρ
,

ffiffiffiffiffi

λc

θc

s( )" # 

ffiffiffiffiffi

λs

θs

s

(1 � ρ)e
λs
θs(1�ρ)

2
H(ρ)

!�1

:

On M\M′ (when ρ � 1), the cost of impatience satisfies

CoI ~M\M′ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θminλc

p
:

Theorem 1 identifies how key metrics—utilization, ρ, and 
the patience-to-arrival ratios, λc=θc and λs=θs—jointly 
determine the performance of a two-sided queue with 
abandonment. It draws attention to key properties of the 
expected customer queue, conditional on customers hav
ing to wait, E[Q |Q ≥ 0], and the probability that custo
mers have to wait, P(Q ≥ 0). These properties reveal key 
determinants of the CoI.

A “competition” between customer impatience and 
excess capacity. Theorem 1 shows that E[Q |Q ≥ 0] ~ 
min ρ

1�ρ ,
ffiffiffiffi
λc
θc

qn o
. The quantity ρ=(1 � ρ) is the expected 

number-in-system in an M(λc)=M(λs)=1 queue (a 
single-server queue with arrival rate λc, service rate λs, 
and no abandonment). The quantity 

ffiffiffiffiffiffiffiffiffiffiffiffi
λc=θc

p
is, up to a 

constant multiplier, the expected number-in-system in 

an M(λc)=M(λc)=1 + M(θc) queue (a critically loaded, 
ρ� 1, queue with patience parameter θc). Thus, the 
customer queue, conditional on customers having to 
wait, is determined by a “winner-take-all” competition 
between customer impatience and excess capacity, 
λs �λc: only one of impatience or excess capacity, but 
not both, matters for scaling purposes.

Excess capacity determines how fast matches are 
performed (i.e., the expected wait time in an 
M(λc)=M(λs)=1 queue is 1

λs�λc
). When ρ1�ρ � λc

λs�λc
≤

ffiffiffiffi
λc
θc

q

, 
excess capacity is large relative to mean customer impa
tience, and customers are matched faster than they 
abandon. In this case, excess capacity “wins,” and the 
customer queue behaves the same as the queue without 
abandonment (the M=M=1 queue). Only excess capac
ity matters for scaling purposes; impatience has, at 
most, a constant multiplying effect on the CoI.

Conversely, when 
ffiffiffiffi
λc
θc

q

≤
ρ

1�ρ � λc
λs�λc

, mean customer 
impatience is large relative to excess capacity. The cus
tomer queue behaves the same as a queue with no 
excess capacity (the critically loaded M=M=1 + M 
queue); only customer impatience matters for scaling 
purposes, and excess capacity has, at most, a constant 
multiplying effect on the CoI.

On the proof of Theorem 1. The proof of Theorem 1 is 
based on expansions of the explicit expressions for the 
CoI, as well as coupling-based comparisons with sim
pler queues. The explicit expressions for the steady- 
state distributions involve infinite sums and products. 
To derive the CoI approximation (specifically, the 
approximation for P(Q ≥ 0)), we truncate these expres
sions at carefully chosen thresholds and analyze those 
truncated expressions. To bound E[Q |Q ≥ 0], we note 
that the customer queue, conditional on customers 
having to wait, is equal in distribution to an 
M(λc)=M(λs)=1 + M(θc) queue. It follows from simple 
coupling arguments that this queue is upper bounded 
by both an M(λc)=M(λs)=1 queue (no abandonment) 
and an M(λc)=M(λc)=1 + M(θc) queue (no excess capac
ity). It is the lower bound where more care is needed. 
We couple the M(λc)=M(λs)=1 + M(θc) queue with an 
M(λc)=M(λs +θcK)=1=K (a queue with finite waiting 
room and a modified service rate). Here, it is the choice 
of K that is critical and produces the desired results.

Customer vs. server impatience. Theorem 1 reveals 
that customer impatience impacts the CoI in a different 
way than server impatience. Customer impatience acts 

Figure 3. The Two-Sided Queue, Q � Qc � Qs 
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on the expected customer queue, E[Q |Q ≥ 0] (θs does not 
appear in this expression). Server impatience acts, together 
with customer impatience, on the probability that there is 
a customer queue, P(Q ≥ 0). We introduce four opera
tional regimes that are distinguished by the level of 
customer and server impatience. When parameters are 
specialized to one of these regimes, the expressions in The
orem 1 simplify and make explicit how the server impa
tience, through P(Q ≥ 0), impacts the CoI.

4.1. Operating Regimes
The operating regimes are defined in terms of a rela
tionship between impatience and utilization.

Definition 2 (Operating Regimes). A two-sided match
ing queue with abandonment has impatient custo
mers (IC) if

ffiffiffiffiffi

λc

θc

s

≤
ρ

1 � ρ
, (Impatient-Customer) 

and has patient customers (PC) otherwise. It has impa
tient servers (IS) if

ffiffiffiffiffi

λs

θs

s

≤
1

1 � ρ
, (Impatient-Server) 

and has patient servers (PS) otherwise.
We define the corresponding subsets of M:

MIC � (l, u) ∈ M :

ffiffiffiffiffi

λc

θc

s

≤
ρ

1 � ρ

( )

and

MIS � (l, u) ∈ M :

ffiffiffiffiffi

λs

θs

s

≤
1

1 � ρ

( )

:

Customers and servers are patient if the no-impatience 
case (θc ↓ 0 and θs ↓ 0, respectively) provides a better 
approximation of a suitable performance metric than the 
no–excess capacity case (λs ↓ λc and λc ↑ λs, respectively); 
they are impatient otherwise. For customers, the perfor
mance metric is the expected customer queue (conditional 
on customers having to wait), and for servers, it is the 
fraction of servers who abandon (or remain unused).

Recall that customer impatience acts on the expected 
customer queue, E[Q |Q ≥ 0]. As discussed after Theo
rem 1, the no-impatience case (the M=M=1 queue) 
provides a better approximation of E[Q |Q ≥ 0] than 
the no-excess capacity case (the critically loaded 
M=M=1 + M queue) when ρ

1�ρ <

ffiffiffiffi
λc
θc

q

. Hence, custo

mers are patient if ρ1�ρ <

ffiffiffiffi
λc
θc

q

. Informally, this means 
that customers are willing to wait for a sufficient 
amount of time relative to the expected time to match 
so that abandonments have little impact on the ex
pected customer queue.

Server impatience acts on the probability that custo
mers have to wait, P(Q ≥ 0). This probability is influ
enced by the fraction of servers who abandon. The 
percentage of servers who abandon is lower bounded 
by the abandonment in both the case where servers are 
infinitely patient (no impatience) and the case where the 
customer arrival rate is increased to the server arrival 
rate (no excess capacity). At least λs �λc � λs(1 � ρ) ser
vers must abandon (or remain unused) because no 
more than λc matches can be performed per unit of 
time. As θs ↓ 0, keeping all else constant, the percentage 
of servers who remain unused will converge to (1 � ρ); 
this is the no-impatience bound. The expected number 
in a critically loaded M(λs)=M(λs)=1 + M(θs) queue is, 
up to a multiplicative constant, equal to 

ffiffiffiffiffiffiffiffiffiffiffiffi
λs=θs

p
. Thus, 

the percentage of servers who abandon in the no-excess 
capacity case is θs

λs

ffiffiffiffi
λs
θs

q

�

ffiffiffiffi
θs
λs

q

. If 1 � ρ >

ffiffiffiffi
θs
λs

q

, the 
no-abandonment case provides a better lower bound on 
the fraction of servers who abandon; hence, servers are 
patient.

One should not expect that near the boundary of a 
regime, where the regime condition is held with 
equality, the performance will vary significantly; it 
will not. Instead, the point of Definition 2 is that cer
tain “forces” become important as the market para
meters transition from one regime to another. These 
forces have a more pronounced effect, as the para
meters are farther into the interior of the regime. For 
example, when 

ffiffiffiffi
λc
θc

q

≪
ρ

1�ρ, the effect of customer im
patience is more pronounced.

For each of the four regimes, there is a simple 
approximation for the CoI that works for all para
meters in that regime; these expressions are reported 
in Theorem 2.

Theorem 2 (Cost-of-Impatience Scaling by Operating 
Regime). Figure 4 characterizes the cost of impatience on 
the parameter set M. In addition, in the Impatient-Server 
regime,

CoI ~MISθmin min ρ

1 � ρ
,

ffiffiffiffiffiffiffiffiffi

λc

θmin

s( )

:

At the boundaries between conditions (and corre
sponding parameter sets), the CoI expressions collapse 
into one expression. That is, if (l, u) are such that custo
mers and servers are both “critically” patient, which 
means that

(l, u) ∈ M0

:� (l, u) ∈ M :

ffiffiffiffiffi

λc

θc

s

�
ρ

1 � ρ
,

ffiffiffiffiffi

λs

θs

s

�
1

1 � ρ

( )

,

(Critical-Impatience) 
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then

CoI ~M0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θminλc

p
: (4) 

Some observations are useful at this point.

Waiting servers as inventory. When either customers 
or servers are impatient, the CoI depends only on the 
minimum of the two patience parameters (or the maxi
mum of the mean patience). We show in Theorem 1
that CoI � θcE[Q |Q ≥ 0]P[Q ≥ 0] ~ θc min ρ

1�ρ ,
ffiffiffiffi
λc
θc

qn o

P[Q ≥ 0]. The fact that θmin appears in Theorem 2, 
rather than θc, is because of the ability to accumulate 
inventory of waiting servers.

Notice that θmin can be either θc or θs, even when cus
tomers are patient. For example, if utilization is very 
low (i.e., ρ ↓ 0) and both customers and servers have 
low mean patience (i.e., θc > λc and θs > λs), then custo
mers are patient and servers are impatient. The CoI in 
the PC ∩ IS regime is determined by θmin, which could 
be either θc or θs.

If θc ≤ θs in the impatient-server regimes (PC ∩ IS 
and IC ∩ IS), then CoI ~ θc min ρ

1�ρ ,
ffiffiffiffi
λc
θc

qn o
; the CoI is 

proportional to the abandonment rate from the single- 
sided customer queue. In this case, there is little or no 
inventory of waiting servers, and the server-side queue 
does not have a scaling effect on the CoI. Conversely, if 
θs < θc, then the inventory of waiting servers, even if 
low, reduces the probability that customers must wait. 
The CoI scales like the abandonment rate from the 
single-sided customer queue, but with θc replaced by 
the minimum abandonment rate, θs.

When servers are patient (the PC ∩ PS and IC ∩ PS 
regimes), inventory is high, and the CoI is offset 
(decreases) by a function of the server’s level of impa
tience: e�

λs
θs(1�ρ)

2
H(ρ). This term captures the significant 

benefit of server inventory. Note that (1 � ρ)
2
H(ρ) �

P∞
n�1

1
n(n+1)

(1 � ρ)
n+1 is between zero (when ρ � 1) and 

one (when ρ � 0). Therefore, e�
λs
θs(1�ρ)

2
H(ρ) ∈ [e�

λs
θs , 1]

decreases when either utilization decreases or the ser
ver’s arrival-to-patience ratio, λs=θs, increases.

When both customers and servers are patient 
(PC ∩ PS regime), the CoI is very low and is sensitive to 
small changes in all parameters. Hence, the patience 
rates of both the customer and the server appear in the 
CoI scaling.

Overview of the key determinants of the CoI. Theorem 
2 exposes the two key determinants of the CoI: (i) the 
“competition” between customer impatience and excess 
capacity, represented by the ρ/(1�ρ) term in the PC 
regimes versus the square-root term in the IC regimes, 
and (ii) the ability to accumulate inventory of waiting ser
vers, as reflected by the minimum patience rate in three 
regimes and the exponential term in the PS regimes.

• Customer impatience versus excess capacity. 
Suppose that the patience rates θc and θs are fixed. In 
the PC ∩ IS regime, CoI ~ ρ

1�ρ; the CoI is proportional to 
the number of customers in an M=M=1 queue and is 
impacted by small changes in either λc or λs. In the 
IC ∩ IS regime, CoI ~

ffiffiffiffiffi
λc

√
; the CoI scales like the square 

root of λc and is not as sensitive to small changes in λs; 
see Figure 5.

Figure 4. CoI in the Four Operating Regimes 

Notes. Each cell corresponds to an intersection of customer and server regimes and should be read with the appropriate “~” correspondence. For 
example, the upper-left cell is the statement that CoI ~Mc

IC∩MISA, where A is the expression in that cell.

Kohlenberg and Gurvich: The Cost of Impatience in Dynamic Matching 
Management Science, Articles in Advance, pp. 1–17, © 2024 INFORMS 9 



• The minimum patience rate. Suppose that the 
arrival rates, λc and λs, are fixed. In the PC ∩ IS regime, 
CoI ~ θmin, whereas in the IC ∩ IS regime, CoI ~

ffiffiffiffiffiffiffiffiffi
θmin

√
. 

Small changes to the maximum patience rate (the mini
mum mean patience) do not have an order-of- 
magnitude impact on the CoI; see Figure 6. Small 
changes in the minimum patience rate have a more pro
nounced impact on the CoI when customers are patient 
versus impatient; see Figure 7. This is because when 
the CoI is low, which is the case in the patient- 
customer regimes (PC ∩ PS and PC ∩ IS) relative to 
the impatient-customer regimes (IC ∩ PS and IC ∩ IS), the 
CoI is more sensitive to small changes in the parameters.

• Inventory of patient servers. Suppose that the uti
lization, ρ, and the patience rates, θc and θs, are fixed; 
only λc and λs can change. Then in the IC ∩ IS regime, 

CoI ~
ffiffiffiffiffi
λc

√
, while in the PC ∩ PS regime, CoI ~

ffiffiffiffi
1
λs

q
e�κλs 

for the constant κ � 1
θs

(1 � ρ)
2. In the IC ∩ IS regime, the 

CoI increases with a proportional increase in both λc and 
λs. However, in the PC ∩ PS regime, the CoI decreases 
with a proportional increase in λc and λs; see Figure 8. 
The decrease in the CoI when servers are patient is 
because of the greater inventory of servers when both 
λc and λs increase; this benefit is not realized when ser
vers are impatient.

Figures 5–8 confirm that the CoI approximation in 
Theorem 1 captures the scaling of the true CoI up to a 
constant. Across all parameters in these examples, the 
ratio of the CoI approximation to the exact CoI (the CoI 
approximation ratio) is below two. Recall that the con
stant Γ in (3) does not depend on (l, u) but does 
depend on M, which defines the queue family M in 

Figure 5. (Color online) With Fixed Patience Rates, CoI ~ ρ
1�ρ When Customers Are Patient and CoI ~

ffiffiffiffiffi
λc

√
When Customers Are 

Impatient 

(a) (b)

Figure 6. (Color online) The Maximum Patience Rate Has a Moderate Impact on the CoI, Whereas the Minimum Patience Rate 
Has a Significant Impact on the CoI 

(a) (b)
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Definition 1. For M ≤ 20, the approximation ratio is 
less than four for any combination of parameters (l, u); 
see Figure 9.

The four operating regimes vis-à-vis known asymp
totic regimes. Consider a sequence of two-sided queues, 
indexed by n, where ln � (λn

c ,λn
s ) and un � (θn

c ,θn
s ) are 

the parameters in the nth queue. The heavy-traffic regime 
studied in Liu et al. (2015) is the one where un is scaled 
down, while ln and 

ffiffiffi
n

√
(1 � ρn) both approach a constant 

as n increases: nun → u, ln → l, and 
ffiffiffi
n

√
(1 � ρn) → β ∈

[0, ∞) as n ↑ ∞.4 This scaling can be equivalently written 
as

ffiffiffiffiffiffi
ln

un

r

(1 � ρn) �

ffiffiffiffiffiffiffiffi
ln

nun

r
ffiffiffi
n

√
(1 � ρn) →

ffiffiffi
l

u

r

β � β′ ∈ [0, ∞):

In particular, for all n large enough,
ffiffiffiffiffiffi
λn

c
θn

c

s

≈
β′

ρn
ρn

1 � ρn � β′′ ρn

1 � ρn for β′′ ∈ [0, ∞),

and

ffiffiffiffiffiffi
λn

s
θn

s

s

≈ β′ 1
1 � ρn :

Under this heavy-traffic assumption, the spectrum of 
regimes collapses, then, to the Critical-Impatience case 
in (4) with u close to zero and ρ close to one.5

4.2. The M=M=11M Queue as a Special Case
In the special case that either θc � ∞ or θs � ∞, the two- 
sided queue becomes a single-sided queue. When 
θs � ∞, the single-sided queue is under- or critically 

Figure 7. (Color online) The CoI Is More Sensitive to Changes in θmin in the PC ∩ IS Regime than in the IC ∩ IS Regime 

(a) (b)

Figure 8. (Color online) A Proportional Increase in λc and λs, Keeping ρ and u Fixed, Results in a Decrease in the CoI When Ser
vers Are Patient, but an Increase in the CoI When Servers Are Impatient 

(a) (b)
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loaded (has utilization ρ ≤ 1); when θc � ∞, the single- 
sided queue is over- or critically loaded (has utilization 
1=ρ ≥ 1).

Consider first the case that θs � ∞ (servers abandon 
immediately upon arrival if there are no customers in 
the queue to match). In this case, Qs ≡ 0 so that 
Q � Qc � Qs � Qc. Let Q+

c denote the number of custo
mers in the system in an M(λc)=M(λs)=1 + M(θc)

queue. The difference between Qc and Q+
c is that Q+

c 
includes up to one customer in service, and the cus
tomer in service does not abandon; see Figure 10. Qc is 
equal in distribution to the number in the queue (not 
including in service) in an M(λc)=M(λs)=1 + M(θc)

queue, conditional on the server being busy: Qc �
d Q+

c 
�1 |Q+

c ≥ 1. The abandonment rate from the M(λc)=

M(λs)=1 + M(θc) queue is

CoI � θcE[(Q+
c � 1)

+
]:

If, instead, θc � ∞, the two-sided queue reduces to Qs. 
Let Q+

s denote the number in the system in an 
M(λs)=M(λc)=1 + M(θs) queue. Because the match rate 
is d � λs �θsE[(Q+

s � 1)
+

], the CoI for an M(λs)=

M(λc)=1 + M(θs) queue is the server abandonment rate 
minus excess capacity:

CoI � θsE[(Q+
s � 1)

+
] � (λs �λc):

To establish the CoI scaling for the M(λs)=M(λc)=1 +

M(θs) queue, condition (ii) in Definition 1 is replaced 

with

θs ≤ Mλs: (1(ii′))

As is the case for condition (ii), (1(ii’)) ensures that the 
queue does not degenerate (i.e., the patience rate is not 
significantly greater than the arrival rate).

We define Mθs�∞ as the set of parameters (λc,λs,θc)

that satisfy conditions (i) and (ii), and Mθc�∞ as the set 
of parameters (λc,λs,θs) that satisfy conditions (i) and 
1(ii’):

Mθs�∞ :� (λc,λs,θc) ≥ 0 :
λs

λc
≤ M, θc

λc
≤ M

� �

,

Mθc�∞ :� (λc,λs,θs) ≥ 0 :
λs

λc
≤ M, θs

λs
≤ M

� �

:

Lemma 1 (Cost-of-Impatience Scaling for the M=M=1 + M 
Queue). There exists Γ ≥ 1 (not dependent on l, u) such 
that

1
Γ

S(l, u) �θmin ≤ CoI ≤ S(l, u), 

where the function S(l, u) is, on the parameter sets Mθs�∞

and Mθc�∞, as in Table 2.

Alignment with known results for the M / M / 1 1 M 
queue. Ward and Glynn (2003) study the M=M=1 + M 
queue in various asymptotic regimes. These asymptotic 

Figure 9. (Color online) The CoI Approximation Ratio (the CoI Approximation from Theorem 1 Divided by the Exact CoI) Is 
Less Than Four When the Conditions in Definition 1, ρ ≥ 1=M and θc ≤ Mλc, Are Satisfied for M ∈ [1, 20]
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regimes apply to settings where the traffic intensity 
(arrival rate divided by service rate) is close to or greater 
than one and the patience rate is close to zero.

The heavy-traffic limit for the under-/critically 
loaded queue in Ward and Glynn (2003) is the same as 
that of a single-server queue without abandonment 
when, using our notation, 

ffiffiffiffiffi
θc

√
≪ 1 � ρ. This is consis

tent with our result: we prove that universally in λc, θc, 
and λs ≥ λc, E[Q+

c ] ~ min ρ
1�ρ ,

ffiffiffiffi
λc
θc

qn o
(see the proof of 

Lemma 1 in Online Appendix A). Hence, if ρ1�ρ ≤

ffiffiffiffi
λc
θc

q

, 
then E[Q+

c ] ~ ρ
1�ρ; the expected M=M=1 + M queue is 

proportional to that of a queue without abandonment.
In a suitably overloaded M=M=1 + M queue, the 

queue length process asymptotically centers around 
q :� λs�λc

θs
, and the stochastic fluctuations around q are 

of the order of 
ffiffiffiffiffi
λs

√
(Ward and Glynn 2003, theorem 1, 

case 4). In turn, in this asymptotic setting, this queue 
rarely visits the empty state (zero). This corresponds to 
customers almost always finding an available server, 
which translates into very low CoI. How low is pre
cisely captured by the CoI result for the over-/critically 
loaded M=M=1 + M queue in Table 2. This asymptotic 
setting corresponds to, using our notation, ρn → ρ < 1 
as ln grows large. Our nonasymptotic CoI expression 
shows that in this setting, the CoI converges to zero at a 
rate that is subexponential in ln.

Operating regimes for the M / M / 1 1 M queue. There 
are only two relevant operating regimes for each of 

the single-sided M=M=1 + M queues. The under-/criti
cally loaded M=M=1 + M queue operates in either the 
Patient-Customer or Impatient-Customer regimes in 
Definition 2. When customers are patient, CoI ~ θc

ρ
1�ρ; 

when customers are impatient, CoI ~
ffiffiffiffiffiffiffiffiffiffi
θcλc

√
. Thus, the 

CoI is completely determined by the competition 
between customer impatience and excess capacity, 
as discussed after Theorem 1. The over-/critically 
loaded M=M=1 + M queue operates in either the 
Patient-Server or Impatient-Server regimes in Defini
tion 2. Note that the arrival rate in this queue is λs; 
the servers in the two-sided queue become the customers 
in the single-sided queue. In the Patient-Server regime, 
CoI ~

ffiffiffiffiffiffiffiffiffiffi
θsλc

√
e�
λs
θs(1�ρ)

2
H(ρ). In the Impatient-Server regime, 

e�
λs
θs(1�ρ)

2
H(ρ) ~ 1, and so, CoI ~

ffiffiffiffiffiffiffiffiffiffi
θsλc

√
.6

5. Optimal Capacity Scaling
The results in Section 4 highlight two key controls for 
decreasing match loss: decrease the minimum patience 
rate θmin � min{θc,θs} and increase supply (thereby 
decreasing utilization and increasing inventory). In this 
section, we focus on the latter. An increase in server 
capacity may decrease customer abandonment, but 
there is a trade-off between capacity and abandonment 
costs when both are costly.

We use the scaling laws in Section 4 to study the scal
ing of optimal capacity in the two-sided queue with 
abandonment and contrast it with the optimal capacity 
in a single-sided queue. We are interested in under
standing how the optimal capacity scales as the aban
donment cost grows relative to the capacity cost. When 
the abandonment cost is sufficiently large relative to 
the capacity cost, it is optimal to have supply that is 
greater than demand. Therefore, we focus on settings 
where supply exceeds demand.

The optimal capacity, λ∗
s, solves the optimization 

problem:
λ∗

s � arg min
λs≥λc

{caθcE[Qc] + csλs}, 

where ca and cs denote the per-unit cost of abandon
ment and capacity, respectively.

For simplicity and focus, we assume in this section that 
there is a single patience rate, θ• :� θc � θs < ∞. The 
optimal capacity-scaling results for θc ≠ θs appear in 
Online Appendix D.

Before we proceed, we expand the correspondence 
~M to include the cost vector c � (ca, cs):

g(l, u, c)~Mf (l, u, c)

when there exists a constant, Γ ≥ 1, that does not depend 
on any of l, u, c such that
1
Γ

× f (l,u,c) ≤ g(l,u,c) ≤ Γ× f (l,u,c), for all (l,u,c) ∈M, 

Table 2. S(l, u) for the Under-/Critically Loaded and 
Over-/Critically Loaded M=M=1 + M Queues

Under-/Critically Loaded 
M(λc)=M(λs)=1 + M(θc) queue

Over-/Critically Loaded 
M(λs)=M(λc)=1 + M(θs) queue

θcmin ρ
1�ρ ,

ffiffiffiffi
λc
θc

qn o ffiffiffiffiffiffiffiffiffiffi
θsλc

√
e�λs
θs(1�ρ)

2
H(ρ)

Figure 10. The Transition-Rate Diagram for the M(λc) �

M(λs) � 1 + M(θc) Queue and the Single-Sided Truncation of 
the Two-Sided Queue When θs � ∞

(a)

(b)
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where M is the set of all parameters that satisfy certain 
restrictions. We replace condition (i) in Definition 1 with

ca

cs
≤ M

ffiffiffiffiffi

λc

θ•

s

: (1(i′))

In line with (i), (1(i’)) restricts our attention to settings 
where the server capacity is constrained enough to pre
vent the two-sided queue from “collapsing” into a 
single-sided queue. This condition guarantees that λ∗

s ≤

Mλc (see Lemma A.7 in Online Appendix B) by ensur
ing that the abandonment cost and patience rate are not 
significantly larger than the supply cost and demand 
and, therefore, that it is not optimal to have capacity 
that is significantly larger than demand.

Henceforth, we consider the family of parameters

M � M(M) :� (λc,θ•,ca,cs) ≥ 0 :
θ•

λc
≤ M, ca

cs
≤ M

ffiffiffiffiffi

λc

θ•

s( )

:

Finally, we use the abbreviated notation β � (λc,θ•, ca, cs); 
λ∗

s(β) is the optimal capacity when the parameter vec
tor is β.

Lemma 2 (Optimal Capacity Scaling). The optimal safety 
capacity for a two-sided matching queue with patience rate 
θ• � θc � θs satisfies

λ∗
s(β) �λc ~Mγ

ffiffiffiffiffiffiffiffiffiffi
θ•λc

p

for γ ≥ 0 that does not depend on l or u and is characterized by

γeγ2
�

ca

cs
:

In particular,

γ ≤ max 1,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

log(ca=cs)
qn o

:

For contrast, we state the scaling of the optimal safety 
capacity in the single-sided queue with abandonment. 
The optimal capacity, λ∗

s, for the M(λc)=M(λs)=1 +

M(θc) queue solves the optimization problem

λ∗
s � arg min

λs≥λc

{caθcE[(Q+
c � 1)

+
] + csλs}:

Going forward, we use the notation β � (λc,θc, ca, cs)

and consider the family of parameters that satisfy con
ditions (ii) and 1(i’):

Mθs�∞ :� (λc,θc, ca, cs) ≥ 0 :
θc

λc
≤ M, ca

cs
≤ M

ffiffiffiffiffi

λc

θc

s( )

:

Lemma 3 (Optimal Capacity Scaling for the M=M=1 + M 
Queue). The optimal safety capacity for an M(λc)=M(λs)=

1 + M(θc) queue satisfies

λ∗
s(β) �λc ~Mθs�∞γ

ffiffiffiffiffiffiffiffiffiffi
θcλc

p
, 

for γ ≥ 0 that does not depend on l or u. If ca ≥ cs, then

γ �
ffiffiffiffiffiffiffiffiffiffi
ca=cs

p
:

Slow scaling of capacity in the two-sided queue. In 
the M(λ)=M(µ)=1 queue, the service rate that mini
mizes total linear waiting and capacity costs takes a 
square root form. That is, µ∗ �λ �

ffiffiffiffiffiffiffiffiffiffiffi
cw=cs

p ffiffiffi
λ

√
, where cw 

and cs denote the waiting and capacity costs, respec
tively (e.g., Allon and Van Mieghem 2010). Two facts 
about the M=M=1 queue are important here. First, the 
safety capacity grows proportional to the square root of 
demand (customer arrival rate) for fixed cost para
meters. Second, the safety capacity grows proportional 
to the square root of the ratio of cost coefficients for 
fixed demand. Lemma 3 states that the optimal service 
rate in the M=M=1 + M queue also scales proportion
ally to the square root of the ratio of cost coeffi
cients, 

ffiffiffiffiffiffiffiffiffiffi
ca=cs

p
.

Lemma 2 shows that the optimal safety capacity for a 
two-sided queue scales proportionally to the square 
root of demand and the square root of the patience rate. 
But, in contrast to the M=M=1 and M=M=1 + M queues, 
it scales proportionally to log(ca=cs) rather than 

ffiffiffiffiffiffiffiffiffiffi
ca=cs

p
; 

see Figure 11. It is because of the ability to accumulate 
inventory of servers in the two-sided queue that safety 
capacity is substantially smaller for high abandonment 
costs.

Connection to capacity scaling in the M/M/N queue. 
(Borst et al. 2004) proved that the asymptotically opti
mal safety capacity for an M=M=N queue (a single- 
sided queue with N servers) has a logarithmic scaling 
in the cost ratio (the hourly cost of delay divided by the 
hourly cost per server). It is not a coincidence that the 
two-sided queue with abandonment shares this feature 
with the many-server queue; for a suitable choice of 
parameters, both models have the same diffusion 
approximation.

5.1. The Optimal Operating Regime
The optimal operating regime for a given set of para
meters, λc,θc,θs, ca, cs, can be determined by identifying 
the optimal capacity, λ∗

s, and the corresponding operat
ing regime using Definition 2. We identify the optimal 
operating regime for any combination of parameters in 
Online Appendix E. Any of the four operating regimes 
can be optimal, depending on the relationship between 
the cost, abandonment, and demand parameters; see 
Figure 12.

For instance, it is scale optimal to operate in the IC ∩

IS regime if ca
cs

≤ min 1 +

ffiffiffiffi
θc
θs

q

e
θc
θs ,

ffiffiffiffi
θs
λc

q

e
θs
λc

n o
. This is consis

tent with intuition: when servers are very patient 
(θs ↓ 0) or when the abandonment cost is lower than the 
supply cost, it is optimal to operate with low safety 
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capacity (high utilization, IC ∩ IS regime). However, 
when customers are very impatient (θc ↑ ∞) and the 
abandonment cost is very high relative to the supply 
cost, it is optimal to operate with high safety capacity 
(low utilization, IC ∩ PS regime). When the customer 
and server patience rates θc and θs are not too large rela
tive to the customer arrival rate (θc ≈ θs < λc), it is opti
mal to operate with high safety capacity (PC ∩ PS 
regime) if the abandonment cost is high enough relative 
to the supply cost, but it is optimal to operate with low 

safety capacity (PC ∩ IS regime) if the abandonment cost 
is not too high relative to the supply cost.

6. Conclusion
In this paper, we establish a universal scaling law for 
the match loss in a two-sided matching queue with 
abandonment. The scaling law provides direct insights 
into how abandonment impacts the match rate for any 
model parameters. Our results are nonasymptotic and 
hold for any arrival, utilization, and mean patience.

Any matching queue operates in one of four operat
ing regimes, which are determined by the level of cus
tomer and server impatience. The level of impatience is 
an operational measure that brings together mean 
patience and utilization. This characterization shows, 
in simple terms, how relative customer impatience and 
the ability to accumulate server inventory impact 
match loss for each operating regime.

There are interesting questions that remain to be 
studied within the two-sided queue (single-match) set
ting. We illustrated the use of the scaling laws by study
ing a simple capacity optimization problem. Pricing in 
a two-sided queue with abandonment is a natural next 
step. This is the “dual” problem where one optimizes 
demand instead of capacity.

The study of control problems in more complex 
matching networks may benefit from our characteriza
tion of operational regimes; some regimes might 
allow for simpler controls than others. This “regime 
sensitivity” has precedent in the queueing network lit
erature. For example, the optimal policy for a many- 

Figure 11. (Color online) The Optimal Safety Capacity for a 
Two-Sided and Single-Sided Queue with Abandonment Has 
the Form λ∗

s �λc ~ γ
ffiffiffiffiffiffiffiffiffiffi
θcλc

√
for γ ≥ 0 That Does Not Depend 

on l or u 

Note. The ability to hold inventory of servers in the two-sided queue 
allows the safety capacity to grow logarithmically in abandonment 
cost ca=cs, slower than the square root growth in the single-sided 
queue.

Figure 12. (Color online) The Optimal Operating Regime for Each Set of Parameters λc,θc,θs, ca, cs, Where 
δ 1ffiffiffiffi
θc

√ 1 +
ffiffiffiffi
θc
θs

q
eδ

2 1
θs

� �
� ca

cs 
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server, multiclass queue is different depending on the 
regime: nondegenerate slowdown (Atar and Gurvich 
2014) versus the Halfin-Whitt regime (Atar 2005). 
Beyond being conceptually useful through the charac
terization of regimes, the two-sided queue may feed 
into the mathematical arguments in the study of scale- 
optimal control of networks, specifically in the charac
terization of a lower bound on the reward that any 
matching policy can achieve.

For an informal illustration of this point, consider the 
simple network in Figure 13. This network has three 
types of participants: customers A and B and servers S. 
There are two matches with different rewards, rA and 
rB. Suppose that rA ≥ rB and λA ≤ λS ≤ λA +λB. A 
matching policy specifies when to match and which 
match to perform. The objective is to identify a policy 
that maximizes the long-run average reward.

Hidden in this network are two two-sided queues. 
The one on the bottom left of Figure 13 is composed of 
only customer A and the servers. In the other (on the 
bottom right), the servers take the role of customers, 
and their “servers” are both customers A and B.

A lower bound on match loss due to abandonment 
can be defined for each of the two-sided queues, per 
our Theorem 2, based on its operating regime. An over
all order-of-magnitude lower bound on the reward loss 
due to abandonment is the sum of the two lower 
bounds. No policy can do order of magnitude better 
than this cumulative lower bound, as long as the para
meters remain within the regimes identified. A policy 
that achieves the established lower bound is scale 
optimal.

The lower bounds, and the policies that attain them, 
will take on different forms depending on the underly
ing regime. As such, our operating regimes and the 
detailed arguments in our analysis provide a starting 
point for identifying policies for various network 
parameters.

Endnotes
1 When considering ride hailing, our model is best suited for the 
study of single trips within a single location/neighborhood; hence, 
we only consider trips that begin and/or end in the Manhattan 
CBD, and we exclude any driver time spent outside of the CBD.
2 In the special case that θs � θc � θ•, δ � γ

ffiffiffiffiffiffi
θ•

√
for γ that depends 

only on ca, cs.
3 This follows from the fact that Ri(t) �θi

R t
0Qi(s)ds is a Martingale; 

see, for example, Pang et al. (2007).
4 Liu et al. (2015) allow for β ∈ (�∞, ∞). In our labeling λs ≤ λc so 
β ≥ 0, but this is without loss of generality.
5 We define Critical-Impatience with β′ � β′′ � 1, but the implication 
in (4) is the same for any constants β′′ ≥ β′ > 0.
6 In the M=M=1 + M queues, the CoI is proportional to the expres
sions in Table 2 when θmin is sufficiently small (θmin ≤ 1

ΓS(l, u) for Γ 
in the proof of Lemma 1); otherwise, the expression in Table 2 is an 
upper bound on the CoI.
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