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PROPAGATION OF CHAOS AND POISSON HYPOTHESIS FOR REPLICA
MEAN-FIELD MODELS OF INTENSITY-BASED NEURAL NETWORKS

By MICHEL DAVYDOV?

INRIA and Département d’informatique de I’ENS, ENS, CNRS, PSL University, ®michel.davydov@inria.fr

Neural computations arising from myriads of interactions between spik-
ing neurons can be modeled as network dynamics with punctuate interactions.
However, most relevant dynamics do not allow for computational tractability.
To circumvent this difficulty, the Poisson hypothesis regime replaces interac-
tion times between neurons by Poisson processes. We prove that the Pois-
son hypothesis holds at the limit of an infinite number of replicas in the
replica-mean-field model, which consists of randomly interacting copies of
the network of interest. The proof is obtained through a novel application of
the Chen-Stein method to the case of a random sum of Bernoulli random
variables and a fixed point approach to prove a law of large numbers for ex-
changeable random variables.

1. Introduction. Many phenomena in a variety of fields can be modeled as punctuate
interactions between agents. Whether it be opinion dynamics [4], epidemics propagation [28],
flow control on the internet [6] or neural computations [31], an agent-based approach is a
versatile way to describe the phenomenon of interest through the behavior of each agent.

In such an approach, each agent is seen as a node in a network in which edges represent
the possibility of interactions, and point processes associated to each node register the times
at which these interactions happen. These point processes idealize the stochasticity inherent
in the phenomena of interest. The state of the system can then be given by a set of stochas-
tic differential equations, each describing the state of an agent. In intensity-based models,
used extensively for example, in computational neuroscience [29, 34], this state is given by
the stochastic intensity of the point process associated with the agent. Neuronal stochastic
intensities model the instantaneous firing rate of a neuron as a function of the spiking inputs
received from other neurons.

However, the versatility of this “microscopic” approach comes at a cost, namely, that of
computational tractability. Indeed, except for the simplest network architectures, such as sys-
tems of 1 or 2 agents, an analytical expression characterizing the law of the GL model in
the stationary regime is not in general available. To go beyond numerical simulations, it then
becomes imperative to resort to some simplifying assumption.

As the complexity of the dynamics resides in the dependencies between agents due to
interactions, it is natural to choose a simplified model in which the agents are considered
independent. One such classical approach is called the mean-field regime. Introduced origi-
nally by McKean [27] and developed, among others, by Dobrushin [15] and Sznitman [32],
it consists in approximating the interactions received by any one particle by an empirical
mean of the interactions over the whole network. The mean-field regime arises at the limit
with infinitely many agents, as the empirical mean typically converges to an expectation and
gives rise to a nonlinear ordinary differential equation describing the behavior of an agent at
a macroscopic level and allowing for tractability. This convergence, when it takes place, is
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linked to the concept of propagation of chaos, mainly in reference to the asymptotic indepen-
dence between agents that arises at the limit.

In classical mean-field models such as [17] or [24], the network considered must be as-
sumed fully connected, the effect of interactions on the state of a given agent must be small,
typically inversely proportional to the number of agents, in order to prevent explosion in
finite time in the system. These assumptions represent significant constraints on the architec-
tures and sizes of the networks and thus on the types of phenomena for which a mean-field
approximation is relevant.

To circumvent these limitations, different approaches have been explored in recent years.
To apply mean-field approximation to small-sized networks (with less than 100 agents, e.g.),
the refined-mean-field approach [3, 19] adds a corrective term to the macroscopic ODE.
Mean-field models have also been studied in other scalings, for example, diffusive, where
the effect of interactions on a particle is inversely proportional to the square root of the num-
ber of agents in the system. So-called conditional propagation of chaos properties have been
proven in that setting [16]. To incorporate heterogeneity, the properties of graphons (large
dense graphs) have been used to derive new limit equations [1]. In this setting, the limit object
is an infinite system of ODEs. However, this approach is only valid for dense networks; when
the average degree of a node is of order lesser than the amount of nodes in the network, as is
the case for example, in the human brain, graphon theory does not apply. Another approach
to incorporate heterogeneity circumvents mean-field models altogether, relying instead on
conditional independence properties and local weak limits to obtain local convergence [23].

In this work, we are interested in another tractable regime for agent-based models: the
Poisson hypothesis. First formulated by Kleinrock for large queueing systems [22], it states
that the flow of arrivals to a given node can be approximated by a Poisson flow with rate equal
to the average rate of the original flow of arrivals. In agent-based models, the flow of arrivals
corresponds to the effect of interactions on a given node. Under the Poisson hypothesis, the
behavior of each agent is still described by a stochastic differential equation, but the agents are
considered independent and interaction times are replaced by Poisson clocks, which allows
for tractability. This regime has been studied for queueing models by Rybko, Shlosman and
others [35] and by Baccelli and Taillefumier for intensity-based models from computational
neuroscience [7].

Hereafter, we focus on the continuous-time Galves—Ldcherbach model introduced in [18]
and studied under the Poisson hypothesis in [7]. We introduce a physical system, called the
replica-mean-field, derived from the initial model that converges under a certain scaling to
the dynamics under the Poisson hypothesis. The replica-mean-field was first introduced by
Dobrushin to study queueing models [36], and adapted to a network setting in [7]. However,
in their work, the convergence of the replica-mean-field dynamics to dynamics under the
Poisson hypothesis is only assumed, and not proven. The crux of this article is proving that
a propagation of chaos-type convergence does take place for the replica-mean-field model
derived from the Galves—Locherbach model.

In the recent work [5], we have introduced a class of discrete-time processes on a discrete
space, called fragmentation-interaction-aggregation processes (FIAPs), that include among
others discrete versions of the Galves—Locherbach model, and we have proven the propaga-
tion of chaos property for a replica-mean-field model associated with a FIAP for any finite
time. Our aim is to generalize these results to a model in continuous time and with a contin-
uous state space.

Structure of the paper. ~ After this general introduction, we formally define all the models
that we will be considering, namely, the Galves—Locherbach model, its replica-mean-field
version and its dynamics under the Poisson hypothesis. We then state the main result of the
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paper, namely propagation of chaos in the replica-mean-field model on compacts of time,
which we then prove in Section 2. Finally, in Section 3, we generalize the main result to
weak convergence on the half-line through a tightness argument.

The continuous-time Galves—Locherbach (GL) model. Let us formally present the
Galves—Locherbach model mentioned above: we consider a finite collection of K neurons
whose spiking activities are given by the realization of a system of simple point processes
without any common points N = {N;}1<;<x on R defined on some measurable space (2, F).
For each neuron 1 <i < K, we denote by (7; ,),cz the sequence of successive spiking times
with the convention that, almost surely, 7; 0 <0 < T; 1 and T; , < T; 41 for all n.

To model the interactions due to spikes within the system, we consider that the spiking rate
of neuron i depends on the times at which neuron i and the other neurons j # i have spiked
in the past. Formally, we introduce the network spiking history (F;);cr as an increasing
collection of o-fields such that

FN={o(Ni(B1),..., Nk(Bk))|B; € BR), B; C (—00,1]} C Fi,

where ]-",N is the internal history of the spiking process N.
Recall that the F;-stochastic intensity {A;(#)};cr of the associated point process N; is the
Fi-predictable random process satisfying for all s <t € R:

(1) E[N; (s, 11| F] :E[/tki(u)du|fs}

where F; is the network history. We will hereafter refer to (1) as the stochastic intensity
property.

We consider the F;-stochastic intensities Ap, ..., Ax associated with the point processes
Ni, ..., Ng.

In the Galves—Locherbach model, the evolution in time of these intensities is given by the
following system of stochastic differential equations:

t t
St [ N+ [ = 1)V @)
j#i 0 0
where 7;, b;, r; > 0 and @ ;_,; > 0 are given constants and 2, (0) is assumed to be greater than
r; and b;.

Let us make each term more explicit. The first integral term shows that without any spikes,
the intensity exponentially decays to its base rate b; with a relaxation time 7;. The second
integral term represents the aggregation of all the spikes received from the other neurons in
the system: a spike received from neuron j causes a jump of x4 ;_,; units in the intensity of
neuron ;. Finally, the third integral term is the reset that occurs when neuron i spikes: A; is
then reset to r;, which is a value such that 0 < r; < b;. Taking r; < b; models a refractory
period that occurs after a spike during which the neuron enters a transient phase.

It has been shown in [7] that (2) defines a piecewise deterministic Markov process. When
there is no exponential decay, that is, when 7; = oo for all i, the process becomes a pure jump
Markov process that is Harris-ergodic and thus has a unique invariant measure.

It has also been shown that the moment generating function (MGF) at stationarity u —
L(u) = E[exp(ZiKzl u;A;)] satisfies the following differential equation:

O (T X1t e a0
l 1 i

@)xm—x®+l/ﬁ~m()d+
i — N\ Ti()(l ls)s

This equation is not solvable except for some very special cases (K <2, e.g.). It is thus
necessary to use approximating schemes or truncating moments, both of which neglect cor-
relations due to the finite size of the network. Here, we introduce a different physical system
that allows to obtain closed forms for equations similar to (3).
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Replica-mean-fields of GL models. 1In replica-mean-field models, we consider M replicas
of the initial set of K neurons. When neuron i in replica m spikes, for each neuron j that
would receive something from the spike, a replica n is uniformly and independently chosen
among the other M — 1 replicas, and neuron i sends ;s ; to it.

Formally, for | <m <M, 1<i, j <K, let {V(AW{ > j(t)},eR be FN —predictable stochas-

tic processes such that, for each spiking time 7', that is, each point of N ., the random vari-

m z’
ables {V, (m i j(T)} j are mutually 1ndependent independent from the past and uniformly
distributed on {1, ..., M} \ {m}. Here, (m D j (T) gives the index of the replica to which
the spike of neuron i in replica m at time 7 is sent to neuron j.

The stochastic intensities associated with the point processes will then solve the following
system of stochastic differential equations:

MM () =M (0) + — f M (5)d
“4) 5 5 / /
+ Mj—i ]l Vn o= m} (dS) + (S) i(ds)-
JFi n#m )=

These equations, which we will hereafter refer to as the RMF dynamics, characterize the
dynamics of the M-replica system. As before, for all M, these dynamics form a pure jump
Harris-ergodic Markov process with a unique invariant measure since we are under Assump-
tion 1.1.

The infinitesimal generator of the M -replica dynamics is given by

ALFI) = ZZ( , m,m))

i=1lm=1

+ Z Z = 3 (fO A Haniw ) = F O

i=lm=1 ’ veVM

where the update due to the spiking of neuron (m, i) is defined by

Mj—i ifj;éi,n:vj
[Mm,i,v()‘)]nvj =\ri—Am,; fj=i,n=m
0 otherwise .

As before, we can establish an equation for the MGF u — L(u) = E[eXn=1 X1 4mitm.i)] in
the stationary regime

(Erm)e-y (144 )a,, L
m ;7 m !

FEY G $ R, L0 =0,
m (M_I)K veyM.

m,i

where
Vrﬁ/[’i={U€{1,...,M}K|vi:mandvj;ﬁm,]‘#l’}.

Once again, this equation is not easily solvable. However, a closed form has been obtained
in [7] by setting the Poisson hypothesis, that is, by considering that at the limit when M — oo,
the replicas become asymptotically independent and the arrivals process to a given replica
becomes asymptotically Poisson.
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This hypothesis is often conjectured or numerically validated and not proven, as was the
case in [7]. The aim of this work is to give a proof of the Poisson hypothesis in the RMF limit
in continuous time, by analogy of the work done in discrete time in [5].

In the rest of the paper, we make the following assumptions.

ASSUMPTION 1.1. Foralli € {1,..., K}, t; = 0o (no exponential decay).

ASSUMPTION 1.2. There exists &y > 0 such that forall 1 <m <M, 1 <i < K and all
0 <& <&, E[e¥*1 0] < co.

Assumption 1.1 is introduced mainly to simplify notation and reasonings. While we do not
rigorously prove it, we strongly believe that all results remain valid without it. Assumption 1.2
restricts the initial conditions of the system to allow for propagation of chaos to take place.
We shall see that this assumption allows us to have bounds for the moments of the state
process and later to apply Chernoff’s inequality at a crucial juncture.

The limit dynamics. In this section, we aim to define the limit dynamics of the RMF GL
model when the number of replicas goes to infinity. As previously mentioned, intuitively, the
arrivals from each neuron should become a Poisson process, whereas the reset term should
remain unchanged.

As such, we introduce the following system of SDEs which is the natural candidate for the
limit dynamics and to which we will hereafter refer to as the limit process. We will denote
with tildes everything pertaining to it. We consider point processes Ni, ..., Nk on R with
respective (F;)-stochastic intensities X, ..., Ak, where JF; is the internal spiking history of
the network defined as previously, verifying the following stochastic differential equations:
fort >0,forl <i <K,

5) Am—um+2mﬂ,ﬂm+f i — Ai(s))Ni(ds),
JF#i

where A j—i are independent inhomogeneous Poisson point processes with intensities
a;j(t) = [ Elk;(s)1ds = E[N;([0, )] and (A;(0), ..., Ak (0)) verify Assumption 1.2.

The existence and uniqueness of the solution to this equation comes from the general
theory of [30], and is derived analogously to the existence and uniqueness of the solution to
(4), which is done in [7]. Note that (5) is a nonlinear equation in the sense of McKean—Vlasov
[27], as the process A; depends on its own law through the presence of the terms E[2 ; j(®)]in
the intensities of the Poisson processes.

The main result. Recall the following definition of convergence in total variation.

DEFINITION 1.3. Let P and Q be two probability measures on a probability space
(€2, F). We define the total variation distance by

dry (P, Q) = sup|P(A) — Q(A)|.
AeF

When €2 is countable, an equivalent definition is

drv(P, Q) == ZW@)Q@N

a)EQ
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Note that certain authors use a multiplicative constant 2 when defining the total variation
distance. We will also abusively say that random variables converge in total variation when
their distributions do.

The following theorem is the main result of this work.

THEOREM 1.4. There exists T > 0 such that, ift € [0, T] and if

t
A%i(t)zzﬂj%i Z/ Liym ,(s):m}N%j(dS),
. 0 (n, j)—i
J# n#m
with N, defined in (4), and

A=) mj—iAj-i(0),

J#
with A ;_.;(t) defined in (5), then:
1. the processes (Al, e AK) are independent, as are the processes ()21, e, )1[();
2. forall (m,i)e{l,...,M} x{1,..., K}, the random variable A%i(t) converges in total

variation to A; (t) when M — oc;
3. forall (m,i)e{l,...,M} x{1,..., K}, the random variable k%i(t) defined by (4) con-

verges in total variation to ):,- (t) defined in (5) when M — o0;
4. let N be a finite subset of N*, for all i € {1, ..., K}, the processes (A%i('))me/\/ and

(A% i (D men weakly converge in the Skorokhod space D([0, TN endowed with the

product Skorokhod metric to card(N) independent copies of the corresponding limit pro-
cesses (A; (1)) and (A; (+)) when M — oo.

Here are a few remarks on this result.

First, note that for each i, j € {1, ..., K}, the variable Mj_),-fij_),-(t) is a scaled Poisson
random variable and is thus a special case of a compound Poisson random variable. As such,
unless all u;_,; are equal, fL- (t) does not follow any standard Poisson or compound Poisson
distribution.

Note also that we do not aim to prove £!' convergence, which we believe does not hold in
this model. This marks a significant difference with classical mean field models for Hawkes
processes, see [17]. From a computational point of view, this is due to the fact that the aver-
aging factor ﬁ only appears in expectation in the interaction term A% (D).

Finally, note that statement 4 of the theorem is a consequence of statements 2 and 3, as
weak convergence of point processes is implied by weak convergence of their void probabil-
ities (see [20], Theorem 2.2), which comes directly from statements 2 and 3. More precisely,
the convergence in total variation of A,, ; and A,, ; implies the weak convergence of the void
probabilities of N,, ; and of the point process of arrival times, which in turn implies weak
convergence of the point processes.

Methodology for the proof. In contrast with classical mean-field models presented in the
beginning of the paper, in replica mean-fields, the mean-field simplification comes from the
random routing operations between replicas. The input point process in the M -replica model
consists in a superposition of M rare point processes, which informally explains why Pois-
son (or compound Poisson) processes arise at the limit. This point of view leads us to fix an
instant € R™ and to consider the random variable of inputs up to time ¢ as a random sum of
Bernoulli random variables with means ﬁ The Chen—Stein method is a natural candidate

to obtain explicit bounds in the total variation metric between this random sum and a Poisson
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random variable. We generalize it to account for the fact that the amount of Bernoulli ran-
dom variables in the sum is random. As far as the author is aware, this application is novel.
The bound obtained through the Chen—Stein method does not easily converge to 0 when M
goes to infinity. Namely, we obtain a term similar to the L' norm of an empirical mean of
centered random variables that are not independent. In order to circumvent the difficult direct
analysis of such a term, we uncouple the inputs and outputs of the dynamics by consider-
ing the replica-mean-field dynamics (4) as the fixed point of some function on the space of
probability distributions on the space of cadlag functions endowed with a metric rendering
it complete. This procedure is often used in the study of stochastic differential equations to
prove the existence and uniqueness of solutions to these equations, see, for example, [32] or
[13]. Here, we use it to prove that a certain property, namely the convergence of an empirical
mean, holds at the fixed point by proving that the property is preserved by the function and
that the iterates of the function converge to its fixed point.

2. Proof of the Poisson hypothesis for the RMF GL model. The aim of this section is
to prove Theorem 1.4. We organize the proof as follows. First, we recall some well-known
facts about Poisson embedding representations for real-valued point processes and derive
asymptotic independence from them. Then, we state and prove some properties of the RMF
and limit dynamics that will be useful in the following steps of the proof. Afterwards, we
present the Chen—Stein method, which we use to derive conditions for the validity of the
Poisson approximation that we aim to prove. Finally, we interpret the RMF dynamics as the
fixed point of some function on the space of probability measures on the space of cadlag func-
tions and we show that this function has properties that allow the aforementioned conditions
to hold at the fixed point, thus proving the Poisson approximation result.

Poisson embedding representation and independence of the limit processes. First, recall
the following result from [12] about Poisson embeddings.

LEMMA 2.1. Let N be a point process on R. Let (F;) be an internal history of N.
Suppose N admits a (F;)-stochastic intensity {{1(t)};cr. Then there exists a Poisson point
process N with intensity 1 on R? such that, for all C € B(R),

N(C) 2/ 10,u(sy] @) N (ds x du).
CxR

This result states that any point process admitting a stochastic intensity can be embedded
in a Poisson point process with intensity 1 on the positive half-plane by considering the
points of the Poisson process which lie below the curve given by the stochastic intensity of
the process. We now proceed to apply this in our model, constructing all the state processes
coupled through their Poisson embeddings.

Form>1,M>1,1<i<K,let Nm,i be i.i.d. Poisson point processes on R x R* with
intensity 1.

Let Q = (Rt x (RNH)HN)N pea probability space endowed with the probability measure
(o ® P )®N" | where 1o is the law of the initial conditions and P is the law of a Poisson
process with intensity 1 on (R*)2. We construct on 2 the following processes:

e The processes (N,% ®),m=>=1,M >1,1<i < K, with stochastic intensities (k%i(t))
verifying

+o0
(t) = Z Zf / Mj—)l {V(n J)_)l(s) m} OAM (S)](M)N}’l j(ds X dl/t)
m £
(6) "

—+00
+f0 /0 (ri = A0 ()1, M G 1@ Ny i (ds x du) + 20 (0),



2114 M. DAVYDOV

with AM ;(0) = Z; for allm € N* and where, for all M, (V(’,‘f )i (2)); are cadlag stochastic

processes such that for each point 7 of N,, ,j» the random variables (V(M ) _;(T)); are
independent of the past, mutually independent and uniformly distributed on {1, ..., M} \
{n}, considered as marks of the Poisson point process Nn, j- Namely, to each pomt of the
Poisson embedding, we attach a mark that is an element of (NX)V ", where the Mth term
of the sequence corresponds to (V, (n )i (T));.

e The processes (N (1)), 1 <i < K, with stochastic intensities ()N\-(t)) verifying

+00
GO =50+ Y [ [ kit pg o @R x du)
(7) J#i

t p+4oo - ~
+/(; /(; (r,- - )‘i(S))]l[o,i,-(s)](”)Nivi(ds X du),

with 4 (0) = Z;

In other words, we construct the M-replica dynamics (4) and the limit processes (5) with
the same initial conditions and Poisson embeddings (Nm’ i).

We require that the law of the initial conditions (Z;) verifies Assumption 1.2, in other
words, we require it to have uniform polynomial bounds of its moments.

This representation allows us to derive the following, which is statement 1 of Theorem 1.4.

LEMMA 2.2. The processes (A j—i)l<i,j<k are independent, as are the processes
(kl, e )\.K).

PROOF. For all r € [0, T'], we can write using the construction above

- t p+oo A
Ajﬁi(z):f / 0 g1, o (N1 (s x ).

Therefore, all the randomness in A is contained in the Poisson embeddings (Nk ,)1<k< K.
Thus, for i # j, A; and A are independent. The independence of the processes (A1, ..., Ag)
follows in the same manner. [

Properties of the RMF and limit processes. In this section, we prove several properties
of the RMF and limit dynamics that will be used throughout the proof.

In what follows, we will often omit the M superscript in the notation N mM i AM and AM
to increase readability.

Note that the arrival process A, ;(¢) can be represented as a random sum of Bernoulli
random variables with parameters ﬁ Indeed, forn #m and j #i,if S € Supp(Ny,jlj0,1)).

we define B g’l(n N m.i) the random variable equal to 1 if the routing between replicas at time
S caused by a spike in neuron j in replica n chose the replica m for the recipient i of the spike,

and O otherwise. As such, it is clear that we can write for all t € [0, T], m € {1, ..., M} and
ief{l,...,K},
(8) Am,i(t) = Z Zﬂj»i Z B]?j[(n’j)ﬁ(m’,’)-

n#Em jF#i k<N, ;(0,t])

Note that when m, n, i and j are fixed, the random variables (B,?’I(n’ )= (m.i) k<N, ;([0,T]) are
i.i.d. Also note that when n, j, i and k are fixed, the joint distribution of (B,fj’(n’ )= (m, iy)m with

m € {1,..., M} is that of Bernoulli random variables with parameter ﬁ such that exactly
one of them is equal to 1, all the others being equal to 0. Combining these two observations
allows us to prove a lemma that highlights the core of the replica-mean-field approach:
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LEMMA 2.3. Fix (m,i)e{l,...,M} x {1,..., K}. Keeping notation from (8), let N =
(N, j ([0, 1)) notm, j£i € NE=DM=D),
Conditionally on the event {N = q}, for ¢ = (qn,j)nm, j#i € NE=DM=D "the random

.....

- 1
with parameter 57— .

PROOF. The structure of the proof goes as follows: since N is entirely determined by
the Poisson embeddings (]\A/,,, j)j#i and the arrivals to the nodes (n, j) from all the nodes
h # j across replicas, it is sufficient to show that these arrivals and the routing variables
(B,?jl(nv > i)k <R, ([0.1]xR+) A€ independent. Intuitively, this holds because arrivals are
aggregated across all replicas, which will erase the eventual dependencies due to the routing
variables to nodes i choosing one replica rather than another.

In order to transcribe this intuition rigorously, we first show that the total number of
departures from nodes i up to time ¢, that is, Zlﬁil N; i ([0,1]), and the routing variables

(B,?jl(nv > i)k <Ry (0.1 xR+) € independent. Indeed, using the representation given by
Lemma 2.1, due to the structure of the Poisson embeddings (Nl,,-)le{lw_, My, there is a point
of Zﬁ] N;; in some interval [ iff there is a point of the superposition of the correspond-
ing Poisson embeddings such that the x-coordinate is in / and the y-coordinate is un-
der the curve of the function ¢ — Zf‘i 1 A,i(2). In turn, the last event does not depend on
(B,?jl(nv )= (m, Vi <R ([0.1]xR+)> 8 the symmetry inherent to the replica structure ensures that
all arrivals increment ¢t — Zlﬂil Ari(t) by the same amount, which concludes the proof of
this preliminary remark.
For all (n, j) such that n 2 m and j #£1i, let

M
Aisap®=)" Y Blinomp
I#n k<Ny,i([0,1])

Note that A;_, (,, j)(¢) represents the arrivals to node j in replica n from all nodes i across
replicas. As such, it is clear that we can write

M
Ais, () = Z By iy, j)s
K< N1i (10,1])

where (B,?f[(i) S(n.j)) are independent Bernoulli random variables with parameter ﬁ

such that they and (B,?f[(n’ j)_>(m7l.)) are independent. Then by the previous observation,

Ai @, j(@) and (B,y(n’ = m i)) are independent. Therefore, N, which is entirely deter-

mined by the Poisson embeddings (Nn,j) and the arrivals (Ap— (@, j)(t))n2j, and
M . e

(B n, > (m’i)) k<R, ;(10.T]xR+)> A€ independent. Thus, conditioning on N does not break

independence between the variables (B,?/’(n P mi))- O

We will now give bounds on the moments of both the M-replica and limit processes, using
the bounds on the moments of the initial conditions.

LEMMA 2.4. Suppose the initial conditions verify Assumption 1.2. Then, for all p > 1,
forall (m,i)e{l,...,M} x{1,...,K}, for all t € [0, T], there exists Q,(T) € Ry[X] a
polynomial of degree exactly p such that

9) E[A) /(D] < Qp(E[2n,i (0)]).
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PROOF. We first prove the result for p = 1 in the special case where exchangeability also
holds between neurons and where there are no resets. Namely, we temporarily consider here
that forall i, j € {1,..., K}, uj; = 1. Letr € [0, T]. Thus, we have

E[ni (0] = E[n (O] + 3 ZE[ f {v(,l,w,(s):m}zvn,j(ds>].

n#Em j#i
Denoting by ((7}, j)r)rez the points of N, ;, we have

E[An.i(t)] = E[An.i(0)]
Ny, j
+> ZE[Z E[L(vy, i (B pyor=m) LT ) el0.0) F( oo (T, j)r]j|'
n#Em j#i “rel

Using the predictability w.r.t. the network history of the processes VY we have

(n,j)—1i’

E[Xni ()] =E[Xni(0)]+ ) ZE[Zﬂ Vo yoi (T ))=m) (T, )€l r)}]

n#m j#£i reZ

Using the property of stochastic intensity, we can rewrite this as

E[Jm.i ()] =E[An.i (0)] + (K — 1)E[/0t xm,,-(s)ds].

Therefore,
t
Euni (0)] = E[huns (0] + (K — 1)/0 E[un.i(s)] ds
This gives
(10) E[Am,i ()] < E[An,i(0)]e® 70T = 01 (E[An,:(0)]).

Now, let us write the differential equation for kfn ;» still considering the dynamics without
resets and with equal weights:

2 0=22,0+3 Y / TV or(srmm) (25 (5) + 1) Ny (ds).
n#m j#i

Therefore, we have

E[12 (0] =E[2 (O)]—i—(K—l)/ (2E[A2, ;(5)] + E[n.i (5)]) ds

which gives using (10) the bound

E[A, (O] <E[A;, ;O] + (K = DO1(E[lmi(O])T +2(K — 1) /O ’E sup A2, ,(u)] ds.

uel0,s]

By applying Gronwall’s lemma and using the assumption on the initial conditions, we get

E[22, (0] < (E[hni O] + (K = DO1((E[Am,: (O] T)e* KT .= 05 (E[Am,; (0)]).

This reasoning can be extended by induction to all p > 3, which proves the result for the case
of exchangeable interactions.

Now, to get the result in the general case where all 11;_,; are not necessarily all equal
to 1, note that by monotonicity the dynamics that we consider (in both the exchangeable and
nonexchangeable cases) are stochastically dominated by the same dynamics without the reset
terms. Finally, note that nonexchangeable dynamics without the reset terms are stochastically
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dominated by exchangeable dynamics without the reset terms. This shows that the moment
bounds still hold in the general case. [

Finally, note that the exact same reasoning can be applied to obtain an equivalent result for
the limit process, which we will only state:

LEMI\iIA 2.5. Forallp>1,forallie{l,...,K}, forallt €[0, T], there exists a poly-
nomial Q, € R,[X] a polynomial of degree exactly p such that

(11) E[LX ()] < 0,[E[%(0)]].

Lemma 2.4 allows us to prove the following result, which states that Assumption 1.2 can
be propagated to any time ¢ less than some fixed 7.

LEMMA 2.6. There exists T > 0 and &y > 0 (which is the same as in Assumption 1.2)
such that fort € [0, T] and & < &,

(12) E[eg’\'""'(t)] <00 and E[esii(t)] <

PROOF. To prove this result, we once again consider exchangeable dynamics without
resets, using the same observation as previously, namely that nonexchangeable dynamics with
resets are stochastically dominated by exchangeable dynamics without resets, to generalize
the result. Let us thus assume wj; = u for all 7, j. Let &y as in Assumption 1.2. Let €
[0, T]. Let us write out the equation verified by i (®):

eEmi(0) — oEhmi®) L 3 Zf W rem E4ni®) (1 )N, i (ds).
j#i ntm e

Taking the expectation and using the stochastic intensity property, we get

E[ef#ni(0] = E[¢8ni O] +— Z Z/ Emni®) (51 _ 1), ()] ds

J#I n#Em
Using exchangeability between replicas, this boils down to
E[ef4ni0] = E[ef*ni©] Zf [59mi ) (€0 1) ()] ds
J#

Since we are looking at dynamics without resets, A, ;(s) and A, ;(s) are positively corre-
lated. Therefore, we have

E[e5hni0] < B[ebhniO] 1 Ny / [57miOTE[ A ()] ds
JF#

By Lemma 2.4 and Assumption 1.2, we have the existence of a constant B > 0 such that
t
E[ef4ni(0] < E[e8i O] 1 (e84 — 1)(K — 1)3/ E[ef7i®)] ds.
0
The desired result follows from Gronwall’s lemma. [J

The final lemma we will state and prove in this section concerns the means of the RMF
and limit processes. Namely, we show that the replica mean-field construction preserves the
mean as M varies and that the mean of the limit process coincides with the mean of the RMF
process.
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LEMMA 2.7. Forall M > 2, forall (m,i)e{l,..., M} x{1,..., K}, if the initial con-
ditions are such that for all (m,i) € {1,..., M} x {1, ..., K},

hom,i(0) = 244(0),
then there exists T € R, such that for all t € [0, T], we have
E[A,i ()] =E[A;(1)]
and

E[.i ()] =E[L: (0)].

PROOF. Using both the property of stochastic intensity and exchangeability between
replicas, we have as previously,

E[Api (0] = 3 10 BN (10, )] = 3 1) / Do, ()] ds
J# J#i
Similarly, we have
E[A0)] = / [3)()]ds
J#

Therefore, we see that

~ t ~
(13) [E[Ani(0) = A0]| = |3 i /O E[hn,j(5) — A;()]ds.

J#

Thus, it is sufficient to show that E[A, ;(s) — A j()1=0
Now, let t € [0, T']. Let i (¢) = arg max K} [E[Am, () — ij(t)]| for r € [0, T']. Now,
using (4) and (5), we have

jefl,...,

[E[Am.iry(t) — hin (0)]] < ‘ Dem.i)(0) — Ai (1) (0)] +E[Apm.icr (1) — Airy ()]

t ~ ~
+ E[ /0 (Ft = o6y om0 (8) — (1 — oty ) Ry () ds]

<0+ Z Mj—n(t)/ ’E mj(s) Y (S):”ds
J#L()

+ri/0 [E[2on.i () = hicoy ()] ds

t ~
+ ‘/0 E[)Lg“.(t)(s) —Al-z(t)(s)]ds ,

using the coupling on the initial conditions and (13). 5
Let C >0.Let Ac(¢,[0,T]) :={(w, 1) € 2 x [0, T]|max(Am i) (t, @), Ai)(t, w)) < C}.
Then, we write

t ~
’/0 E[Ap i(1)(8) — kiz(t)(s)]ds

t ~
- ‘/(; /Ac(s [0 T])()Li”'(f)(s) - )‘z'z(z)(s)) ds P (dw)

t ~
+// A2 (8) = A2 (5)) ds P(dw)|.
o Jac (s,[o,n)( i(0) )
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Since we have E[32, ;)(8) — 22, ()] = B[ (i (8) = Xi() (8)) Gty (5) + Aoy ()], by
definition of A¢ ([0, T']) the first term can be bounded by

(14) 'ftf (Apiry () — A7, (S))dsP(da))‘<2C‘/tE[A () (8) = Ai( ()] ds
0 Jacwory” ™ i =201 Eldmio i .

For the second term, we write

t
2 2
'/0 /‘K 6107 (Rm.ir ) = 2 () dsP(da))‘
c 1Y,

t
=’/0 E[(Ar,.i() () = A7) ()L (5,10,77)] ds .

Now, using the Cauchy—Schwarz inequality,

[E[(,.:0 () = A7 ()) L ac.(s.10.77) ] <\/ E[(2 ;) — 22 () JE[Lac 5. 10.7) -

Using Lemmas 2.4 and 2.5 that give bounds on the moments of the considered processes, we
have the existence of a positive constant D1(7") such that

\/E[()‘;%z,i(z)(s) - 5‘,'2(;) (S))z] = Dl (T)
For the last term, we have by definition of A‘é (s,[0,T)),
E[L ¢ (s.10.77)] = P(max(Am,i(r) (), Xy (8)) > C).

By Lemma 2.6, there exists T > 0 such that E[¢67 maX(n.i 0 ($):ki() (¥))] is finite. Applying the
Chernoff inequality, we have

P(eéTmax(x,n,,-(t)(s),i,-(,)(s)) - eGCT) < E[eéTmax()\m_i(,)(s),i,-(,)(s))]e—6CT.

Using Lemma 2.4, this shows that there exists a constant D> (7)) > 0 such that

VEMAc 10,77 < Da(T)e T

Combining the previous bounds, we finally obtain
t ~
(15) ‘/ f (W2 () — A2 (s))dsP(da))' < Di(T)Dy(T)Te 3T,
c m,i(t) i(t)
c.[0,T])
Combining (14) and (15), we have

t ~
‘_/0 E[(An,.i()(8) = A7) ()] ds

t ~
<20 [[ Bl 6) — Fico ()]

+ D{(T)D>(T)Te 3T,
Therefore, we have

[E[Am,ir) (1) — l(,)(t)]} < D\(T)Dy(T)Te 3T

+ (ri + 2C)/ IE[hm.i()(5) — Aoy (s)]| ds

+ 2 V“J—”(l)f [E[Am,j(s) — X;(s)]| ds.
JF#IQ@)
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By definition of i (¢), we then have
[E[Am.iy (@) = Ain (]| < D1(T)Da(T)e 3T

t ~
+ (i +20) fo E o 5)(5) — ko) ()] ds

t ~
+ ) Mi(r),j/ [E[Am.is)(5) = Xigs) (5)]] ds.
o 0
JFi()

< D|(T)Dy(T)e°T'T

t ~
+ <I’,‘ +2C + Z Mi(t),j)/ }E[)»m,,'(s)(s) — Ai(s)(s)]| ds.
J#i®) 0
By Gronwall’s lemma, we therefore get
[E[Am, i) (1) = Ritoy (]| < DT Da(T)e T T2 sz i DT,
Finally, note that for any € > 0, we can now choose C > 0 such that

D\(T)Dy(T)Te 3T it 2CH L i i DT < g,

By the choice of i (t), the result follows forany 1 <i < K. [

Poisson approximation bound using the Chen—Stein method. The goal of this section is to
use the Chen—Stein method, which we will briefly recall, to obtain a bound in total variation
distance between the arrivals term (8) and the limit sum of Poisson random variables. Recall
that (8) states that forall t € [0, T],m e {1,...,M},i e{l,..., K},

Am,i(t)zzzﬂj—’i Z Bly(n,n»(m,i)-

n#m ji k<N, ;(0,t]

Recall that if Z is a random variable taking values in N with E[Z] < oo, Z is a Poisson
random variable iff the distribution of Z + 1 is equal to the distribution of the size-biased
version of Z, in other words, iff for all bounded functions f on N,

(16) E[ZIE[f(Z+ )] =E[f(2)Z].

The key principle of the Chen—Stein method is to say that if (16) holds approximately for
some r.v. Z for any bounded function f on N, then Z approximately has a Poisson distribu-
tion. In the case of a sum of Bernoulli random variables that are not necessarily independent,
we have the following result.

LEMMA 2.8. Let!l € N. Consider W = Zle Y;, where Y; are Bernoulli random vari-
ables with respective means p;, without any independence assumptions. Let Z be a Poisson
distributed random variable with mean E{W] =" p;. For 1 <k <I, let Uy and Vi be ran-
dom variables on the same probability space such that Uy has the same distribution as W and
1 + Vi has the same distribution as W conditioned on the event Y, = 1 (with the convention
Vi=0ifP(Yy=1)=0). Then

1 [
dry(W,Z) < (1 A W) ;PiEUUi _—

Then, it suffices to exhibit a coupling of U; and V; such that E[|U; — V;|] is small. We
refer to [10, 26] or [8] for a comprehensive overview of the Chen—Stein method.
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We now adapt the Chen—Stein method to the replica-mean-field framework, generalizing
the method to the case of a random sum of Bernoulli random variables.

We first give a result that will be an immediate corollary of the lemma we prove afterwards
to compare it with Lemma 2.8:

LEMMA 2.9. Let L be a N-valued random variable such that E[L] < oo. Let (Y;);ieN
be random variables such that for any | € N, conditionally on the event {L =1}, Y; are
Bernoulli random variables with respective means p;. Consider W = Y%, Y;. Let Z be a
Poisson distributed random variable with mean E[W] = E[ZiL pil. For k € N, let Uy and Vy,
be random variables on the same probability space such that for | € N, conditionally on the
event {L =1}, Uy has the same distribution as W and 1 + V}, has the same distribution as W
conditioned on the event Yy = 1 (with the convention Vy =0 if P(Yy = 1|L =1) =0). Then

0.74 1 L
drv(W,Z) < (1 A m)E[|L —E[L][]]+ (1 A W)E[Z piE[|U; — Vl-||L]].
i=1

For our purposes, we will prove a slightly different result with p; = ﬁ in a vector
setting, but it is easy to see that Lemma 2.9 can be proven in the same way as what follows.

We will now use notation consistent with (8). Since what follows is done with ¢ € [0, T']
fixed, we will additionally write N, ; ([0, z]) as Ny, ; in this section, continuing to omit the M
superscript to simplify notation.

LEMMA 2.10. Let M > 1.Let (m,i) e {l,...,M}x{l,...,K}.Forj e{l,..., K}\{i},

let Aj_ iy = Zn;ﬁm Z,iv;{ Br,(n, j)— (m,iy and let Aj_)i be independent Poisson random
variables with means E[N ;] as in (5). Then,

dl V( — — ) < <1 A 0 ) 1 E
Aj (m,i)’Aj i) = |
/E[Nl,j] M 1

1 1
*armi(17 E[Nl,j]>E[Nl’f]'

A few remarks on this result are in order. First, note that the two terms in the right-hand
side of (17) are very different in nature. The second term goes to O when M — oo due
to the moment bound obtained in Lemma 2.4, whereas the first term is the £ norm of an
empirical mean of centered random variables which are not independent. As such, obtaining
the convergence to 0 of that term when M — oo requires proving an £! law of large numbers
result for non i.i.d. summands, which is not trivial and will be the subject of the next section.
Next, note that the two terms can be heuristically interpreted in the following way: the second
term represents a Le Cam-type bound [25] between a sum of Bernoulli random variables
and a sum of Poisson random variables with equal means, in the case where the amount of
summands is random. The first term represents the distance between such a random sum of
Poisson random variables and a Poisson random variable whose mean is the mean number of
summands, similar to [33].

Finally, note that this lemma only provides a bound for fixed i and j € {1,...,K}\
{i} : Aj_ (m,i) represents the arrivals from nodes j across replicas to node i in replica
m. Thus Lemma 2.10 does not directly give a bound for the approximation of A, ; by
A=Y ki Mj— A j—i- However, since by Lemma 2.2, we have asymptotic independence, it
is natural to expect that the eventual convergence in total variation will also take place for the
sum, and we shall see later that it does indeed hold.

We now proceed to the proof of Lemma 2.10.

> (E[Nn ;] — Naj)
n#m




2122 M. DAVYDOV

PrROOF. For BCNand j €{l,..., K}, let gp be the solution to the following equation,
sometimes referred to as the Stein equation (see [14]):

E[N1 jlgptk+ 1) —kgp(k) =1p(k) —P(A;_; € B),

for k € N, with initial condition gz (0) = 0.
As in the proof of Lemma 2.3, let N = (Ny ), je((1,.... M}\[m}) x ({1
We have

P(Ajmiy€B)—P(A;_; € B)=E[l4

KN\i)- Let B C N.

.....

—P(4;.;€B)]

m,i,jeB

= E[E[Nl,j]gB(Aj_)(m,i) +1)— Ajﬁ(m,i)gB(Aj_)(m’i))] by the Stein equation

Ny, j
= E|:E|:E[N1,j]gB(Aj—>(m,i) +D=>> Bk,(n,j)—>(m,i)gB(Aj—>(m,i))‘N:|:|

n#m k=1
1
—E|E| ——— 3" (E[Ny;]— Naj)g5(Ajo iy + D

M —1
n#m

N, j gn(A +1)
8(Ai i

+ ) Z( T - Bh(n,j)»(mvi)gB(Af'”“"’”))‘N ’
n#£m k=1 M—1

For all n # m and all 1 <k < N, ;, let Ux @, j)—m,i) and Vi @, j)—@m,i) be ran-
dom variables on the same probability space such that U . j)—s(m,i) £ Aj i) and

L ..
P(Vk,(n,j)—>(m,i) +le)= P(Aj_>(m,i) € ‘|Bk,(n,j)—>(m,i) = 1) conditionally on N.
Using Lemma 2.3, we have for all k£
1
E[Bk,(n, j)—m,i) | N1 = Tk
Therefore,

P(Aj_(mi)€B)—P(A;_; €B)

1
= E[E[m Z (E[Nu,j1— Nn,j)gB(AjSm,iy + 1)‘1\’}]
o n#m

N .

1 ity

+ WE[E[Z Z(gB(Uk,<n,j)—>(m,i) + 1) — g8(Vi,(n, j)—(m,i) + 1))‘NH-
- n#m k=1

Thus, we have:

IP(Aj—miy € B) —P(A;_; € B)|

llgall
= g E[ E:(E[Nn,j]_Nn,j)
M—1
n#m

]

N .

Aggll =

+ Y E Y E[Uknjy—mi) = Ve IN] |,
M—1 n#m  Lk=1

where for a function f, we denote || f|| = sup,¢[o. 711/ (#)]. Now, take

Uk,(n, j)— (m,iy = Aj—>@m,i) and Vk,(n,j)—>(m,i)=ZBz,(n,j)—>(m,i)-
Ik
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Then,

Uk, n, jy— (m.i) = Vk,(n, j)— m.,i)] = Bk, (n, j)— (m.,i)-
Therefore, using once again Lemma 2.3,

1

E[|Uk, (1. j)—m.i) = Vi jy—m.i[IN] = Tk
0.74

Moreover, it can be shown (see [8]) that ||gg|| <1 A BN ] and |[Aggl| < 1A ﬁ”, where
5 J
fork e N, Agp(k) = gp(k + 1) — gp (k). Combining this yields (17). O

Decoupling arrivals and outputs: A fixed point scheme approach. As we have seen in
the previous lemma, for the Poisson approximation to hold, it is sufficient to prove a law of
large numbers-type result on the random variables (N, j)un. However, since these random
variables themselves depend on the random variables (A;_ (n,i))me(1,..., M}, @ direct proof
seems difficult to obtain.

As such, we propose to see equation (4) as the fixed point equation of some function on
the space of probability laws on the space of cadlag trajectories. This fixed point exists and
is necessarily unique due to the fact that equation (4) admits a unique solution. The main
idea goes as follows: if we endow this space with a metric that makes it complete, in order
to prove that the law of large numbers holds at the fixed point, it is sufficient to show that,
on one hand, if this law of large numbers holds for a given probability law, it also holds for
its image by the function; and that on the other hand, the function’s iterates form a Cauchy
sequence. This approach is similar to the one developed in [5], where propagation of chaos
is proven in discrete time by showing that the one-step transition of the discrete dynamics
preserves a triangular law of large numbers.

Our goal in this section is to prove the two aforementioned points. We start by introducing
the metric space we will be considering and defining the function on it.

Fix T € R, and let Dt be the space of cadlag functions on [0, 7] endowed with the
Billingsley metric [9]: for x, y € Dr, let

,,,,,

dp, (. y) = jnf max(|[16]]]. Ix = y 0 01,
where
O=1{0:[0,T]1—[0,T], s.t.6(0)=0,0(T)=T, and |||0]|| < o0},
where
loill = sup fiog( =2
s#t€[0,T] I—s

Intuitively, ® represents all possible “reasonable” time shifts allowing one to minimize the
effect of the jumps between the two functions x and y, where “reasonable” means that all
slopes of 9 are close to 1.

We denote by dp, y the uniform metric on Dr: for x, y € D,

dpru(x,y)=lx—yl.
Note that we have for all x,y € Dr, dp,(x,y) < dp, u(x,y), since the uniform metric
corresponds precisely to the case where 6 is the identity function.
Let P(Dr) be the space of probability measures on D7. We endow it with the Kan-
torovitch metric [21] (sometimes also known as the Wasserstein distance or the earth mover’s
distance): for u, v € P(D7), let

K = inf E
(W, v) et p. [dp, (x, y)],

where I1 is a coupling s.t. x £ wand y £y,
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Finally, we fix K, M € N and consider the space (P(D7))MK endowed with the 1-norm
metric: for i, v € (P(D7))MK | let

M K

(v) =Y Y K7 (tmais Vmi)-

m=1i=1

MK
KT

It is known that (Dr,dp,) is a complete separable metric space, see [9], and thus that
(P(Dr), K1) and (P(D7)MK, KMXK) are as well, see [11].

We will also need to consider P(D7) endowed with a Kantorovitch metric based on the
uniform metric: we introduce for u, v € P(D7),

K = inf E|d
r,u (L, V) nezyTlxDT [dp,,u(x, y)],

where [T is a coupling s.t. x £ w and y £ ). We also introduce its product version K %’1 IIJ(
defined analogously to above. Note that even though (D7, dp, ) is a complete metric space,
it is not separable, therefore (P(D7), K7, ) is not a priori a complete metric space.
We now define the following mapping:
@: (P(Dr))"* - (P(Dr)M*
(L(M)) = P(L(M)),
where for all (m,i) e {l,..., M} x{1,..., K}, ®(L(M))y.; is the law of the stochastic in-

tensity )Lf; ; of a point process N;Il’ ; such that 1% is the solution of the stochastic differential
equation

=13 <0>+Zume v M (09
(18) J#i n#m 7/

+ / ()N (ds),

where ()»ffl,i(O)) are random variables verifying Assumption 1.2. Note that we will exclu-
sively apply the mapping @ to laws of stochastic intensities of point processes, the image of
which by @ are also by definition of ® laws of stochastic intensities of point processes.

We formalize the law of large numbers we aim to prove as follows:

DEFINITION 2.11. Let M € N. Let (X ,’l"’ )1<n<m be exchangeable random variables with

finite expectation. We say they satisfy an £' triangular law of large numbers, which we denote
TLLN(X}), if when M — oo,

(19) H i:: xM_g XM])H -0

and

(20) xM =X,

where the convergence takes place in distribution.
From (17), we know that if the triangular law of large numbers holds for the fixed point

of @, it allows for convergence in total variation of arrivals across replicas from a given
neuron j to a given neuron i to a Poisson random variable. As such, our aim here is twofold:

1. Show that for all (m.,i) € {1,...,M} x {1,...,K}, TLLN(Ny;([0,7])) implies
TLLN(® (N, ([0,11)));
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2. Show that (&) is a Cauchy sequence that converges to the fixed point, where o s
the Ith iterate of ® : @' =P o P o--- 0 P [ times.

Since we can choose W,,-([o, t]) to be i.i.d. to ensure that there exist inputs for which TLLN
holds, this will allow us to propagate the property and show that TLLN holds at the fixed
point as well.

We will start by proving a lemma that will be key for the second point:

LEMMA 2.12. There exists T > 0 such that for p,v € (P(DT)MK that are laws of
stochastic intensities of point processes, there exists a constant Ct > 0 such that

T
1) KME(0(p), (1) < Cr /0 KMK (o, v)dr.

PROOF. LetT >0.Lettr €[0,T]. Fix (m,i) e {l,...,M} x {1,..., K}. Let N (resp.
NV, N®® NP0y be a point process admitting p (resp. v, ®(p), ®(v)) as a stochastic
intensity. We have

t
i) = OO =T it X ([ L (V7,09 = N2 )
j#i nm T

t

+ fo (ri — @ (0)m,i () Ny ¥ (ds)
t

— [ = 2@ N @),

Let (Nm,i)(m,,-)e{l ,,,,, Mx{1,...k} be independent Poisson point processes with intensity 1 on
[0, T] x R™. Using the Poisson embedding construction, we can write

Q(P)m,i (1) = P(V)m,i (1)

t ptoo .
=2 timi 2 /0 /0 Livarsy=m) (Muzpn ) ~ Husv ) Non,j (ds du)
J# n#m h

t 400 ~
+ri fo /0 (Liu<® ()i ()} — Lu<d )i () Nm,i (ds dur)

t p4oo R
+f0 /0 (P W)m,i () Liu=@)ni(50) — POIm,i () L{u=(@ (o) (5)) Nm,i (ds dur).
Therefore, we have

[ D(PYm,i (1) = @ (W), (1)]

t ptoo .
=D Hi—i ) / / Livar - sy=myLlussup. o lon.j @) =v j@)1) Vo, (ds due)
j# om0 70 |

t p4oo .
+ri /O /0 L{u<sup,ejq.5) 1P (0Im,i @) =D )i ()} Vi (ds dur)

t +o00 A
+f / sup [P (0)m,i (2) = PWim,i ()| Lu=d(p)m.i (5)AD W) s (5} Nom,i (ds due)
0 Jo z€[0,s]

I ptoo ~
L1006V O (5) Lz 9000~ 000 0 Vi (s ).
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Taking the expectation, using the property of stochastic intensity and proceeding as before to
obtain the ﬁ from the routing indicators, we get

E[ sup | D (P)m,i(t) — P(V)m z(f)|]
1€(0,T]

S—_ZMHZ/ E Suwp }pnj(z)—vnj(z)ﬂ

J# n#m

T
+r,~/0 E[Z:E)I”s]m)(p)m,i(Z)—q)(v)m’i(z)”ds

+ / SUp [(P)ni(2) = W) i (D] (PP (5) A PO (5)) ] ds

z€[0,s]

+/ sup |®(p)m,i(2) — ‘D(V)m,z(Z)\(@(,O)m,i(S)V<I>(V)m,1(S))]dS

z€[0,s]

Denote ||u|| = max; j i j—;. We then have

—Z“/—” Z/ sup }pnj(z) vn,j(Z)’]dS

J?él n#m
<||u||ZZf v (o j. Vi) ds.
j=1n=1
from which we immediately get by definition of K %/I K
@) Y i Y f up |00, (2) — v 2)[] ds < / KMK (p, v)ds.
M — 1751 n#m z€[0,s]

Let C > 0. As before, let Ac([0, T]) = {(w,1) € 2 x [0, T], P(0)m,i () V P(W).i (1) >
C}. Using the exact same reasoning as in Lemma 2.7, we have for small enough T the exis-
tence of a constant K7 > 0 such that

t
[ stp [©(0)04(2) = @01 @@ (0)ni5) A D01 ()] s

z€[0,s]

t
<C [ E[ sup [©(0)ni(@) — @) @[] ds + Kre T
0 “zel0,s]

Plugging in (22) and applying the same reasoning as above to the last integral term, we get
the existence of a constant K. > 0 such that

E[ sup | @ (0)m.i(t) — CD(V)m,i(l‘)|]
t€[0,T]

< ||u||/O KMK (5., v) ds

T
41420 [ VB sup [@(pni(2) ~ @02 ds

+ (K7 + K})e3CT.
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Applying Gronwall’s lemma, we get

E[ sup [ (0)m,i (1) = W) ()]
1€[0,T]

For any ¢ > 0, we can choose C > 0 such that

E[ sup [ (p)m,i (1) — P(V)m, l(t)| <||M|| / KMK (o, v) ds) (ri4200T 4 o
1€[0,T1

Letting € go to 0 and taking the sum over all coordinates and the infimum across all couplings,

we get the result. [

As previously mentioned, we need to prove convergence of the sequence of iterates of ®
to the fixed point of ® to prove the triangular law of large numbers. We will now derive this
from Lemma 2.12.

LEMMA 2.13.  Let p € (P(D7))MK be the law of the stochastic intensity of a point pro-
cess. The sequence (P! (p))1en= of iterates of the function ® is a Cauchy sequence. Moreover,
it converges to the unique fixed point of ®.

PROOE. Let p € (P(D7))MX be the law of the stochastic intensity of a point process.
By immediate induction, from (21), we have, for all / € N*,

l

K. (27 (0), @(p) = Cr - K1) (D), p)-
This in turn implies that for any p < g € N*,
q—l
(23) K25 (97 (p), ®7(p)) < (@), p).
I=p

Since the series on the right-hand side is converging, it proves that the sequence (®');cn«
is a Cauchy sequence for the KX metric. The space (P(Dr))MX, KMK) is not complete.

However, since for any w,v € Dr, dp, (i, v) < dp, v, v), it follows that (P!)en- is a
Cauchy sequence for the KX metric as well. By completeness of (P(Dr))MK KMK),
(®!);en+ converges to the unique fixed point of &. [

All that remains is proving that the triangular law of large numbers is carried over by
the function @, namely, that if we have some input X that verifies TLLN(X), then we have
TLLN(® (X)).

To do so, the key lemma will be the following law of large numbers.

LEMMA 2.14. Let M € N*. Let (XM, ..., X%) be M -exchangeable centered random

variables with finite exponential moments. Suppose that for any N € N*, (XM ... X 11{,’1 ) A

(5(1, e )~(N) when M — oo, where ()Zi),-eN* are i.i.d. random variables and the conver-
gence takes place in distribution. Then
:| -0

(24) [ Lsym

n=1

when M — 00.
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PROOF. Let
1M
n=1
Note that E[Uj;] = 0. We have

1 M
2 2
BIUG] = e 0+ X x|
n=1 m#n
Since the exponential moments of (X}) are bounded and they all converge in distribution,
we have by asymptotic independence that for any m, n,
E[X, X}'] = E[X,, X,] = E[X,]E[X,] =0
when M — oo.
Therefore, for € > 0, for large enough M, each of the terms of the corresponding sums
in the equation above is smaller than ¢. Combining this with exchangeability, we get the
existence of a positive constant C s.t. for large enough M,

E[Uy] < —5(CM + MM — 1)¢).

1
ek
Now, applying Chebychev’s inequality, for any é > 0,

(U2, _C  MM-1e
82 T M$s? M252
This gives convergence in probability of Uy to 0 when M — oc.

Since in addition the second moments are uniformly bounded, £' convergence follows.
g

E
P(|[Uy —E[Uy]| > ) <

Now, we can finally prove the following lemma which is the last step needed to prove the
main theorem.

LEMMA 2.15. Let (Ny, ;) be point processes on [0, T'| with finite exponential moments.
Let t € [0, T]. Suppose TLLN((Ny,.; ([0, t])) holds. Then, TLLN(® ((Ny,.; ([0, t1))) holds as
well.

PROOF. Suppose TLLN((Ny,,i ([0, ¢])) holds. For (m,i) e {1,..., M} x {1,..., K}, let
Am.i be the stochastic intensity of the process Ny, ;. We write for all ¢ € [0, T],

t
Ao (6) = h 1 O) + S i A oy (1) + /O (i = o () N i (d5),
J#i
where (A, ;(0)) verifies Assumption 1.2 and

— t —
Ai i) = Z/O Lyt (sy=m) N ().

n,j)—i
n#m

Analogously to (17), we have
drv (A i (), Ajsi (D)

0.74 1
()]
E[N,, ([0, 7]}/ M —1
1
M —1\" " E[N, ([0, T]]

where A j—i are independent Poisson random variables with mean E[Ny ; ([0, T])].

> (B[, (10, 7)] = N, (0. 71)
n#m

JE (0.7
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As such, TLLN((N,, ; ([0, ¢])) implies convergence in total variation of (A (n.;)) to in-
dependent random variables (A j—i)- We will now show that this implies convergence in total
variation of 3 i (hj—iAj—(m.i)-

Denote as before N = (Nn,j)n?gm,j#i. Let g € NWM=-DK=1 1et By, B, € B(RT). Let
l1 #b e{l,..., K}\ {i}. Then, using the total probability formula, we have

P(Al, = (m.iy € Bi, Aly—(m.i) € B2)

=Y P(A,—(m.i) € B, Ay m.i) € B2I[N = @)P(N =¢q).
q

Using Lemma 2.3, by conditional independence, we have

P(Al,—(m.i) € B1, A, (m.i) € B2)

= P(Aj—m.i) € BIIN = Q)P(Aj,— m.i) € BN = ¢)P(N =¢).
q

Using the same reasoning as in Lemma 2.10, we have that:
P(A, i) € BIIN =q) — P(A;,; € Bi|N = q) =P(A;,; € B),
P(Ajy—n,i) € B2I[N =) = P(Ajs; € Bo[N = ) =P(Ap,; € Bo)
and
P(N =¢) > P(N =g).
By dominated convergence,

P(Al,—m.i) € B1, Aly—m.i) € B2) — ZP(Azl—n € B)P(A;,—; € By)P(N =¢q)
q

=P(Al - (m.i) € B1, Ay (m.i) € B2).

This implies convergence of > u;— (A j—(m,i)- Finally, the mapping theorem implies con-
vergence in total variation of A, ; (f) when M — oo. All conditions of Lemma 2.14 are thus
satisfied. Applying it completes the proof. [J

Thus, we can now state the result that we were aiming to prove:

LEMMA 2.16. Denote by (N, ;) the point processes of the M-replica RMF dynamics
(4) that are the fixed point of ®. Then TLLN((Ny,.; ([0, T'1))) holds.

PROOF. Let (N, ;) be random variables satisfying TLLN(N,, ;). Let us first write out
equalities and justify them afterwards. We have

lim —EHZ N (10, T1)] = Ny j ([0, T]))H

M—oo M — 1
il el o )]
= Jim_lim —E[’§ (0. 7)) = &/ (3%, (0. 71) |

= lim lim —E|:

l—-ooM—o00o M

> (B[ (N, (10. 7)) ~ @' (%5 (0. 71)
ntm

=0.
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The first equality is given by Lemma 2.13. To obtain the second equality, we use the dom-
inated convergence theorem and the fact that all moments all uniformly bounded through
Lemma 2.4 (note that initial conditions are fixed in the definition of & and are chosen to
verify Assumption 1.2). To justify the third equality, note that from (23), using Lemma 2.4
to obtain again a uniform bound of the moments, we get that the Cauchy sequence of iterates
of @ verifies the uniform Cauchy criterion and thus converges uniformly to the fixed point,
which in turn allows for the exchange of limits in M and [. The last equality stems directly
from Lemma 2.15. 0O

3. Tightness and convergence on R. The goal of this section is to generalize the main
result of the paper. In Theorem 1.4, we proved weak convergence of the replica-mean-field
processes on compacts of R*. We now prove weak convergence on R*. One motivation for
doing so is that the results on the Galves—Locherbach replica-mean-field model in the paper
[7] by Baccelli and Taillefumier assumes that the Poisson hypothesis holds at the limit in the
stationary regime. As such, the following result provides the missing rigorous justification,
albeit for a slightly simplified model due to Assumption 1.1.

THEOREM 3.1. Let K,M >2. Forallme{l,..., M}andi € {1,..., K}, the process
Am.i weakly converges in the Skorokhod space of cadlag functions on RY.

Recall the following tightness criterion due to Aldous [2].

PROPOSITION 3.1. Let (2, F, (F™,t € RT),P) be a probability space, let X™ be
adapted cadlag processes. If for all T > 0, (C(| X ™)) is tight on [0, T, and if for all € > 0,
for all € > 0, there exists § € (0, T such that

lim sup sup P(]Xg:) — Xé’;)\ >€') <k,
nH 51,8,6 ") such that
S1<852=<(S14+6AT

then (L(X™)) is tight on the space of cadlag functions on R .
We will also require the following inequality on martingales.

LEMMA 3.2.  Let (Xt)ie[0,1) be a nonnegative (F;)-martingale, let Sy, Sz be two stop-
ping times such that S1 < S < S1 + 6. Then

(25) E[ » X, ds] <25,/E[X2%].

N
PROOF. We have

\Y)
E[ X, ds] < aE[ sup Xs]
Si s€[0,T]

<$é E[ sup X%]
s€[0,7T]
<25,/E[X%] (by the Doob inequality). O

We are now ready to prove Theorem 3.1.
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PROOF. We use the Aldous criterion mentioned above to prove tightness. Let 7 > 0. Let
€ >0,8>0,8], S, two stopping times such that S} <S> < (S; +8) A T.

Using the Markov inequality, the fact that r; — A, ; is negative, and the property of stochas-
tic intensity, we have:

P(|Am,i (S2) = Ami (S1)] > €)

Sz S2
:P( > i Z/s LV jy—i(s)=m} Nn, j (ds) +/S (ri = Am,i (8)) N i (ds)
1 1

> e/)

J#i n#m
1 i $ So
<—E[Y uj Z/ ﬂ{v(,l,,-)_),-(s)zm}Nn,j(dS)+/ (Am.i(s) _ri)Nm,i(ds)]
© HE o S .
1.7 r% )
<—E / Do il i =mihn () + (A i (s) — rikm,i(S))dS}
€ LIS i
1 T [5% )
< B [ e 6) 3 6) = i ().
L 1

J#i
Since A, ; (s) is nonnegative for all s € [0, T'], we can write

/ 1 5 2
P(|Am,i (52) = Am,i(S1)| > €') < ;E[/S Zuj»i)»l,j(s) +)»m,i(s)ds}-
U j#i

Forall (m,i)e{l,...,M} x{1,...,K},let

t t
i)=Y fo TV or(s)mm) o () ds + fo (i — o (5)) o 4 (5) ds,
n#m j#£i

and

t
dm i)=Y Z/ LV jyoi (5)=m) (2An,j (8) + 1) A j(s) ds
n#Em j#i 0

! 2 2
+/0 (r; —)Lm’i(s))km’i(s)ds.

By the property of stochastic intensity, op ; (f) = Am,i(t) — cp,i(¢) and vy, ; () = Agm(t) —
dp, i (¢) are (F;)-martingales.
Therefore, we can write

P(|A,i (S2) = Am,i (SD| > €)
(26) 1 52

= ZE[/; Z,U«j—ﬂpl,j(s) + Vi () + ZM]—)iCI,j(S) +dp,i(s) dsi|-
boj# J#

We now bound separately the martingale part and the rest of the right-hand-side expression
in (26).
Using Lemma 3.2, we have that

S> 2
B [ (S tmip15) 4 i) ds| < ZSJ B[ (S jmion (D) + i) |
e J#
Therefore, using the Cauchy—Schwarz inequality and Lemma 2.4, there exists a nonnega-
tive constant Q1(7) such that

S
@7) B[ [ (S simio10) + vmato) s <5011,
v\
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Now, let us bound the rest of the right-hand side term in (26).
We have, using Fubini’s theorem for the first equality and the fact that the term under the
integral is nonnegative for the upper bound,

S2 t
E[/s </0 DO il i =my . j () A + (i — A i (8)) A, (5) ds> df}
1

n#m j#i

S
= E[/ (S2=(S1Vvs)) ( Z ZMj—)i]]-{V(n,j)ﬁ,-(s):m})‘n,j(s) ds
0 ntm ji

+ (ri = )\m,i(s)))tm,i(S)> dsi|

T
<s [ E[Zu,-ﬁixl,,-(s)ﬂfn,i(s) —r,-xm,l-(s)]ds.
0 Lz
Therefore, using Lemma 2.4, we have the existence of a constant Q>(7") > 0 such that for
all (n, jye{l,...,M} x{1,...,K},

S5
E[/51 c,,,j(s)ds] <850,(T).

Similarly, we obtain the existence of a constant Q3(7T) > 0 such that for all (n, j) €
{1,...,M} x{1,..., K},

$2
E|;/:91 dy,j(s) ds} <803(T).

Combining the two previous bounds, we have the existence of a nonnegative constant Q4(7)
such that

S
28) B [ (S tmie1s ) +dui(s) ) ds| 504D
St Njsi
Finally, combining (27) and (28) in (26), we obtain
- 8(Q1(T)+ Q4(T))

6/

P(|An,i (52) = Am,i (SD)| > €')
Therefore, we can choose § so that
lim sup sup P(|A) ;(S) — Al (S| > €) <e.
N=>+00 g ) (F™M) st
S1<8<(S1+8)AT

This proves the second condition of the Aldous criterion.
For the first condition, for ¢ € [0, T], let

t
Gny=) ZM%] LV jyoi(s)y=m) (N, j (ds) — A j(s) ds)
n#m j#i 0

t
+ /0 (i (5) — 71) (N (ds) — Ay (5) ds)

and

t t
Ho =3 Y )i fo TV or(s)mm) o () ds + fo (o (5) — i) () ds.
n#m j#i
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As G is a martingale, by Doob’s inequality and by Lemma 2.4, there exists a constant K (7")
such that

2
E[ sup |G(t)}] <4E[|G(D)[*] < K\(D).
1e[0,T]
Moreover, since all terms under the integrals in H (¢) are nonnegative, H (¢) is nondecreas-
ing in ¢, so by Lemma 2.4, there exists a constant K»(7') such that

E[ sup |H(®)|| <E[H(T)] < Kx(T).
tel0,T]

By the triangular inequality,
E[sup |xm,,~(t)|] < E[sup |G(t)|] +E[sup |H(t)|]
[0,T] [0,T] [0,T]

< K(T)+ Ko(T).
Thus, for all M > 2, if k > 0, by the Markov inequality,

P(| 2

,i”oo

1
> ) = B[]

_ Ki(D) + Ko(T)
J— K 9
so for all € > 0, there exists k > 0 such that for all M > 2,

P15l > #) <€,

which proves the first condition of the Aldous criterion.

Thus, both conditions of the Aldous criterion are verified, and the set of processes
()\%i)(nz,i)e{l,...,M}><{1,...,K} is tight in the space of cadlag functions on R*. Combining it
with statement 4 of Theorem 1.4 yields the result. [
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