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Abstract

Network dynamics with point-process-based interactions are of paramount modeling
interest. Unfortunately, most relevant dynamics involve complex graphs of interactions
for which an exact computational treatment is impossible. To circumvent this difficulty,
the replica-mean-field approach focuses on randomly interacting replicas of the networks
of interest. In the limit of an infinite number of replicas, these networks become analyt-
ically tractable under the so-called ‘Poisson hypothesis’. However, in most applications
this hypothesis is only conjectured. In this paper we establish the Poisson hypothesis for
a general class of discrete-time, point-process-based dynamics that we propose to call
fragmentation-interaction-aggregation processes, and which are introduced here. These
processes feature a network of nodes, each endowed with a state governing their random
activation. Each activation triggers the fragmentation of the activated node state and the
transmission of interaction signals to downstream nodes. In turn, the signals received
by nodes are aggregated to their state. Our main contribution is a proof of the Poisson
hypothesis for the replica-mean-field version of any network in this class. The proof is
obtained by establishing the propagation of asymptotic independence for state variables
in the limit of an infinite number of replicas. Discrete-time Galves–Löcherbach neural
networks are used as a basic instance and illustration of our analysis.

Keywords: Point process; Hawkes process; Markov process; mean-field theory; replica
model; Poisson hypothesis; neural network; queuing network

2020 Mathematics Subject Classification: Primary 60K35
Secondary 60G55

1. Introduction

Epidemic propagation, chemical reactions, opinion dynamics, flow control in the Internet,
and even neural computations can all be modeled via punctuate interactions between inter-
connected agents [1,2,11,16,19]. The phenomena of interest in this context are idealized as
network dynamics on a graph of agents which interact via point processes: edges between
agents are the support of the interactions, with edge-specific point processes registering the
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RMF limits of fragmentation-interaction-aggregation processes 39

times at which these interactions are exerted. Such point-process-based network dynamics
constitute a very versatile class of models able to capture phenomena in natural sciences,
engineering, social sciences, and economics. However, this versatility comes at the cost of
tractability as the mathematical analysis of these dynamics is impossible except for the sim-
plest network architectures. As a result, one has to resort to simplifying assumptions to go
beyond numerical simulations.

Generic point-process-based networks are computationally intractable because their
stochastic dynamics does not appear to belong to any known parametric class of point pro-
cesses. Replica-mean-field (RMF) limits are precisely meant to circumvent this obstacle [3].
The RMF limit of a given network is an extension of the network built in such a way that
the interaction point processes are parametric, e.g. Poisson. This extended network is made of
infinitely many replicas of the initial network, all with the same basic structure, but with ran-
domized interactions across replicas. The interest in RMF limits stems from the fact that they
offer a tractable version of the original dynamics that retain some of its most important fea-
tures. The fact that Poisson point processes arise in the RMF version of a network is called the
‘Poisson hypothesis’. Thus formulated, the Poisson hypothesis originates from communication
network theory [13] and is distinct from replica approaches developed in statistical physics [6].

Although intuitively clear and despite its usefulness, the Poisson hypothesis is often only
conjectured and/or numerically validated. The purpose of this work is to rigorously estab-
lish the Poisson hypothesis for the RMF limits of a broad class of point-process-based
network dynamics in discrete time introduced here. This class, which will be referred to
as fragmentation-interaction-aggregation processes (FIAPs), includes important classes of
queueing networks as special cases, as well as discrete-time Galves–Löcherbach (GL) neural
networks.

Galves–Löcherbach networks can be viewed as coupled Hawkes processes with spike-
triggered memory resets. Because of these memory resets, it can be shown that the dynamics of
finite-sized GL networks is Markovian [17]. The RMF limit of the GL case was studied from
a computational standpoint in [3] but in continuous time. In the next subsection we use results
established in [3] to illustrate how the Poisson hypothesis yields tractable mean-field equations
for the stationary dynamics of these RMF limits. This is done for the simplest example of GL
networks, called the ‘counting-neuron’ model.

1.1. Illustration from the study of spiking neural networks
The counting-neuron model consists of a fully connected network of K exchangeable neu-

rons with homogeneous synaptic weights µ. For each neuron i, 1 ≤ i ≤ K, the continuously
time-indexed stochastic intensity λi increases by µ > 0 upon reception of a spike, and resets
upon spiking to its base rate b > 0. Thus, its stochastic intensity is λi(t) = b + µCi(t), where
Ci(t) is the number of spikes received at time t since the last reset. It can be shown that the net-
work state {C1(t), . . . , CK(t)} has a well-defined stationary distribution. Despite the simplicity
of the model, analytic characterizations of the stationary state, including the stationary spiking
rate, are hindered by the fact that the law of the point process of spike receptions is not known.

To circumvent this hindrance, the RMF setting proposes to compute stationary spiking rates
in infinite networks that are closely related to the original finite-sized networks. Informally, the
counting-model RMF is constructed as follows: for a K-neuron counting model and for an inte-
ger M > 0, the M-replica model consists of M replicas, each comprising K counting neurons.
Upon spiking, a neuron i in replica m, indexed by (m,i), delivers spikes with synaptic weight µ

to the K − 1 neurons (vj, j), j ̸= i, where the replica destination vj is chosen uniformly at random
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40 F. BACCELLI ET AL.

for all j. RMF networks are defined in the limit of an infinite number of replicas, namely infi-
nite M but fixed and finite K. The Poisson hypothesis then states that the dynamics of replicas
become asymptotically independent in the limit M → ∞, and that each neuron receives spikes
from independent Poisson point processes. It is shown in [3] that as a consequence of this
Poisson property, the stationary state is characterized by a single ordinary differential equation
(ODE) bearing on G, the probability-generating function (PGF) of a neuron count C:

β − µzG′(z) +
(
β(K − 1)(z − 1) − b

)
G(z) = 0. (1)

The simplifications warranted by the Poisson hypothesis in the above ODE characterization
come at the cost of introducing the spiking rate β as an unknown parameter in (1). As the
ODE (1) is otherwise analytically tractable, characterizing the RMF stationary state amounts
to specifying the unknown firing rate β. Then, the challenge of the RMF approach consists in
specifying the unknown firing rate via purely analytical considerations about a parametric sys-
tem of ODEs. It turns out that requiring that the solution of (1) be analytic, as any PGF shall be,
is generally enough to exhibit self-consistent relations about the stationary rates. For instance,
the RMF stationary spiking rate β of the RMF counting model is shown to be determined as
the unique solution of

β = µcae−c

γ (a, c)

with a = 1
µ [(K − 1)β + b] and c = 1

µ [(K − 1)β], where γ denotes the lower incomplete Euler
gamma function.

We have shown that the above approach generalizes to networks with continuous state
space, heterogeneous network structures [3], and including pairwise correlations [4]. In all
cases, the Poisson hypothesis is the cornerstone of a computational treatment. As a key step
toward establishing the Poisson hypothesis for continuous-time network dynamics, the goal
of this work is to prove it for a broad class of discrete-time dynamics, which we refer to as
fragmentation-interaction-aggregation processes.

1.2. Fragmentation-interaction-aggregation processes
In FIAPs, agents are graph nodes endowed with a state that evolves over time. The nodes are

coupled via point processes which model punctuate interactions. Specifically, each node’s state
evolves in response to its input point process, and generates an output point process in a state-
dependent manner. In all generality, the transformation of input into output point processes can
be viewed as a random map. In FIAPs, this map is defined through the following dynamics:
(i) The fragmentation process is triggered by local activation events taking place on each node
that occur with a probability that depends on the state of the node. (ii) Each fragmentation
event in turn triggers interactions between the nodes by creating input events in the neighbor-
ing nodes. (iii) Finally, the aggregation process consists in the integration of the input point
processes to the states of each node.

Thus broadly defined, FIAPs offer a simple, albeit general, framework to analyze the
phenomena alluded to above. The precise definition of a FIAP is given as follows:

Definition 1. An instance of the class C of discrete fragmentation-interaction-aggregation
processes is determined by:

• an integer K representing the number of nodes;

• a collection of initial conditions for the integer-valued state variables at step zero, which
we denote by {Xi}, where i ∈ {1, . . . , K};
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• a collection of fragmentation random variables {Ui}, which are independent and identi-
cally distributed (i.i.d.) uniform in [0, 1] and independent of {Xi}, where i ∈ {1, . . . , K};

• a collection of fragmentation functions {g1,i : N→N}i∈{1,...,K} and {g2,i : N→
N}i∈{1,...,K};

• a collection of bounded interaction functions {hi,j : N→N}i,j∈{1,...,K};

• a collection of activation probabilities {σi(0), σi(1), . . .}i∈{1,...,K} verifying the condi-
tions σi(0) = 0 and 0 < σi(1) ≤ σi(2) ≤ · · · ≤ 1 for all i.

The associated dynamics take as input the initial integer-valued state variables {Xi} and
define the state variables at the next step as

Yi = g1,i(Xi)1{Ui<σi(Xi)} + g2,i(Xi)1{Ui>σi(Xi)} + Ai, for all i = 1, . . . , K, (2)

with arrival processes Ai =
∑

j ̸=i hi,j(Xj)1{Uj<σj(Xj)}, for all i = 1, . . . , K.
The interpretation is that node i activates with probability σi(k) if its state Xi is equal to k.

The state of this node is fragmented to g1,i(k) upon activation and to g2,i(k) otherwise. This
activation triggers an input of hj,i(k) units to node j. Hence, the interaction functions encode
the structure of the graph. The variable Ai gives the total number of arrivals to node i. This
variable is aggregated to the state of the node as seen in (2). Note that considering σi(0) = 0
for all i ensures that state variables in state 0 cannot be fragmented.

The FIAP class C encompasses many network dynamics relevant to queueing theory
and mathematical biology. For example, taking g1,i(k) = k − 1, g2,i(k) = k, and hi,j(k) =
1{i=j+1 mod K}, we recover an instance of Gordon–Newell queueing networks [12]. Taking
g1,i(k) = 0, g2,i(k) = k, and hi,j(k) = µi,j ∈N defines a discrete instance of GL dynamics for
the neural networks introduced above. Taking g1,i(k) = ⌊ k

2⌋ and g2,i(k) = k + 1 corresponds to
aggregation-fragmentation processes modeling, e.g., TCP communication networks [2]. The
class C also includes certain discrete-time Hawkes processes. Namely, if, for each coordinate
of a Hawkes vector process, we define its state as the sum over time of all its variations, then
all discrete Hawkes processes that are Markov with respect to their so-defined state are in C.
Thus, the results of the present paper have potential computational implications in a wide set
of application domains beyond the neural network setting used above to illustrate them.

The present paper is focused on discrete-time versions of this type of dynamics as in, e.g.,
[7,18]; note that continuous instances were also considered in the literature, such as in [8,15].

1.3. Replica models for fragmentation-interaction-aggregation networks
Finite RMF models are defined as a coupling of replicas of the network of interest by ran-

domized routeing decisions. For a FIAP, the state of its M-replica model is thus specified by a
collection of state variables XM

m,i, where m is the index of the replica and i corresponds to the
index of the node in the original network. Instead of interacting with nodes within the same
replica, an activated node i in replica m interacts with a downstream node j from a replica n cho-
sen uniformly at random and independently. This randomization preserves essential features
of the original dynamics, such as the magnitude of interactions between nodes, but degrades
the dependence structure between nodes. Indeed, over a finite period of time, the probability
for a particular node to receive an activation from another given node scales as 1/M. Thus, as
the number of replicas increases, interactions between distinct replicas become ever scarcer,
intuitively leading to replica independence when M → ∞. This asymptotic independence is
the root of RMF computational tractability.
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Here is the precise definition of the finite-replica version of a FIAP:

Definition 2. For any process in C, the associated M-replica dynamics is entirely specified by:

• a collection of initial conditions for the integer-valued state variables at step zero, which
we denote by {XM

n,i}, where n ∈ {1, . . . , M} and i ∈ {1, . . . , K}, such that for all M, n, i,
XM

n,i = Xi;

• a collection of fragmentation random variables {Un,i}, which are i.i.d. uniform in [0, 1]
and independent of {XM

n,i}, where n ∈ {1, . . . , M} and i ∈ {1, . . . , K};
• a collection of i.i.d. routeing random variables {RM

m,j,i} independent of {XM
n,i} and {Un,i},

uniformly distributed on {1, . . . , M}\{m} for all i, j ∈ {1, . . . , K} and m ∈ {1, . . . , M}.
In other words, if RM

m,j,i = n, then an eventual activation of node j in replica m at step 0
induces an arrival of size hi,j(XM

m,j) in node i of replica n, and n is chosen uniformly
among replicas and independently of the state variables. Note that these variables are
defined regardless of the fact that an activation actually occurs. Also note that for i′ ̸= i,
the activation in question will induce an arrival in node i’ of replica n’, with n’ sampled
in the same way but independently of n.

Then, the integer-valued state variables at step one, denoted by {YM
n,i}, are given by the

M-RMF equations YM
n,i = g1,i(XM

n,i)1{Un,i<σi(XM
n,i)} + g2,i(XM

n,i)1{Un,i>σi(XM
n,i)} + AM

n,i, where g1,i,

g2,i denote fragmentation functions, σi denotes activation probabilities, and where AM
n,i =∑

m̸=n
∑

j ̸=i hi,j(XM
m,j)1{Um,j<σi(XM

m,j)}1{RM
m,j,i=n} is the number of arrivals to node i of replica n

via the interaction functions hi,j.
RMF models are only expected to become tractable when individual replicas become inde-

pendent. This happens in the limit of an infinite number of replicas, i.e. in the so-called RMF
limit [3]. In this RMF limit, asymptotic independence between replicas follows from the more
specific Poisson hypothesis. The Poisson hypothesis states that spiking deliveries to distinct
replicas shall be asymptotically distributed as independent Poisson (or compound) point pro-
cesses. Such a hypothesis, which has been numerically validated for certain RMF networks,
has been conjectured for linear Galves–Löcherbach dynamics in [3]. Proving the validity of
the Poisson hypothesis for the RMF limits of the much more general FIAPs is the purpose of
the present work.

1.4. Methodology for proving the Poisson hypothesis
Classical mean-field approximations of a given network are obtained by considering the

limit of the original network when a certain characteristic of the network, typically the number
of nodes, goes to infinity. When the dynamics of the nodes are synchronous, one gets a discrete-
time dynamical system. The term ‘mean field’ comes from the fact that in such network limits,
the effects that individual nodes have on one another are approximated by a single averaged
effect, typically an empirical mean. In the limit, this empirical mean usually converges to an
expectation term through a propagation of chaos result [20] which leads to analytical tractabil-
ity. In replica mean fields, there is no such empirical mean over the nodes of the network;
the mean-field simplification comes from the random routeing operations between replicas.
The input point process in the M-replica model consists in a superposition of M rare point
processes, which informally explains why Poisson (or compound Poisson) processes arise at
the limit. For classical mean fields, different techniques have been developed to prove the
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existence of and convergence to the mean-field limit. Standard techniques include the use of
the theory of nonlinear Markov processes [21] and stochastic approximation algorithms [5] for
continuous-time dynamics, and induction techniques which assume the existence of limits at
time zero and extend the result by induction [14] for dynamics in discrete time. Refinements
to the latter approach can be made in order to obtain explicit rates of convergence [10]. The
approach developed for the RMF case belongs in spirit to the third class of techniques. We
suppose that the property of asymptotic independence (see Definition 3) holds for the state
variables at time zero. We then prove that this property is preserved by the dynamics of the
M-replica model and thus holds by induction for any finite time. Thus, we focus hereafter on
the one-step transition of the model from time 0 to time 1. We show that this asymptotic inde-
pendence hypothesis implies both convergence in distribution and an ergodic type property that
we call the triangular law of large numbers. We apply this law of large numbers to the input
process to a single node to show that Poisson (or compound Poisson) processes indeed appear
in the replica-mean-field limit. We stress that this proof is by induction. The fact that the main
difficulty consists in proving the induction step should not hide the fact that the result relies in
a crucial way on the assumption that at step 0, the initial state variables satisfy the asymptotic
independence property. Whether the result can be extended to more general initial conditions
is an open question at this stage.

1.5. Structure of the paper
For the sake of clarity in exposition, we start with the proof of the Poisson hypothesis for

the special case of neural networks, before extending it to general FIAPs. More precisely, we
first consider the symmetric neural network case, which is a fully symmetric GL model [9]
in discrete time. We introduce the model in Section 2 and prove the Poisson hypothesis in
Section 3. We then extend the proof to the class of FIAPs defined above. We first consider the
symmetric case in Section 4, and then the general case in Section 5. Finally, some extensions
are discussed in Section 6.

2. The symmetric Galves–Löcherbach model

2.1. The symmetric RMF network model
We consider a network of K spiking neurons. We suppose that the behavior of each neuron

is determined by a random variable representing the membrane potential of the neuron. Each
neuron spikes at a rate depending on its state variable. Let X = {Xi} be the integer-valued state
variables at step 0, where i ∈ {1, . . . , K}. Let Y = {Yi} be the integer-valued state variables at
time 1. The system continues to evolve in discrete time with all corresponding state variables
defined by induction.

Let σ : N→ [0, 1] be the spiking probabilities of the neurons. Namely, σ (k) is the proba-
bility that a neuron in state k spikes. We consider that σ (0) = 0, accounting for the fact that
a neuron in state 0 never spikes. We also consider that σ (1) > 0 and that σ is nondecreas-
ing. Let {Ui} be uniformly distributed i.i.d. random variables independent of {Xi}. We then
write, for the evolution equation for the state of the system, Yi = 1{Ui>σ (Xi)}Xi + Ai, where
Ai =

∑
j ̸=i 1{Uj<σ (Xj)} is the number of arrivals to neuron i.

Here, the fragmentation is complete if Ui < σ (Xi), namely if there is a spike, in which case
the state variable is reset (jumps to 0). Otherwise there is no fragmentation at all and the state
variable is left unchanged. In both cases, the arrivals Ai are aggregated to the state.
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The RMF model described below is a discrete-time version of the model introduced in [3].
Namely, we consider a collection of M identically distributed replicas of the initial set of K neu-
rons. Let X = {XM

n,i} be the integer-valued state variables at step 0, where n ∈ {1, . . . , M}, i ∈
{1, . . . , K}. Let Y = {YM

n,i} be the integer-valued state variables at time 1. Let U = {Un,i} be uni-
formly i.i.d. random variables in [0, 1] independent of {XM

n,i}. Let R = {RM
m,i,j} be i.i.d. routeing

random variables independent of {XM
n,i} and {Un,i}, uniformly distributed on {1, . . . , M}\{m}

for all i, j ∈ {1, . . . , K} and m ∈ {1, . . . , M}. The replica model has the evolution equation

YM
n,i = 1{

Un,i>σ
(

XM
n,i

)}XM
n,i + AM

n,i, (3)

where

AM
n,i =

∑

m̸=n

∑

j ̸=i

1{
Um,j<σ

(
XM

m,j

)}1{
RM

m,j,i=n
} (4)

is the number of arrivals to neuron i of replica n.

2.2. Pairwise asymptotic independence and consequences
Our goal is to show the propagation of chaos and the Poisson hypothesis in this system.

In other words, we want to show that the arrivals to two distinct replicas are asymptotically
independent, and the number of arrivals to one replica is asymptotically Poisson distributed.
We begin by considering the fully exchangeable case with equal weights, but we will consider
the general case later. In order to do so, we choose to characterize the propagation of chaos
through the following properties.

Definition 3. Given M ∈N, given an array of integer-valued random variables Z =
{ZM

n,i}1≤n≤M,1≤i≤K such that, for all fixed M, the random variables ZM
n,i are exchangeable in

n and i, we say that the variables ZM
n,i are pairwise asymptotically independent, which we

will denote PAI(Z), if there exists an integer-valued random variable Z̃ such that, for all

(n, i) ̸= (m, j), for all u, v ∈ [0, 1], limN→∞ E
[
uZN

n,i vZN
m,j
]
=E

[
uZ̃]E

[
vZ̃].

Definition 4. Given M ∈N, given an array of integer-valued random variables Z =
{ZM

n }n∈{1,...,M} such that, for all fixed M, the random variables ZM
n are exchangeable in n, we

say that Z satisfies the triangular law of large numbers, denoted by TLLN(Z), if there exists an
integer-valued random variable Z̃ such that, for all functions f : N→R with compact support,
we have the following limit in L2: limN→∞ 1

N

∑N
n=1 f (ZN

n ) =E[f (Z̃)].

We have a few remarks about these definitions. First, note that if an array of random vari-
ables Z satisfies PAI(Z) then, for all n and i, ZM

n,i converges in distribution to Z̃ as M → ∞. This
can be seen by taking v = 1 in the definition. By considering the case where ZM

n = Z1
1 for all n

and M, we see that the convergence in distribution of ZM
n does not imply TLLN(Z). However,

we show below that for all arrays of random variables Z = {ZM
n,i}n∈{1,...,M},i∈{1,...,K} satisfying

PAI(Z), for all i, Zi = {ZM
n,i}n∈{1,...,M} satisfies TLLN(Zi). In other words, pairwise asymptotic

independence of an array of random variables implies that these random variables satisfy the
triangular law of large numbers. Finally, note that an array of integer-valued random variables
Z satisfies PAI(Z) if and only if the random variables are asymptotically independent in the
sense that, for all (n, i) ̸= (m, j), P

(
ZM

n,i ∈ B1, ZM
m,j ∈ B2

)
→ P(Z̃ ∈ B1)P(Z̃ ∈ B1) when M → ∞

for B1, B2 ∈B(R).
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The following characterization of L2 convergence will be used throughout this paper.

Lemma 1. Let (Xn) be random variables with finite second moments. Then there exists a
constant c such that Xn → c in L2 when n → ∞ if and only if

(i) E[Xn] → c when n → ∞;

(ii) var(Xn) → 0 when n → ∞.

This follows directly from the definition of L2 convergence.
The following lemma describes the relation between pairwise asymptotic independence and

the triangular law of large numbers.

Lemma 2. Let M ∈N, and let Z =
{
ZM

n,i

}
n∈{1,...,M},i∈{1,...,K} be an array of integer-valued

random variables verifying PAI(Z). Then, for all i, Zi =
{
ZM

n,i

}
n∈{1,...,M} satisfies TLLN(Zi).

Proof. Let f : N→R be a function with compact support. We use Lemma 1. We fix i ∈
{1, . . . , K}, which we omit in the rest of the proof. We have

var

(
1
M

M∑

n=1

f
(
ZM

n
)
)

= 1
M2

⎛

⎝
M∑

n=1

var
(
f
(
ZM

n
))

+
∑

p ̸=q

cov
[
f
(
ZM

p
)
, f
(
ZM

q
)]
⎞

⎠

= 1
M

var
(
f
(
ZM

1
))

+ M(M − 1)
M2 cov

[
f
(
ZM

1
)
, f
(
ZM

2
)]

,

the last equality holding by exchangeability between replicas. Both terms on the right-hand
side go to 0 when M → ∞. For the first term, this follows from the boundedness of f . For the
second, we first show the result for indicator functions. Let B ∈B(R) and let f be defined by
f (n) = 1{n∈B}. Then we have cov

[
f
(
ZM

1

)
, f
(
ZM

2

)]
= P

(
ZM

1 ∈ B, ZM
2 ∈ B

)
− P

(
ZM

1 ∈ B
)
P
(
ZM

2 ∈
B
)
, which goes to 0 when M → ∞ by PAI(Z). This immediately extends to functions with

compact support since they only take a finite number of values. Moreover, for all such func-
tions, E

[ 1
M

∑M
n=1 f (ZM

n )
]
→E[f (Z̃)] when M → ∞ as a direct consequence of the fact that,

for integer-valued random variables, convergence in distribution of ZM to Z̃ is equivalent to the
convergence P(ZM = k) → P(Z̃ = k) for all k ∈N. This concludes the proof. !

For our subsequent needs, we also establish the following result: we show that pairwise
asymptotic independence implies a property that is slightly more general than the triangular
law of large numbers, where we allow the function f to depend on an array of i.i.d. random
variables U = {Un,i}n∈{1,...,M},i∈{1,...,K}, independent of the rest of the dynamics.

Lemma 3. Let M ∈N, and let Z =
{
ZM

n,i

}
n∈{1,...,M},i∈{1,...,K} be an array of integer-valued ran-

dom variables satisfying PAI(Z). Then, for all bounded functions f : N× [0, 1] →R with
compact support, for all i.i.d. sequences of random variables U = {Un,i}n∈{1,...,M},i∈{1,...,K}
independent of Z, there exists Ũ independent from Z̃ and Z such that, for all i ∈ {1, . . . , K},
we have the following limit in L2:

lim
M→∞

1
M

M∑

n=1

f
(
ZM

n,i, Un,i
)
=E[f (Z̃, Ũ)].

Note that compared to Definition 4, we consider that the functions are bounded, a condition
that was automatically fulfilled for functions with compact support on N.
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Proof. We proceed as in the last lemma, conditioning on the Un,i when necessary. Let M ∈N,
let i ∈ {1, . . . , K}. We will omit this index in the rest of the proof. By exchangeability between
replicas, defining Ũ = U1, we have E

[
1
M

∑M
n=1 f

(
ZM

n , Un
)]

=E
[
f
(
ZM

1 , U1
)]

=E
[
f
(
ZM

1 , Ũ
)]

.

Since ZM
1 converges in distribution to Z̃ when M → ∞, and since ZM

1 is integer valued and f
is bounded, for all u ∈ [0, 1], E

[
f
(
ZM

1 , u
)]

→E[f (Z̃, u)] when M → ∞. Therefore, since Ũ is
independent of Z and Z̃, E

[
f
(
ZM

1 , Ũ
)]

→E[f (Z̃, Ũ)] when M → ∞ almost surely. Finally,

E
[

1
M

M∑

n=1

f
(
ZM

n , Un
)
]

→E
[
f (Z̃, Ũ)

]

when M → ∞. Moreover,

var

(
1
M

M∑

n=1

f
(
ZM

n , Un
)
)

= 1
M2

M∑

n=1

var
(
f
(
ZM

n , Un
))

+ 1
M2

∑

n ̸=n′
cov

[
f
(
ZM

n , Un
)
, f
(
ZM

n′ , Un′
)]

= 1
M

var
(
f
(
ZM

1 , U1
))

+ M(M − 1)
M2 cov

[
f
(
ZM

1 , U1
)
, f
(
ZM

2 , U2
)]

,

the last equality stemming from exchangeability between replicas. When M → ∞, the first
term goes to 0 because f is bounded. For the second term, since the {ZM

n } and the {Un} are
independent and the {Un} are i.i.d., we can proceed as above. Namely, let B, C ∈B(R). Let f
be defined by f (n, t) = 1{n∈B}1{t∈C}. Then we have

cov
[
f
(
ZM

1 , U1
)
, f
(
ZM

2 , U2
)]

= P
(
ZM

1 ∈ B, ZM
2 ∈ B, U1 ∈ C, U2 ∈ C

)
− P

(
ZM

1 ∈ B, U1 ∈ C
)
P
(
ZM

2 ∈ B, U2 ∈ C
)

=
(
P
(
ZM

1 ∈ B, ZM
2 ∈ B

)
− P

(
ZM

1 ∈ B
)
P
(
ZM

2 ∈ B
))

P(U1 ∈ C)P(U2 ∈ C),

the last equality holding by independence between Z and {Un,i}n∈{1,...,M},i∈{1,...,K}. The right-
hand term goes to 0 when M → ∞ by PAI(Z). This generalizes to bounded functions with
compact support, which concludes the proof. !

2.3. Main result
Our goal is to show that if X =

{
XM

n,i

}
are asymptotically independent, then Y =

{
YM

n,i

}
are as

well. In other words, if we choose initial conditions that satisfy a certain property, this property
will hold by induction at any finite discrete time.

Theorem 1. Let M ∈N, and let X = {XM
n,i}n∈{1,...,M},i∈{1,...,K} be an array of integer-valued ran-

dom variables (the ‘state variables’). Suppose that PAI(X) holds. Then PAI(Y) holds as well,
where Y is defined by (3). Moreover, the arrivals to a given node AM

n,i converge in distribution
to a Poisson random variable when M → ∞.

Note that the result depends on a choice of initial conditions verifying PAI(X), a typical
example of which is i.i.d. initial conditions stable in law, in the sense that their law does

/����	  ��0��7. ������� 1�7����������:�20�/�����20������

3�70�.����0��7�0����7���

https://doi.org/10.1017/jpr.2021.31


RMF limits of fragmentation-interaction-aggregation processes 47

not depend on M. The question of whether, given an arbitrary initial condition, the dynam-
ics become pairwise asymptotically independent after some (finite or infinite) amount of
time, is still open. Note also that this shows that we have convergence in distribution of the
exchangeable variables

{
YM

n
}

when M → ∞.

3. Proof of Theorem 1

In the following proof, since K is always finite and all the random variables considered
are exchangeable, as above, we will sometimes omit the neuron index i ∈ {1, . . . , K} in order
to simplify notation. Tilde superscripts will refer to objects in the infinite replica limit. Hat
superscripts will refer to fragmentation processes.

3.1. Fragmentation

Lemma 4. Let X̂ =
{

X̂M
n,i = XM

n,i1
{

Un,i>σ
(

XM
n,i

)}
}

. Then PAI(X) implies PAI(X̂).

Proof. We have, for u, v ∈ [0, 1], E
[
uX̂M

1 vX̂M
2
]
=∑

k,l∈N P
(
X̂M

1 = k, X̂M
2 = l

)
ukvl. For k, l >

0, we have P
(
X̂M

1 = k, X̂M
2 = l

)
= P

(
XM

1 = k, XM
2 = l

)
(1 − σ (k))(1 − σ (l)). Similarly, P

(
X̂M

1 =
k, X̂M

2 = 0
)
=∑

l∈N P
(
XM

1 = k, XM
2 = l

)
(1 − σ (k))σ (l) for all k > 0, and P

(
X̂M

1 = 0, X̂M
2 = 0

)
=∑

k,l∈N P
(
XM

1 = k, XM
2 = l

)
σ (k)σ (l). Since PAI(X) holds, for all k, l ∈N, P

(
XM

1 = k, XM
2 =

l
)
→ P(X̃ = k)P(X̃ = l) when M → ∞. Since all the functions considered are bounded by

1, we have, for all k, l ∈N, P
(
X̂M

1 = k, X̂M
2 = l

)
→ P

( ˜̂X = k
)
P
( ˜̂X = l

)
when M → ∞, where

˜̂X = X̃1{U>σ
(
X̃
)}. This shows that E

[
uX̂M

1 vX̂M
2
]
→E

[
u

˜̂X]E
[
v

˜̂X]when M → ∞, which concludes
the proof. !

3.2. Asymptotic behavior of the arrivals processes
We now show that the number of arrivals AM

n,i defined in (4) is asymptotically Poisson as the
number of replicas goes to infinity. This is precisely the Poisson hypothesis introduced in [13].

Lemma 5. Supposing that PAI(X) holds. When M → ∞, we have the convergence in distribu-
tion AM

n,i → Poi((K − 1)θ ), where θ =E[σ (X̃)].

Proof. Let z ∈ [0, 1]. Then

E
[
zAM

n,i
]
=E

[
z

∑
m ̸=n

∑
j ̸=i 1{

Um,j<σ
(

XM
m,j

)}1{
RM

m,j,i=n
}]

=E

⎡

⎣
∏

m̸=n

∏

j ̸=i

E
[

z
1{

Um,j<σ
(

XM
m,j

)}1{
RM

m,j,i=n
} ∣∣∣ XM

m,j, U
]⎤

⎦

=E

⎡

⎣
∏

m̸=n

∏

j ̸=i

((
1 − 1

M − 1

)
+ 1

M − 1
z

1{
Um,j<σ

(
XM

m,j

)})
⎤

⎦

=E

⎡

⎣exp

⎧
⎨

⎩
∑

m̸=n

∑

j ̸=i

log
(

1 − 1
M − 1

(
1 − z

1{
Um,j<σ

(
XM

m,j

)}))
⎫
⎬

⎭

⎤

⎦ .
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We now give upper and lower bounds for this expression. Since log (1 − x) ≤ −x for x ≤ 1, we
have

E
[
zAM

n,i
]
≤E

⎡

⎣exp

⎧
⎨

⎩− 1
M − 1

∑

m̸=n

∑

j ̸=i

(
1 − z

1{
Um,j<σ

(
XM

m,j

)})
⎫
⎬

⎭

⎤

⎦ .

Using the generalized TLLN given in Lemma 3,

1
M − 1

∑

m̸=n

∑

j ̸=i

(
1 − z

1{
Um,j<σ

(
XM

m,j

)})
→ (K − 1)(1 − &(z))

in L2 when M → ∞, with &(z) =E
[
z1U<σ (X̃)

]
, where U is any Um,j. We have &(z) =

z
∫ 1

0 P(σ (X̃) > t) dt +
(
1 −

∫ 1
0 P(σ (X̃) > t) dt

)
= (z − 1)θ + 1.

Therefore, since L2 convergence implies convergence in distribution and thus convergence
of the Laplace transforms,

E

⎡

⎣exp

⎧
⎨

⎩− 1
M − 1

∑

m̸=n

∑

j ̸=i

(
1 − z

1{
Um,j<σ

(
XM

m,j

)})
⎫
⎬

⎭

⎤

⎦→ e−θ(1−z)(K−1)

when M → ∞. Thus,

lim sup
M→∞

E
[
zAM

n,i
]
≤ e−θ(1−z)(K−1). (5)

Similarly, since log (1 − x) ≥ −x − x2

2 for x ≤ 1, we have

E
[
zAM

n,i
]
≥E

⎡

⎣exp

⎧
⎨

⎩− 1
M − 1

∑

m̸=n

∑

j ̸=i

(
1 − z

1{
Um,j<σ

(
XM

m,j

)})
⎫
⎬

⎭

exp

⎧
⎨

⎩− 1
2(M − 1)2

∑

m̸=n

∑

j ̸=i

(
1 − z

1{
Um,j<σ

(
XM

m,j

)})2
⎫
⎬

⎭

⎤

⎦ .

Using once again Lemma 3, as the second term goes to 0 when M → ∞, by the same reasoning
as previously, we get

lim inf
M→∞

E
[
zAM

n,i
]
≥ e−θ(1−z)(K−1). (6)

Combining (5) and (6), the result follows. !

Now, we show that the arrivals to different replicas become pairwise asymptotically
independent.
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Lemma 6. For all (n, i) ̸= (m, j), AM
n,i and AM

m,j are pairwise asymptotically independent.

Proof. We first show the result in the case n ̸= m and i ̸= j. Let u, v ∈ [0, 1]. Then

E
[
uAM

n,i vAM
m,j
]
=E

⎡

⎣u

∑
n
′ ̸=n,i

′ ̸=i
1{

U
n
′
,i
′<σ

(

XM

n
′
,i
′
)}1{

RM

n
′
,i
′
,i

=n

}

v

∑
m
′ ̸=m,j

′ ̸=j
1{

U
m
′
,j
′<σ

(

XM

m
′
,j
′
)}1{

RM

m
′
,j
′
,j

=m

}⎤

⎦

=E

⎡

⎢⎣
∏

n′ ̸=n,i′ ̸=i

u

1{
U

n
′
,i
′<σ

(

XM

n
′
,i
′
)}1{

RM

n
′
,i
′
,i

=n

}

∏

m′ ̸=m,j′ ̸=j

v

1{
U

m
′
,j
′<σ

(

XM

m
′
,j
′
)}1{

RM

m
′
,j
′
,j

=m

}⎤

⎥⎦

=E

⎡

⎢⎣E

⎡

⎢⎣
∏

n′ ̸=n,i′ ̸=i

u

1{
U

n
′
,i
′<σ

(

XM

n
′
,i
′
)}1{

RM

n
′
,i
′
,i

=n

}

∏

m′ ̸=m,j′ ̸=j

v

1{
U

m
′
,j
′<σ

(

XM

m
′
,j
′
)}1{

RM

m
′
,j
′
,j

=m

}
∣∣∣ XM, U

⎤

⎥⎦

⎤

⎥⎦

=E

⎡

⎢⎣
∏

n′ ̸=n,i′ ̸=i

⎡

⎣
(

1 − 1
M − 1

)
+ 1

M − 1
u

1{
U

n
′
,i
′<σ

(

XM

n
′
,i
′
)}⎤

⎦

∏

m′ ̸=m,j′ ̸=j

⎡

⎣
(

1 − 1
M − 1

)
+ 1

M − 1
v

1{
U

m
′
,j
′<σ

(

XM

m
′
,j
′
)}⎤

⎦

⎤

⎥⎦

=E

⎡

⎢⎣exp

⎧
⎪⎨

⎪⎩

∑

n′ ̸=n,i′ ̸=i

log

⎛

⎝1 − 1
M − 1

⎛

⎝1 − u

1{
U

n
′
,i
′<σ

(

XM

n
′
,i
′
)}⎞

⎠

⎞

⎠

⎫
⎪⎬

⎪⎭

exp

⎧
⎪⎨

⎪⎩

∑

m′ ̸=m,j′ ̸=j

log

⎛

⎝1 − 1
M − 1

⎛

⎝1 − v

1{
U

m
′
,j
′<σ

(

XM

m
′
,j
′
)}⎞

⎠

⎞

⎠

⎫
⎪⎬

⎪⎭

⎤

⎥⎦ .

The fourth equality above comes from the independence between the routeing variables RM .
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Just as in the proof of Lemma 5, we can give upper and lower bounds of the last expression
on the right-hand side:

E
[
uAM

n,i vAM
m,j
]
≤E

⎡

⎢⎣exp

⎧
⎪⎨

⎪⎩
− 1

M − 1

∑

n′ ̸=n,i′ ̸=i

⎛

⎝2 − u

1{
U

n
′
,i
′<σ

(

XM

n
′
,i
′
)}

− v

1{
U

n
′
,i
′<σ

(

XM

n
′
,i
′
)}⎞

⎠

⎫
⎪⎬

⎪⎭

⎤

⎥⎦

and

E
[
uAM

n,i vAM
m,j
]
≥E

⎡

⎢⎣exp

⎧
⎪⎨

⎪⎩
− 1

M − 1

∑

n′ ̸=n,i′ ̸=i

⎛

⎝2 − u

1{
U

n
′
,i
′<σ

(

XM

n
′
,i
′
)}

− v

1{
U

n
′
,i
′<σ

(

XM

n
′
,i
′
)}⎞

⎠

⎫
⎪⎬

⎪⎭

exp

⎧
⎪⎨

⎪⎩
− 1

2(M − 1)2

∑

m̸=n

∑

j ̸=i

⎛

⎝2 − u

1{
U

n
′
,i
′<σ

(

XM

n
′
,i
′
)}

− v

1{
U

n
′
,i
′<σ

(

XM

n
′
,i
′
)}⎞

⎠
2
⎫
⎪⎬

⎪⎭

⎤

⎥⎦ .

The last expression on the right-hand side goes to e(1−u+1−v)(K−1)θ when M → ∞ in both
cases, as previously. The result follows from these two bounds as in the proof of Lemma 5.

The case where n = m, i.e. when we consider the arrivals to two different neurons in the
same replica, is done in the same way since the routeing variables are independent of the
neurons chosen. The case where i = j, i.e. when we consider the arrivals to the same neuron in
two different replicas, is treated in the same way, with the extra step of isolating the terms that
are not independent of each other. !

3.3. Propagation of pairwise asymptotic independence
Our goal is now to combine the previous results to show that PAI(Y) holds, assuming

PAI(X). We have, for all i ∈ {1, . . . , K} and all n ∈ {1, . . . , M}, YM
n,i = X̂M

n,i + AM
n,i. We call Ã

the limit in distribution of AM
n,i (it is Poisson distributed by the previous lemma). It is clear that

by exchangeability between replicas, we only require the following lemma.

Lemma 7. For i, j ∈ {1, . . . , K},

E
[
uYM

1,i , vYM
2,j
]
→E

[
uỸ]E

[
vỸ] (7)

when M → ∞, where Ỹ = ˜̂X + Ã.

Proof. Let u, v ∈ [0, 1]. Then, given i, j ∈ [0, K], with i ̸= j for simplicity,

E
[
uYM

1,i vYM
2,j
]
=E

⎡

⎣uX̂M
1,i vX̂M

2,j u

∑
n
′ ̸=1,i

′ ̸=i
1{

U
n
′
,i
′<σ

(

XM

n
′
,i
′
)}1{

RM

n
′
,i
′
,i

=1

}

v

∑
m
′ ̸=2,j

′ ̸=j
1{

U
m
′
,j
′<σ

(

XM

m
′
,j
′
)}1{

RM

m
′
,j
′
,j

=2

}⎤

⎦
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=E

⎡

⎢⎣uX̂M
1,i vX̂M

2,j
∏

n′ ̸=1,i′ ̸=i

u

1{
U

n
′
,i
′<σ

(

XM

n
′
,i
′
)}1{

RM

n
′
,i
′
,i

=1

}

∏

m′ ̸=2,j′ ̸=j

v

1{
U

m
′
,j
′<σ

(

XM

m
′
,j
′
)}1{

RM

m
′
,j
′
,j

=2

}⎤

⎥⎦

=E

⎡

⎢⎣E

⎡

⎢⎣uX̂M
1,i vX̂M

2,j
∏

n′ ̸=1,i′ ̸=i

u

1{
U

n
′
,i
′<σ

(

XM

n
′
,i
′
)}1{

RM

n
′
,i
′
,i

=1

}

∏

m′ ̸=2,j′ ̸=j

v

1{
U

m
′
,j
′<σ

(

XM

m
′
,j
′
)}1{

RM

m
′
,j
′
,j

=2

}
∣∣∣ XM, U

⎤

⎥⎦

⎤

⎥⎦

=E

⎡

⎢⎣uX̂M
1,i vX̂M

2,j
∏

n′ ̸=1,i′ ̸=i

⎛

⎝ 1
M − 1

u

1{
U

n
′
,i
′<σ

(

XM

n
′
,i
′
)}

+
(

1 − 1
M − 1

)⎞

⎠

∏

m′ ̸=2,j′ ̸=j

⎛

⎝ 1
M − 1

v

1{
U

m
′
,j
′<σ

(

XM

m
′
,j
′
)}

+
(

1 − 1
M − 1

)⎞

⎠

⎤

⎥⎦

=E
[
φM

1 (u, v)φM
2 (u, v)

]
,

where

φM
1 (u, v) = uX̂M

1,i

(
1 − 1

M − 1
+ 1

M − 1
v

1{
U1,i<σ

(
XM

1,i

)})

vX̂M
2,j

(
1 − 1

M − 1
+ 1

M − 1
u

1{
U2,j<σ

(
XM

2,j

)})

and

φM
2 (u, v) = exp

⎧
⎪⎨

⎪⎩

∑

n′ ̸=1;i′ ̸=i;(n′
,i′ )̸=(2,j)

log

⎛

⎝1 − 1
M − 1

⎛

⎝1 − u

1{
U

n
′
,i
′<σ

(

XM

n
′
,i
′
)}⎞

⎠

⎞

⎠

⎫
⎪⎬

⎪⎭

exp

⎧
⎪⎨

⎪⎩

∑

m′ ̸=2;j′ ̸=j;(m′,j′ )̸=(1,i)

log

⎛

⎝1 − 1
M − 1

⎛

⎝1 − v

1{
U

m
′
,j
′<σ

(

XM

m
′
,j
′
)}⎞

⎠

⎞

⎠

⎫
⎪⎬

⎪⎭
.

When M → ∞, by Lemmas 4 and 6, φM
1 (u, v) and φM

2 (u, v) are pairwise asymptotically
independent. Since in φM

2 (u, v) the contribution of the missing terms in the sum is negligible,

when M → ∞ we have E
[
φM

1 (u, v)φM
2 (u, v)

]
→E

[
u

˜̂X]E
[
v

˜̂X]E
[
u

˜̂A]E
[
v

˜̂A]. This shows that (7)
holds. !

Thus, PAI(X) implies PAI(Y), which concludes the proof of the theorem. Note that Lemma 7

also shows that ˜̂X and Ã are independent.
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4. The symmetric fragmentation-interaction-aggregation process

Our goal is to show that propagation of chaos and the Poisson hypothesis hold in the
more general setting of symmetric FIAPs under mild hypotheses on the dynamics of the sys-
tem. The symmetrical evolution equations read Yi = g1(Xi)1{Ui<σ (Xi)} + g2(Xi)1{Ui>σ (Xi)} + Ai,
where Ai =

∑
j ̸=i h(Xj)1{Uj<σ (Xj)} and g1, g2, h : N→N are functions such that h is bounded.

We now introduce the corresponding replica dynamics. Let {XM
n,i} be the integer-valued state

variables at step 0, where n ∈ {1, . . . , M} and i ∈ {1, . . . , K}. Let {YM
n,i} be the integer-valued

state variables at time 1. Let {Un,i} be i.i.d. random variables independent of {XM
n,i} uniformly

distributed in [0, 1]. We introduce again the i.i.d. routeing variables RM
m,j,i, independent of

{Un,i} and {XM
n,i} and uniformly distributed in {1, . . . , M}\{m}. The M-replica equations read

YM
n,i = g1(XM

n,i)1
{

Un,i<σ
(

XM
n,i

)} + g2(XM
n,i)1

{
Un,i>σ

(
XM

n,i

)} + AM
n,i, where

AM
n,i =

∑

m̸=n

∑

j ̸=i

h
(
XM

m,j
)
1{

Um,j<σ
(

XM
m,j

)}1{
RM

m,j,i=n
}

is the number of arrivals in node i of replica n.
We also recall the definition of a compound Poisson distribution:

Definition 5. The random variable X is said to follow a compound Poisson distribution if there
exist a Poi(λ) random variable N and i.i.d. random variables (Xi)i∈N⋆ independent of N such
that X =∑N

i=1 Xi. The generating function of X, denoted φX , is given by

φX(t) = eλ(φ(t)−1), (8)

where φ(t) is the generating function of X1.

We have the following theorem.

Theorem 2. For all symmetric RMF FIAP dynamics, PAI(X) implies PAI(Y). Moreover, the
arrivals to a given node are asymptotically compound Poisson distributed.

We will require the following two lemmas. The first replaces Lemma 4, and the second
replaces Lemma 5.

Lemma 8. Let

X̂1 =
{

X̂1,M
n,i = g1

(
XM

n,i
)
1{

Un,i<σ
(

XM
n,i

)}
}

, X̂2 =
{

X̂2,M
n,i = g2

(
XM

n,i
)
1{

Un,i>σ
(

XM
n,i

)}
}

.

Then PAI(X) implies PAI
(
X̂1
)
, PAI

(
X̂2
)
, and PAI

(
X̂
)
, where X̂ = X̂1 + X̂2.

Proof. We proceed exactly as in Lemma 4. We write here only the proof for X̂2, the oth-
ers being identical except for the numerical expressions involved. We have, for u, v ∈ [0, 1],
E
[
uX̂2,M

1 vX̂2,M
2
]
=∑

k,l∈N P
(
X̂2,M

1 = k, X̂2,M
2 = l

)
ukvl. For k, l > 0, we have

P
(
X̂2,M

1 = k, X̂2,M
2 = l

)
=

∑

p,q∈N
P
(
g2
(
XM

1
)
= k, g2

(
XM

2
)
= l, XM

1 = p, XM
2 = q

)
(1 − σ (p))(1 − σ (q)).
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Since PAI(X) holds, when M → ∞ we have

P
(
g2(p) = k, g2(q) = l, XM

1 = p, XM
2 = q

)
→ P(X̃ = p, g2(p) = k)P(X̃ = q, g2(q) = l).

Hence, E
[
uX̂2,M

1 vX̂2,M
2
]
→E

[
ug2(X̃)1{U<σ (X̃)}

]
E
[
vg2(X̃)1{U<σ (X̃)}

]
when M → ∞. The cases where k

and/or l are equal to 0 are handled in the same way. This proves the result. !

Lemma 9. Supposing that PAI(X) holds, when M → ∞ we have the convergence in distribu-
tion AM

n,i → Ã, where Ã follows a compound Poisson distribution.

Proof. We still have, just like in the proof of Lemma 5, for z ∈ [0, 1], i ∈ {1, . . . , K}, and
n ∈ {1, . . . , M},

E
[
zAM

n,i
]
=E

⎡

⎣exp

⎧
⎨

⎩
∑

m̸=n

∑

j ̸=i

log

(

1 − 1
M − 1

(

1 − z
h
(

XM
m,j

)
1{

Um,j<σ
(

XM
m,j

)}
))⎫⎬

⎭

⎤

⎦ .

Using the same arguments as before, when M → ∞, E
[
zAM

n,i
]
→ e(K−1)(&(z)−1), where &(z) =

E
[
zh(X̃)1{U<σ (X̃)}

]
, which is precisely of the form (8), that is, a generating function of a random

variable with a compound Poisson distribution. !

We now combine these results to prove Theorem 2.

Proof of Theorem 2. We follow the outline of the previous section. Lemmas 1, 2, and 3 still
apply as previously. Lemma 8 replaces Lemma 4, and Lemma 9 replaces Lemma 5. Lemmas
6 and 7 still hold, with only differences in the limiting expressions. !

5. The general fragmentation-interaction-aggregation process

The previously introduced exchangeable dynamics allow for simpler computations at the
expense of realistic modeling. For example, neuron populations are not homogeneous and are
not fully connected. In order to account for such geometry, we now generalize the previous
result to the case where the functions governing the information received by a node when
another node activates depend on the nodes involved. Specifically, recall the class C of discrete
FIAPs defined in Section 1.

For any process in C, we can define a replica-mean-field model as in the previous sec-
tions: we consider a collection of M identically distributed replicas of a set of K nodes, which
could be neurons, particles, queues, or other objects, depending on context. As previously, let
{XM

n,i} be the integer-valued state variables at step 0, where n ∈ {1, . . . , M} and i ∈ {1, . . . , K}.
Let {YM

n,i} be the integer-valued state variables at time 1. Let {Un,i} be uniformly distributed
on [0, 1] i.i.d. random variables independent of {XM

n,i}. Let {RM
m,j,i} be i.i.d. routeing random

variables independent of {XM
n,i} and {Un,i}, uniformly distributed on {1, . . . , M}\{m} for all

i, j ∈ {1, . . . , K} and m ∈ {1, . . . , M}. Recall that the M-RMF equations read

YM
n,i = g1,i

(
XM

n,i
)
1{

Un,i<σi

(
XM

n,i

)} + g2,i
(
XM

n,i
)
1{

Un,i>σi

(
XM

n,i

)} + AM
n,i,

where AM
n,i =

∑
m̸=n

∑
j ̸=i hi,j

(
XM

m,j

)
1{

Um,j<σi

(
XM

m,j

)}1{
RM

m,j,i=n
} is the number of arrivals in node

i of replica n. We now show that the result from the previous section carries over to this more
general setting with only minor modifications.
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First, we must slightly modify the definition of pairwise asymptotic independence in order
to take into account the dependence on the node of the limiting distribution. As a simplification,
we keep the same notations for this modified definition.

Definition 6. Given M ∈N, and given an array of integer-valued random variables Z =
{ZM

n,i}1≤n≤M,1≤i≤K such that, for all fixed M, the random variables ZM
n,i are exchangeable in

n, we say that the variables ZM
n,i are pairwise asymptotically independent, which we will

denote PAI(Z), if there exist integer-valued random variables (Z̃i)i∈{1,...,K} such that, for all
(n, i) ̸= (m, j) and for all u, v ∈ [0, 1],

lim
M→∞

E
[
uZM

n,i vZM
m,j
]
=E

[
uZ̃i
]
E
[
vZ̃j
]
.

For clarity of exposition, we also recall here the definition of the triangular law of large
numbers, even though it is left unchanged.

Definition 7. Given M ∈N, and given an array of integer-valued random variables Z =
{ZM

n }n∈{1,...,M} such that, for all fixed M, the random variables ZM
n are exchangeable in n, we say

that Z satisfies the triangular law of large numbers TLLN(Z) if there exists an integer-valued
random variable Z̃ such that, for all functions f : N→R with compact support, we have the
following limit in L2: limM→∞ 1

M

∑M
n=1 f (ZM

n ) =E[f (Z̃)].

Then, we obtain the same result.

Theorem 3. Using the previously defined notation, PAI(X) implies PAI(Y). Moreover, the
arrivals to a given node are asymptotically compound Poisson distributed and are independent
of the states of the nodes.

We once again require the following two lemmas for the proof. We replace Lemma 3 with
the following similar result, taking into account the fact that the limiting distribution now
depends on the node.

Lemma 10. Let M ∈N, and let Z = {ZM
n,i}n∈{1,...,M},i∈{1,...,K} be an array of integer-valued

random variables satisfying PAI(Z). Then, for all bounded functions f : N× [0, 1] →R with
compact support, and for all i.i.d. sequences of random variables U = {Un,i}n∈{1,...,M},i∈{1,...,K}
independent of Z, there exists U independent of (Z̃i)i∈{1,...,K} and Z such that, for all i ∈
{1, . . . , K}, we have the following limit in L2: limM→∞ 1

M

∑M
n=1 f (ZM

n,i, Un,i) =E[f (Z̃i, U)].
The proof is exactly the same as for Lemma 2.

We must also replace Lemma 5 with the following result.

Lemma 11. Supposing that PAI(X) holds, when M → ∞ AM
n,i → Ãi in distribution, where Ãi

follows a compound Poisson distribution.

Proof. We have, for z ∈ [0, 1], i ∈ {1, . . . , K}, and n ∈ {1, . . . , M},

E
[
zAM

n,i
]
=E

⎡

⎣exp

⎧
⎨

⎩
∑

m̸=n

∑

j ̸=i

log

(

1 − 1
M − 1

(

1 − z
hi,j

(
XM

m,j

)
1{

Um,j<σi
(

XM
m,j

)}
))⎫⎬

⎭

⎤

⎦ .
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Using the same arguments as before, when M → ∞ we have E
[
zAM

n,i
]
→ e&i(z), where &i(z) =

−∑
j ̸=i E

[
1 − z

hi,j(X̃i)1{U<σi(X̃i)}
]

. Therefore,

E
[
zAM

n,i
]
→ exp

⎧
⎨

⎩−
∑

j ̸=i

(
1 −E

[
z

hi,j
(
X̃i
)
1{U<σi(X̃i)}

])⎫⎬

⎭ .

This expression is of the form (8), which proves Lemma 11. !

We now prove Theorem 3.

Proof of Theorem 3. We use the same reasoning as previously.
Lemma 2 still holds (the replicas are still exchangeable, only the nodes are not). Lemma 10

replaces Lemma 3. Since the functions g1,i and g2,i only depend on the node and not on the
replica index, an equivalent result to Lemma 8 still holds. Lemma 5 is replaced by Lemma 11.
For asymptotic independence, we have, using the same arguments as in the proof of Lemma 6,
for u, v ∈ [0, 1], n ̸= m, and i ̸= j,

E
[
uAM

n,i vAM
m,j
]
→ exp

⎧
⎪⎨

⎪⎩
−
∑

i′ ̸=i

(
1 −E

[
u

h
i,i

′ (X̃i)1{U<σi(X̃i)}
])

−
∑

j′ ̸=j

(
1 −E

[
v

h
j,j

′ (X̃j)1{U<σi(X̃j)}
])
⎫
⎪⎬

⎪⎭

when M → ∞. The other cases (n = m and i = j) are also valid. Lemma 7 also still holds, with
only minor differences in the limit expressions. !

Note that once again, this proves that the limit processes ˜̂Xi and Ãj are independent for all
i, j ∈ {1, . . . , K}.

As an application, let us apply this result to the model from Section 2 with the addition of
nonexchangeable interactions. Namely, we consider hi,j

(
XM

m,j

)
= µi,j with µi,j ∈N (potentially

zero). In this case, Theorem 3 proves the propagation of chaos in this system, and the limit
distributions of arrivals at the different nodes are characterized by, for i ∈ {1, . . . , K} and z ∈
[0, 1],

E
[
zÃi
]
= exp

{

θi
∑

j ̸=i

(
zµi,j − 1

)
}

=
∏

j ̸=i

eθi(zµi,j−1),

where θi =E
[
σi(X̃i)

]
. Note that, as expected, when all µi,j are equal to one, we obtain the result

from Section 2.

6. Extensions

There are several ways of extending the FIAP framework while preserving the basic proper-
ties proved in the present paper (propagation of chaos and the Poisson hypothesis). We decided
not to include them in the general framework in order to keep the notation and exposition light.
A few natural extensions of this type are nevertheless discussed below.

6.1. Random interactions
The functions hi,j(k) can be replaced by randomized functions of the type hi,j(k, Vi,j), where

the random variables {Vi,j}1≤i,j≤K are i.i.d. uniformly in [0, 1]. This allows us to represent,
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e.g., the queueing theory scenario where a customer leaving a queue is randomly routed to an
other queue of the network according to some stochastic routeing matrix {pj,i}1≤i,j≤K , namely
a customer leaving queue i is routed to queue j with probability pj,i. If the random variables
{Vi,j} are independent of {Xi}i, then the main results still hold.

6.2. Time-inhomogeneous dynamics
The general setting of the paper implicitly suggests using the same (activation, fragmen-

tation, and interaction) functions at all time steps for a given node. There is no difficulty
extending the results to the time-inhomogeneous case where these functions depend on the
time step. In the neural network case, this for instance happens in certain learning dynamics
where the synaptic weights evolve over time.

6.3. Exogenous input and output
To the endogenous arrivals Ai to node i given in (2) we add arbitrary exogenous arrivals

Bi ∈N. In the special case where the random variables {Bi} are independent, Poisson, and
independent of the state variables {Xi}i then the same results still hold. Note that we can also
define an exogenous output for node i through the relation Di = ho,i(Xi)1{Ui<σi(Xi)}, where ho,i
is a given output function N→N.

Exogenous input point processes are needed for modeling reasons in a variety of contexts
(e.g. to represent requests from end-users in a computer network, or input signals from sensors
in a neural network). Exogenous output processes are useful in, e.g., a two-layer network where
the first layer feeds the second one, but not conversely. Exogenous input and output point
processes are instrumental in the partition scheme of the vector state example discussed below.
In that example, the exogenous input variables are neither necessarily Poisson nor independent.

6.4. Vector state example
This extension is first described through a simple neural network example. We partition

the set of neurons of a discrete Galves–Löcherbach network in pairs (this assumes that K is
even). Each pair of the partition is a node of the network. If (i,j) is one of these nodes, it
has a two-dimensional vector state (Xi, Xj) (rather than a one-dimensional state as in the ini-
tial model). We let this pair (as well as each other pair in the partition) evolve as a two-node
GL network with some vector exogenous input and output. More precisely, conditionally on
(Xi, Xj) = (k, l), neurons i and j spike independently with probability σi(k) and σj(l) respec-
tively. If none of them spikes, the state (Zi, Zj) after its endogenous evolution is still (Xi, Xj).
If only i (resp. j) spikes and the other neuron of the pair does not spike, then (Zi, Zj) is equal
to (0, Xj + rj,i) (resp. (Xi + ri,j, 0)). If both spike, then (Zi, Zj) = (ri,j, rj,i), with rk,l equal to 1
if there is a directed edge from l to k and 0 otherwise. Therefore, if (Bi, Bj) denotes the vec-
tor exogenous input, the state of this pair at time one is (Zi + Bi, Zj + Bj), by combining the
endogenous evolution and the exogenous arrivals.

Define now the exogenous output of type k /∈ {i, j} of node (i,j) by Dk(i, j) = 1{Ui<σi(Xi)}rk,i +
1{Uj<σj(Xj)}rk,j. The extension of interest here involves taking the following exogenous input to
node (i,j):

Bi =
∑

k/∈{i,j}
Di(k, l(k))1{k<l(k)}, Bj =

∑

k/∈{i,j}
Dj(k, l(k))1{k<l(k)},

with l(k) the neuron paired with k.
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Note that with this definition, when neuron i spikes, the effect on pair (k,l) with l = l(k) is
as follows: no effect if rk,i = rl,i = 0; one arrival in k and none in l (resp. one in l and none
in k) if rk,i = 1 and rl,i = 0 (resp. rl,i = 1 and rk,i = 0); a simultaneous arrival in both l and
k otherwise. This defines a network which does not belong to the FIAP class, were it only
because the state is now a vector. The M-RMF model features M replicas of this network with
K/2 (vector state) nodes each. In this M-RMF model, the exogenous output of node/pair (i,j)
in replica m is randomly sent to a replica chosen at random. More precisely, for all exogenous
output type k paired with l, Dm

k (i, j) = 1{Um
i <σi(Xm

i )}rk,i + 1{
Um

j <σj

(
Xm

j

)}rk,i (resp. Dm
l (i, j) =

1{Um
i <σi(Xm

i )}rl,i + 1{
Um

j <σj

(
Xm

j

)}rl,i) units are sent to k (resp. l) of another replica selected

uniformly at random where they are aggregated to the coordinates of the state variable of
this pair. It can be shown that when M tends to infinity, (i) the random state vectors

(
Xm

i , Xm
j

)

and
(
Xm

i′ , Xm
j′
)
, where (i,j) and (i’,j’) are two different pairs, are asymptotically independent

(although the two coordinates of each vector are, in general, dependent); (ii) the exogenous
arrivals to any coordinate of a pair in a typical replica tends to an independent compound
Poisson variable.

6.5. Vector state general case
Consider a FIAP F with K nodes. Let S1, S2, . . . , Sl be a partition of [1, . . . , K]. Let Kp,

1 ≤ p ≤ l, denote the cardinality of set Sp, and let Fp be the restriction of F to the coordinates
of Sp. Let Fp be the FIAP combining the endogenous dynamics of Fp and exogenous input
(Bp,i, i ∈ Sp). Let Xp,i denote the state variables in Fp. For all k /∈ Sp, define the exogenous
output of type k of Fp as

Dp(k) =
∑

i∈Sp

1{Up,i<σi(Xp,i)}hk,i(Xp,i). (9)

Note that Dp(k) is also what coordinate k receives as exogenous input from Sp. That is, if we
take

Bp,i =
∑

q ̸=p

Dq(i), i ∈ Sp, (10)

we get another (more complex) representation of the dynamics of F based on the point
processes describing the interactions between the sets of the partition. The M-RMF model
associated with this partition features M replicas of this network with q (vector state) nodes
each. In this M-RMF model, the exogenous output of node i ∈ Sp of replica m is randomly sent
to replicas chosen at random. More precisely, for all q ̸= p, the vector (Dm

p (k), k ∈ Sq), with
Dm

p (k) defined as in (9), is sent to one replica chosen at random, and this is done independently
for all q ̸= p. This in turn defines new exogenous input point processes Bm

p,i as in (10). Let
(Xm

p,i, i ∈ Sp, p = 1, . . . , l, m = 1, . . . , M) denote the state variables in this M-RMF model.
It can be shown that, when M tends to infinity,

(i) for all p ̸= q, the random state vectors (Xm
p,i, i ∈ Sp) and (Xm

q,j, j ∈ Sq) are asymptotically
independent (although the coordinates of each vector are, in general, dependent);

(ii) for all p, and for all m, the exogenous arrivals (Bm
p,i, i ∈ Sp) to set Sp tend to an inde-

pendent multivariate compound Poisson variable with multivariate generating function

exp

(
∑

q ̸=p

∑

ni∈N,i∈Sq

∑

s⊂Sq

πq,s,(ni)

(

1 −
∏

i∈s

∏

k∈Sq

zhk,i(ni)
k

))

.
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In this last equation,

πq,s,(ni) = P
[
X̃q,i = ni, i ∈ Sq

]∏

j∈s

σj(nj)
∏

j′∈Sq\s

(1 − σj′ (nj′ )),

where (X̃q,i) denotes random variables with the limiting joint distribution assumed in
the vector generalization of PAI.

7. Conclusion

A new class of discrete-time dynamics involving point-process-based interactions between
interconnected nodes was introduced. The Poisson hypothesis was proved for the RMF version
of such dynamics. The proof is based on the property of pairwise asymptotic indepen-
dence between replicas, and is by induction over time. The key point is that randomized
routeing decisions on exchangeable events which are asymptotically independent lead to
Poisson point processes. As for future research, a natural question is whether these results
extend to continuous-time and continuous-space versions of FIAP dynamics. The extension
to continuous-time FIAPs will follow from similar arguments to those presented here under
the condition that the replica-limit/time-limit diagram commutes for FIAPs. The extension to
continuous-space FIAPs appears to require analytical tools distinct from those presented here.
Finally, another question of interest is whether the Poisson hypothesis can be shown for the
RMF limits of other classes of systems besides FIAPs.
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