Federated Learning of Large Language Models with Parameter-Efficient
Prompt Tuning and Adaptive Optimization

Tianshi Che'] Ji Liu®'; Yang Zhou'*, Jiaxiang Ren',
Jiwen Zhou?, Victor S. Sheng*, Huaiyu Dai°, Dejing Dou®

! Auburn University, Auburn, United States,

2Hithink RoyalFlush Information Network Co., Ltd., Hangzhou, Zhejiang, China,
3Baidu Inc. Beijing, China, “Texas Tech University, Lubbock, United States,

®North Carolina State University, United States, Boston Consulting Group, United States.

Abstract

Federated learning (FL) is a promising
paradigm to enable collaborative model train-
ing with decentralized data. However, the
training process of Large Language Models
(LLMs) generally incurs the update of signif-
icant parameters, which limits the applicabil-
ity of FL techniques to tackle the LLMs in
real scenarios. Prompt tuning can significantly
reduce the number of parameters to update,
but it either incurs performance degradation
or low training efficiency. The straightfor-
ward utilization of prompt tuning in the FL
often raises non-trivial communication costs
and dramatically degrades performance. In
addition, the decentralized data is generally
non-Independent and Identically Distributed
(non-IID), which brings client drift problems
and thus poor performance. This paper pro-
poses a Parameter-efficient prompt Tuning ap-
proach with Adaptive Optimization, i.e., Fed-
PepTAO, to enable efficient and effective FL
of LLMs. First, an efficient partial prompt tun-
ing approach is proposed to improve perfor-
mance and efficiency simultaneously. Second,
a novel adaptive optimization method is devel-
oped to address the client drift problems on
both the device and server sides to enhance
performance further. Extensive experiments
based on 10 datasets demonstrate the superb
performance (up to 60.8% in terms of accu-
racy) and efficiency (up to 97.59% in terms of
training time) of FedPepTAO compared with 9
baseline approaches. Our code is available at
https://github.com/11lm-eff/FedPepTAO.

1 Introduction

As a promising paradigm to handle decentralized

data, Federated Learning (FL) (Kairouz et al.,

2021) enables collaborative model training without

transferring the raw data across a massive num-

ber of devices. As a bunch of legal restrictions
T Equal contribution.

* Corresponding author:
yangzhou@auburn.edu

jiliuwork @ gmail.com,

(Official Journal of the European Union, 2016; Cal-
ifornians for Consumer Privacy, 2020) have been
implemented, aggregating the decentralized data
into a central server or data center becomes com-
plicated or even impossible (Yang et al., 2019).
FL generally exploits a parameter server module
(Liu et al., 2023b) to manage the distributed model
updates in devices, which only exchanges the pa-
rameters of the updated models instead of the raw
data, between the parameter server and devices.

Large Language Models (LLMs) (Devlin et al.,
2018; Liu et al., 2019b; Brown et al., 2020; Lewis
et al., 2019) have achieved major advances in Nat-
ural Language Processing (NLP) tasks. The scale
of LLMs can range from 110 million parameters to
175 billion parameters, which correspond to huge
communication and computation costs to update
parameters during the pre-training process (Sanh
et al., 2022; Wang et al., 2022) or fine-tuning pro-
cess (Ding et al., 2023). Both pre-training and
fine-tuning update the whole set of parameters of
the language model. Thus, the application of FL.
in the pre-training or the fine-tuning process is al-
most impossible due to significant communication
burden brought by large amount of parameters.

Prompt design (Brown et al., 2020) can lead
to excellent performance while freezing the orig-
inal LLMs. When the LLMs are frozen, only the
prompts or prefix are updated during the tuning
process, which can significantly reduce the number
of parameters to update. For instance, for a sam-
ple from a sentiment analysis task (e.g., “beautiful
place!”), a discrete prompt “It was [MASK].” for
prompt tuning (Brown et al., 2020) and continu-
ous task-specific vectors for prefix tuning (Li and
Liang, 2021) can be concatenated to be sent to a
LLM, which generates the label of the sample to
be “terrible” or “great”.

Numerous parameter-efficient prompt or prefix
tuning approaches have been proposed to tune the
large language models through updating a few train-

7871

Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 78717888
December 6-10, 2023 ©2023 Association for Computational Linguistics

https://github.com/llm-eff/FedPepTAO

able parameters while achieving comparable perfor-
mance compared with fine-tuning. In order to avoid
human involvement in the prompt design, prompt
tuning methods (Shin et al., 2020) are proposed to
search proper prompts within a discrete space of
words, which corresponds to inferior performance
compared with fine-tuning. Continuous prompts,
i.e., prefix tuning, can be updated to achieve better
performance (Liu et al., 2021; Lester et al., 2021).
However, this approach leads to sub-optimal perfor-
mance for the models with less than 10 billion pa-
rameters. Although P-tuning V2 (Liu et al., 2022d)
achieves comparable performance compared with
fine-tuning, it introduces more parameters, which
may correspond to heavier communication costs in
the setting of FL. compared with other parameter-
efficient tuning approaches. Some other parameter-
efficient prompt tuning methods either suffer from
low performance with the focus on low-rank hyper-
complex adapter layers (Karimi Mahabadi et al.,
2021a) or prompt with a single layer (Liu et al.,
2022c¢), or introduce extra computation costs with
attentions (Asai et al., 2022). In addition, existing
FL techniques for fine-tuning large language mod-
els typically incur performance degradation or low
efficiency due to huge communication costs (Tian
et al., 2022; Sun et al., 2022; Zhao et al., 2023).

Adaptive optimization methods, e.g., Adaptive
Moment Estimation (Adam) and Stochastic Gra-
dient Descent (SGD) with Momentum (SGDM)
(Sutskever et al., 2013), have been utilized either
on server side (Duchi et al., 2011; Reddi et al.,
2018a) or on device side (Yuan et al., 2021; Liu
et al., 2020; Gao et al., 2021a; Wang et al., 2020)
to achieve superior performance in FL. However,
the direct application of the adaptive optimization
methods may incur problems of the convergence
within the training process (Reddi et al., 2018b).
Furthermore, the application of adaptive optimiza-
tion on a single side, i.e., either device or server,
may correspond to poor performance. However,
when the adaptive optimization is exploited on both
sides (Jin et al., 2022a) may incur heavy communi-
cation costs. In addition, client drift (Karimireddy
et al., 2020b) may exist in terms of the adaptive op-
timization due to non-Independent and Identically
Distributed (non-IID) data among devices.

In this paper, we propose a Parameter-efficient
prompt Tuning approach with Adaptive Optimiza-
tion, i.e., FedPepTAO, to tune large language mod-
els with FL. As transferring the whole set of pa-

rameters in all the prompt layers corresponds to
heavy communication costs, we propose an effi-
cient and effective method to choose proper layers
of prompts based on the importance of each layer.
We design a scoring method to identify the im-
portance of each layer according to the tuning im-
pact of the layer on the final convergence accuracy.
In addition, we propose an adaptive optimization
method on both server side and device side with
control measures on each device to achieve superb
accuracy. We summarize out major contributions
as follows:

* We propose a novel parameter-efficient
prompt tuning method with an efficient and
effective method to choose proper layers of
prompts for FL. The subset of layers of
prompts can reduce both the communication
and computation costs within FL.

* We provide an original adaptive optimization
method on both server side and device side
with control measures on each device.

* We carry out extensive experimentation based
on 10 datasets, which demonstrates the advan-
tages of FedPepTAO in terms of accuracy (up
to 60.8% higher) and efficiency (up to 97.59%
faster) compared with 9 baseline approaches.

2 Related Work

As updating all the parameters of a pre-trained
LLM consumes a large amount of memory and
computation resources, prompt tuning (Brown
et al., 2020) or prefix tuning (Li and Liang, 2021) is
proposed to update a few parameters with a frozen
language model while achieving comparable perfor-
mance compared with fine-tuning. While prompt
tuning may correspond to inferior performance
with discrete space of words (Shin et al., 2020),
prefix tuning (Liu et al., 2021; Lester et al., 2021)
can deal with continuous prompts to achieve bet-
ter performance. Adapter modules (Houlsby et al.,
2019) are exploited to tune large language models
with prompts, which may incur heavy computa-
tion costs due to the calculation of feed-forward
project and non-linearity or attention mechanism
(Asai et al., 2022). Although efficient low-rank
hypercomplex mechanism (Karimi Mahabadi et al.,
2021b) can be utilized to reduce parameters to up-
date, the performance may degrade. P-tuning V2
achieves comparable performance compared with

7872

fine-tuning (Liu et al., 2022d), which the prompts
added into each layer of the large language model.
Prompts can be added at a single layer to further
reduce the computation costs (Liu et al., 2022c),
which may incur performance degradation and de-
pends on multiple trials with each layer. In ad-
dition, the selection of the layer may incur long
execution time to verify the impact on the final ac-
curacy. Although the NASWOT algorithm (Mellor
et al., 2021) can be exploited to analyze the perfor-
mance of a neural network architecture, it is only
compatible with the neural networks based on the
ReL.U activation function (Nair and Hinton, 2010;
Glorot et al., 2011).

Parallel, distributed, and federated learning have
been extensively studied in recent years (Liu et al.,
2023a; Chen et al., 2023b,a; Lee et al., 2019; Wu
et al., 2021; Goswami et al., 2020; Zhang et al.,
2021; Zhou et al., 2022; Guo et al., 2022; Jin et al.,
2022a; Che et al., 2022; Yan et al., 2022a; Liu
et al., 2022b; Yan et al., 2022b,c; Jin et al., 2022b,
2021; Zhao et al., 2021; Zhou and Liu, 2013; Lee
et al., 2013; Zhang et al., 2013; Zhou et al., 2014;
Zhang et al., 2014; Bao et al., 2015; Zhou et al.,
2015a,b; Lee et al., 2015; Jiang et al., 2019; Zhang
et al., 2022; Zhou, 2017; Hong et al., 2023; Chen
et al., 2018b,a; Gan et al., 2023; Che et al., 2023;
Liu et al., 2023c, 2022a; Li et al., 2023; Oliveira
etal., 2019; Liu et al., 2019a, 2016, 2015). Some
existing FL techniques have been proposed to fine-
tuning large language models, which may suffer
from performance degradation or low efficiency
due to huge communication costs (Tian et al., 2022;
Sun et al., 2022; Zhao et al., 2023). FedBert (Tian
et al., 2022) exploits split learning to split a model
into two parts, i.e., one with transformer and the
other one with head and embedding. As the trans-
former is shared on the server, FedBert may cor-
respond to inferior performance and huge com-
munication costs compared with prompt-tuning
or prefix-tuning. Some other FL. methods only
fine-tune a part of the model weights (Sun et al.,
2022), which still suffer from heavy communica-
tion costs for big language models. FedPrompt
(Zhao et al., 2023) enable FL based on prompt
tuning, which communicates the whole set of pa-
rameters in prompts corresponding to huge com-
munication costs.

Adaptive Moment Estimation (Adam) and
Stochastic Gradient Descent (SGD) with Momen-
tum (SGDM) (Sutskever et al., 2013) are exploited

within FL on server side (Duchi et al., 2011; Reddi
et al., 2018a) or on device side (Yuan et al., 2021;
Liu et al., 2020; Gao et al., 2021a; Wang et al.,
2020) to address the client drift problem brought by
the non-IID data in FL (Karimireddy et al., 2020b).
However, the direct application of adaptive opti-
mization on devices may lead to convergence prob-
lem (Reddi et al., 2018b). In addition, the appli-
cation of adaptive optimization on both server and
device sides may incur heavy communication costs
(Jin et al., 2022a).

Different from the previous work, we propose a
general scoring method to analyze the correlation
of each layer and the output of the large language
model, which can represent the importance of each
layer. Then, we select the prompt parameters of
proper layers to be updated with FLL while leav-
ing other prompt parameters of other layers to be
adjusted locally with a lossless method so as to
achieve superb performance with limited commu-
nication costs. In addition, we introduce control
measures on each device to alleviate the client drift
problem and propose a novel adaptive optimization
method on both server and device sides to further
improve the performance.

3 Problem Formulation

The problem to address in this paper is how to
efficiently tune a large language model based on
prompt tuning in FL. Given a large language model
M with L layers, we add prompts for each layer
in M and denote the set of parameters to generate
prompts by P, with [representing the number of
layer in M. The whole set of prompts is denoted by
‘P During the tuning process, the parameters in M
are frozen and cannot be updated while the param-
eters in P are updated to improve the performance
of M.

We consider a FL setting with a parameter server
and M devices. We assume that the data for the tun-
ing process of M is distributed among multiple de-
vices. On each Device 7, a dataset D; = {s;, m; }"
is located with s;, m;, and n; representing a sample,
the corresponding label of s;, and the number of
samples in D;. We denote the total number of the
samples on all the devices by N, the set of all the
samples by S and that of labels by M. Due to the
limited computation capacity, each Device ¢ can
only perform the inference of M while updating P;
with P; representing the prompt parameters in De-
vice ¢. In order to reduce communication costs, we

7873

! [CLS]
e([CLS])
__y___Q

Pretty dull
e(Pretty) e(dull)
v \

- -

1

I @ Upload ¢; and r; to the server
1 (before efficient tuning phase)
1

Layer 1 Prompts

Layer 2 Prompts

O A

Layer N Prompts [\

! ® Download and distribute SL to all Server

| clients (before efficient tuning phase)

® Selected Prompts .
@ Update W}, with

1
1
1 Uploading and Aggregation
1
1

Layer N Prompts

------ Act with m!
Selected Prompts for communication Prediction (with linear head)) @ Selected Prompts [m———————— =5
N . 1
Local Prompts e o o @ Prompts tuning update Downloading .
F PLM backbone =~ mm—m—m—mm—m——m—————————— — !
; rozenCl : ba:c borvle : [CLS] Nice Visual] ': @ Upload ¢y 'f‘"d rito the server 1
gnored Prompts on server j e([CLS]) e(Nice) e(vi*sual) e() . (before efficient tuning phase) :
Y- v v
L 1 p (: ¥ 1 ® Download and distribute SL to all :
ayer | Prompts | . : 1 clients (before efficient tuning phase) ; |
Layer 2 Prompts 1 ! 1
Y . P I ! 1 ® Selected Prompts ! J
. 1 . e e m -
[\ ! 1
1

Uploading and Aggregation

® Calculate Act and m!

- Downloading

for each client

@ Selected Prompts

A e e e — - -

o ——————

Figure 1: The system model of FedPepTAO.

enable the exchange the parameters of the prompts
within a subset of selected layers S L; between De-
vice ¢ and the parameter server while the other
prompt parameters are only updated within each
device. We denote the set of prompt parameters in
all the devices by P. The problem to address in
this paper can be formulated as how to efficiently
generate P such that the global loss is minimized:

M
. 1
min | F(M,P) £ 1Z€Psz-<M,pi> :
=1, pi

(1
where F(M,P) represents the global loss,
F;(M, p;) = n% Z{si,mi}eDi M, pi, si,mi)
refers to the loss function on Device k with
f(M,p;, si,m;) calculating the local loss of the
combination of the large language model M and
prompt parameters p; on {sg, my}.

For NLP tasks, each sample s, € S is the input
of the large language model and my, € M is the cor-
responding label. Each sample s, is composed of
multiple tokens, i.e., s, = {s}, s3, ..., s} }, where
t represents the length of the input. The prompt
p consists of multiple tokens p = {p1, p2, ..., Pn}»
and the corresponding prompt parameters can be
trained. The prompts differ according to layers. We
denote the template by 7 (), which defines how
to concatenate the input tokens with the prompt.
For instance, s} = 7 (sj,p) represents the sam-
ple combined with the prompt, which contains
one [MASK] token. The output of the large lan-
guage model with the prompts predicts the label
my, which corresponds to the [MASK] token after
applying a verbalizer V(-), i.e., niy, = V(o) with
oy representing the output of the model and my
referring to the predicted label.

In this section, we first present the system model

of FedPepTAO. Then, we propose parameter-
efficient prompt tuning method and the adaptive
optimization method, respectively.

3.1 System Model

As shown in Figure 1, we consider a parameter
server and multiple devices for the tuning process
of FedPepTAO. We assume that a large language
model is deployed on each device. For each layer,
we insert a prompt module. During the tuning
process, the large language model only perform
inference while the prompt modules of each layer
perform both the inference of the input and the
update of parameters. Within the FL tuning pro-
cess, the prompt parameters of specific layers are
communicated between the device and the server.
During the FL tuning process of FedPepTAO,
the prompt parameters in each device are updated
with multiple rounds. Each round consists of five
steps. First, a set of devices are selected to perform
the update of prompt parameters. Second, these
devices receive the corresponding updated prompt
parameters of specific layers from the server ((D).
The selection of the specific layers is based on our
parameter-efficient prompt tuning method (see de-
tails in Section 3.2) (@ -). Third, the prompt
parameters are updated with our adaptive optimiza-
tion method (see details in Section 3.3) based on
the data on each device (@). Fourth, the prompt
parameters of specific layers are sent back to the
server ((3)). Fifth, the prompt parameters are aggre-
gated on the server with the adaptive optimization

method (® - @)).

3.2 Parameter-efficient Prompt Tuning

We propose a parameter-efficient prompt tuning
method to efficiently tune the language model with

7874

FL. Instead of synchronizing the full set of prompt
parameters, we select a proper set of layers for
each device and only exchange the prompt param-
eters of these layers during the tuning process. In
this section, we propose a scoring method to mea-
sure the importance of each layer. Then, we pro-
pose a lossless layer selection method to select the
proper layers, which reduces the communication
costs without performance degradation.

Given the prompt parameters based on any acti-
vation function, we can calculate the hidden states
of each parameter at each layer of the large lan-
guage model. With a batch of local data samples
S; = {s;}"" mapped through the large language
model and the prompt parameters corresponding to
the function f,(s;), the hidden state corresponding
to Node k at [-th layer is fp, ,(s;). Then, the hid-
den states of Layer [corresponding to Sample s; is
by = {fp1(80): fpou(8i), ooy fpi, i (si) }, with K
representing the number of nodes at Layer L.

As the difficulty for a network to learn to sepa-
rate the input samples has positive correlation with
the similarity of the hidden states (Mellor et al.,
2021), we examine the correlation between the
hidden states of any two layers by computing the
following kernel matrix:

COS(hiJ, hi,l) COS(hi,l, hi,L)
Khi = :
COS(hi’L, hi,L)
2
where Cos(h; 1, h; 1) represents the cosine sim-
ilarity between two vectors (Dehak et al., 2010).
Then, we calculate the eigenvalues of the kernel
matrix A; = {Xi1, Ai2, .., Ai 1}, with \; represent-
ing the distinction of Layer [compared with other
layers based on Sample s;. Afterward, we compute
the score ((;,;) of Layer [with the local dataset on
Device ¢ using the Formula 3, which can avoid the
possibility of unacceptable performance penalty
due to abnormal eigenvalues (Gao et al., 2021b).

COS(hLL, h@l)

1 &
il = — log(\; by —1’ 3
G nz; ogNja+ &)+ Na+eo ™l G

where € refers to a small positive value, e.g., 1 *
e~5. We calculate the global score of each layer
leveraging Formula 4 with v; = ¢; ;.

N
n;

Y= E N%‘; “4)
=1

Algorithm 1 Federated Parameter-efficient Prompt
Tuning

Require:
L: The list of layers in a large language model
M The set of devices
w: The prompt parameters of the initial model
w': The prompt parameters of the current
model in Round ¢
Ensure:
SL: The set of selected layers
1. SL 0
2: for i € M (on each device) do
3 A —w—wh
4 H(w!) + Get Hessian matrix of w
5: AW « Eigenvalues(H (w!))
6 (AT)\gz} + Sort in ascending or-

der of AHw})

7 B(AO — H(’U}f) — VFi(Ai + wf)
8: .7 < Get Lipschitz constant of B(A;)

k; < Get the first k that meets Af | —\f/ >
4%

10 7y« Kk

11: forlc L'do

12: Calculate ¢; ; according to Formula 3

13: end for

14: end for

15: Aggregate r and each (; based on Formula 4
16: ¢ < Sort {(1, (2, ..., } in descending order
17: while [€ ¢ and % < rdo

18: SL <+ SLUI

19: end while

where ~ represents the variable.

In order to efficiently tune the large language
model without performance degradation, we ex-
ploit a lossless method as shown in Algorithm 1 to
select the set of proper layers within FL. Within
first ¢ rounds, the prompt parameters of all the lay-
ers are communicated between the server and each
device. t can be small, e.g., 5 or 10. At ¢-th round,
we perform the layer selection. First, we calculate
A; as the changement of the prompt parameters
(Line 3). Then, we calculate the Hessian matrix
(based an efficient PyHessian library (Yao et al.,
2020)) of the current model (Line 4), the corre-
sponding eigenvalues (Line 5), and sort the eigen-
values in ascending order (Line 6). Afterward, we
construct a base function in Line 7 with V F; rep-
resenting the gradients and calculate the Lipschitz
constant of the base function 8. We take the first &
that can meet the constraint in Line 9, and calculate
the minimum remaining prompt parameter ratio in

7875

the selected layers R;, inspired by (Zhang et al.,
2021), which can achieve lossless compared with
those at all the layers. We calculate the score of
each layer in Lines 11 - 13. The execute of Lines
3 - 13 can be carried out in parallel on each de-
vice. We aggregate the prompt parameter ratio and
the scores based on Formula 4 from each device
to the server (Line 15). Then, we sort the layers
according to the scores in descending order (Line
16). Finally, we add the layers into the selected
layer set based on the scores in descending order
(Lines 17 - 19), with Para(SL;) representing the
number of parameters in the selected layer set. In
the following rounds, the prompt parameters in S L
are communicated between devices and the server.

3.3 Communication-Efficient Adaptive
Optimization

While data is generally non-IID, we propose a
novel communication-efficient adaptive optimiza-
tion to achieve superb performance without intro-
ducing extra communication costs. In order to
achieve excellent performance, we propose apply-
ing adaptive optimization on both server based on
momentum (Cutkosky and Mehta, 2020) and de-
vice sides based on Adam (Kingma and Ba, 2015).
We reset the first and the second momentum buffers
to zero at the beginning of local update (Wang et al.,
2021) to avoid extra communication of the momen-
tum variables between the server and the device.
In addition, we maintain a state for each device
on the server to avoid possible client drift problem
incurred by non-IID (Karimireddy et al., 2020b).

The algorithm of communication-efficient adap-
tive optimization for FL. prompt tuning is shown
in Algorithm 2. Within each round, we first ran-
domly sample a subset of devices (Line 3). Then,
the prompt parameters corresponding to the model
in the last round is sent to each device (Line 5), and
each selected device perform local update based
on Adam (Lines 7 - 8). Afterward, each selected
device returns the accumulated difference of the
prompt parameters to the server (Line 10). Please
note that the execution of Lines 4 - 11 can be per-
formed in parallel on each selected device. We
aggregate the differences based on Formula 4 (Line
12). Inspired by (Karimireddy et al., 2020b), we
calculate the control variate c; (Line 14) and the
corresponding difference Ac; (Line 15) for each
device on the server. We aggregate the control vari-
ate differences based on Formula 4 (Line 17), and

Algorithm 2 Communication-Efficient Adaptive
Optimization

Require:
M:: The set of devices
w: The prompt parameters of the initial model
R: The maximum number of global round
a: The local step size
(: The momentum parameter
n = {n',n?,...,nf}: The set of global learn-
ing rates
T = {T1,T>,...,Th}: The set of local epoch
T; on each Device 7
Ensure:
w®: The final model

1: wokw,cgko,chg(—(),m?eo,VieM
2. forr=1,--- ,Rdo

3: Randomly sample a subset S of devices M
4: for ¢ € S (on each device) do

5: w:’o — wr L m:’o <~ 0, U:’O ~—0

6 fort=1,2,---,7T; do

7 g:’t — wa,t—lFi(w:’til)

8 wit,mlt vt < Adam update with

w;",t—l’ m;‘,t—l’ U;“,t—l, and g;“,t

9: end for
10: Aw! = w;’T" - wZ’O

11: end for
12: Aggregate Aw” based on Formula 4
13: for i € S (on the server) do

. r_ r—1__ r—1__ 1 r
14: CG =¢ 9, ~Ta * Awj
. ro__ r__ v
15: Ac; = ¢} — ¢

16: end for

17: Aggregate Ac” based on Formula 4
18: ¢y = cg_l + Ac” * %

19: gy = Aw™ ! — Aw”

20: for i € S (on the server) do

_ -1

= Bxm" —i—(l—ﬁ)*gg—i—cg—cf

r

; 1

T T— _ T T
n" *xm;]

22: w, =w
23: end for
24: Aggregate w” based on Formula 4
25: Aggregate m” based on Formula 4
26: end for

calculate the global control variate (Line 18) and
global gradients (Line 19). Afterword, we update
the momentum (Line 21) and prompt parameters
(Line 22) for each selected device. Finally, we ag-
gregate the global prompt parameters (Line 24) and
momentum (Line 25). The communication cost of
Algorithm 2 depends on the size of prompt parame-
ters, which is similar to that of FedAvg (McMahan
et al., 2017), while achieving superb performance.

7876

Method Comm. Params QNLI SST-2 CoLA MPRC RTE BoolQ MPQA Subj Trec MR Avg
Adapter [NZENIN 8779 9404 3096 7181 6859 7511 9097 946 79 919 7536
FedPrompt 131K 8591 94.84 3305 7787 6173 7477 9045 9425 95 91.65 76.85
P-tuning v2 8519 953 4182 8278 7942 79.66 91 969 964 9145 82.05
Prompt Tuning 20K 5162 61.01 336 4804 5235 5972 8165 652 364 6325 4256
IDPG 137K 722 9301 459 7083 704 7196 9007 94 784 914 60.63
ATTEMPT 207k 5493 8589 463 7865 5848 7349 91.05 8895 822 919 5828
LPT 792k 80.2 9484 537 8207 797 627 9055 965 964 914 8235
MomD 6742 9392 164 7517 7545 6202 89.05 4995 386 83 63.62
MomS+AdamD 8785 9518 4296 80.15 8231 781 9095 9675 96.8 91.55 84.26
~ FedPepTAO 492K 89.57 9587 5635 87.52 8556 79.72 914 971 972 93 864

Table 1: The accuracy with FedPepTAO and diverse baseline approaches. All the methods from GLUE benchmark
are evaluated on development sets while other tasks are evaluated with test sets. The best results are highlighted in
bold and the second bests are marked with underline. All the results are obtained using ROBERTa ArGE-

4 Experiments

In this section, we present the experimental results
over 9 baselines and 10 commonly-used tasks to
demonstrate the advantages of FedPepTAO.

4.1 Experimental Setup

We consider an FL environment with 100 devices
and a parameter server. In each epoch, we ran-
domly sample 10 devices to perform the local up-
date. We exploit 10 widely used NLP tasks includ-
ing QNLI (Rajpurkar et al., 2016), SST-2 (Socher
et al., 2013), CoLA (Warstadt et al., 2019), MRPC
(Dolan and Brockett, 2005), RTE (Giampiccolo
et al., 2007), and BoolQ (Clark et al., 2019) from
the GLUE benchmark, and 4 other tasks includ-
ing MPQA (Wiebe et al., 2005), Subj (Pang and
Lee, 2004), TREC (Voorhees and Tice, 2000), and
MR (Pang and Lee, 2005) (Please see details in
Appendix A.2). We take 9 existing approaches as
baselines, including an adapter-based method, i.e.,
Adapter (Houlsby et al., 2019), 6 prompt-based tun-
ing methods, i.e., FedPrompt (Zhao et al., 2023),
P-tuning v2 (Liu et al., 2022d), Prompt Tuning
(Lester et al., 2021), IDPG (Wu et al., 2022), AT-
TEMPT (Asai et al., 2022), LPT (Liu et al., 2022c¢),
and 2 optimization approaches, i.e., momentum on
the device side with simple SGD on the server side
(MomD) (Karimireddy et al., 2020a) and momen-
tum on the server side with Adam on the device side
without control variate (MomS+AdamD). We adapt
the centralized methods, i.e., Adapter, P-tuning v2,
Prompt Tuning, IDPG (S-IDPG-PHM), ATTEMPT,
and LPT, with FedAvg (McMabhan et al., 2017) to
the FL setting for a fair comparison.

We evaluate FedPepTAO and all other meth-
ods on ROBERTay arge (Liu et al., 2019b), which
consists of 24 layers of transformers followed
by a large language model head and 355M pre-
trained parameters. To demonstrate the adaptabil-

ity of FedPepTAO, we carried out extra experi-
ments with three additional decoder-based models,
i.e., GPT2; arge model (Radford et al., 2019) with
774M parameters on MRPC, MR, SST-2 dataset,
LLaMA 3B model (Touvron et al., 2023) on RTE,
MRPC dataset, and LLaMA 7B model (Touvron
et al., 2023) on MRPC dataset. The backbones of
these models are frozen for all methods.

4.2 Evaluation of FedPepTAO

As shown in Table 1, FedPepTAO significantly
outperforms baseline methods in terms of the
best accuracy (up to 25.39%, 23.83%, 14.53%,
60.8%, 51.76%, 51.72%, 17.02%, 54.71%, 13.39%
compared with Adapter, FedPrompt, P-tuning v2,
Ptompt Tuning, IDPG, ATTEMPT, LTP, MomD,
and MomS+AdamD, respectively). In addition,
the average of the best accuracy (average accu-
racy) for each task is shown in the last column.
The advantage of FedPepTAO is obvious in terms
of the average accuracy as well, i.e., 11.04%,
9.55%, 4.35%, 43.84%, 25.77%, 28.12%, 4.05%,
58.6%, 13.39%, higher compared with Adapter,
FedPrompt, P-tuning v2, Ptompt Tuning, IDPG,
ATTEMPT, LTP, MomD, and MomS+AdamD, re-
spectively. Although FedPrompt, Prompt Tuning,
IDPG, and ATTEMPT exploit fewer parameters,
the corresponding accuracy is inferior. FedPrompt,
Prompt Tuning, and ATTEMPT only update the
soft prompt for the first layer, which cannot opti-
mize other important layers and incurs sub-optimal
performance. IDPG shares a single generator for
each layer, which cannot address the characteris-
tics of diverse layers and leads to inferior accuracy.
Different from these methods, FedPepTAO can
well optimize the prompt parameters for each layer
based on P-tuning v2, while choosing the proper
layers for aggregation within FL so as to achieve
excellent performance. In addition, we exploit the
adaptive optimization on both server and device

7877

Method QNLI SST-2 CoLA MPRC RTE BoolQ MPQA Subj Trec MR
Adapter 8096 1065 2655 / 2218 937 758 1178 1388 1797
FedPrompt 12987 668 1471 1824 / 1485 412 1284 336 618
P-tuning v2 10780 17 489 154 201 135 105 132 95 748
Prompt Tuning / / / / / / / / / /
IDPG / 3322 / / 689 3254 908 1347 1220 1912
ATTEMPT / / / 1774 / 973 438 2573 1028 1221
LPT 2918 650 733 156 270 / 162 155 112 860
MomD / 1328 / / 838 / 537 / / /
MomS+AdamD 697 209 488 1178 192 139 141 166 100 610
" FedPepTAO 781 97 219 230 18 129 31 62 76 610

Table 2: The tuning time (s) to achieve a target accuracy (85% for QNLI, 92.5% for SST-2, 3% for CoL A, 77%
for MRPC, 65% for RTE, 71% for BoolQ, 85% for MPQA, 88% for Subj, 78% for Trec, 91% for MR)with
FedPepTAO and diverse baseline approaches. "/" represents that training does not achieve the target accuracy. The
best results are highlighted in bold and the second bests are marked with underline. All the results are obtained

llSiIlg ROBERT&LARGE.

Method MRPC MR SST-2
Acc Time Acc Time Acc Time

FedPrompt 7498 / 572 / 7649 /
P-tuning v2 748 / 73 / 7477
ATTEMPT 3791 / 573 / 85.89 /
LPT 7498 / 84.8 1455 77.06 /
MomD 77.23 503 85.7 1694 92.55 3638
MomS+AdamD 76.89 291 88.2 262 92.55 2488

" FedPepTAO 8123 273 895 222 93 2248

Table 3: Accuracy and tuning time (s) to achieve target
accuracy (75% for MRPC, 81% for MR, and 92.5%
for SST-2) on GPT2 argg model. "/" represents that
training does not achieve the target accuracy.

sides to achieve superb accuracy. Compared with
Adapter (93.4%), P-tuning v2 (92.19%), and LPT
(37.98%), our methods can well reduce the number
of parameters to transfer between devices and the
server because of the proper layer selection, which
corresponds to smaller communication costs. As a
result, the efficiency of FedPepTAO is significantly
higher than baseline approaches (up to 95.91%,
95.17%, 92.76%, 99%, 97.28%, 97.59%, 85.8%,
94.23%, 80.48%, faster compared with Adapter,
FedPrompt, P-tuning v2, Ptompt Tuning, IDPG,
ATTEMPT, LTP, MomD, and MomS+AdamD, re-
spectively).

4.3 Evaluation of FedPepTAO on Extra LLMs

To demonstrate the adaptability of FedPepTAO, we
carried out extra experiments with three additional
decoder-based models, i.e., GPT2; srge model
(774M) on MRPC, MR, SST-2 dataset, LLaMA
3B model on RTE, MRPC dataset, and LLaMA 7B
model on MRPC dataset.

As shown in Table 3 below, FedPepTAO signifi-
cantly outperforms baseline methods in terms of the
best accuracy on the decoder-based GPT2 aArGE
model (up to 32.3%, 18.23%, 43.32%, 15.94%, 4%,
4.34% higher compared to FedPrompt, P-tuning
v2, ATTEMPT, LPT, MomD and MomS+AdamD,

Method RTE MRPC
Acc Time Acc Time
FedPrompt 78.34 540 81.86 459
P-tuning v2 56.68 / 7517 |/
ATTEMPT 6498 / 81.18 718
LPT 64.98 / 79.77 789
MomD 80.87 360 80.26 669
MomS+AdamD 80.87 360 7558 /
" FedPepTAO ~ 83.39 325 ~ 8646 409

Table 4: Accuracy and tuning time (s) to achieve target
accuracy (75% for RTE, 81% for MRPC) on LLaMA
3B model. "/" represents that training does not achieve
the target accuracy.

respectively). Furthermore, the efficiency of
FedPepTAO is significantly higher than base-
line approaches (up to 84.74%, 86.89%, and
15.27% faster compared to LPT, MomD, and
MomS+AdamD, respectively).

When the model becomes larger, i.e., LLaMA
3B with 3 billion parameters, FedPepTAO still
achieves the best accuracy (up to 4.6%, 11.29%,
5.28%, 6.69%, 6.2%, 10.88% higher compared to
FedPrompt, P-tuning v2, ATTEMPT, LPT, MomD
and MomS+AdamD, respectively) and better effi-
ciency (up to 39.81%, 43.04%, 48.16%, 38.86%,
9.72% faster compared to FedPrompt, ATTEMPT,
LPT, MomD, and MomS+AdamD, respectively) as
illustrated in Table 4.

We verify the performance of our method with
another large model, i.e., LLaMA 7B with 7 billion
parameters. As shown in Table 5, FedPepTAO
outperforms baseline methods in terms of accuracy
(up to 5.05%, 26.71%, 18.41%, 18.41%, 6.2%,
10.88% higher compared to FedPrompt, P-tuning
v2, ATTEMPT, LPT, MomD and MomS+AdamD,
respectively) and efficiency (up to 15.77%, 75.14%,
32.06%, 67.04% faster compared to ATTEMPT,
LPT, MomD, and MomS+AdamD, respectively),
which demonstrates the scalability of FedPepTAO.

7878

Method MRPC

Acc Time
FedPrompt 76.18 /
P-tuning v2 74.98 /
ATTEMPT 81.52 317
LPT 81.95 1074
MomD 76.2 393
MomS+AdamD 75.75 810

"~ FedPepTAO 8234 267

Table 5: Accuracy and tuning time (s) to achieve target
accuracy (75% for MRPC) on LLaMA 7B model. "/"
represents that training does not achieve the target accu-
racy.

4.4 Evaluation of Parameter-efficient Tuning

Formula 4 calculates the global score (; of each
transformer layer in the model, based on which
the proper layers are selected to enable the com-
munication between devices and the server. The
selection of layers is critical to the performance
of FL. In this section, we compare our parameter-
efficient prompt tuning (PEPT) with three other se-
lection strategies, i.e., select with ascending order,
descending order ((Liu et al., 2022d)), and random
order. Our PEPT method can significantly outper-
form ascending order (up to 5.78%), descending or-
der (up to 1.81%), and random order (up to 2.89%)
(see Figure 5 in Appendix). In addition, we con-
duct experiments and demonstrate that our PEPT
method outperforms random layer selection strat-
egy by 2.93% on RTE, 4.73% on MRPC, and 7.29%
on CoLA dataset (see Appendix B.6 for details).

4.5 Evaluation of Adaptive Optimization

To demonstrate the effectiveness of Algorithm 2,
we compare our adaptive optimization method with
six baseline methods, i.e., FedAvg (McMabhan et al.,
2017), MomD, momentum on the server side with
SGD on the device side (MomS) (Reddi et al.,
2018a), momentum on the server side with control
variate and SGD on the device side (MomS+Con)
(Reddi et al., 2018a), Adam on device side with
simple SGD on the server side (AdamD), and
MomS+AdamD, on the RTE task (see Figure 6
in Appendix). FedPepTAO corresponds to the high-
est accuracy compared to baseline methods (up to
8.3% compared with MomD, 29.24% compared
with MomS, 29.24% compared with MomS+Con,
2.16% compared with AdamD, 5.05% compared
with MomS+AdamD, and 29.24% compared with
FedAvg). The advantage of FedPepTAO is up
to 5.05% compared with MomS+AdamD, which
shows that the control variate can avoid client drift

in FL settings and lead to excellent performance.
In addition, please note that FedPepTAO calculates
the control variate on the server with updated gra-
dients (Algorithm 2), without extra communication
cost.

4.6 Hyperparameter Evaluation

In this section, we evaluate the performance of Fed-
PepTAO with divers hyperparameters. Additional
experiments are in the Appendix B.

Impact of server learning rate Due to the high
sensitivity of the hyperparameters in NLP tasks, we
investigate the impact of divers server learning rates
on the RTE dataset. We analyze the accuracy with
the learning rates le 2, 5¢ 73, 1e~3, 5e 4. We find
that the best performance was achieved when Ir =
le~3, which only slightly outperforms Ir = 5e~*
by 0.37% (see Figure 2 in the Appendix). This
demonstrates that FedPepTAO is easy to fine-tune
in practice.

Impact of heterogeneous data distribution
Data heterogeneity has always been a common
challenge in FL. To investigate the robustness of
our approach to different degrees of non-IID data,
we conduct experiments under various levels of
non-IID degrees. We observe that the accuracy of
FedPepTAO is the best with o ranging from 1.0
to 5.0 (see Figure 3 in Appendix). A smaller «
represents a higher degree of heterogeneity. This
demonstrates that our approach is robust to differ-
ent data heterogeneity.

5 Conclusion

In this paper, we propose an original parameter-
efficient prompt tuning with adaptive optimization
approach for large language models with FL, i.e.,
FedPepTAO. We dynamically calculate the score
of each layer to choose proper layers of prompts
for FL without accuracy degradation. In addition,
we provide a novel adaptive optimization method
with control variate on the server to achieve superb
performance without extra communication costs.
We carry out extensive experiments based on 10
tasks and 9 state-of-the-art baseline approaches,
which demonstrate significant advantages of Fed-
PepTAO in terms of accuracy (up to 60.8% higher)
and efficiency (up to 97.59% faster).

Acknowledgements

This research is partially sponsored by the National
Science Foundation (NSF) under Grant No. OAC-
2313191.

7879

Limitations

While our method can significantly enhance the per-
formance and efficiency of federated prompt tuning
in large language models (LLMs), we should ac-
knowledge the sharing of prompts between clients
and the server. Previous research has demonstrated
that transferring additional sensitive information
in Federated Learning (FL), such as predictions
or embeddings, can lead to potential privacy con-
cerns (Che et al., 2022). These concerns can be
even more critical in prompt tuning scenarios, as
prompts are explicitly tuned with private local data.
We anticipate that evaluating and mitigating pri-
vacy risks in federated LLM prompt tuning will be
an intriguing research area in the future.

References

Akari Asai, Mohammadreza Salehi, Matthew E Peters,
and Hannaneh Hajishirzi. 2022. Attempt: Parameter-
efficient multi-task tuning via attentional mixtures
of soft prompts. In Conf. on Empirical Methods in
Natural Language Processing (EMNLP), pages 6655—
6672.

Xiangiang Bao, Ling Liu, Nong Xiao, Yang Zhou, and
Qi Zhang. 2015. Policy-driven autonomic configu-
ration management for nosql. In /IEEE Int. Conf. on
Cloud Computing (CLOUD), pages 245-252.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems (NeurIPS), 33:1877-1901.

Californians for Consumer Privacy. 2020. California
consumer privacy act home page. https://www.
caprivacy.org/. Online; accessed 09/05/2022.

Tianshi Che, Zijie Zhang, Yang Zhou, Xin Zhao, Ji Liu,
Zhe Jiang, Da Yan, Ruoming Jin, and Dejing Dou.
2022. Federated fingerprint learning with hetero-
geneous architectures. In IEEE Int. Conf. on Data
Mining (ICDM), pages 31-40.

Tianshi Che, Yang Zhou, Zijie Zhang, Lingjuan Lyu,
Ji Liu, Da Yan, Dejing Dou, and Jun Huan. 2023.
Fast federated machine unlearning with nonlinear
functional theory. In Int. Conf. on Machine Learn-
ing (ICML), volume 202 of Proceedings of Machine
Learning Research, pages 4241-4268. PMLR.

Zhuo Chen, Gang Feng, Bei Liu, and Yang Zhou. 2018a.
Construction policy of network service chain oriented
to resource fragmentation optimization in operator
network. ournal of Electronics and Information Tech-
nology, 40(4):763-769.

Zhuo Chen, Gang Feng, Bei Liu, and Yang Zhou. 2018b.
Delay optimization oriented service function chain
migration and re-deployment in operator network.
Acta Electronica Sinica, 46(9):2229-2237.

Zhuo Chen, Xiaoxiang Tan, Zhiyuan Zhou, and Yang
Zhou. 2023a. A channel aggregation based dynamic
pruning method in federated learning. In [EEE
Global Communications Conference (GLOBECOM).
To appear.

Zhuo Chen, Chuan Zhou, and Yang Zhou. 2023b. A
hierarchical federated learning model with adaptive
model parameter aggregation. Computer Science and
Information Systems, 20(3):1037-1060.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. BoolQ: Exploring the surprising
difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 2924-2936.

Ashok Cutkosky and Harsh Mehta. 2020. Momentum
improves normalized SGD. In Int. Conf. Machine
Learning (ICML), volume 119, pages 2260-2268.
PMLR.

Najim Dehak, Reda Dehak, James R Glass, Douglas A
Reynolds, Patrick Kenny, et al. 2010. Cosine similar-
ity scoring without score normalization techniques.
In Odyssey, page 15.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei,
Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
Chen, Chi-Min Chan, Weize Chen, et al. 2023.
Parameter-efficient fine-tuning of large-scale pre-
trained language models. Nature Machine Intelli-
gence, 5(3):220-235.

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP2005).

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning
research, 12(7).

Xinbiao Gan, Guang Wu, Ruigeng Zeng, Jiaqi Si,
Ji Liu, Daxiang Dong, Chunye Gong, Cong Liu, and
Tiejun Li. 2023. Ft-topo: Architecture-driven folded-
triangle partitioning for communication-efficient
graph processing. In Int. Conf. on Supercomputing
(ICS), page 240-250.

7880

https://www.caprivacy.org/
https://www.caprivacy.org/
https://aclanthology.org/N19-1300
https://aclanthology.org/N19-1300
https://aclanthology.org/I05-5002
https://aclanthology.org/I05-5002

Hongchang Gao, An Xu, and Heng Huang. 2021a. On
the convergence of communication-efficient local sgd
for federated learning. In AAAI Conf. on Artificial
Intelligence, 9, pages 7510-7518.

Wei Gao, Shangwei Guo, Tianwei Zhang, Han Qiu,
Yonggang Wen, and Yang Liu. 2021b. Privacy-
preserving collaborative learning with automatic
transformation search. In IEEE/CVF Conf. on Com-
puter Vision and Pattern Recognition (CVPR), pages
114-123.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and
Bill Dolan. 2007. The third PASCAL recognizing
textual entailment challenge. In Proceedings of the
ACL-PASCAL Workshop on Textual Entailment and
Paraphrasing, pages 1-9.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio.
2011. Deep sparse rectifier neural networks. In Inz.
Conf. on artificial intelligence and statistics, pages
315-323. JMLR Workshop and Conference Proceed-
ings.

Sayan Goswami, Ayam Pokhrel, Kisung Lee, Ling Liu,
Qi Zhang, and Yang Zhou. 2020. Lightwieight in-
dexing and querying services for big spatial data.
The Journal of Supercomputing (TJSC), 76(9):6619—
6647.

Guimu Guo, Da Yan, Lyuheng Yuan, Jalal Khalil, Cheng
Long, Zhe Jiang, and Yang Zhou. 2022. Maximal
directed quasi-clique mining. In IEEE Int. Conf. on
Data Engineering (ICDE), pages 1900-1913.

Junyuan Hong, Zhuangdi Zhu, Lingjuan Lyu, Yang
Zhou, Vishnu Naresh Boddeti, and Jiayu Zhou. 2023.
Int. workshop on federated learning for distributed
data mining. In ACM SIGKDD Conf. on Knowl-
edge Discovery and Data Mining (KDD), pages 5861—
5862, Long Beach, CA.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In Inz.
Conf. on Machine Learning (ICML), pages 2790-
2799. PMLR.

Yexi Jiang, Chang-Shing Perng, Anca Sailer, Ignacio
Silva-Lepe, Yang Zhou, and Tao Li. 2019. Csm: A
cloud service marketplace for complex service acqui-
sition. ACM Transactions on Intelligent Systems and
Technology (TIST), 8(1):1-25.

Jiayin Jin, Jiaxiang Ren, Yang Zhou, Lingjuan Lyu,
Ji Liu, and Dejing Dou. 2022a. Accelerated federated
learning with decoupled adaptive optimization. In
Int. Conf. on Machine Learning (ICML), volume 162
of Proceedings of Machine Learning Research, pages
10298-10322. PMLR.

Jiayin Jin, Zeru Zhang, Yang Zhou, and Lingfei Wu.
2022b. Input-agnostic certified group fairness via
gaussian parameter smoothing. In Int. Conf. on Ma-
chine Learning (ICML), pages 10340-10361.

Ruoming Jin, Dong Li, Jing Gao, Zhi Liu, Li Chen, and
Yang Zhou. 2021. Towards a better understanding of
linear models for recommendation. In ACM SIGKDD
Conf. on Knowledge Discovery and Data Mining
(KDD), pages 776-785.

Peter Kairouz, H. Brendan McMahan, Brendan Avent,
Aurélien Bellet, and Mehdi Bennis et al. 2021. Ad-
vances and open problems in federated learning.
Foundations and Trends® in Machine Learning, 14(1-
2):1-210.

Rabeeh Karimi Mahabadi, James Henderson, and Se-
bastian Ruder. 2021a. Compacter: Efficient low-rank
hypercomplex adapter layers. Advances in Neural
Information Processing Systems (NeurIPS), 34:1022—
1035.

Rabeeh Karimi Mahabadi, James Henderson, and Se-
bastian Ruder. 2021b. Compacter: Efficient low-rank
hypercomplex adapter layers. In Advances in Neural
Information Processing Systems, pages 1022-1035.

Sai Praneeth Karimireddy, Martin Jaggi, Satyen Kale,
Mehryar Mohri, Sashank J Reddi, Sebastian U Stich,
and Ananda Theertha Suresh. 2020a. Mime: Mim-
icking centralized stochastic algorithms in federated
learning. arXiv preprint arXiv:2008.03606.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar
Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. 2020b. Scaffold: Stochas-
tic controlled averaging for federated learning. In
Int. Conf. on Machine Learning (ICML), pages 5132—
5143. PMLR.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Int. Conf. on
Learning Representations (ICLR).

Kisung Lee, Ling Liu, Raghu L. Ganti, Mudhakar Sri-
vatsa, Qi Zhang, Yang Zhou, and Qingyang Wang.
2019. Lightwieight indexing and querying services
for big spatial data. IEEE Transactions on Services
Computing (TSC), 12(3):343-355.

Kisung Lee, Ling Liu, Karsten Schwan, Calton Pu,
Qi Zhang, Yang Zhou, Emre Yigitoglu, and Pingpeng
Yuan. 2015. Scaling iterative graph computations
with graphmap. In IEEE Int. Conf. for High Perfor-
mance Computing, Networking, Storage and Analysis
(SC), pages 57:1-57:12.

Kisung Lee, Ling Liu, Yuzhe Tang, Qi Zhang, and Yang
Zhou. 2013. Efficient and customizable data parti-
tioning framework for distributed big rdf data pro-
cessing in the cloud. In IEEE Int. Conf. on Cloud
Computing (CLOUD), pages 327-334.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Conf. on Empirical Methods in Natural
Language Processing (EMNLP), pages 3045-3059.
Association for Computational Linguistics.

7881

https://aclanthology.org/W07-1401
https://aclanthology.org/W07-1401
https://proceedings.neurips.cc/paper_files/paper/2021/file/081be9fdff07f3bc808f935906ef70c0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/081be9fdff07f3bc808f935906ef70c0-Paper.pdf

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-
noising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.
arXiv preprint arXiv:1910.13461.

Guanghao Li, Yue Hu, Miao Zhang, Ji Liu, Quanjun Yin,
Yong Peng, and Dejing Dou. 2023. Fedhisyn: A hier-
archical synchronous federated learning framework
for resource and data heterogeneity. In Int. Conf. on
Parallel Processing (ICPP), pages 1-11.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Annual Meeting of the Association for Computational
Linguistics and Int. Joint Conf. on Natural Language
Processing (ACL/IJCNLP), pages 4582-4597. Asso-
ciation for Computational Linguistics. Volume 1:
Long Papers.

Ji Liu, Daxiang Dong, Xi Wang, An Qin, Xingjian
Li, Patrick Valduriez, Dejing Dou, and Dianhai Yu.
2022a. Large-scale knowledge distillation with elas-
tic heterogeneous computing resources. Concurrency
and Computation: Practice and Experience, pages
1-16.

5

—

Liu, Jizhou Huang, Yang Zhou, Xuhong Li, Shilei
Ji, Haoyi Xiong, and Dejing Dou. 2022b. From dis-
tributed machine learning to federated learning: A
survey. Knowledge and Information Systems (KAIS),
64(4):885-917.

Ji Liu, Juncheng Jia, Beichen Ma, Chendi Zhou, Jingbo
Zhou, Yang Zhou, Huaiyu Dai, and Dejing Dou.
2023a. Multi-job intelligent scheduling with cross-
device federated learning. IEEE Transactions on
Parallel and Distributed Systems (TPDS), 34(2):535-
551.

Ji Liu, Esther Pacitti, Patrick Valduriez, Daniel
de Oliveira, and Marta Mattoso. 2016. Multi-
objective scheduling of scientific workflows in mul-
tisite clouds. Future Generation Computer Systems
(FGCS), 63:76-95.

Ji Liu, Esther Pacitti, Patrick Valduriez, and Marta Mat-
toso. 2015. A survey of data-intensive scientific

workflow management. Journal of Grid Computing,
13(4):457-493.

Ji Liu, Luis Pineda-Morales, Esther Pacitti, Alexan-
dru Costan, Patrick Valduriez, Gabriel Antoniu, and
Marta Mattoso. 2019a. Efficient scheduling of sci-
entific workflows using hot metadata in a multisite
cloud. IEEE Transactions on Knowledge and Data
Engineering (TKDE), 31(10):1940-1953.

Ji

—_

Liu, Zhihua Wu, Danlei Feng, Minxu Zhang, Xinx-
uan Wu, Xuefeng Yao, Dianhai Yu, Yanjun Ma, Feng
Zhao, and Dejing Dou. 2023b. Heterps: Distributed
deep learning with reinforcement learning based
scheduling in heterogeneous environments. Future
Generation Computer Systems, 148(C):106-117.

Ji Liu, Xuehai Zhou, Lei Mo, Shilei Ji, Yuan Liao,
Zheng Li, Qin Gu, and Dejing Dou. 2023c. Dis-
tributed and deep vertical federated learning with big

data. Concurrency and Computation: Practice and
Experience, 35(21):1-17.

Wei Liu, Li Chen, Yunfei Chen, and Wenyi Zhang. 2020.
Accelerating federated learning via momentum gra-
dient descent. IEEE Transactions on Parallel and
Distributed Systems (TPDS), 31(8):1754—-1766.

Xiangyang Liu, Tianxiang Sun, Xuanjing Huang, and
Xipeng Qiu. 2022c. Late prompt tuning: A late
prompt could be better than many prompts. In Find-
ings of the Association for Computational Linguis-
tics: (EMNLP), pages 1325-1338. Association for
Computational Linguistics.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengx-
iao Du, Zhilin Yang, and Jie Tang. 2022d. P-tuning:
Prompt tuning can be comparable to fine-tuning
across scales and tasks. In Annual Meeting of the As-
sociation for Computational Linguistics (ACL), pages
61-68. Volume 2: Short Papers.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021. Gpt
understands, too. arXiv preprint arXiv:2103.10385.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqgi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Brendan McMahan, Eider Moore, Daniel Ramage,
Seth Hampson, and Blaise Aguera y Arcas. 2017.
Communication-efficient learning of deep networks
from decentralized data. In Artificial Intelligence and
Statistics (AISTATS), pages 1273-1282.

Joe Mellor, Jack Turner, Amos Storkey, and Elliot J
Crowley. 2021. Neural architecture search without
training. In Proceedings of the 38th International
Conference on Machine Learning, volume 139, pages
7588-7598.

Vinod Nair and Geoffrey E Hinton. 2010. Rectified
linear units improve restricted boltzmann machines.
In Int. Conf. on Machine Learning (ICML), pages
807-814.

Official Journal of the FEuropean Union.
2016. General data protection regulation.
https://eur-lex.europa.eu/legal-content/
EN/TXT/PDF/?uri=CELEX:32016R0679. Online;
accessed 09/05/2022.

Daniel C. M. de Oliveira, Ji Liu, and Esther Pacitti.
2019. Data-Intensive Workflow Management: For
Clouds and Data-Intensive and Scalable Computing
Environments. Morgan & Claypool.

Bo Pang and Lillian Lee. 2004. A sentimental education:
Sentiment analysis using subjectivity summarization
based on minimum cuts. In Proceedings of the 42nd

7882

https://proceedings.mlr.press/v139/mellor21a.html
https://proceedings.mlr.press/v139/mellor21a.html
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
https://doi.org/10.3115/1218955.1218990
https://doi.org/10.3115/1218955.1218990
https://doi.org/10.3115/1218955.1218990

Annual Meeting on Association for Computational
Linguistics, page 271-es.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting
class relationships for sentiment categorization with
respect to rating scales. In Proceedings of the 43rd
Annual Meeting on Association for Computational
Linguistics, page 115-124.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAl
blog.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions
for machine comprehension of text. In Proceedings
of the 2016 Conference on Empirical Methods in
Natural Language Processing.

S Reddi, Manzil Zaheer, Devendra Sachan, Satyen Kale,
and Sanjiv Kumar. 2018a. Adaptive methods for
nonconvex optimization. In Annual Conf. on Neural
Information Processing Systems (NeurIPS), pages
1-17.

Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar.
2018b. On the convergence of adam and beyond.
In Int. Conf. on Learning Representations (ICLR).
OpenReview.net.

Victor Sanh, Albert Webson, Colin Raffel, Stephen
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey,
M Saiful Bari, Canwen Xu, Urmish Thakker,
Shanya Sharma Sharma, Eliza Szczechla, Taewoon
Kim, Gunjan Chhablani, Nihal Nayak, Debajyoti
Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han
Wang, Matteo Manica, Sheng Shen, Zheng Xin Yong,
Harshit Pandey, Rachel Bawden, Thomas Wang, Tr-
ishala Neeraj, Jos Rozen, Abheesht Sharma, An-
drea Santilli, Thibault Fevry, Jason Alan Fries, Ryan
Teehan, Teven Le Scao, Stella Biderman, Leo Gao,
Thomas Wolf, and Alexander M Rush. 2022. Multi-
task prompted training enables zero-shot task gener-
alization. In Int. Conf. on Learning Representations
(ICLR), pages 1-216.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV,
Eric Wallace, and Sameer Singh. 2020. Autoprompt:
Eliciting knowledge from language models with auto-
matically generated prompts. In Conf. on Empirical
Methods in Natural Language Processing (EMNLP),
pages 4222-4235. Association for Computational
Linguistics.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631-1642.

Guangyu Sun, Matias Mendieta, Taojiannan Yang, and
Chen Chen. 2022. Exploring parameter-efficient fine-
tuning for improving communication efficiency in
federated learning. arXiv preprint arXiv:2210.01708.

Ilya Sutskever, James Martens, George Dahl, and Geof-
frey Hinton. 2013. On the importance of initializa-
tion and momentum in deep learning. In Inz. Conf.
on Machine Learning (ICML), pages 1139-1147.

Yuanyishu Tian, Yao Wan, Lingjuan Lyu, Dezhong Yao,
Hai Jin, and Lichao Sun. 2022. Fedbert: when fed-
erated learning meets pre-training. ACM Transac-
tions on Intelligent Systems and Technology (TIST),
13(4):1-26.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. LLama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Ellen M. Voorhees and Dawn M. Tice. 2000. Building
a question answering test collection. In Proceedings
of the 23rd Annual International ACM SIGIR Confer-
ence on Research and Development in Information

Retrieval, page 200-207.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In 7th In-
ternational Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.

Jianyu Wang, Vinayak Tantia, Nicolas Ballas, and
Michael Rabbat. 2020. Slowmo: Improving
communication-efficient distributed sgd with slow
momentum. In Int. Conf. on Learning Representa-
tions (ICLR), pages 1-27.

Jianyu Wang, Zheng Xu, Zachary Garrett, Zachary
Charles, Luyang Liu, and Gauri Joshi. 2021. Lo-
cal adaptivity in federated learning: Convergence
and consistency. In The Int. Workshop on Federated
Learning for User Privacy and Data Confidentiality
in Conjunction with ICML (FL-ICML).

Thomas Wang, Adam Roberts, Daniel Hesslow, Teven
Le Scao, Hyung Won Chung, 1z Beltagy, Julien Lau-
nay, and Colin Raffel. 2022. What language model
architecture and pretraining objective works best for
zero-shot generalization? In Int. Conf. on Machine
Learning (ICML), pages 22964-22984. PMLR.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625-641.

Janyce Wiebe, Theresa Wilson, and Claire Cardie. 2005.
Annotating expressions of opinions and emotions
in language. Language Resources and Evaluation,

39:165-210.

7883

https://doi.org/10.3115/1219840.1219855
https://doi.org/10.3115/1219840.1219855
https://doi.org/10.3115/1219840.1219855
https://aclanthology.org/D16-1264
https://aclanthology.org/D16-1264
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://doi.org/10.1145/345508.345577
https://doi.org/10.1145/345508.345577
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://aclanthology.org/Q19-1040

Sixing Wu, Ying Li, Dawei Zhang, Yang Zhou, and
Zhonghai Wu. 2021. Topicka: Generating common-
sense knowledge-aware dialogue responses towards
the recommended topic fact. In Int. Joint Conf. on
Artificial Intelligence (IJCAI), pages 3766-3772.

Zhuofeng Wu, Sinong Wang, Jiatao Gu, Rui Hou, Yux-
iao Dong, V.G.Vinod Vydiswaran, and Hao Ma. 2022.
IDPG: An instance-dependent prompt generation
method. In Proceedings of the 2022 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 5507-5521.

Da Yan, Wenwen Qu, Guimu Guo, Xiaoling Wang, and
Yang Zhou. 2022a. Prefixfpm: A parallel framework
for general-purpose mining of frequent and closed
patterns. The VLDB Journal (VLDBJ), 31(2):253—
286.

Da Yan, Yang Zhou, and Guimu Guo. 2022b. Think-
like-a-task programming model. Encyclopedia of Big
Data Technologies.

Da Yan, Yang Zhou, Guimu Guo, and Hang Liu. 2022c.
Parallel graph processing. Encyclopedia of Big Data
Technologies.

Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin
Tong. 2019. Federated machine learning: Concept
and applications. ACM Transactions on Intelligent
Systems and Technology (TIST), 10(2):1-19.

Z. Yao, A. Gholami, K. Keutzer, and M. W. Mahoney.
2020. Pyhessian: Neural networks through the lens
of the hessian. In IEEE Int. Conf. on Big Data (Big
Data), pages 581-590. IEEE Computer Society.

Honglin Yuan, Manzil Zaheer, and Sashank Reddi. 2021.
Federated composite optimization. In Int. Conf.
on Machine Learning (ICML), volume 139, pages
12253-12266.

Hong Zhang, Ji Liu, Juncheng Jia, Yang Zhou, Huaiyu
Dai, and Dejing Dou. 2022. FedDUAP: Federated
learning with dynamic update and adaptive pruning
using shared data on the server. In Int. Joint Conf. on
Artificial Intelligence (IJCAI), pages 2776-2782.

Qi Zhang, Ling Liu, Kisung Lee, Yang Zhou, Aameek
Singh, Nagapramod Mandagere, Sandeep Gopisetty,
and Gabriel Alatorre. 2014. Improving hadoop ser-
vice provisioning in a geographically distributed
cloud. In IEEE Int. Conf. on Cloud Computing
(CLOUD), pages 432-439.

Qi Zhang, Ling Liu, Yi Ren, Kisung Lee, Yuzhe Tang,
Xu Zhao, and Yang Zhou. 2013. Residency aware
inter-vm communication in virtualized cloud: Perfor-
mance measurement and analysis. In IEEE Int. Conf.
on Cloud Computing (CLOUD), pages 204-211.

Zeru Zhang, Jiayin Jin, Zijie Zhang, Yang Zhou, Xin
Zhao, Jiaxiang Ren, Ji Liu, Lingfei Wu, Ruoming Jin,
and Dejing Dou. 2021. Validating the lottery ticket
hypothesis with inertial manifold theory. Advances

in Neural Information Processing Systems (NeurlPS),

34.

Haodong Zhao, Wei Du, Fangqi Li, Peixuan Li, and
Gongshen Liu. 2023. Fedprompt: Communication-
efficient and privacy-preserving prompt tuning in fed-
erated learning. In IEEE Int. Conf. on Acoustics,
Speech and Signal Processing (ICASSP), pages 1-5.

Xin Zhao, Zeru Zhang, Zijie Zhang, Lingfei Wu, Ji-
ayin Jin, Yang Zhou, Ruoming Jin, Dejing Dou, and
Da Yan. 2021. Expressive 1-lipschitz neural net-
works for robust multiple graph learning against ad-
versarial attacks. In Int. Conf. on Machine Learning
(ICML), pages 12719-12735.

Chendi Zhou, Ji Liu, Juncheng Jia, Jingbo Zhou, Yang
Zhou, Huaiyu Dai, and Dejing Dou. 2022. Efficient
device scheduling with multi-job federated learning.
In AAAI Conf. on Artificial Intelligence (AAAI), pages
9971-9979.

Yang Zhou. 2017. Innovative Mining, Processing, and
Application of Big Graphs. Ph.D. thesis, Georgia
Institute of Technology, Atlanta, GA, USA.

Yang Zhou and Ling Liu. 2013. Social influence based
clustering of heterogeneous information networks. In
ACM SIGKDD Conf. on Knowledge Discovery and
Data Mining (KDD), pages 338-346.

Yang Zhou, Ling Liu, Kisung Lee, Calton Pu, and
Qi Zhang. 2015a. Policy-driven autonomic configu-
ration management for nosql. In ACM Symposium
on High-Performance Parallel and Distributed Com-
puting (HPDC), pages 179—-190.

Yang Zhou, Ling Liu, Kisung Lee, and Qi Zhang. 2015b.
Graphtwist: Fast iterative graph computation with
two-tier optimizations. The VLDB Journal (VLDBJ),
8(11):1262-1273.

Yang Zhou, Sangeetha Seshadri, Lawrence Chiu, and
Ling Liu. 2014. Graphlens: Mining enterprise stor-
age workloads using graph analytics. In IEEE Int.
Congress on Big Data (BigData), pages 1-8.

7884

https://aclanthology.org/2022.naacl-main.403
https://aclanthology.org/2022.naacl-main.403

A Implementation Details

A.1 Adam Update

The original Adam update (Kingma and Ba, 2015)
is shown in Algorithm 3.

Algorithm 3 Adam update

Require:
w'~1: The prompt parameters of the model at
Iteration ¢ — 1
m!~1: The 1% momentum vector at Iteration
t—1
v!~!: The 2% momentum vector at Iteration
t—1
g': The gradients corresponding to w’~
b1, B2: Decay rates for the momentum in
Adam
a: The step size

Ensure:
w': The prompt parameters at Iteration ¢
m?: The 1%! momentum vector at Iteration ¢
v': The 2% momentum vector at Iteration ¢

1

1: mt < Bmt~t 4+ (1 — B¢’
t
2: 1t « 1TB§
30 = v+ (1= B2)(g")?
4: ot 1355
t t—1 mt
50w —w oz(G

A.2 Details for Experimental Setup

The number of global training epochs is set to 100
and that of local training epochs is set to 2. We
utilize the Dirichlet distribution (with 1.0 as the
concentration parameter alpha) to partition the data
into non-IID splits and assign a certain number of
samples to each device according to the Dirichlet
distribution (with 5.0 as the concentration param-
eter alpha). We exploit development sets for the
evaluation of tasks in the GLUE benchmark since
test sets are not labeled. For 4 other datasets, we se-
lect a certain number of samples from the training
set as the development set, and the number of sam-
ples for each label is determined according to its
proportion in the original training set. For datasets
in GLUE benchmark (Wang et al., 2019), we use
their original data splits. For 4 other datasets with
no default splits, we randomly divide the dataset
into train, development, and test sets. The dataset
statistics after the split are shown in Table 13

We set prompt lengths for each method accord-
ing to the original works, i.e., 128 for FedPrompt

and P-tuning v2, 5 for LPT and IDPG, 100 for AT-
TEMPT, and 20 for Prompt tuning. FedPrompt,
Prompt tuning, and ATTEMPT insert prompts be-
fore the transformer layers. P-tuning v2 inserts
prompts to the hidden states for all transformer
layers. IDPG combines these two heuristics and
inserts prompts to either the input or the hidden
states of all layers. LPT searches for the single best
layer by training all the possible positions for each
layer. Similar to P-tuning v2, FedPepTAO inserts
the hidden states for all transformer layers while
the prompt parameters of properly selected layers
are communicated between devices and the server.

B Extra Experiments

B.1 Epochs Required to Achieve the Target
Accuracy

We conducted experiments with the number
of epochs required to achieve the target accu-
racy and the communication overhead to demon-
strate the performance of FedPepTAO on the
RoBERTa; asrge model and 10 tasks. Below are
the average epochs required to achieve the target
accuracy.

Method Epochs
Adapter 30.92
FedPrompt 24.50
P-tuning v2 5.99
Prompt Tuning /
IDPG 40.15
ATTEMPT 39.97
LPT 8.31
MomD 13.98
MomS+AdamD 5.99

~ FedPepTAO 388

Table 6: The average number of epochs required to
achieve the target accuracy (85% for QNLI, 92.5% for
SST-2, 3% for CoLLA, 77% for MRPC, 65% for RTE,
71% for BoolQ, 85% for MPQA, 88% for Subj, 78%
for Trec, 91% for MR) on RoBERTa; argg model. "/"
represents that training does not achieve the target accu-
racy.

From Table 6, we find that FedPepTAO requires
the smallest amount of epochs to achieve the tar-
get accuracy (87.45%, 84.16%, 35.26%, 90.33%,
90.29%, 53.31%, 72.22%, 35.21% faster compared
to Adapter, FedPrompt, P-tuning v2, IDPG, AT-
TEMPT, LPT, MomD, and MomS+AdamD respec-
tively). Prompt Tuning failed to achieve the tar-
get accuracy since it only optimizes the first layer
of soft prompts. FedPepTAO can also reduce the

7885

communication overhead from 40% to 41.55%
(41.55%, 40%, 40%, 40% compared with Adapter,
P-tuning v2, MomD, and MomS+AdamD, respec-
tively) between devices and the server, as illustrated
in Table 7. FedPrompt, Prompt-Tuning, IDPG, AT-
TEMPT, and LPT correspond to lower communi-
cation overhead (up to 13%) since they only select
one layer during tuning, which results in signifi-
cantly inferior accuracy (from 17.02% to 60.8%
lower) compared with FedPepTAO.

Method Time
Adapter 5.80
FedPrompt 3.09
P-tuning v2 5.65
Prompt Tuning 3.00
IDPG 3.09
ATTEMPT 3.16
LPT 3.09
MomD 5.65
MomS+AdamD 5.65
" FedPepTAO 339

Table 7: The communication overhead (s) between de-
vices and the server with ROBERTa; srgg model.

B.2 Impact of server learning rate

Due to the high sensitivity of the hyperparame-
ters in NLP tasks, we investigate the impact of
divers server learning rates on the RTE dataset.
We analyze the accuracy with the learning rates
le72, 5¢73, 1e73, 5e4. As shown in Figure 2,
we find that the best performance was achieved
when [r = 1e~3, which only slightly outperforms
Ir = 5e~4 by 0.37%. This demonstrates that Fed-
PepTAO is easy to fine-tune in practice.

Accuracy
o
o
v

T
40 60
Epoch

Figure 2: The impact of server learning rate.

B.3 Impact of heterogeneous data distribution

To investigate the robustness of our approach to
different degrees of non-IID data, we conduct ex-
periments under various levels of non-IID degrees.
From Figure 3, we observe that the accuracy of
FedPepTAO is the best with « ranging from 1.0
to 5.0. A smaller « represents a higher degree of
heterogeneity. This demonstrates that our approach
is robust to different data heterogeneity.

Accuracy
=
o
G

T
40 60
Epoch

Figure 3: The impact of various heterogeneity degrees.

B.4 Impact of device number

To explore the scalability of our model, we conduct
experiments with divers number of devices, i.e.,
100, 150, and 200. Figure 4 shows the correspond-
ing accuracy on the RTE dataset. The accuracy gap
between the best and worst is only 0.73%, which
demonstrates that FedPepTAO is scalable in FL
settings.

Accuracy
IS
o
G

— M=200

0 20 40 60 80 100
Epoch

Figure 4: Evaluation of divers number of devices.

7886

B.5 Impact of diverse bandwidth

We carry out extra experimentation on two tasks,
i.e., Subj and Trec with modest network band-
width (reduced to 100 times smaller) on the
RoBERTa; srge model. We find that FedPep-
TAO maintains its advantages in this setting, i.e.,
up to 98.71%, 94.75%, 80.61%, 95%, 97.43%,
56.52%, 84.55% faster compared with Adapter,
FedPrompt, P-tuning v2, IDPG, ATTEMPT, LPT,
MomS+AdambD to achieve the target accuracy, as
shown in Table 8.

Method Subj Trec
Adapter 3591 7908
FedPrompt 1333 368
P-tuning v2 361 474
Promtp Tuning / /
IDPG 1401 1345
ATTEMPT 2726 1184
LPT 161 123
MomD / /
MomS+AdamD 453 496
~ FedPepTAO 70 102

Table 8: The tuning time (s) to achieve a target accuracy
(88% for Subj, 78% for Trec) on ROBERTa srgg model.
"/" represents that training does not achieve the target
accuracy.

B.6 Parameter-efficient Prompt Tuning and
random layer selection strategy

In order to clarify the impact of randomness in our
experiments, we conduct three experiments with
random layer selection strategy on RTE dataset.
As shown in Table 9, FedPepTAO outperforms the
random strategy with the accuracy gain of 2.53%,
2.89%, and 3.25% respectively, which demon-
strates the superior performance of our FedPepTAO
method.

Method Seed 42 Acc
FedPepTAO 85.56%
Random 1 83.03%
Random 2 82.67%
Random 3 82.31%
Avgacc gain 2.89%

Table 9: The performance of FedPepTAO and random
layer choosing strategy on RTE dataset.

In addition, in order to further validate the im-
pact of randomness on different datasets, we con-
ducted additional experiments on three datasets
(RTE, MRPC, and CoLA) with three randomly se-
lected seeds (32, 35, and 37) to testify the strength
of our Parameter-efficient Prompt Tuning method.

Tables 10, 11, and 12 exhibit that FedPepTAO out-
performs the random strategy by 2.91%, 4.64%,
and 7.29% on RTE, MRPC, and CoLLA datasets,
respectively. The above experiment results indi-
cate that our FedPepTAO method can achieve sub-
stantial improvement compared with the random
strategy.

Seed 32 Seed 35 Seed 37
Method Acc Acc Acc
FedPepTAO 84.84% 8556% 85.92%
Random 1 82.31% 8231% 82.31%
Random 2 81.59% 8123% 83.39%
Random 3 82.67% 83.03% 83.75%
Avg Acc Gain 2.65% 3.37% 2.77%

Table 10: The performance of FedPepTAO and random
layer choosing strategy on RTE dataset under different
random seeds

Seed 32 Seed 35 Seed 37
LG Acc Acc Acc
FedPepTAO 86.54% 87.09% 86.18%
Random 1 83.09% 81.86% 80.34%
Random 2 82.73% 82.03% 80.54%
Random 3 83.31% 81.83% 81.16%
Avg Acc Gain 3.5% 5.18% 5.5%

Table 11: The performance of FedPepTAO and random
layer choosing strategy on MRPC dataset under differ-
ent random seeds

Seed 32 Seed 35 Seed 37
Method Acc Acc Acc
FedPepTAO 56.94% 58.92% 56.49%
Random 1 46.45% 52.84% 49.58%
Random 2 51.57% 49.84% 45.71%
Random 3 50.77% 53.2% 51.45%
Avg Acc Gain 7.34% 6.96% 7.58%

Table 12: The performance of FedPepTAO and random
layer choosing strategy on CoL A dataset under different
random seeds

We notice an inverse correlation between the per-
formance of our Parameter-efficient Prompt Tuning
(PEPT) method and the average sentence length
of the three datasets. Specifically, PEPT tends to
achieve a smaller performance gain on the datasets
with longer average sentence length, as shown in
Table 14.

A reasonable explanation is that the datasets with
longer average sentence length, such as RTE, often
contain more latent information. More/less latent
information make them easier/more difficult to be

7887

Category Datasets |Train| |Dev| |Test| || Type Labels
SST-2 67349 872 1821 2 sentiment positive, negative
MPQA 7606 1000 2000 2 opinion polarity positive, negative
Single-sentence MR 7662 1000 2000 2 sentiment positive, negative
Subj 7000 1000 2000 2 subjectivity subjective, objective
Trec 4952 500 500 6 question cls. abbr., entity, description, human, loc., num.
CoLA 8551 1043 1063 2 acceptability ~ acceptable, unacceptable
MRPC 3668 408 1725 2 paraphrase equivalent, not equivalent
QNLI 104743 5463 5463 2 NLI entailment, not entailment
Sentence-pair BoolQ 9427 3270 3245 2 QA true, false
RTE 2490 277 3000 2 NLI entailment, not entailment

Table 13: The statistics of datasets evaluated in this work. || is the number for classes.

Dataset Avg sentence length Avg acc gain

RTE 71.91 291%
MRPC 54.95 4.64%
CoLA 16.37 7.29%

) A WWVW'”\“*W
Table 14: Average sentence length and accuracy im- |

provements of FedPepTAO for three datasets.

o
©
o

o
©
S

Accuracy
o o =]
o ~ ~
w o wv

o
o
o

evenly distributed across all transformer layers, re- 0ss — o
. | AdamD
sulting in a relatively equal/diverse contribution - Moms+con
. . . 0.50 1 —— MomD
by each layer during tuning. When different lay- — reong
FedPepTAO

ers contain the similar/dissimilar amount of latent 0 20 40 60 80 100
information, the impact of each unique layer is o

accordingly decreased/increased. Therefore, the gjoyre 6: Evaluation for various optimization methods.
random layer selection results in less/more accu-

racy gain by our PEPT method. The above exper-

iment results demonstrate that our PEPT method

can achieve substantial performance improvement

on different datasets in most experiments.

Accuracy
o
o
S
.

o
n
o]

—— Random

o

%

o
L

Descending

—— Aescending

— FedPepTAO
T

o
'S
gl

0 20 40 60 80 100
Epoch

Figure 5: Evaluation of divers layer selection strategies.

7888

