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Activating non-basal <c + a> slip is essential to enhance the ductility and
formability of Mg alloys at room temperature. To determine favorable dopant
species for lowering the energy barrier of (1011) slip system in Mg alloys, we
trained various machine learning models using a dataset from 106 distinct
elemental species and 29 unique calculations obtained from density functional
theory (DFT). The models, including regression decision trees, random forest,
and linear and polynomial regression, prioritized features affecting the
unstable stacking fault energy (USFE) of the slip system, crucial for activating
non-basal<c + a> slip. A third-degree polynomial regression model was se-
lected for its acceptable accuracy without significant overfitting, enhanced by
Shapley values to determine the most significant features affecting the USFE.
The forces on Mg atoms adjacent to the dopant, the angle formed by adjacent
Mg in relation to the dopant atom, and localized charges on the adjacent atoms
to the dopant emerged as significant for determining the USFE. The predictive
capability of the model was validated using lasso regression, showing accurate
prediction of the USFE values for ternary Mg alloys. Our model provides a
strong baseline system for determining successful alloying combinations to
potentially enhance Mg ductility at room temperature.

INTRODUCTION

The search for lightweight, high-strength struc-
tural materials is one of the major research areas of
materials science today.1 Magnesium (Mg) and Mg-
based alloys have a very high strength-to-weight
ratio but suffer from a significant lack of room
temperature ductility due to the limited activated
non-basal<c + a> slip systems.2,3 Most Mg alloys,
particularly Mg-Al alloys, must be worked at higher
temperatures than similar materials, leading to
increased energy expenditures in their manufactur-
ing process that are undesirable for widespread
applications.4,5 Most efforts to improve the room-
temperature ductility of Mg-based materials focus
on alloying or treatments that stabilize the forma-
tion of pyramidal dislocations, which tend to form
sessile locks after dispersing into the basal (0001)

plane.5–11 These include alloying with rare earth
elements such as ytterbium,12 gadolinium,13 and
lanthanum14 as well as the introduction of nanopar-
ticles through powder metallurgy approaches to
mitigate the limiting mechanical characteristics
inherent to Mg and Mg-based alloys, such as
improving yield stress and increasing tensile
strength through intermetallic formation as well
as changing corrosivity due to the increased poros-
ity of the nanoparticles.15–17 Despite extensive
research, to date, no cost-effective and practical
enhancement technique has been found to allow
widespread adoption of Mg-based materials for
areas such as structural materials, aerospace appli-
cations, and industrial uses.

Experimental research for improving Mg-based
materials is limited because it is relatively expen-
sive and time-consuming compared to computa-
tional techniques.18 As such, extensive
computational research has been conducted on
searching alloying candidates for improving the
mechanical properties of Mg, particularly with(Received March 23, 2024; accepted June 17, 2024)
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density functional theory (DFT) simulations to
identify changes in the stacking fault energies
(SFEs) for the most-active non-basal slip systems
in the (1011) and (1122) slip planes.19–21 Many
studies have been performed for the screening of
dopant elements suitable for improving the ductility
of Mg by lowering the energy barriers for activating
pyramidal slip using DFT simulations,22–24 but
comprehensive analysis of effective dopants has
been more limited by constrained selection of can-
didate elements, particularly for models with more
than one dopant, primarily because of expensive
computational cost and small supercell in DFT.25,26

The application of effective high-throughput screen-
ing methods (HTS) to select ideal dopant candidates
in this manner may require significant computa-
tional resources6 and can also be time-consuming.
Consideration of systems containing multiple
dopant elements further complicates these prob-
lems; an effective solution to these concerns is the
application of machine-learning (ML) methods to
quickly predict suitable dopant elements in lieu of
direct calculation methods.

Machine learning (ML) methods are particularly
valuable in this type of research because of their
ability to provide fast, accurate, and inter-
pretable predictions of related chemical structures
based on existing DFT calculations. Various ML
techniques have been applied to design materials
with desired properties27,28 and to develop new
catalysts.29,30 Notably, methods such as polynomial
regression, ridge regression, and support vector
regression have been extensively used to study
multi-element and disorder-containing alloys.31–35

For instance, ridge regression using the L2 norm
has been employed to predict the energetics and
kinetics of Cr atoms in Fe-Ni-Cr alloys, considering
local electronegativity and atomic packing environ-
ments.31 Additionally, XGBoost has been effec-
tively utilized to predict promising intermetallic
compounds that can suppress the corrosion catho-
dic reaction in Mg alloys by reducing hydrogen
adsorption energy, achieving a mean absolute error
(MAE) of 0.196 eV.32 Moreover, the stacking fault
energies (SFEs) of alloys have been explored using
ML methods combined with DFT simulations.33,34

For example, Gaussian process regression (GPR)
with an MAE< 8 mJ/m2 was used to predict the
SFEs of dilute FCC-based alloys, including Al-, Ni-,
and Pt-based alloys.33 Among 49 elemental fea-
tures, the covalent radius, followed by the elec-
tronic structure, plays a significant role in
regulating SFEs.33

Here, we target the prediction of the unsta-
ble stacking fault energies (USFE) in the general
stacking fault energies surface (GSFES) for corre-
lating dopants with potential increases in the
probability of activating non-basal <c + a> slip in
Mg alloys.35 Creating effective ML models requires
a significant number of initial calculations for the

construction of an effective dataset for training the
model along with appropriate model selection.36–41

Due to the limited pool of useful dopant elements for
industrial (low cost, relatively non-toxic, capable of
alloying, etc.), this means that careful feature
selection and comprehensive DFT analysis of sin-
gle-element dopants for the most relevant slip
systems is required to train a model for the predic-
tion of systems with multiple dopant elements.
Additionally, the complexity of ternary doping sys-
tems in Mg must be carefully considered (most
effective doping sites, feature determination with
multiple dopants, etc.).

In this work, we trained a variety of ML models
using a DFT-calculated dataset of properties from
106 distinct dopant elements in the Mg (1011) slip
plane to determine the most effective ML model for
this particular problem. A trained polynomial
regression model was determined to be most effec-
tive from which important features from a pool of 29
total features to aid in interpreting the physical
meaning behind the predicted most suitable species
for improving the activation of non-basal <c + a>
slip systems. A further adaptation of the model
using polynomial regression with lasso regulariza-
tion techniques was used to predict the USFE for
various ternary alloys containing two dopants
selected from the previously determined most suit-
able candidates26 to a high degree of accuracy
compared to the DFT-determined values (within
10%). This model can be improved for use with a
wide variety of alloy systems in future studies for
determining suitable dopant combinations to
improve the activation of non-basal <c + a> slip
systems using a similarly determined initial feature
set from DFT calculations.

COMPUTATIONAL METHODS

ML Models

Several machine learning models were trained
using the data set derived from DFT and litera-
ture,26,42,43 including decision tree, random forest,
and both linear and polynomial regression. The
decision tree and random forest models were pre-
pared using the regression decision tree implemen-
tation and random forest classifier implementation
of sklearn,44 respectively. These models were cre-
ated using random splitter criteria and a train-test
splitting of the data set of 90-10. Initial feature
importance evaluation was prepared using sklearn
and XGBoost45 and required a larger train-test split
of 80-20 for satisfactory results in conjunction with
the gradient boosting feature importance calcula-
tion technique. This feature involves two primary
calculation methods: gain, which uses the averaged
relative contribution of each feature to the decision
tree model from the native xgboost implementation
and permutation feature importance using sklearn
integration in which features are weighted in
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importance after randomization based on their
impact on the model across many iterations. Next,
linear and polynomial regression models were
trained for the purpose of predicting the USFE in
ternary systems using the sklearn implementation
using the features directly as input. We then used
principal component analysis (PCA)46,47 to generate
a suitable set of principle components to simplify
the model by reducing dimensionality as well as
determine collinearity trends among the feature
types (charge, element-specific, angles and dis-
tances, etc.) used in the model. Hyperparameters
were optimized using the grid-search approach with
five-fold cross validation46 and were conducted for
all relevant combinations of hyperparameters in the
regression models to determine the optimal config-
uration for the lowest root mean squared error
(RMSE) results and optimized R2 value. Additional
consideration was given to the issue of overfitting in
the higher-order polynomial regression models
using our complex data set by limiting the degree
of the polynomial to fifth or lower; higher degrees
were found to result in significant overfitting to
outliers in the data set even with the inclusion of
regularization terms and thus rendered the model
less useful for predicting the USFE. Significant
improvements in model accuracy were obtained
with a combination of lower-order polynomial
regression in conjunction with regularization meth-
ods compared to higher-order polynomials. The
error calculation method can be found in the online
Supplementary Materials.

Polynomial Regression

Features were pre-processed to standardize the
variance of each feature to a mean of near-zero
and a standard deviation of one, to homogenize
the disparate feature values for use in both linear
and polynomial regression model, and to ensure a
more regular distribution of the data set while
preventing significantly larger values correspond-
ing to certain features from affecting the accuracy
of the regression model. Models were prepared
using PCA to reduce the number of input features
while still using the full 29 feature data set. A
hyperparameter search found that PCA-enabled
polynomial regression using a third-degree poly-
nomial with 14 principal components (PCs) pro-
vided the lowest RMSE and thus most accurate
predictions. Finally, Shapley values were calcu-
lated using the SHAP implementation46 and
assigned to the PCs to determine the most signif-
icant combinations of features for affecting the
USFE, which correlates with a change in ductility
for the Mg alloys.

Ridge and Lasso Regression

After initial predictions of the USFE values for
ternary systems were made using the trained
polynomial regression model, it was further refined

usinh lasso47/ridge47 regularization modifiers using
their native implementation in sklearn. Lasso
regression alters the regression model by introduc-
ing a term representing the absolute weight of each
feature (commonly known as the L1-penalty or L1-
norm), while ridge regression introduces a similar
term representing the squared weight of the fea-
tures (known as the L2-penalty or L2-norm). In both
methods, a hyperparameter denoted by alpha was
used to determine the strength of the regulariza-
tion, such that alpha equals 0 is equivalent to no
regularization. Thus, a final grid search was per-
formed to find the optimized alpha terms for each
model. Lasso regression was found to be unsuit-
able for use because of its well-known issues with
datasets that are highly collinear, such as ours, and
provided minimal improvement in the accuracy of
the predicted USFE for ternary systems compared
to the calculated DFT values. However, ridge
regression using an alpha parameter of 5.2 pro-
duced an average increase in accuracy of 2.4% for
predicted USFE values compared to those from
ordinary polynomial regression.

DFT Methods

The VASP periodic code48,49 was utilized to con-
duct all DFT simulations. The electronic exchange-
correlation interaction was described using the
Perdew-Burke-Ernzerhof (PBE)50 functional’s gen-
eralized gradient approximation (GGA). The core-
valence interaction was represented using the pro-
jector augmented-wave (PAW) method.51 The self-
consistent field and geometry optimization conver-
gence criteria were set to 10�5 eV and 10�2 eV/Å,
respectively. The plane-wave expansion’s energy
cutoff was set at 500 eV. The Kohn-Sham energies
were sampled across the Brillouin zone using a
3 9 7 9 1 Monkhorst-Pack grid scheme for (1011Þ,
respectively.

Based on our previous DFT simulations,26 doping
different elements at these two sites leads to
different effects on USFE values. Particularly, for
the most promising candidates (Te, Bi, Sb, Pb, and
Tl), which exhibit the lowest USFE values among
all possible dopants, we found that their USFE
values at both sites are lower than those of pure Mg.
Additionally, the USFE is lower at site 1 compared
to site 2 (Fig. 1), suggesting that site 1 might be the
more plausible site for unstable stacking faults
structures. In addition to the data from our previous
work,26 we further incorporated the ternary sys-
tems (with two doping elements) also into our
calculations to validate the effectiveness of our ML
model. We first constructed slab models for the
(1011) plane. Particularly, the model of (1011) plane
was obtained by orientating the unit cell along
[1210] (a axis) and [1123] (b axis) directions. A
vacuum of 20 Å in the z direction was incorporated
to minimize potential interactions among the repli-
cated images. A 2 9 2 9 1 supercell slab model was

Machine Learning-Driven Identification of Favorable Dopants for Activating Non-basal
<c + a> Slip in Mg Alloys



created, leading to the models comprising 80 atoms
for the (1011) plane. This is a configuration analo-
gous to our binary-doped structures depicted in
Fig. 1. Subsequently, two Mg atoms in close prox-
imity to the stacking fault plane were replaced by
doped elements to form the ternary structures. For
the (1011) plane, two distinct atomic sites exist
within stacking fault plane (as illustrated in Fig. 1),
indicating two potential doping sites. Hence, we
scrutinized all attributes and GSFE values of
structures integrating two dopant elements at both
sites.

The data set used in this study consists of DFT-
derived values for structures representing the
(1011) slip system in Mg alloy containing a single
dopant of another element. Two optimal potential
doping sites were determined in previous work,26

and features were determined from both the ‘‘per-
fect’’ system with no stacking fault (SF) and the
unstable stacking fault (USF) configuration for both
dopant locations (shown in Fig. 1, above). For the
106 distinct dopant species analyzed with DFT
techniques, data for 29 distinct features relating to
the position, bond angles, elemental attributes of
the dopant (atomic mass, electronegativity, atomic
radius, etc.), forces (in x, y and z directions), and
charges on the dopants and adjacent Mg atoms were
determined as well as the unstable stacking fault
energy (USFE) for each dopant species in each
system. To determine the Mulliken charge for all
Mg alloys, the crystal orbital Hamilton population
(COHP)52 implemented in the LOBSTER package53

was employed. The DFT-derived dataset for both
binary and ternary-systems used in developing the
ML model can be found in Supplementary
Materials.

RESULTS AND DISCUSSION

Our initial efforts in creating a ML prediction of
useful features for determining the effect of ele-
ments on improving activation of non-basal
<c + a> slip of Mg alloy using DFT-derived data
focused on simple classification methods that are
capable of directly determining feature importance.
This was decided because of the limited size of our
data set; a small data set is highly prone to
overfitting with most common ML techniques.
These included decision tree regression and random
forest classification using the sklearn implementa-
tion, both of which are straightforward techniques
well suited for complex data sets of intermediate
size. A standardized 90/10 randomized train-test
split for the data set was used in both models with
the USFE as the predicted (y) value and the other
features as the predictor (x) values across many
iterations using different randomization states
employed to ensure effects relating to the small size
of the data set were minimized.

Interestingly, several key features were identified
by both models, including the bond angle between
Mg-32, the dopant and Mg-10, the charges on Mg-31
and Mg-10, and the distance between Mg-31 and the
dopant in both studied dopant positions for the
(1011) slip system. The positions of these Mg atoms
and dopants can be found in Fig. 1. A simplified
representation of the decision tree model is shown
in Fig. 2. The relative simplicity of the models
coupled with high RMSE values (averaging 29% in
the random forest model and 34% in the decision
tree model), however, indicated the unsuitability of
these methods for analyzing this data set. Addition-
ally, high variance between randomization states
indicated that significant overfitting was occurring.

Fig. 1. The (1011) slip system in Mg metal. Two optimal dopant sites were studied using DFT methods in the original work, from which the data
set of 106 tested dopant elements with 29 features of interest is derived relating to the forces, charges, bond angles, bond distances, and
attributes of the dopant elements relative to the adjacent Mg atoms.
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Further development of a suitable ML model for
evaluating the doped Mg system was directed
towards the use of regression methods.

The next step in our model development was
fitting the dataset to regression-based models to
combat the limiting characteristics encountered in
the previous models. Considering a combination of
simple linear regression models and more complex
polynomial regression models, polynomial regres-
sion was found to be more suitable at interpreting
the relatively complex data set. This was expected,
as the 29 initial features ranging from atomic
characteristics inherent to the element to DFT-
derived features are understood to encompass many
non-linear relationships which are more easily
expressed through a polynomial regression model.

SHAP values are a method of assigning local
feature importance that is unscaled by weights
inherent to the model type they are applied to,
allowing the importance of specific features to be
calculated independently for each element in rela-
tion to the whole model. To this end, SHAP values
were calculated using an initial polynomial regres-
sion model of a low degree (£ 4) to help mitigate
overfitting issues and all 29 initial features in the
dataset to determine the most-relevant features so
that we may better understand the relation these
features have with USFE in the doped Mg system.
Figure 3 shows the calculated SHAP values, indi-
cating contrasting results to those of the decision
tree model. The ten most important features are
displayed in Fig. 3. A larger variance in SHAP
values indicates a more significant feature in the
model. Specifically, the atomic forces on Mg 31, Mg
29, and Mg10, which are near the dopant, play a

dominant role in the polynomial regression model.
In contrast, the charge of the dopant, atomic radius,
atomic distance between the dopant and Mg 29, and
angles are much less important compared to the top
five force features. Overall, bond angle 1 (shown in
Fig. 1) and the atomic forces acting on adjacent Mg
atoms to the dopant were found to be significant
along with the related distances relative to the
dopant. Interestingly, in the polynomial regression
model the removal of the charge-related features
and retraining of the model were both found to
significantly affect the accuracy of the model as well
as the ordering of the feature importance. In the
absence of the charge terms, the atomic distance of

Fig. 2. Root mean squared error (RMSE) regression decision tree results. The root node is determined using the highest RMSE feature as the
‘most important feature’ for classifying the data set. Subsequent ‘important’ branching nodes are implemented according to the algorithm,
resulting in the decision tree. The feature name, criterion for the node, mean squared error, number of samples passing the node, and importance
value are shown on each node. The tree pictured is simplified for the sake of clarity. Darker shading for nodes indicates lower RMSE for features
classified under that node.

Fig. 3. Calculated SHAP values for the most-relevant (largest
variance in SHAP value) features using a polynomial regression
model.
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the adjacent Mg atoms was found to significantly
increase in importance while the two significant
angles relevant to the doping position decreased in
importance. This indicates a strong non-linear
relationship between the charge terms and the
other relevant features for selecting a suitable duc-
tility-enhancing candidate. However, incorporating
nonlinear and interaction terms using all of the 29
original features in polynomial forms will create too
many features; it is thus important to reduce the
dimensionality of the problem. One way to reduce
the dimensionality is to remove features based on
the SHAP values of the features. However, this
approach creates an arbitrary cutoff to choose from
the original features that could lead to artificial
errors. Rather than reducing dimensionality arbi-
trarily using the SHAP values, we leveraged PCA to
choose different linear combinations of features so
that even features with small SHAP values could be
incorporated into the ML model.

The use of feature scaling (with mean of near-zero
and standard deviation of one) to employ PCA for
generating PCs to simplify the initial feature
assortment into a reduced number of ‘effective
features’ was thus determined to be a suitable next
course of action. After limited initial testing, the use
of 10 PCs was found to capture � 93% of the total
variance of the data set, while increasing to 20 PCs
was found to capture 99.8% of the variance. A grid
search to find the optimized hyperparameters for
sklearn’s linear regression, polynomial regression,
lasso regression, and ridge regression using both
linear/polynomial regression models was then
employed; the hyperparameters considered were
the models themselves in addition to the total
number of PCs produced by PCA on the data set
as well as the polynomial degree in polynomial
models, normalization status in linear regression,
and alpha modifier for lasso regression. PCs from 1
to 24 were considered (�37% to 99.96% of total data
set variance captured) for the grid search across
many initial randomized states to ensure unbiased
results, while polynomial degrees for relevant model
options were limited to 4 or below as higher degrees
were found to significantly overfit the model in
preliminary testing. Additionally, alpha selection
ranging from 0.001 to 100.0 was used for lasso
regression optimization, and alpha selection rang-
ing from 0.1 to 10 was used for ridge regression
optimization. Five-fold cross validation was
employed for the grid search. Overall, the removal
of charge-related features and retraining signifi-
cantly affected the accuracy and feature importance
order in the polynomial regression model. Without
charge terms, the importance of the atomic distance
of adjacent Mg atoms increased, while significant
angles decreased, indicating a non-linear relation-
ship between charge and other features. PCA was
deemed suitable for simplifying the model, reducing
the feature set to 29 without compromising integ-
rity. Using PCA, 10 PCs captured � 93% variance,

and 20 PCs captured 99.8%. In various regression
models, considering PCs and a small polynomial
degree (£ 4) improves accuracy and helps in
addressing overfitting in our ML models.

The results of the grid search indicated that lasso
regression was unfavorable, as the smallest alpha
score possible was always selected during the grid
search as the favorable hyperparameter. This indi-
cates some co-reliance between PCs/features in the
data set that is poorly interpreted by regularization
terms in lasso regression models. Likewise, poor R2

correlation values for standard linear regression
were obtained using the optimized hyperparameter
combination suggested; relatively good results were
found instead for the polynomial regression and
ridge regression methods. A comparison of the
predicted USFE values in polynomial regression,
polynomial regression with ridge regression, and
polynomial regression with lasso regression is
shown in Fig. 4. The abbreviated results of the grid
search for the polynomial regression implementa-
tion in sklearn are shown in Table I below; using the
optimized combination of hyperparameters in a
modified polynomial regression model resulted in
an average test RMSE of 4.49 score with a R2 value
of 0.93. We thus concluded that polynomial regres-
sion performed with 10-18 PCs using a third-degree
polynomial with normalization produces optimal
results for this model. The entirety of the principal
components data found in Table I is shown in
Supplementary Table SI. Notably, some smaller
errors for polynomial regression may come with a
limited testing data pool.

To test the applicability of the now-trained model,
DFT data from select ternary systems including
dopants chosen from the most suitable for

Fig. 4. Comparison of model accuracy for six selected doped system
predictions. The blue bar represents the unaltered polynomial
regression model with n = 3 and #pc = 14, while the green bar
represents the same model with ridge regression (alpha = 5.2) and
the red bar represents the same model with lasso regression
(alpha = 0.001); the optimal parameters were determined from
hyperparameter optimization (Color figure online).
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increasing ductility in previous works23,44 were
tested in the model to predict the USFE. The
ternary system provided several unique challenges
for feature selection; with two distinct dopants the
selection of doping position for the features that rely
on the doping position (distances, element-specific
features such as atomic mass, charges on the dopant
and adjacent Mg atoms, etc.) was found to create a
significant difference in the accuracy of the pre-
dicted USFE. Selection of all relevant features
based on the central doping position (site 1 in
Fig. 5) for the Mg system resulted in increased
accuracy compared to selecting features based on
the secondary doping position (shown in Fig. 5 as
site 2). Therefore, we consider doping site 1 (Fig. 5)

as the primary site in our model, and all features
are based on the dopant in site 1. Notably, site 2 is
one of the nearest neighbors of site 1, and the
features of the second dopants (e.g., mass, charge,
etc.) can be included in our model. Decent accuracy
was obtained using the previously described poly-
nomial regression model (n = 3 and #pc = 14); to
increase the accuracy of the predictions, ridge
regularization was used with an alpha parameter
of 5.2 to significantly increase the accuracy of
predictions for the selected ternary-doping systems.
The predicted USFE values are shown in Table II
below with comparison to their DFT-calculated
USFE.

As shown in Table II, accurate prediction of the
DFT-calculated USFE values using the ML model is
limited; certain combinations of dopants are accu-
rately predicted to be within a fraction of a percent-
age difference from the DFT value while others vary
by up to 13.58%. The single high-error ternary-
doping combination tested was Ca-Bi-Mg, for which
the immediate reasons behind its deviance from the
other ternary combinations are unclear. Other
combinations including large-sized dopants in the
interior doping position (such as Bi, Ca and Pb) are
uncorrelated with the prediction error, as well as
systems having an elevated charge disparity
between adjacent Mg atoms. Similarly, the differ-
ences in the primary and secondary angles (shown
in Fig. 1 as Angle 1 and Angle 2) seem not to
correlate to the prediction accuracy. However, a
discrepancy in the forces acting on the primary
dopant (the dopant located in the central position in
the model), as illustrated in Fig. 5, in the x direction
(or the slip direction) seems to indicate that species
with the lowest atomic force results in the highest
calculated error relative to the DFT prediction for
that dopant combination. This indicates that the
polynomial regression model with ridge regression
parameters is influenced by the force terms in the
features, with a more-complicated relationship to
the other features that may be difficult to directly
explain. Further testing using DFT data from other

Fig. 5. Representation of primary dopant position (1, pink) and
secondary dopant (2, black) in the (1011) computational model.
Feature selection for relevant features (element-specific, adjacent
Mg distances and charges, primary and secondary angle, atomic
forces) is determined relative to the dopant position 1 for ML model
(Color figure online).

Table I. Grid search results for polynomial regression using the Mg ductility data set. Full results are
available in Supplementary Table SI

#
PCs

Training
RMSE

Polynomial degree/
normalization

Dataset variance captured
(%)

Test
RMSE

R2

value

1 24.35 2, False 37.0 19.14 � 0.1
2 18.49 3, True 51.1 26.72 0.13
3 14.14 2, False 64.7 15.71 0.23
13 0 3, True 97.2 9.99 0.69
14 0 3, True 97.9 5.64 0.90
15 0 3, True 98.6 5.82 0.89
16 0 3, True 99.0 6.23 0.88
21 0 2, False 99.9 14.59 0.34
22 0 2, False 99.9 13.79 0.41
24 0 2, False 99.9 13.76 0.42
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dopant combinations in Mg may help illuminate the
cause of the error discrepancy for the model in the
future.

CONCLUSION

Improving the ductility of Mg using elemental
dopants is a key area of computational research to
eliminate the high-cost and time-consuming exper-
imental methods necessary for direct testing of
these systems. The implementation of machine
learning methods, such as those described in this
work, can help simplify the tremendous computa-
tional resource consumption required for calculat-
ing the necessary parameters using methods such
as DFT by reducing the number of calculations
required to those needed for constructing a suit-
able training dataset. Through predictions with the
prepared machine learning model, suitable ternary-
doped systems for full DFT analysis can be pin-
pointed out of the multitude of combinations from
previously identified binary-doped candidates, thus
saving considerable time and resources from doing
blanket direct calculations. We find that polynomial
regression models using regularization techniques
produce reasonably accurate USFE predictions in
most cases in the (1011) slip system most likely to
produce pyramidal slip in the Mg system beneficial
to improving ductility. Additionally, we find the
charge on adjacent Mg atoms to the dopant species
and their relative distances from the dopant play
important roles in the ML model’s predictions,
indicating a necessary base level of features
required for the training data set. This type of ML
model can be further refined and used for similar
ductility-enhancing research to determine suit-
able alloy combinations for other metals in the
future.
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