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Abstract—Sparse Matrix Multiplication (SpMM) is a crucial
algorithm in modern platforms such as Artificial Intelligence (AI),
Graph Neural Network (GNN), Graph Convolutional Network
(GCN), and neural network image processing. However, the
performance of SpMM is limited by several factors, such as
memory storage, data reuse, I/O traffic, and memory access. To
address these challenges, we have developed a dynamic memory
allocation method called EMBARK, specifically including a new
Compressed Sparse Row (CSR) x Compressed Sparse Column
(CSC) matrix multiplication algorithm that reduces significant
matrix decompression/compression overhead and optimizes stor-
age allocation.

Our CSRxCSC algorithm is based on memory partitioning
techniques: EMBARK, values, and rowid are together, and
colptr is stored separately in the main memory. To improve
the performance of our algorithm, the main memory is utilized
to store hot data for values, colid, and rowid, while the Non-
volatile Memory (NVM) stores partial hot data based on a rank-
based page replacement strategy. We have conducted experiments
with SuiteSparse matrix real datasets, and our results show
CSRxCSC-EMBARK reduced the execution time average by
46.44% compared to the baseline matrix-by-matrix multiplication
(MxM).

Index Terms—Sparse Matrix Multiplication, Compressed
Sparse Row, Compressed Sparse Column, Non-volatile Memory,
Memory Allocation

I. INTRODUCTION

Sparse Matrix-Matrix Multiplication (SpMM) is a special-
ized multiplication operation where both matrices predomi-
nantly contain zeros as opposed to non-zero elements [28].
This operation has significant applications in graph algorithms,
graph sampling, Graph Neural Networks (GNN), which in-
cludes Graph Convolutional Networks (GCN), neural network
image processing [3], [17], [22], and the transformer architec-
ture [31]. Within Transformer models, which are foundational
to many current deep learning approaches [31], SpMM is
instrumental. It facilitates the self-attention mechanism by
determining attention scores between different inputs through
the dot product of their respective embeddings [12].

In scenarios with limited system memory, out-of-core exe-
cution of SpMM is essential. This means that the computation
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is performed beyond the scope of the primary memory (RAM),
utilizing secondary storage devices like hard disk drives or
solid-state drives [16]. Such an approach becomes critical
when working with expansive datasets or models that surpass
the system’s RAM capacity [13]. Enhancing the efficiency
of the Compressed Sparse Row (CSR) format by discarding
zero values and retaining only the non-zero ones has been
previously explored. This enhancement typically relies on
three components: values, colid, and rowid [32]. Fundamen-
tally, SpMM is integral to a plethora of scientific and high-
performance computing tasks.

Non-volatile memory products, particularly ultra-low la-
tency NAND Flash-based Solid State Drives (SSDs), have
emerged as promising candidates for constructing a unified
memory-storage hierarchy (UMH) [1], [34], or hybrid memory
— namely DRAM combined with storage class memory ar-
chitecture [9], [20], [33], or extended persistent memory [10].
The UMH renders a single ample memory address space
for all memories. As a result, the processors can directly
access structured data in SSDs and eliminate implicit bulk
data copy/swap between devices. Such UMH could mitigate
the data movement between NVM and DRAM. However,
the translation layer in the memory controller imposes non-
negligible memory address mapping overhead.

To address these challenges, we introduce EMBARK, a
dynamic memory allocation method. The idea is to allocate
CSR and CSC matrices of data and positioning information
at runtime according to the dynamic matrix multiplication
flow. Hence it can make good use of spatial locality to
avoid unnecessary page faults, reduce I/O traffic and expe-
dite computation. Central to EMBARK, we implemented a
CSR xCSC multiplication algorithm to reduce the overhead of
decompression/compression for large matrices. Intuitively, we
improve the execution time without reconstructing the original
matrixes on the fly and, therefore reduce the total number
of a pair of matrix element multiply operations. However,
the CSR format is bottlenecked by data reuse and memory
utilization [14] [6]. The main reason is that accessing data and
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positioning information in different orders from two memory
hierarchy levels, compromised fast DRAM and slow Non-
Volatile Memory (NVM), can lead to various non-negligible
delays. We proposed a storage optimization for NVM and
partition theme in the main memory to overcome these issues.
Our baseline employs a straightforward matrix multiplication,
which allocates matrix A and matrix B, with row-wise data
uniformly stored in the main memory. However, this approach
incurs non-negligible I/O traffic, resulting from non-sequential
data access of matrix B in the main memory. This is especially
true in frequent and repeated large matrix multiplications,
where out-of-core hot data (i. e., frequently accessed data)
are stored in the NVM storage but continuously retrieved by
the main memory for reusing the matrix B data in the matrix
multiplication. As a result, memory utilization between NVM
and main memory could be overwhelmed.
We develop an enhanced dynamic memory allocation
method in EMBARK to minimize I/O traffic between NVM
storage and main memory-DRAM by saving CSR A and
CSC B values, colid and rowid in separate memory blocks.
In this method, we minimize the CSR A data storage and
maximize CSC B data storage for an extended instruction
period, ensuring that all requisite matrix elements for the
impending matrix multiplication are retained within the main
memory. CSR A undertakes row-wise multiplication across the
expansive columns of CSC B. For matrices that are sizable and
cannot be accommodated within the main memory’s capacity,
we judiciously allocate the data and positional information for
matrices A and B across separate memory divisions to suit
the ensuing vector multiplication. This translates to storing
the values, colid, and rowid of two CSR matrix formats in
disparate segments of DRAM and NVRAM. By adopting this
strategy, we harness the spatial locality inherent in broad
matrix access, aligning the data flow with computational
instructions. To gauge the efficacy in terms of performance and
memory access, we subjected our approach to comprehensive
system cycle-level simulations using GEM5 [7]. The results of
our simulated experiments revealed that EMBARK enhances
storage efficiency and trims memory access, culminating in a
46.44% reduction in matrix multiplication execution time. In
essence, our proposed mechanism diminishes I/O interactions
between NVM storage and DRAM, streamlining storage and
memory access for more agile computations.
It is worth noting that the Processing-In-Memory (PIM)
architecture [2] can be integrated with our EMBARK memory
controller to reduce data movement further. However, it is not
fully commercialized. This paper focuses on general archi-
tecture and does not consider the PIM architecture. We solely
concentrate on memory utilization in the main memory and the
EMBARK memory controller for CSRxCSC multiplication.
Our contributions can be summarized as follows:
o We developed an algorithm for CSR x CSC multiplication
(Algorithm 1).

o We explored and determined the optimal memory allo-
cation for CSR A and CSC B to maximize memory
utilization based on rank based page replacement strategy
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« We introduced the EMBARK memory management sys-
tem, which aims to minimize data movement between
DRAM and NVM and exploits fast memory access for
SpMM computation.

II. BACKGROUND AND MOTIVATION

The use of graph algorithms and GNNs in real-world
applications has increased significantly over the years [22] [17]
[35]. However, processing large graph datasets has become
a challenge due to their size and sparsity [27]. SpMM is a
fundamental operation in many transformer modules, graph
algorithms, and GNNs. It requires high memory capacity and
storage [18]. To address this issue, CSR and CSC formats were
introduced to reduce the data elements needed to represent
the original sparse matrix. The advantage of CSR and CSC
formats is that they reduce storage and memory requirements,
especially when the sparsity rate is high. Decompression, on
the other hand, involves restoring this compactly stored matrix
back to its original or a usable format for computational tasks.
This two-step process ensures efficient use of storage space
without compromising the ability to perform matrix operations
when needed.

Although current optimization studies focus on CSR xDense
or DensexDense matrix multiplication, we studied and im-
plemented CSRxCSC multiplication to reduce the decom-
pression/compression overhead. However, large CSRxCSC
multiplication faces the challenge of data reuse and LLC
performance issues due to constant memory replacement in
CSC B. To improve performance, we implemented the EM-
BARK memory manager for hybrid memory that partitions
and utilizes memory system access for CSRxCSC multiplica-
tion. The EMBARK memory controller with the SpMM data
controller is responsible for allocating hot data into the main
memory from NVM for SpMM. We explored the performance
and memory access using the gem5 full system simulation [7].
The results are shown in Section VII.

I1II. CSRxCSC AND CSR MULTIPLICATION

The CSR and CSC compression techniques represent non-
zero elements using three formats: values, colid, and rowid.
In the CSR format, the values signifies the value elements of
the matrix, the colid indicates the column numbers of non-
zero elements, and the rowptr points to the starting value of
each row. Conversely, in the CSC format, the values denote
the dense elements of the matrix, the rowid indicates the row
numbers of non-zero elements, and the colptr points to the
starting value of each column. Fig. 1 illustrates the CSR and
CSC formats for the two matrices.

In an effort to minimize decompression and compression
overhead, we implemented CSRxCSC multiplication. The
multiplication of matrix A in CSR format with matrix B in
CSC format is depicted in Algorithm 1. For matrix A in
CSR format, all requisite data for computation are sequentially
arrayed; similarly, data access in CSC B is sequential. This
presents a distinct advantage of CSR xCSC multiplication over
traditional matrix multiplication or CSRxCSR multiplication.
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(a) Sparse Matrix A

matrix position. This is achieved by using the floor division
method to determine the row and column indices for the non-
zero element based on j, a unique identifier for every non-
zero element. Equation 2 computes the column index for the
non-zero element corresponding to j. This index is crucial
for accessing and manipulating values efficiently in sparse
matrices, as column positions give insights about the structure
of data in matrix operations. Equation 3 is the calculation
of a row pointer or index for a specific row. This index
essentially acts as a marker, pointing to the beginning of each
row in the compressed data structure. It plays a pivotal role
in navigating through the matrix, especially during operations
that necessitate row-wise traversals.

Algorithm 1 CSRxCSC multiplication

Value | boz | bos [bo | biz | b2 | bai
boz bos CSR Column id 2 (3 (0of2]3 1

b1o b12 Rowpointer | 0 [ 2|4 |5
b23 Value bio | bs1 | boz | b1z | bos | bas
csc Row id T3 of1r]o |2

b31
Columnpointer | 0 | 1 |2 | 4
(b) Sparse Matrix B

Fig. 1: Compressed format of matrix A and matrix B.

The sequential nature of memory access for CSRxCSC mul-
tiplication is illustrated in Fig. 2. Conversely, Fig. 3 displays
the non-sequential data access pattern inherent to CSRxCSR
multiplication.
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Fig. 2: CSR x CSC multiplication
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Fig. 3: CSR x CSR multiplication
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To identify the given position of a CSR matrix when
CSR A colid is equal to CSC B rowid, we derived three
equations for values, colid, and rowid. These equations are
represented by notation: j for iteration and N for the number
of columns. Equation 1 calculates the value at a specific

1: for i =0 to A_array_size — 1 do

2 for j =0 to B_array_size — 1 do

3 if A_coltp[i] == B_rowptrtp[j] then
4: C_valtp.push_back(A_valtpli] * B_valtp[j])
5: C_coltp = B_coltp[j]

6 C_rowtp = A_rowptrtpli]

7 end if

8 end for

9: end for

10: if C'_valtp # 0 then

11:  for i =0 to C_valtp_size — 1 do

12: add_C'_val+ = C_valtpli]

13:  end for

14:  C_val.push_back(add_C"_val)

15:  C_col.push_back(C_coltp)

16:  C_row.push_back(C_rowtp)

17: end if=0

IV. MEMORY ALLOCATION FOR CSR AND CSC
MATRICES

In this section, we discussed the limitations of memory
allocation for CSR and CSC formats. Furthermore, we propose
a dynamic memory allocation technique tailored for these
matrix representations.

A. Limitation of memory allocation for CSR matrices

Memory allocation stands as a pivotal component in the
optimization of programs, with the compiler and the memory
controller being instrumental in this endeavor [29] [21] [19].
Nevertheless, compilers often face challenges in efficaciously
allocating data within the main memory. Fig. 4 illustrates
general memory allocation for CSR A and CSC B, detailing
how the compiler and main memory apportion memory to the
values, colid, and rowptr arrays.

To refine memory partitioning, thereby diminishing cycle
access and I/O traffic between DRAM and NVM, it is
paramount to account for the capacity and bandwidth restric-
tions of the main memory, particularly when manipulating
expansive, sparse matrices in the CSR format. As illustrated in
Algorithm 1 for CSRxCSC multiplication, the initial row of
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CSR A necessitates multiplication with every column of matrix
B. Yet, when confronted with an expansive matrix, the bulk
of the column data for matrix B might not be accommodated
in the main memory, leading to performance bottlenecks due
to heightened cycle access and 1/O traffic.

B. Proposed memory allocation for CSR and CSC

To mitigate these challenges, it’s essential to optimize and
partition the data slated for storage in the main memory.
As illustrated in Fig. 2, for CSR A, only a single row
needs to be held in the main memory at a time, and this
remains true until all column accesses in CSC B are finished.
This data access pattern can be harnessed to refine memory
partitioning, facilitating more rapid computation. Achieving
this necessitates the efficient collaboration of the memory
controller and the EMBARK memory management system.

Furthermore, when addressing the dilemma of CSC B’s
data not being accommodated within the main memory’s hot
data, we have enhanced our approach. Given the data-intensive
nature of this situation, there’s a pronounced need for advanced
job scheduling by the EMBARK memory controller to oversee
the data transfer between the main memory and the NVM.

DRAM

SR

FeeEEE=e et
st

Fig. 4: General memory allocation for CSR A and CSC B

To diminish I/O access, we introduce a dynamic memory
partitioning strategy for CSR A and CSC B, depicted in Fig.
5. Our method allocates the least amount of row-wise data
from CSR A in memory, ensuring more available space for
the column-wise data of CSC B within the main memory. The
memory requirement for CSR A is contingent upon matrix
A’s sparsity rate and the maximum number of dense elements
in each row. Subsequent data can be stored in the NVM or
secondary storage, keeping it there until the multiplication
for each row with all of CSR B’s columns is finalized for
a particular cycle.

11

Allocating the least amount of data for row-wise
data needed to be stored in the main memory for matrix A.

DRAM

1
TS cE=E=.

I
Allocating the maximum amount of data needed to be

stored in the main memory for matrix B.

Fig. 5: Memory partitioning for CSR A and CSC B

C. Optimization for CSC B memory space

To fine-tune the memory allocation for CSR B, we examined
three scenarios based on the row count /N and column count
P of matrix B. In Case 1, where N > P, there’s a need
for a more substantial memory allocation for colptr due to an
increase in its elements. In Case 2, with N = P, an equal
distribution of storage for values, rowid, and colptr is ideal.
For Case 3, where N < P, the colptr elements decrease,
allowing an even allocation of memory for values and rowid.
Dynamic memory allocation, tailored to these cases, promises
reduced I/O access and improved execution time compared to
the general memory allocation for CSR A and CSC B shown
in Fig. 4.

Our advanced dynamic memory partitioning strategy aims to
condense the row-wise data of CSR A in the primary memory
while amplifying the columns of CSR B, thus curtailing I/O
access. Moreover, refining the memory allocation for CSC B,
contingent upon its rows and columns, can further accelerate
the execution time.

Hot data: Highest number of column
data for CSCB.

Data replacment

Fig. 6: Hot data and memory replacement for CSC B

The sparsity rate influences the element count in either
the CSR or CSC format. For instance, when the row count
surpasses the column count (N > P), there are more colptr
elements compared to rowid and value. Such a scenario
presents an opportunity to refine CSC B’s memory utilization.
However, given the algorithm’s necessity to access all of CSC
B’s columns, we can apply the same optimization approach
as with CSR A. If the entirety of CSC B’s data cannot reside
within the primary memory, hot data prioritization is essential,
achievable through a rank-based page replacement strategy
[26], depicted in Fig. 6.

Both CSR A and CSC B benefit from sequential data
access; applying a replacement policy becomes unviable due
to substantial data reuse. To efficiently preserve hot data,
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elements in columns with higher priority are retained in the
main memory. This method minimizes the volume of data
transferred from NVM back to DRAM, leading to performance
gains. Our memory allocation strategy is rooted in these
insights, determining the proportion of values, rowid, and
colptr for CSC B to be stored in the main memory based
on the original matrix’s varied row and column counts.

V. HYBRID MEMORY SYSTEM

Research into emerging memory systems is becoming in-
creasingly important due to the high demand for data-intensive
applications. However, the limitations of transistor scalability
have led to a stagnation in the annual improvement of main
memory performance [25].

A. Hybrid and NVM memory technology

In the past decade, various memory technologies have
been developed to bridge the gap between main memory
and secondary memory. One such technology is storage class
memory (SCM), which uses 3D stack technology to provide a
lower cost per bit [20] [33]. However, SCM’s performance is
not up to main memory standards [4]. To address this issue,
Hybrid memory technology has been extensively researched
and implemented to bridge the gap between main memory and
secondary memory. It offers a lower cost per bit compared to
traditional main memory technologies [20], [33]. However, its
performance is not up to the standard of main memory [4],
which allowed for an increase in main memory capacity at a
lower cost and reduced cycle access to the memory system
by integrating the memory bus data path inside the DIMM
chip [30]. The most popular hybrid memory architecture is
DRAM+NVM, which is integrated with a migration policy
and a memory management system [23]. The Fig. 7 represents
the hybrid memory architecture.
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((ucacke ) [ Licace )
L2 QUEUE

[ L2 SHARED CACHE }

(_HYBRID MEMORY CONTROLLER |

HEEE  EHEE rmowame

(conTROLLER ) ([ CONTROLLER |

[

(DrRAMBANKS ) ([ NVMBANKS |

DRAM BUS NVM BUS

Fig. 7: Hybrid memory architecture [8]

B. Integrating the EMBARK memory controller for hybrid
memory

In our EMBARK memory design, we’ve integrated hybrid
memory technology with an aim to optimize both performance
and cost-effectiveness. The architecture is structured with a
memory controller dedicated to each bank queue, facilitating

12

seamless data transfer between the DRAM and NVM banks.
Moreover, distinct controllers for DRAM and NVM banks are
incorporated, ensuring adept data management and migration,
which in turn enhances performance and reliability. This
hybrid memory setup is especially tailored for CSRxCSC
multiplication, addressing the demands of data-intensive ap-
plications by enhancing the performance-to-cost ratio.

VI. EMBARK MEMORY MANAGER

To effectively construct a memory controller suitable for
this scenario, multiple factors need to be taken into account.

A. Behavior of Embark Memory Controller

1. Memory Partitioning: One of the primary tasks is
to optimize memory partitioning to curtail I/O and cycle
access. This necessitates storing minimal row-wise data of
CSR A in the main memory while finetuning CSC B columns.
Depending on the relationship between N and P:

o If N > P: Greater storage is essential for colptr with
values and rowid being allocated equally.

o If N P: Values, rowid, and colptr are allocated
proportionally.

o If N < P: A larger allocation is required for rowid with
equal allocation for values and colptr.

2. Memory Allocation Optimization: For CSR A values,
colid arrays, and rowptr arrays of CSR B, it’s not enough
to rely on initial memory allocations made by compilers and
main memory. An additional layer of optimization is crucial to
mitigate [/O accesses and cycle access, thereby cutting system
overheads.

3. Handling CSC B’s Data Overflows: Provisions must
be in place for instances where CSC B’s hot data outstrips
main memory’s capacity. Such scenarios demand enhanced job
scheduling by memory controllers to efficiently shuttle data
between main memory and NVM.

4. Data Access Patterns: For optimal computation, CSR A
should ideally store a solitary row until every column access
is completed by CSC B, ensuring a more strategic memory
allocation.

5. Data Reuse Patterns: With CSC B following a se-
quential data access model, it becomes pivotal to prioritize
a greater chunk of high-reuse column elements in the main
memory. This approach serves to diminish NVM to DRAM
data rewrites, subsequently boosting performance.

To encapsulate these requirements, a memory controller
must incorporate:

o Dynamic Memory Allocation: Tailoring memory re-
sources allocation based on sparsity rate, matrix dimen-
sions, and dense element counts.

o Prioritized Data Storage: Giving precedence to high-
reuse data in the main memory, thus minimizing access
delays.

o Job Scheduling: Orchestrating data transfers between
main memory and NVM based on data attributes and
access patterns.
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o Data Compression: Shrinking data footprints to optimize

main memory usage.

o Cache Management: Frequently accessed data should be

strategically cached to boost performance.

Memory controllers should finesse memory partitioning,
streamline data transfers between memory platforms, and ele-
vate data reuse patterns, all aiming to reduce access overheads
and uplift performance.

The EMBARK memory manager stands at the forefront of
this operation, ensuring the seamless interplay between DRAM
and NVM. At its core, it assesses the non-zero entries in CSR
A and CSC B matrices in relation to /N, making informed
decisions about memory allocations for various scenarios.

B. Design of Embark memory controller

EMBARK proficiently manages the primary memory allo-
cation for both CSR A and CSC B. Although CSR A requires
a limited amount of data, CSC B demands a significant portion
of hot data. Once the row-wise computation for CSR A
is finalized, EMBARK smoothly transitions its data in the
main memory for new row-wise data. Fig. 8 showcases the
amalgamation of the hybrid memory architecture with the
memory controller, further augmented by the SpMM data
manager.

e
Hybrid memory - I
= — I'| spmmpata | |
I| EMBARK Memory Manager | | controller |

== = =1 - N
I_ I ~ | |
~ | |

~
N |
Secondary Storage

Fig. 8: Hybrid memory architecture with EMBARK memory
manager

For successful implementation, the EMBARK memory
manager emphasizes the parallelization of data movement
with CPU computations, facilitated by the EMBARK memory
controller. This controller integrates DRAM and NVM bus
schedulers, a power manager, and an SpMM data controller.
To adeptly oversee the memory banks, it’s imperative to have
two distinct hardware memory controllers: one dedicated to
NVM and another to DRAM.

Although a conventional hybrid memory controller is ade-
quate for the DRAM bank, a specialized memory controller
was devised for the NVM bank. Equipped with these compo-
nents, EMBARK adeptly orchestrates memory allocation and
data movement, guaranteeing peak performance for extensive
sparse matrix computations in CSRxCSC multiplication.

VII. EVALUATION

Initially, we evaluated the performance of the three algo-
rithms on CPU clusters, with the MxM specifically tested
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on a GPU cluster. To augment the memory efficiency of the
CSRxCSC multiplication, we integrated the Embark mem-
ory controller. For this enhancement, the Gem5 full system
simulator [7] was employed to emulate scenarios and gather
performance metrics, thereby confirming our contribution.

A. Methodology

To create an out-of-core scenario in the gem5 simulation
environment, begin by establishing a physical memory system
with a restricted capacity that is less than the working set of the
benchmark workload. Subsequent to this, proceed to construct
a disk image that integrates both an operating system and a
designated swap partition. Ensure that the operating system
is set up to utilize the swap space automatically once the
available physical memory has been fully allocated.

/
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Fig. 9: Gem5 architecture modification for memory controller

We employed the default parameters of Gem5’s NVM for
our simulation by deliberately reducing the memory capacity,
we created an out-of-core scenario. This decision was made to
rigorously test the efficacy of our proposed memory controller
in managing its resources. Fig. 9 illustrates the modifications
made to the gem5 architecture for the memory controller. In
this setup, an Embark memory utilization scheme featuring a
rank-based page replacement strategy has been integrated into
the default memory controller.

TABLE I: SuiteSparse matrix [11] datasets

Matrix dimension no. of non-zero(nnz)
fxm3_6 5K X 5K 94,026
besstk17 10.9K X 10.9K 428,650
besstm25 | 154K X 15.4K 15,439

t3dl_a 20.3K X 20.3K 509,866

epb2 25.2K X 25.2K 175,027
besstk35 | 30.2K X 30.2K 1,450,163
case39 40.2K X 40.2K 144,945

ecl32 51.9K X 51.9K 380,415

This setup evaluates the system’s resilience under memory-
intensive tasks. The real-world matrix benchmarks used in
our experiments are detailed in Table I. This paper posits
that smaller datasets constrained by limited memory will
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TABLE II: CPU and GPU in-core memory execution time in seconds

Matrix CPU-CSRxCSC | CPU-CSRxCSR | CPU-MxM | GPU-MxM
fxm3_6 2.25 1.67 1556.787 119.28
besstk17 207.67 0.187E6 18528.05 1128.9
besstm25 30.61 13334.86 68628.36 3312.26

t3dl_a 1597.61 0.765E6 0.169E6 7187.73

epb2 372.74 0.51E6 0.27E6 14474.44
besstk35 5866.74 0.481E6 0.49E6 23617.6
case39 0.166E6 6.17E6 1.421E6 2004.14
ecl32 1684.37 3.94E6 3.13E6 56393.3

CSRxCSC - Compressed Sparse Row x Compressed Sparse Column
CSRXCSR - Compressed Sparse Row x Compressed Sparse Row
MxM - Matrix x Matrix

demonstrate behaviors akin to larger datasets within expansive
memory environments.

To streamline the engineering process, we modified the
simulation instructions to mimic the EMBARK memory man-
ager’s operations. This adaptation facilitated a simulation
behavior closely mirroring the actual functionality of the
EMBARK memory manager. All the workload matrices are
stored in a compressed matrix format. To facilitate MxM
multiplication, we incorporated an additional step to handle the
overhead associated with converting the compressed matrix to
a row-column-wise matrix, and this overhead has been added
to our experiment results.

B. Evaluated Schemes

In our experiment, we evaluate the following algorithms in
CPU, GPU, and Gem5 simulator:

o CPU-CSRxCSC, CPU-CSRxCSR, and CPU-MxM:
These tests utilized a CPU Intel® Xeon® Gold 6240R
operating at a frequency of 2.40GHz. The CPU features
48 cores, an in-core memory capacity of 128GB, 32K L1
Instruction/Data cheches, 1024K L2 cache, and 36608K
L3 cache. Tests were performed on the UCF Stoke cluster.

o GPU-MxM: In these tests, matrix-by-matrix multipli-
cation (MxM) evaluations were conducted on a Tesla
V100-PCIE-16GB GPU using CUDA version 12.2. The
tests took place on the high-performance UCF Newton
cluster.

o MxM-Baseline: This baseline was established using a
conventional setup in the gem5 simulator with the x86-
64 ISA architecture. The setup features an out-of-order
configuration with 4 cores and uses the NVMlInterface
NVM_2400_1x64 for out-of-core operations. The cache
is configured with 64K L1 Instruction/Data cheches and
128K L2 cache.

e CSRxCSC-EMBARK: This configuration utilized the
gem5 simulator with x86-64 ISA architecture in an out-
of-order configuration with 4 cores. It operates with an
NVMilnterface NVM_2400_1x64 for out-of-core oper-
ations, integrated with the behavior of the EMBARK
memory manager. The cache is configured with 64K L1
Instruction/Data cheches and 128K L2 cache.

o CSRxCSR: Tests under this category were conducted
using the gem5 simulator featuring x86-64 ISA archi-
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tecture in an out-of-order setup with 4 cores. It operates
with an NVMlInterface NVM_2400_1x64 for out-of-core
operations. The cache is configured with 64K L1 Instruc-
tion/Data cheches and 128K L2 cache.

C. Experimental Results and Analyses

In Table II, we evaluate the in-core memory performance of
the CSRxCSC algorithm in comparison with the CSRxCSR
algorithm and the MxM algorithm, contrasting their efficien-
cies on a real-world CPU against the GPU implementation of
the M xM. Based on the data presented, the CPU’s CSRxCSC
method consistently surpasses the GPU’s MxM in terms of
execution speed.

From Table II, it’s evident that the CSR x CSR mutiplication
method exhibits below average performance for SpMM opera-
tions. This inefficiency can be attributed to the non-sequential
data access pattern for CSR B, as depicted in Fig. 3. The
CSRxCSC algorithm demonstrates superior performance in
comparison to the GPU’s M xM execution on CUDA. In GPU-
based MxM operations, a significant disadvantage emerges
due to the substantial overhead incurred during the transmis-
sion of memory between the host and the device throughout
the computation process. This overhead can potentially reduce
performance. The performance of the CSRxCSC algorithm
is dependent on the sparsity of the matrix. Specifically, the
more sparse the matrix is, the more performance gains can
be achieved with the CSRxCSC method. In contrast, the
execution time for the MxM algorithm remains consistent
regardless of the matrix sparsity.

TABLE III: Gem5 out-of-core memory execution time in
seconds

Matrix CSRXCSC-EMBARK | CSRXxCSR | MXxM-baseline
fxm3_6 624.81 635.42 956.30
besstk17 5448.56 210828.52 18928.98
besstm25 16414.38 296608.49 26595.70

3dl_a 37372.23 3.99E6 60851.34

epb2 70711.66 11.37E6 0.14E6

The Table III offers insights into the out-of-core execution
times of three matrix multiplication algorithms across five dis-
tinctive matrices: 'fxm3_6’, ’besstk17’, “besstm25°, 't3dl_a’,
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and ’epb2’. Among the methods, CSRxCSC-EMBARK con-
sistently emerges as the most efficient, often registering the
shortest execution times. Conversely, the CSRxXCSR technique
frequently tallies the lengthiest durations, with especially stark
disparities observed in matrices like ’besstkl7’, “besstm25°,
’t3dl_a’, and ’epb2’, where its execution time towers by orders
of magnitude over the others. The MxM algorithm typically
occupies an intermediary position, with its execution durations
mostly lying between the other two. Notably, in the *fxm3_6’
matrix, the three methods present closely-packed execution
times. Furthermore, for the ’epb2’ matrix, we observed a
notable decrease in execution time when utilizing the MxM
method compared to its performance with other matrices. This
phenomenon is attributed to the high level of sparsity present
in the matrix. While the high sparsity reduces the number
of computations needed for the CSRxCSC and CSRxCSR
methods, the MxM method always involves the same number
of elements. This suggests that CSRxCSC and CSRxCSR are
generally better options than MxM, especially for very sparse
matrices. In essence, while CSRxCSC-EMBARK exhibits
consistent efficiency. For matrices with dimensions below
SKxS5K, the performance difference between the CSRxCSC
and CSRxCSR multiplication algorithms is negligible.

x10*

2 : ,
I CSRxCSC-EMBARK
[ CSRxCSR

[ MxM-Baseline

Total Memory Access Read (GB)

Benchmarks

Fig. 10: Total memory access read in gigabytes (GB) for differ-
ent benchmarks using CSRXCSC-EMBARK, CSRxCSR, and
MxM-Baseline multiplication methods. Each bar represents
the total memory access read for a specific matrix under the
respective multiplication method.

In Fig. 10 for three SpMM techniques: CSRXxCSC,
CSRXxCSR, and M xM, across five benchmark datasets namely
*fxm3_6°, *besstk17’, “besstm25’, 't3dl_a’, and ‘epb2’. An-
alyzing the patterns, the CSRxCSC algorithm consistently
demands the least memory write access across all bench-
marks. In stark contrast, the CSRxCSR algorithm exhibits
considerably higher memory write needs for most datasets,
with an exceptionally high demand in ’besstk17’, “besstm25°,
and ’t3dl_a’. The MxM-Baseline memory requirements are
generally intermediate, although it outperforms CSRxCSR in
the ’epb2’ dataset. This occurrence is attributed to the high
level of sparsity present in the matrix. While the high sparsity
reduces the number of elements that need to be stored and read

15

from the main memory for the CSRxCSC and CSRxCSR
methods, the MxM method always involves the same number
of elements.

14000 "
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[ MxM-Baseline
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Fig. 11: Total memory access written in gigabytes (GB) for dif-
ferent benchmarks using CSRxCSC-EMBARK, CSRxCSR,
and M xM-Baseline multiplication methods. Each bar repre-
sents the total memory access write for a specific matrix under
the respective multiplication method.

In Fig. 11 data offers a comparative analysis of memory
access writes across three distinct algorithms: CSRxCSC-
EMBARK, CSRxCSR, and MxM, spread over five bench-
marks: "fxm3_6’, *besstk17°, *besstm?25, *t3dl_a’, and "epb2’.
For the ’fxm3_6" benchmark, the memory writes for
CSRxCSC-EMBARK and CSRxCSR algorithms are almost
on par, while the MM algorithm exhibits a noticeably higher
memory access rate. In the besstk17’ context, the CSRxCSR
algorithm shows a pronounced increase in memory usage,
substantially outpacing both the CSRxCSC-EMBARK and
MxM algorithms. When assessing the ’bcsstm25’ dataset, the
trend continues with the CSRxCSR algorithm registering the
highest memory writes, followed by MxM-Baseline, with
CSRxCSC-EMBARK trailing behind. The ’t3dl_a’ bench-
mark maintains a similar pattern, with CSRxCSR taking the
lead in memory writes, and the other two algorithms showing
more modest figures in comparison. For the ’epb2’ matrix,
the distinctions become less clear-cut, with all three algo-
rithms showcasing closer memory write values. In essence, the
CSRxCSR algorithm consistently demonstrates a heightened
memory write across the majority of the benchmarks, hinting
at potential challenges in its memory efficiency in specific
scenarios compared to its counterparts.

D. Limitation of CSRxCSC mutiplication

CSRxCSC multiplication algorithm has a complexity of
O(nnz(A) * nnz(B)), where nnz(A) and nnz(B) represent the
number of nonzero elements in matrices A and B, respectively.
This complexity can be high when both matrices have a
large number of nonzero elements, resulting in increased
computation time. If the sparsity rate is high, the number of
non-zero elements in the resulting matrix is significantly lower
than in traditional matrix multiplication. This reduction in the
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number of non-zero elements leads to faster computation and
less memory usage.

However, if the sparsity rate is low, CSR xCSC multiplica-
tion may not be the most efficient approach, as the number
of non-zero elements in the resulting matrix increases. In this
case, alternative methods such as CSR x dense matrix or M xM
may be more suitable. Therefore, it is important to consider
the sparsity rate and the characteristics of the matrices when
selecting the appropriate matrix multiplication method.

VIII. RELATED WORK

MatRaptor is a novel solution for sparse-sparse matrix
multiplication acceleration, which employs a unique row-wise
product approach. This technique enhances the computational
speed and efficiency of sparse matrix operations, particularly
those featuring two sparse matrices. Primarily focused on
hardware accelerators, matrix storage format optimizations, or
leveraging graphics processing units(GPU), MatRaptor pro-
vides by targeting the specific challenges of sparse-sparse
matrix scenarios. This methodology represents a substantial
advancement in the field, contributing to improvements in
various domains that heavily rely on sparse matrix calculations
[28].

GE-SpMM presents a solution for SpMM on GPUs, with
specific applicability to GNNs. The method harnesses the
power of GPU architectures to perform efficient, scalable, and
high-speed SpMM operations, which are critical for the func-
tioning and performance of GNNs. GE-SpMM overcomes the
limitations of existing techniques, which often struggle with
irregular memory access patterns and workload imbalances
associated with sparse computations on GPUs. This approach
contributes substantially to the field, improving the speed and
effectiveness of GNNs and other applications that heavily rely
on SpMM operations [18].

Gustavson’s algorithm [15] is a classical approach to
SpMM, with numerous improvements and variants proposed
over the years. Ballard et. al. [5] presented a communication-
minimizing algorithm for parallel SpMM, whereas Liu and
Vinter [24] proposed an efficient storage format, CSRS, for
cross-platform SpMM. Existing approaches focus on improved
computation speed or storage space efficiency for in-memory
execution. Unfortunately, many real-world SpMM applications
are out-of-core. The system will trigger a page fault if an
in-memory matrix element is missed. The subsequent event
handler loads data from NVM storage into the DRAM/main
memory, which could incur a significant delay from disk
access.

IX. CONCLUSION AND FUTURE WORK

SpMM has found extensive applications in various domains,
including graph analytics, neural networks, electronic con-
trol systems, and mathematical analysis. In this work, we
introduced a memory architecture tailored to enhance the
performance of SpMM, specifically focusing on CSRxCSC
matrix multiplication. Our objective was to minimize the
overhead associated with compressing and decompressing
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matrices. The EMBARK memory manager has been instru-
mental in harnessing the optimal performance of main memory
during CSRxCSC multiplication. As a result, we achieved
a significant reduction in the execution time of CSRxCSC
multiplication, with an average improvement of 46.44%. We
employed the Gem5 full system simulator to validate the effi-
cacy of our design, simulating the behavior of the EMBARK
memory manager. A performance comparison of CSRxCSC
multiplication against traditional matrix multiplication and
CSRxCSR multiplication revealed notable findings. Specif-
ically, as the sparsity rate decreases, the performance of
CSR xCSC multiplication tends to deteriorate. As part of our
future endeavors, we aim to integrate the EMBARK memory
controller within the GemS5 full system simulator. Additionally,
we are exploring the possibility of developing a GPU-based
CUDA version of CSRxCSC multiplication.
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