
EMBARK: Memory bounded architectural
improvement in CSR-CSC Sparse Matrix

Multiplication

Shakya Jayakody
Department of Electrical and

Computer Engineering

University of Central Florida

Orlando, FL

Email: shakya@ucf.edu

Jun Wang
Department of Electrical and

Computer Engineering

University of Central Florida

Orlando, FL

Email: Jun.Wang@ucf.edu

Abstract—Sparse Matrix Multiplication (SpMM) is a crucial
algorithm in modern platforms such as Artificial Intelligence (AI),
Graph Neural Network (GNN), Graph Convolutional Network
(GCN), and neural network image processing. However, the
performance of SpMM is limited by several factors, such as
memory storage, data reuse, I/O traffic, and memory access. To
address these challenges, we have developed a dynamic memory
allocation method called EMBARK, specifically including a new
Compressed Sparse Row (CSR) × Compressed Sparse Column
(CSC) matrix multiplication algorithm that reduces significant
matrix decompression/compression overhead and optimizes stor-
age allocation.

Our CSR×CSC algorithm is based on memory partitioning
techniques: EMBARK, values, and rowid are together, and
colptr is stored separately in the main memory. To improve
the performance of our algorithm, the main memory is utilized
to store hot data for values, colid, and rowid, while the Non-
volatile Memory (NVM) stores partial hot data based on a rank-
based page replacement strategy. We have conducted experiments
with SuiteSparse matrix real datasets, and our results show
CSR×CSC-EMBARK reduced the execution time average by
46.44% compared to the baseline matrix-by-matrix multiplication
(M×M).

Index Terms—Sparse Matrix Multiplication, Compressed
Sparse Row, Compressed Sparse Column, Non-volatile Memory,
Memory Allocation

I. INTRODUCTION

Sparse Matrix-Matrix Multiplication (SpMM) is a special-

ized multiplication operation where both matrices predomi-

nantly contain zeros as opposed to non-zero elements [28].

This operation has significant applications in graph algorithms,

graph sampling, Graph Neural Networks (GNN), which in-

cludes Graph Convolutional Networks (GCN), neural network

image processing [3], [17], [22], and the transformer architec-

ture [31]. Within Transformer models, which are foundational

to many current deep learning approaches [31], SpMM is

instrumental. It facilitates the self-attention mechanism by

determining attention scores between different inputs through

the dot product of their respective embeddings [12].

In scenarios with limited system memory, out-of-core exe-

cution of SpMM is essential. This means that the computation

is performed beyond the scope of the primary memory (RAM),

utilizing secondary storage devices like hard disk drives or

solid-state drives [16]. Such an approach becomes critical

when working with expansive datasets or models that surpass

the system’s RAM capacity [13]. Enhancing the efficiency

of the Compressed Sparse Row (CSR) format by discarding

zero values and retaining only the non-zero ones has been

previously explored. This enhancement typically relies on

three components: values, colid, and rowid [32]. Fundamen-

tally, SpMM is integral to a plethora of scientific and high-

performance computing tasks.

Non-volatile memory products, particularly ultra-low la-

tency NAND Flash-based Solid State Drives (SSDs), have

emerged as promising candidates for constructing a unified

memory-storage hierarchy (UMH) [1], [34], or hybrid memory

— namely DRAM combined with storage class memory ar-

chitecture [9], [20], [33], or extended persistent memory [10].

The UMH renders a single ample memory address space

for all memories. As a result, the processors can directly

access structured data in SSDs and eliminate implicit bulk

data copy/swap between devices. Such UMH could mitigate

the data movement between NVM and DRAM. However,

the translation layer in the memory controller imposes non-

negligible memory address mapping overhead.

To address these challenges, we introduce EMBARK, a

dynamic memory allocation method. The idea is to allocate

CSR and CSC matrices of data and positioning information

at runtime according to the dynamic matrix multiplication

flow. Hence it can make good use of spatial locality to

avoid unnecessary page faults, reduce I/O traffic and expe-

dite computation. Central to EMBARK, we implemented a

CSR×CSC multiplication algorithm to reduce the overhead of

decompression/compression for large matrices. Intuitively, we

improve the execution time without reconstructing the original

matrixes on the fly and, therefore reduce the total number

of a pair of matrix element multiply operations. However,

the CSR format is bottlenecked by data reuse and memory

utilization [14] [6]. The main reason is that accessing data and

8

2023 IEEE 9th International Conference on Collaboration and Internet Computing (CIC)

979-8-3503-3912-3/23/$31.00 ©2023 IEEE
DOI 10.1109/CIC58953.2023.00012

20
23

 IE
EE

 9
th

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

ol
la

bo
ra

tio
n

an
d

In
te

rn
et

 C
om

pu
tin

g
(C

IC
) |

 9
79

-8
-3

50
3-

39
12

-3
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
CI

C5
89

53
.2

02
3.

00
01

2

Authorized licensed use limited to: University of Central Florida. Downloaded on February 20,2024 at 21:18:21 UTC from IEEE Xplore. Restrictions apply.

positioning information in different orders from two memory

hierarchy levels, compromised fast DRAM and slow Non-

Volatile Memory (NVM), can lead to various non-negligible

delays. We proposed a storage optimization for NVM and

partition theme in the main memory to overcome these issues.

Our baseline employs a straightforward matrix multiplication,

which allocates matrix A and matrix B, with row-wise data

uniformly stored in the main memory. However, this approach

incurs non-negligible I/O traffic, resulting from non-sequential

data access of matrix B in the main memory. This is especially

true in frequent and repeated large matrix multiplications,

where out-of-core hot data (i. e., frequently accessed data)

are stored in the NVM storage but continuously retrieved by

the main memory for reusing the matrix B data in the matrix

multiplication. As a result, memory utilization between NVM

and main memory could be overwhelmed.
We develop an enhanced dynamic memory allocation

method in EMBARK to minimize I/O traffic between NVM

storage and main memory-DRAM by saving CSR A and

CSC B values, colid and rowid in separate memory blocks.

In this method, we minimize the CSR A data storage and

maximize CSC B data storage for an extended instruction

period, ensuring that all requisite matrix elements for the

impending matrix multiplication are retained within the main

memory. CSR A undertakes row-wise multiplication across the

expansive columns of CSC B. For matrices that are sizable and

cannot be accommodated within the main memory’s capacity,

we judiciously allocate the data and positional information for

matrices A and B across separate memory divisions to suit

the ensuing vector multiplication. This translates to storing

the values, colid, and rowid of two CSR matrix formats in

disparate segments of DRAM and NVRAM. By adopting this

strategy, we harness the spatial locality inherent in broad

matrix access, aligning the data flow with computational

instructions. To gauge the efficacy in terms of performance and

memory access, we subjected our approach to comprehensive

system cycle-level simulations using GEM5 [7]. The results of

our simulated experiments revealed that EMBARK enhances

storage efficiency and trims memory access, culminating in a

46.44% reduction in matrix multiplication execution time. In

essence, our proposed mechanism diminishes I/O interactions

between NVM storage and DRAM, streamlining storage and

memory access for more agile computations.
It is worth noting that the Processing-In-Memory (PIM)

architecture [2] can be integrated with our EMBARK memory

controller to reduce data movement further. However, it is not

fully commercialized. This paper focuses on general archi-

tecture and does not consider the PIM architecture. We solely

concentrate on memory utilization in the main memory and the

EMBARK memory controller for CSR×CSC multiplication.

Our contributions can be summarized as follows:

• We developed an algorithm for CSR×CSC multiplication

(Algorithm 1).

• We explored and determined the optimal memory allo-

cation for CSR A and CSC B to maximize memory

utilization based on rank based page replacement strategy

• We introduced the EMBARK memory management sys-

tem, which aims to minimize data movement between

DRAM and NVM and exploits fast memory access for

SpMM computation.

II. BACKGROUND AND MOTIVATION

The use of graph algorithms and GNNs in real-world

applications has increased significantly over the years [22] [17]

[35]. However, processing large graph datasets has become

a challenge due to their size and sparsity [27]. SpMM is a

fundamental operation in many transformer modules, graph

algorithms, and GNNs. It requires high memory capacity and

storage [18]. To address this issue, CSR and CSC formats were

introduced to reduce the data elements needed to represent

the original sparse matrix. The advantage of CSR and CSC

formats is that they reduce storage and memory requirements,

especially when the sparsity rate is high. Decompression, on

the other hand, involves restoring this compactly stored matrix

back to its original or a usable format for computational tasks.

This two-step process ensures efficient use of storage space

without compromising the ability to perform matrix operations

when needed.

Although current optimization studies focus on CSR×Dense

or Dense×Dense matrix multiplication, we studied and im-

plemented CSR×CSC multiplication to reduce the decom-

pression/compression overhead. However, large CSR×CSC

multiplication faces the challenge of data reuse and LLC

performance issues due to constant memory replacement in

CSC B. To improve performance, we implemented the EM-

BARK memory manager for hybrid memory that partitions

and utilizes memory system access for CSR×CSC multiplica-

tion. The EMBARK memory controller with the SpMM data

controller is responsible for allocating hot data into the main

memory from NVM for SpMM. We explored the performance

and memory access using the gem5 full system simulation [7].

The results are shown in Section VII.

III. CSR×CSC AND CSR MULTIPLICATION

The CSR and CSC compression techniques represent non-

zero elements using three formats: values, colid, and rowid.

In the CSR format, the values signifies the value elements of

the matrix, the colid indicates the column numbers of non-

zero elements, and the rowptr points to the starting value of

each row. Conversely, in the CSC format, the values denote

the dense elements of the matrix, the rowid indicates the row

numbers of non-zero elements, and the colptr points to the

starting value of each column. Fig. 1 illustrates the CSR and

CSC formats for the two matrices.

In an effort to minimize decompression and compression

overhead, we implemented CSR×CSC multiplication. The

multiplication of matrix A in CSR format with matrix B in

CSC format is depicted in Algorithm 1. For matrix A in

CSR format, all requisite data for computation are sequentially

arrayed; similarly, data access in CSC B is sequential. This

presents a distinct advantage of CSR×CSC multiplication over

traditional matrix multiplication or CSR×CSR multiplication.

9

Authorized licensed use limited to: University of Central Florida. Downloaded on February 20,2024 at 21:18:21 UTC from IEEE Xplore. Restrictions apply.

(b) Sparse Matrix B

(a) Sparse Matrix A

a01

a12

a20

a32

a23

a31

b02

b10 b12

b31

b23

b03

 Value a01 a12 a20 a23 a31 a32

 Column id 1 2 0 3 1 2

Row pointer 0 1 2 4

 Value

 Column id 2 3 0 2 3 1

Row pointer 0 2 4 5

b02 b03 b10 b12 b23 b31

CSR

 Value

 Row id 1 3 0 1 0 2

Column pointer 0 1 2 4

b10 b31 b02 b12 b03 b23

CSC

CSR

Fig. 1: Compressed format of matrix A and matrix B.

The sequential nature of memory access for CSR×CSC mul-

tiplication is illustrated in Fig. 2. Conversely, Fig. 3 displays

the non-sequential data access pattern inherent to CSR×CSR

multiplication.

A_val a01 a12 a20 a23 a31 a32

A_col_ID 1 2 0 3 1 2

A_rowptr 0 1 2 4

B_val

B_row_ID 1 3 0 1 0 2

B_colptr 0 1 2 4

b10 b31 b02 b12 b03 b23

First row

- - 1st access

- - 2nd access

- - 3rd access

- - 4th access

Fig. 2: CSR x CSC multiplication

A_val a01 a12 a20 a23 a31 a32

A_col_ID 1 2 0 3 1 2

A_rowptr 0 1 2 4

B_val

B_col_ID 2 3 0 2 3 1

B_rowptr 0 2 4 5

b02 b03 b10 b12 b23 b31

First row

- - 1st access

-- 2nd access

-- 3rd access

-- 4th access

Fig. 3: CSR x CSR multiplication

V alj = a

(⌊
j − 1

N

⌋
, j −N ∗

⌊
j − 1

N

⌋)
(1)

Colj = j −N ∗
⌊
j − 1

N

⌋
(2)

Rowptrj = (j − 1) ∗N (3)

To identify the given position of a CSR matrix when

CSR A colid is equal to CSC B rowid, we derived three

equations for values, colid, and rowid. These equations are

represented by notation: j for iteration and N for the number

of columns. Equation 1 calculates the value at a specific

matrix position. This is achieved by using the floor division

method to determine the row and column indices for the non-

zero element based on j, a unique identifier for every non-

zero element. Equation 2 computes the column index for the

non-zero element corresponding to j. This index is crucial

for accessing and manipulating values efficiently in sparse

matrices, as column positions give insights about the structure

of data in matrix operations. Equation 3 is the calculation

of a row pointer or index for a specific row. This index

essentially acts as a marker, pointing to the beginning of each

row in the compressed data structure. It plays a pivotal role

in navigating through the matrix, especially during operations

that necessitate row-wise traversals.

Algorithm 1 CSRxCSC multiplication

1: for i = 0 to A array size− 1 do
2: for j = 0 to B array size− 1 do
3: if A coltp[i] == B rowptrtp[j] then
4: C valtp.push back(A valtp[i] ∗B valtp[j])
5: C coltp = B coltp[j]
6: C rowtp = A rowptrtp[i]
7: end if
8: end for
9: end for

10: if C valtp �= 0 then
11: for i = 0 to C valtp size− 1 do
12: add C val+ = C valtp[i]
13: end for
14: C val.push back(add C val)
15: C col.push back(C coltp)

16: C row.push back(C rowtp)

17: end if=0

IV. MEMORY ALLOCATION FOR CSR AND CSC
MATRICES

In this section, we discussed the limitations of memory

allocation for CSR and CSC formats. Furthermore, we propose

a dynamic memory allocation technique tailored for these

matrix representations.

A. Limitation of memory allocation for CSR matrices

Memory allocation stands as a pivotal component in the

optimization of programs, with the compiler and the memory

controller being instrumental in this endeavor [29] [21] [19].

Nevertheless, compilers often face challenges in efficaciously

allocating data within the main memory. Fig. 4 illustrates

general memory allocation for CSR A and CSC B, detailing

how the compiler and main memory apportion memory to the

values, colid, and rowptr arrays.

To refine memory partitioning, thereby diminishing cycle

access and I/O traffic between DRAM and NVM, it is

paramount to account for the capacity and bandwidth restric-

tions of the main memory, particularly when manipulating

expansive, sparse matrices in the CSR format. As illustrated in

Algorithm 1 for CSR×CSC multiplication, the initial row of

10

Authorized licensed use limited to: University of Central Florida. Downloaded on February 20,2024 at 21:18:21 UTC from IEEE Xplore. Restrictions apply.

CSR A necessitates multiplication with every column of matrix

B. Yet, when confronted with an expansive matrix, the bulk

of the column data for matrix B might not be accommodated

in the main memory, leading to performance bottlenecks due

to heightened cycle access and I/O traffic.

B. Proposed memory allocation for CSR and CSC

To mitigate these challenges, it’s essential to optimize and

partition the data slated for storage in the main memory.

As illustrated in Fig. 2, for CSR A, only a single row

needs to be held in the main memory at a time, and this

remains true until all column accesses in CSC B are finished.

This data access pattern can be harnessed to refine memory

partitioning, facilitating more rapid computation. Achieving

this necessitates the efficient collaboration of the memory

controller and the EMBARK memory management system.

Furthermore, when addressing the dilemma of CSC B’s

data not being accommodated within the main memory’s hot

data, we have enhanced our approach. Given the data-intensive

nature of this situation, there’s a pronounced need for advanced

job scheduling by the EMBARK memory controller to oversee

the data transfer between the main memory and the NVM.

A_val

A_col_ID
B_val

A_rowptr B_colptr

B_row_ID

DRAM

NVM

Fig. 4: General memory allocation for CSR A and CSC B

To diminish I/O access, we introduce a dynamic memory

partitioning strategy for CSR A and CSC B, depicted in Fig.

5. Our method allocates the least amount of row-wise data

from CSR A in memory, ensuring more available space for

the column-wise data of CSC B within the main memory. The

memory requirement for CSR A is contingent upon matrix

A’s sparsity rate and the maximum number of dense elements

in each row. Subsequent data can be stored in the NVM or

secondary storage, keeping it there until the multiplication

for each row with all of CSR B’s columns is finalized for

a particular cycle.

DRAM

Allocating the least amount of data for row-wise

data needed to be stored in the main memory for matrix A.

Allocating the maximum amount of data needed to be

stored in the main memory for matrix B.

Fig. 5: Memory partitioning for CSR A and CSC B

C. Optimization for CSC B memory space

To fine-tune the memory allocation for CSR B, we examined

three scenarios based on the row count N and column count

P of matrix B. In Case 1, where N > P , there’s a need

for a more substantial memory allocation for colptr due to an

increase in its elements. In Case 2, with N = P , an equal

distribution of storage for values, rowid, and colptr is ideal.

For Case 3, where N < P , the colptr elements decrease,

allowing an even allocation of memory for values and rowid.

Dynamic memory allocation, tailored to these cases, promises

reduced I/O access and improved execution time compared to

the general memory allocation for CSR A and CSC B shown

in Fig. 4.

Our advanced dynamic memory partitioning strategy aims to

condense the row-wise data of CSR A in the primary memory

while amplifying the columns of CSR B, thus curtailing I/O

access. Moreover, refining the memory allocation for CSC B,

contingent upon its rows and columns, can further accelerate

the execution time.

Hot data: Highest number of column

data for CSC B.

Data replacment

Fig. 6: Hot data and memory replacement for CSC B

The sparsity rate influences the element count in either

the CSR or CSC format. For instance, when the row count

surpasses the column count (N > P), there are more colptr
elements compared to rowid and value. Such a scenario

presents an opportunity to refine CSC B’s memory utilization.

However, given the algorithm’s necessity to access all of CSC

B’s columns, we can apply the same optimization approach

as with CSR A. If the entirety of CSC B’s data cannot reside

within the primary memory, hot data prioritization is essential,

achievable through a rank-based page replacement strategy

[26], depicted in Fig. 6.

Both CSR A and CSC B benefit from sequential data

access; applying a replacement policy becomes unviable due

to substantial data reuse. To efficiently preserve hot data,

11

Authorized licensed use limited to: University of Central Florida. Downloaded on February 20,2024 at 21:18:21 UTC from IEEE Xplore. Restrictions apply.

elements in columns with higher priority are retained in the

main memory. This method minimizes the volume of data

transferred from NVM back to DRAM, leading to performance

gains. Our memory allocation strategy is rooted in these

insights, determining the proportion of values, rowid, and

colptr for CSC B to be stored in the main memory based

on the original matrix’s varied row and column counts.

V. HYBRID MEMORY SYSTEM

Research into emerging memory systems is becoming in-

creasingly important due to the high demand for data-intensive

applications. However, the limitations of transistor scalability

have led to a stagnation in the annual improvement of main

memory performance [25].

A. Hybrid and NVM memory technology

In the past decade, various memory technologies have

been developed to bridge the gap between main memory

and secondary memory. One such technology is storage class

memory (SCM), which uses 3D stack technology to provide a

lower cost per bit [20] [33]. However, SCM’s performance is

not up to main memory standards [4]. To address this issue,

Hybrid memory technology has been extensively researched

and implemented to bridge the gap between main memory and

secondary memory. It offers a lower cost per bit compared to

traditional main memory technologies [20], [33]. However, its

performance is not up to the standard of main memory [4],

which allowed for an increase in main memory capacity at a

lower cost and reduced cycle access to the memory system

by integrating the memory bus data path inside the DIMM

chip [30]. The most popular hybrid memory architecture is

DRAM+NVM, which is integrated with a migration policy

and a memory management system [23]. The Fig. 7 represents

the hybrid memory architecture.

CPUCPU

L1 CACHE L1 CACHE

L2 SHARED CACHE

HYBRID MEMORY CONTROLLER

CONTROLLER CONTROLLER

DRAM BUS

DRAM BANKS NVM BANKS

NVM BUS

PER BANK QUEUES

L2 QUEUE

L1 QUEUES

Fig. 7: Hybrid memory architecture [8]

B. Integrating the EMBARK memory controller for hybrid
memory

In our EMBARK memory design, we’ve integrated hybrid

memory technology with an aim to optimize both performance

and cost-effectiveness. The architecture is structured with a

memory controller dedicated to each bank queue, facilitating

seamless data transfer between the DRAM and NVM banks.

Moreover, distinct controllers for DRAM and NVM banks are

incorporated, ensuring adept data management and migration,

which in turn enhances performance and reliability. This

hybrid memory setup is especially tailored for CSR×CSC

multiplication, addressing the demands of data-intensive ap-

plications by enhancing the performance-to-cost ratio.

VI. EMBARK MEMORY MANAGER

To effectively construct a memory controller suitable for

this scenario, multiple factors need to be taken into account.

A. Behavior of Embark Memory Controller

1. Memory Partitioning: One of the primary tasks is

to optimize memory partitioning to curtail I/O and cycle

access. This necessitates storing minimal row-wise data of

CSR A in the main memory while finetuning CSC B columns.

Depending on the relationship between N and P :

• If N > P : Greater storage is essential for colptr with

values and rowid being allocated equally.

• If N = P : Values, rowid, and colptr are allocated

proportionally.

• If N < P : A larger allocation is required for rowid with

equal allocation for values and colptr.

2. Memory Allocation Optimization: For CSR A values,

colid arrays, and rowptr arrays of CSR B, it’s not enough

to rely on initial memory allocations made by compilers and

main memory. An additional layer of optimization is crucial to

mitigate I/O accesses and cycle access, thereby cutting system

overheads.

3. Handling CSC B’s Data Overflows: Provisions must

be in place for instances where CSC B’s hot data outstrips

main memory’s capacity. Such scenarios demand enhanced job

scheduling by memory controllers to efficiently shuttle data

between main memory and NVM.

4. Data Access Patterns: For optimal computation, CSR A

should ideally store a solitary row until every column access

is completed by CSC B, ensuring a more strategic memory

allocation.

5. Data Reuse Patterns: With CSC B following a se-

quential data access model, it becomes pivotal to prioritize

a greater chunk of high-reuse column elements in the main

memory. This approach serves to diminish NVM to DRAM

data rewrites, subsequently boosting performance.

To encapsulate these requirements, a memory controller

must incorporate:

• Dynamic Memory Allocation: Tailoring memory re-

sources allocation based on sparsity rate, matrix dimen-

sions, and dense element counts.

• Prioritized Data Storage: Giving precedence to high-

reuse data in the main memory, thus minimizing access

delays.

• Job Scheduling: Orchestrating data transfers between

main memory and NVM based on data attributes and

access patterns.

12

Authorized licensed use limited to: University of Central Florida. Downloaded on February 20,2024 at 21:18:21 UTC from IEEE Xplore. Restrictions apply.

• Data Compression: Shrinking data footprints to optimize

main memory usage.

• Cache Management: Frequently accessed data should be

strategically cached to boost performance.

Memory controllers should finesse memory partitioning,

streamline data transfers between memory platforms, and ele-

vate data reuse patterns, all aiming to reduce access overheads

and uplift performance.

The EMBARK memory manager stands at the forefront of

this operation, ensuring the seamless interplay between DRAM

and NVM. At its core, it assesses the non-zero entries in CSR

A and CSC B matrices in relation to N , making informed

decisions about memory allocations for various scenarios.

B. Design of Embark memory controller

EMBARK proficiently manages the primary memory allo-

cation for both CSR A and CSC B. Although CSR A requires

a limited amount of data, CSC B demands a significant portion

of hot data. Once the row-wise computation for CSR A

is finalized, EMBARK smoothly transitions its data in the

main memory for new row-wise data. Fig. 8 showcases the

amalgamation of the hybrid memory architecture with the

memory controller, further augmented by the SpMM data

manager.

Secondary Storage

DRAM NVM

EMBARK Memory Manager

Hybrid memory
SpMM Data

controller

Hybrid Memory

controller

Fig. 8: Hybrid memory architecture with EMBARK memory

manager

For successful implementation, the EMBARK memory

manager emphasizes the parallelization of data movement

with CPU computations, facilitated by the EMBARK memory

controller. This controller integrates DRAM and NVM bus

schedulers, a power manager, and an SpMM data controller.

To adeptly oversee the memory banks, it’s imperative to have

two distinct hardware memory controllers: one dedicated to

NVM and another to DRAM.

Although a conventional hybrid memory controller is ade-

quate for the DRAM bank, a specialized memory controller

was devised for the NVM bank. Equipped with these compo-

nents, EMBARK adeptly orchestrates memory allocation and

data movement, guaranteeing peak performance for extensive

sparse matrix computations in CSR×CSC multiplication.

VII. EVALUATION

Initially, we evaluated the performance of the three algo-

rithms on CPU clusters, with the M×M specifically tested

on a GPU cluster. To augment the memory efficiency of the

CSR×CSC multiplication, we integrated the Embark mem-

ory controller. For this enhancement, the Gem5 full system

simulator [7] was employed to emulate scenarios and gather

performance metrics, thereby confirming our contribution.

A. Methodology

To create an out-of-core scenario in the gem5 simulation

environment, begin by establishing a physical memory system

with a restricted capacity that is less than the working set of the

benchmark workload. Subsequent to this, proceed to construct

a disk image that integrates both an operating system and a

designated swap partition. Ensure that the operating system

is set up to utilize the swap space automatically once the

available physical memory has been fully allocated.

Memory controller

P
H

Y

C
o

m
m

a
n

d
 S

ch
e

d
u

le

Q
o

S
, F

C
F

S
, F

R
F

C
F

S

NVMInterface

DRAMInterface

E
m

b
a

rk
 m

e
m

o
ry

 u
tiliza

tio
n

 w
ith

ra
n

k
 b

a
se

d
 p

a
g

e
 re

p
la

ce
m

e
n

t

stra
te

g
y

Write queue

Read queue

S
y

ste
m

 in
te

rfa
ce

s

Fig. 9: Gem5 architecture modification for memory controller

We employed the default parameters of Gem5’s NVM for

our simulation by deliberately reducing the memory capacity,

we created an out-of-core scenario. This decision was made to

rigorously test the efficacy of our proposed memory controller

in managing its resources. Fig. 9 illustrates the modifications

made to the gem5 architecture for the memory controller. In

this setup, an Embark memory utilization scheme featuring a

rank-based page replacement strategy has been integrated into

the default memory controller.

TABLE I: SuiteSparse matrix [11] datasets

Matrix dimension no. of non-zero(nnz)
fxm3 6 5K X 5K 94,026
bcsstk17 10.9K X 10.9K 428,650
bcsstm25 15.4K X 15.4K 15,439

t3dl a 20.3K X 20.3K 509,866
epb2 25.2K X 25.2K 175,027

bcsstk35 30.2K X 30.2K 1,450,163
case39 40.2K X 40.2K 144,945
ecl32 51.9K X 51.9K 380,415

This setup evaluates the system’s resilience under memory-

intensive tasks. The real-world matrix benchmarks used in

our experiments are detailed in Table I. This paper posits

that smaller datasets constrained by limited memory will

13

Authorized licensed use limited to: University of Central Florida. Downloaded on February 20,2024 at 21:18:21 UTC from IEEE Xplore. Restrictions apply.

TABLE II: CPU and GPU in-core memory execution time in seconds

Matrix CPU-CSR×CSC CPU-CSR×CSR CPU-M×M GPU-M×M
fxm3 6 2.25 1.67 1556.787 119.28
bcsstk17 207.67 0.187E6 18528.05 1128.9
bcsstm25 30.61 13334.86 68628.36 3312.26

t3dl a 1597.61 0.765E6 0.169E6 7187.73
epb2 372.74 0.51E6 0.27E6 14474.44

bcsstk35 5866.74 0.481E6 0.49E6 23617.6
case39 0.166E6 6.17E6 1.421E6 2004.14
ecl32 1684.37 3.94E6 3.13E6 56393.3

CSR×CSC - Compressed Sparse Row × Compressed Sparse Column
CSR×CSR - Compressed Sparse Row × Compressed Sparse Row

M×M - Matrix × Matrix

demonstrate behaviors akin to larger datasets within expansive

memory environments.

To streamline the engineering process, we modified the

simulation instructions to mimic the EMBARK memory man-

ager’s operations. This adaptation facilitated a simulation

behavior closely mirroring the actual functionality of the

EMBARK memory manager. All the workload matrices are

stored in a compressed matrix format. To facilitate M×M

multiplication, we incorporated an additional step to handle the

overhead associated with converting the compressed matrix to

a row-column-wise matrix, and this overhead has been added

to our experiment results.

B. Evaluated Schemes

In our experiment, we evaluate the following algorithms in

CPU, GPU, and Gem5 simulator:

• CPU-CSR×CSC, CPU-CSR×CSR, and CPU-M×M:

These tests utilized a CPU Intel® Xeon® Gold 6240R

operating at a frequency of 2.40GHz. The CPU features

48 cores, an in-core memory capacity of 128GB, 32K L1

Instruction/Data cheches, 1024K L2 cache, and 36608K

L3 cache. Tests were performed on the UCF Stoke cluster.

• GPU-M×M: In these tests, matrix-by-matrix multipli-

cation (M×M) evaluations were conducted on a Tesla

V100-PCIE-16GB GPU using CUDA version 12.2. The

tests took place on the high-performance UCF Newton

cluster.

• M×M-Baseline: This baseline was established using a

conventional setup in the gem5 simulator with the x86-

64 ISA architecture. The setup features an out-of-order

configuration with 4 cores and uses the NVMInterface

NVM 2400 1x64 for out-of-core operations. The cache

is configured with 64K L1 Instruction/Data cheches and

128K L2 cache.

• CSR×CSC-EMBARK: This configuration utilized the

gem5 simulator with x86-64 ISA architecture in an out-

of-order configuration with 4 cores. It operates with an

NVMInterface NVM 2400 1x64 for out-of-core oper-

ations, integrated with the behavior of the EMBARK

memory manager. The cache is configured with 64K L1

Instruction/Data cheches and 128K L2 cache.

• CSR×CSR: Tests under this category were conducted

using the gem5 simulator featuring x86-64 ISA archi-

tecture in an out-of-order setup with 4 cores. It operates

with an NVMInterface NVM 2400 1x64 for out-of-core

operations. The cache is configured with 64K L1 Instruc-

tion/Data cheches and 128K L2 cache.

C. Experimental Results and Analyses

In Table II, we evaluate the in-core memory performance of

the CSR×CSC algorithm in comparison with the CSR×CSR

algorithm and the M×M algorithm, contrasting their efficien-

cies on a real-world CPU against the GPU implementation of

the M×M. Based on the data presented, the CPU’s CSR×CSC

method consistently surpasses the GPU’s M×M in terms of

execution speed.

From Table II, it’s evident that the CSR×CSR mutiplication

method exhibits below average performance for SpMM opera-

tions. This inefficiency can be attributed to the non-sequential

data access pattern for CSR B, as depicted in Fig. 3. The

CSR×CSC algorithm demonstrates superior performance in

comparison to the GPU’s M×M execution on CUDA. In GPU-

based M×M operations, a significant disadvantage emerges

due to the substantial overhead incurred during the transmis-

sion of memory between the host and the device throughout

the computation process. This overhead can potentially reduce

performance. The performance of the CSR×CSC algorithm

is dependent on the sparsity of the matrix. Specifically, the

more sparse the matrix is, the more performance gains can

be achieved with the CSR×CSC method. In contrast, the

execution time for the M×M algorithm remains consistent

regardless of the matrix sparsity.

TABLE III: Gem5 out-of-core memory execution time in

seconds

Matrix CSR×CSC-EMBARK CSR×CSR M×M-baseline
fxm3 6 624.81 635.42 956.30
bcsstk17 5448.56 210828.52 18928.98
bcsstm25 16414.38 296608.49 26595.70

t3dl a 37372.23 3.99E6 60851.34
epb2 70711.66 11.37E6 0.14E6

The Table III offers insights into the out-of-core execution

times of three matrix multiplication algorithms across five dis-

tinctive matrices: ’fxm3 6’, ’bcsstk17’, ’bcsstm25’, ’t3dl a’,

14

Authorized licensed use limited to: University of Central Florida. Downloaded on February 20,2024 at 21:18:21 UTC from IEEE Xplore. Restrictions apply.

and ’epb2’. Among the methods, CSR×CSC-EMBARK con-

sistently emerges as the most efficient, often registering the

shortest execution times. Conversely, the CSR×CSR technique

frequently tallies the lengthiest durations, with especially stark

disparities observed in matrices like ’bcsstk17’, ’bcsstm25’,

’t3dl a’, and ’epb2’, where its execution time towers by orders

of magnitude over the others. The M×M algorithm typically

occupies an intermediary position, with its execution durations

mostly lying between the other two. Notably, in the ’fxm3 6’

matrix, the three methods present closely-packed execution

times. Furthermore, for the ’epb2’ matrix, we observed a

notable decrease in execution time when utilizing the M×M

method compared to its performance with other matrices. This

phenomenon is attributed to the high level of sparsity present

in the matrix. While the high sparsity reduces the number

of computations needed for the CSR×CSC and CSR×CSR

methods, the M×M method always involves the same number

of elements. This suggests that CSR×CSC and CSR×CSR are

generally better options than M×M, especially for very sparse

matrices. In essence, while CSR×CSC-EMBARK exhibits

consistent efficiency. For matrices with dimensions below

5K×5K, the performance difference between the CSR×CSC

and CSR×CSR multiplication algorithms is negligible.

fxm
3_

6

bc
ss

tk1
7

bc
ss

tm
25

t3d
l_a ep

b2

Benchmarks

0

0.5

1

1.5

2

To
ta

l M
em

or
y

A
cc

es
s

R
ea

d
(G

B
)

104

CSRxCSC-EMBARK
CSRxCSR
MxM-Baseline

Fig. 10: Total memory access read in gigabytes (GB) for differ-

ent benchmarks using CSR×CSC-EMBARK, CSR×CSR, and

M×M-Baseline multiplication methods. Each bar represents

the total memory access read for a specific matrix under the

respective multiplication method.

In Fig. 10 for three SpMM techniques: CSR×CSC,

CSR×CSR, and M×M, across five benchmark datasets namely

’fxm3 6’, ’bcsstk17’, ’bcsstm25’, ’t3dl a’, and ’epb2’. An-

alyzing the patterns, the CSR×CSC algorithm consistently

demands the least memory write access across all bench-

marks. In stark contrast, the CSR×CSR algorithm exhibits

considerably higher memory write needs for most datasets,

with an exceptionally high demand in ’bcsstk17’, ’bcsstm25’,

and ’t3dl a’. The M×M-Baseline memory requirements are

generally intermediate, although it outperforms CSR×CSR in

the ’epb2’ dataset. This occurrence is attributed to the high

level of sparsity present in the matrix. While the high sparsity

reduces the number of elements that need to be stored and read

from the main memory for the CSR×CSC and CSR×CSR

methods, the M×M method always involves the same number

of elements.

fxm
3_

6

bc
ss

tk1
7

bc
ss

tm
25

t3d
l_a ep

b2

Benchmarks

0

2000

4000

6000

8000

10000

12000

14000

To
ta

l M
em

or
y

A
cc

es
s

W
rit

e
(G

B
)

CSRxCSC-EMBARK
CSRxCSR
MxM-Baseline

Fig. 11: Total memory access written in gigabytes (GB) for dif-

ferent benchmarks using CSR×CSC-EMBARK, CSR×CSR,

and M×M-Baseline multiplication methods. Each bar repre-

sents the total memory access write for a specific matrix under

the respective multiplication method.

In Fig. 11 data offers a comparative analysis of memory

access writes across three distinct algorithms: CSR×CSC-

EMBARK, CSR×CSR, and M×M, spread over five bench-

marks: ’fxm3 6’, ’bcsstk17’, ’bcsstm25’, ’t3dl a’, and ’epb2’.

For the ’fxm3 6’ benchmark, the memory writes for

CSRxCSC-EMBARK and CSR×CSR algorithms are almost

on par, while the M×M algorithm exhibits a noticeably higher

memory access rate. In the ’bcsstk17’ context, the CSR×CSR

algorithm shows a pronounced increase in memory usage,

substantially outpacing both the CSR×CSC-EMBARK and

MxM algorithms. When assessing the ’bcsstm25’ dataset, the

trend continues with the CSR×CSR algorithm registering the

highest memory writes, followed by M×M-Baseline, with

CSR×CSC-EMBARK trailing behind. The ’t3dl a’ bench-

mark maintains a similar pattern, with CSR×CSR taking the

lead in memory writes, and the other two algorithms showing

more modest figures in comparison. For the ’epb2’ matrix,

the distinctions become less clear-cut, with all three algo-

rithms showcasing closer memory write values. In essence, the

CSRxCSR algorithm consistently demonstrates a heightened

memory write across the majority of the benchmarks, hinting

at potential challenges in its memory efficiency in specific

scenarios compared to its counterparts.

D. Limitation of CSR×CSC mutiplication

CSR×CSC multiplication algorithm has a complexity of

O(nnz(A) * nnz(B)), where nnz(A) and nnz(B) represent the

number of nonzero elements in matrices A and B, respectively.

This complexity can be high when both matrices have a

large number of nonzero elements, resulting in increased

computation time. If the sparsity rate is high, the number of

non-zero elements in the resulting matrix is significantly lower

than in traditional matrix multiplication. This reduction in the

15

Authorized licensed use limited to: University of Central Florida. Downloaded on February 20,2024 at 21:18:21 UTC from IEEE Xplore. Restrictions apply.

number of non-zero elements leads to faster computation and

less memory usage.

However, if the sparsity rate is low, CSR×CSC multiplica-

tion may not be the most efficient approach, as the number

of non-zero elements in the resulting matrix increases. In this

case, alternative methods such as CSR x dense matrix or M×M

may be more suitable. Therefore, it is important to consider

the sparsity rate and the characteristics of the matrices when

selecting the appropriate matrix multiplication method.

VIII. RELATED WORK

MatRaptor is a novel solution for sparse-sparse matrix

multiplication acceleration, which employs a unique row-wise

product approach. This technique enhances the computational

speed and efficiency of sparse matrix operations, particularly

those featuring two sparse matrices. Primarily focused on

hardware accelerators, matrix storage format optimizations, or

leveraging graphics processing units(GPU), MatRaptor pro-

vides by targeting the specific challenges of sparse-sparse

matrix scenarios. This methodology represents a substantial

advancement in the field, contributing to improvements in

various domains that heavily rely on sparse matrix calculations

[28].

GE-SpMM presents a solution for SpMM on GPUs, with

specific applicability to GNNs. The method harnesses the

power of GPU architectures to perform efficient, scalable, and

high-speed SpMM operations, which are critical for the func-

tioning and performance of GNNs. GE-SpMM overcomes the

limitations of existing techniques, which often struggle with

irregular memory access patterns and workload imbalances

associated with sparse computations on GPUs. This approach

contributes substantially to the field, improving the speed and

effectiveness of GNNs and other applications that heavily rely

on SpMM operations [18].

Gustavson’s algorithm [15] is a classical approach to

SpMM, with numerous improvements and variants proposed

over the years. Ballard et. al. [5] presented a communication-

minimizing algorithm for parallel SpMM, whereas Liu and

Vinter [24] proposed an efficient storage format, CSR5, for

cross-platform SpMM. Existing approaches focus on improved

computation speed or storage space efficiency for in-memory

execution. Unfortunately, many real-world SpMM applications

are out-of-core. The system will trigger a page fault if an

in-memory matrix element is missed. The subsequent event

handler loads data from NVM storage into the DRAM/main

memory, which could incur a significant delay from disk

access.

IX. CONCLUSION AND FUTURE WORK

SpMM has found extensive applications in various domains,

including graph analytics, neural networks, electronic con-

trol systems, and mathematical analysis. In this work, we

introduced a memory architecture tailored to enhance the

performance of SpMM, specifically focusing on CSR×CSC

matrix multiplication. Our objective was to minimize the

overhead associated with compressing and decompressing

matrices. The EMBARK memory manager has been instru-

mental in harnessing the optimal performance of main memory

during CSR×CSC multiplication. As a result, we achieved

a significant reduction in the execution time of CSR×CSC

multiplication, with an average improvement of 46.44%. We

employed the Gem5 full system simulator to validate the effi-

cacy of our design, simulating the behavior of the EMBARK

memory manager. A performance comparison of CSR×CSC

multiplication against traditional matrix multiplication and

CSR×CSR multiplication revealed notable findings. Specif-

ically, as the sparsity rate decreases, the performance of

CSR×CSC multiplication tends to deteriorate. As part of our

future endeavors, we aim to integrate the EMBARK memory

controller within the Gem5 full system simulator. Additionally,

we are exploring the possibility of developing a GPU-based

CUDA version of CSR×CSC multiplication.

ACKNOWLEDGMENTS

This work was sponsored in part by the U.S. National Sci-

ence Foundation (NSF) under Grants 1907765, and 2028481.

REFERENCES

[1] A. Abulila, V. S. Mailthody, Z. Qureshi, J. Huang, N. S. Kim, J. Xiong,
and W.-m. Hwu, “Flatflash: Exploiting the byte-accessibility of ssds
within a unified memory-storage hierarchy,” in Proceedings of the
Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, 2019, pp. 971–985.

[2] J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “Pim-enabled instructions:
A low-overhead, locality-aware processing-in-memory architecture,” in
2015 ACM/IEEE 42nd Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2015, pp. 336–348.

[3] A. Ashari, N. Sedaghati, J. Eisenlohr, S. Parthasarath, and P. Sa-
dayappan, “Fast sparse matrix-vector multiplication on gpus for graph
applications,” in SC’14: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis.
IEEE, 2014, pp. 781–792.

[4] K. A. Bailey, P. Hornyack, L. Ceze, S. D. Gribble, and H. M. Levy,
“Exploring storage class memory with key value stores,” in Proceedings
of the 1st Workshop on Interactions of NVM/FLASH with Operating
Systems and Workloads, 2013, pp. 1–8.

[5] G. Ballard, J. Demmel, O. Holtz, B. Lipshitz, and O. Schwartz,
“Communication-optimal parallel algorithm for strassen’s matrix multi-
plication,” in Proceedings of the twenty-fourth annual ACM symposium
on Parallelism in algorithms and architectures, 2012, pp. 193–204.

[6] M. M. Baskaran and R. Bordawekar, “Optimizing sparse matrix-vector
multiplication on gpus,” IBM research report RC24704, no. W0812–047,
2009.

[7] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH computer architecture news, vol. 39, no. 2,
pp. 1–7, 2011.

[8] S. Bock, B. R. Childers, R. Melhem, and D. Mossé, “Characterizing
the overhead of software-managed hybrid main memory,” in 2015 IEEE
23rd International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems. IEEE, 2015, pp. 33–42.

[9] G. W. Burr, B. N. Kurdi, J. C. Scott, C. H. Lam, K. Gopalakrishnan, and
R. S. Shenoy, “Overview of candidate device technologies for storage-
class memory,” IBM Journal of Research and Development, vol. 52, no.
4.5, pp. 449–464, 2008.

[10] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and
D. Coetzee, “Better i/o through byte-addressable, persistent memory,” in
Proceedings of the ACM SIGOPS 22nd symposium on Operating systems
principles, 2009, pp. 133–146.

[11] T. A. Davis and Y. Hu, “The university of florida sparse matrix collec-
tion,” ACM Transactions on Mathematical Software (TOMS), vol. 38,
no. 1, pp. 1–25, 2011.

16

Authorized licensed use limited to: University of Central Florida. Downloaded on February 20,2024 at 21:18:21 UTC from IEEE Xplore. Restrictions apply.

[12] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[13] J. Dongarra, M. Gates, A. Haidar, J. Kurzak, P. Luszczek, S. Tomov, and
I. Yamazaki, “The singular value decomposition: Anatomy of optimizing
an algorithm for extreme scale,” SIAM review, vol. 60, no. 4, pp. 808–
865, 2018.

[14] D. Fujiki, N. Chatterjee, D. Lee, and M. O’Connor, “Near-memory data
transformation for efficient sparse matrix multi-vector multiplication,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2019, pp. 1–17.

[15] F. G. Gustavson, “Two fast algorithms for sparse matrices: Multiplica-
tion and permuted transposition,” ACM Transactions on Mathematical
Software (TOMS), vol. 4, no. 3, pp. 250–269, 1978.

[16] S. Hadjis, F. Abuzaid, C. Zhang, and C. Ré, “Caffe con troll: Shallow
ideas to speed up deep learning,” in Proceedings of the Fourth Workshop
on Data analytics in the Cloud, 2015, pp. 1–4.

[17] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” Advances in neural information processing
systems, vol. 30, 2017.

[18] G. Huang, G. Dai, Y. Wang, and H. Yang, “Ge-spmm: General-purpose
sparse matrix-matrix multiplication on gpus for graph neural networks,”
in SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 2020, pp. 1–12.

[19] B. Jun and D. Shin, “Workload-aware budget compensation scheduling
for nvme solid state drives,” in 2015 IEEE Non-Volatile Memory System
and Applications Symposium (NVMSA). IEEE, 2015, pp. 1–6.

[20] H. Kim, M. P. Sah, C. Yang, and L. O. Chua, “Memristor-based
multilevel memory,” in 2010 12th International Workshop on Cellular
Nanoscale Networks and their Applications (CNNA 2010). IEEE, 2010,
pp. 1–6.

[21] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter, “Atlas: A scalable
and high-performance scheduling algorithm for multiple memory con-
trollers,” in HPCA-16 2010 The Sixteenth International Symposium on
High-Performance Computer Architecture. IEEE, 2010, pp. 1–12.

[22] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[23] D. Knyaginin, G. N. Gaydadjiev, and P. Stenstrom, “Crystal: A design-
time resource partitioning method for hybrid main memory,” in 2014
43rd International Conference on Parallel Processing. IEEE, 2014,
pp. 90–100.

[24] W. Liu and B. Vinter, “Csr5: An efficient storage format for cross-
platform sparse matrix-vector multiplication,” in Proceedings of the 29th
ACM on International Conference on Supercomputing, 2015, pp. 339–
350.

[25] J. A. Mandelman, R. H. Dennard, G. B. Bronner, J. K. DeBrosse,
R. Divakaruni, Y. Li, and C. J. Radens, “Challenges and future directions
for the scaling of dynamic random-access memory (dram),” IBM Journal
of Research and Development, vol. 46, no. 2.3, pp. 187–212, 2002.

[26] L. E. Ramos, E. Gorbatov, and R. Bianchini, “Page placement in hybrid
memory systems,” in Proceedings of the international conference on
Supercomputing, 2011, pp. 85–95.

[27] S. Sakr, “Processing large-scale graph data: A guide to current technol-
ogy,” IBM Developerworks, vol. 15, 2013.

[28] N. Srivastava, H. Jin, J. Liu, D. Albonesi, and Z. Zhang, “Matraptor:
A sparse-sparse matrix multiplication accelerator based on row-wise
product,” in 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 2020, pp. 766–780.

[29] S. Udayakumaran and R. Barua, “Compiler-decided dynamic memory
allocation for scratch-pad based embedded systems,” in Proceedings
of the 2003 international conference on Compilers, architecture and
synthesis for embedded systems, 2003, pp. 276–286.

[30] D. Ustiugov, A. Daglis, J. Picorel, M. Sutherland, E. Bugnion, B. Falsafi,
and D. Pnevmatikatos, “Design guidelines for high-performance scm
hierarchies,” in Proceedings of the International Symposium on Memory
Systems, 2018, pp. 3–16.

[31] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[32] B. Wheatman and H. Xu, “Packed compressed sparse row: A dynamic
graph representation,” in 2018 IEEE High Performance extreme Com-
puting Conference (HPEC). IEEE, 2018, pp. 1–7.

[33] J. J. Yang, M. D. Pickett, X. Li, D. A. Ohlberg, D. R. Stewart, and
R. S. Williams, “Memristive switching mechanism for metal/oxide/metal
nanodevices,” Nature nanotechnology, vol. 3, no. 7, pp. 429–433, 2008.

[34] J. Zhang, M. Kwon, D. Gouk, S. Koh, N. S. Kim, M. Taylan Kandemir,
and M. Jung, “Revamping storage class memory with hardware auto-
mated memory-over-storage solution,” in 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA), 2021, pp.
762–775.

[35] T. Zhao, X. Zhang, and S. Wang, “Graphsmote: Imbalanced node
classification on graphs with graph neural networks,” in Proceedings of
the 14th ACM international conference on web search and data mining,
2021, pp. 833–841.

17

Authorized licensed use limited to: University of Central Florida. Downloaded on February 20,2024 at 21:18:21 UTC from IEEE Xplore. Restrictions apply.

