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Abstract— This study focuses on a layered, experience-based,
multi-modal contact planning framework for agile quadrupedal
locomotion over a constrained rebar environment. To this
end, our hierarchical planner incorporates locomotion-specific
modules into the high-level contact sequence planner and
performs kinodynamically-aware trajectory optimization as the
low-level motion planner. Through quantitative analysis of the
experience accumulation process and experimental validation of
the kinodynamic feasibility of the generated locomotion trajec-
tories, we demonstrate that the planning heuristic of experience
offers an effective way of providing candidate footholds for a
legged contact planner. Additionally, we introduce a guiding
torso path heuristic at the global planning level to enhance
the navigation success rate in the presence of environmental
obstacles. Our results indicate that the torso-path guided ex-
perience accumulation requires significantly fewer offline trials
to successfully reach the goal compared to regular experience
accumulation. Finally, our planning framework is validated in
both dynamics simulations and real hardware implementations
on a quadrupedal robot provided by Skymul Inc.

I. INTRODUCTION

The task of legged locomotion elicits a hybridized plan-

ning space that combines discrete elements like robot end

effectors and environmental artifacts that can support foot-

steps along with continuous footstep positions along such

artifacts. Methods that opt to perform simultaneous contact

and footstep position planning often struggle to do so in

a computationally tractable manner because of this hybrid

planning space. The need for kinodynamically feasible so-

lutions to this planning problem further compounds the

computational efforts required.

An alternative way to resolve contact planning is through a

hierarchical approach in which a discrete contact sequence is

generated at the higher level and then continuous whole-body

trajectories that abide by the generated contact sequence

are synthesized at the lower level. The separation of the

planning space into discrete and continuous components

computationally simplifies the overall planning problem.
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Fig. 1: Illustration of a quadrupedal robot performing rebar grid traversal
in a simulated construction environment [7] and an indoor test-bed.

This planning decomposition reflects those widely ex-

plored in the areas of task and motion planning (TAMP)

[1]–[3] and multi-modal motion planning (MMMP) [4]–

[6]. These areas have proposed numerous effective planning

heuristics that allow the discrete and continuous planning

layers to inform each other and coordinate useful planning

attempts. However, traditional MMMP has seen limited use

in dynamic locomotion due the combinatorial nature of

contacts which makes the problem difficult to scale up and

the inherently dynamic process of legged locomotion which

imposes complex constraints on motion planning.

In this work, we draw inspiration from the Augmented

Leafs with Experience on Foliations (ALEF) framework [5]

for multi-modal planning. In particular, we design a novel hi-

erarchical planning framework to generate kinodynamically-

feasible quadrupedal locomotion plans, taking into account

the robot’s centroidal dynamics and kinematic reachability.

This study marks the first effort that leverages model-based

trajectory optimization (TO) in the design of the experience

heuristic for quadrupedal locomotion. Our main contributions

are summarized as below:

1) Adapting the concept of a mode transition graph to

quadrupedal contact planning along with a carefully

designed experience heuristic to weight the mode tran-

sition graph and guide contact sequence planning;

2) Integrating mode transition graph search with lower-

level TO to naturally embed footstep planners and

tightly integrate the kinodynamically-aware optimal

cost into the experience heuristic;

3) Integrating this multi-modal contact planner into a

navigation framework to exploit a guiding torso path;

4) Experimental validation of the proposed framework

for rebar grid traversal through quantitative analysis

of both simulations and hardware implementation.
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II. RELATED WORK

A. Contact Planning

Within the quadrupedal contact planning domain, there

exists a trade-off between solution quality and computational

cost. In the simplest case, fixing contact schedules and gen-

erating nominal footstep positions through Raibert heuristics

[8] allows for online planning at high frequencies [9], [10].

However, such approaches sacrifice the ability to adjust foot-

steps in response to the environment. To combat this rigidity,

some methods augment nominal footstep positions through

learned networks [11], [12], nonlinear programs [13], [14],

and control barrier functions [15]. Through simplifications

such as pre-defined gait sequences or discrete search spaces

for footholds, these approaches can also be run in real-time.

Some methods resolve all elements of footstep planning

(gait sequences, contact positions, and whole-body trajecto-

ries) in one module, often through contact-timing optimiza-

tion [16], mixed-integer programs [17], [18], soft contact

modeling [19], or linear complementarity constraints [20].

While such approaches generate complex, highly dynamic

motions, running such planners online is out of the question.

Instead of solving a joint optimization problem, many

contact planning frameworks [6], [21], [22] employ a hi-

erarchical planning structure, making the key design choice

of selecting contacts first and then synthesizing whole-body

motions. For bipedal platforms, contact transition models

are limited enough to achieve real-time footstep planning

through either pure search [23]–[26] or pure optimization

[17]. Due to the more aggressive scaling in quadrupedal

planning, it becomes crucial to cater particular planning

approaches to particular subproblems.

B. Multi-modal Planning

A common approach for framing complex long-horizon

tasks is through a discrete-continuous or multi-modal motion

planning (MMMP) formulation. For manipulation, a mode

typically corresponds to a particular contact or grasp con-

figuration between end effectors and objects [3], [5], [27]–

[29]. On the other hand, in the realm of locomotion, a mode

may represent a contact configuration [21], a gait [30], [31],

or a motion primitive [32]. In the context of TAMP, these

modes are often represented by symbolic states or logic rules

depending on particular problem domains [1]–[3], [33].

Existing MMMP frameworks often search over a mode

graph which defines valid transitions to obtain mode se-

quences. Continuous motion planning, whether it be sam-

pling, spline generation, or TO is then performed at the lower

level to resolve mode transitions. The works of [30], [33],

[34] use the results of lower-level TO programs to inform

graph edge weights. Other approaches train neural networks

to estimate system dynamics [35], the costs of TO programs

[32], or the feasibility of a candidate action [36]–[38].

One particular heuristic of interest is the experience-based

framework ALEF [5] which exploits the implicit continuous

manifolds that arise from contact constraints to disperse

the results of offline planning queries throughout the mode

graph. This makes for a sample-efficient framework that can

apply informed weights to unvisited contact transitions. How-

ever, many such heuristics, including that of experience, have

yet to be leveraged in quadrupedal contact planning. Recent

work [29] has shown how TAMP and MMMP can enable

quadrupeds to rapidly perform complex loco-manipulation

tasks such as manipulating and passing through a door.

III. PRELIMINARIES

A. Centroidal Dynamics Model

A quadrupedal locomotion model can be modeled by

centroidal dynamics which bridges the complex full-body

dynamics and simple center-of-mass (CoM) dynamics. This

model constrains the rate of centroidal momentum to be:

ḣ =

[
k̇

l̇

]

=

[ ∑

l fl +mg
∑

l(cl − r)× fl

]

(1)

where h = [k, l]T ∈ R
6 is the centroidal momentum which

includes linear k ∈ R
3 and angular l ∈ R

3 momentum, m is

the robot mass, r ∈ R
3 is the robot CoM position, fl ∈ R

3 is

the contact force at the lth foot, g ∈ R
3 is the acceleration

vector of gravity, and cl ∈ R
3 is the contact position of

foot l. By using the centroidal momentum matrix (CMM)

A(q) ∈ R
6×(6+nl) [39], h can also be expressed as:

h =
[
Ab(q) Aj(q)

]

︸ ︷︷ ︸

A(q)

[
q̇b

q̇j

]

(2)

where q = [qb,qj ]
T ∈ R

6+nj is the robot configuration,

with qb ∈ R
6 as the floating base pose and qj ∈ R

nj as the

configuration of nj joints.

B. Contact Manifolds

In this section, we present the manifold terminologies

from the ALEF framework in the context of quadrupedal

locomotion. More details can be found at [5].

In legged locomotion, a contact mode À can be viewed as

a set of footholds at unique positions along a set of step-

pable objects such as planar stepping stones or linear rebar

poles. From this contact mode À, a lower-dimensional mode

manifold Mξ embedded in the configuration space Q arises

which encompasses all of the whole-body configurations that

satisfy the foothold positions. As the foothold positions vary

along the steppable objects, different contact manifolds arise.

The set of all contact modes corresponding to the same

set of steppable objects can be grouped into a mode family

Ξ. From each mode familiy Ξi arises a foliated manifold, or

a foliation FΞi
. An n-dimensional foliation M is a manifold

defined by a nχ-dimensional transverse manifold X , a set

of non-overlapping (n−nχ)-dimensional leaf manifolds Lχ

∀χ ∈ X , and lastly a projection operator Ã : M → X .

Elements of the transverse manifold χ ∈ X are called

coparameters. A coparameter χ uniquely parameterizes a

mode À (and subsequently a leaf manifold Lχ = Mξ), and

for our use case, the foothold positions along the steppable

objects within the given mode family. Therefore, a mode

À = ïΞ,χð can be viewed as the tuple of a mode family and
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a coparameter. The union of leaf manifolds along the set of

coparameters
⋃

χ∈X Lχ recovers the entire foliation M.

A leaf or mode manifold Mξ can be implicitly defined

through a constraint function F ξ : R
n → R

nχ where a

configuration q lies on the mode manifold if F ξ(q) = 0.

In the proposed work, a mode represents three stance legs

in contact with three separate rebars. Therefore, an example

constraint function for a contact mode is

F ξ(q) :=
[

F ξ
1 (q), F

ξ
2 (q), F

ξ
3 (q)

]T
, (3)

where for a foot l in contact with a bar defined by a starting

point p0 ∈ R
3 and ending point p1 ∈ R

3,

F ξ
l (q) := FKl(q)− (p0 + χl(p1 − p0)) = 0, (4)

where FKl(q) gives the position of foot l given q via forward

kinematics (FK). In this work, we assume that the rebar grid

is planar and aligned with the ground plane, and we assume

that the poses of the rebars are known.

IV. MULTI-MODAL PLANNING

Assume a quadrupedal robot with a configuration space

Q ¢ R
6+nj . We seek to find a collision-free path q(s) with

s ∈ [0, 1] from q(0) = qstart to q(1) = qgoal in which

contact must strictly be made with the rebar grid.

A. Mode Transition Graph Construction

We employ a mode transition graph G = (V, E) as in

the ALEF framework in which the mode families comprise

the set of vertices V . The edges E are then formed between

mode families for which kinematically feasible transitions

exist. In the configuration space, edges are formed between

mode families which have foliations that intersect.

We utilize locomotion-specific constraints to implicitly

define feasible transitions within the mode transition graph.

First, a user-defined contact sequence informs the graph on

the robot’s footfall pattern. A transition from a vertex vi
to vertex vi+1 (equivalently, mode family Ξi to mode family

Ξi+1) is only added if the swing leg at vi and the swing leg at

vi+1 occur sequentially in the contact sequence. Second, we

incorporate kinematic reachability analysis to approximate

what regions are contactable by the robot’s legs. In this work,

we use a family of functions known as superquadrics that has

seen recent use in legged locomotion [40]. The set of points

that fall within the superquadric centered at (x0, y0) are

S =
{
(x, y) ∈ R

2
∣
∣
∣

∣
∣
x− x0

A

∣
∣
a
+
∣
∣
y − y0
B

∣
∣
b
f 1
}
, (5)

where scalars A,B and a, b control dimensions and curvature

respectively. Parameters were obtained through randomly

sampling configurations, keeping all samples that reach

within a distance threshold ϵ = 1 cm of the ground, and

tuning parameter values to encompass the samples in contact

(see Figure 2). For clarity, a portion of the mode transition

graph with these constraints incorporated into the feasible

transitions is visualized within Figure 3.

Fig. 2: Kinematic reachability areas along with projected configuration
samples. Some samples that meet the distance threshold are set as outliers
to avoid reachable areas that yield unstable contacts or self-collisions.

B. Mode Transition Graph Search

We formulate the task of finding a discrete foothold

sequence as a graph search problem over the aforemen-

tioned mode transition graph. We employ the A* search

algorithm for this mode transition graph search. For the

search, we discretize along the transverse manifold of each

mode family to generate “slices” of the foliations that

correspond to intervals of foothold positioning. Edges are

then added between all slices of the source and destination

mode families in which contact transitions exist in the graph.

This discretization allows for the search to reason about

both contact sequencing (which rebars to contact with which

feet) and foothold sequencing (where to make contact). This

search provides a candidate lead — a sequence of modes

[À0, À1, . . . , Ài, Ài+1, . . . , ÀM ] where M is the length of the

lead — which defines a foothold sequence from start to goal.

1) Edge weight: For a transition between source mode

Ài = ïΞi,χið and destination mode Ài+1 = ïΞi+1,χi+1ð,
the graph edge e = (Ài, Ài+1) is assigned the weight

∆c(Ài, Ài+1) = wD · DΞi,Ξi+1(χi,χi+1)+

wd · dCoM(Ài, Ài+1) + wτ · dτ (Ài, Ài+1),
(6)

where the distribution DΞi,Ξi+1(Çi, Çi+1) captures the dif-

ficulty of transitioning from Ài to Ài+1. This distribution

is estimated offline through the experience heuristic which

is detailed in Section V. The term dCoM(Ài, Ài+1) is the

Euclidean distance between nominal CoM positions for Ài
and Ài+1, and dτ (Ài, Ài+1) is the deviation of nominal CoM

positions for Ài and Ài+1 from a suggested torso path. This

path can come from any planner that generates a sequence

of torso poses from start to goal, and implementation details

on this suggested torso path are given in Section VI.

2) Cost-to-go: For the A* search, a contact mode À =
ïΞ, Çð is assigned the search heuristic value

g(À) = wd · dCoM(À,Ξgoal) (7)

to ensure an admissible search heuristic and therefore provide

optimal foothold sequences with respect to edge weights.

C. Whole-Body Trajectory Optimization

Once a discrete lead is obtained, continuous motions plans

must be synthesized between the consecutive modes. For this,

we opt to use trajectory optimization (TO) as opposed to

the sampling-based planning methods [41]–[43] commonly
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used in MMMP in order to be able to generate continuous

dynamics-aware paths that enable the robot to transition

between modes. While the TO sacrifices the probabilistic

completeness that is offered by sampling-based methods,

our approach enables kinodynamically-aware multi-modal

contact planning which has not been explored in prior works.

Similar to [44]–[46], our TO problem solves over the robot

state x = [h,qb,qj ], the robot input u = [f ,vj ], and

the coparameters χi+1 of the destination mode family. The

TO formulation for generating a whole-body trajectory to

transition from Ài = ïΞi,χið to Ài+1 = ïΞi+1,χi+1ð is

written as:

∥x[N ]− xdes[N ]∥2Qf
+

min
x,u,χi+1

N−1∑

k=0

(

∥x[k]− xdes[k]∥2Q + ∥u[k]∥2R

)

subject to

(Mode i) F ξi(q[k]) = 0 (8a)

(Mode i+ 1) F ξi+1(q[N ],χi+1) = 0 (8b)

(Dynamics)







l̇[k]

k̇[k]
q̇b[k]
q̇j [k]






=







∑

l fl[k] +mg
∑

l(cl − r)× fl[k]

A−1
b (h[k]−Ajvj [k])

vj [k]







(8c)

(Friction) fl[k] ∈ Fl(µ,q) ∀l ∈ Ci (8d)

fl[k] = 0 ∀l /∈ Ci (8e)

(Collision) g(q[k]) g 0 ∀k ∈ [0, N ] (8f)

where Fl(µ,q) represents the friction cone which depends on

the friction coefficient µ and robot pose q, and Ci represents

the set of stance feet for Ài. Note that at the TO level,

the destination mode family is fixed, but the coparameter

is treated as a decision variable, allowing for variation of the

destination mode. We formulate the above TO as a Sequential

Quadratic Program (SQP) and solve through the OCS2

library [47]. We employ a time horizon of T = 0.5 seconds

and N = 50 knot points with maximal 250 iterations.

For the collision avoidance constraint, we run the Gilbert-

Johnson-Keerthi algorithm [48] provided by the HPP-FCL

library [49]. We only check for collisions with the robot’s

feet to reduce computation time. We also use the Pinocchio

library for kinematics and dynamics calculations [50]. xdes

is generated in two steps, first, the mode constraint functions

from constraints (8a) and (8b) are used in a contact projection

step to project a randomly sampled target configuration into

contact satisfying the source and destination modes. If this

first step is successful, cubic splines are then synthesized

for the swing feet to build out the remainder of xdes. If

the optimal cost of an attempted mode transition is above a

threshold Jmax, then the planning trial is terminated.

V. PLANNING WITH EXPERIENCE

The objective of planning with experience is to acquire

a continuous function that captures the difficulty or cost of

attempting certain contact transitions within the environment

which are encoded as the edges of our mode transition graph.

Fig. 3: Overall diagram of planning framework. A graph search (Section IV-
B is performed over mode transitions using the estimated weight distribu-
tions from experience (Section V) which are colored by their corresponding
swing foot. Then, the suggested contact sequence is run through trajectory
optimization (Section IV-C) to determine the costs Ji,i+1 of the transitions.

A. Optimal Cost Integration

There are two potential outcomes of a transition attempt:

1) Contact projection fails to generate a target configura-

tion, suggesting an infeasible transition (Ji,i+1 = ∞)

2) Contact projection generates a target configuration,

triggering a TO instance (Ji,i+1 = Equation 8)

The experience heuristic allows us to infer from previously

attempted mode transitions the cost of nearby, possibly

unattempted mode transitions. While a transition between

two modes may be kinematically infeasible, infeasibility does

not necessarily hold for all modes between the two mode

families. Therefore, weighting the entire transition with a

cost of infinity could inhibit discovery of a path to the goal,

especially in situations where foothold location is crucial to

successful locomotion. To account for this, cost values Ji,i+1

are first passed through a weighted tanh function

¶i,i+1 = w1 tanh (w2 · Ji,i+1 + w3), (9)

where w1, w2, and w3 are positive scalar values to map the

costs to finite positive penalties that can be used to populate

the edge weights in the mode transition graph.

B. Experience Accumulation

The smoothness of contact manifolds allows us to exploit

prior planning results to inform estimates regarding similar

contact transitions. This is predicated on the idea that since

foliations are smooth, coparameters nearby on the transverse

manifold parameterize modes that are similar in cost [5].

Once the penalty values are obtained from a given TO

run, they can be distributed throughout the graph in the form

of experience. To distribute penalties throughout all modes

within a given mode family, we employ function regression

techniques that involve constructing a weighted sum of basis

functions that is meant to estimate the continuous distribution

of the average penalty value at different contact positions. In

this work, we model this distribution as the weighted sum

of radial basis functions (RBFs), where the update applied

to the weights of the traversed edge is

fΞi,Ξi+1(χi,χi+1) = we · exp(
−d(χi,χi+1)

2

2 · Ã2
) (10)
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where

we = (Ji,i+1 − J̄ ) (11)

where Ji,i+1 is the cost obtained from the attempted mode

transition, J̄ is the average transition cost between Ài and

Ài+1, d(χi,χi+1) represents the distance of a coparameter

to (χi,χi+1), and Ã represents the standard deviation of

the RBF. This update adds a basis function to the weight

distribution of each traversed edge that is centered at the

attempted coparameter value and weighted by its deviation

from the average cost of the attempted mode transition.

VI. EXPERIMENTAL RESULTS

In this section, we perform offline experience accumula-

tion in which a batch of planning trials are run in order to

populate the graph edge weights and demonstrate the whole-

body motion plans output by the proposed framework. Within

each planning trial, the high-level graph search provides a

candidate contact sequence which is passed to the lower level

of the framework where a sequence of trajectory optimization

subproblems are solved to generate contact transitions.

Case studies in three environments are performed: (i) a

grid with low-height obstacles scattered along its surface

(Section VI-A), (ii) a grid with a tall obstacle positioned

between the start and goal configurations (Section VI-B),

and (iii) a grid with various obstacles meant to emulate a

real-world constriction site. These three grids, along with

outputted reference trajectories, are visualized in Figure 4.

Fig. 4: Rebar grid layouts used in the case studies in Sections VI-A - VI-C.

For the three case studies, we record computation times of

the graph search triggered for each planning trial as well as

average, minimum, and maximum TO solve times across all

of the attempted subproblems within each planning trial. Ad-

ditionally, we report the results of all subproblems – success,

failure, or not attempted due to early trial termination – as

well as the total path costs for the trials that reached the goal.

Lastly, reference trajectories obtained from our framework

are deployed on a quadruped on a real world rebar grid and

tracking performance is evaluated (Section VI-D).

A. Footstep Adjustment through Experience

In this first case study, we demonstrate the key role that

the weight distributions obtained through experience play

in successful contact planning. We deploy the planner on

a rebar grid with short, foot-level obstacles along its surface,

and through offline experience accumulation the planner

ascertains what contact transitions allow the robot to reach

the goal without collisions. Results are shown in Figure 5.

Fig. 5: Results for Section VI-A: Case Study 1 on the grid in Figure 4(a).
A gradual increase in progress through the proposed contact sequences can
be seen in left figure as the graph search comes to avoid the more difficult
contact transitions that lead to collisions. Once successful contact sequences
are identified through experience, the graph search time drops significantly.

We initially performed 500 planning trials with all

experience-based weight distributions initialized uniformly to

DΞi,Ξi+1(χi,χi+1) = 0.01, but the planner failed to reach

the goal on any of the trials due to the extensive period

of graph exploration required to appropriately estimate the

weight distributions. We then performed a second run of

offline trials where we initialized the weight distributions to

priors based on proximity of the mode transitions to obstacles

in the environment. With these priors, the planner was able

to explore a greater portion of the mode transition graph and

ultimately find successful contact plans to the goal in far

fewer trials. During initial trials, mode transitions that collide

with obstacles are attempted, leading to extremely prohibitive

and highly variant TO times. However, after roughly 30 trials

the planner is able to suggest collision-free contact plans,

greatly reducing both the mean and variance of TO solve

times. In this environment, the torso planner does not provide

any useful insights on planning given that all obstacles exist

at the foot level, and the key heuristic that enables successful

planning to the goal in such an environment is the weight

distribution accumulated from experience.

B. Torso Path-Guided Experience Accumulation

In this section, we perform an ablation study in which the

multi-modal contact planner is run both with and without a

guiding torso path planner. The incorporation of this planner

emulates common navigation frameworks which perform

coarse, low-frequency torso planning that provides guiding

paths to a lower-level footstep planner that synthesizes

whole-body trajectories. We formulate the torso path planner

as an additional A* graph search where the graph nodes

are a set of positions along the rebar grid. Edges are added

between nodes that are under a distance threshold Ä = 0.15
m apart, and edge weights are assigned based on proximity

to obstacles. Results are shown in Figures 6a and 6b.

Due to the large obstacle positioned between the start and

goal, the added torso planner greatly expedites experience

accumulation. The guiding torso path biases the multi-modal

contact planner towards obstacle-free regions of the grid

which take far less time to plan through with TO. Without the

torso path, the mode transition graph search takes the shortest

path from start to goal which runs through the obstacle,

leading to much higher TO times and less overall exploration

of the graph. One drawback of instituting the guiding torso

path is that the graph search times increase significantly due

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on August 31,2024 at 00:03:52 UTC from IEEE Xplore.  Restrictions apply. 



(a) Results for experience accumulation with the guiding torso path.

(b) Results for experience accumulation without the guiding torso path.

Fig. 6: Results for Section VI-B: Case Study 2 on the grid in Figure 4(b).
(a) The torso path directs the search away from obstacles and towards the
richer areas of the environment for footholds, leading to fewer required
offline trials. (b) Without the guiding torso path, the contact planner initially
searches for footholds along a straight path between the start and the goal
which leads to a significantly longer experience accumulation process.

to the introduction of the complicated torso path deviation

term into the graph edge weight function.

C. Holistic Collision Avoidance through Experience

In the third case study, we demonstrate our framework’s

ability to reason through complicated rebar environments

with obstacles at both the torso level and the foot level.

Larger pillars and beams are avoided through following

the guiding torso path while barriers and debris on the

grid surface are avoided through adjusting footstep positions

through experience. Results are shown in Figure 7.

Fig. 7: Results for Section VI-C: Case Study 3 on the grid in Figure
4(c). With this more complicated environment came a longer experience
accumulation process as well as longer graph search times due to the
different weighting terms of the graph search interacting in nontrivial ways.

In this study, there are some early planning trials that

successfully reach the goal. This is largely due to the

presence of the guiding torso path manuevering the resulting

contact sequences around large obstacles. However, over the

course of the experience accumulation, the mode transitions

that allow the robot to step over the barrier spanning across

the grid and avoid the clutter on the left side of the grid

are discovered and exploited. This complicated environment

gives rise to higher graph search times than those observed

in the previous case studies. Also, more planning trials are

required to appropriately estimate the edge weights within

the graph. However, our framework still only requires 80

trials to generate contact sequences with consistently short

solve times at the TO level that allow robot to reach the goal.

D. Hardware Implementation

To ensure that trajectories generated by our framework

can be robustly deployed on real systems, we set up a rebar

scenario and performed trials onboard a quadrupedal rebar-

tying robot – Chotu. We employed an MPC-WBC tracking

controller modified from [46]. The MPC solves a similar

centroidal dynamics optimization as (8) at 100 Hz but with

the fixed contact sequence from our framework. An end-

effector constraint is added to accurately track the reference

swing foot trajectory, which is crucial to successful rebar

traversing. The WBC solves a hierarchical QP at 500 Hz. The

state estimator fuses IMU data, joint encoders, and motion

capture inputs to provide accurate body position information.

Fig. 8: Hardware demonstration of Chotu performing rebar traversal. (a)
Real-world rebar grid setup. (b) Rebar traversal in dynamics simulation.
Colored lines denote desired position trajectories for robot torso and feet.
(c) Comparison of reference trajectory and measured robot states.

We validate the trajectories generated by our framework

on one real-world example. As shown in Fig. 8 (a) and (b),

the robot Chotu is commanded to move from the top left

corner of the rebar grid to the middle right with an obstacle

is blocking in the way Fig. 8 (c) demonstrates a favorable

tracking performance with insignificant body pose and foot

error regarding the body pose and foot locations.

VII. CONCLUSION

In this work, we adapt an efficient multi-modal contact

planner to the task of quadrupedal rebar traversal. We accu-

mulate offline experience to estimate optimal cost distribu-

tions using the results of lower-level trajectory optimization

instances. This framework assumes that poses of environment

objects are known which prohibits integration into an online

navigation framework. In the future, we aim to incorporate

perception into the graph construction and search to allow for

deployment in unknown environments. The experience that

is accumulated from trajectory optimization is also tied to the

environment in which it is obtained. We seek to re-structure

this experience heuristic to allow for experience to be used

across environments of varying formats and complexities.
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