
ALISA: Accelerating Large Language Model
Inference via Sparsity-Aware KV Caching

Youpeng Zhao, Di Wu, Jun Wang
University of Central Florida

Email: {youpeng.zhao, di.wu, jun.wang}@ucf.edu

Abstract—The Transformer architecture has significantly ad-
vanced natural language processing (NLP) and has been foun-
dational in developing large language models (LLMs) such as
LLaMA and OPT, which have come to dominate a broad range of
NLP tasks. Despite their superior accuracy, LLMs present unique
challenges in practical inference, concerning the compute and
memory-intensive nature. Thanks to the autoregressive charac-
teristic of LLM inference, KV caching for the attention layers in
Transformers can effectively accelerate LLM inference by substi-
tuting quadratic-complexity computation with linear-complexity
memory accesses. Yet, this approach requires increasing memory
as demand grows for processing longer sequences. The overhead
leads to reduced throughput due to I/O bottlenecks and even out-
of-memory errors, particularly on resource-constrained systems
like a single commodity GPU.

In this paper, we propose ALISA, a novel algorithm-system co-
design solution to address the challenges imposed by KV caching.
On the algorithm level, ALISA prioritizes tokens that are most
important in generating a new token via a Sparse Window
Attention (SWA) algorithm. SWA introduces high sparsity in
attention layers and reduces the memory footprint of KV caching
at negligible accuracy loss. On the system level, ALISA employs
three-phase token-level dynamical scheduling and optimizes the
trade-off between caching and recomputation, thus maximizing
the overall performance in resource-constrained systems. In a
single GPU-CPU system, we demonstrate that under varying
workloads, ALISA improves the throughput of baseline systems
such as FlexGen and vLLM by up to 3⇥ and 1.9⇥, respectively.

I. INTRODUCTION

Large Language Models (LLMs) stand as a revolutionary
breakthrough in the modern era of artificial intelligence (AI).
Distinct from previous small language models with only mil-
lions of parameters, LLMs often have hundreds of billions or
even trillions of parameters. They have exhibited exceptional
abilities in solving complex tasks, such as semantic reasoning
and creative writing through text generation. GPT-2 XL, one
of the earliest LLMs with 1.5 billion parameters, pioneered
in showcasing these capabilities [29]. Its successor, GPT-
3, showcases even more powerful abilities with 175 billion
parameters [6]. To date, the most noteworthy application of
LLMs is ChatGPT from OpenAI [26], a tool that allows
users to interact with an AI agent in a conversational way
to solve tasks ranging from language translation to software
engineering, and beyond.

LLMs usually consist of stacked transformer decoder layers,
in which the critical component is self-attention (attention
for short in this work) [35]. The attention modules empower
LLMs to capture contextual information by attending to differ-
ent positions within the sequences, which however introduces

Fig. 1: Breakdown of execution time and memory usage for
OPT-6.7B inference on one NVIDIA Tesla V100 GPU with
32 GB memory under different workloads. Weights, activations,
and KV tensors (intermediate key and value states) denote the
required GPU memory. MHA, FFN, and memory access denote
the time for computing multi-headed attention, and feed-forward
network (both including the follow-up Addition and LayerNorm
operations) and KV caching (moving KV tensors between CPU
and GPU if any). 50% means the ratio of the KV tensors allocated
to CPU/GPU memory. OOM denotes out-of-memory error, and
the red-dot line denotes the GPU memory capacity. The b, s, and
n for workloads refer to the batch size, and input and output
sequence length. Results are reported using FlexGen [31].

quadratic computation complexity with the sequence length.
Such complexity severely bottlenecks the performance and
scalability of LLMs and is becoming more pronounced upon
the pursuit for longer sequences in existing systems [3, 8, 16,
28]. One viable solution to this problem during LLM inference
is KV caching [27]. This idea originates from the fact that
LLM inference is autoregressive, where LLMs generate new
tokens sequentially based on all prior tokens (more details
in Figure 2). This characteristic opens up the opportunity of
reusing intermediate states, specifically, the key (K) and value
(V) tensors, whose sizes increase linearly with the sequence
length through caching in attention layers. With KV caching,
the quadratic-complexity computation is reduced to linear-
complexity computation and memory accesses, therefore sub-
stantially speeding up LLM inference.

1

Challenge. Despite KV caching significantly reducing the
inference time, LLM inference with KV caching is predom-
inantly bottlenecked by memory [28], especially in resource-
constrained systems, like a single commodity GPU. First, the
most expensive operations in LLMs are matrix multiplication
and softmax, which are notoriously memory-bound. Second,
the weights and activations in LLMs have already raised an
alert on the memory capacity. Third, intermediate KV tensors
further exacerbate the requirement on memory capacity, which
is determined by the sequence length and model dimension.
For a given LLM, as the batch size and sequence length
increase, the allocated memory for KV caching continues
to grow linearly, and at some point, exceeds the available
memory capacity. Ultimately, pursuing longer sequences in
larger LLMs ends up with an out-of-memory error and halts
the execution, as given by the “GPU only” case on workload
2 in Figure 1. To circumvent the out-of-memory error in
a single GPU setting, researchers have developed solutions
to offload KV tensors to CPU memory or even secondary
storage to free up GPU resources in real-world scenarios [31].
However, frequent offloading and reloading of KV tensors
incur significant data transfer overhead, which becomes the
new bottleneck towards high throughput and low latency in
resource-constrained systems, as seen in Figure 1. To this end,
we ask: how to innovate KV caching for LLMs in resource-
constrained systems, to facilitate better scalability and meet
the need of longer sequences and larger model sizes.

Proposal. In this paper, we propose ALISA, an algorithm-
system co-design solution to accelerate LLM inference via
sparsity-aware KV caching for single GPU-CPU systems. Our
key observation is that during the autoregressive inference
process, the attention weight matrix is highly sparse, and
larger LLMs exhibit higher attention weight sparsity. This
observation validates the intuition that not all tokens are
created equal and only a small number of important tokens
contribute to generating a new token. Once these important
tokens are identified, we can selectively access the KV tensors
corresponding to these important tokens, and skip unimportant
ones. To identify which tokens are important, we formulate a
Sparse Window Attention (SWA) algorithm, in which both the
globally dynamic and locally static sparse patterns are created.
A mixture of these sparse patterns can significantly reduce the
memory footprint while maintaining model accuracy due to the
ability to better capture important tokens in a sequence.

However, as the size of LLMs keeps growing, the above
algorithmic optimization is insufficient to guarantee satisfac-
tory performance, i.e., throughput in this work, for resource-
constrained systems. We argue that accelerating LLMs is not
only a computation problem but more of a memory problem, in
the presence of a gigantic memory footprint. Three bottlenecks
are responsible. Firstly, the size of sparse KV tensors will
ultimately exceed the memory capacity with longer sequences,
and the long-latency GPU-CPU memory accesses in dense
LLMs recur. Secondly, the sparse nature of KV tensors
induces unpredictable memory access, which is exacerbated

TABLE I: Comparison of prior works and our ALISA. Block
means a fixed group of tokens. Head means a single attention
module.

Design vLLM [21] FlexGen [31] ALISA (Ours)

Sparse Attn. 7 7 3

Caching
Granularity

Block-level
(Static)

Head-level
(Static)

Token-level
(Dynamic)

Recomputation 3 7 3

Scenario Online
(Multi-GPU)

Offline
(Single-GPU)

Offline
(Single-GPU)

Co-Design 7 7 3

by longer sequences. To address these two challenges, we
propose to dynamically schedule the KV tensors at the token
level and balance between caching and recomputation for best
performance gain. We highlight this token-level scheduling in
Table I. Thirdly, high-precision (FP16 in this work) KV tensors
still exhibit a large memory footprint, thus high memory
access latency. We can compress KV tensors to lower precision
(INT8) via quantization and further reduce the overall memory
overhead, without sacrificing the accuracy.

In summary, this paper makes the following contributions:

• We identify the challenges in KV caching for LLM
inference and propose an algorithm-system co-design
solution, ALISA, for efficient LLM inference in resource-
constrained systems.

• On the algorithm level, we propose sparse window atten-
tion (SWA) that creates a mixture of globally dynamic
and locally static sparse patterns in KV tensors to reduce
the memory footprint while maintaining high accuracy.

• On the system level, we design a three-phase scheduler to
dynamically allocate KV tensors between GPU and CPU
memory to reduce data transfer at the token level.

• We evaluate ALISA over a wide range of LLM mod-
els, tasks, and workloads. Experiments demonstrate that
ALISA can significantly reduce the memory footprint of
KV tensors and increase the throughput over previous
baselines, with negligible accuracy drop.

The remainder of this paper is organized as follows. Sec-
tion II recaps LLM-related concepts and works. Then, Sec-
tion III articulates our perspectives on challenges and corre-
sponding opportunities in accelerating LLMs. Next, Section IV
and Section V elaborate the algorithm and system design
in ALISA, with evaluation followed in Section VI. Finally,
Section VII concludes this work.

II. BACKGROUND

In this section, we first present some preliminary knowledge
of LLMs, including autoregressive inference, the Transformer
layer, and KV caching. Afterwards, we discuss related works.

2

Fig. 2: (a) Top: an example of autoregressive LLM inference. EOS refers to end-of-sentence. Bottom: operation blocks in transformer
layers. (b) KV caching: Q, K, V denotes the query, key, and value tensors. At the prefilling stage, all input tokens are processed
simultaneously, and the generated intermediate KV tensors are stored, marked by dark colors. s and d represent the input sequence
length and the hidden dimension size of KV tensors. At the decoding stage, the stored KV tensors in the dark colors are retrieved.
The input Q, K, V tensors are marked by the light colors. The input Q tensor is multiplied with a concatenation of input K
and stored K tensors, followed by a softmax of the entire attention weights. The attention weight are further multiplied with a
concatenation of input V and stored V tensors to generate new results. Afterward, the input K and V tensors are stored. This
process is repeated per token. (c) Execution time and GPU memory usage for OPT-6.7B inference with and without KV caching.
The x-axis step index means the output sequence length. Results are reported using HuggingFace Accelerate [39].

A. Large Language Models

Autoregressive Inference. Transformer-based language mod-
els function by processing a sequence of input words and
generating new, related words as output. Compared with
previous small language models in the pre-LLM era, the
most distinctive characteristic of LLMs is that LLM inference
is autoregressive, i.e., output tokens solely depend on past
tokens. Figure 2 (a) gives an example of such an autoregressive
behavior in LLM inference on the top. The inference process
can be divided into two parts, including the prefilling and
decoding stages. During the prefilling stage, LLMs process all
the input tokens in a single pass. Then, during the decoding
stage, a previously generated output token is fed back into
the model as an input and generates the next output token.
Therefore, the decoding stage unfolds iteratively, processing
one token at a time. When the sequence length reaches a
maximum threshold (specified by users or service providers)
or an “hEOSi” token is emitted, the decoding process stops.
Inside the LLMs, the input words are first tokenized to
continuous vectors using an embedding layer (not shown for
simplicity) and then go through stacked transformer layers.
All transformer layers are identical and include a multi-head
attention (MHA) layer and a feed-forward network (FFN)
layer, as shown at the bottom in Figure 2 (a). There exist
addition and layer normalization layers after MHA and FFN
layers. We consider them as part of the MHA and FFN
layers in this work during evaluation. Finally, the outputs of
transformer layers will go through a linear projection and a
softmax layer to generate the corresponding token for the next
word (not shown).

Transformer Layer. At the core of transformer layers lies
the attention module [35]. The relevant operations are given
in Equation 1 and 2. There are three intermediate tensors
involved, namely, query Q, key K, and value V . The attention

weights AW(Q,K) are calculated by first computing the dot
product between Q and K, then scaling the product by the
square root of hidden dimension d, and finally going through
a softmax operation (�(·)). The attention scores Attn(Q,K, V)
are calculated by multiplying the attention weights AW(Q,K)
to V . The MHA output is obtained by simply concatenating
the outputs of all attention heads along the head dimension,
with each head being an attention module.

AW(Q,K) = �(
QKT

p
d

) (1)

Attn(Q,K, V) = AW(Q,K) · V (2)

KV Caching. According to Equation 1, the attention operation
induces quadratic computation complexity with respect to
the sequence length. An example is given at the top of
Figure 2 (b). The sequence length quadratically increases the
size of the attention weight matrix, therefore quadratically
increasing execution time. This overhead is exacerbated when
pursuing longer sequences for larger models [3, 8, 16, 28].
To mitigate such a quadratic overhead for LLM inference,
KV Caching is proposed to store the intermediate tensors
such as key (K) and value (V) tensors in attention layers for
computation reuse in future decoding steps [27]. The bottom of
Figure 2 (b) showcases how KV caching works. KV caching
transforms the original matrix multiplication with quadratic
complexity into vector-matrix multiplication and memory ac-
cesses with linear complexity, thus significantly improving the
performance. Figure 2 (c) draws the execution time and mem-
ory usage for LLM inference with and without KV caching.
Without KV caching, the execution time increases rapidly, due
to calculating the entire attention repeatedly. With KV caching,
only the attention weights and scores for the newly generated
token are calculated as vector-matrix multiplication, and the
execution time stays almost constant across different steps.

3

However, such runtime reduction is at the expense of GPU
memory usage, which increases gradually over time, due to
the growing size of KV tensors.

B. Related Work

Algorithmic Optimization for Attention. On the algorithm
side, various optimizations have been proposed to address
the quadratic complexity of attention modules. In the pre-
LLM era, algorithm optimizations largely focus on reducing
the attention complexity through approximation methods. For
example, Linformer [37] and Reformer [20] approximate
the original attention using low-rank matrices and locality-
sensitive hashing, respectively, achieving almost linear com-
plexity. However, these approximations are not able to offer
competitive accuracy in LLMs. Another line of algorithmic
optimization is to create sparse patterns in attention mod-
ules [3, 8, 10, 32]. However, most sparsity-driven methods
require additional training, which is not scalable for LLMs
and cannot guarantee accuracy performance [10, 32]. In the
LLM era, Longformer [3] constructs the sparse attention
using a fixed-size sliding window on the most recent local
tokens. SparseTransformer [8] generates sparse patterns with
a fixed stride on all tokens. However, these sparse attention
methods are not able to capture important tokens during the
autoregressive LLM inference, resulting in accuracy collapse.

Hardware Acceleration for Attention. For small language
models, accelerators that utilize algorithm-hardware co-design
have been proposed [13, 36]. For example, SpAtten co-designs
the algorithm and accelerator architecture to improve the
sparsity in attention modules and reduce both the compute and
memory overheads in matrix multiplication operations [36];
ViTALiTy approximates the dot-product softmax operation
in attention modules using first-order Taylor expansion and
linearizes the relevant cost [13]. Though these accelerators are
quite effective in the pre-LLM era, their merit fades away in
LLM inference, due to their fundamental limitations. First, pre-
LLM accelerators simply can not handle the large model size
of LLMs. For example, SpAtten balances its design choices
among algorithm complexity, computation throughput, and
memory capacity for the BERT [15], GPT-2 small and medium
model [29]. However, the largest GPT-2 medium model has
only 0.36 billion parameters, not even a fraction of that for
LLMs, e.g., 175 billion parameters for GPT-3 [6], which
engages 652 GB for single-precision model weights. Naively
slabbing large memory onto the computing kernels does not
offer Pareto efficiency. Second, prior co-designed accelerators
are not able to further scale up with longer sequences. For
example, SpAtten requires storing the entire attention weights
to prune away unwanted tokens. However, the size of the
attention weight matrix increases quadratically with sequence
length. In the era of LLMs, given limited memory capacity,
especially in resource-constrained systems, squeezing memory
from KV tensors to attention weights will certainly degrade
the efficacy of KV caching and slow down the inference.

KV Caching Optimization. In the LLM era, numerous
specialized LLM systems have been developed. We compare
some of these systems in Table I. For example, FlashAttention
aims to reduce memory accesses between on-chip SRAM
and off-chip HBM in GPUs for higher throughput with fine-
grained tiling and partitioning at the kernel level [11, 12].
However, it does not optimize the memory accesses between
CPUs and GPUs. vLLM proposes storing intermediate KV
tensors at the block level, where each block contains a fixed
number of tokens and is stored in non-contiguous paged
memory to alleviate memory fragmentation for online LLM
inference [21]. Identical to this work, FlexGen also targets
resource-constrained systems [31]. FlexGen formulates a static
offloading strategy for KV tensors throughout the LLM infer-
ence and manages them at the head level. H2O designs a KV
caching policy by retaining heavy hitters (H2) tokens, which
are determined by the global attention weight sum [43], rather
than the local attention weight sum in ALISA. To summarize,
three features differentiate ALISA from prior works. First,
ALISA co-designs both the algorithm and system to fully
exploit sparse attention for higher throughput, while previous
works focus solely on either algorithm improvement (H2O)
or system improvement (vLLM, FlexGen). Second, ALISA
performs KV caching at the granularity of one token, allowing
flexible KV tensor allocation, which is critical upon sparsity-
driven co-design. Third, ALISA adopts an appropriate dy-
namic scheduler to perform both caching and recomputation,
while previous works only employ static KV caching [31, 43].

III. CHALLENGES AND OPPORTUNITIES

A. Challenges
Despite KV caching has significantly improved the end-to-

end performance for LLMs by avoiding quadratic-complexity
computation, it still introduces a linear-complexity memory
footprint. During LLM inference, we have to allocate GPU
memory to store intermediate KV tensors. The corresponding
memory footprint can vary from hundreds of megabytes to
hundreds of gigabytes, depending on batch size, sequence
length, and model configuration. As shown in Figure 2 (c),
the GPU memory usage with KV caching is about 60% higher
than that without KV caching with only 128 tokens in the
sequence. In half-precision data format, running OPT-13B with
a sequence length of 512 at a batch size of 64 imposes more
than 25 GB of memory for KV tensors, which is even larger
than the model weight size (about 23 GB). When the sequence
length increases, this gap will be further widened.

In resource-constrained systems (e.g., a single GPU with
limited memory), KV tensors ought to be offloaded to next-
level memory hierarchies, such as CPU memory or even
secondary storage, when the size of KV tensors exceeds
the capacity of the GPU memory. However, offloading and
reloading KV tensors incur significant data transfer overhead
(e.g., I/O access between GPU and CPU memory on the PCIe
bus), as shown in Figure 1. Storing 50% KV tensors in CPU
memory will increase the overall execution time of LLM
inference by 3⇥; and this slowdown reaches 5⇥ if storing

4

Fig. 3: Attention weight sparsity observed across different steps
and layers during OPT model inference using the Wiki-Text-2
dataset [24]. We consider elements as zeros if they fall below 1%
of the row-wise maximum value.

all KV tensors in CPU memory. Given this bottleneck in KV
caching, we need to find a solution that orchestrates when,
how, and what to offload and reload in resource-constrained
systems, so that the overall execution time is minimized.

B. Opportunities

Let’s start with a simple example. Given the question “What
is the capital of France?”, we humans only need to pay
attention to ‘capital’ and ‘France’ to respond with the answer
“Paris.” The intuition is that not all words (tokens) are created
equal, and some are more important than others. This intuition
has been leveraged in accelerating transformers in the pre-
LLM era. Prior works for small language models empirically
keep the tokens that lead to large attention weights, and prune
away those with smaller weights [36]. In this work, we take
one more step to corroborate this intuition in LLMs by pro-
filing the sparsity in attention weights, as shown in Figure 3.
We have two key observations. First, the attention weights in
LLMs are highly sparse, e.g., the sparsity can vary between
80% and 95% across different inference steps, and reach close
to 99% in some layers. Second, larger LLMs exhibit higher
sparsity, e.g., the density (i.e., 1 � sparsity) of OPT-30B is
about 3⇥ less than that of OPT-6.7B. These observations
translate to the fact that, from a computation perspective,
very few elements in the attention weight matrix contribute to
calculating the final attention score and generating new tokens
in LLMs. This both motivates and validates our solution to
create sparse KV tensors by skipping unimportant tokens in
LLM inference.

C. Objective

To make the most of the high sparsity in attention weights,
we propose to co-design LLMs in resource-constrained sys-
tems from both the algorithm and system sides. Three techni-
cal questions need to be answered.

Identifying Important Tokens. In the context of LLMs, indi-
vidual tokens have varying importance. During the inference
process, the attention weights for each token vary from step
to step. The nondeterministic nature of language makes it
extremely hard to predict which tokens are important. Hence
we need a low-cost mechanism to distinguish important tokens
without hurting accuracy significantly for LLM inference.

Caching KV Tensors. When KV tensors become too large
for GPU memory, we have to store partial KV tensors in CPU
memory for future reuse. Theoretically, we could use Belady’s
Algorithm as the caching policy [2], which evicts the tokens
that will not be used for the longest period in the future.
However, this oracle algorithm assumes future knowledge and
imposes a huge amount of resources, making it impractical in
LLM inference. Therefore there is a need to develop a low-
cost caching policy to allocate sparse KV tensors and ensure
a relatively low miss rate.

Caching vs. Recomputation. As the sequence length grows,
the benefit of KV caching diminishes at a certain threshold
since the time for accessing CPU memory might outweigh
that for recomputing partial KV tensors. Moreover, this se-
quence length threshold varies across batch sizes and model
configurations. Thus, we must design a dynamic scheduling
strategy that balances KV caching and recomputation at the
token level.

IV. ALISA ALGORITHM DESIGN

A. Attention Analysis

In the LLM era, existing works mainly aim to create sparsity
in attention weights during LLM inference [3, 8]. Long-
former [3] adopts a local attention mechanism, which applies a
fixed-size sliding window on the KV tensors corresponding to
the most recent tokens. The resultant attention weight pattern
is shown on the top of Figure 4 (b). SparseTransformer applies
a strided mask on the tokens and creates strided attention [8],
as shown on the top of Figure 4 (c).

To understand why the previous attention methods fail upon
long sequences, we visualize the dense attention weight maps
during LLM inference in Figure 5. We observe that attention
weights with larger values do not exhibit a specific pattern.
Only using the most recent tokens cannot accurately represent
the distribution of the entire attention weights, since the tokens
with large attention weights (therefore more important) are
often far from the current token. A similar problem exists
in strided attention, and the stride mask might not always
capture large attention weights. Therefore, the attention weight
maps of the local attention and the strided attention can not
capture a large portion of attention weights. Subsequently, the
corresponding attention score distributions significantly drift
away from what is expected in dense attention. At the bottom
of Figure 4 (a)-(c), we see that dense attention scores follow a
near power-law distribution, which is consistent with previous
findings [7, 37]. However, the attention score distributions
generated by local and strided attention show close to zero
correlation to that of dense attention, thus resulting in drasti-
cally lower accuracy.

B. Sparse Window Attention (SWA)

To maintain model accuracy, we propose a novel Sparse
Window Attention (SWA) method, which produces both lo-
cally static and globally dynamic sparse patterns. We generate
static patterns at local tokens by keeping the most recent

5

(a) Dense Attention (b) Local Attention [3] (c) Strided Attention [8] (d) SWA (Ours)

Fig. 4: Comparisons of our proposed Sparse Window Attention (SWA) and existing methods. On the top are illustrative sparse
patterns for attention weight matrices generated by each method, where the x-axis the positions in the input sequence that are being
attended to, and the y-axis represents the positions in the output sequence. The same notation is used in Figure 5. Grey blocks
mean the values are masked with zeros, due to the autoregressive LLM inference. On the bottom are the corresponding average
attention score distributions in the Wiki-Text-2 dataset vocabulary for the OPT-6.7B model. ⇢ is the Spearman correlation score
between sparse attention and dense attention (higher is better).

Fig. 5: Average attention weight maps for dense attention in OPT-
6.7B on the Wiki-Text-2 dataset [24]. The sequence length is 16.
Grey blocks mean the values are masked with zeros, due to the
autoregressive LLM inference.

tokens to preserve language sequential semantics and generate
dynamic patterns to capture the dynamically changing seman-
tic importance of prior tokens. The importance of the prior

Fig. 6: An illustrative example of our proposed Sparse Window
Attention (SWA) algorithm using 40% caching ratio. The left
matrix denotes the attention weight map. We calculate the local
attention sum using solely the two most recent tokens. The locally
static token is kept regardless of the value of the local attention
sum. The globally dynamic token is selected as the one with the
highest local attention sum.

tokens for future token generation is determined by the sum
of the local attention weights. Figure 6 draws an example of
our SWA algorithm, with the algorithm details formulated as
in Algorithm 1.

Our method is based on the hypothesis that multiple preced-
ing steps can provide better hints on which tokens are more
important than a single step. The resultant sparse patterns
are shown on the top of Figure 4 (d). Note that there do
exist prior works that generate sparse patterns based on the
entire attention weights [36, 43]. However, the entire attention
weights will quadratically increase memory footprint with

6

Algorithm 1 ALISA’s Sparse Window Attention
Input: Previous attention weight AW, query Q, keys and

values K,V , caching ratio r, sequence length n, hidden
dimension d. Note that this work evenly splits final
tokens into k globally dynamic and k local static tokens.
The local attention sum is also reduced along the head
dimension (not shown for conciseness).

Output: Attention score Attn
1: k = bnr

2 e
2: S =

P
AW[n� k : n� 1] . Local attention sum

3: I l = [n� k, ..., n� 1] . Locally static tokens
4: Ig = argmaxkS . Globally dynamic tokens
5: I = [I l, Ig] . Sparse tokens
6: Ks, Vs = K[I, :], V [I, :] . Sparse KV tensors
7: AW = �(QKT

sp
d
) . Attention weight

8: Attn = AW · Vs . Softmax & attention score
9: return Attn

sequence length, thus not scalable upon long sequences. We
plot the distribution of the resultant attention scores at the
bottom of Figure 4 (d). Unlike previous fixed sparse patterns,
our SWA produces a nearly identical power-law distribution as
the dense attention and obtains a Spearman correlation score
close to 1. This similarity validates the efficacy of our SWA
algorithm. The details of SWA are formulated in Algorithm 1.
Two key differences exist between dense attention and SWA.
First, the algorithm entails a caching ratio to determine how
many tokens to keep at each step for KV sparsity and apply the
sparse masks at the token level. While irregular sparsity could
exist across tokens, each token is still a dense tensor. Second,
we use gather operations to pack sparse KV tensors into a
dense one and perform dense matrix operations. Therefore,
despite the multi-step attention calculation in SWA, both the
computation and memory access for SWA remain regular, if
we target a proper granularity.

V. ALISA SYSTEM DESIGN

Since SWA introduces sparse KV tensors dynamically, de-
signing a system for LLM inference that handles such sparsity
effectively is essential. We propose dynamic scheduling to
ensure SWA lives up to its potential at the system level. Then,
we leverage KV compression to further improve the system-
level performance. Our proposed ALISA is a synergetic sym-
biosis of SWA, dynamic scheduling, and KV compression.
Specifically, SWA identifies important KV tensors and gen-
erates sparse patterns. Then the dynamic scheduling utilizes
important tokens and user-specified caching ratio to balance
sparsity-aware caching and recomputation at the token level
during LLM inference. The KV compression further reduces
the overall memory footprint of KV tensors by quantizing
them into INT8 format.

A. Dynamic Scheduling

Three-Phase Scheduling. Since the size of KV tensors grad-
ually increases with longer sequences, it is evident that the

Algorithm 2 ALISA’s Dynamic Scheduling
1: Initialization: GPU core GC, GPU memory GM, CPU

memory CM, sequence length n, phase switch step
{p1, p2}, offload ratio ↵ and recompute ratio � for KV
tensors.

2: for all j < n do
3: # Load
4: if j � p1 then . Phase II & III
5: CM!GM.load(⇤)
6: end if
7: GM!GC.load(⇤) . Phase I&II&III
8: # Compute
9: if j � p2 then . Phase III

10: Recompute(⇤)
11: end if
12: Update(Kj , Vj) . Attention computation
13: # Store
14: GC!GM.store(Kj , Vj) . Phase I&II&III
15: if j � p1 then . Phase II
16: if j � p2 then . Phase III
17: CM.delete(K�

j , V
�
j))

18: end if
19: GM!CM.store(K↵

j , V
↵
j)

20: end if
21: end for

engaged memory will increase over time. Due to the high cost
of CPU memory I/O accesses, one shall balance the memory
access and computation at the token level to maximize the
performance. Our scheduling is described as follows.

• Phase I: GPU Caching. All KV tensors can fit in GPU
memory and are stored in the GPU.

• Phase II: GPU-CPU Caching. The total size of all KV
tensors exceeds the capacity of GPU memory, and the
KV tensors are split at the token level on both GPU and
CPU memory and accessed upon need.

• Phase III: Recomputation-Caching. After a certain se-
quence length, partial KV tensors are deleted from the
CPU and recomputed in GPU if needed instead of being
accessed from CPU memory.

We illustrate our scheduling with an illustrative example in
Figure 7 (b) and a formulation in Algorithm 2. Each inference
pass contains load, compute, and store parts. Load from GPU
memory to GPU core is mandatory for all phases. In Phase
II and III, load from CPU to GPU happens before load
from GPU memory to GPU core. The new KV tensors will
be computed and then stored in GPU memory. In Phase II
and III, certain KV tensors in GPU memory will be stored
(offloaded) to CPU memory. Since the global sparse patterns
vary from step to step, we choose to keep the KV tensors for
the locally static tokens in the GPU and store the preceding
ones in the CPU. Though there exist caching policies such
as Belady’s Algorithm [2], such oracle methods could be too
computationally expensive to be impractical for efficient LLM
inference. Our heuristic-based caching policy can effectively

7

Fig. 7: (a) FlexGen’s static scheduling. This scheduling splits KV tensors along the head dimension and remains static across different
sequence lengths. (b) ALISA’s dynamic scheduling. In phase I, the entire KV tensors are small enough to fit in GPU memory, and
no CPU memory access exists. In phase II, when GPU capacity is not enough for all KV tensors, the CPU is also used for caching
preceding KV tensors. In phase III, recomputing partial KV tensors is faster than retrieving them from CPU memory. These KV
tensors are deleted from CPU memory and recomputed in GPU. The phase change is triggered by the sequence length, and the
autoregressive inference of different tokens can be in different phases.

TABLE II: Notations.

h, l, b hidden dimension, layer count, batch size

s, n input length, output length

r,B KV caching ratio, CPU-GPU bandwidth

↵,�, p1, p2 offload/recompute ratio, phase switch step

T c, T r Time for compute and recompute

Tm Time for KV caching (CPU-GPU)

reduce the potential CPU memory access with small enough
compute overheads (compared to the memory bottleneck). In
Phase III, we delete the oldest KV tensors in the CPU and
recompute these KV tensors in the GPU core when needed.

In contrast, prior works usually pre-defined static scheduling
for KV tensors throughout the LLM inference [21, 31, 43],
as shown in Figure 7 (a). They fail to leverage the oppor-
tunity from dynamic memory capacity changes upon longer
sequences, leading to sub-optimal performance.

Sparsity-Aware Caching. The subsequent question is how to
determine the phase switch step and offload and recompute
ratio of KV tensors. We formulate this question as an opti-
mization problem to minimize the total execution time. We
list the relevant notations in Table II. With FP16 format, the
size of KV tensors for each token is 4 · b · l · h bytes. At a
sequence length j, we denote the number of tokens moved
from GPU to CPU as ✓cj(↵) = ↵(j + s) and the number of
tokens moved from CPU to GPU as ✓gj . The execution time
of caching at step j can be estimated as:

Tm
j (↵) =

4 · b · l · h · (✓cj + ✓gj)

B
(3)

p1  j < n, 0  ✓gj  b(s+ j)re (4)

The optimization of the total execution time is formulated
as:

min
{↵,�,p1,p2}

p2X

j=1

T c
j +

nX

j=p1

Tm
j (↵) +

nX

j=p2

T r
j (�) (5)

s.t. 0  p1 < p2  n, 0 < ↵ < 1, 0 < � < 1 (6)

We solve this problem by dividing it into two sub-problems,
including a data transfer problem and a computation problem.
The data transfer problem (the second term) is solved using
hardware and software constraints, including memory capacity,
bandwidth, KV tensor size, etc. Conversely, the computation
problem (the first and third terms) is solved via profiling. We
profile the execution time for compute and recompute with
different configurations and create a mapping between input
configurations and their execution time. Then, we apply a
greedy search method to solve the optimization problem for
the best performance. This process is done offline, introducing
no overhead during LLM inference.

B. KV Compression

Previous works have utilized quantization to accelerate
attention computation by compressing model weights [17, 22].
In this work, we leverage quantization for a different purpose,
i.e., compressing KV tensors to reduce memory access. We
adopt a fine-grained channel-wise quantization for KV tensors
for better inference robustness [9]. More specifically, we use
the following formula to quantize KV tensors to b-bit integers
in memory and de-quantize them to their original format (FP16
in this work) for computation:

xquant = round(
1

�
x+ z), x = �(xquant � z) (7)

where the scaling factor � = max�min
2b�1 , and zero point z =

round(�2b

max�min). Previous work finds that for OPT model can
be compressed up to INT4 while maintaining accuracy [14].
In this work, we choose to quantize KV tensors to INT8 to
ensure our KV compression can be generalized to more LLMs.

VI. EVALUATION

A. Experimental Setup

Models and datasets. We use three open-sourced families of
LLM models: OPT with 6.7B, 13B, and 30B parameters [42],
LLaMA with 7B, 13B, and 33B parameters [34], and Pythia
with 6.7B and 12B parameters [4]. For algorithm-related
evaluations, we use the lm-evaluation-harness library [18]
and perform two popular language-related tasks on seven

8

Fig. 8: Accuracy of ALISA (SWA + Compression), SWA, dense attention, local attention [3], and strided attention [8]. Along the
y-axis, we arrange the measurements to be higher is better. The input length is set to 2048 for all the datasets to match the maximal
context length of each LLM. Negative perplexity and accuracy are utilized to measure the language modeling and question-answering
tasks, respectively.

different datasets, namely language modeling for Wiki-Text-
2 [24], Penn Treebank [23] and Alpaca [33], and 4-shot
question-answering inference for PIQA [5], COPA [41], Open-
BookQA [25], and Winogrande [30]. We report task-specific
metrics, e.g., perplexity for language modeling and accu-
racy for question-answering, across different model types
and scales. We set the input length as 2048, matching the
maximal context length for LLMs, to showcase the algorithmic
performance (perplexity and accuracy in this work) when
operating at full context.

For the system evaluation, we sample and tokenize inputs
from the Alpaca dataset. We use an input sequence length of
128 and an output sequence length of 512 to test our system
under varying batch size configurations, ranging from 4 to
64. We aim to evaluate the LLM system performance at all
possible model scales, unless the configuration is not available
(e.g., Pythia-30B does not exist). The evaluation metric for
performance is token throughput, defined as the end-to-end
execution time (both prefilling and decoding stages) divided
by the total number of generated tokens.
Baselines. To validate the accuracy, we use dense attention,
local attention [3], and strided attention [8] as our baselines.
For system experiments, we use DeepSpeed-ZeRO [1], Hug-
gingFace Accelerate [39], and FlexGen [31], and vLLM [21]as
baselines. DeepSpeed-ZeRO is a deep learning optimization
software developed to improve the computation and memory
efficiency of training and inference for large models. For LLM
inference, DeepSpeed-ZeRO performs offloading weights in-
stead of intermediate KV tensors. HuggingFace Accelerate
is another open-sourced library that focuses on promoting
easy and reproducible transformer-based research. It supports
offloading the whole KV tensors to the CPU memory during

LLM inference. FlexGen is a very recent LLM-specific work
that focuses on optimizing LLM inference in single GPU-CPU
systems. It defines a static scheduling allocation strategy by
solving an offline linear programming problem to minimize the
total execution time given the memory constraints. vLLM is
a dedicated online LLM inference serving system for multi-
tenant user requests [21]. It manages the KV tensors at the
block level (fixed group of tokens). Each block is stored in
non-contiguous paged memory and is swapped between CPU
and GPU memory.
Implementation. We conduct our experiments in single GPU-
CPU systems. We use two types of GPUs, namely NVIDIA
Tesla V100 with 16/32 GB HBM and NVIDIA H100 with
80 GB HBM. Due to GPU memory constraints, we run 30B
level models only on H100 GPUs. The CPU is 2.60 GHz Intel
Xeon with 128 GB DRAM, and the bandwidth between GPU
and CPU is 20 GB/s. ALISA is implemented on top of Flex-
Gen [31] and HuggingFace Transformers [40]. FlexGen allows
users to offload model weights, KV tensors, and activations
simultaneously. Since we focus on optimizing KV caching,
we keep both the model weights and activations always in
GPU memory. In terms of memory allocation, we manage the
memory space at the token level and schedule KV tensors in
a layerwise manner. We use the FP16 format for all variables,
except the KV compression.

B. Accuracy
We evaluate the accuracy for different KV sparsity, with

results given in Figure 8. We observe that ALISA has con-
sistent and significant improvements over local and strided
attention methods across different model types, model sizes,
and datasets, demonstrating the effectiveness of ALISA. We

9

Fig. 9: Throughput of ALISA with 80% KV Sparisty and baselines, including DeepSpeed-ZeRO [1], HuggingFace Accelerate [39],
FlexGen [31], and vLLM [21] on the Alpaca dataset [33]. Along the y-axis, higher measurements are better. OOM denotes out-of-
memory error. We use an input length of 128 and an output length of 512. No results are given for 30B-level models on V100, as
the model weights exceed the GPU memory capacity.

Fig. 10: Attention weight sparsity (averaged across all layers)
upon different KV sparsity. We consider elements as zeros if
they fall below 1% of the row-wise maximum value.

summarize three key insights here. First, ALISA is a much
more robust sparse attention method for LLMs. For example,
for LLaMA-33B on the top right, the accuracy of local and
strided attention collapses instantly when sparse attention is
adopted, i.e., the largest accuracy drop occurs from 0% to
20% KV sparsity, while ALISA almost maintains an identical
accuracy to that of dense attention up to 80% KV sparsity.
Second, ALISA is more robust when LLMs become larger.
With ALISA, fewer accuracy collapses occur at 80% KV
sparsity when LLM sizes increase from the 7B level to
13B/30B level, regardless of the model families. However, no
such trends exist in local and strided attention. Third, KV
compression is scalable with almost no accuracy impact for
LLMs. In all settings, we see that the accuracy of ALISA
almost perfectly tracks that of SWA. In certain settings, ALISA
can even outperform dense attention, since well-structured
sparsity can often act as regularization to improve accuracy on
unseen datasets [19, 38]. Though minor discrepancies exist in

Fig. 11: Execution time of a single attention module. Numbers
within the bar indicate the corresponding floating point opera-
tions per second (FLOPS), either MAC or ADD. We use a batch
size of 64 and a sequence length of 128.

OPT-30B and LLaMA-13B on the COPA dataset, we conclude
that KV compression is practically scalable with KV sparsity
and model size.

C. Performance

End-to-end Throughput. We further evaluate the end-to-end
system performance (i.e., throughput) of ALISA. We choose
80% as the evaluated KV sparsity, as it is the maximum

10

Fig. 12: LLM inference. All experiments are conducted using OPT-30B with a batch size of 64, input length of 128, and output length
of 512 on one NVIDIA H100 GPU. All bars correspond to the sequence length at the end of the phase. (a) Left four: execution time
and memory usage of FlexGen and ALISA by our proposed scheduling phase for different KV sparsity. Numbers on the right-hand
side of the memory bar indicate CPU memory usage and the red-dot line denotes the GPU memory capacity. (b) Top right: impact
of recomputation on the execution time for different KV sparsity at the full sequence length. (c) Bottom right: ablation study on
the impact of techniques for different KV sparsity. DS denotes dynamical scheduling.

value for ALISA to retain good algorithmic performance,
i.e., perplexity and accuracy, less than 5% drop for most
tasks shown in Figure 8. Specifically, the drop for the Alpaca
dataset is around 3%. Figure 9 shows the performance of OPT
and LLaMA models on the Alpaca dataset. Overall, ALISA
offers the highest attainable throughput for LLM inference
in resource-constrained systems. There are three key observa-
tions. First, ALISA achieves consistent speedup over all base-
lines, showing 1.4 ⇠ 3.0⇥ higher throughput over FlexGen.
Prior works like DeepSpeed-ZeRO are not fully optimized
for LLM inference by introducing out-of-memory errors upon
large batch sizes, since it does not offload KV tensors. Second,
ALISA is more scalable than previous works. As the batch size
grows, the speedup of ALISA over FlexGen and other methods
increases. Third, ALISA can sustain up to 1.9⇥ improvement
over vLLM under larger batch sizes and larger model scales,
especially when GPU memory capacity is limited. This is due
to two reasons: 1) ALISA co-designs the sparsity patterns and
KV caching to reduce the memory footprint, while vLLM
only optimizes the memory management of KV tensors; 2) the
dynamic scheduling strategy in ALISA features recomputation
to further alleviate the memory bottleneck upon large KV
tensors. Note that when serving smaller models with smaller
batch sizes, vLLM outperforms as it is optimized for online
serving with fine-grained memory management.
Attainable Sparsity. We further show why ALISA can
achieve this speedup. Figure 10 shows the achieved sparsity
after SWA. Two key observations exist. First, for both LLMs,
allowing more sparse KV tensors will increase the sparsity in
attention weights. Second, for larger LLMs, we need a higher

KV sparsity to close the gap between the attainable sparsity
in our SWA and dense attention. However, the accuracy with
higher KV sparsity will likely drop according to Figure 8.
Overall, the insight is that ALISA can reasonably take advan-
tage of the opportunities in sparse attention to accelerate LLM
inference.
Breakdown of Attention Module. To better understand the
impact of SWA, we profile the execution time of key opera-
tions in Algorithm 1, with results given in Figure 11. There are
two key observations here. First, SWA introduces an execution
overhead, which varies across different KV sparsity. Higher
KV sparsity in SWA always reduces the execution time. The
main sources of reduction are the process of QKT , local
attention sum, and sparse KV tensors (i.e., using sparse token
indices to generate dense KV tensors). Larger LLMs incur
higher overheads, especially in local attention sum and sparse
KV tensors. The reason is that larger LLMs have larger model
dimensions. For example, the hidden dimension and head
number increase from [4096, 32] in OPT-6.7B to [7168, 56]
in OPT-30B. This larger overhead also validates our argument
that prior works that generate sparse attention based on the
entire attention weight are not scalable [36, 43]. Second, there
exists under-utilization in the QKT computation for SWA. The
corresponding execution time does not decrease proportionally
as KV sparsity increases, leading to a significant FLOPS drop.
The main reason is that a smaller dense tensor gathered from
sparse KV tensors can not fully utilize massive parallel GPU
cores. The execution time for the local sum scales with KV
sparsity. Higher sparsity is induced by a lower caching ratio,
which in turn reduces the number of additions in the local

11

sum. However, the local sum could spend more time than
QKT computation, due to its low data use, i.e., vector vs.
matrix operation.
Breakdown of LLM Inference. Figure 12 shows the details
of the full LLM inference. There are three key observations in
Figure 12 (a). First, ALISA is always faster than FlexGen for
all KV sparsity and all phases. With higher KV sparsity, the
speedup of ALISA over FlexGen is more significant. Both
the time spent on computation and memory access is less
when KV sparsity goes higher since fewer KV tensors are
involved per step. However, the main contributor to reducing
the execution time is that fewer KV tensors need to be moved
between CPU and GPU. As we have both statically local and
dynamically global sparse patterns, we prefer allocating local
tokens in GPU to reduce CPU memory access, since global
tokens are less predictable. Second, ALISA always makes
better use of the GPU memory than FlexGen in all cases.
The total memory requirement of all KV tensors (the total
GPU and CPU memory usage) increases with the sequence
length. The GPU memory usage is not directly related to KV
sparsity, as our dynamic scheduling optimizes the execution
time instead of GPU memory usage. Third, the size of KV
tensors indeed impacts when a phase starts. Different KV
sparsity leads to varying tensor sizes and triggers Phase III
at different sequence lengths, and higher KV sparsity enters
Phase III later. ALISA in Phase III has a smaller size of
KV tensors than FlexGen due to deleting partial KV tensors.
Overall, ALISA manages KV caching at the token level and
balances the caching and recomputation in a more fine-grained
manner than FlexGen. Figure 12 (b) studies the impact of
recomputation in Phase III. We observe that recomputation
can reduce the total execution time by 1.2 ⇠ 1.3⇥. Though
recomputation induces additional computation overhead, it
results in a more substantial reduction in execution time due to
decreased memory accesses. Figure 12 (c) shows the ablation
study. Across different KV sparsity, we observe that different
techniques almost contribute equally, and the gain of each
technique increases proportionally with the KV sparsity.

VII. CONCLUSION

In this work, we present an algorithm-system co-design
solution, ALISA, to accelerate LLM inference in resource-
constrained systems. On the algorithm level, ALISA adopts a
Sparse Window Attention (SWA) algorithm to create a mixture
of globally dynamic and locally static sparse patterns and
reduces the memory footprint with negligible accuracy degra-
dation. On the system level, ALISA leverages a three-phase
scheduler to dynamically allocate KV tensors and achieves
optimal throughput by balancing caching and recomputation.
Experiments show that, in single GPU-CPU systems, ALISA
achieves up to 3⇥ and 1.9⇥ throughput improvement over
FlexGen and vLLM, respectively.

VIII. ACKNOWLEDGEMENT

This work was sponsored in part by the U.S. National
Science Foundation (NSF) under Grants 1907765, 2028481,

and 2400014. The authors would like to thank the anonymous
ISCA reviewers for their constructive feedback to improve this
work.

REFERENCES

[1] R. Y. Aminabadi, S. Rajbhandari, M. Zhang, A. A. Awan, C. Li, D. Li,
E. Zheng, J. Rasley, S. Smith, O. Ruwase, and Y. He, “Deepspeed-
inference: Enabling efficient inference of transformer models at unprece-
dented scale,” SC22: International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–15, 2022.

[2] L. A. Belady, R. A. Nelson, and G. S. Shedler, “An anomaly in space-
time characteristics of certain programs running in a paging machine,”
Commun. ACM, vol. 12, pp. 349–353, 1969.

[3] I. Beltagy, M. E. Peters, and A. Cohan, “Longformer: The long-
document transformer,” ArXiv, vol. abs/2004.05150, 2020.

[4] S. R. Biderman, H. Schoelkopf, Q. G. Anthony, H. Bradley, K. O’Brien,
E. Hallahan, M. A. Khan, S. Purohit, U. S. Prashanth, E. Raff,
A. Skowron, L. Sutawika, and O. van der Wal, “Pythia: A suite for
analyzing large language models across training and scaling,” ArXiv,
vol. abs/2304.01373, 2023.

[5] Y. Bisk, R. Zellers, R. L. Bras, J. Gao, and Y. Choi, “Piqa: Rea-
soning about physical commonsense in natural language,” ArXiv, vol.
abs/1911.11641, 2019.

[6] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
and et al, “Language models are few-shot learners,” Advances in neural
information processing systems, vol. 33, pp. 1877–1901, 2020.

[7] B. Chen, Z. Liu, B. Peng, Z. Xu, J. L. Li, T. Dao, Z. Song,
A. Shrivastava, and C. Ré, “Mongoose: A learnable lsh framework for
efficient neural network training,” International Conference on Learning
Representations, 2021.

[8] R. Child, S. Gray, A. Radford, and I. Sutskever, “Generating long
sequences with sparse transformers,” ArXiv, vol. abs/1904.10509, 2019.

[9] B. Chmiel, R. Banner, G. Shomron, Y. Nahshan, A. Bronstein, U. Weiser
et al., “Robust quantization: One model to rule them all,” Advances in
neural information processing systems, vol. 33, pp. 5308–5317, 2020.

[10] S. Dai, H. Genc, R. Venkatesan, and B. Khailany, “Efficient transformer
inference with statically structured sparse attention,” in 2023 60th
ACM/IEEE Design Automation Conference (DAC). IEEE, 2023, pp.
1–6.

[11] T. Dao, “Flashattention-2: Faster attention with better parallelism and
work partitioning,” ArXiv, vol. abs/2307.08691, 2023.

[12] T. Dao, D. Fu, S. Ermon, A. Rudra, and C. Ré, “Flashattention: Fast and
memory-efficient exact attention with io-awareness,” Advances in Neural
Information Processing Systems, vol. 35, pp. 16 344–16 359, 2022.

[13] J. Dass, S. Wu, H. Shi, C. Li, Z. Ye, Z. Wang, and Y. Lin, “Vitality:
Unifying low-rank and sparse approximation for vision transformer
acceleration with a linear taylor attention,” 2023 IEEE International
Symposium on High-Performance Computer Architecture (HPCA), pp.
415–428, 2022.

[14] T. Dettmers and L. Zettlemoyer, “The case for 4-bit precision: k-
bit inference scaling laws,” in International Conference on Machine
Learning. PMLR, 2023, pp. 7750–7774.

[15] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” in
Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), vol. 1, 2019, p. 2.

[16] J. Ding, S. Ma, L. Dong, X. Zhang, S. Huang, W. Wang, N. Zheng,
and F. Wei, “Longnet: Scaling transformers to 1,000,000,000 tokens,”
ArXiv, vol. abs/22307.02486, 2023.

[17] E. Frantar, S. Ashkboos, T. Hoefler, and D. Alistarh, “Gptq: Accurate
post-training quantization for generative pre-trained transformers,” In-
ternational Conference on Learning Representations (ICLR), 2023.

[18] L. Gao, J. Tow, S. Biderman, S. Black, A. DiPofi, C. Foster,
L. Golding, J. Hsu, K. McDonell, N. Muennighoff, J. Phang,
L. Reynolds, E. Tang, A. Thite, B. Wang, K. Wang, and A. Zou, “A
framework for few-shot language model evaluation,” 2021. [Online].
Available: https://doi.org/10.5281/zenodo.5371628

[19] Y. Guo, A. Yao, and Y. Chen, “Dynamic network surgery for efficient
dnns,” Advances in neural information processing systems, vol. 29, 2016.

[20] N. Kitaev, L. Kaiser, and A. Levskaya, “Reformer: The efficient trans-
former,” International Conference on Learning Representations (ICLR),
2019.

12

https://doi.org/10.5281/zenodo.5371628

[21] W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. E.
Gonzalez, H. Zhang, and I. Stoica, “Efficient memory management for
large language model serving with pagedattention,” Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems Principles, pp.
611–626, 2023.

[22] J. Lin, J. Tang, H. Tang, S. Yang, X. Dang, and S. Han, “Awq:
Activation-aware weight quantization for llm compression and accel-
eration,” ArXiv, vol. abs/2306.00978, 2023.

[23] M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz, “Building a large
annotated corpus of english: The penn treebank,” Comput. Linguistics,
vol. 19, pp. 313–330, 1993.

[24] S. Merity, C. Xiong, J. Bradbury, and R. Socher, “Pointer sentinel
mixture models,” ArXiv, vol. abs/1609.07843, 2016.

[25] T. Mihaylov, P. Clark, T. Khot, and A. Sabharwal, “Can a suit of armor
conduct electricity? a new dataset for open book question answering,”
ArXiv, vol. abs/1809.02789, 2018.

[26] OpenAI, “Introducting chatgpt,” 2022. [Online]. Available: https:
//openai.com/blog/chatgpt

[27] M. Ott, S. Edunov, A. Baevski, A. Fan, S. Gross, N. Ng, D. Grangier,
and M. Auli, “fairseq: A fast, extensible toolkit for sequence modeling,”
in North American Chapter of the Association for Computational
Linguistics, 2019, pp. 6151–6162.

[28] R. Pope, S. Douglas, A. Chowdhery, J. Devlin, J. Bradbury, J. Heek,
K. Xiao, S. Agrawal, and J. Dean, “Efficiently scaling transformer
inference,” Proceedings of Machine Learning and Systems, vol. 5, 2023.

[29] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” 2019.
[Online]. Available: https://insightcivic.s3.us-east-1.amazonaws.com/
language-models.pdf

[30] K. Sakaguchi, R. L. Bras, C. Bhagavatula, and Y. Choi, “Winogrande:
An adversarial winograd schema challenge at scale,” Commun. ACM,
vol. 64, pp. 99–106, 2019.

[31] Y. Sheng, L. Zheng, B. Yuan, Z. Li, M. Ryabinin, D. Y. Fu, Z. Xie,
B. Chen, C. W. Barrett, J. Gonzalez, P. Liang, C. Ré, I. C. Stoica,
and C. Zhang, “High-throughput generative inference of large language
models with a single gpu,” in International Conference on Machine
Learning. PMLR, 2023, pp. 31 094—-31 116.

[32] H. Shi, J. Gao, X. Ren, H. Xu, X. Liang, Z. Li, and J. T.-Y. Kwok,
“Sparsebert: Rethinking the importance analysis in self-attention,” in
International Conference on Machine Learning. PMLR, 2021, pp.
9547–9557.

[33] R. Taori, I. Gulrajani, T. Zhang, Y. Dubois, X. Li, C. Guestrin, P. Liang,
and T. B. Hashimoto, “Stanford alpaca: An instruction-following llama
model,” https://github.com/tatsu-lab/stanford alpaca, 2023.

[34] H. Touvron, L. Martin, K. R. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale, D. M. Bikel, L. Blecher,
C. C. Ferrer, M. Chen, G. Cucurull, D. Esiobu, J. Fernandes, J. Fu,
W. Fu, B. Fuller, C. Gao, V. Goswami, N. Goyal, A. S. Hartshorn,
S. Hosseini, R. Hou, H. Inan, M. Kardas, V. Kerkez, M. Khabsa, I. M.
Kloumann, A. V. Korenev, P. S. Koura, M.-A. Lachaux, T. Lavril, J. Lee,
D. Liskovich, Y. Lu, Y. Mao, X. Martinet, T. Mihaylov, P. Mishra,
I. Molybog, Y. Nie, A. Poulton, J. Reizenstein, R. Rungta, K. Saladi,
A. Schelten, R. Silva, E. M. Smith, R. Subramanian, X. Tan, B. Tang,
R. Taylor, A. Williams, J. X. Kuan, P. Xu, Z. Yan, I. Zarov, Y. Zhang,
A. Fan, M. Kambadur, S. Narang, A. Rodriguez, R. Stojnic, S. Edunov,
and T. Scialom, “Llama 2: Open foundation and fine-tuned chat models,”
ArXiv, vol. abs/2307.09288, 2023.

[35] A. Vaswani, N. M. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” in
Advances in neural information processing systems, vol. 30, 2017.

[36] H. Wang, Z. Zhang, and S. Han, “Spatten: Efficient sparse attention
architecture with cascade token and head pruning,” 2021 IEEE Interna-
tional Symposium on High-Performance Computer Architecture (HPCA),
pp. 97–110, 2020.

[37] S. Wang, B. Z. Li, M. Khabsa, H. Fang, and H. Ma, “Linformer: Self-
attention with linear complexity,” ArXiv, vol. abs/2006.04768, 2020.

[38] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” Advances in neural information
processing systems, vol. 29, 2016.

[39] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi,
P. Cistac, T. Rault, R. Louf, M. Funtowicz, and J. Brew, “Huggingface’s
transformers: State-of-the-art natural language processing,” ArXiv, vol.
abs/1910.03771, 2019.

[40] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi,
P. Cistac, T. Rault, R. Louf, M. Funtowicz, and J. Brew, “Transformers:
State-of-the-art natural language processing,” in Proceedings of the 2020
conference on empirical methods in natural language processing: system
demonstrations, 2020, pp. 38–45.

[41] J. Yeo, G. Lee, G. Wang, S. Choi, H. Cho, R. K. Amplayo, and S. won
Hwang, “Visual choice of plausible alternatives: An evaluation of image-
based commonsense causal reasoning,” in Proceedings of the Eleventh
International Conference on Language Resources and Evaluation (LREC
2018), 2018.

[42] S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen, and
et al, “Opt: Open pre-trained transformer language models,” ArXiv, vol.
abs/2205.01068, 2022.

[43] Z. A. Zhang, Y. Sheng, T. Zhou, T. Chen, L. Zheng, R. Cai, Z. Song,
Y. Tian, C. Ré, C. W. Barrett, Z. Wang, and B. Chen, “H2o: Heavy-
hitter oracle for efficient generative inference of large language models,”
ArXiv, vol. abs/2306.14048, 2023.

13

https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://insightcivic.s3.us-east-1.amazonaws.com/language-models.pdf
https://insightcivic.s3.us-east-1.amazonaws.com/language-models.pdf
https://github.com/tatsu-lab/stanford_alpaca

	Introduction
	Background
	Large Language Models
	Related Work

	Challenges and Opportunities
	Challenges
	Opportunities
	Objective

	ALISA Algorithm Design
	Attention Analysis
	Sparse Window Attention (SWA)

	ALISA System Design
	Dynamic Scheduling
	KV Compression

	Evaluation
	Experimental Setup
	Accuracy
	Performance

	Conclusion
	Acknowledgement
	References

