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Abstract—We discuss how a dual-gated memtransistor crossbar
can accelerate the extraction of the Transformer’s attention
scores. A memtransistor is a novel two-dimensional material-
based device that offers non-volatile programmability and gate
tunability. Leveraging these attributes, we demonstrate the ex-
traction of quadratic-order products on a single memtransistor
and the single-step extraction of attention scores without inferring
intermediate query/key vectors. The query/key-free processing
of memtransistor-based attention scoring results in 2.37× lower
energy with less than half crossbar cells.

Index Terms—Memtransistor, Transformers, Higher-Order
Neural Processing, Time-series Prediction

I. INTRODUCTION

Transformers have revolutionized machine learning, partic-
ularly for processing long-range sequence data. The model
functions by mapping inputs into three distinct representations:
keys, queries, and values, and utilizes self-attention to focus on
the most relevant segments of the input dynamically. Initially
designed for natural language processing, the unique attention
mechanism of the model has now expanded into numerous
other domains, such as image processing [1], video processing
[2], event-driven computing [3], and cybersecurity [4].

Despite its predictive advantages, Transformers are also
significantly more computationally expensive than predecessor
architectures such as convolutional neural networks (CNNs)
and recurrent neural networks (RNNs). This increased com-
putational cost primarily arises from the quadratic scaling of
their attention mechanism’s complexity with the length of the
input sequence, making it challenging to implement them on
edge computing and resource-constrained devices.

In this work, we discuss a unique opportunity for ac-
celerating Transformer’s attention mechanisms by leveraging
dual-gated memtransistor crossbars and in-memory computing
[5]–[10]. Memtransistors, as shown in Fig. 1(a), are novel
memory devices whose resistance can be programmed in
a non-volatile manner, similar to a memristor, while also
staying accessible for tunability by the top and bottom gates,
similar to a transistor. Leveraging these unique attributes, we
discuss how a single memtransistor can perform quadratic
order products and how a crossbar of memtransistors can
perform Vector×Matrix×Vector products in a single step.

This, in turn, enables the computation of attention scores
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Figure 1: (a) Schematic of a dual-gated MoS2 memtransistor. (b) The
processing flow of the attention module in a Transformer. We leverage the
non-volatile programmability and dual gate tunability of memtransistors for
single-step attention extraction.

directly from the Transformer’s input tokens without having
to extract query and key vectors as in traditional processing.
Resultantly, the scheme significantly reduces the necessary
multiplication-accumulation (MAC) operations and storage.

II. TRANSFORMER’S SELF-ATTENTION MECHANISM

The seminal study by [11] introduced Transformers, neural
architectures built entirely on attention mechanisms. At the
heart of the Transformer is the multi-headed self-attention
(MHA) module, enabling the model to focus on different parts
of the input sequence and weigh them based on their relevance.
The MHA module processes an input tensor x of dimensions
[T,C], where T is the sequence length and C is the hidden size
of input tokens. From x, three linear projections for the query,
key, and value are created as Q(x) = WQx, K(x) = WKx,
and V(x) = WV x, using the weight matrices WQ, WK , and
WV . The attention scores are then computed by QKT and nor-
malized using softmax

(
QKT

√
dk

)
. These scores are used to weigh

the value vectors, producing the final output of the MHA
module as softmax

(
QKT

√
dk

)
V. The multiple attention heads

capture various relationships within the sequence, enhancing
the model’s ability to learn complex patterns. Normalizing
attention scores ensures stability and convergence, with the
scaling factor

√
dk maintaining well-behaved gradients. By

combining these elements, the Transformer architecture can
efficiently process long sequences, capturing intricate depen-
dencies and enabling state-of-the-art performance on a wide
range of natural language processing tasks.
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Figure 2: (a) Measured characteristics of memtransistor. For the scaled
adaptation of memtransistor simulated using NEGF: (b) ID-VGS at varying
Schottky Barrier (SB) height (VDS = 0.4 V), (c) ID-VD at varying SB height
while keeping the potential at the top and the bottom gates are 0.7 V, and (d)
ID-VBot

GS at varying SB height at VDS = 0.4 V, sweeping the potential at the
bottom gate, and the top gate set to 0.7 V.

III. DUAL-GATED MEMTRANSISTOR CROSSBAR FOR
SINGLE-STEP ATTENTION SCORING

A. Memtransistor: Physics and Characteristics
Sangwan and Hersam introduced a dual-gated memtransis-

tor [12]–[16], using polycrystalline monolayer MoS2 channel
and Al2O3 and SiO2 as top and bottom gate dielectrics,
respectively. Device simulations, utilizes a scaled version of
the memtransistor shown in Fig. 1(a). Four terminal MoS2

memtransistors are programmable by drain voltage pulses that
modulate Schottky barrier height (∆ΦB) at the source and
drain contacts either by charge trapping or the migration of
lattice defects like sulfur vacancies [17].

Fig. 2(a) shows the measured ID-VGS characteristics of
fabricated memtransistor. Since the fabricated memtransistors
have a larger dimension (gate length is ∼900 nm and oxide
thickness is ∼30 nm), they require a larger voltage to operate.
Therefore, to investigate the potential of nanoscale adaptation
of the device in Fig. 1(a), we simulate them using a non-
equilibrium Green’s function (NEGF)-based model for current
conduction and Schottky Barrier (SB) height modulation.

Fig. 2(b) shows exponential current conduction in the device
while sweeping both gates, i.e., ID-VGS due to the thermionic
emission-based current conduction, similar to measurements in
Fig. 2(a). Programming ∆ΦB controls the device resistance in
a non-volatile manner. Fig. 2(c) shows ID-VDS at increasing
VDS where the level of saturating current can be controlled
by ∆ΦB . Fig. 2(d) plots the current conduction at varying
bottom gate voltage i.e., ID-VBot

GS , while keeping the top gate
voltage at 0.4 V and varying ∆ΦB . Since the bottom gate
has a much larger oxide thickness, it only weakly controls
the channel electrostatics, resulting in almost linear control of
channel conductance at varying VBot

GS .

0.0 0.5 1.0 1.5 2.0 2.5
Time(ns)

0.0

0.2

0.4

0.6

 I
np

ut
 p

ul
se

s 
(V

)

0.0
0.2
0.4
0.6
0.8
1.0

V
 o

f 
C

ap
ac

it
or

 (
V

) 

Bottom gate 
Top gate 

(d)

pulse vs time

Figure 3: (a) Dual gate control of memtransistors for quadratic order interac-
tions among inputs, I1 and I2, and programmed weight. (b) Memtransistor
crossbar architecture for single-step key/query-free attention scoring in (c) and
exemplary transient evolution of capacitor voltage in (d).

B. Adapting Attention Loss to Memtransistor Electrostatics
For an input x, consider the attention score Aij computed

between ith and jth tokens, xi and xj , in a Transformer as

αij = WQxi(WKxj)
T =

d∑
l=1

C∑
m=1

C∑
n=1

ximWml
Q Wnl

K xjn

=

C∑
m=1

C∑
n=1

xim

(
d∑

l=1

Wml
Q Wnl

K

)
xjn =

C∑
m=1

C∑
n=1

ximWmn
P xjn

(1)
Here, xmn is the nth element of the mth token of input x.
Wmn is the mth row and nth column element of matrix W .

In Fig. 3, consider the memtransistor configuration to map
the above attention coefficient (αij) computations. In Fig. 3(a),
the conductance of the device is programmed in a non-volatile
manner by programming ∆ΦB to match the desired weight
value. Two inputs, I1 and I2, are processed on the device
via time pulses at the top and bottom gates, respectively. The
voltage generated follows a quadratic interaction of inputs and
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Figure 4: (a) and (b) Ground truth and prediction results for our Memtransistor
and Conventional transformer for Energy Appliances dataset. (c) Comparison
of train loss and validation loss for both transformers with the Energy
Appliances dataset. (d) Comparison of MSE loss for prediction among three
datasets.

weight, by integrating the current of the memtransistor on a
downstream capacitor.

Fig. 3(b) shows the crossbar architecture that parallelizes
this quadratic order interaction among inputs and weights
to operate on all elements of tokens xi and xj in parallel,
i.e., all indices m and n in Eq. (1). xi is applied along
the row electrodes using a digital-to-pulse converter (T-DAC).
Likewise, xj is applied along the column electrodes. The
conductance of memtransistor at mth row and nth column
is programmed proportional to Wmn

P =
∑d

l=1 W
ml
Q Wnl

K as in
(1) while keeping both top and bottom gates ON. With the
above scheme, the capacitor voltage VC follows

α′
ij =

C∑
m=1

C∑
n=1

(
min(xim, xjn)W

mn
P +

(xim − xjn)
+Wmn

P1 + (xjn − xim)+Wmn
P2

) (2)

Above equation, Wmn
P1 represents the translation of pro-

grammed weights at Wmn
P to the respective value when only

the top gate is ON and the bottom gate is OFF. Likewise,
Wmn

P2 represents the translation of the programmed weight to
the value when the top gate is OFF. Upon the application
of row and column pulses in Fig. 3(b), the net charge from
the crossbar is accumulated at a capacitor which follows the
attention coefficients between the tokens in Fig. 3(d). The
capacitor is coupled with an amplifier which enforces a virtual
ground at its input port. The voltage output of the capacitor
is digitized for storage and routing to other modules. For the
signed implementation of Wmn

P , two memtransistors are used.
One device retains data for positive weights, while the other
retains data for negative weights; the intervening device, which
is not in use, is set to a significantly high resistance. Similarly,
inputs with signs are handled over two phases.

IV. BENCHMARKING OF MEMTRANSISTOR-BASED
TRANSFORMERS ON TIMESERIES DATASETS

Proposed single-step attention scoring using memtransistor
crossbars is assessed on three time-series datasets: energy

Table I: Memtransistor vs. Memristor for Transformer Inference

Memtransistor Memristor
# of crossbar cells T × T 2× T × d
# of ADC conversions 1 2× d
Energy/Inference (T = d = 64) 104 pJ 246.8 pJ

Comments: T is the token length and d is the projection dimension of
key/query matrices. Typically d > T (in BERT and GPT-3).

consumption data from household appliances [18], electric
motor temperature variations [19], and electricity transformer
temperature variations [20]. Notably, in Eq. (2), since the
modified attention score (α′

ij) has an additional residual term,
the loss function of Transformer processing was modified to
account for this. Figs. 4(a,b) show the comparison between the
ground truth and prediction on the energy appliances dataset
for both the traditional transformer and memtransistor-based
transformer. Fig. 4(c) shows the evolution of training and
validation losses over the epochs. Fig. 4(d) compares the Mean
Squared Error (MSE) of the prediction results across these
datasets. Notably, across all three benchmark tests, our design
consistently outperformed the original transformer in terms of
predictive accuracy.

Table 1 compares the efficiency of memtransistor and
memristor-based processing of Transformer attention scores.
For an application query of T tokens, single-step extraction
of attention scores with memtransistor crossbar only requires
T×T cells where the conventional query/key-based processing
with memristors incurs 2T × d cells. Note that in most
Transformer models (such as BERT and GPT3), d > T ;
therefore, memtransistor processing results in significant area
efficiency. Moreover, memtransistor crossbar requires only
one digitization step per token sequence [Fig. 3(b)] whereas
memristor-based conventional processing requires as many as
in the projected dimension from query/key matrices, i.e., 2d.
Due to these efficiencies, even with a conservative assumption
of T = d, the memtransistor-based design achieves a 2.37×
lower energy than an equivalent memristor technology. The
energy comparison was obtained by HSPICE simulation of
memtransistor with 16nm CMOS-based peripherals and uti-
lizing ADC and OP-AMP figures of merit from [21], [22].

Although our demonstration primarily focuses on mem-
transistor designs in [23], similar advantages are expected
for other memtransistor technologies such as [24], which
also offer non-volatile programming and gate tunability. The
proposed framework can be adapted to other memtransistor
technologies by fitting the ID−V Bot

GS characteristics as shown
in Fig. 2(c) and incorporating them into the training process.

V. CONCLUSIONS

This work introduced a framework to accelerate attention
scoring in Transformer models by leveraging dual-gate tun-
ability and non-volatile programming of conductance states
in memtransistor crossbars. The proposed method reduces
operations and storage needs by directly processing input
tokens without separate query and key vector extraction.
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