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Abstract

Quantum embedding theories are powerful tools for approximately solving large-
scale, strongly correlated quantum many-body problems. The main idea of quan-
tum embedding is to glue together a highly accurate quantum theory at the local
scale and a less accurate quantum theory at the global scale. We introduce the
first quantum embedding theory that is also variational, in that it is guaranteed to
provide a one-sided bound for the exact ground-state energy. Our method, which
we call the variational embedding method, provides a lower bound for this quan-
tity. The method relaxes the representability conditions for quantum marginals
to a set of linear and semidefinite constraints that operate at both local and global
scales, resulting in a semidefinite program (SDP) to be solved numerically. The
accuracy of the method can be systematically improved. The method is versatile
and can be applied, in particular, to quantum many-body problems for both quan-
tum spin systems and fermionic systems, such as those arising from electronic
structure calculations. We describe how the proper notion of quantum marginal,
sufficiently general to accommodate both of these settings, should be phrased
in terms of certain algebras of operators. We also investigate the duality theory
for our SDPs, which offers valuable perspective on our method as an embedding
theory. As a byproduct of this investigation, we describe a formulation for effi-
ciently implementing the variational embedding method via a partial dualization
procedure and the solution of quantum analogues of the Kantorovich problem
from optimal transport theory. © 2021 Wiley Periodicals LLC.

1 Introduction

Quantum many-body problems, such as the problem of computing the ground
state of a system of quantum spins or fermions, have far-reaching applications in
physics, chemistry, materials science, and beyond. Certain such problems, includ-
ing those involving fermions in the “strongly correlated” regime, are among the
most challenging problems in scientific computing. Roughly speaking, a ground
state of a quantum many-body problem is specified by a wavefunction |®) obtained
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as a minimizer of the following optimization problem:

1.1 Ey = i O|H |D),
(1.1) 0 |¢)6H1T1<1£|q>>=1< |H | D)

in which we have employed the Dirac bra-ket notation, and H is the Hilbert space
whose elements are quantum states. The optimization problem is equivalent
to a linear eigenvalue problem, with the ground state | D) given by the eigenvector
corresponding to the smallest eigenvalue (assuming the eigenvalue is simple) of
H. The cost of directly finding |®) generally scales exponentially with respect to
the system size. It is therefore of paramount interest to reduce the computational
complexity of this task by accepting some controlled sacrifice of accuracy.

Among all the approaches to solving the problem (1.1)), some are variational in
the sense that they provide an approximation for £y that is guaranteed to be either
an upper or lower bound. For example, methods that restrict the optimization over
|®) €H to some computationally tractable subset provide upper bounds for Ey.
Examples of such methods include the Hartree-Fock approximation [39]], matrix
product states (MPS) (also known as tensor trains) [30,/43], and other tensor net-
work methods such as projected entangled-pair states (PEPS) [29,{40]. Meanwhile,
other approaches attempt to formulate tractable relaxations of the variational prin-
ciple (L.1). The idea of such approaches is to reformulate as an equivalent op-
timization problem in terms of density matrices, in which the difficulty is encoded
in the constraints, and then to enforce only a computationally tractable subset of
these constraints. Such procedures yield guaranteed lower bounds for Eg. The
most well-known example of such an approach is the two-electron reduced density
matrix (2-RDM) theory for fermionic systems [/1,6}(9,22124H27,/46].

Another category of approaches to the quantum many-body problem is that
of the quantum embedding theories |38|]. Notable examples include the dynam-
ical mean-field theory (DMFT) [11,/19] and the density matrix embedding the-
ory (DMET) [[16,|17]]. These methods divide the global system into a set of local
clusters (sometimes called fragments), where the size of each cluster is taken to
be independent of the global system size. Then one derives a modified quantum
many-body problem for each cluster, which can be solved directly or using ap-
proximate (but highly accurate) methods. The information from all of the clusters
is then “glued” together using global reduced quantities, such as the one-electron
reduced density matrix (1-RDM) in DMET, or the single-particle Green’s function
in DMFT. The method can be solved self-consistently to remove the discrepancy
between these global quantities and local fragment data.

In this work we propose an approach to the quantum many-body problem that
is the first example to our knowledge of a quantum embedding method that is also
variational. We therefore call it the variational embedding method, which we de-
velop below for quantum spin systems and second-quantized fermionic systems.
(Note that our framework for quantum spin systems formally includes the setting
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QUANTUM VARIATIONAL EMBEDDING 2035

of second-quantized bosonic systems as an infinite-dimensional limit.) The fun-
damental objects considered in our approach are quantum marginals, which are
defined with respect to a decomposition of the global system into clusters. The
quantum marginals are referred to as such because they are analogous to marginal
distributions in the setting of classical probability theory. In the setting of quan-
tum spins, these are just the reduced density operators, which are defined as partial
traces of a global density operator. In the fermionic setting, a more general per-
spective is introduced to define the analogous quantities. This perspective views
marginals as functionals on appropriate operator algebras.

Our approach is in particular a relaxation of the variational principle (1.1}, and
hence yields a lower bound for Eqg. It is an embedding method in the sense that
clusters are represented with high fidelity and glued together via some reduced
global data. The accuracy of the variational embedding method can be system-
atically improved by increasing the cluster size or by considering marginals for
larger groups of clusters, e.g., pairs, triples, etc. The relaxed optimization prob-
lem defining the variational embedding method is a semidefinite program (SDP),
whose cost scales polynomially with respect to the system size (for fixed cluster
size). Treating this relaxation as the primal problem, we derive the dual problem
and show that the duality gap is zero. We also introduce a partial dualization of
the primal problem, in which the interpretation as an embedding method becomes
even clearer. In particular, we see the emergence of effective Hamiltonians for em-
bedded problems, which are coupled only via the global determination of these ef-
fective Hamiltonians. The embedded problems are themselves quantum analogues
of the Kantorovich problem of optimal transport [41]. Although our presentation
of this quantum Kantorovich problem, which emphasizes general cost operators,
differs somewhat from that of the existing literature, the same basic problem has
appeared in [5,/7,/12,341147].

We also describe how variational embedding adapts to the scenario of overlap-
ping clusters. It can be readily seen that allowing for overlapping clusters tightens
the constraints, yielding tighter lower bounds for the ground-state energy at com-
parable computational cost. This point may be of interest because the value-add of
overlapping clusters in embedding theories such as DMET and DMFT is not yet
clear [3,45]. We also describe how translation invariance can be exploited in the
implementation of variational embedding.

As proof-of-principle, we demonstrate the performance of the variational em-
bedding method for two quantum spin models (the transverse Ising model and
the antiferromagnetic Heisenberg model) and one fermionic model (the Hubbard
model). The system size is small due to the limitations of the preliminary imple-
mentation in CVX [[13] within MATLAB®, and we plan to develop more efficient
implementations to accommodate larger systems in the near future. In the numer-
ical experiments, we solve the primal problem directly, but the partial dualization
mentioned above suggests more efficient methods for solving the variational em-
bedding method, with tractable scaling for extended systems.
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1.1 Related work

In the fermionic setting, the aforementioned 2-RDM theory is the closest rel-
ative of variational embedding. Nonetheless, we point out that our “fermionic
marginals” are different from the 2-RDM. In general, neither the variational em-
bedding method nor the 2-RDM theory adopts a strictly tighter relaxation than the
other. Roughly speaking, the variational embedding method enforces tighter con-
straints “within clusters” but weaker constraints “across clusters” relative to the
most accurate 2-RDM theories. Therefore we expect that variational embedding
can be more efficient for treating strong correlation effects that are relatively lo-
cal in nature. That said, both frameworks are highly modular. In fact, it may be
possible to adapt existing 2-RDM theories as methods for solving the embedded
problems obtained in the variational embedding method. Finally, we comment that
the partial dual formulation holds promise for scaling to extended systems, where
2-RDM theories can become prohibitively computationally expensive.

The approach of this paper can also be understood as an approximate method for
solving the “quantum marginal problem,” [[1535], i.e., the problem of determining
whether a set of quantum marginals could have been obtained from a global quan-
tum density operator. In general, the exact solution of this problem is intractable,
so approximate methods must be adopted.

Finding approximate solutions to the quantum marginal problem can be viewed
as a quantum analogue of the problem of finding outer bounds to the marginal
polytope in classical probability [42]]. In our approach, we derive two main types
of constraints: local consistency constraints (which are linear) and global semidefi-
nite constraints. The local consistency constraints, which enforce compatibility be-
tween marginals that share sites, are so termed by analogy to the constraints of the
same name appearing in relaxations of the classical marginal polytope [42]]. These
constraints alone can be viewed as underlying the belief propagation (BP) [31]]
approximation for classical graphical models (see, also, e.g., [42] for reference).
Note with caution that BP should be thought of as an algorithm, in addition to a set
of modeling assumptions. Also note that BP involves an implicit approximation of
the entropy, which is not relevant in the zero-temperature setting, i.e., the setting
of this work.

BP has been generalized to the quantum setting (specifically, the setting of quan-
tum spin systems in the sense of this paper) [21], and other works [10}/32] have
more carefully studied quantum entropy approximation for quantum spin systems
in the context of the local consistency constraints that are featured in BP. Mean-
while, [2] considers a semidefinite relaxation in a zero-temperature, translation-
invariant setting for both quantum spins and fermions. In our language, one can
view [2] as implicitly considering overlapping clusters for which local consistency
constraints (which are generally more complicated to enforce due to cluster over-
lap) are automatically satisfied without need for explicit enforcement due to the
translation invariance. None of these cluster-based works can be viewed as con-
sidering an analogue of the global semidefinite constraints introduced in this work.
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QUANTUM VARIATIONAL EMBEDDING 2037

Moreover, these works only support local Hamiltonians and cannot support long-
range (e.g., Coulomb-type) interactions. In fact, the global semidefinite constraints
improve the quality of the relaxation even in the case of local Hamiltonians (as we
shall demonstrate in Section dbelow), but more dramatically they open the door to
cluster-based semidefinite relaxations for long-range Hamiltonians and potentially
ab initio electronic structure problems.

Another point of comparison is the Lasserre hierarchy [20,[42] of semidefinite
relaxations, often considered as means for approximating the marginal polytope in
classical probability. Our method is not the quantum analogue of any relaxation
from this Lasserre hierarchy in the classical setting, nor is our method recovered
from the Lasserre hierarchy as applied directly to the quantum many-body problem.
In fact, the variational embedding method can be understood as advancing different
systematically improvable hierarchies, both in the cluster size and in the sizes of
the groups of clusters for which marginals are considered.

The variational embedding method can also be understood as a way to tighten
the variational lower bound obtained in [14] for fermionic many-body problems
based on the strictly correlated electron (SCE) formulation [[36}(37]]. There are two
sources of error in the approach of [14]: a model error (which only vanishes in the
“strictly correlated” limit of infinitely strong Coulomb repulsion) and an additional
relaxation error that emerges from the relaxation of a classical marginal problem.
The variational embedding method introduced in this paper can be viewed as a fully
quantum version of this relaxation. It avoids any analogous notion of model error
and can be shown to provide energies at least as tight as those obtained in [14].

1.2 Outline

In Section 2| we formulate variational embedding for quantum spin systems.
After preliminary discussion in Section we go on to introduce the local con-
sistency constraints and global semidefinite constraints in Sections and
respectively. In Section we discuss a more abstract perspective on the global
semidefinite constraints that is, in particular, more portable to the fermionic setting
to appear later on. In Section we introduce variational embedding constraints
for higher marginals (i.e., marginals for higher tuples of sites), and in Section
we introduce the cluster perspective on variational embedding. In Section
we discuss how variational embedding can accommodate overlapping clusters for
tighter relaxations, and in Section we discuss how translation-invariance can
be exploited, as well as additional “periodicity constraints” that can be imposed in
this setting.

Section [3|concerns the formulation of variational embedding for fermionic sys-
tems in second quantization. After discussing preliminaries in Section we
employ the language of star-algebras to define appropriate fermionic marginals in
Section[3.2] Using this language, we provide an abstract formulation of variational
embedding for fermions in Section (3.3} which we show is exact for noninteracting
problems (i.e., problems specified by single-body Hamiltonians) in Section|3.4| In
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2038 L. LIN AND M. LINDSEY

Section we demonstrate how the abstract formulation can be practically imple-
mented as an SDP.

Section [4] presents various numerical experiments. In Sections and
M.3| we treat the transverse-field Ising, antiferromagnetic Heisenberg, and Hubbard
models, respectively.

Finally, we conclude in Section |5/ with a discussion of duality for the SDP of
variational embedding. To prepare for the formulation of the dual problem, we dis-
cuss in Section |5.1|a quantum analogue of the Kantorovich problem from optimal
transport. Then in Section[5.2]we introduce a partially dualized SDP, which reveals
that the variational embedding solution can be obtained as the solution of several
quantum Kantorovich problems specified by “effective Hamiltonians,” which are
completely decoupled from one another apart from the determination of these ef-
fective Hamiltonians. In Section we discuss the computational implications
of this observation, and in Section [5.4] we close with a derivation of the full dual
problem and a discussion of strong duality.

2 Quantum Spins

2.1 Preliminaries

Leti = 1,..., M index the sites, and for each site { let X; be the classical
state space (discrete, for simplicity). For each site, the quantum state space is
Q; := C¥Xi  and the global quantum state space is

M
Q:=)0i~C?,

i=1
where X = H,Ail X;. Let H; denote a Hermitian operator ; — Q;, and let
H;; denote a Hermitian operator Q; ® Q; — Q; ® Q. We will use the hatted
notation H; to denote the operator Q — Q obtained by tensoring H; by the identity
operator on all sites k # i, and likewise we identify H; ; with the operator Q —
Q obtained by tensoring H;; with the identity on all sites k ¢ {i, j}. Then we

consider a Hamiltonian H : Q — Q of the form
H=) Hi+) Hj.
i i<j
REMARK 2.1. We shall introduce several examples of interest in the case X; =
{—1,1}, i.e., the case of quantum spin—% systems. The Pauli matrices

0 1 0 —i 10
X _ y _ X _
w=( o) =) =l )

together with the identity I form a basis for Hermitian operators on C2. Now let
x/y/z ~ . .

o; € H(R; C?) ~ ®; H(C?) be obtained by tensoring a copy of o*/¥/%

for the i site with the identity I» on all the other sites. Two examples of the
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QUANTUM VARIATIONAL EMBEDDING 2039

quantum spin systems are the transverse-field Ising (TFI) Hamiltonian and anti-
ferromagnetic Heisenberg (AFH) Hamiltonian, specified by the Hamiltonians

- _ X Z .. Z
2.1 Hypr = —hZUi - Zai g
i i~j
~ y_y
(2.2) Harn = Z[orixorj‘ +ojo0; + Oriza.iz]'
i~j

where the summation of i ~ j indicates summation over all pairs of indices that
are adjacent in a graph defined on the index set (usually the graph is a square
lattice). In the TFI Hamiltonian, h € R is a scalar parameter.

We are interested in computing the ground-state energy
Eo = inf{(Q|H|®) : |®) € Q, (®|®) = 1}.
It can be equivalently recast as

Eo = inf Tr[Hpl,
PED(Q)
where D(Q) denotes the set of density operators on Q (i.e., positive semidefinite
Hermitian operators @ — Q of unit trace). Assuming that there exists a unique
ground state |®g), the infimum is attained at p = |®g)({Dg|. Now we can write
2.3) Eo = inf (SO TelHip] + Y TelHi i)
01/ }i < €QM(Q) Xl: o ; v
where QM (Q) denotes the set of collections {p;; };<; of representable quantum
two-marginals, i.e., those collections {p;; } that can be obtained as reduced density
operators of a single p € D(Q) via the partial trace, as in

pij = Tron, mng, el
wherei < j.

To clarity, here we view p as being equipped with labels 1, ..., M for its indices
as 0 = Piy-ipg,j1-ja» and for any subset S C {1,..., M}, ps = Trgy . pmynslel
denotes the reduced density operator obtained by tracing out the indices contained
in §, with the remaining labels maintained. We comment that the partial trace
ps may be equivalently defined as the unique operator on ;¢ Q; such that
Tr[/ll\ps] = Tr[/fp] for all operators A on Qs Qi (alternatively viewed as op-
erators on Q by tensoring with the identity). This perspective illustrates the rela-
tionship between marginalization in the quantum spin setting (i.e., computing the
partial trace) and the more abstract notion of marginalization that is necessary for
the treatment of fermions in Section [3]below.

For convenience, we denote p;; = py; jy fori < j as above. It is convenient
to then define p;; for i > j via the stipulation that oj; pjj0j; = pji, where oj; :
0i ® Q; - Q; ® Q; is the linear operator defined by 0;; (¢; ® ¢j) = ¢; Q ;.
Finally, we remark that the one-marginals p; = Try; ary\giy[p] are determined
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2040 L. LIN AND M. LINDSEY

by the two-marginals via p; = Trg;y[pi;], and this dependence is meant to be
understood implicitly in (2.3). We will occasionally denote p;; := p;.

2.2 Local consistency constraints

Now it is of interest to determine necessary conditions satisfied by collections in
QM,(Q). By enforcing a set of necessary conditions as a proxy for membership
in QM,(Q), we can obtain a lower bound on the ground state energy.

To begin with, the p;; are themselves density operators on Q; ® Q;,i.e., pjj = 0
with Tr[p;;] = 1. Moreover, we must have Tr;[p;;] = Trj/[p;;] for all i and j,
Jj' # i, and we must have o0;;p;j0;; = pj;. These constraints define the set of
locally consistent quantum two-marginals. Call this set LQM,(Q). In practice,
we define auxiliary variable p; for the one-marginals, constrained to satisfy p; =
Trj[pij] = Trj[pji]. The constraints Tr[p;;] = 1 for all i, j can in fact be enforced
by requiring Tr[p;] = 1 for all i, since Tr[p;;] = Tr[Tr;[p;;]].

Note that the local con51stency constraint TrJ [pij] = pi is equivalent to insisting
that Tr[Ap, il = Tr[Ap,] for all operators A on Q; (considered also as operators
on Q; ® Q; by tensoring with the identity). This perspective highlights the con-
nection to the abstract local consistency constraints appearing in the discussion of
fermionic systems in Section [3|below.

2.3 Global semidefinite constraints and the two-marginal SDP

We can derive a further constraint, more global in nature, as follows. Consider
operators O : Q — Q (not necessarily Hermitian) of the form O = ) ; O;, where
each O; is a one-body operator on Q, i.e., obtained by tensoring an operator O; on

Q; with the identity. Now OTO > 0, so
(2.4) Te[p 0T0] > 0

for any p € D(Q). We will expand the left-hand side to obtain a constraint on the
quantum two-marginals, which can be phrased as a semidefinite matrix constraint.
First compute

0= T[p0"0] = Tr|p Z 00/

_ ZTr[PiOi Oi] + ZTT[,OU OiT ® Oj].
i

i#j
Now without loss of generality, we can identify X; with {1,...,m;} where m; =
| Xi|. Hence we can think of O; as an arbitrary complex matrix

0, = (Oi,kl)k,lzl,...,m,-'

We will use square brackets to indicate entries of an operator as in [O;]x; = O; k;-
Note that the two-marginal p;; is an operator Q; ® Q; — Q; ® Q;, so we denote
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QUANTUM VARIATIONAL EMBEDDING 2041

its ((k, p), (I, q)) entry by [pijlep,iq fork,l = 1,....,m; and p,q = 1,...,m;.
Finally, for i # j, observe that

[OiT ® O_;] = [0]1k110j10g = 011k 0, pq-
kp,lq

Then we expand the i # j sum to obtain

ZTr[,oij ol Oj] =Y i mzj [pij]zq,kp[OiT ® 0/']

itj i#jk,il=1p,g=1

m;  Mmj L
=Y > D 1piiliaknOiikOjopa

i;éjkl:lpq=1

= Z Z Z (1-— 1])[,01] lq, kpmoqu

i,j=1k,l=1p,g=1

kp,lq

Next expand the i sum:

Xi:Tr[,Oi ofo;] = ZZ i[p, lok [ O] 0,]

i k=1g=1

=¥ 3 Ywla[ol], [0],
i k,JI=1qg=1

= Z Z Z[Pl kol 1% O; JAg
i kJI=1q=1

=3 Z Z 81ppilgk Oi,1k Ot pg

i kl=1p,g=1

_ Z Z Z 81781510114k O 1k O, pq-

i,j=1k,l=1p.,g=1
Therefore we have derived
M m m;
D000 Y [Budipleilgk + (1= 8i)1pijliqkp) Oiik Ojpg = 0.
i,j=1k,l=1p,9=1

We can think of O; 4 as a vector O € ]_[%1 Cmixmi ~ CLiZ1m | The choice
of such O was completely arbitrary. Therefore we have proved that

M M
<Z mzz) x (Z mlz) matrix G® = GP[{p;i;}i<;]

i=1 i=1
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2042 L. LIN AND M. LINDSEY

defined by

G,-(lz,z,qu = 8ijdiplpilgr + (1 —38ij)pijlig.kp

is positive semidefinite. This matrix can be thought of as a linear operator G®? .
Hi]\il Cmixmi ]_[f‘il C™i*mi_(One can readily check that G® is Hermitian.)
For a quantum spin system, we have m; = 2 for all 7, so this is a semidefinite
constraint on a (4M) x (4 M) matrix, which can be efficiently enforced.
At last we have derived a semidefinite relaxation, which we shall call the two-
marginal SDP:
2 _ : (
E® — inf Te[Hipi] + > Tt[H;; ps ~]).
O {pi i< LOML(Q):G @ (i = 1120 ; i KZ, v
The relaxation yields the energy lower bound Ey > E(()Z), as well as a minimizer

p®@ that is expected to approximate the exact two-marginals.
The two-marginal SDP can be written, in expanded form, as

(25) minimize Y Tr{Hip] + Y Tr[Hijpij]

{pi}:{oijdi<i ; i<
(2.6) subject to pij =0, i,j=1,....M,
() pi = Trglpeijl. pj = Trgylpif), 1.7 =1..... M,
2.8) Telps] =1, i=1,.... M,
2.9) GPlipijli<j] = 0.

Although there are several ways to write constraints yielding the same feasible set,
the dual SDP is actually influenced by the choice of constraints used to define this
set. The choices made here will yield interesting dual structure, to be explored in
Section[3]

2.4 Abstract perspective on the global semidefinite constraints

More abstractly, it is useful to think of G = G[{p;;}] as being composed of
blocks Gij;[p;;j] (indexed by marginal pairs i, j ), defined by
Tr[oi 0], 0; 4] i=].

(GijlpijDap = o
Tefpij O ® Ojp]. i # J.

2
where {Oi,a}zzl is a basis for the set of one-body operators on site i. By con-
sidering o as a multi-index a = (k, /) and choosing (O; 1)k, ;7 = Skk’d11 O
be the “standard unit vectors” in C™*™i we exactly recover our former explicit
representation of G [{p;; }].

REMARK 2.2 (Restricted operator sets). The more abstract perspective suggests a
natural framework for further relaxation. Suppose that for eachi = 1,..., M, we
are given a linearly independent collection {Oi,a}aeIi of one-body operators for

the i™ site, where T; is a given index set. Then we can define G = G[,o(z)] in terms
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QUANTUM VARIATIONAL EMBEDDING 2043

of blocks as above, where the block G;j|p;i;] is a matrix of size |L;| x |Z; |, defined
once again by

Tr[pi 0], 0;.4]. i=J,
Tr[Pij(O,-T,a ® 0jp)] i#J

fora € I;, B € Z;. In principle one can consider restricted index sets with

|Zi| < ml2 containing only the most physically important operators. Such restricted
structure will correspond to interesting structure from the perspective of the dual

problem to be considered below.

(Gijlpijl) op =

REMARK 2.3 (Quasi-local constraints). In order to improve the efficiency of the
semidefinite introduced above, one could enforce the semidefiniteness of certain
principal submatrices of G. For example, for each k, one could define a submatrix
G® of G by restricting the block indices i, j to those satisfying d(i, k), d(j, k) <
dmax, Where d(-,-) is an appropriate notion of distance between indices (e.g.,
graph distance for a lattice model) and dy.x is a locality parameter. Then one
enforces G®[{p; 1] = 0 for all k. For constant dyax suitably large, in principle
such constraints could achieve good performance while maintaining linear scaling
in M of the SDP problem size for suitably local Hamiltonians, by omitting p;; from
the optimization variables for d(i, j) > dmax-

2.5 Higher marginal constraints

A tighter SDP relaxation can be derived by considering a set {p;jx }i<;<k of
quantum three-marginals as the optimization variable. One may enforce the suit-
ably defined local consistency constraints, denoted {p;jk}i<j<k € LQM3(Q),
then defining variables p;; in terms of the p;jx via partial traces, and additionally
enforce G[{p;j}i<j] > 0. We refer to the corresponding semidefinite relaxation as
the three-marginal SDP.

To derive the corresponding semidefinite constraints, we have to keep track
of the four-marginals. Suitable necessary conditions can derived by enforcing
Tr[p ot 5] > 0 forall O of the form O = Do 5,-,,~/, where the 6,~,,~/ are two-body
operators. As such one may define the four-marginal SDP, and so on. Note that,
e.g., the four-marginal SDP can in fact accommodate more general Hamiltonians,
i.e., Hamiltonians including additional four-body terms.

2.6 Cluster perspective

In order to systematically improve the accuracy of the two-marginal SDP, in-
stead of considering higher marginals we may alternately consider increasing the
cluster size. Formally, such considerations will yield problems can still be ac-
commodated as special cases of our previously introduced setting. However, the
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2044 L. LIN AND M. LINDSEY

difference in perspective is noteworthy, and the generalization to the case of over-
lapping clusters (considered in the next section) is not accommodated as such a
special case.

Suppose that our site index set is written as a union of cluster index sets Cy, i.e.,

N
{L...My=|Jc,.
y=1

where the cluster index sets Cy, are disjoint. Then one can define

Y, =[] X

ieCy

to be the classical state space for the ¥ cluster. Then by considering the clusters
now as sites with classical state spaces Y, and following the derivation of the two-
marginal SDP, we may derive the cluster two-marginal SDP, relative to the cluster
decomposition {C,}. Note that this problem may be viewed formally as a two-
marginal SDP; however, the distinction makes sense when we think of the limit of
expanding clusters for a problem that is otherwise fixed. Higher-marginal cluster
SDPs can be derived similarly.

2.7 Overlapping clusters

We now demonstrate the treatment of overlapping clusters. Suppose again that

N
{L....My=|Jc,.
y=1

but now relax the assumption that the C, are disjoint. Since the overlap of two
clusters might even be a single site of the original model, we can no longer just
“coarse-grain” clusters and neglect all of their intracluster structure. In particular,
imposition of necessary local consistency constraints demands a bit more care.

Now the primary objects in our relaxation will be the two-cluster marginals,
denoted p,s5 := pc,uc; for y < §. Each p, s is an operator on the quantum state
space specified by the union of sites C, U Cg, which may of course be smaller
in size than |Cy| + [Cg|. Then the one-cluster marginals p, := p¢, (which we
sometimes also denote by py, ) are obtained in terms of the two-cluster marginals
via

oy = Treg\c, loysls  ps = Tre,\cslpys]-

These identities yield consistency constraints analogous to the local consistency
constraints introduced earlier. However, we can also include the overlap con-
straints by introducing the variable p(,5)n(;7s7) Tepresenting the marginal corre-
sponding to the set (C, U Cs) N (C,y U Cy/), forall y < 8, y’ < &, constrained
by

P88y = Trc, uc)\(c, ucs)H | Pys] = Trc, ucs e, nes[Pys]-
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QUANTUM VARIATIONAL EMBEDDING 2045

Note that these constraints are nontrivial only if the intersection (C, U Cs) N
(Cyr U Cg/) of cluster pairs is nonempty.

To complete the discussion of the overlapping cluster two-marginal SDP, we
need to derive the semidefinite constraint. This is derived by observing the nec-
essary condition Tr[p ot 6] > 0 for all O of the form O = Zy 6), , where 5,,
is a one-cluster operator, i.e., an operator on ®iecy Q;, interpreted also (abusing
notation slightly) as an operator on Q by tensoring with the identity on all sites
outside of C,,.

In fact, given a collection of one-cluster operators { Oy 4 jo ez, for the y" cluster
(i.e., operators on ®iec,, Qi), we build G [{p, s }] blockwise by defining

(GyslpysDap = Tr[pys 05 4 Os 4]

fora € Z,,, B € Ig, and y < 6 (extending to y > § by hermiticity), where 5,,,0,
is an operator on ®iecyuc , Qi obtained from Oy o by tensoring with the identity
operator over all sites in Cs \ C,,. For example, if C, = {1,2} and Cs = {2,3},
then we can represent 5),,0, = Oy ® Iy, and 53,,3 = Im, ® Os g (recall that
here Oy 4 is an operator on Q1 ® (2 and Oy g is an operator on Q2 ® (3).

The semidefinite constraint is, as before, G[{p,s}] = 0. The resulting SDP can
accommodate Hamiltonians of the form

H = Z H, + Z Hys,
Y

y<§

where H. y and H y6 are one-cluster and two-cluster operators, respectively.

Suitable analogous relaxations with higher overlapping cluster marginal con-
straints may also be derived. We remark that the treatment of overlapping clusters
here is significantly simpler and more principled than several other quantum em-
bedding theories, including the dynamical mean-field theory (DMFT) and density
matrix embedding theory (DMET).

2.8 Translation-invariant setting

In this section we describe how translation-invariant structure can be exploited
in a natural way in our semidefinite relaxation framework. For simplicity we focus
only on the case of the two-marginal SDP for a translation-invariant Hamiltonian
in one dimension. Extension to higher dimensions is straightforward.

For the purposes of this section it is convenient to adopt a zero-indexing con-
vention for our site indices (usually denoted by i, j); i.e., we index our sites as
i =0,...,M — 1. We obtain a translation-invariant Hamiltonian by assuming
that ﬁi = ﬁo for all 7 and ﬁ,-,- = I:I\O,j_i for all i < j. In turn, we are guaran-
teed translation-invariance of the ground-state density operator (note: symmetry-
breaking cannot occur for systems of finite size). In particular, we have p; = po
for all i and p;; = po,j—; foralli < j, and it follows that we can constrain the
matrix G = G[{p;;}] to be block-circulant, so that the block G;; depends only
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2046 L. LIN AND M. LINDSEY

oni — j (mod M). Hence all of the information of G is contained in the first
row of blocks, and moreover G can be block-diagonalized by taking the blockwise
discrete Fourier transform of the first row of blocks. Indeed, these diagonal blocks
are obtained as

M—1 .
~ 1 2njk
Gy, = —— exX l G B
“= i p( M)
Jj=0
k =0,...,M — 1, where we use “1” to denote the imaginary unit to avoid con-
fusion with our indexing notation. Now the constraint G > 0 is equivalent to the
constraint that G > 0 for all k. Hence we arrive at the periodic two-marginal
SDP:

M—1
minimize Tr[Hopo] + Z Tr[Hoj po;]
0, {p0j }j=0....M—1 =1

subjectto  po; =0, j=0,...,.M—1,
po = Trgjylpoj]. po = Trioylposl. j =0,....M — 1,

Tr[po] = 1,
M-1 .
2njk
Zexp(l 7;/]1 )ng[poj]zo, k=0,....M—1.
j=0

Notice that we have economized significantly on optimization variables, and, more-
over, we have exchanged a semidefinite constraint of size ~M for M semidefinite
constraints of size constant in M. Moreover, a careful implementation of a solver
for this SDP should be able to exploit the FFT in the implementation of the semi-
definite constraints.

Periodicity constraints

If our sites are obtained as composite sites representing nonoverlapping clusters
(as discussed in Section [2.6), and if, moreover, our Hamiltonian is translation-
invariant with respect to these underlying sites, then we can impose further con-
straints to enforce the internal translation-invariance of our cluster marginals. To
wit, in addition to our optimization variables {/O(():g} for the two-cluster marginals,
we can define additional optimization variables {pg;} for the two-site marginals
and then enforce, foralli € Cy, j € {1, ..., M}, that

C
Po,j—i = TrCoUCsm\{i,j}[po,b’(j)]’

where §( ) is the index of the cluster containing site j. We refer to these additional
constraints as periodicity constraints.
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QUANTUM VARIATIONAL EMBEDDING 2047

3 Fermions

3.1 Preliminaries

The fundamental objects of fermionic systems in the second quantized formu-

lation (see, e.g., [28]]) are the creation operators aI, Cely aL and their Hermitian

adjoints, the annihilation operators a;, which act on the Fock space F and satisfy
the canonical anticommutation relations

{ai,a;} =38ij, faiaj} = {a;’a;} =0,

where {-. -} denotes the anticommutator. One defines the number operators by
n = aja,- and the total number operator by N = Zf‘il .

These objects can be concretely realized via the identification of Hilbert spaces
F ~ ®M €2 ~ 2", under which the annihilation operators correspond to
quantum spin—% operators as

a,T e ®~-®oz®(

0 0
) O)®lz®-~®lz-

i—1 factors

This identification of operators defines the Jordan-Wigner transformation (JWT)
[28]]. Note that the JWT depends on the ordering of the states in the sense that per-
muting the states before the JWT is not equivalent to permuting the tensor factors
after the JWT. R

After specifying a particle-number-conserving Hamiltonian 7, i.e., a Hermitian
operator on the Fock space that commutes with N, and a fixed particle number N,
we are interested in computing the energy

Eo(N) = inf{(y|H|y) : |¥) € F, (¥|y) = 1, (y|N|y) = N}.
It is equivalent to solve

Eo(N) = inf _ Te[Hp).
PED(F):Tr[N p]=N
where D(F) indicates the set of density operators on the Fock space (i.e., positive
semidefinite Hermitian operators F — JF of unit trace).

Observe that although F can be identified with a quantum-spin state space, the
creation operators are not one-qubit operators in the sense of quantum spin systems,
nor are hopping operators alT aj; + a;ai generically two-qubit operators. Moreover,
the complexity of such operators after the JWT can depend unphysically on the
ordering of the sites. Hence most second-quantized problems of interest (with the
exception of local one-dimensional models) simply do not fit into the framework
of variational embedding introduced above for quantum spin systems.

To illustrate this point and provide some concrete examples, we now describe
several Hamiltonians of interest in this setting. Of particular note is the Hubbard
model, whose states we enumerate via the orbital-spin index (i,0), where i =
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2048 L. LIN AND M. LINDSEY

1,....M,o0 =%, .

3.1) H=—t) Ajal aje +UY iy,
ijo i
where A;; is the adjacency matrix of a graph with vertex set {1,..., M}, e.g.,

a one-dimensional chain or a two-dimensional square lattice. The Hubbard model
plays a significant role in understanding strongly correlated quantum systems, such
as the high temperature superconductivity [33]].

More generally, one can consider a “generalized Coulomb model” of the form

o = Zhijajaajg + Z Uijhiohjz,
ijo ijot
which includes in particular the Hubbard model and variants with longer-range
interactions. In fact,nuum can be mapped to second-quantized Hamiltonians of this
form. As we shall see, the generalized Coulomb model is accommodated naturally
within the framework of fermionic variational embedding.

Broadening our view further still, consider a general two-body Hamiltonian H,
written as

i P tt

H = Zhijaiaj + 2 Zvijklaiajalak'

ij ijkl

Electronic structure problems in first quantization can be mapped to such Hamil-
tonians via an arbitrary choice of orbital basis {¢; } for (a subspace of) L2(R%),
where d is the physical dimension. If the basis functions have compact support,
then v;jx; can be nonzero only if both supp(¢;) N supp(¢x) # <& and supp(¢;) N
supp(¢;) # @. It will follow that after a suitable choice of overlapping clusters,
such Hamiltonians can also be accommodated within fermionic variational em-
bedding. We leave investigation of ab initio quantum chemistry problems by these
means to future work.

In order to define a convex relaxation of the fermionic Gibbs variational princi-
ple that is analogous to our relaxation for quantum spin systems, we adopt a more
abstract (and indeed general) perspective in section allowing for the derivation
of a suitable two-cluster-marginal SDP in Section[3.3] We will in fact see in Section
that our relaxation is tight for noninteracting Hamiltonians, i.e., Hamiltonians
that are quadratic in the creation and annihilation operators. To our knowledge this
feature has no analogue in the quantum spin setting because there is no related no-
tion of noninteracting systems. Then in Section [3.5] we will describe how one can
translate our abstract convex optimization problem into an explicit SDP that can be
implemented in practice.

3.2 Abstract perspective

The fundamental objects of interest in the abstract perspective is the algebra of
operators on the Fock space. In fact, the Fock space itself plays no direct role in
the following developments, nor does any global JWT. Marginalization will make
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QUANTUM VARIATIONAL EMBEDDING 2049

use of the notion of a subalgebra subordinate to each cluster. It is in the details
of how these subalgebras lie within the global algebra that the quantum-spin and
fermionic cases differ.

Now let

A= (l,al,...,aM,aI, ) ..,aL)

denote the unital star-algebra over the complex number generated by the cre-
ation and annihilation operators subject to the canonical anticommutation relations.
(Throughout we will use angle brackets to denote such generated algebras.) We let
ni = a;r a; denote the corresponding number operators and let N = > ; i denote
the total number operator. Recall from above that for spinful models such as the
Hubbard model, the state index i can be thought of as a composite orbital-spin
index, i.e., i = (x,0).

In fact, the algebra A comes equipped with a Z»-grading; i.e., we can write .4
as a direct sum of vector spaces A = A° @ A°, where A° and .A° denote the sets of
even and odd operators, respectively. An operator is even (resp., odd) if it can be
written as a sum of even (resp., odd) monomials in ay,...,au, aI, ... ,a;ru. (The
reader can check that this notion is well-defined.) The Z,-grading refers to the fact
that A°A® C A°, A°A° C A°, A°A° C A° and A°A° C A°.

For any subset C C {1,..., M}. Let A¢ denote the subalgebra

Ac = {{1}U{a;.,a] :i e C}),

and let the even and odd components A and Ag- be defined accordingly. Suppose
that our site index set is written as a union of cluster index sets Cy, i.e.,

Ne
{L....Mmy={Jc,.
y=1

where the cluster index sets C,, are disjoint, for simplicity.

We comment that, in contrast to our exposition for the case of quantum spins,
we shall directly work with general clusters (as opposed to clusters consisting of a
single site). The reason is that in the quantum spin setting, it was possible to view
nonoverlapping clusters as single sites (with enlarged local state spaces). Such a
reduction is not natural in the fermionic setting. Hence we retain the index notation
y, 8 for clusters and 7, j for individual sites (of which the clusters are comprised).

TA star-algebra over C is essentially an associative algebra over C in which one can take adjoints,
where the adjoints satisfy their usual algebraic properties. “Unital” means that 1 € A. For further
details, see, e.g., [4]. We will use no deep results from the theory of star-algebras but nonetheless find
the perspective to be clarifying. Specifically, it is useful to view our algebra of fermionic operators
independently from any Fock space on which it acts, and in fact the notion of the Fock space does
not play any explicit role in our developments.
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2050 L. LIN AND M. LINDSEY

We assume the Hamiltonian H € A can be written as a sum of one-cluster and

two-cluster operators as
=2+ )
y<§

where ﬁy € Ac, and ﬁyg € Ac,ucs-

Note carefully for context that the subalgebra A, corresponds in our earlier set-
ting of quantum spin systems to the subalgebra of operators on ®iecy Q;, viewed
as operators on Q by tensoring with the identity. Clearly, even by viewing the
fermionic system as a spin system via JWT, this subalgebra is inequivalent to the
fermionic subalgebra above defined. The reader should keep this perspective on the
developments of Section [2]in mind as we transpose them to the fermionic setting.

Next we turn to defining our notion of a statistical ensemble and its marginals.
For this task we turn to the language of star-algebras. The role of our full ensemble
is played by the state, a linear functional @ : A — C such that w(1) = 1 and
w(ATA) > 0 for any A € A. In our setting (which is finite-dimensional), the
action of a state can be viewed as nothing more than tracing against a density
operator on the Fock space, as can be verified readily via the Riesz representation
theorem. In the quantum spin setting of Section [2| the action a)(/f) of the state
corresponds to the trace Tr[A,o] agalnst the dens1ty operator p- For A an operator
on Q);cc Qi, we have a)c(A) a)(A) = Tr[A,o] = Tr[A,oc] i.e., our notion
of marginalization—applied to a cluster subalgebra in the quantum spin setting—
precisely recovers the partial trace operation. However, the abstract perspective
will be useful in defining the notion of a marginal because if we try to directly
borrow the corresponding notion from the setting of quantum spins, i.e., the partial
trace, then we find ourselves in need of a global JWT to proceed.

We let Q2 denote the set of states on .A. Then in star-algebraic language, the
N -particle ground-state energy Eq(N ) minimization problem is naturally recast as

(3.2) Eo(N) = inf  w(H).
weQ:w(N)=N

Next, our notion of a marginal in this setting is simply the restriction of a state
to a subalgebra. That is, for a subset C C {1,..., M}, we define the marginal w¢
via

wce = w| Ac -

Of course, wc is itself a state on A¢c. We let Q¢ denote the set of states on Ac.
Notice that, as follows immediately from the definition, these sets are convex.

3.3 The two-cluster-marginal SDP

In this section we shall derive an “abstract SDP” without describing how it can
be realized on a computer. Later, in Section we will describe how to achieve
such realization (which makes use of JWTs only for each pair of clusters). For
simplicity, we will only derive a relaxation that analogizes the (nonoverlapping)
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QUANTUM VARIATIONAL EMBEDDING 2051

two-cluster-marginal SDP. Further analogues can be derived by straightforward
(though perhaps tedious) modifications of the arguments presented below.

For simplicity we denote the one-cluster marginals by wy, := w¢, and the two-
cluster marginals by w,5 := wc,uc;. Note carefully from the definitions here that
wys = wsy : Ac,ucs — C and that vy, = w, : Ac, — C. Our one- and
two-cluster marginals evidently satisfy the local consistency constraints

wy = wyslac,, 05 = oyslac,.

via nested restriction operations. By analogy to (2.4), our semidefinite constraint
will be derived from the observation that for any 4 € A of the form 4 = 3, Ay,

where fl\,, € Ac, forall y,
020D = o[ 4] X 4]) = Yo (d}ds).
14 § yé

Therefore the two-cluster marginals satisfy

Z“’VS (@25) >0
yé

for all choices of {141),}]],\';1 for which /’1\,, € Ac,, forall y.

More specifically, for each cluster y consider a list {/’1\,,,0, }aez, of operators in
Ac, possibly (but not necessarily) spanning the space of all operators in Ac, .
(Compare to the perspective of Section [2.4|on the global semidefinite constraints
in the quantum spin setting.) Then one obtains G [{ws}] = 0, where G = (G,5)
is specified blockwise by

(GysloysDap = wys (A} 4 A5 p).
In fact, G = G[{wys},<s] depends only on w,s for y < & because the lower
triangular part can be obtained from the upper triangular part via hermiticity.

Then we have derived the following relaxation of the variational principle (3.2),
in which the w;, and w, s are considered as optimization variables:

E(()2)(N) = minimize Za)y (ﬁ,,) + wa (ﬁyg),
{wy}a{wyﬁ}y<8 y J/<5

subjectto  wys € Qc,ucs, 1=y <8 =N,

wy = wyslac,, 1=y <8 =N,

(3.3)
a)(g:wy5|Ac8’ 1§V<8§N(n

N =" w,(Ny).
4

G [{a)yS }y§8] >0,

where Ny, = Ziecy i1; denotes the y™ cluster number operator. Since the con-
straints are convex, we have specified an abstract convex optimization problem.
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2052 L. LIN AND M. LINDSEY

Now that we know that this relaxation makes sense in principle, our hope is to
express it later as a concrete semidefinite program.

It is computationally useful to realize a simplification. Physical fermionic Ham-
iltonians are always even (including the anomalous, or particle-number-noncon-
serving, Hamiltonians that arise in effective descriptions of superconductivity), and
hence one expects the action of a physical state on an odd operator in fact always
yields zero. Hence

(GysloysDap = 0ys (4] 4 45 p)
is zero unless //1\,,,0[ and /’1\5, p are either both even or both odd. It follows that we

can reduce the size of the semidefinite constraint by splitting our operator lists into
even and odd subsets, which we denote by

{A\;,a}aeIﬁ and {A\?/,Ol}aelﬁ’,’

respectively. Then we define separate matrices G® and G° blockwise by

e/o _ /o1t fe/o

(34) (Gy8 [‘UVS])aﬂ = Wys ([A?/Sz] [As,,s])-
Then we may equivalently substitute our semidefinite constraint G > 0 with two
semidefinite constraints G/° > 0, each of half (assuming that complete operator
lists are chosen) the original size.
3.4 Exactness for noninteracting problems

In this section we assume that H is noninteracting, i.e., of the form H =
D ; hij aj aj, where h = (h;;) is Hermitian. We want to show that in this setting
E(()z) (N) = Ep(N), i.e., the relaxation just introduced is tight, under the meager
further assumption that foreach i € {1, ..., M}, the operators «;, a;r are contained

in some cluster’s operator list.
Indeed, under this latter assumption it is not hard to see that the matrices

Dy jy) = (0g.3(a]a));5-, and  D'(eg ;) = (g 3(@al)))_,
appear as principal submatrices of G°[{w, s }], where the two-site marginals wy;_j,
are suitably obtained in terms of the two-cluster marginals w, s by appropriate re-
striction. Note that by the fermionic anticommutation relations, in fact

D'(wg,jy) = In — Diwg jp) 7
Hence for any feasible solution to our SDP, we have 0 <X D(wy; ;j3) < Ip. Then
it follows that E(()z) (N) is an upper bound for the optimal value Ej(N) of the
following (further relaxed) SDP:

2E((N) := minimize  Tr[DTh]

DE(CMXM
subject to 0<D <1y,

Tr[D] = N.
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QUANTUM VARIATIONAL EMBEDDING 2053
On the other hand, Ey(N) = vazl Ai(h), where A;(h) indicates the i lowest
eigenvalue of /. For noninteracting problems this is precisely the value of Eo(N).
Hence we have shown Eg(N) > E(()Z) (N) = E{(N) = Eo(N), from which it
follows that E(()z)(N) = Eo(N).

For certain problems, one may also expect asymptotic tightness in the limit of
strong interaction. For example, in the # — 0 (or equivalently, U — 00) limit of
the Hubbard model, the sites completely decouple, and it can be checked readily
that our SDP is tight in this scenario.

3.5 Concrete perspective

In order to represent w,, ¢ in concrete terms, note that w, s is defined by its action
on Ac,ucs. It is at this point that we introduce for computational purposes the
JWT, though only for restricted fermionic algebras. Let End(V') denote the set
of all endomorphisms of V. After specifying ordering the sites of C, U Cg, i.e.,
a labeling map «,5 : C, U Cs — {1,...,Lys} where L,5 := |Cy U Cs|, the
corresponding JWT fixes an algebra isomorphism

Lys
Jys + Ac,ucs — End(® (Cz),

i=1

and we define CIJ: g.) € End(®lL=’"i C?) to be the image of a; under this isomorphism
fori € C), U Cg. More specifically, the transformation 7,5 is specified by setting

8
Tys (ax;g(i)) =/,

where

01
ci’/‘g::az@'--@az@ QLR Q1.
—_ 0 0 -~
(i—1) factors (L, s—1) factors

Notice that the case y = § makes perfect sense according to the above definitions,

though we will also introduce the alternative notation 7, := Jyy.

Letld € End(®iL:”‘i C?) be the identity operator. Then Fy5 = Jys0wys °~7y_51

is a linear functional onLEnd(®iL=’"; C?) satisfying F,s(Id) = 1 and Fs (ATA4) >
0 for any A € End(®); ]
that there exists a unique p,,s > 0 with Tr[p, s] = 1 such that F},5(A4) = Tr[Ap,s]

forall 4 € End(®lL:’"i C?). That is to say, wy§ (//1\) = Tr[Apys] whenever A =

Tys (/T) Again, we introduce the alternative notation p, = p,, for conceptual
clarity.

C?). It follows (via the Riesz representation theorem)
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2054 L. LIN AND M. LINDSEY

Motivated by the preceding, we shall replace optimization over states wys :
Ac,ucs — C with optimization over density operators

Lys
Pys € End<® (Cz).

i=1
Crucially, the correspondence between states and density operators has relied on
a separate JWT for each pair (y, §), not a single global JWT that maps the global
fermionic state to a global density operator. Neither should we obtain p, 5 from a
global density operator p via the standard definition of the partial trace, as in the
case of quantum spin systems.

Under this correspondence G%O [wy, 5] as defined by 1D can be obtained as

Gy oyl = Tr([Tys (A5/)] (s (A5 5)1pr).
where we abuse notation slightly by identifying G;/SO [pys] with G%O [wys].

In order to write down a concrete realization of the optimization problem (3.3),
the remaining hurdle is to encode the local consistency constraints w, = wys|ac,
and ws = wys| Acy for y < &, which require us to further “marginalize” our
fermionic states.

We did this by first assuming that the labeling map k5 satisfies k), 5(Cy) <
ky5(Cs) in the sense that every element of the left-hand side is less than every
element of the right-hand side. In the case of overlapping clusters, which (as pre-
viously mentioned) we shall not discuss in full detail, the relevant generalization
ensures that k,5(Cy) < ky,5([Cy, U Cs] \ Cy). For simplicity we also assume that
kyslc, = kyy forall y < &, and from now on we think of the labeling maps
as fixed. It is always possible to choose a labeling that satisfies these assumptions.

Then it follows from the definition of the JWT that for any A e Acy, A =

Tys (/T) is of the form

A=B®Id ICs

=BRL® - Q I,
R/ 2 N

|Cs| factors
where B = 7, (A) € End((gl.]“:”1 C?). Then
wys (A) = Tr[Apys] = Tr[Bfy],

where py = Tr 5(c,)loys]- Meanwhile, we have jy(ff) = B, and a),,(ff) =
Tr[Bpy]. Hence the constraint w, = wys|ac, for y < § is equivalent to the
stipulation that Tr[Bp, ] = Tr[Bp,] for all B, i.e., that

py = Tre,5(cs)lPoys]-

Here Tr 5(c;) () is the standard partial trace.
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QUANTUM VARIATIONAL EMBEDDING 2055

Meanwhile, for any A = 7,5 (A) where A € A‘3C8 is even, we can write

A=0HLQ - ® 1B,
| —

|C,, | factors

where B = J5(A) € End((giL:“1 C2). Hence for all 4 € Ag,» we derive as
above that wg (/’1\) = Tr[Bps], where ps := Try 5(cs)[pys]- But for Ae .,408, as

mentioned above we can assume g (/’1\) = wg (/’1\) = 0 (because this identity is a
necessary condition satisfied by the exact marginals) and hence also that Tr[Bpg] =
0 = Tr[Bpg] for all B € Js ("4%3)' Thus the constraint ws = wys|ac, fory <8
is equivalent to the stipulation that Tr[B pg] = Tr[Bps] for all B, i.e., that

ps = Tre,5(cs)lPys]-

Finally, note that the constraint Tr[p, 5] = 1 can simply be encoded, given our first
local consistency constraint, by Tr[p, ] = 1. Then we obtain the following concrete

realization of (3.3)):

E(()z)(N) ‘= minimize ZTr[jy (ﬁy)py] + ZTr[ij (ﬁys)pys],
{Py}a{Py8}y<6 y y<8

subjectto  pys >0, 1<y <§<N,,
Py = TrKyg(Cg)[py(S]’ l<y< § < Ne,

ps = Tre,sccloys]l, 1=y <8 <N,
Trlpyl =1, y=1,..., N,

N = Z Te[ T, (Ny ) oy .

G [{PVS }ySS] > 0.

4 Numerical Results

All numerical results were computed in MATLAB® with CVX [[13]] for perform-
ing SDP calculations. We limit our experiments to problems that are small enough
to validate by exact diagonalization. In particular, we will illustrate numerically the
fact that all of our relaxations must yield lower bounds for the exact energy. We will
also show that the omission of the global semidefinite constraints results in looser
lower bounds; i.e., the global semidefinite constraints are nontrivial, even though
the Hamiltonians are all local. As discussed in Section[5.3]|below, a more scalable
implementation should be possible, but such an implementation (as well as an ac-
companying numerical study of properties of larger systems, e.g., approaching a
thermodynamic limit) will be left to future work.

4.1 Transverse-field Ising model

First we consider the transverse-field Ising (TFI) model (2.1) on a periodic 12x 1
lattice, comparing results of the two-cluster-marginal SDP for various cluster sizes.
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2056 L. LIN AND M. LINDSEY

We also test the periodicity constraints of Section and the case of overlapping
clusters. The results are shown in Figure

0.035
{ [—6—1x1
\|—e—2x1
0.03 2x1l, p.c.
3 3 ’, —o—2x1, overlap
@ @ 0.025 / °-3x1, p.c.
\
9 g \
) o Q
A & 0.02
> i \
& o \
] 5 0.015 [
(0] . \
S ) P
] \
>
3 2 o0.01
© (0]
X o 2
K K /" & N
0.005 / B . ~
_a \
o @ e ~ B
0 & B
0 0.5 1 1.5 2
h

FIGURE 4.1. TFI model on periodic 12 x 1 lattice. Approximate en-
ergies are computed via the two-cluster-marginal relaxation. Note that
“p.c.” indicates the inclusion of the periodicity constraints introduced
in Section and “overlap” indicates the choice of overlapping 2 x 1
clusters, i.e., {1,2},{2,3},{3,4},...,{11,12}, {12, 1}.

Note that, as the theory requires, all approximations do indeed yield lower
bounds for the exact energy. Moreover, these bounds become tighter for larger
cluster sizes. Also notice that the case of overlapping 2 x 1 clusters compares fa-
vorably to the case of nonoverlapping 2 x 1 clusters, achieving an energy error
roughly twice as small. (In the case of overlapping clusters, the periodicity con-
straints of Section are satisfied automatically by the solution, and there is no
need to enforce them explicitly. Hence from Figure it is clear that most of
the improvement yielded by allowing for overlap is not merely due to these con-
straints.)

In Figure we test the same relaxations on the same model problem except
that we omit the global semidefinite constraints. Neglecting the global semidefinite
constraints corresponds to the use of belief propagation (BP) [31] in the classical
setting and its quantum generalization [2/10,21,32]]. Note that the omission of these
constraints results in a significant degradation of the lower bound, even though the
Hamiltonian is local.

Next we consider the TFI model on a periodic 4 x 3 square lattice, comparing
results of the two-cluster-marginal SDP for various cluster sizes. The results are
shown in Figure Here we are more limited by the preliminary implementation
in what can be tested, though the observations are compatible with those preceding
remarks that are applicable. In Figure[4.4] we once again test the effect of removing
the global semidefinite constraints, and similar conclusions apply.
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Exact energy per site

4.2 Antiferromagnetic Heisenberg model

|
N

|
w
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Energy error per site
(no global constraints)

QUANTUM VARIATIONAL EMBEDDING
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FIGURE 4.2. Results for the same model and same relaxations as in
Figure [A.1] with the modification that the global semidefinite constraints
are omitted in all cases. In this experiment the curves for “2 x 1, p.c.”
and “2 x 1, overlap” coincide with that of “2 x 1.” Note the change of
scale of the vertical axis relative to the analogous plot of Figure 4.1} For
clarity, we remark that the value of the “3 x 1, p.c.” curve at h = 1
is 0.0035, compared to the corresponding value (with global constraints

active) of 0.0016 depicted in Figure .1}
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Energy error per site
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FIGURE 4.3. TFI model on periodic 4 x 3 lattice. Approximate energies

are computed via the two-cluster-marginal relaxation.

2057

First we consider the antiferromagnetic Heisenberg model (2.2) on a periodic
12 x 1 lattice, comparing results of the two-cluster-marginal SDP for various clus-
ter sizes. We also test the periodicity constraints of Section [2.8] and the case of
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FIGURE 4.4. Results for the same model and same relaxations as in
Figure [4.3] with the modification that the global semidefinite constraints
are omitted in all cases. Note the change of scale of the vertical axis
relative to the analogous plot of Figure 4.3

overlapping clusters, as well as the effect of omitting the global semidefinite con-
straints. The results are shown in Table

In Table we show results for the AFH model on a periodic 4 x 3 lattice
for various cluster sizes. For these experiments, the observations are qualitatively
similar to those reported for the TFI model, though the relative energy errors are
larger. In particular, the errors for 1 x 1 clusters are quite large, though the error
falls dramatically as the cluster size is increased. Moreover, the global constraints
achieve significant error reduction even though the Hamiltonian is local.

TABLE 4.1. Energy error by cluster specification for the AFH model on
periodic 12 x 1 lattice, with and without global semidefinite constraints.
For reference, the exact ground state energy is —1.7958. Approximate
energies for the first line are computed via the two-cluster-marginal re-
laxation. Note that “p.c.” indicates the inclusion of the periodicity con-
straints introduced in Section and “overlap” indicates the choice of
overlapping 2 x 1 clusters, i.e., {1, 2}, {2, 3}, {3,4},...,{11, 12}. For the
results of the second line, the global semidefinite constraints were omit-
ted.

Ix1 | 2x1 |2x1,pc.|2x1,overlap | 3 x 1, p.c.
global | 0.6017 | 0.0634 | 0.0462 0.0159 0.0048
no global | 1.2042 | 0.2042 | 0.2042 0.2042 0.0310
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QUANTUM VARIATIONAL EMBEDDING

TABLE 4.2. Energy error by cluster specification for the AFH model on
periodic 4 x 3 lattice, with and without global semidefinite constraints.
For reference, the exact ground state energy is —2.4561. Approximate
energies for the first line are computed via the two-cluster-marginal re-
laxation. Approximate energies for the second line are obtained by omit-
ting the global semidefinite constraints.

1 x 1 clusters

2 x 1 clusters

1 x 3 clusters

global

1.0439

0.3937

0.0410

no global

3.5439

2.1897

0.8773

4.3 Hubbard model

Finally, we consider the Hubbard model on a nonperiodic § x 1 lattice with
particle numbers N = 6,7, 8,9, 10 and interaction strengths U € [0, 12]. In Fig-
ure we plot results for the two-cluster-marginal relaxation with 1 x 1 clusters
C; :={(i, 1), (i, )}. Observe that for U = 0, the system is noninteracting and the
energy is exact, as guaranteed by the discussion in Section Furthermore, the
error of the energy decreases with respect to U (even without normalizing by U).
We remark that the error of the energy per site is on par with that of DMET [16]]
when the same cluster sizes are used. In comparison to DMET, variational embed-
ding is less accurate for intermediate U (i.e., U ~ 4) but scales more gracefully

Exact energy per site

o o

o

o

Energy error per site
1) o

=}

.09

.08

.07

.06

.05

.04

.03

.02

.01

—e—N=6, N=10
—6—N=7, N=9
N=8

FIGURE 4.5. Hubbard model on nonperiodic 8 x 1 lattice. Approximate
energies are computed via the two-cluster-marginal relaxation with 1 x 1
clusters C; := {(i, 1), (i, |)}. Note that the energy errors in the cases
N = 6and N = 7 coincide with the errors in the cases N = 10 and
N = 9, respectively, due to the particle-hole symmetry.

12
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FIGURE 4.6. Results for the same model and same relaxation as in Fig-
ure[d.5] with the modification that the global semidefinite constraints are
omitted in all cases. Note the change of scale of the vertical axis relative
to the analogous plot of Figure

in the regime of large U (i.e., U Z 8). However, a thorough comparison of varia-
tional embedding with other embedding methods will be a matter for future work
following more careful implementation.

In Figure we test the same relaxation on the same model problems, except
that once again we omit the global semidefinite constraints. Once again we observe
significant degradation of the lower bound. Note, moreover, that the omission of
these constraints breaks the exactness of the relaxation energy for U = 0.

5 Duality and the Effective Hamiltonian Perspective

In order to reduce the computational cost for solving the SDP in the variational
embedding (called the primal problem), we may consider the associated dual prob-
lem. For simplicity, we consider duality only for the two-marginal SDP in the
quantum spin setting, and it will be convenient to take the “abstract perspective”
of Section with possibly restricted operator sets as in Remark Duality in
other settings can be approached by similar means.

5.1 The quantum Kantorovich problem

In preparation for our discussion of the duality of the two-marginal SDP, we first
introduce the notion of the quantum Kantorovich problem, which is a direct quan-
tum analogue (and in fact generalization) of the Kantorovich problem of optimal
transport [41]. See also in [5,[7,|12}/34,/47]] for related, though different, presenta-
tions.
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QUANTUM VARIATIONAL EMBEDDING 2061

The analogy to classical optimal transport is defined by replacing probability
measures with density operators, a cost function with a cost operator C, and clas-
sical marginalization with quantum marginalization (i.e., the partial trace). Given

operators y; € End(Q;) fori = 1,2 of unit trace, we may define the optimal
quantum Kantorovich cost via the SDP
QK[@; U1, p2] :=  minimize Tr[Cr]
7€End(Q1®02)

subjectto & >0
p1 = Trygyr], p2 = Tryy[r].

Note that if p1 # 0 or ua # 0, then since 7 > 0 implies that Trg;[7] > 0, the
problem is infeasible, i.e., QK[C ; i1, u2] = +o0. Hence without loss of gen-
erality one may assume that p; > 0, i.e., that the y; are indeed density operators
on @;. Nonetheless, the slightly relaxed perspective will be of some use below. In
fact, conversely, the program is feasible whenever (41, (1o > 0 because in this case
m = U1 ® Mo is a feasible point.

There is a notion of quantum Kantorovich duality that analogizes the usual no-
tion, as follows. Let the Hermitian operators A € End(Q1) and B € End((Q»)
be dual variables for the first and second marginal constraints, respectively. These
will be the “quantum Kantorovich potentials.” Dualizing these constraints yields
the Lagrangian

Lok (m, A, B) = Tr[Cr] + Tr[A(p1 — Trypy[7])] + Tr[B(ua — Trygy[7])]
still constrained by = > 0. Using the fact that Tr[A Tryy[]] = Tr[(A ® Id)x] and
Tr[B Tryyy[7]] = Tr[(Id ® B)x], we obtain

Lok (m, A, B) = Tr[Au1] + Tt[Buz] + Tr[(C — A®1d —1d ® B)x].
Now for fixed 4, B, we have
0, C-AQId-Id® B > 0,
inf Tr[(C — A ® Id—1d ® B)r] = ® ®oz

7>0 —oo, otherwise.

Hence we have derived the Kantorovich dual problem

maximize  Tr[Apq] + Tr[Bus]
5.1 A, B Hermitian

subjectto A®Id+Id® B < C.

Strong duality holds by Sion’s minimax theorem [18]] (together with the compact-
ness of the feasible set of the primal problem).

Let v be the minimizer for the primal problem, and suppose that the dual prob-
lem admits a maximizer (A, B). Thenlet M = C — A ®Id —Id ® B, so

Tr[M 7] = Tr[Cr] — Tr[(A ® Id)7] — Tr[(Id ® B)x]
= Tr[Cn] — Tr[Ap] — Tr[Bus]
-0,
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2062 L. LIN AND M. LINDSEY

by primal and dual optimality. But = > 0, so we can write 7 = Y 71—, p; pip;
where p; > 0,and Tr[M ] = Y7L, p; ¢} M¢;. Butalso M > 0,s0 p; ¢ M¢p; >
Oforalli = 1,...,m. Then since Tr[M 7] = 0 it follows that ¢ M ¢; = 0 for all
i =1,...,m,andsince M > 0 this means that M¢; = Oforalli = 1,...,m.

Therefore 7 is a convex combination of orthogonal projectors onto mutually
orthogonal, degenerate ground state eigenvectors of the Hamiltonian C — A ®
Id — Id ® B. For the reader familiar with optimal transport, we remark that this
observation generalizes the corresponding observation [41]] in the classical setting
on the support of the Kantorovich coupling, i.e., that 77;; > O only if ¢; +¢; = c¢y;,
where m = (m;;), ¢ = (¢;), and ¥ = (y;) are the Kantorovich potentials, and
¢ = (cjj) is the cost matrix.

In fact, one can consider a regularization of the primal problem by a von Neu-
mann entropy penalty (scaled by ), for which the solution can be shown to be of
the form

1
g = Z_ﬂexp[_ﬂ(c — Ap ®1d—1d ® Bp)].

where Ag and Bg are the unique operators chosen to yield the desired marginals
W1, 2. This is the quantum analogy of the entropic regularization of classical op-
timal transport [8]. In the “zero-temperature” limit 8 — oo one expects ng — 7,
Aﬂ —> A, and Blg — B.

5.2 Partial duality

Before any derivations, we comment that strong duality (i.e., the fact that there
is zero gap between the optimal values of the primal and dual problems for the
two-marginal SDP) can be understood as follows. In the original primal problem
@, the feasible domain for {p;}, {pij}i<, in this problem is compact, so strong
duality holds simply by Sion’s minimax theorem [18]. The question of whether
the dual optimizer is attained is more subtle and will be deferred to future work,
though see [14] for the discussion of strong duality in a similar setting.

Now we turn to the derivation of the partial dual problem. We adopt the “ab-
stract” perspective on the global semidefinite constraints introduced in Section [2.4]
as well as the notation of that section. Referring to (2.5), we first consider a partial
Lagrangian obtained by dualizing only the constraint (2.9):

Loan({pi} Apij}, X) = Y TelHipi] + Y Te[Hijpij] — (G [{pij }] X),

i<j

whose domain is defined by X € CXi mi)x(Xi m7) Hermitian positive semidefi-
nite and {p; }, {p;; } satisfying constraints (2.6), (2.7), and (2.8).
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QUANTUM VARIATIONAL EMBEDDING 2063

Now

Te(G[{pi 1 X) = D Tr(Gijlpi] Xji)
ij
= Z Z Tr[ pi Oia 0i 8] (Xii) g
i ap

+ 33 " Tl (0], @ 05.6)](X;i) pan
i#) af

= Z ZTI'[Pi OZaOi,ﬂ](Xii)ﬂOl
i of

+ Z Z {Tr[pij (OZa &® Oj,ﬂ)](in),BOl

i<j af
+ Tr[pji(o.}iﬂ &® Oi,oz)](Xij)aﬁ}-

Now by the hermiticity of X we have (X;;)ge = (Xij)ag, and we also have the
identity

Ti[pji (0] 5 ® Oia)] = Tr[pij (Oiae ® O] 5)].

Therefore
Te(Gl{pi 1 X) = > Tel¥; (Xii) pi] + Y Te[Yij (Xij) pij .
i i<j
where we have defined the functions

Y; : CILIXIT End(Q;) and Yj;: (OLA LT N End(Q; ® Q;)

by

Yi(M) =Y Map O], 0ip. Yiy(M) = |3 Mg (0], ® 0;9) | + hc.
af af

where “h.c.” denotes the Hermitian conjugate. Note that if M is Hermitian, then
Y; (M) is Hermitian as well; hence Y; (X;;) and Y;; (X;;) are Hermitian operators.

By applying Sion’s minimax theorem [/18]] and then separating the infimum over
{pi}. {pij } into an outer infimum over {p; } (subject to constraint (2.8)) and an inner
infimum over {p;; } (subject to constraints and (2.7)), we may rewrite the two-
marginal SDP energy as

(5.2) EQP =swp  inf  F(X.{pi)).
X >0 {p; }:Tr[p;]=1,Vi
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2064 L. LIN AND M. LINDSEY

where

F(XApi}) =Y Trl(H; — Yi(Xii))pi]

5.3)
+ > QK[Hjj — Yij (Xij): pi. pj.
i<j

This is the form of a concave-convex maxmin problem. The effective domain of the
minimization over {p; } is in fact specified by the constraints Tr[p;] = 1, p; > 0 for
all i, because if p; ¥ O for some 7, then at least one of the quantum Kantorovich
problems in the expression for F (X, {p;}) is infeasible, i.e., of infinite optimal
cost. The significance of this form is that for fixed X, {p; }, the two-marginals p;;
have been entirely decoupled from one another in the evaluation of F(X, {p;}).
Moreover, for each pairi < j, we see the emergence of the effective Hamiltonians
HEN(X) = Hi—Yi(Xi;) and H{'(X;;) = Hij—Y;;(X;j) on Q; and Q; ® O,
respectively. Notice that the new contributions to these effective Hamiltonians are
linear combinations of operators of the form OZ «0i,p and Oz o ® O; g, respec-
tively. Thus we see how our choice of effective operator lists is reflected in the
richness of our class of possible effective Hamiltonians.

5.3 Computational perspective

From the computational point of view, the partial dual formulation can be much
more efficient to solve than the primal formulation. Although general results guar-
antee that the complexity of solving the two-marginal SDP is only polynomial
in M, direct solution of the primal problem (by, e.g., interior-point methods) may
still scale quite poorly in practice. One might hope that the complexity should be
limited only by O(M?3) per iteration, i.e., the cost of diagonalizing a matrix of
size proportional to M, since the SDP constraint concerns a matrix of size
proportional to M. However, since the semidefinite matrix G is entangled with
further equality constraints, the best guarantees for interior-point methods are far
more pessimistic. One can interpret our discussion of duality thus far as reveal-
ing a special structure of these equality constraints that allows us in principle to
design methods achieving a cost of O(M 3) per iteration. (We remark that similar
considerations could be expected to achieve a cost of O(M) per iteration for the
quasi-local two-marginal SDP with fixed dpax, as described in Remark [2.3] though
we omit details for simplicity.)

Now we describe how to compute gradients of (X, {p; }) in order to apply, e.g.,
gradient ascent-descent methods. For fixed X, {p;}, let (Al?‘j, Bl.’;.) be the unique
dual optimizer (assuming that it exists) for the Kantorovich dual formulation of
QKI[H;; — Y;j(Xij): pi, pj]- Then it follows that

aF
apfkor, i) = H — Yi(Xi) + Y Af; + Y Bl
j>k i<k
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QUANTUM VARIATIONAL EMBEDDING 2065

(Note that if the dual optimizer is not unique, one only gets a supergradient.) One
may take a gradient descent step for pg in the direction of the traceless part of %,
adjusting the step size if necessary to guarantee that pr > 0. Moreover, letting
,ol.*j be the primal solution of the Kantorovich problem indicated by QK[H;; —
Yij (Xij); pi, pj], we have

oF "
—— (X, {pi}) = -Tr| O, O; gpil,
a(Xll)aﬂ( 11()1}) r[ i,00 l,ﬂpl]
—— (X Api}) = —Te[(0], ® 0;5)pt: ]
a(Xl,)a/g 1 [( 1,0 Jﬂ) l]]

(If the primal optimizer is not unique, one only gets a subgradient.) After taking a
gradient ascent step in X, one may project onto the feasible domain {X > 0} by
diagonalizing X and zeroing all negative eigenvalues.

Efficient methods for solving the primal and dual quantum Kantorovich prob-
lems (beyond black-box SDP solvers) will be explored in future work. In partic-
ular, preliminary results indicate promise for a quantum analogue of the classical
Sinkhorn scaling algorithm [8], for which the computational cost per iteration is
roughly given by the cost of diagonalizing certain operators on Q; ® Q;.

5.4 Full duality

For completeness we also derive the full dual problem to the original two-
marginal SDP. We first introduce dual variables A; € R for the constraints Tr[p;] =
1 appearing in the minimization within (5.2)), and then exchange the resulting in-
ternal supremum over A with the infimum over {p; } to obtain the problem

sup_inf {3 Ai(1 = Trlp]) + F(X. {pi})]
X0, {pi}"
= sup {Z Ai + inf{z Tr[(H; = Yi(Xii) — Ai)pi]
x>0, toi} 1

+ 3 QKIHy - Yy (Xip): pio il .
i<j

Now by substituting the Kantorovich dual expression (5.1) for QK and then ex-
changing maximization and minimization, we obtain the problem

o .4 inf Trl(H: — Yi(X::) — A:) o
X0, ACRM (i), (Bi}} lZA’Jr{IE}{IZ s = Yl = Al
+ ZTr[Aij,Oi] + ZTI[Bijpj]}
i<j i<j

subject to Aij @Id+1d® Bij < Hijj —Yij(Xi;), <],
X > 0.

d *6 °TTOT “TI€0L601

01} papeo]

1y e

om-

un £q $86178d2/Z001°01/10p/wo &

BILIOJI[RD) JO AT

UIMET

208 “[$707/80/0€] U0 A1e1qr SuIuQ K971 AL Qe [RUONEN Ko[oIag oo

UONIPUO)) PUE SWLIDT, Y}

:sdny) st

10)/w0d K1

107 ATRIQIT QUITUQ KS[TAL UO (SUOTIPUOD-PUE-S

QUIIAOS I SIITUE Y() SN JO SINT

eordde oy £q p:

QSURDIT SUOWIIO,) DANEAIY) Q)



2066 L. LIN AND M. LINDSEY

Now the expression within the infimum in the objective function can be rewritten

as
ZTT[(Hi —Yi(Xi)—Ai + ) A+ Bji)/oi],
i j>i j<i
so carrying out the infimum within the objective function, we arrive at the full dual:

maximize 171
X>0,AeRM {4;;},{Bi;}

subjectto H; — Yi(X;i) —A; + ZA,']' + ZB]',' =0,
j>i j<i
i=1,...,M,
Ajj ®1d +1d ® Bij = H;j — Yij (Xij),
I<i<j<M, X>0,

where the optimization variables 4;; € End(Q;) and B;; € End(Q;) are under-
stood to be Hermitian.
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