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Abstract
Quantum embedding theories are powerful tools for approximately solving large-
scale, strongly correlated quantum many-body problems. The main idea of quan-
tum embedding is to glue together a highly accurate quantum theory at the local
scale and a less accurate quantum theory at the global scale. We introduce the
first quantum embedding theory that is also variational, in that it is guaranteed to
provide a one-sided bound for the exact ground-state energy. Our method, which
we call the variational embedding method, provides a lower bound for this quan-
tity. The method relaxes the representability conditions for quantum marginals
to a set of linear and semidefinite constraints that operate at both local and global
scales, resulting in a semidefinite program (SDP) to be solved numerically. The
accuracy of the method can be systematically improved. The method is versatile
and can be applied, in particular, to quantum many-body problems for both quan-
tum spin systems and fermionic systems, such as those arising from electronic
structure calculations. We describe how the proper notion of quantum marginal,
sufficiently general to accommodate both of these settings, should be phrased
in terms of certain algebras of operators. We also investigate the duality theory
for our SDPs, which offers valuable perspective on our method as an embedding
theory. As a byproduct of this investigation, we describe a formulation for effi-
ciently implementing the variational embedding method via a partial dualization
procedure and the solution of quantum analogues of the Kantorovich problem
from optimal transport theory. © 2021 Wiley Periodicals LLC.

1 Introduction
Quantum many-body problems, such as the problem of computing the ground

state of a system of quantum spins or fermions, have far-reaching applications in
physics, chemistry, materials science, and beyond. Certain such problems, includ-
ing those involving fermions in the “strongly correlated” regime, are among the
most challenging problems in scientific computing. Roughly speaking, a ground
state of a quantum many-body problem is specified by a wavefunction obtained
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2034 L. LIN AND M. LINDSEY

as a minimizer of the following optimization problem:

(1.1) min

in which we have employed the Dirac bra-ket notation, and is the Hilbert space
whose elements are quantum states. The optimization problem (1.1) is equivalent
to a linear eigenvalue problem, with the ground state given by the eigenvector
corresponding to the smallest eigenvalue (assuming the eigenvalue is simple) of

. The cost of directly finding generally scales exponentially with respect to
the system size. It is therefore of paramount interest to reduce the computational
complexity of this task by accepting some controlled sacrifice of accuracy.

Among all the approaches to solving the problem (1.1), some are variational in
the sense that they provide an approximation for that is guaranteed to be either
an upper or lower bound. For example, methods that restrict the optimization over

to some computationally tractable subset provide upper bounds for .
Examples of such methods include the Hartree-Fock approximation [39], matrix
product states (MPS) (also known as tensor trains) [30, 43], and other tensor net-
work methods such as projected entangled-pair states (PEPS) [29,40]. Meanwhile,
other approaches attempt to formulate tractable relaxations of the variational prin-
ciple (1.1). The idea of such approaches is to reformulate (1.1) as an equivalent op-
timization problem in terms of density matrices, in which the difficulty is encoded
in the constraints, and then to enforce only a computationally tractable subset of
these constraints. Such procedures yield guaranteed lower bounds for . The
most well-known example of such an approach is the two-electron reduced density
matrix (2-RDM) theory for fermionic systems [1, 6, 9, 22, 24–27, 46].

Another category of approaches to the quantum many-body problem is that
of the quantum embedding theories [38]. Notable examples include the dynam-
ical mean-field theory (DMFT) [11, 19] and the density matrix embedding the-
ory (DMET) [16, 17]. These methods divide the global system into a set of local
clusters (sometimes called fragments), where the size of each cluster is taken to
be independent of the global system size. Then one derives a modified quantum
many-body problem for each cluster, which can be solved directly or using ap-
proximate (but highly accurate) methods. The information from all of the clusters
is then “glued” together using global reduced quantities, such as the one-electron
reduced density matrix (1-RDM) in DMET, or the single-particle Green’s function
in DMFT. The method can be solved self-consistently to remove the discrepancy
between these global quantities and local fragment data.

In this work we propose an approach to the quantum many-body problem that
is the first example to our knowledge of a quantum embedding method that is also
variational. We therefore call it the variational embedding method, which we de-
velop below for quantum spin systems and second-quantized fermionic systems.
(Note that our framework for quantum spin systems formally includes the setting
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QUANTUM VARIATIONAL EMBEDDING 2035

of second-quantized bosonic systems as an infinite-dimensional limit.) The fun-
damental objects considered in our approach are quantum marginals, which are
defined with respect to a decomposition of the global system into clusters. The
quantum marginals are referred to as such because they are analogous to marginal
distributions in the setting of classical probability theory. In the setting of quan-
tum spins, these are just the reduced density operators, which are defined as partial
traces of a global density operator. In the fermionic setting, a more general per-
spective is introduced to define the analogous quantities. This perspective views
marginals as functionals on appropriate operator algebras.

Our approach is in particular a relaxation of the variational principle (1.1), and
hence yields a lower bound for . It is an embedding method in the sense that
clusters are represented with high fidelity and glued together via some reduced
global data. The accuracy of the variational embedding method can be system-
atically improved by increasing the cluster size or by considering marginals for
larger groups of clusters, e.g., pairs, triples, etc. The relaxed optimization prob-
lem defining the variational embedding method is a semidefinite program (SDP),
whose cost scales polynomially with respect to the system size (for fixed cluster
size). Treating this relaxation as the primal problem, we derive the dual problem
and show that the duality gap is zero. We also introduce a partial dualization of
the primal problem, in which the interpretation as an embedding method becomes
even clearer. In particular, we see the emergence of effective Hamiltonians for em-
bedded problems, which are coupled only via the global determination of these ef-
fective Hamiltonians. The embedded problems are themselves quantum analogues
of the Kantorovich problem of optimal transport [41]. Although our presentation
of this quantum Kantorovich problem, which emphasizes general cost operators,
differs somewhat from that of the existing literature, the same basic problem has
appeared in [5, 7, 12, 34, 47].

We also describe how variational embedding adapts to the scenario of overlap-
ping clusters. It can be readily seen that allowing for overlapping clusters tightens
the constraints, yielding tighter lower bounds for the ground-state energy at com-
parable computational cost. This point may be of interest because the value-add of
overlapping clusters in embedding theories such as DMET and DMFT is not yet
clear [3, 45]. We also describe how translation invariance can be exploited in the
implementation of variational embedding.

As proof-of-principle, we demonstrate the performance of the variational em-
bedding method for two quantum spin models (the transverse Ising model and
the antiferromagnetic Heisenberg model) and one fermionic model (the Hubbard
model). The system size is small due to the limitations of the preliminary imple-
mentation in CVX [13] within MATLAB®, and we plan to develop more efficient
implementations to accommodate larger systems in the near future. In the numer-
ical experiments, we solve the primal problem directly, but the partial dualization
mentioned above suggests more efficient methods for solving the variational em-
bedding method, with tractable scaling for extended systems.
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2036 L. LIN AND M. LINDSEY

1.1 Related work
In the fermionic setting, the aforementioned 2-RDM theory is the closest rel-

ative of variational embedding. Nonetheless, we point out that our “fermionic
marginals” are different from the 2-RDM. In general, neither the variational em-
bedding method nor the 2-RDM theory adopts a strictly tighter relaxation than the
other. Roughly speaking, the variational embedding method enforces tighter con-
straints “within clusters” but weaker constraints “across clusters” relative to the
most accurate 2-RDM theories. Therefore we expect that variational embedding
can be more efficient for treating strong correlation effects that are relatively lo-
cal in nature. That said, both frameworks are highly modular. In fact, it may be
possible to adapt existing 2-RDM theories as methods for solving the embedded
problems obtained in the variational embedding method. Finally, we comment that
the partial dual formulation holds promise for scaling to extended systems, where
2-RDM theories can become prohibitively computationally expensive.

The approach of this paper can also be understood as an approximate method for
solving the “quantum marginal problem,” [15,35], i.e., the problem of determining
whether a set of quantum marginals could have been obtained from a global quan-
tum density operator. In general, the exact solution of this problem is intractable,
so approximate methods must be adopted.

Finding approximate solutions to the quantum marginal problem can be viewed
as a quantum analogue of the problem of finding outer bounds to the marginal
polytope in classical probability [42]. In our approach, we derive two main types
of constraints: local consistency constraints (which are linear) and global semidefi-
nite constraints. The local consistency constraints, which enforce compatibility be-
tween marginals that share sites, are so termed by analogy to the constraints of the
same name appearing in relaxations of the classical marginal polytope [42]. These
constraints alone can be viewed as underlying the belief propagation (BP) [31]
approximation for classical graphical models (see, also, e.g., [42] for reference).
Note with caution that BP should be thought of as an algorithm, in addition to a set
of modeling assumptions. Also note that BP involves an implicit approximation of
the entropy, which is not relevant in the zero-temperature setting, i.e., the setting
of this work.

BP has been generalized to the quantum setting (specifically, the setting of quan-
tum spin systems in the sense of this paper) [21], and other works [10, 32] have
more carefully studied quantum entropy approximation for quantum spin systems
in the context of the local consistency constraints that are featured in BP. Mean-
while, [2] considers a semidefinite relaxation in a zero-temperature, translation-
invariant setting for both quantum spins and fermions. In our language, one can
view [2] as implicitly considering overlapping clusters for which local consistency
constraints (which are generally more complicated to enforce due to cluster over-
lap) are automatically satisfied without need for explicit enforcement due to the
translation invariance. None of these cluster-based works can be viewed as con-
sidering an analogue of the global semidefinite constraints introduced in this work.
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QUANTUM VARIATIONAL EMBEDDING 2037

Moreover, these works only support local Hamiltonians and cannot support long-
range (e.g., Coulomb-type) interactions. In fact, the global semidefinite constraints
improve the quality of the relaxation even in the case of local Hamiltonians (as we
shall demonstrate in Section 4 below), but more dramatically they open the door to
cluster-based semidefinite relaxations for long-range Hamiltonians and potentially
ab initio electronic structure problems.

Another point of comparison is the Lasserre hierarchy [20, 42] of semidefinite
relaxations, often considered as means for approximating the marginal polytope in
classical probability. Our method is not the quantum analogue of any relaxation
from this Lasserre hierarchy in the classical setting, nor is our method recovered
from the Lasserre hierarchy as applied directly to the quantum many-body problem.
In fact, the variational embedding method can be understood as advancing different
systematically improvable hierarchies, both in the cluster size and in the sizes of
the groups of clusters for which marginals are considered.

The variational embedding method can also be understood as a way to tighten
the variational lower bound obtained in [14] for fermionic many-body problems
based on the strictly correlated electron (SCE) formulation [36, 37]. There are two
sources of error in the approach of [14]: a model error (which only vanishes in the
“strictly correlated” limit of infinitely strong Coulomb repulsion) and an additional
relaxation error that emerges from the relaxation of a classical marginal problem.
The variational embedding method introduced in this paper can be viewed as a fully
quantum version of this relaxation. It avoids any analogous notion of model error
and can be shown to provide energies at least as tight as those obtained in [14].

1.2 Outline
In Section 2 we formulate variational embedding for quantum spin systems.

After preliminary discussion in Section 2.1, we go on to introduce the local con-
sistency constraints and global semidefinite constraints in Sections 2.2 and 2.3,
respectively. In Section 2.4 we discuss a more abstract perspective on the global
semidefinite constraints that is, in particular, more portable to the fermionic setting
to appear later on. In Section 2.5 we introduce variational embedding constraints
for higher marginals (i.e., marginals for higher tuples of sites), and in Section 2.6
we introduce the cluster perspective on variational embedding. In Section 2.7
we discuss how variational embedding can accommodate overlapping clusters for
tighter relaxations, and in Section 2.8 we discuss how translation-invariance can
be exploited, as well as additional “periodicity constraints” that can be imposed in
this setting.

Section 3 concerns the formulation of variational embedding for fermionic sys-
tems in second quantization. After discussing preliminaries in Section 3.1, we
employ the language of star-algebras to define appropriate fermionic marginals in
Section 3.2. Using this language, we provide an abstract formulation of variational
embedding for fermions in Section 3.3, which we show is exact for noninteracting
problems (i.e., problems specified by single-body Hamiltonians) in Section 3.4. In
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2038 L. LIN AND M. LINDSEY

Section 3.5, we demonstrate how the abstract formulation can be practically imple-
mented as an SDP.

Section 4 presents various numerical experiments. In Sections 4.1, 4.2, and
4.3 we treat the transverse-field Ising, antiferromagnetic Heisenberg, and Hubbard
models, respectively.

Finally, we conclude in Section 5 with a discussion of duality for the SDP of
variational embedding. To prepare for the formulation of the dual problem, we dis-
cuss in Section 5.1 a quantum analogue of the Kantorovich problem from optimal
transport. Then in Section 5.2 we introduce a partially dualized SDP, which reveals
that the variational embedding solution can be obtained as the solution of several
quantum Kantorovich problems specified by “effective Hamiltonians,” which are
completely decoupled from one another apart from the determination of these ef-
fective Hamiltonians. In Section 5.3 we discuss the computational implications
of this observation, and in Section 5.4 we close with a derivation of the full dual
problem and a discussion of strong duality.

2 Quantum Spins
2.1 Preliminaries

Let index the sites, and for each site let be the classical
state space (discrete, for simplicity). For each site, the quantum state space is

, and the global quantum state space is

Q
X

where X . Let denote a Hermitian operator , and let
denote a Hermitian operator . We will use the hatted

notation to denote the operator Q Q obtained by tensoring by the identity
operator on all sites , and likewise we identify with the operator Q
Q obtained by tensoring with the identity on all sites . Then we
consider a Hamiltonian Q Q of the form

REMARK 2.1. We shall introduce several examples of interest in the case
, i.e., the case of quantum spin- systems. The Pauli matrices

together with the identity form a basis for Hermitian operators on . Now let
H H be obtained by tensoring a copy of

for the th site with the identity on all the other sites. Two examples of the
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QUANTUM VARIATIONAL EMBEDDING 2039

quantum spin systems are the transverse-field Ising (TFI) Hamiltonian and anti-
ferromagnetic Heisenberg (AFH) Hamiltonian, specified by the Hamiltonians

(2.1) TFI

(2.2) AFH

where the summation of indicates summation over all pairs of indices that
are adjacent in a graph defined on the index set (usually the graph is a square
lattice). In the TFI Hamiltonian, is a scalar parameter.

We are interested in computing the ground-state energy

inf Q

It can be equivalently recast as

inf
D Q

Tr

where D Q denotes the set of density operators on Q (i.e., positive semidefinite
Hermitian operators Q Q of unit trace). Assuming that there exists a unique
ground state , the infimum is attained at . Now we can write

(2.3) inf
QM Q

Tr Tr

where QM Q denotes the set of collections of representable quantum
two-marginals, i.e., those collections that can be obtained as reduced density
operators of a single D Q via the partial trace, as in

Tr

where .
To clarify, here we view as being equipped with labels for its indices

as , and for any subset , Tr
denotes the reduced density operator obtained by tracing out the indices contained
in , with the remaining labels maintained. We comment that the partial trace

may be equivalently defined as the unique operator on such that
Tr Tr for all operators on (alternatively viewed as op-
erators on Q by tensoring with the identity). This perspective illustrates the rela-
tionship between marginalization in the quantum spin setting (i.e., computing the
partial trace) and the more abstract notion of marginalization that is necessary for
the treatment of fermions in Section 3 below.

For convenience, we denote for as above. It is convenient
to then define for via the stipulation that , where

is the linear operator defined by .
Finally, we remark that the one-marginals Tr are determined
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2040 L. LIN AND M. LINDSEY

by the two-marginals via Tr , and this dependence is meant to be
understood implicitly in (2.3). We will occasionally denote .

2.2 Local consistency constraints
Now it is of interest to determine necessary conditions satisfied by collections in

QM Q . By enforcing a set of necessary conditions as a proxy for membership
in QM Q , we can obtain a lower bound on the ground state energy.

To begin with, the are themselves density operators on , i.e.,
with Tr . Moreover, we must have Tr Tr for all and ,

, and we must have . These constraints define the set of
locally consistent quantum two-marginals. Call this set LQM Q . In practice,
we define auxiliary variable for the one-marginals, constrained to satisfy
Tr Tr . The constraints Tr for all can in fact be enforced
by requiring Tr for all , since Tr Tr Tr .

Note that the local consistency constraint Tr is equivalent to insisting
that Tr Tr for all operators on (considered also as operators
on by tensoring with the identity). This perspective highlights the con-
nection to the abstract local consistency constraints appearing in the discussion of
fermionic systems in Section 3 below.

2.3 Global semidefinite constraints and the two-marginal SDP
We can derive a further constraint, more global in nature, as follows. Consider

operators Q Q (not necessarily Hermitian) of the form , where
each is a one-body operator on Q, i.e., obtained by tensoring an operator on

with the identity. Now , so

(2.4) Tr

for any D Q . We will expand the left-hand side to obtain a constraint on the
quantum two-marginals, which can be phrased as a semidefinite matrix constraint.

First compute

Tr Tr

Tr Tr

Now without loss of generality, we can identify with where
. Hence we can think of as an arbitrary complex matrix

We will use square brackets to indicate entries of an operator as in .
Note that the two-marginal is an operator , so we denote
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QUANTUM VARIATIONAL EMBEDDING 2041

its entry by for and .
Finally, for , observe that

Then we expand the sum to obtain

Tr

Next expand the sum:

Tr

Therefore we have derived

We can think of as a vector . The choice
of such was completely arbitrary. Therefore we have proved that

matrix
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2042 L. LIN AND M. LINDSEY

defined by

is positive semidefinite. This matrix can be thought of as a linear operator
. (One can readily check that is Hermitian.)

For a quantum spin system, we have for all , so this is a semidefinite
constraint on a matrix, which can be efficiently enforced.

At last we have derived a semidefinite relaxation, which we shall call the two-
marginal SDP:

inf
LQM Q

Tr Tr

The relaxation yields the energy lower bound , as well as a minimizer
that is expected to approximate the exact two-marginals.

The two-marginal SDP can be written, in expanded form, as

minimize Tr Tr(2.5)

subject to(2.6)
Tr Tr(2.7)

Tr(2.8)
(2.9)

Although there are several ways to write constraints yielding the same feasible set,
the dual SDP is actually influenced by the choice of constraints used to define this
set. The choices made here will yield interesting dual structure, to be explored in
Section 5.

2.4 Abstract perspective on the global semidefinite constraints
More abstractly, it is useful to think of as being composed of

blocks (indexed by marginal pairs ), defined by

Tr

Tr

where is a basis for the set of one-body operators on site . By con-
sidering as a multi-index and choosing to
be the “standard unit vectors” in , we exactly recover our former explicit
representation of .

REMARK 2.2 (Restricted operator sets). The more abstract perspective suggests a
natural framework for further relaxation. Suppose that for each , we
are given a linearly independent collection I of one-body operators for
the th site, where I is a given index set. Then we can define in terms
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QUANTUM VARIATIONAL EMBEDDING 2043

of blocks as above, where the block is a matrix of size I I , defined
once again by

Tr

Tr

for I , I . In principle one can consider restricted index sets with
I containing only the most physically important operators. Such restricted

structure will correspond to interesting structure from the perspective of the dual
problem to be considered below.

REMARK 2.3 (Quasi-local constraints). In order to improve the efficiency of the
semidefinite introduced above, one could enforce the semidefiniteness of certain
principal submatrices of . For example, for each , one could define a submatrix

of by restricting the block indices to those satisfying
max, where is an appropriate notion of distance between indices (e.g.,

graph distance for a lattice model) and max is a locality parameter. Then one
enforces for all . For constant max suitably large, in principle
such constraints could achieve good performance while maintaining linear scaling
in of the SDP problem size for suitably local Hamiltonians, by omitting from
the optimization variables for max.

2.5 Higher marginal constraints
A tighter SDP relaxation can be derived by considering a set of

quantum three-marginals as the optimization variable. One may enforce the suit-
ably defined local consistency constraints, denoted LQM Q ,
then defining variables in terms of the via partial traces, and additionally
enforce . We refer to the corresponding semidefinite relaxation as
the three-marginal SDP.

To derive the corresponding semidefinite constraints, we have to keep track
of the four-marginals. Suitable necessary conditions can derived by enforcing
Tr for all of the form , where the are two-body
operators. As such one may define the four-marginal SDP, and so on. Note that,
e.g., the four-marginal SDP can in fact accommodate more general Hamiltonians,
i.e., Hamiltonians including additional four-body terms.

2.6 Cluster perspective
In order to systematically improve the accuracy of the two-marginal SDP, in-

stead of considering higher marginals we may alternately consider increasing the
cluster size. Formally, such considerations will yield problems can still be ac-
commodated as special cases of our previously introduced setting. However, the
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2044 L. LIN AND M. LINDSEY

difference in perspective is noteworthy, and the generalization to the case of over-
lapping clusters (considered in the next section) is not accommodated as such a
special case.

Suppose that our site index set is written as a union of cluster index sets , i.e.,

c

where the cluster index sets are disjoint. Then one can define

to be the classical state space for the th cluster. Then by considering the clusters
now as sites with classical state spaces and following the derivation of the two-
marginal SDP, we may derive the cluster two-marginal SDP, relative to the cluster
decomposition . Note that this problem may be viewed formally as a two-
marginal SDP; however, the distinction makes sense when we think of the limit of
expanding clusters for a problem that is otherwise fixed. Higher-marginal cluster
SDPs can be derived similarly.

2.7 Overlapping clusters
We now demonstrate the treatment of overlapping clusters. Suppose again that

c

but now relax the assumption that the are disjoint. Since the overlap of two
clusters might even be a single site of the original model, we can no longer just
“coarse-grain” clusters and neglect all of their intracluster structure. In particular,
imposition of necessary local consistency constraints demands a bit more care.

Now the primary objects in our relaxation will be the two-cluster marginals,
denoted for . Each is an operator on the quantum state
space specified by the union of sites , which may of course be smaller
in size than . Then the one-cluster marginals (which we
sometimes also denote by ) are obtained in terms of the two-cluster marginals
via

Tr Tr
These identities yield consistency constraints analogous to the local consistency
constraints introduced earlier. However, we can also include the overlap con-
straints by introducing the variable representing the marginal corre-
sponding to the set , for all , , constrained
by

Tr Tr
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QUANTUM VARIATIONAL EMBEDDING 2045

Note that these constraints are nontrivial only if the intersection
of cluster pairs is nonempty.

To complete the discussion of the overlapping cluster two-marginal SDP, we
need to derive the semidefinite constraint. This is derived by observing the nec-
essary condition Tr for all of the form , where
is a one-cluster operator, i.e., an operator on , interpreted also (abusing
notation slightly) as an operator on Q by tensoring with the identity on all sites
outside of .

In fact, given a collection of one-cluster operators I for the th cluster
(i.e., operators on ), we build blockwise by defining

Tr

for I , I , and (extending to by hermiticity), where
is an operator on obtained from by tensoring with the identity
operator over all sites in . For example, if and ,
then we can represent and (recall that
here is an operator on and is an operator on ).

The semidefinite constraint is, as before, . The resulting SDP can
accommodate Hamiltonians of the form

where and are one-cluster and two-cluster operators, respectively.
Suitable analogous relaxations with higher overlapping cluster marginal con-

straints may also be derived. We remark that the treatment of overlapping clusters
here is significantly simpler and more principled than several other quantum em-
bedding theories, including the dynamical mean-field theory (DMFT) and density
matrix embedding theory (DMET).

2.8 Translation-invariant setting
In this section we describe how translation-invariant structure can be exploited

in a natural way in our semidefinite relaxation framework. For simplicity we focus
only on the case of the two-marginal SDP for a translation-invariant Hamiltonian
in one dimension. Extension to higher dimensions is straightforward.

For the purposes of this section it is convenient to adopt a zero-indexing con-
vention for our site indices (usually denoted by ); i.e., we index our sites as

. We obtain a translation-invariant Hamiltonian by assuming
that for all and for all . In turn, we are guaran-
teed translation-invariance of the ground-state density operator (note: symmetry-
breaking cannot occur for systems of finite size). In particular, we have
for all and for all , and it follows that we can constrain the
matrix to be block-circulant, so that the block depends only
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2046 L. LIN AND M. LINDSEY

on mod . Hence all of the information of is contained in the first
row of blocks, and moreover can be block-diagonalized by taking the blockwise
discrete Fourier transform of the first row of blocks. Indeed, these diagonal blocks
are obtained as

exp

, where we use “ ” to denote the imaginary unit to avoid con-
fusion with our indexing notation. Now the constraint is equivalent to the
constraint that for all . Hence we arrive at the periodic two-marginal
SDP:

minimize Tr Tr

subject to
Tr Tr

Tr

exp

Notice that we have economized significantly on optimization variables, and, more-
over, we have exchanged a semidefinite constraint of size for semidefinite
constraints of size constant in . Moreover, a careful implementation of a solver
for this SDP should be able to exploit the FFT in the implementation of the semi-
definite constraints.

Periodicity constraints
If our sites are obtained as composite sites representing nonoverlapping clusters

(as discussed in Section 2.6), and if, moreover, our Hamiltonian is translation-
invariant with respect to these underlying sites, then we can impose further con-
straints to enforce the internal translation-invariance of our cluster marginals. To
wit, in addition to our optimization variables C for the two-cluster marginals,
we can define additional optimization variables for the two-site marginals
and then enforce, for all , , that

Tr C

where is the index of the cluster containing site . We refer to these additional
constraints as periodicity constraints.
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QUANTUM VARIATIONAL EMBEDDING 2047

3 Fermions
3.1 Preliminaries

The fundamental objects of fermionic systems in the second quantized formu-
lation (see, e.g., [28]) are the creation operators and their Hermitian
adjoints, the annihilation operators , which act on the Fock space F and satisfy
the canonical anticommutation relations

where denotes the anticommutator. One defines the number operators by
and the total number operator by .

These objects can be concretely realized via the identification of Hilbert spaces
F , under which the annihilation operators correspond to
quantum spin- operators as

factors

This identification of operators defines the Jordan-Wigner transformation (JWT)
[28]. Note that the JWT depends on the ordering of the states in the sense that per-
muting the states before the JWT is not equivalent to permuting the tensor factors
after the JWT.

After specifying a particle-number-conserving Hamiltonian , i.e., a Hermitian
operator on the Fock space that commutes with , and a fixed particle number ,
we are interested in computing the energy

inf F

It is equivalent to solve

inf
D F Tr

Tr

where D F indicates the set of density operators on the Fock space (i.e., positive
semidefinite Hermitian operators F F of unit trace).

Observe that although F can be identified with a quantum-spin state space, the
creation operators are not one-qubit operators in the sense of quantum spin systems,
nor are hopping operators generically two-qubit operators. Moreover,
the complexity of such operators after the JWT can depend unphysically on the
ordering of the sites. Hence most second-quantized problems of interest (with the
exception of local one-dimensional models) simply do not fit into the framework
of variational embedding introduced above for quantum spin systems.

To illustrate this point and provide some concrete examples, we now describe
several Hamiltonians of interest in this setting. Of particular note is the Hubbard
model, whose states we enumerate via the orbital-spin index , where
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2048 L. LIN AND M. LINDSEY

, .

(3.1)

where is the adjacency matrix of a graph with vertex set , e.g.,
a one-dimensional chain or a two-dimensional square lattice. The Hubbard model
plays a significant role in understanding strongly correlated quantum systems, such
as the high temperature superconductivity [33].

More generally, one can consider a “generalized Coulomb model” of the form

which includes in particular the Hubbard model and variants with longer-range
interactions. In fact,nuum can be mapped to second-quantized Hamiltonians of this
form. As we shall see, the generalized Coulomb model is accommodated naturally
within the framework of fermionic variational embedding.

Broadening our view further still, consider a general two-body Hamiltonian ,
written as

Electronic structure problems in first quantization can be mapped to such Hamil-
tonians via an arbitrary choice of orbital basis for (a subspace of) ,
where is the physical dimension. If the basis functions have compact support,
then can be nonzero only if both supp supp and supp
supp . It will follow that after a suitable choice of overlapping clusters,
such Hamiltonians can also be accommodated within fermionic variational em-
bedding. We leave investigation of ab initio quantum chemistry problems by these
means to future work.

In order to define a convex relaxation of the fermionic Gibbs variational princi-
ple that is analogous to our relaxation for quantum spin systems, we adopt a more
abstract (and indeed general) perspective in section 3.2, allowing for the derivation
of a suitable two-cluster-marginal SDP in Section 3.3. We will in fact see in Section
3.4 that our relaxation is tight for noninteracting Hamiltonians, i.e., Hamiltonians
that are quadratic in the creation and annihilation operators. To our knowledge this
feature has no analogue in the quantum spin setting because there is no related no-
tion of noninteracting systems. Then in Section 3.5, we will describe how one can
translate our abstract convex optimization problem into an explicit SDP that can be
implemented in practice.

3.2 Abstract perspective
The fundamental objects of interest in the abstract perspective is the algebra of

operators on the Fock space. In fact, the Fock space itself plays no direct role in
the following developments, nor does any global JWT. Marginalization will make
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QUANTUM VARIATIONAL EMBEDDING 2049

use of the notion of a subalgebra subordinate to each cluster. It is in the details
of how these subalgebras lie within the global algebra that the quantum-spin and
fermionic cases differ.

Now let

A

denote the unital star-algebra over the complex numbers1 generated by the cre-
ation and annihilation operators subject to the canonical anticommutation relations.
(Throughout we will use angle brackets to denote such generated algebras.) We let

denote the corresponding number operators and let denote
the total number operator. Recall from above that for spinful models such as the
Hubbard model, the state index can be thought of as a composite orbital-spin
index, i.e., .

In fact, the algebra A comes equipped with a -grading; i.e., we can write A

as a direct sum of vector spaces A A
e

A
o, where Ae and A

o denote the sets of
even and odd operators, respectively. An operator is even (resp., odd) if it can be
written as a sum of even (resp., odd) monomials in . (The
reader can check that this notion is well-defined.) The -grading refers to the fact
that Ae

A
e

A
e, Ao

A
o

A
e, Ae

A
o

A
o, and A

o
A

e
A

o.
For any subset . Let A denote the subalgebra

A

and let the even and odd components Ae and A
o be defined accordingly. Suppose

that our site index set is written as a union of cluster index sets , i.e.,

c

where the cluster index sets are disjoint, for simplicity.
We comment that, in contrast to our exposition for the case of quantum spins,

we shall directly work with general clusters (as opposed to clusters consisting of a
single site). The reason is that in the quantum spin setting, it was possible to view
nonoverlapping clusters as single sites (with enlarged local state spaces). Such a
reduction is not natural in the fermionic setting. Hence we retain the index notation

for clusters and for individual sites (of which the clusters are comprised).

1 A star-algebra over is essentially an associative algebra over in which one can take adjoints,
where the adjoints satisfy their usual algebraic properties. “Unital” means that A. For further
details, see, e.g., [4]. We will use no deep results from the theory of star-algebras but nonetheless find
the perspective to be clarifying. Specifically, it is useful to view our algebra of fermionic operators
independently from any Fock space on which it acts, and in fact the notion of the Fock space does
not play any explicit role in our developments.
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2050 L. LIN AND M. LINDSEY

We assume the Hamiltonian A can be written as a sum of one-cluster and
two-cluster operators as

where A and A .
Note carefully for context that the subalgebra A corresponds in our earlier set-

ting of quantum spin systems to the subalgebra of operators on , viewed
as operators on Q by tensoring with the identity. Clearly, even by viewing the
fermionic system as a spin system via JWT, this subalgebra is inequivalent to the
fermionic subalgebra above defined. The reader should keep this perspective on the
developments of Section 2 in mind as we transpose them to the fermionic setting.

Next we turn to defining our notion of a statistical ensemble and its marginals.
For this task we turn to the language of star-algebras. The role of our full ensemble
is played by the state, a linear functional A such that and

for any A. In our setting (which is finite-dimensional), the
action of a state can be viewed as nothing more than tracing against a density
operator on the Fock space, as can be verified readily via the Riesz representation
theorem. In the quantum spin setting of Section 2, the action of the state
corresponds to the trace Tr against the density operator . For an operator
on , we have Tr Tr , i.e., our notion
of marginalization—applied to a cluster subalgebra in the quantum spin setting—
precisely recovers the partial trace operation. However, the abstract perspective
will be useful in defining the notion of a marginal because if we try to directly
borrow the corresponding notion from the setting of quantum spins, i.e., the partial
trace, then we find ourselves in need of a global JWT to proceed.

We let denote the set of states on A. Then in star-algebraic language, the
-particle ground-state energy minimization problem is naturally recast as

(3.2) inf

Next, our notion of a marginal in this setting is simply the restriction of a state
to a subalgebra. That is, for a subset , we define the marginal
via

A

Of course, is itself a state on A . We let denote the set of states on A .
Notice that, as follows immediately from the definition, these sets are convex.

3.3 The two-cluster-marginal SDP
In this section we shall derive an “abstract SDP” without describing how it can

be realized on a computer. Later, in Section 3.5, we will describe how to achieve
such realization (which makes use of JWTs only for each pair of clusters). For
simplicity, we will only derive a relaxation that analogizes the (nonoverlapping)
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QUANTUM VARIATIONAL EMBEDDING 2051

two-cluster-marginal SDP. Further analogues can be derived by straightforward
(though perhaps tedious) modifications of the arguments presented below.

For simplicity we denote the one-cluster marginals by and the two-
cluster marginals by . Note carefully from the definitions here that

A and that A . Our one- and
two-cluster marginals evidently satisfy the local consistency constraints

A A

via nested restriction operations. By analogy to (2.4), our semidefinite constraint
will be derived from the observation that for any A of the form ,
where A for all ,

Therefore the two-cluster marginals satisfy

for all choices of c for which A for all .
More specifically, for each cluster consider a list I of operators in

A , possibly (but not necessarily) spanning the space of all operators in A .
(Compare to the perspective of Section 2.4 on the global semidefinite constraints
in the quantum spin setting.) Then one obtains , where
is specified blockwise by

In fact, depends only on for because the lower
triangular part can be obtained from the upper triangular part via hermiticity.

Then we have derived the following relaxation of the variational principle (3.2),
in which the and are considered as optimization variables:

(3.3)

minimize

subject to c

A c

A c

where denotes the th cluster number operator. Since the con-
straints are convex, we have specified an abstract convex optimization problem.
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2052 L. LIN AND M. LINDSEY

Now that we know that this relaxation makes sense in principle, our hope is to
express it later as a concrete semidefinite program.

It is computationally useful to realize a simplification. Physical fermionic Ham-
iltonians are always even (including the anomalous, or particle-number-noncon-
serving, Hamiltonians that arise in effective descriptions of superconductivity), and
hence one expects the action of a physical state on an odd operator in fact always
yields zero. Hence

is zero unless and are either both even or both odd. It follows that we
can reduce the size of the semidefinite constraint by splitting our operator lists into
even and odd subsets, which we denote by

e
Ie and o

Io

respectively. Then we define separate matrices e and o blockwise by

(3.4) e o e o e o

Then we may equivalently substitute our semidefinite constraint with two
semidefinite constraints e o , each of half (assuming that complete operator
lists are chosen) the original size.

3.4 Exactness for noninteracting problems
In this section we assume that is noninteracting, i.e., of the form

, where is Hermitian. We want to show that in this setting
, i.e., the relaxation just introduced is tight, under the meager

further assumption that for each , the operators are contained
in some cluster’s operator list.

Indeed, under this latter assumption it is not hard to see that the matrices

and

appear as principal submatrices of o , where the two-site marginals
are suitably obtained in terms of the two-cluster marginals by appropriate re-
striction. Note that by the fermionic anticommutation relations, in fact

Hence for any feasible solution to our SDP, we have . Then
it follows that is an upper bound for the optimal value of the
following (further relaxed) SDP:

minimize Tr

subject to

Tr
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QUANTUM VARIATIONAL EMBEDDING 2053

On the other hand, where indicates the th lowest
eigenvalue of . For noninteracting problems this is precisely the value of .
Hence we have shown , from which it
follows that .

For certain problems, one may also expect asymptotic tightness in the limit of
strong interaction. For example, in the (or equivalently, ) limit of
the Hubbard model, the sites completely decouple, and it can be checked readily
that our SDP is tight in this scenario.

3.5 Concrete perspective
In order to represent in concrete terms, note that is defined by its action

on A . It is at this point that we introduce for computational purposes the
JWT, though only for restricted fermionic algebras. Let End denote the set
of all endomorphisms of . After specifying ordering the sites of , i.e.,
a labeling map where , the
corresponding JWT fixes an algebra isomorphism

J A End

and we define End to be the image of under this isomorphism
for . More specifically, the transformation J is specified by setting

J

where

factors factors

Notice that the case makes perfect sense according to the above definitions,
though we will also introduce the alternative notation J J .

Let Id End be the identity operator. Then J J

is a linear functional on End satisfying Id and
for any End . It follows (via the Riesz representation theorem)

that there exists a unique with Tr such that Tr
for all End . That is to say, Tr whenever
J . Again, we introduce the alternative notation for conceptual
clarity.
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2054 L. LIN AND M. LINDSEY

Motivated by the preceding, we shall replace optimization over states
A with optimization over density operators

End

Crucially, the correspondence between states and density operators has relied on
a separate JWT for each pair , not a single global JWT that maps the global
fermionic state to a global density operator. Neither should we obtain from a
global density operator via the standard definition of the partial trace, as in the
case of quantum spin systems.

Under this correspondence e o as defined by (3.4) can be obtained as

e o Tr J
e o

J
e o

where we abuse notation slightly by identifying e o with e o .
In order to write down a concrete realization of the optimization problem (3.3),

the remaining hurdle is to encode the local consistency constraints A
and A for , which require us to further “marginalize” our
fermionic states.

We did this by first assuming that the labeling map satisfies
in the sense that every element of the left-hand side is less than every

element of the right-hand side. In the case of overlapping clusters, which (as pre-
viously mentioned) we shall not discuss in full detail, the relevant generalization
ensures that . For simplicity we also assume that

for all , and from now on we think of the labeling maps
as fixed. It is always possible to choose a labeling that satisfies these assumptions.

Then it follows from the definition of the JWT that for any A ,
J is of the form

Id
factors

where J End . Then

Tr Tr

where Tr . Meanwhile, we have J , and
Tr . Hence the constraint A for is equivalent to the
stipulation that Tr Tr for all , i.e., that

Tr

Here Tr is the standard partial trace.

 10970312, 2022, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.21984 by U

niv of C
alifornia Law

rence B
erkeley N

ational Lab, W
iley O

nline Library on [30/08/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



QUANTUM VARIATIONAL EMBEDDING 2055

Meanwhile, for any J where A
e is even, we can write

factors

where J End . Hence for all A
e , we derive as

above that Tr , where Tr . But for A
o , as

mentioned above we can assume (because this identity is a
necessary condition satisfied by the exact marginals) and hence also that Tr

Tr for all J A
o . Thus the constraint A for

is equivalent to the stipulation that Tr Tr for all , i.e., that

Tr

Finally, note that the constraint Tr can simply be encoded, given our first
local consistency constraint, by Tr . Then we obtain the following concrete
realization of (3.3):

minimize Tr J Tr J

subject to c

Tr c

Tr c

Tr c

Tr J

4 Numerical Results
All numerical results were computed in MATLAB® with CVX [13] for perform-

ing SDP calculations. We limit our experiments to problems that are small enough
to validate by exact diagonalization. In particular, we will illustrate numerically the
fact that all of our relaxations must yield lower bounds for the exact energy. We will
also show that the omission of the global semidefinite constraints results in looser
lower bounds; i.e., the global semidefinite constraints are nontrivial, even though
the Hamiltonians are all local. As discussed in Section 5.3 below, a more scalable
implementation should be possible, but such an implementation (as well as an ac-
companying numerical study of properties of larger systems, e.g., approaching a
thermodynamic limit) will be left to future work.

4.1 Transverse-field Ising model
First we consider the transverse-field Ising (TFI) model (2.1) on a periodic

lattice, comparing results of the two-cluster-marginal SDP for various cluster sizes.
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2056 L. LIN AND M. LINDSEY

We also test the periodicity constraints of Section 2.8 and the case of overlapping
clusters. The results are shown in Figure 4.1.
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FIGURE 4.1. TFI model on periodic lattice. Approximate en-
ergies are computed via the two-cluster-marginal relaxation. Note that
“p.c.” indicates the inclusion of the periodicity constraints introduced
in Section 2.8, and “overlap” indicates the choice of overlapping
clusters, i.e., .

Note that, as the theory requires, all approximations do indeed yield lower
bounds for the exact energy. Moreover, these bounds become tighter for larger
cluster sizes. Also notice that the case of overlapping clusters compares fa-
vorably to the case of nonoverlapping clusters, achieving an energy error
roughly twice as small. (In the case of overlapping clusters, the periodicity con-
straints of Section 2.8 are satisfied automatically by the solution, and there is no
need to enforce them explicitly. Hence from Figure 4.1 it is clear that most of
the improvement yielded by allowing for overlap is not merely due to these con-
straints.)

In Figure 4.2 we test the same relaxations on the same model problem except
that we omit the global semidefinite constraints. Neglecting the global semidefinite
constraints corresponds to the use of belief propagation (BP) [31] in the classical
setting and its quantum generalization [2,10,21,32]. Note that the omission of these
constraints results in a significant degradation of the lower bound, even though the
Hamiltonian is local.

Next we consider the TFI model on a periodic square lattice, comparing
results of the two-cluster-marginal SDP for various cluster sizes. The results are
shown in Figure 4.3. Here we are more limited by the preliminary implementation
in what can be tested, though the observations are compatible with those preceding
remarks that are applicable. In Figure 4.4, we once again test the effect of removing
the global semidefinite constraints, and similar conclusions apply.
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FIGURE 4.2. Results for the same model and same relaxations as in
Figure 4.1, with the modification that the global semidefinite constraints
are omitted in all cases. In this experiment the curves for “ , p.c.”
and “ , overlap” coincide with that of “ .” Note the change of
scale of the vertical axis relative to the analogous plot of Figure 4.1. For
clarity, we remark that the value of the “ , p.c.” curve at
is 0.0035, compared to the corresponding value (with global constraints
active) of 0.0016 depicted in Figure 4.1.
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FIGURE 4.3. TFI model on periodic lattice. Approximate energies
are computed via the two-cluster-marginal relaxation.

4.2 Antiferromagnetic Heisenberg model
First we consider the antiferromagnetic Heisenberg model (2.2) on a periodic

lattice, comparing results of the two-cluster-marginal SDP for various clus-
ter sizes. We also test the periodicity constraints of Section 2.8 and the case of
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FIGURE 4.4. Results for the same model and same relaxations as in
Figure 4.3, with the modification that the global semidefinite constraints
are omitted in all cases. Note the change of scale of the vertical axis
relative to the analogous plot of Figure 4.3.

overlapping clusters, as well as the effect of omitting the global semidefinite con-
straints. The results are shown in Table 4.1.

In Table 4.2 we show results for the AFH model on a periodic lattice
for various cluster sizes. For these experiments, the observations are qualitatively
similar to those reported for the TFI model, though the relative energy errors are
larger. In particular, the errors for clusters are quite large, though the error
falls dramatically as the cluster size is increased. Moreover, the global constraints
achieve significant error reduction even though the Hamiltonian is local.

TABLE 4.1. Energy error by cluster specification for the AFH model on
periodic lattice, with and without global semidefinite constraints.
For reference, the exact ground state energy is . Approximate
energies for the first line are computed via the two-cluster-marginal re-
laxation. Note that “p.c.” indicates the inclusion of the periodicity con-
straints introduced in Section 2.8, and “overlap” indicates the choice of
overlapping clusters, i.e., . For the
results of the second line, the global semidefinite constraints were omit-
ted.

, p.c. , overlap , p.c.
global 0.6017 0.0634 0.0462 0.0159 0.0048

no global 1.2042 0.2042 0.2042 0.2042 0.0310
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QUANTUM VARIATIONAL EMBEDDING 2059

TABLE 4.2. Energy error by cluster specification for the AFH model on
periodic lattice, with and without global semidefinite constraints.
For reference, the exact ground state energy is . Approximate
energies for the first line are computed via the two-cluster-marginal re-
laxation. Approximate energies for the second line are obtained by omit-
ting the global semidefinite constraints.

clusters clusters clusters
global 1.0439 0.3937 0.0410

no global 3.5439 2.1897 0.8773

4.3 Hubbard model
Finally, we consider the Hubbard model (3.1) on a nonperiodic lattice with

particle numbers and interaction strengths . In Fig-
ure 4.5, we plot results for the two-cluster-marginal relaxation with clusters

. Observe that for , the system is noninteracting and the
energy is exact, as guaranteed by the discussion in Section 3.4. Furthermore, the
error of the energy decreases with respect to (even without normalizing by ).
We remark that the error of the energy per site is on par with that of DMET [16]
when the same cluster sizes are used. In comparison to DMET, variational embed-
ding is less accurate for intermediate (i.e., ) but scales more gracefully
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FIGURE 4.5. Hubbard model on nonperiodic lattice. Approximate
energies are computed via the two-cluster-marginal relaxation with
clusters . Note that the energy errors in the cases

and coincide with the errors in the cases and
, respectively, due to the particle-hole symmetry.
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FIGURE 4.6. Results for the same model and same relaxation as in Fig-
ure 4.5, with the modification that the global semidefinite constraints are
omitted in all cases. Note the change of scale of the vertical axis relative
to the analogous plot of Figure 4.5.

in the regime of large (i.e., ). However, a thorough comparison of varia-
tional embedding with other embedding methods will be a matter for future work
following more careful implementation.

In Figure 4.6 we test the same relaxation on the same model problems, except
that once again we omit the global semidefinite constraints. Once again we observe
significant degradation of the lower bound. Note, moreover, that the omission of
these constraints breaks the exactness of the relaxation energy for .

5 Duality and the Effective Hamiltonian Perspective
In order to reduce the computational cost for solving the SDP in the variational

embedding (called the primal problem), we may consider the associated dual prob-
lem. For simplicity, we consider duality only for the two-marginal SDP in the
quantum spin setting, and it will be convenient to take the “abstract perspective”
of Section 2.4, with possibly restricted operator sets as in Remark 2.2. Duality in
other settings can be approached by similar means.

5.1 The quantum Kantorovich problem
In preparation for our discussion of the duality of the two-marginal SDP, we first

introduce the notion of the quantum Kantorovich problem, which is a direct quan-
tum analogue (and in fact generalization) of the Kantorovich problem of optimal
transport [41]. See also in [5, 7, 12, 34, 47] for related, though different, presenta-
tions.
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QUANTUM VARIATIONAL EMBEDDING 2061

The analogy to classical optimal transport is defined by replacing probability
measures with density operators, a cost function with a cost operator , and clas-
sical marginalization with quantum marginalization (i.e., the partial trace). Given
operators End for of unit trace, we may define the optimal
quantum Kantorovich cost via the SDP

QK minimize
End

Tr

subject to
Tr Tr

Note that if or , then since implies that Tr , the
problem is infeasible, i.e., QK . Hence without loss of gen-
erality one may assume that , i.e., that the are indeed density operators
on . Nonetheless, the slightly relaxed perspective will be of some use below. In
fact, conversely, the program is feasible whenever because in this case

is a feasible point.
There is a notion of quantum Kantorovich duality that analogizes the usual no-

tion, as follows. Let the Hermitian operators End and End
be dual variables for the first and second marginal constraints, respectively. These
will be the “quantum Kantorovich potentials.” Dualizing these constraints yields
the Lagrangian

LQK Tr Tr Tr Tr Tr

still constrained by . Using the fact that Tr Tr Tr Id and
Tr Tr Tr Id , we obtain

LQK Tr Tr Tr Id Id

Now for fixed , we have

inf Tr Id Id
Id Id

otherwise

Hence we have derived the Kantorovich dual problem

(5.1)
maximize

Hermitian
Tr Tr

subject to Id Id

Strong duality holds by Sion’s minimax theorem [18] (together with the compact-
ness of the feasible set of the primal problem).

Let be the minimizer for the primal problem, and suppose that the dual prob-
lem admits a maximizer . Then let Id Id , so

Tr Tr Tr Id Tr Id
Tr Tr Tr
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2062 L. LIN AND M. LINDSEY

by primal and dual optimality. But , so we can write
where , and Tr . But also , so

for all . Then since Tr it follows that for all
, and since this means that for all .

Therefore is a convex combination of orthogonal projectors onto mutually
orthogonal, degenerate ground state eigenvectors of the Hamiltonian
Id Id . For the reader familiar with optimal transport, we remark that this
observation generalizes the corresponding observation [41] in the classical setting
on the support of the Kantorovich coupling, i.e., that only if ,
where , , and are the Kantorovich potentials, and

is the cost matrix.
In fact, one can consider a regularization of the primal problem by a von Neu-

mann entropy penalty (scaled by ), for which the solution can be shown to be of
the form

exp Id Id

where and are the unique operators chosen to yield the desired marginals
. This is the quantum analogy of the entropic regularization of classical op-

timal transport [8]. In the “zero-temperature” limit one expects ,
, and .

5.2 Partial duality
Before any derivations, we comment that strong duality (i.e., the fact that there

is zero gap between the optimal values of the primal and dual problems for the
two-marginal SDP) can be understood as follows. In the original primal problem
(2.5), the feasible domain for in this problem is compact, so strong
duality holds simply by Sion’s minimax theorem [18]. The question of whether
the dual optimizer is attained is more subtle and will be deferred to future work,
though see [14] for the discussion of strong duality in a similar setting.

Now we turn to the derivation of the partial dual problem. We adopt the “ab-
stract” perspective on the global semidefinite constraints introduced in Section 2.4,
as well as the notation of that section. Referring to (2.5), we first consider a partial
Lagrangian obtained by dualizing only the constraint (2.9):

Lpart Tr Tr Tr

whose domain is defined by Hermitian positive semidefi-
nite and satisfying constraints (2.6), (2.7), and (2.8).
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QUANTUM VARIATIONAL EMBEDDING 2063

Now

Tr Tr

Tr

Tr

Tr

Tr

Tr

Now by the hermiticity of we have , and we also have the
identity

Tr Tr

Therefore

Tr Tr Tr

where we have defined the functions

I I End and I I End

by

h c

where “h.c.” denotes the Hermitian conjugate. Note that if is Hermitian, then
is Hermitian as well; hence and are Hermitian operators.

By applying Sion’s minimax theorem [18] and then separating the infimum over
into an outer infimum over (subject to constraint (2.8)) and an inner

infimum over (subject to constraints (2.6) and (2.7)), we may rewrite the two-
marginal SDP energy as

(5.2) sup inf
Tr

F
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2064 L. LIN AND M. LINDSEY

where

F Tr

QK
(5.3)

This is the form of a concave-convex maxmin problem. The effective domain of the
minimization over is in fact specified by the constraints Tr for
all , because if for some , then at least one of the quantum Kantorovich
problems in the expression for F is infeasible, i.e., of infinite optimal
cost. The significance of this form is that for fixed , the two-marginals
have been entirely decoupled from one another in the evaluation of F .
Moreover, for each pair , we see the emergence of the effective Hamiltonians

eff and eff on and ,
respectively. Notice that the new contributions to these effective Hamiltonians are
linear combinations of operators of the form and , respec-
tively. Thus we see how our choice of effective operator lists is reflected in the
richness of our class of possible effective Hamiltonians.

5.3 Computational perspective
From the computational point of view, the partial dual formulation can be much

more efficient to solve than the primal formulation. Although general results guar-
antee that the complexity of solving the two-marginal SDP (2.5) is only polynomial
in , direct solution of the primal problem (by, e.g., interior-point methods) may
still scale quite poorly in practice. One might hope that the complexity should be
limited only by per iteration, i.e., the cost of diagonalizing a matrix of
size proportional to , since the SDP constraint (2.9) concerns a matrix of size
proportional to . However, since the semidefinite matrix is entangled with
further equality constraints, the best guarantees for interior-point methods are far
more pessimistic. One can interpret our discussion of duality thus far as reveal-
ing a special structure of these equality constraints that allows us in principle to
design methods achieving a cost of per iteration. (We remark that similar
considerations could be expected to achieve a cost of per iteration for the
quasi-local two-marginal SDP with fixed max, as described in Remark 2.3, though
we omit details for simplicity.)

Now we describe how to compute gradients of F in order to apply, e.g.,
gradient ascent-descent methods. For fixed , let be the unique
dual optimizer (assuming that it exists) for the Kantorovich dual formulation of
QK . Then it follows that

F
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QUANTUM VARIATIONAL EMBEDDING 2065

(Note that if the dual optimizer is not unique, one only gets a supergradient.) One
may take a gradient descent step for in the direction of the traceless part of F ,
adjusting the step size if necessary to guarantee that . Moreover, letting

be the primal solution of the Kantorovich problem indicated by QK
, we have

F
Tr

F
Tr

(If the primal optimizer is not unique, one only gets a subgradient.) After taking a
gradient ascent step in , one may project onto the feasible domain by
diagonalizing and zeroing all negative eigenvalues.

Efficient methods for solving the primal and dual quantum Kantorovich prob-
lems (beyond black-box SDP solvers) will be explored in future work. In partic-
ular, preliminary results indicate promise for a quantum analogue of the classical
Sinkhorn scaling algorithm [8], for which the computational cost per iteration is
roughly given by the cost of diagonalizing certain operators on .

5.4 Full duality
For completeness we also derive the full dual problem to the original two-

marginal SDP. We first introduce dual variables for the constraints Tr
appearing in the minimization within (5.2), and then exchange the resulting in-

ternal supremum over with the infimum over to obtain the problem

sup inf Tr F

sup inf Tr

QK

Now by substituting the Kantorovich dual expression (5.1) for QK and then ex-
changing maximization and minimization, we obtain the problem

maximize inf Tr

Tr Tr

subject to Id Id
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2066 L. LIN AND M. LINDSEY

Now the expression within the infimum in the objective function can be rewritten
as

Tr

so carrying out the infimum within the objective function, we arrive at the full dual:

maximize 1

subject to

Id Id

where the optimization variables End and End are under-
stood to be Hermitian.
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