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Density matrix embedding theory (DMET) is a powerful quantum embedding method for solving strongly
correlated quantum systems. Theoretically, the performance of a quantum embedding method should be limited
by the computational cost of the impurity solver. However, the practical performance of DMET is often hindered
by the numerical stability and the computational time of the correlation potential fitting procedure, which is
defined on a single-particle level. Of particular difficulty are cases in which the effective single-particle system
is gapless or nearly gapless. To alleviate these issues, we develop a semidefinite programming (SDP) based
approach that can significantly enhance the robustness of the correlation potential fitting procedure compared
to the traditional least squares fitting approach. We also develop a local correlation potential fitting approach,
which allows one to identify the correlation potential from each fragment independently in each self-consistent
field iteration, avoiding any optimization at the global level. We prove that the self-consistent solutions of
DMET using this local correlation potential fitting procedure are equivalent to those of the original DMET
with global fitting. We find that our combined approach, called L-DMET, in which we solve local fitting
problems via semidefinite programming, can significantly improve both the robustness and the efficiency of
DMET calculations. We demonstrate the performance of L-DMET on the 2D Hubbard model and the hydrogen
chain. We also demonstrate with theoretical and numerical evidence that the use of a large fragment size can be
a fundamental source of numerical instability in the DMET procedure.
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I. INTRODUCTION

In order to treat strong correlation effects beyond the
single-particle level for large systems, highly accurate nu-
merical methods such as full configuration interaction (FCI)
[1–3], exact diagonalization (ED) [4,5], or the density ma-
trix renormalization group (DMRG) [6] with a large bond
dimension are often prohibitively expensive. Quantum em-
bedding theories [7–9], such as the dynamical mean field
theory (DMFT) [10–14] and density matrix embedding theory
(DMET) [15–22], offer an alternative approach for treating
strongly correlated systems. The idea is to partition the global
system into several “impurities” to be treated accurately via a
high-level theory (such as FCI/ED/DMRG), and to “glue” the
solutions from all impurities via a lower-level theory, such as
the Hartree-Fock (HF) theory or the density functional theory
(DFT). This procedure is performed self-consistently until a
certain consistency condition is satisfied between the high-
level and low-level theories. The self-consistency condition
is particularly important when the physical system undergoes
an electronic/magnetic phase transition not predicted by a
low-level method. In other words, the mean-field theory incor-
rectly predicts the order parameter, while quantum embedding
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theories can provide a systematic procedure to qualitatively
correct the order parameter.

In this paper, we focus on DMET, which has been suc-
cessfully applied to compute phase diagrams of a number
of strongly correlated models, such as the one-band Hub-
bard model both with and without a superconducting order
parameter [15,18,23–26], quantum spin models [27,28], and
prototypical correlated molecular problems [16,19,29]. The
self-consistency condition is usually defined so that the one-
electron reduced density matrices (1-RDMs) obtained from
the low-level and high-level theories match each other ac-
cording to some criterion, such as matching the 1-RDM of
the impurity problem [15], matching on the fragment only
[16,17], or simply matching the diagonal elements of the den-
sity matrix (i.e., the electron density) [18]. Self-consistency
can be achieved by optimizing a single-body Hamiltonian,
termed the correlation potential, in the low-level theory. Each
optimization step requires diagonalizing a matrix, similarly to
the self-consistent field (SCF) iteration step in the solution of
the Hartree-Fock equations.

However, the correlation potential optimization step can
become a computational bottleneck, even compared to the
cost of of the impurity solvers. This is because in DMET,
the size of each impurity is often considered to be a constant,
and therefore the cost for solving all of the impurity problems
always scales linearly with respect to the global system size.
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Meanwhile, the correlation potential fitting requires repeated
solution of problems at the single-particle level and is closely
related to the density inversion problem [30,31]. In order to
evaluate the derivative, the computational effort is similar
to that of a density functional perturbation theory (DFPT)
calculation [32]. The number of iterations to optimize the cor-
relation potential can also increase with respect to the system
size, especially for gapless systems, provided the procedure
can converge at all.

In this paper, we propose two improvements to signifi-
cantly increase the efficiency and the robustness of the corre-
lation potential fitting procedure. To enhance the robustness,
we propose to reformulate the correlation potential fitting
problem as a semidefinite program (SDP). It is theoretically
guaranteed that when the correlation potential is uniquely
defined, it coincides with the optimal solution of the SDP.
Moreover, as a convex optimization problem, the SDP has
no spurious local minima. To improve the efficiency, we
introduce a local correlation potential fitting approach. The
basic idea is to perform local correlation potential fitting on
each impurity to match the high-level density matrix and
the local density matrix. Then the local correlation potentials
are patched together to yield the high-level density matrix.
We may further combine the two approaches and utilize
the SDP reformulation for each impurity. This approach is
dubbed local-fitting based DMET (L-DMET). We prove that
the results obtained from DMET and L-DMET are equivalent.
Nonetheless, L-DMET scales linearly with respect to the
system size in each iteration of DMET. It is numerically
observed that L-DMET does not require more iterations than
DMET. This is particularly advantageous for the simulation of
large systems.

The rest of the paper is organized as follows. In Sec. II, we
first briefly present the formulation of DMET. In particular,
DMET can be concisely viewed from a linear algebraic per-
spective using the CS (cosine-sine) decomposition. The SDP
reformulation of the correlation potential fitting is introduced
in Sec. III as an alternative approach to the least squares
problem in DMET. In Sec. IV, we present the local corre-
lation fitting approach (L-DMET) and show the equivalence
between the fixed points of DMET and L-DMET. The relation
between the current work and a few related works, such as
the finite temperature generalization and the p-DMET [33],
is discussed in Sec. V. Numerical results for the 2D Hubbard
model and the hydrogen chain are given in Secs. VI and VII,
respectively. We conclude in Sec. VIII. The proofs of the
propositions in the paper are given in the appendices.

II. BRIEF REVIEW OF DMET

Consider the problem of finding the ground state of the
quantum many-body Hamiltonian operator in the second-
quantized formulation

Ĥ = t̂ + v̂ee =
L∑

pq

tpqâ†
pâq + 1

2

L∑

pqrs

(pr|qs)â†
pâ†

qâsâr . (1)

Here, L is the number of spin orbitals. The corresponding
Fock space is denoted by F , which is of dimension 2L. The
number of electrons is denoted by Ne. We partition the L

sites into Nf fragments. Without loss of generality, we assume
each fragment has the same size LA, though a nonuniform
partition is possible as well. We define the set of block-
diagonal matrices with the sparsity pattern corresponding to
the fragment partitioning as

S =
{

A =
Nf⊕

x=1

Ax

∣∣∣∣ Ax ∈ CLA×LA ,

Ax = A†
x for x = 1, . . . , Nf

}
, (2)

where
⊕

indicates the direct sum of matrices, i.e.,

Nf⊕

x=1

Ax =





A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · ANf



.

DMET can be formulated in a self-consistent manner with
respect to a correlation potential u ∈ S . For a given u, the
low-level (also called the single-particle level) Hamiltonian
takes the form

Ĥ ll(u) = f̂ + ĉ(u). (3)

Here, ĉ(u) =
∑

pq upqâ†
pâq is a quadratic interaction associ-

ated with the correlation potential. When the ground state of
Ĥ ll can be uniquely defined, this ground state is a single-
particle Slater determinant denoted by |! ll(u)〉, given by a ma-
trix C ∈ CL×Ne . The associated low-level density matrix is de-
noted by Dll(u) := CC†. Here, f̂ :=

∑
pq fpqâ†

pâq is given by a
fixed matrix f . The simplest choice is f = t , but other choices
are possible as well [19]. Then the low-level density matrix
can be expressed as Dll(u) = D( f + u, Ne), which is well-
defined when the matrix f + u has a positive gap between the
(Ne)th and (Ne + 1)th eigenvalues. (Note that throughout we
shall use the general notation D(h, N ) to denote the N-particle
density matrix induced by the non-interacting Hamiltonian
specified by the single particle matrix h.)

For each fragment x, the Schmidt decomposition of the
Slater determinant |! ll(u)〉 can be used to identify a certain
subspace Fx ⊂ F that contains |! ll(u)〉 as follows. Without
loss of generality, we assume the fragment x consists of first
LA orbitals labeled by {1, 2, . . . , LA}. Since C has orthonormal
columns as C†C = INe , we may apply the CS decomposition
[34,35] and obtain

C =
(

UA"AV †

UB"BV † + UcoreV
†
⊥

)
. (4)

Here, UA ∈ CLA×LA , UB ∈ C(L−LA )×LA , Ucore ∈C(L−LA )×(Ne−LA ),
V ∈ CNe×LA and V⊥ ∈ CNe×(Ne−LA ) are all column orthogonal
matrices. "A,"B ∈ CLA×LA are non-negative, diagonal matri-
ces and they satisfy "2

A + "2
B = ILA . Furthermore, U †

BUcore =
0, V †V⊥ = 0. The CS decomposition (4) defines a low-level
density matrix. On the other hand, the decomposition as well
as UA, UB, Ucore can be deduced from Dll directly. The
relation is given in Appendix B. Throughout the paper, we
assume the following condition is satisfied.

Assumption 1. We assume Ne > LA, and for each fragment
x, the diagonal entries of "A,"B in Eq. (4) are not 0 or 1.
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When Assumption 1 is violated, particularly when LA is
large relative to Ne (such as in the context of a large basis set),
the choice of the correlation potential is generally not unique
(Appendix A).

The decomposition (4) allows us to define the fragment,
bath and core orbitals as the columns of

#frag
x =

(
ILA

0

)
, #bath

x =
(

0
UB

)
, #core

x =
(

0
Ucore

)
.

In particular, the number of bath orbitals is only LA. This is
a key observation in DMET [15,16]. The rest of the single-
particle orbitals orthogonal to #

frag
x , #bath

x , #core
x are called

the virtual orbitals and are denoted by

#vir
x =

(
0

Uvir

)
.

The virtual orbitals are not explicitly used in DMET. We also
define the set of impurity orbitals, which consists of fragment
and bath orbitals, as

#x =
(
#

frag
x #bath

x

)
=

(
ILA 0
0 UB

)
.

Using a canonical transformation, the fragment, bath, core
and virtual orbitals together allow us to define a new set of
creation and annihilation operators {ĉ†

p, ĉp} in the Fock space
satisfying several properties. First, ĉ†

1, . . . , ĉ†
LA

correspond
exactly to â†

p for all p in the fragment x. Second, the operators
ĉ†

1, . . . , ĉ†
2LA

generate an active Fock space F act
x of dimension

22LA , such that the low-level wavefunction can be written
as |! ll(u)〉 = |!act

x (u)〉 ⊗ |! inact
x (u)〉, where |! inact

x (u)〉 lies in
the inactive space generated by c†

2LA+1, . . . , c†
Ne

corresponding
to the core orbitals (the virtual orbitals do not contribute to the
Slater determinant |! ll(u)〉). Then the subspace Fx, called the
xth impurity space, can be defined by

Fx =
{
|!〉 ⊗

∣∣! inact
x (u)

〉
: |!〉 ∈ F act

x

}
.

Evidently |! ll(u)〉 ∈ Fx ( F act
x . Then by a Galerkin projec-

tion onto Fx [19], one derives a ground-state quantum many-
body problem on each of the active spaces F act

x , specified by
an impurity Hamiltonian (or embedding Hamiltonian) of the
following form:

Ĥ emb
x = t̂x + v̂emb

x + v̂ee,emb
x − µN̂ frag

x . (5)

Here, t̂x is a single-particle operator specified by the active-
space block of the canonically transformed single-particle
matrix t , v̂ee,emb

x is a two-particle interaction specified by the
active-space block of the canonically transformed two-particle
tensor (pr|qs), and v̂emb

x is an additional single-particle op-
erator due to the core electron wave function |! inact

x (u)〉 in
the inactive space. Finally, N̂ frag

x is the total number operator
for the fragment part of the xth impurity, and µ is a scalar
determined by a criterion to be discussed below.

Given Assumption 1, the number of core orbital electrons
in |! inact

x (u)〉 is Ne − LA, so the number of electrons in the ac-
tive space of each impurity is equal to LA. Let Dhl

x ∈ C2LA×2LA

be the single-particle density matrix corresponding to the
LA-particle ground state of the many-body Hamiltonian H emb

x ,
so Tr[Dhl

x ] = LA. Define the matrix E = (ILA 0LA×LA )), so

the upper-left block of the density matrix Dhl
x , corresponding

to the fragment, can be written as Dhl,frag
x := E)Dhl

x E . Going
through all fragments, we obtain the diagonal matrix blocks
of the high-level density matrix as

Dhl,frag :=
Nf⊕

x=1

Dhl,frag
x ∈ S. (6)

However, the total number of electrons from all fragments
must still be equal to Ne. This requires the following condition
to be satisfied

Tr[Dhl,frag] =
Nf∑

x=1

Tr
(
Dhl,frag

x

)
= Ne. (7)

Equation (7) is achieved via the appropriate choice of the La-
grange multiplier (i.e., chemical potential) µ in the definition
(5) of the embedding Hamiltonian.

Once the matrix blocks in Dhl,frag are obtained, DMET
adjusts the correlation potential by solving the following least
squares problem:

min
u∈S0

Nf∑

x=1

∥∥Dhl,frag
x −

(
#frag

x

)†D( f + u, Ne)#frag
x

∥∥2
F . (8)

Here, (#frag
x )†D( f + u, Ne)#frag

x gives the the diagonal matrix
block corresponding to the xth fragment. We define S0 :=
{A ∈ S | Tr[A] = 0}, and the traceless condition is added due
to the fact that adding a constant in the diagonal entries of
u does not change the objective function. The minimization
problem (8) can be solved with standard nonlinear opti-
mization solvers such as the conjugate gradient method or
the quasi-Newton method, and the gradient of the objective
function with respect to u can be analytically calculated [19].

Finally, in order to formulate the DMET self-consistent
loop, we define the nonlinear mapping D : u *→ Dhl,frag. This
mapping takes the correlation potential u as the input, gen-
erates the bath orbitals, and solves all impurity problems to
obtain the matrix blocks Dhl,frag. We also define the mapping
F : Dhl,frag *→ u, which takes the high-level density matrix
blocks Dhl,frag as the input and updates the correlation poten-
tial. Formally, the self-consistency condition of DMET can be
formulated as

u = F ◦ D(u). (9)

In the discussion above, the definition of the mapping F
and the well-posedness of the nonlinear fixed point prob-
lem hinges on the uniqueness of the solution of Eq. (8).
In Appendix A we show that the condition Ne ! LA as in
Assumption 1 is a necessary condition for the correlation
potential to be uniquely defined. The practical consequences
of this assumption will also be studied in Sec. VII.

III. ENHANCING THE ROBUSTNESS:
SEMIDEFINITE PROGRAMMING

In order to improve the robustness of correlation poten-
tial fitting, we develop an alternative approach to the least
squares approach in Eq. (8). The basic idea is as follows.
The goal of the correlation potential fitting is to find the
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correlation potential {ux} so that the blocks of the low-level
density matrix match {Dhl,frag

x }. These quantities are related to
each other in the sense that the latter can be obtained from
the former by mapping them forward by the gradient of a
concave function, as we shall demonstrate below. Hence one
naturally wants to invert this mapping to obtain the correlation
potential that yields an exact fit. The problem of inverting
the gradient of a concave function is solved by considering
the Legendre-Fenchel transform, which requires us to solve
a convex optimization problem. This problem can in turn be
reformulated as a semidefinite program (SDP), which can be
solved robustly.

Consider a mapping F : S → R defined by

F (u) = ENe [ f + u],

where ENe gives the sum of the lowest Ne eigenvalues of the
matrix f + u. Note that ENe is a concave function, and F is
a composition of a concave function with a linear function.
Hence F is a concave function on S . However, F is not
smooth: There are singular points where f + u is gapless, i.e.,
there is no gap between the (Ne)th and (Ne + 1)th eigenvalues.

Whenever a matrix A is gapped, we have ∇AENe (A) =
D(A, Ne). This is in fact a slight generalization of
the Hellmann-Feynman theorem, which is precisely the
case when Ne = 1. Therefore ∇ux F ( f + u) = (#frag

x )†D( f +
u, Ne)#frag

x whenever f + u is gapped.
The correlation potential fitting problem requires us

to evaluate the inverse of the gradient mapping ∇uF =⊕Nf
x=1 ∇ux F at the point Dhl,frag. The least squares formulation

(8) can be considered as one approach to obtain the inverse
mapping. To derive an alternative approach, we note that F is
concave, so the inverse mapping is in fact the gradient of the
concave conjugate, or the Legendre-Fenchel transform [36].
The conjugate is denoted by F ∗ : S → R and defined as

F ∗(P) = inf
u∈S0

{
Nf∑

x=1

Tr[Pxux] − F (u)

}

, P ∈ S. (10)

Here we use the new notation P to denote a generic block
diagonal matrix that may not be the same as Dhl,frag. Again
we may restrict u to be within the set S0 since the objective
function of Eq. (10) is invariant under the transformation
u ← u + µI . In fact, the minimization problem in Eq. (10) is
a slightly generalized formulation of the variational approach
for finding the optimal effective potential (OEP) [30,31], as
well as the Lieb approach for finding the exchange-correlation
functional [37]. We will show:

Proposition 2. Suppose 0 ≺ Dhl,frag
x ≺ ILA for x=1, . . . , Nf

and
∑Nf

x=1 Tr[Dhl,frag
x ] = Ne. Then the convex optimization

problem for the evaluation of F ∗(Dhl,frag), i.e., the optimiza-
tion problem in Eq. (10) where P = Dhl,frag, admits an op-
timizer u$. Then Dhl,frag lies in the supergradient set of F
at u$. If f + u$ has a gap between its (Ne)th and (Ne +
1)th eigenvalues (ordered increasingly), then D( f + u$, Ne)
has diagonal blocks matching Dhl,frag, i.e., we achieve exact
fitting. If f + u$ has no gap, then the ground state and the
mapping D( f + u$, Ne) are ill-defined, and, assuming that the
optimizer u$ is unique, there is no correlation potential u that

yields a well-defined low-level density matrix achieving exact
fitting.

The proof of Proposition 2 is provided in Appendix C.
We remark that the matter of whether there exists a unique
optimizer u$ ∈ S0 appears to be subtle. Such uniqueness
would follow from the strict concavity of F |S0 , if it could be
established.

Now we further demonstrate that the convex optimization
problem of Proposition 2 can be equivalently reformulated
as a semidefinite program (SDP), which can be tackled nu-
merically by standard and robust solvers. The equivalence is
established by the following proposition, and the proof is in
Appendix D.

Proposition 3. Optimizers u$ as in Proposition 2 can be
obtained from optimizers (u$, Z$,α$) of the semidefinite pro-
gram

minimize
u∈S0, Z∈CL×L,α∈R

Nf∑

x=1

Tr
[
Dhl,frag

x ux
]
− αNe + Tr(Z )

subject to f + u + Z − αI 1 0

Z 1 0.

(11)

The minimization problem (11) appears to be significantly
different from standard problems in electronic structure calcu-
lation. However, we may verify that if u$ is a minimizer and
f + u$ is gapped with the standard eigenvalue decomposition

( f + u$)ψk = λkψk,

then α is a chemical potential satisfying λNe < α < λNe+1, and
Z =

∑Ne
i=1(α − λi)ψiψ

†
i . Then Z 1 0, f + u$ + Z − αI =∑L

a=Ne+1(λa − α)ψiψ
†
i 1 0, and the objective function of

Eq. (11) is indeed equal to
∑Nf

x=1 Tr[Dhl,frag
x ux] −

∑Ne
i=1 λi =

F ∗(Dhl,frag).
Hence, our new approach improves upon that of (8) in two

ways. First, whenever exact fitting is possible, we can solve
the problem with more robust optimization algorithms with
strong guarantees of success and which are not, in particular,
susceptible to spurious local minima. Second, whenever exact
fitting is impossible, we can certify that this is indeed the
case by observing that the correlation potential that we obtain
defines a gapless system. By contrast, if exact fitting is not
achieved in the least squares approach, it may not be possible
to certify that the optimization algorithm is not merely stuck
in a local minimum of the objective function.

IV. ENHANCING THE EFFICIENCY: LOCAL
CORRELATION POTENTIAL FITTING

The convex optimization formulation improves the robust-
ness of the correlation potential fitting procedure. However,
we still need to solve an SDP with (LA + 1)L/2 variables
(the constant 1/2 is due to the symmetry of the correlation
potential), while intermediate variables such as Z can be of
size L × L. Hence for large inhomogeneous systems, the cost
of the correlation potential fitting can still be significant and
outweigh the cost of the impurity solver. In this section, we
develop a local fitting method, which decouples the global
SDP problem into Nf local fitting problems, each of size
LA × LA only. The cost of the correlation potential fitting
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procedure then scales linearly with respect to L, assuming the
total number of iterations does not increase significantly.

The idea of performing a local fitting is motivated from the
following consideration. The embedding Hamiltonian Ĥ emb

x is
obtained by a Galerkin projection of Ĥ to Fx via a canonical
transformation of the creation and annihilation operators. We
may apply the same transformation to the low-level Hamilto-
nian Ĥ ll, modified by a potential vx on the fragment, to obtain
a quadratic Hamiltonian

Ĥ ll,emb
x =

2LA∑

p,q=1

( f̃x + EvxE))pqc†
pcq, v ∈ S. (12)

Here, f̃x = #†
x ( f + u)#x is the projected Fock matrix onto

the impurity x. As before E = (ILA 0LA×LA )), and then
EvxE) ∈ C2LA×2LA is defined on the impurity. When vx = 0,
the fragment density matrix obtained from the ground state
of Ĥ ll,emb

x should agree with the global low-level density
matrix restricted to the same fragment. This statement will
be justified in Appendix E. Then instead of the global least
squares fitting problem, we may solve a modified least squares
problem

min
v∈S

Nf∑

x=1

∥∥Dhl, frag
x − E)D( f̃x + EvxE), LA)E

∥∥2
F . (13)

where v =
⊕Nf

x=1 vx. In contrast to Eq. (8), each vx only
appears in the term associated with the impurity x, the min-
imization with respect to different matrix blocks vx can be
performed independently, and the cost scales linearly with
respect to Nf (and therefore L). Note that we do not require vx
to be traceless, since vx is only applied to the fragment instead
of the entire impurity. Once v is obtained, we may update the
correlation potential as

u ← u + v =
Nf⊕

x=1

(ux + vx ). (14)

Following the discussion of Sec. III, we may readily for-
mulate a convex optimization-based alternative to the least
squares problem in Eq. (13). We may define the function F act

x
defined on the set of Hermitian LA × LA matrices by

F act
x (vx ) = ELA ( f̃x + EvxE)).

Then if 0 ≺ Dhl,frag
x ≺ ILA , the convex optimization problem

inf
v†

x =vx

{
Tr

[
Dhl,frag

x vx
]
− F act

x (v)
}

admits a solution v$
x . If f̃x + v$

x has a gap between its
(LA)th and (LA + 1)th eigenvalues (ordered increasingly),
then D( f̃x + EvxE), LA) has fragment block equal to Dhl,frag

x ,
i.e., we achieve exact fitting. If f̃x + v$

x has no gap, then the
ground state and 1-RDM are ill-defined, and, if the solution
is unique, then there is no correlation potential v that yields
a well-defined 1-RDM with exact fit. Furthermore, any opti-
mizer v$ can be obtained from an optimizer (v$, Z$,α$) of the

SDP

minimize
vx∈CLA×LA ,v

†
x =vx

Z∈C(2LA )×(2LA ) , α∈R

Tr
(
vxDhl,frag

x

)
− αLA + Tr(Z )

subject to f̃x + EvxE) + Z − αI 1 0,

Z 1 0.

(15)

In the following discussion, the procedure above will be
referred to as L-DMET, which combines local correlation
potential fitting and semidefinite programming. Note that
DMET and L-DMET solve fixed-point problems of the same
form (9), but with different choices of mappings F. We define
the mappings associated with DMET and L-DMET as FDMET

and FL-DMET, respectively. As stated precisely in Proposition 4
below, the fixed points of L-DMET and DMET are equivalent.
Hence L-DMET introduces no loss of accuracy relative to
DMET when DMET has a unique fixed point. The proof is
given in Appendix E.

Proposition 4. Suppose Eq. (9) has a fixed point u$ with
F = FDMET, and f + u$ has a gap between its (Ne)th and
(Ne + 1)th eigenvalues (ordered increasingly). Let Dhl,frag ∈
S be the associated high-level density matrix blocks, which
satisfy 0 ≺ Dhl,frag

x ≺ ILA for x = 1, . . . , Nf and Tr[Dhl,frag] =
Ne. Then u$ is a fixed point of Eq. (9) with F = FL-DMET.
Similarly, under the same assumptions, if u$ if a fixed point
of L-DMET, then it is also a fixed point of DMET.

We remark that when f + u∗ is gapless, DMET and L-
DMET algorithms may still converge numerically. However,
it is not guaranteed that the fixed point will be the same.
However, our numerical results (in Sec. VI B) indicate that
the discrepancy is typically small.

In summary, L-DMET only leads to a modular modifi-
cation of an existing DMET implementation. We provide a
unified pseudocode for DMET and L-DMET inalgorithm I.

V. OTHER CONSIDERATIONS

A related approach to improve the efficiency of the cor-
relation potential fitting is called projected-based DMET (p-
DMET) [33], which directly finds the closest low-level density
matrix Dll to the entire high-level density matrix Dhl, subject
to rank-Ne constraints. This completely eliminates the corre-
lation potential fitting procedure and is very efficient for large
systems. It also eliminates the uncertainty introduced by the
uniqueness of the correlation potential. However, it has also
been observed that the result of the p-DMET has a stronger
initial state dependence than DMET. In particular,when p-
DMET is used to study the phase diagrams of a 2D Hubbard
model, the resulting phase boundary from p-DMET is blurrier
than that obtained from DMET [33]. On the other hand,
Proposition 4 guarantees that the fixed points of L-DMET and
DMET are the same. We will also demonstrate by numerical
results that L-DMET and DMET can produce nearly identical
phase diagrams.

When the two-body interaction term (pr|qs) is nonlocal
(such as in the case of quantum chemistry calculations),
one often replaces f̂ in Eq. (3) by f̂ = f̂ (Dll ), which is a
Fock operator that depends on the low-level density matrix
Dll. Then Eq. (3) needs to be solved self-consistently as in
the case of solving Hartree-Fock equations. Such an extra
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Algorithm 1 A unified pseudocode of DMET and L-DMET.

Input: Initial low level density matrix Dll,(0), and chemical potential µ(0).
Partition the system into Nf fragments.

Output: Correlation potential u and high-level density matrix blocks Dhl,frag

1: while correlation potential u(k) has not converged do
2: Solve the ground state associated with Ĥ ll = f̂ + ĉ(u(k) ) for Dll,(k)

3: for x in 1, . . . , Nf do
4: Compute bath orbitals for impurity x.
5: end for
6: Set m = 0, ν (m) = µ(k)

7: while chemical potential ν (m) has not converged do
8: for x in 1, . . . , Nf do
9: Solve the impurity problem Ĥ emb

x − ν (m)N̂ frag
x for Dhl,frag

x .
10: end for
11: Use Tr(Dhl,frag ) to update the chemical potential to ν (m+1).
12: Set m ← m + 1.
13: end while
14: Set µ(k+1) = ν (m).
15: if DMET then
16: Update u(k+1) by solving the global correlation potential fitting problem.
17: end if
18: if L-DMET then
19: Update u(k+1) by solving the local correlation potential fitting problem.
20: end if
21: Set k ← k + 1.
22: end while

self-consistency step at the low level is also called charge
self-consistency [20] and can be used to take into account
long-range interactions beyond the sparsity pattern of S .

When f + u$ is gapless, the corresponding low-level den-
sity matrix Dll is ill-defined (even though u$ itself may still
be well-defined via the semidefinite programming formula-
tion of correlation potential fitting), and the self-consistent
iteration of Eq. (9) cannot proceed without modification. One
possibility is to use the recently developed finite temperature
DMET [21]. The other possibility is to generate a mixed state
low-level density matrix using a Fermi-Dirac smearing with a
low temperature, and extract the bath orbitals from the density
matrix directly (see Appendix B). We remark that both options
formally violate the original premise of DMET, namely the
Schmidt decomposition of a Slater determinant [15,16] or the
CS decomposition as in Eq. (4). A proper treatment of gapless
systems remains a future research direction.

VI. NUMERICAL EXPERIMENTS: 2D HUBBARD MODEL

The 2D Hubbard model can describe rich physical phe-
nomena including magnetic phase transitions [38], supercon-
ductivity [24], charge and spin density waves [39,40], stripe
order [26,41], etc. Here we report the performance of L-
DMET for the 2D Hubbard model on a square lattice with
periodic boundary conditions. The Hamiltonian of the 2D
Hubbard model is

H = −t
∑

〈i, j〉

∑

σ

â†
i,σ â j,σ + U

∑

i

n̂i,↑n̂i,↓ (16)

Here, n̂i,σ = â†
i,σ âi,σ is the number operator, 〈i, j〉 means that

i, j are nearest neighbors on the lattice. All energies are mea-
sured with respect to t , and for simplicity we set t = 1. There-
fore, the only coefficient in (16) is the interaction strength U .

The fragment size is set to 2×2. The initial guess and
the low-level density matrix are generated by the unrestricted
Hartree Fock (UHF) method. When the system becomes
gapless, we use Fermi-Dirac smearing with β = 100 (i.e.,
temperature T = 0.01 in the unit of the hopping parameter
t = 1) according to the discussion in Sec. V. The finite tem-
perature smearing in zero-temperature DMET is a numerical
regularization technique. Smaller choices for β correspond
to more severe regularization and reduced accuracy in the
solution of DMET. In fact, in order to improve the conver-
gence behavior of the least squares fitting procedure (8), we
always use a finite temperature formulation with T = 0.01.
Hence we in fact solve (8) where the map D is understood
to indicate the appropriate density matrix at temperature T =
0.01. The bath orbitals are then extracted from the resulting
finite-temperature density matrix via the same approach as
described above.

The impurity problems are solved by full configuration
interaction (FCI) implemented in PYSCF [42]. The number of
orbitals in each impurity problem is fixed to be eight orbitals.
We used a customized implementation of UHF that directly
makes use of the sparsity of 2-electron repulsion integrals in
the Hubbard model. We present results for both DMET and
L-DMET. Within DMET we solve the least squares prob-
lem (8) using the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method [43] via SCIPY 1.4.1 [44], and within L-DMET we
solve the SDP (15) with a splitting conic solver (SCS) [45,46]
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FIG. 1. (a) Success rates [defined in Eq. (18)] of the least squares fitting procedure. (b) Success rates of the convex optimization procedure.
1000 samples of a 6×6 2D Hubbard model with random potential.

called via CVXPY [47,48]. For both of the methods, the conver-
gence tolerance is set to be 10−8. The convergence criterion of
the DMET and L-DMET fixed point problem is set to

|E (k) − E (k+1)|
|E (k)|

< 10−8 and
‖Dhl,(k) − Dhl,(k+1)‖F

‖Dhl,(k)‖F
< 10−6.

(17)

A. Comparison of semidefinite programming
and least squares fitting

Before presenting an overall comparison of DMET and
L-DMET, we first present a comparison of the two approaches
to the global correlation potential fitting procedure discussed
above, namely the least squares approach (8) (which uses a fi-
nite temperature T = 0.01 to accelerate the convergence) and
the SDP approach (11) (without finite temperature smearing).
Our results in this section compare these two approaches for
the correlation potential fitting during the first step of DMET,
initialized from UHF on the 6×6 2D Hubbard model.

We measure the success rates of the two methods as
follows. For a given on-site interaction strength U and filling
factor n (i.e., the number of electrons divided by the number
of sites), the success rate is defined as

success rate = number of successful samples
number of total samples

. (18)

Each sample is specified by a random potential (each entry of
which is sampled independently from the uniform distribution
U [−0.1, 0.1]), which is added to the one-body Hamiltonian.
The total number of samples is 1000. The least squares
method fails if the norm of the gradient is greater than 10−8

after 2000 iterations. The SDP method fails if any of the
primal residual, the dual residual and the duality gap is greater
than 10−9 after 2500 steps. The success rate is measured for
multiple values of both U and n.

Figure 1 shows that semidefinite programming is much
more robust than the least squares approach, despite the
fact that the least squares fitting is performed with some
finite temperature smearing. The least squares procedure can

reliably converge only when the number of electrons is 18
and 26. Typically, the least squares approach is robust at half-
filling without a random potential. However, when the random
potential is added, the least squares approach fails frequently.
On the other hand, the SDP method succeeds consistently
across most test cases. The lowest success rate of the SDP
method (around 90%) occurs near U = 6.0 around half-filling.
The success rate is nearly 100% in all other cases.

We summarize the results for the correlation potential
fitting as follows: As a regularization technique, the finite
temperature smearing can improve the robustness of the least
squares approach in the gapless case. However, the regu-
larized problem may still be ill-conditioned to solve using
solvers such as BFGS. On the other hand, the SDP approach
is parameter-free. The numerical tests show that the SDP
reformulation significantly increases the robustness of the
correlation potential fitting.

We also present the comparison between the performance
of SDP and least squares fitting for the 1D Hubbard model,
where we observe that the success rate of SDP is 100%. These
results are reported in Appendix F.

B. Phase diagram

For strongly correlated systems, single-particle theories
such as RHF/UHF may produce qualitatively incorrect order
parameters, leading to incorrect phase diagrams. We expect
that DMET/L-DMET can correct order parameters through
the self-consistent iteration for the correlation potential. With-
out self-consistent iteration, the phase boundary of DMET/L-
DMET tends to be very similar to that of UHF. As an example,
we study the magnetic phase transition between antiferro-
magnetism and paramagnetism as studied in Ref. [33]. We
impose the constraint that all impurities should be translation-
invariant (TI). The TI constraint is crucial for improving
the convergence behavior of DMET and L-DMET especially
around the phase boundary.

We perform a series of computations on a 20×20 lattice
with the fragment size of 2×2. We consider 21 uniformly
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FIG. 2. Phase diagram of 2D Hubbard model with respect to spin polarization (19). (a) UHF. (b) DMET. (c) Difference between DMET
and L-DMET. (d) Spin polarization as a function of U at n = 0.825.

spaced values of n and 26 uniformly spaced values of U .
We use the spin polarization to identify the phases. The spin
polarization is defined as

m = |Tr(Dhl,↑) − Tr(Dhl,↓)|
Tr(Dhl,↑) + Tr(Dhl,↓)

. (19)

Here, Dhl,↑ and Dhl,↓ are, respectively, the spin-up and spin-
down components of the high-level global density matrices.
The spin polarization as a function of n and U is presented
in Fig. 2. The phase diagrams of DMET, and L-DMET
are almost identical except for certain points on the phase
boundary. The largest difference in terms of the spin polar-
ization between two phase diagrams is about 0.05. Both are
significantly different from the UHF phase diagram. Figure 2
shows the quantitative comparison of the spin polarization
obtained using UHF, DMET, and L-DMET, respectively. The
spontaneous spin polarization starts to occur around U = 3.0
for UHF, and around U = 3.5 for DMET/L-DMET. After U
increases beyond the phase boundary, the UHF solution is
also consistently overpolarized by around 0.1. The difference

between the solutions obtained from DMET and L-DMET
[Fig. 2(c)] is negligible. This verifies that L-DMET is an al-
ternative implementation of DMET in practice. L-DMET can
be used to recover the phase diagram of DMET. The quality
of the L-DMET solution is also better than the previously
proposed p-DMET method [33], which leads to a slightly
blurred phase boundary.

C. Robustness with respect to the initial guess

We now demonstrate the numerical stability of the
L-DMET method with respect to the initial guess. We con-
sider two filling factors for the 6×6 2D Hubbard model at
U = 4: Filling n = 1.0 (36 electrons) and filling n = 0.5 (18
electrons), for which the solution is in the antiferromagnetic
(AFM) and paramagnetic (PM) phase, respectively. For all
calculations in this section, we take the fragment size to be
2×2.

To show that L-DMET is also effective when the system is
inhomogeneous, we explicitly break the translation symmetry
by introducing a random on-site potential. Each entry of the
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FIG. 3. The convergence of the energy per site for DMET and L-DMET with different initial guesses. Results are shown for the 6×6
Hubbard model at U = 4.0 with fragment size 2×2. (a) n = 0.5, 18 electrons. (b) n = 1.0, 36 electrons. The initialization procedure for
(a) and (b) are described in the text of section VI C.

random potential is sampled independently from the uniform
distribution U [−0.2, 0.2]. We deliberately choose the initial
guess to have the wrong order parameter in order to test the
robustness of the algorithm. We choose initial guesses for the
DMET loop by incompletely converging the self-consistent
field iteration for UHF (i.e., terminating after a fixed number
of iterations). We in turn initialize our UHF calculations with
hand-picked initial guesses; since the self-consistent iteration
for UHF is terminated before convergence, the result (which
we use as our initialization for DMET) depends on the initial
guess.

In the AFM case (n = 1.0), the initial guess for UHF is
chosen to be a state in the PM phase, which is obtained by
alternatively adding/subtracting a small number (10−3) to the
uniform density according to a checkerboard pattern. In the
PM case, we initialize UHF in the AFM phase with spin-
up and spin-down densities of 0.1 and 0.4, respectively. We
terminate UHF after the 1st, 5th, and 10th iterations to provide
initial guesses for DMET and L-DMET.

For both DMET and L-DMET, we use DIIS (direct in-
version in the iterative subspace) to accelerate the conver-
gence starting from the second iteration. We compare the
convergence of DMET and L-DMET with the same random
potential in Fig. 3. Both DMET and L-DMET converge to
the same fixed point within 12 iterations with different initial
guesses. This experiment verifies two crucial features of L-
DMET: (1) L-DMET reaches the same solution as DMET
at self-consistency, when the low-level model is gapped, and
(2) in both the PM phase and AFM phase, the fixed point of
L-DMET is independent of the choice of the initial guess.
More specially, with different unconverged UHF initial
guesses, L-DMET always converges to the same fixed point
as DMET does.

D. Jacobian of the fixed point mapping

Figure 3 shows that the number of iterations needed for
L-DMET to converge is approximately the same as for DMET,

starting from a range of initial guesses. The same behavior
is also observed for all the numerical tests presented in
this paper. This finding is somewhat counterintuitive, given
that L-DMET updates the correlation potential only locally,
while DMET can use the information of the global density
matrix and update the correlation potential globally. From
the perspective of solving the fixed point problem in Eq. (9),
the convergence rate in the linear response regime is largely
affected by the properties of the Jacobian matrix of F ◦ D,
where the mapping F stands for FDMET and FL-DMET in DMET
and L-DMET, respectively.

To illustrate the properties of the Jacobian, we consider a
1D Hubbard model with 24 sites and antiperiodic boundary
conditions. The total number of electrons is 24 (i.e., half-
filling). Each fragment has two sites. The low-level method
is the restricted Hartree-Fock method. We investigate two
quantities in the self-consistent equation in Eq. (9): The linear
response of Dhl,frag

x with respect to u, i.e., R = ∂Dhl,frag
x /∂u and

the Jacobian matrix of Eq. (9). As shown in Fig. 4(a), the
matrix R is highly localized. This means that the response
of the density matrix block Dhl,frag

x is relatively small with
respect to the perturbation of the correlation potential uy

in another fragment y, when x and y are far apart from
one other. Such “near-sighted” dependence implies that the
local update procedure can also lead to an effective iteration
scheme.

Figure 4(b) shows that the spectral radius of the Jaco-
bian matrix of DMET and that of L-DMET are relatively
small. For the range of U ’s studied, the spectral radius is
uniformly smaller than 0.2 (and in particular smaller than 1).
Hence F ◦ D can define a contraction mapping even without
mixing, and as such the fixed point problem in Eq. (9)
is easy to solve. It is also interesting to observe that the
spectral radius peaks around U ≈ 2.5. For larger value of U ,
the spectral radius decreases with respect to U , indicating
that the DMET/L-DMET iterations are easier to converge
numerically.
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FIG. 4. (a) The matrix ∂Dhl,frag/∂u at U = 4.0. (b) The spectral radius of the Jacobian of Eq. (9) for DMET and L-DMET. There are 3
degrees of freedom within ux and Dhl,frag

x for each fragment x; hence the size of the matrix ∂Dhl,frag/∂u is 36×36, viewed as a 12×12 matrix of
3×3 blocks.

E. Efficiency

L-DMET mainly reduces the computational cost at the
single-particle level (i.e., low level). The CPU time for 2D
Hubbard systems ranging from size 6×6 to 18×18 (with
fragment size 2×2 in all cases) is reported in Fig. 5. We
report the time of the low-level and high-level calculations
separately. Each calculation is performed on a single core. The
cost of the low-level calculations in DMET grows as O(L3.04),
while the cost of low-level calculation in L-DMET is reduced
to O(L1.22). When the number of sites is 324, L-DMET is 49
times faster than DMET for the low-level calculations.

VII. NUMERICAL EXPERIMENTS: HYDROGEN CHAIN

A. Efficiency and accuracy

In this section, we consider the application of L-DMET
to a real quantum-chemical system, the hydrogen chain. The

FIG. 5. Computational cost of DMET and L-DMET calcula-
tions for 2D Hubbard models. The CPU time is averaged over 20
experiments.

Hamiltonian is discretized using the STO-6G basis set, and
these basis functions are orthogonalized with the Löwdin
orthogonalization procedure [49]. We use open boundary
conditions and the restricted Hartree-Fock (RHF) method for
the low-level method. The chain is partitioned into fragments
with two adjacent atoms in each fragment, and the fragments
do not overlap with each other. The high-level problem is
solved with the full configuration-interaction (FCI) method.
The CPU times for the low-level and the high-level parts
of the calculation are aggregated separately over the entire
self-consistent loop.

Figure 6 shows that as the system size increases, the costs
of both DMET and L-DMET calculations are dominated by
the low-level calculations. As a result, L-DMET is signifi-
cantly faster than DMET due to the acceleration of the low-
level calculations for large systems (when the system size is
larger than 64 sites). When the number of orbitals is 128 (i.e.,
128 atoms), the low-level part of L-DMET is 13.5 times faster

FIG. 6. Computational cost of DMET and L-DMET calculations
for hydrogen chains.
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(a) (b)

FIG. 7. (a) The total energy of the hydrogen chain as computed by HF, FCI, DMET, and L-DMET. (b) The error of the total energy as
computed by HF, DMET, and L-DMET.

than that of DMET. Meanwhile, the wall clock times for the
high-level parts of DMET and L-DMET are comparable for
all systems considered.

To demonstrate the accuracy of L-DMET, we report the
dissociation energy curve for a hydrogen chain with ten atoms.
We start from an equidistant configuration and stretch the
hydrogen chain, maintaining equal distances between atoms.
The total energy curves of RHF, FCI, DMET, and L-DMET
are shown in Fig. 7. The DMET and L-DMET curves are
indistinguishable at all bond lengths. Compared to the exact
value (FCI energy), the total energy errors of DMET and
L-DMET are uniformly less than 0.01 a.u.

B. Impact of the fragment size

To improve the accuracy of DMET calculations, one may
consider increasing the fragment size. However, we demon-
strate that larger fragments can lead to numerical difficulties.
In particular, we observe that a large fragment size can easily
result in a gapless low-level model, which complicates the
self-consistent iterations in DMET/L-DMET calculations.

We demonstrate the issue using a hydrogen chain with 36
atoms and a bond length of 1 a.u.. The coupled cluster method
with singles and doubles (CCSD) implemented in PYSCF [42]
is employed to solve impurity problems. We consider different
partitions of the orbitals specified by fragment sizes of 1, 2,
3, 4, 6, 9, and 12. Furthermore, we experiment with multiple
fitting strategies for each fragment size by performing cor-
relation potential fitting using finer partitions of the system.
For instance, when the fragment size is 6 and there are 4
fragments, we may choose to perform correlation potential
fitting by considering only the diagonal blocks of size 3. In
this case, there are eight blocks in total during the stage of
correlation potential fitting. This second block size will be
referred to the “fitting size,” as opposed to the ‘fragment size’
which specifies the size of the impurity problems that are
solved. Note that the fragment size must be a multiple of
the fitting size. When the fitting size is 1, DMET reduces
to the density embedding theory (DET) [18]. According to

Appendix A, when the fitting size is too large, the correlation
potential may not be unique.

As shown in Fig. 8, when the fitting size is set to be the
same as the fragment size in DMET, the gap of the low-
level Hamiltonian decreases as the fragment size increases. It
eventually vanishes when the fragment size is greater than 6.
However, if we fix the fitting size, the gap tends to be a con-
stant as the fragment size increases. The same observations
apply for L-DMET. Different fitting sizes also lead to different
convergence patterns of the total energy as the fragment size
increases. After enough iterations, the total energies computed
with different fitting sizes become comparable, but we observe
that the DMET and L-DMET self-consistent iterations are
more stable when the low-level energy gap does not vanish.

VIII. CONCLUSION

In this paper, we propose the L-DMET method for tackling
the problem of correlation potential fitting in the density ma-
trix embedding theory (DMET). This is often a computational
bottleneck in large-scale DMET calculations, particularly for
inhomogeneous systems. L-DMET improves the robustness
of the correlation potential fitting using an approach that relies
on convex optimization—in particular, semidefinite program-
ming (SDP). The SDP reformulation allows us to provably
find the correlation potential, when the correlation potential
is uniquely defined. It also allows us to use state-of-the-art
numerical methods and software packages to compute the
correlation potential in a robust fashion.

Meanwhile, L-DMET improves the efficiency of the corre-
lation potential fitting by replaces the global fitting procedure
with several local correlation potential fitting procedures for
each fragment. Moreover, we have shown that under certain
natural conditions, the fixed points of L-DMET coincide
with the original DMET. We remark that the idea of local
fitting was briefly mentioned in the literature [15,16], but
was not adopted due to the possibility of slowing down the
convergence. It was therefore recommended that the corre-
lation potential for all local fragments should be optimized
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(a) (b)

FIG. 8. (a) Low-level HOMO-LUMO gap and (b) total DMET energy (right) for different fragment sizes and fitting sizes. The dotted line
in (b) shows the CCSD energy for the entire system as a reference.

simultaneously [19]. Our results suggest that the Jacobian ma-
trix of the DMET fixed point problem is often well behaved. In
all cases studied, we find that local-fitting is indeed an efficient
alternative to the global fitting approach. We demonstrate the
accuracy, efficiency, and robustness of the L-DMET method
by testing on Hubbard models and the hydrogen chain.

We remark that our SDP approach is formulated for the
setting of the “fragment only fitting”, i.e. the matrix size of
the density matrix blocks and that of the correlation potential
are the same. There is another setting called the “fragment
plus bath fitting” [15,16], where the matrix size of the density
matrix blocks is larger than that of the correlation potential.
Our SDP formulation is not directly applicable to the fragment
plus bath fitting when the correlation potential is solved
globally. Nonetheless, it may be possible to consider the SDP
formulation of the fragment plus bath fitting in the L-DMET
approach, where the correlation potential is first solved on the
entire impurity, and then truncated to the fragment degrees of
freedom.

The question of whether the correlation potential is
uniquely defined is central to both DMET and L-DMET. We
show that in order to obtain a unique correlation potential, a
necessary condition is that Ne ! LA, i.e., that the total electron
number is larger than the fragment size. In practice we observe
that the correlation potential is indeed often (but not always)
unique when Ne ! LA. We remark that the issue of finding a
unique correlation potential is particularly relevant now due
to the recent progress of ab initio DMET calculations [20],
where the fragment size can be large due to the use of a
large basis set. Hence a rigorous understanding of sufficient
conditions for the uniqueness of the correlation potential, as
well as practical remedies when the correlation potential fails
to be unique, are important issues that we shall consider in
future work.
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APPENDIX A: UNIQUENESS OF
THE CORRELATION POTENTIAL

Here we demonstrate that the condition Ne ! LA as in
Assumption 1 is necessary for the correlation potential to
be unique. Suppose Ne < LA and there exists u ∈ S0 such
that f + u is gapped. Then let u1, . . . , uNe be eigenvectors of
f + u spanning the occupied subspace, so that D := D( f +
u, Ne) =

∑Ne
i=1 uiu∗

i . Then let vx
1, . . . , v

x
Ne

∈ CLA be defined

via vx
i = (#frag

x )
†
ui as the components of the ui within an

arbitrary fragment x. Since Ne < LA, there exists some vector
wx ∈ CLA with ‖wx‖ = 1 which is orthogonal to all of the vx

i .

Let W = (#frag
x )(wx )(wx )†(#frag

x )
†
. Then by construction, all

the ui are in the null space of W for i = 1, . . . , Ne. Hence the
ui are eigenvectors of f + u + τ (W − I ) for i = 1, . . . , Ne, all
τ ∈R. Note that τ (W − I ) ∈ S0, and since f + u is gapped,
when τ is sufficiently small, we have D( f + u + τ (W −
I ), Ne) =

∑Ne
i=1 uiu∗

i = D, contradicting uniqueness.

APPENDIX B: OBTAINING BATH ORBITALS
FROM THE LOW-LEVEL DENSITY MATRIX

The global low-level density matrix, obtained from the
decomposition in Eq. (4) takes the form

Dll =
(

UA"2
AU †

A UA"A"BU †
B

UB"B"AU †
A UB"2

BU †
B + UcoreU †

core

)
:=

(
D11 D12
D21 D22

)
,

(B1)
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where D11 corresponds the fragment x only. Then the CS
decomposition (4), and hence the bath and core orbitals can
also be identified from Dll directly. The eigenvalue decompo-
sition of D11 directly gives

D11 = UA"2
AU †

A . (B2)

The bath-fragment density matrix can be written as

D21 = CBC†
A = UB"B"AU †

A . (B3)

The unitary matrix UB can be calculated by normalizing all
the columns of the matrix D21UA, since

UB"B"A = D21UA.

The diagonal elements of "A"B are the corresponding norms
of the columns. As a result, "B is also obtained with the
known "A in (B2). Therefore we obtain the bath orbitals.
Once the bath orbitals are obtained, the core orbitals can be
obtained from the following relation

UcoreU †
core = D22 − UB"2

BU †
B . (B4)

APPENDIX C: PROOF OF PROPOSITION 2

Heuristically, the idea for proving Proposition 2 is that the
first-order optimality conditions for the optimization problem
of Eq. (10) (assuming differentiability at the optimizer) are
precisely ∇ux F (u) = Dhl,frag

x , i.e., equivalent to exact fitting.
However, some care is required when F is singular at the
optimizer.

We think of F as a function on (Nf ) tuples of LA×LA
(Hermitian) matrices (ux )Nf

x=1 = (u1, . . . , uNf ). This domain is
identified with S as a slight abuse of notation. As above we
denote u =

⊕Nf
x=1 ux, but by some abuse of notation we will

also identify u with (ux )Nf
x=1 = (u1, . . . , uNf ).

Since we are given diagonal blocks Dhl,frag
x that we want

to fit by choice of correlation potential blocks ux, we want
to invert the gradient of F . We roughly understand that the
gradient of ∇F = (∇ux F )Nf

x=1 is invertible (up to shifting by
a scalar matrix), with inverse specified by the gradient of
the concave conjugate or Legendre-Fenchel transform F ∗.
But since F is not differentiable everywhere, in fact the
supergradient [36] mapping ∂F must be considered. Under
this mapping, each singular point (ux )Nf

x=1 of F maps to all
(Px )Nf

x=1 lying in the supergradient set of F at (ux )Nf
x=1, i.e., all

(Px )Nf
x=1 such that

F (v) " F (u) +
∑

x

Tr[Px(vx − ux )]

for all v ∈ S.
The set of optimizers of (10) is precisely the set ∂F ∗(P)

[36]. Moreover, we have P ∈ ∂F (u) if and only if u ∈ ∂F ∗(P)
[36]. Hence provided that P is in the supergradient image of
F , the set of optimizers of (10) is nonempty, and any element
u$ satisfies P ∈ ∂F (u$). Moreover, if f + u$ is gapped, then
as previously discussed F is differentiable at u$, i.e., the sub-
gradient is a singleton, and ∇F (u$) = P, i.e., u$ attains exact
fitting according to P. Finally, if u$ is the unique optimizer,
then it follows that there does not exist u 7= u$ such that
P ∈ ∂F (u). Hence if u$ is the unique optimizer and f + u$

is gapless, then there is no correlation potential yielding an
exact fit.

Then to complete the proof it suffices to show that our
assumptions on (Dhl,frag

x )Nf
x=1 (i.e., that 0 ≺ Dhl,frag

x ≺ ILA and∑
x Tr[Dhl,frag

x ] = Ne) imply that (Dhl,frag
x )Nf

x=1 lies in the super-
gradient image of F . To understand the supergradient image
of F and how to construct the correlation potential u more
explicitly, we must study the concave conjugate F ∗.

Recall that the effective domain dom(F ∗) of F ∗ is defined
as the set of all points for which F ∗ > −∞. The relative
interior (i.e., the interior of the effective domain within its
affine hull [36]) of the effective domain coincides with the
supergradient image of F [36], so we want to understand it.

To this end, we shall concoct an alternate formula for F ∗.
First recall that F ∗∗ = F , i.e.,

F (u) = inf
(Px )Nf

x=1∈dom(F ∗ )

{
Nf∑

x=1

Tr[Pxux] − F ∗(P1, . . . , PNf )

}

.

Meanwhile observe that for A Hermitian,

ENe (A) = inf {Tr[AP] : 0 9 P 9 IL, Tr[P] = Ne},
so applying this result to F (u) = ENe ( f + u), we see that

F (u) = ENe ( f + u)

= inf
P†=P

{
Nf∑

x=1

Tr[Pxux] − G(P)

}

= inf
(Px ) Hermitian

{
Nf∑

x=1

Tr[Pxux] − sup
P : Px=[P]x ∀x

G(P)

}

,

where

G(P) =
{
−Tr[tP], 0 9 P 9 IL, Tr[P] = Ne,
−∞, otherwise.

However, consequently F = g∗, where

g
(
P1, . . . , PNf

)
= sup

P : Px=[P]x ∀x
G(P)

= − inf
09P9IL : Tr[P]=Ne, [P]x=Px∀x

Tr[tP].

Then it its clear that

dom(F ∗) =
{

(P1, . . . , PNf ) : 0 9 Px 9 ILA

for x = 1, . . . , Nf ,

Nf∑

x=1

Tr[Px] = Ne

}

.

Hence the relative interior of the effective domain is given by

relint dom(F ∗) =
{

(P1, . . . , PNf ) : 0 ≺ Px ≺ ILA

for x = 1, . . . , Nf ,

Nf∑

x=1

Tr[Px] = Ne

}

.

Our assumption on (Dhl,frag
x )Nf

x=1 was precisely that it lies in
this set, so (Dhl,frag

x )Nf
x=1 lies in the supergradient image of F ,

and the proof is complete.
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APPENDIX D: PROOF OF PROPOSITION 3

Recall that for fixed P = (P1, . . . , PNf ) satisfying 0 ≺ Px 9
ILA for all x and

∑
x Tr[Px] = Ne, we want to solve

inf
u∈S0

[
∑

x

Tr[Pxux] − F (u)

]

.

Recall that

F (u) = F (u1, . . . , uNf ) = ENe [h + u],

and ENe indicates sum of lowest Ne eigenvalues. We will write
F (u) as the optimal value of a suitable concave maximization
problem and plug this into the above convex minimization
problem to derive an SDP equivalent to what we want to solve.

First we observe that for any symmetric A and any m,
we can write Em(A) as the optimal value of the convex
minimization problem:

Em(A) = inf {Tr(AX ) : Tr(X ) = m, 0 9 X 9 I}.
Then we will derive the dual of this minimization problem to
write Em(A) as the optimal value of a concave maximization
problem. To wit, write the Lagrangian,

L(X,Y, Z,α) = Tr(AX ) − Tr(Y X )

− Tr(Z[I − X ]) − α(Tr(X ) − m)

= Tr([A − Y + Z − αI]X ) + αm − Tr(Z ),

where the domain is defined by X symmetric, Y 1 0, Z 1 0,
α ∈ R. Then carry out the minimization over X to derive the
dual problem

maximize
Y 10,Z10,α∈R

αm − Tr(Z )

subject to A − Y + Z − αI 1 0.

Evidently it is optimal to choose Y = 0, hence we have the
equivalent program

maximize
Z10,α∈R

αm − Tr(Z )

subject to A + Z − αI 1 0.

The optimal value is equal to Em(A) by strong duality, i.e., we
can write

Em(A) = max{αm − Tr(Z ) : A + Z − αI 1 0,

Z 1 0, α ∈ R}.
Applying this result for A = h + u, we see that we can

rephrase our original optimization problem as

minimize
u∈S0, Z∈CM×M Hermitian,α∈R

Nf∑

x=1

Tr[Pxux] − αNe + Tr(Z )

subject to h + u + Z − αI 1 0

Z 1 0,

as was to be shown.

APPENDIX E: PROOF OF PROPOSITION 4

We first consider a fixed point of DMET denoted by u$,
which solves Eq. (9) with F = FDMET. At the fixed point, the

correction potential vx is 0 for all fragments x. Then for any x

Dhl,frag
x = E)#†

xD( f + u$, Ne)#xE ,

where as before E = (ILA, 0LA×LA )). Here, f + u∗ is gapped
so that D( f + u$, Ne) is well-defined. If we can further show
that for any x,

E)#†
xD( f + u$, Ne)#xE = E)D(#†

x ( f + u$)#x, LA)E .
(E1)

Then by the uniqueness of the local correlation fitting we have
vx = 0. Therefore u$ is a fixed point problem of the L-DMET.

Without loss of generality, we assume fragment x consists
of orbitals {1, 2, . . . , LA}. Using the notation in Eq. (4), the
basis transformation matrix is

U =
(

I 0 0 0
0 UB Ucore Uvir

)
∈ CL×L.

It can be obtained via

minimize
C∈CL×Ne ,C†C=INe

Tr[C†( f + u$)C], (E2)

and with respect to the new basis defined by U , Eq. (E2)
becomes

minimize
X̃∈CL×Ne ,X̃ †X̃=INe

Tr[X̃ †U †( f + u$)UX̃ ]. (E3)

Using the decomposition (4), we have

X̃ = U †C =





UA"AV †

"BV †

V †
⊥
0



. (E4)

Now we constrain X̃ to take a more general form

X̃ =




XV †

V †
⊥
0



 ∈ CL×Ne ,

where X ∈ C2LA×LA and X †X = ILA . Then we have

Tr[X̃ †U †( f + u$)UX̃ ] = Tr[X †#†
x ( f + u$)#xX ]

+ Tr[V †
⊥-V⊥],

where - is the diagonal matrix consisting of the eigenvalues
of core orbitals. Since the second term on the right hand side
does not depend on X , then X = (UA"A

"B
) solves the following

minimization problem

minimize
X∈C2LA×LA ,X †X=ILA

TrX †#†
x ( f + u$)#xX

Therefore

E)D(#†
x ( f + u$)#x, LA)E

= E)XX †E = UA"2
AU †

A = E)#†
xD( f + u, Ne)#xE .

The last equality follows from Eq. (B1).
Similarly if u$ is a fixed point of L-DMET, by Eq. (E1) it

is also a fixed point of DMET.

085123-14



ENHANCING ROBUSTNESS AND EFFICIENCY OF … PHYSICAL REVIEW B 102, 085123 (2020)

FIG. 9. (a) Success rates of the least squares and (b) success rates of the convex optimization for the 1D Hubbard model.

APPENDIX F: COMPARISON OF SEMIDEFINITE
PROGRAMMING AND LEAST SQUARES FITTING

IN 1D HUBBARD MODEL

To further evaluate the comparison between the SDP and
least squares fitting, we repeat the analysis of their success
rates following exactly the same procedure as outlined in
Sec. VI A, except that we now instead consider a 1D Hubbard
model. In particular, we consider a 1D Hubbard chain of
40 sites with antiperiodic boundary condition, and we take

fragments consisting of two sites. As shown in Fig. 9, the least
squares approach clearly performs better than it does on the
2D Hubbard model. Nonetheless, the least squares frequently
fails when the number of electrons is 24, 28, 32, 36, and
40. Meanwhile, the SDP approach enjoys a 100% success rate
on our test cases. The experiment for the 1D Hubbard model
indicates again the SDP approach is more robust than the least
squares approach.
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