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In quantum embedding theories, a quantum many-body system is divided into localized clusters 
of sites which are treated with an accurate ‘high-level’ theory and glued together self-consistently 
by a less accurate ‘low-level’ theory at the global scale. The recently introduced variational 
embedding approach for quantum many-body problems combines the insights of semidefinite 
relaxation and quantum embedding theory to provide a lower bound on the ground-state energy 
that improves as the cluster size is increased. The variational embedding method is formulated 
as a semidefinite program (SDP), which can suffer from poor computational scaling when treated 
with black-box solvers. We exploit the interpretation of this SDP as an embedding method to 
develop an algorithm which alternates parallelizable local updates of the high-level quantities 
with updates that enforce the low-level global constraints. Moreover, we show how translation 
invariance in lattice systems can be exploited to reduce the complexity of projecting a key matrix 
to the positive semidefinite cone.

1. Introduction

The problem of determining the ground state of a quantum many-body system has wide-ranging applications in physics, chemistry, 
and materials science. This problem can be viewed as the problem of determining the lowest eigenvalue of a Hermitian operator on 
a Hilbert space whose dimension grows exponentially with the size of the system or the number of particles, such as electrons in the 
case of electronic structure. Here we highlight two relevant categories of approaches to taming this curse of dimensionality.

The first category is that of semidefinite relaxations, which rephrase the aforementioned energy minimization problem as an 
optimization problem in terms of a reduced set of physical observables, almost always a semidefinite program (SDP). In principle 
these observables satisfy representability constraints, i.e., constraints that ensure that they can be recovered from a bona fide quantum 
many-body state. However, only a subset of representability constraints can be efficiently enforced, yielding tractable optimization 
problems that provide lower bounds on the ground-state energy. Such approaches include the 2-RDM theories [28,26,4,27,42,24,1,
29,7], as well as methods that may be classified as quantum marginal relaxations such as [23,30,9,16].

Meanwhile, quantum embedding theories take the perspective of dividing a system into local clusters, small enough to be treated 
with a highly accurate or exact method referred to as the ‘high-level’ method. Local problems are then stitched together via a 
reduced set of global quantities or a less-accurate ‘low-level’ method that operates on the global scale, and the local and global 
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perspectives are constrained to be compatible via some self-consistency condition. Such approaches include dynamical mean-field 
theory (DMFT) [13,22] and density matrix embedding theory (DMET) [20,21], as well as variants such as the energy-weighted DMET 
(EwDMET) [10,11] which in a certain sense interpolates between DMFT and DMET [35].

Recently, variational embedding [25] was introduced as a semidefinite relaxation which is also a quantum embedding method. 
Like other relaxations such as [23,30,9,16], the key optimization variables are quantum marginals for local clusters, but variational 
embedding additionally includes global constraints which tighten the relaxation and accommodate the treatment of, e.g., long-range 
interactions.

1.1. Contribution

As an SDP, variational embedding can be solved with black-box methods, as is done in [25], but scalability calls for a solver 
that is specially adapted to the problem. In this work, we introduce a scalable solver for this SDP which takes advantage of the 
embedding interpretation of the approach. The aforementioned global constraint is dualized to reduce the problem to a simpler 
relaxation (similar to those of [23,30,9,16]) in which the global constraints have been exchanged for effective contributions to 
relevant Hamiltonian operators at the local scale. This problem can then be solved in a fashion in which effective problems for the 
key variables (the two-cluster marginals) are completely decoupled and can be solved in parallel, with dual variable optimization 
enforcing the self-consistency of these problems. Furthermore, translation invariance of a lattice system can be used to significantly 
speed up the running time.

We now briefly mention some further details of our method for solving the simplified problem yielded by partial dualization. 
Our approach is similar to that of augmented Lagrangian methods (ALM) [17,31,32,37], in that it is derived from an augmented 
Lagrangian function. However, the primal update for the ALM suggested by our problem is too expensive to solve exactly in each 
iteration. Inexact ALMs [33] provide one option for circumventing this difficulty, but due to the separable structure of our objec-
tive (after partial dualization of the global constraint), it is natural for us to pursue an ADMM-type approach for this subproblem. 
The alternating direction method of multipliers (ADMM) was introduced by [15,12], and see [40] for recent developments. This 
approach allows us to solve several decoupled, physically local effective sub-problems completely in parallel, preserving the flavor 
of a quantum embedding theory.

We note that [41,36] have developed variants of ALM and ADMM, respectively, to solve large-scale SDPs. One key difference of 
our work is that we dualize a partial set of semidefinite constraints, then we apply ADMM to solve the partially dualized problem, 
which has convenient revealed structure. On the other hand, [41] and [36] directly work with the full primal and dual problems 
respectively.

1.2. Outline

In Section 2 we provide relevant background on the ground-state eigenvalue problem, examples of interest, and the two-marginal 
relaxation for variational embedding introduced in [25]. (In Appendix A, additional background is provided for the context of 
fermionic systems.) In Section 3, we describe our optimization approach to this problem, which is an SDP. The section begins 
with an idealized scheme of projected gradient ascent on the dual variable to the aforementioned global constraint. In order to 
implement such a scheme, it is necessary to solve an effective problem in terms of the primal variables. In Section 3.1, we introduce 
an ADMM-type approach to this problem, and in Section 3.2 we integrate this approach with dual ascent to define our practical 
scheme. In Section 3.3 we explain how translation-invariance can be exploited, and in Section 3.4 we include a detailed discussion 
of the computational scaling. Finally in Section 4 we present numerical experiments on several model systems of quantum spins and 
fermions.

2. Preliminaries

In this section we review the formulation of variational embedding for quantum spins, following [25]. In Appendix A, we review 
the case of fermions (also following [25]), which requires a bit more care but nonetheless yields a semidefinite program of identical 
form after suitable manipulations.

2.1. The ground-state eigenvalue problem

We consider a model with ! sites, indexed " = 1, … , ! , each endowed with a classical local state space #" (which shall be 
discrete). These in turn yields local quantum state spaces $" =ℂ|#"|. The global quantum state space (i.e., the space of wavefunctions) 
is then given by

 ∶=
!⨂
"=1

$" ≃ℂ||,

where  ∶=∏!
"=1#" is the global classical state space, so quantum states (wavefunctions) correspond to complex-valued functions 

on the classical state space. Let %" (resp. %"& ) denote Hermitian operators $" →$" (resp. $"& →$"& ), and let %̂" (resp. %̂"& ) denote 
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the corresponding operators  →  obtained by tensoring %" (resp. %"& ) by the identity operator on all sites ( ≠ " (resp. ( ≠ ", &). 
We consider pairwise Hamiltonian %̂ ∶ → of the form

%̂ =
∑
"
%̂" +

∑
"<&

%̂"& ,

and our interest is in determining the ground-state energy, i.e., the smallest eigenvalue, of %̂ . We denote this eigenvalue by )0, 
which is defined variationally by

)0 = inf
{
Φ∗%̂Φ ∶ Φ∈, Φ∗Φ = 1

}
. (2.1)

Now we review some examples of interest. First consider the case of quantum spin- 12 systems, i.e., the case #" = {−1, 1}. To 
construct operators on , one first starts with the Pauli matrices

*+ =
(
0 1
1 0

)
, *, =

(
0 −"
" 0

)
, *- =

(
1 0
0 −1

)
,

which (together with the identity .2) form a basis for the real vector space of Hermitian operators on ℂ2. We let *+∕,∕-" denote the 
operator  →  obtained by tensoring *+∕,∕- on the "-th site with .2 on all other sites. Then in terms of these operators we can 
define the transverse-field Ising (TFI) Hamiltonian and the anti-ferromagnetic Heisenberg (AFH) Hamiltonian by

%̂TFI = −ℎ
∑
"
*+" −

∑
"∼&

*-" *
-
& (2.2)

%̂AFH =
∑
"∼&

[
*+" *

+
& + *

,
" *

,
& + *

-
" *

-
&

]
, (2.3)

ℎ is a scalar parameter and summation over " ∼ & indicates summation over pairs of indices that are adjacent within some graph de-
fined on the index set {1, … , !}, often a rectangular lattice in some dimension. These problems have been considered as prototypical 
quantum many-body problems, e.g., in [5], as well as models for the study of quantum phase transitions, as in [34].

2.2. The two-marginal relaxation

In [25], the optimization problem (2.1) is reformulated as an optimization over the density operator 0, which (for nondegen-
erate ground states) corresponds at optimality to Φ0Φ∗

0 where Φ0 is the ground state eigenvector, i.e., the optimizer of (2.1). This 
optimization is in turn relaxed as a computationally tractable optimization over the quantum two-marginals

0"& = Tr{",&}1 [0], " < &,

which are defined as partial traces of 0, analogous to classical marginals. Indeed, recall [25] that for any subset 2 ⊂ {1, … , !}, the 
partial trace 02 = Tr21 [0] may be defined as the unique operator on 

⨂
"∈2 $" such that Tr[402 ] = Tr[4̂0] for all operators 4 on ⨂

"∈2 $" (lifted to operators 4̂ on  by tensoring with the identity on 21). In particular, 0"& is an operator on $"⊗$& , and moreover 
it is positive semidefinite with unit trace (following from the same properties for 0).

Then the two-marginal relaxation of [25] reads in terms of the two marginals (and the analogously-defined one-marginals, which 
can be obtained from the two-marginals by further partial trace) as the following semidefinite program, whose optimal value we 
denote by )(2)

0 :

minimize
{0"},{0"&}"<&

∑
"
Tr

[
%"0"

]
+
∑
"<&

Tr
[
%"&0"&

] (2.4)

subject to 0"& ⪰ 0, 1 ≤ " < & ≤! , (2.5)
0" = Tr{2}[0"& ], 0& = Tr{1}[0"& ], 1 ≤ " < & ≤! , (2.6)
Tr[0"] = 1, " = 1,… ,! , (2.7)
6[{0"},{0"&}"≤& ] ⪰ 0. (2.8)

Here 6 =6[{0"}, {0"&}"≤& ] is an operator defined linearly in terms of the one- and two-marginals, subordinate to the specification of 
an arbitrary collection {7",8 ∶ 8 = 1, … , 9"} of linear operators $" →$" at each site " = 1, … , ! . In specific, 6 is specified blockwise, 
with blocks 6"& for 1 ≤ ", &, ≤! of size 9" × 9& defined by

(
6"&

)
8: =

⎧
⎪
⎨
⎪⎩

Tr
[
7†
",87",: 0"

]
" = &

Tr
[(
7†
",8 ⊗7&,:

)
0"&

]
" ≠ &.
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The choice of operators only matters up to span{7",8 ∶ 8 = 1, … , 9"}, and in our numerical experiments we shall consider the 
complete operator collection spanning all linear maps $" →$". The last constraint (2.8) is called the global semidefinite constraint.

2.2.1. Classical marginal relaxation
To motivate the relaxation (2.4) further, we examine the problem of finding the lowest energy state of a classical energy function 

of a pairwise form. (This can be viewed as a special case of the more general quantum ground-state problem by taking the %"& to be 
diagonal operators.) More concretely, for +" ∈#", " = 1, … , ! , define an energy function

)(+1,… ,+! ) =
∑
"<&

)"& (+",+& ), (2.9)

and observe that the minimizer of ) can be determined via the linear program

argmin
;∈Π()

∑
(+1 ,…,+! )∈

)(+1,… ,+! );(+1,… ,+! ), (2.10)

where Π() is the space of probability measures on  . Indeed, the optimizer is a <-function supported on the minimizer of )
(provided that it is unique). Exploiting the pairwise structure of ), we have

argmin
{;"&}"<& repr.

∑
"<&

∑
+" ,+&∈

)"& (+",+& );"& (+",+& ) (2.11)

where the two-marginal variables {;"&}"<& are constrained to be jointly representable, i.e., to be derivable as the two-marginals of 
a high-dimensional measure ;. Enforcing this constraint demands exponential complexity, so various convex relaxation approaches 
have been proposed, where only certain necessary conditions for the {;"&}"<& are kept; see, for instance, [39] for a review. In 
particular, the analogous convex relaxation to (2.4) is

minimize
{;"},{;"&}"<&

∑
"<&

Tr
[
)"&;"&

] (2.12)

subject to ;"& ≥ 0, 1 ≤ " < & ≤! , (2.13)
;" = ;"&!, ;& = ;⊤"&!, 1 ≤ " < & ≤! , (2.14)
;⊤" ! = 1, " = 1,… ,! , (2.15)
⎡
⎢
⎢
⎢⎣

diag(;1) ;12 ⋯ ;1!
;21
⋮ ⋱ ⋮
;!1 ⋯ diag(;! )

⎤
⎥
⎥
⎥⎦
⪰ 0, (2.16)

where ! is an all-one vector of appropriate size. Here (2.13) and (2.15) are standard constraints for any discrete probability distribu-
tions, and (2.14) are constraints that enforces ‘local consistency’ [39] among the {;"&}"<& . The global semidefinite constraint (2.16)
is discussed in [19] and [6] in the contexts of multi-marginal optimal transport and energy minimization, respectively.

2.3. Cluster relaxation

Given a quantum spin model as above and a decomposition of the sites {1, … , !} as a disjoint union ⋃! ′
"′=1>"′ of clusters >"′ , we 

may define #′
"′ ∶=

∏
"∈>"′

>"′ to be the classical state space for the "′-th cluster. One see that any Hamiltonian that is pairwise with 
respect to sites is pairwise with respect to clusters, so by viewing our clusters as sites and applying the above formalism, we obtain a 
tighter relaxation [25].

2.4. Partial duality

In [25] it was shown that (2.4) admits the minimax formalization (obtained via dualization of the global semidefinite constraint 
(2.8))

)(2)
0 = sup

#⪰0
 [#], (2.17)

where

 [#] ∶= inf
{∑

"
Tr

(
%"[#""]0"

)
+
∑
"<&

Tr
(
%"& [#"& ]0"&

)
∶ {0"}, {0"&}"<& satisfy (2.5)-(2.7)

}
. (2.18)

Here #"& denote the blocks of #, and the ‘effective’ Hamiltonian terms %"[#""] and %"& [#"& ] are defined linearly in terms of # via
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%"[#""] ∶=%" −
9"∑

8,:=1
(#"")8:7

†
",87",: , %"& [#"& ] ∶=%" −

[ 9"∑
8=1

9&∑
:=1

(#"& )8:
(
7†
",8 ⊗7",:

)
+ h.c.

]
, (2.19)

where ‘h.c.’ denotes the Hermitian conjugate term.
This partial dual formulation can be obtained from (2.4) by exchanging the global semidefinite constraint (2.8) for an extra term

−Tr[#6[{0"},{0"&}"≤& ]]
in the Lagrangian, where # ⪰ 0 is a dual variable with respect to which the Lagrangian is to be maximized. Then (2.19) is recovered 
by breaking this additional term into a blockwise sum, collecting terms, and minimizing over the primal variables, subject to the 
remaining constraints.

Since # and 6 are dual variables [25] we have that

∇# [#] = −6[{0"},{0"&}"<& ], (2.20)
where {0"}, {0"&}"<& are the minimizers of the infimum in (2.18).

3. Optimization approach

In order to solve the two-marginal relaxation (2.4), our point of departure is the partial dual formulation (2.17). For simplicity 
we consider the case in which the Hamiltonian and all variables are purely real, and we let Π⪰0 be defined by

Π⪰0(>) ∶=min
2⪰0

‖2 −>‖2? , (3.1)

for a symmetric matrix 4, i.e. the Euclidean projection (in Frobenius norm) of a symmetric matrix onto the set of real symmetric 
positive semidefinite matrices (equivalent to setting all negative eigenvalues of the argument to zero). As an idealized scheme, we 
can imagine performing projected gradient ascent on (2.17), which is implemented by Algorithm 1. In practice, the step size @ > 0 in 
Algorithm 1 should be chosen sufficiently small to guarantee convergence, but not much smaller.

Algorithm 1 Exact projected gradient ascent.
Require: @ > 0, # ⪰ 0
1: while not converged do
2: Set ({0"},{0"&}"<&

) to be the minimizer in (2.18), holding # fixed
3: #←Π⪰0

(
# + @6[{0"},{0"&}"<& ]

)
4: end while

The focus of this section is in the development of algorithm for step 2 for a general Hamiltonian, and we also study the case in 
the presence of translational invariance. In practice, we will not fully converge a solution to step 2 of Algorithm 1, resulting in an 
inexact projected gradient ascent scheme. However, in order to motivate our practical scheme, we will first discuss how to solve step 
2 exactly for fixed #.

3.1. Details for step 2 in Algorithm 1

We rephrase step 2 as the following optimization problem:

minimize
{0"},{0"&}"<&

∑
"
Tr

[
% ′
" 0"

]
+
∑
"<&

Tr
[
% ′
"&0"&

]
(3.2)

subject to 0"& ⪰ 0, 1 ≤ " < & ≤! ,

0" =41[0"& ], 0& =42[0"& ], 1 ≤ " < & ≤! ,

Tr[0"] = 1, " = 1,… ,! ,

where % ′
" ∶=%"[#""], % ′

"& ∶=%"& [#"& ], and # is fixed for the duration of this subsection. Moreover, for simplicity we have assumed 
that A ∶= |#"| is constant, and 41, 42 are defined to be the linear operators Tr{2} and Tr{1}, respectively. Hence 41, 42 can be 
realized as sparse matrices of size A2 × A4 We then formulate an equivalent optimization problem via the introduction of dummy 
variables 0̃"& and the inclusion of augmented Lagrangian terms in the objective:

minimize
{0"},{0"& ,0̃"&}"<&

∑
"
Tr

[
% ′
" 0"

]
+
∑
"<&

Tr
[
% ′
"&0"&

]

+
∑
"<&

(;
2 ‖0"& − 0̃"&‖

2
F +

C
2‖0" −41[0"& ]‖2F +

C
2‖0& −42[0"& ]‖2F

)
(3.3)

subject to 0̃"& ⪰ 0, 1 ≤ " < & ≤! ,

Λ"& ∶ 0"& = 0̃"& , 1 ≤ " < & ≤! , (3.4)
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Λ(1)
"& ∶ 0" =41[0"& ], Λ

(2)
"& ∶ 0& =42[0"& ], 1 ≤ " < & ≤! , (3.5)

Tr[0"] = 1, " = 1,… ,! ,

where ;, C > 0 are constant parameters, and Λ"& , Λ(1)
"& , Λ

(2)
"& ∈ End($" ⊗ $& ) are the dual variables for the associated constraints in 

(3.4) and (3.5). Let D [{0"}, {0"& , 0̃"&}"<& ] denote the objective function (3.3), yielding the Lagrangian

(
{0"}, {0"& , 0̃"&}"<& ; {Λ"& ,Λ

(1)
"& ,Λ

(2)
"& }"<&

)

∶= D [{0"}, {0"& , 0̃"&}"<& ] +
∑
"<&

(⟨
Λ"& , 0̃"& − 0"&

⟩
F +

⟨
Λ(1)
"& ,41[0"& ]− 0"

⟩
F
+
⟨
Λ(2)
"& ,42[0"& ]− 0&

⟩
F

)
,

(3.6)

with domain specified by the (undualized) primal constraints 0̃"& ⪰ 0 and Tr[0"] = 1. Here ⟨ ⋅ , ⋅ ⟩F indicates the Frobenius inner 
product. Then the Augmented Lagrangian method [2] for (3.2) is implemented by Algorithm 2.

Algorithm 2 Augmented Lagrangian method for (3.2).
Require: ;, C > 0, {% ′

" }, {% ′
"& , Λ"& , Λ(1)

"& , Λ(2)
"& }"<&

1: while not converged do
2: {0"}, {0"& , ̃0"&}"<& ← argmin

{0"},{0"& ,0̃"& }"<&
 
(
{0"}, {0"& , 0̃"&}"<& ; {Λ"& ,Λ

(1)
"& ,Λ

(2)
"& }"<&

)

3: for each pair " < & do
4: Λ"& ←Λ"& + ;

(
0̃"& − 0"&

)

5: Λ(1)
"& ←Λ(1)

"& + C(41[0"& ] − 0")
6: Λ(2)

"& ←Λ(2)
"& + C(42[0"& ] − 0& )

7: end for
8: end while

In practice, it is difficult to solve step 2 of Algorithm 2 exactly. Therefore, instead of optimizing {0"}, {0"& , 0̃"&}"<& jointly, we con-
sider an ADMM-type [3] substitute, namely Algorithm 3. Notice that in step 2 of Algorithm 3, the 0"& are all determined independently

Algorithm 3 Pseudo-code for ADMM-type method for (3.2).
Require: ;, C > 0, {% ′

" , 0"}, {% ′
"& , ̃0"& , Λ"& , Λ(1)

"& , Λ(2)
"& }"<&

1: while not converged do
2: {0"&}"<& ← argmin

{0"& }"<&
 
(
{0"}, {0"& , 0̃"&}"<& ; {Λ"& ,Λ

(1)
"& ,Λ

(2)
"& }"<&

)

3: {0"}, {0̃"&}"<& ← argmin
{0"},{0̃"& }"<&

 
(
{0"}, {0"& , 0̃"&}"<& ; {Λ"& ,Λ

(1)
"& ,Λ

(2)
"& }"<&

)

4: for each pair " < & do
5: Λ"& ←Λ"& + ;

(
0̃"& − 0"&

)

6: Λ(1)
"& ←Λ(1)

"& + C(41[0"& ] − 0")
7: Λ(2)

"& ←Λ(2)
"& + C(42[0"& ] − 0& )

8: end for
9: end while

as the solutions of decoupled optimization problems

0"& ← argmin
0"&

{⟨
% ′
"& ,0"&

⟩
F
+ ;

2 ‖0"& − 0̃"&‖
2
F +

C
2‖41[0"& ]− 0"‖2F +

C
2‖42[0"& ]− 0&‖2F

−
⟨
Λ"& ,0"&

⟩
F +

⟨
Λ(1)
"& ,41[0"& ]

⟩
F
+
⟨
Λ(2)
"& ,42[0"& ]

⟩
F

}
.

After suitable manipulation of the objective (neglecting constant terms), we obtain
1
2
⟨
0"& ,

(
;. + C4∗

141 + C4∗
242

)
0"&

⟩
F −

⟨
;0̃"& +4∗

1

[
C0" −Λ(1)

"&

]
+4∗

2

[
C0& −Λ(2)

"&

]
+Λ"& −% ′

"& ,0"&
⟩
F
,

which can be exactly optimized via the update

0"& ←
(
;. + C4∗

141 + C4∗
242

)−1 (;0̃"& +4∗
1

[
C0" −Λ(1)

"&

]
+4∗

2

[
C0& −Λ(2)

"&

]
+Λ"& −% ′

"&

)
. (3.7)

Meanwhile, in step 3, the 0" and the 0̃"& can all be updated via decoupled optimization problems. In particular, we find that

0̃"& ← argmin
0̃"&⪰0

{‖0̃"& − (0"& − ;−1Λ"& )‖2
}
=Π⪰0

(
0"& − ;−1Λ"&

)
. (3.8)

Finally we turn to the 0" update. Collecting the relevant terms we have that
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0" ← argmin
0" ∶Tr[0"]=1

{
⟨
% ′
" ,0"

⟩
F +

∑
&>"

( C
2‖0" −41[0"& ]‖2F −

⟨
Λ(1)
"& ,0"

⟩
F

)
+
∑
&<"

( C
2‖0" −42[0&"]‖2F −

⟨
Λ(2)
&" ,0"

⟩
F

)}
.

Observe that the objective may be rewritten as

(! − 1)C
2 ‖0"‖2F −

⟨∑
&>"

(
C41[0"& ] +Λ(1)

"&

)
+
∑
&<"

(
C42[0&"] +Λ(2)

&"

)
−% ′

" ,0"

⟩

F

,

which we must minimize subject to Tr [0"
]
= 1. This is simply a constrained least squares problem, the solution of which yields the 

update

0" ←
1

C(! − 1)

(∑
&>"

(
C41[0"& ] +Λ(1)

"&

)
+
∑
&<"

(
C42[0&"] +Λ(2)

&"

)
−% ′

"

)
+ -.A, (3.9)

where - is a Lagrange multiplier chosen to satisfy the constraint.
Then via (3.7), (3.8), and (3.9), we can rewrite Algorithm 3 concretely as the equivalent Algorithm 4. Observe that all of the 

for-loops in Algorithm 4 can be run in parallel.

Algorithm 4 Details of the ADMM-type method for (3.2).
Require: ;, C > 0, {% ′

" , 0"}, {% ′
"& , ̃0"& , Λ"& , Λ(1)

"& , Λ(2)
"& }"<&

1: while not converged do
2: for each pair " < & do
3: 0"& ←

(
;. + C4∗

141 + C4∗
242

)−1 (;0̃"& +4∗
1

[
C0" −Λ(1)

"&

]
+4∗

2

[
C0& −Λ(2)

"&

]
+Λ"& −% ′

"&

)

4: end for
5: for each pair " < & do
6: 0̃"& ←Π⪰0

(
0"& − ;−1Λ"&

)
7: end for
8: for each " do
9: 0′" ←

1
C(!−1)

(∑
&>"

(
C41[0"& ] +Λ(1)

"&

)
+∑

&<"

(
C42[0&"] +Λ(2)

&"

)
−% ′

"

)

10: - ←A−1(1 − Tr[0′"])
11: 0" ← 0′" + -.A
12: end for
13: for each pair " < & do
14: Λ"& ←Λ"& + ;

(
0̃"& − 0"&

)

15: Λ(1)
"& ←Λ(1)

"& + C(41[0"& ] − 0")
16: Λ(2)

"& ←Λ(2)
"& + C(42[0"& ] − 0& )

17: end for
18: end while

3.2. Practical scheme

Now we return to the full Algorithm 1 where we optimize # via an idealized gradient ascent. Instead of exactly implementing 
step 2 of Algorithm 1, we replace it with a single iteration of Algorithm 4, yielding our practical approach Algorithm 5 for solving 
the two-marginal relaxation (2.4).

Note that within Algorithm 5 it is possible to include an additional loop allowing for several repetitions of the block of primal 
updates (steps 2-18) before the block of dual updates (steps 19-24). If this additional loop were iterated to convergence, we would 
recover an exact augmented Lagrangian method. However, in practice we find that a single iteration of such a loop is the most 
effective choice (noting that the cost of the primal updates dominates that of the dual updates), and there is no practical motivation 
for further complicating Algorithm 5 as written. A practical comparison is provided in Appendix B.

Furthermore, inspired by [14], it is natural to consider a dual step size E ∈ (1, (1 +
√
5)∕2) appearing as a prefactor in front of the 

dual variable increments of steps 19-24. This possibility is explored in Appendix C, but due to a lack of demonstrated advantage is 
left out of our main numerical experiments for simplicity.

We pause now to provide some perspectives on the convergence of Algorithm 5. First, it is worth noting by inspection that our 
iterative algorithm formally retains the correct fixed point at optimality. However, a proof of convergence is beyond the scope of 
this paper. Indeed, certain features of the current algorithm differ importantly from the conventional augmented Lagrangian method 
for SDP. In our outer loop, we perform a dual update via gradient ascent on the dual variable for the global PSD constraint. The 
inner loop provides a gradient for the outer loop, though it is in practice solved only approximately. For the outer loop, we cannot 
readily leverage the nice properties of proximal point methods as in the case of ALM [33] to establish convergence. Furthermore, as 
the inner loop is only roughly solved, the resulting gradient is inexact, which introduces further difficulty.

3.3. Exploiting translation-invariance

One of the most expensive step in Algorithm 5 is step 24, where a projection to the positive semidefinite cone is required. We now 
discuss how translation-invariance of a lattice system can be exploited algorithmically in the solution of the two-marginal relaxation 
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Algorithm 5 Practical ADMM / projected dual gradient ascent method for (2.4).
Require: @, ;, C > 0, # ⪰ 0, {0"}, {0̃"& , Λ"& , Λ(1)

"& , Λ(2)
"& }"<&

1: while not converged do
2: for each " do
3: % ′

" ←%"[#""]
4: end for
5: for each pair " < & do
6: % ′

"& ←%"& [#"& ]
7: end for
8: for each pair " < & do
9: 0"& ←

(
;. + C4∗

141 + C4∗
242

)−1 (;0̃"& +4∗
1

[
C0" −Λ(1)

"&

]
+4∗

2

[
C0& −Λ(2)

"&

]
+Λ"& −% ′

"&

)

10: end for
11: for each pair " < & do
12: 0̃"& ←Π⪰0

(
0"& − ;−1Λ"&

)
13: end for
14: for each " do
15: 0′" ←

1
C(!−1)

(∑
&>"

(
C41[0"& ] +Λ(1)

"&

)
+∑

&<"

(
C42[0&"] +Λ(2)

&"

)
−% ′

"

)

16: - ←A−1(1 − Tr[0′"])
17: 0" ← 0′" + -.A
18: end for
19: for each pair " < & do
20: Λ"& ←Λ"& + ;

(
0̃"& − 0"&

)

21: Λ(1)
"& ←Λ(1)

"& + C(41[0"& ] − 0")
22: Λ(2)

"& ←Λ(2)
"& + C(42[0"& ] − 0& )

23: end for
24: #←Π⪰0

(
# + @6[{0"},{0"&}"<& ]

)
25: end while

(2.4). It is convenient in this section to adopt zero-indexing for the site, i.e., to index the sites by the multi-index " = ("1, … , "F ) where 
F is the lattice dimension and "G = 0, … , ! − 1. Then we assume translation-invariance in that %̂" = %̂# for all " and %̂"$ = %̂0,$−" for 
all " < &. The symmetries 0" = 0# and 0"$ = 00,$−" are in turn guaranteed to be satisfied by some optimizer of (2.4) [25].

Then we can implement Algorithm 5 (whose iterations preserve this symmetry) without any reference to variables besides 0#
and the 0#,$. The main challenge is the implementation of step 24 of Algorithm 5. Given 0# and the 0#,$, we can only compute the 
top row #′

#,$ of #′ ∶=# + @6[{0"}, {0"&}"<& ]. However, by translation invariance, the rest of #′ is determined by the property that 
#′

",$ = #
′
#,$−". (In the case F = 1, #′ is a block-circulant matrix, though a more general term is lacking for the case of arbitrary F.) 

Via translation invariance, #′ is block-diagonalized by the block-discrete Fourier transform. More precisely, one can write #′ as 
#′ = ( ⊗ .)#̂′(∗ ⊗ .), where  indicates the appropriate F-dimensional discrete Fourier transform matrix, . the identity matrix 
of the appropriate block size, ⊗ the Kronecker product, and #̂′ a block-diagonal matrix. Hence to compute the projection Π⪰0[#′]
we first compute the diagonal block #̂′

% of #̂′ as

#̂′
% =

1√
!F

!−1∑
&1 ,…,&F=0

exp
(
−H2I$ ⋅ %

!

)
#′

0,$.

Note that the blocks #̂′
% (concatenated into a block row) can be viewed as the entrywise discrete Fourier transform of the first block 

row of #′, hence can be computed simultaneously via FFT. Then project J% ∶=Π⪰0
[
#̂′

%
] for all %, and set

##,$ ←
1√
!F

!−1∑
&1 ,…,&F=0

exp
(
H
2I$ ⋅ %
!

)
J%.

The final pseudocode for the translation-invariant setting is given in Algorithm 6.

3.4. Discussion of scaling

In Algorithm 5, observe that the for-loops run over !(! − 1) pairs " < &, and the scaling bottleneck among these loops is the 
projection 0̃"& ←Π⪰0

(
0"& − ;−1Λ"&

) occurring in step 12. Since this step requires full diagonalization of a matrix of size A2 ×A2, for 
which the cost is 7(A6). Meanwhile, suppose for simplicity that 9" =A2, corresponding to the complete choice of operator collection {
78," ∶ 8 = 9"

} for each site. Then the size of 6 and # is !A2 ×!A2. Hence step 24, which involves a complete diagonalization of 
a matrix of this size, costs 7(A6!3), dominating the 7(A6!2) cost of the for-loops. If our sites are in fact supersites, each formed 
from clusters of K sites in an underlying spin- 12 model, then A = 2K. Therefore the scaling is 7(26K!3) per iteration, where K is the 
cluster size and ! is the number of clusters.

Meanwhile, in the translation-invariant setting of Algorithm 6, the for-loops run only over 7(!) sites, so—neglecting the update 
for #—the asymptotic cost per iteration is 7(A6!). Meanwhile, the construction of the #̂′

% in terms of the #0,$ can be achieved 
in time 7(A4! log!) via FFT. (Note that we simply treat the lattice dimension F as constant.) The cost of each projection of step 
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Algorithm 6 Translation-invariant ADMM / projected dual gradient ascent method for (2.4).
Require: @, ;, C > 0, (##,$

)
, 0#, {0̃#,$ , Λ#,$, Λ(1)

#,$ , Λ(2)
#,$}$≠#

1: while not converged do
2: % ′

# ←%#[##,#]
3: for each $ ≠ # do
4: % ′

#,$ ←%#,$[##,$]
5: end for
6: for each $ ≠ # do
7: 0#,$ ←

(
;. + C4∗

141 + C4∗
242

)−1 (;0̃#,$ +4∗
1

[
C0# −Λ(1)

#,$

]
+4∗

2

[
C0# −Λ(2)

#,$

]
+Λ#,$ −% ′

#,$

)

8: end for
9: for each $ ≠ # do
10: 0̃#,$ ←Π⪰0

(
0#,$ − ;−1Λ#,$

)
11: end for
12: 0′# ←

1
C(!−1)

(∑
$≠#

(
C41[0#,$] +Λ(1)

#,$

)
−% ′

#

)

13: - ←A−1(1 − Tr[0′#])
14: 0# ← 0′# + -.A
15: for each $ ≠ # do
16: Λ#,$ ←Λ#,$ + ;

(
0̃#,$ − 0#,$

)

17: Λ(1)
#,$ ←Λ(1)

#,$ + C(41[0#,$] − 0#)
18: Λ(2)

#,$ ←Λ(2)
#,$ + C(42[0#,$] − 0#)

19: end for
20: #′

#,# ←##,# + @6#,#
[
0#
]

21: for each $ ≠ # do
22: #′

#,$ ←##,$ + @6#,$
[
0#,$

]
23: end for
24: for each % do
25: #̂′

% =
1√
!F

∑
$ exp

(
−H 2I$⋅%

!

)
#′

0,$

26: J% ←Π⪰0
[
#̂′

%
]

27: end for
28: for each $ do
29: ##,$ ←

1√
!F

∑
$ exp

(
H 2I$⋅%
!

)
J%

30: end for
31: end while

26 is 7(A6) via full diagonalization, and forming the ##,$ in terms of the J% also costs 7(FA4! log!) in total via FFT. Hence the 
cost of updating # (i.e., steps 20 through 29) is 7(A4! log! +A6!). Hence the total cost per iteration of Algorithm 6, under the 
assumption that the sites are supersites each composed of K spin- 12 sites, is 7(24K! log! + 26K!), where K is the cluster size and 
! is the number of clusters.

The exponential scaling in the cluster size is unavoidable in our formulation due to the exact treatment of reduced density 
operators on the clusters (i.e., the cluster marginals). In this work we consider clusters of size no larger than size K = 4. Future work 
will investigate the possibility of treating larger clusters by introducing further relaxation and/or compression of the optimization 
variables to avoid exponential scaling in the cluster size.

As a final comment, observe that every for-loop in Algorithms 5 and 6 can be run fully in parallel.

4. Numerical experiments

The numerical experiments were implemented in MATLAB following Algorithm 6. (We shall consider only translation-invariant 
Hamiltonians.) We present results for the transverse-field Ising (TFI) model (2.2), the anti-ferromagnetic Heisenberg (AFH) model 
(2.3), the spinless fermion (SF) model (A.1), and the long-range spinless fermion (LRSF) model (A.2). Note that Algorithm 6 can 
be applied in the fermionic case mutatis mutandi to the problem (A.3). Throughout we fix the value of the algorithmic parameters 
to be ; = C = 10, @ = 2 (i.e., we do not tune them specifically to different problems). The dual variables {Λ"& , Λ(1)

"& , Λ
(2)
"& }"≠& are all 

initialized to be zero, and the primal density operator variables {0"}, {0̃"&}"≠& are all initialized as multiples of the identity with unit 
trace. # is initialized as the identity. We run Algorithm 6 for 10,000 iterations. (The convergence behavior will be studied in detail 
below.)

First we consider the TFI model on a periodic 20 × 1 lattice, which is small enough to be solved by exact diagonalization of (2.2). 
We benchmark the per-site energy error of the two-marginal relaxation with clusters of size 1 × 1, 2 × 1, and 4 × 1. (In these cases the 
semidefinite matrix variables 0"& are each of size 4, 16, and 256, respectively; refer to Section 3.4 for further discussion of scaling.). 
The results are shown in Fig. 4.1. Observe that the approximations yield lower bounds for the energy as the theory requires, and 
these lower bounds become tighter as the cluster size is increased. In the same figure we also consider the TFI model on a periodic 
4 × 4 lattice. Here we benchmark the energy error of the two-marginal relaxation with clusters of size 1 × 1, 2 × 1, and 2 × 2.

We perform completely analogous experiments for the AFH model with similar conclusions. The results are shown in Tables 1
and 2.

We also benchmark the SF and LRSF models on a 20 × 1 periodic lattice, with results pictured in Fig. 4.2. Note that the fermionic 
relaxations are exact for L = 0, as guaranteed in [25].
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Fig. 4.1. Relaxation error per site for the TFI model on 20 × 1 and 4 × 4 periodic lattices, pictured left and right respectively. Several cluster sizes are considered 
according to the legends. Note that the relaxation is exact at ℎ = 0 (not pictured). (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

Table 1
Relaxation error per site for the AFH model on a 
20 × 1 periodic lattice for various cluster sizes.
1 × 1 clusters 2 × 1 clusters 4 × 1 clusters
0.5383 0.0521 0.0034

Table 2
Relaxation error per site for the AFH model on a 
4 × 4 periodic lattice for various cluster sizes.
1 × 1 clusters 2 × 1 clusters 2 × 2 clusters
0.6634 0.1851 0.0034

Fig. 4.2. Relaxation error for the (short-range) spinless fermion (A.1) and long-range spinless fermion (A.2) models on a 20 × 1 periodic lattice, pictured left and right 
respectively. Several cluster sizes are considered according to the legends. Note that the relaxation is exact at L = 0 (not pictured).

Next we consider the TFI model on a periodic 100 × 1 lattice for ℎ = 0.5, 1, 1.5. This problem is too large to solve by exact 
diagonalization. We report the relaxation energy for several cluster sizes in Table 3.

We track convergence behavior of Algorithm 6 on these same problems. We use two different quantities to track convergence. 
The first is the per-site primal objective (i.e., energy) change between subsequent iterations. The second is the per-cluster feasibility 
error for the equality constraints, defined as
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Table 3
Relaxation energy per site for the TFI model with ℎ = 0.5, 1, 1.5
on a 100 × 1 periodic lattice for various cluster sizes.

1 × 1 clusters 2 × 1 clusters 4 × 1 clusters
ℎ = 0.5 −1.0763 −1.0648 −1.0636
ℎ = 1 −1.3084 −1.2829 −1.2761
ℎ = 1.5 −1.6835 −1.6724 −1.6720

Fig. 4.3. Per-site iteration-over-iteration energy change for 100 × 1 periodic TFI model with ℎ = 0.5, 1, 1.5 and several cluster sizes (top row). Per-cluster feasibility 
error (4.1) for same problems (bottom row).

√
1

! − 1
∑
$≠0

(‖41[0#,$]− 0#‖2F + ‖42[0#,$]− 0#‖2F + ‖0#,$ − 0̃#,$‖2F
)
. (4.1)

We plot these quantities as functions of the iteration count in Fig. 4.3. We also recommend that these quantities be used to define 
a practical stopping criterion for the optimizer, i.e., to stop when both converge within some specified numerical tolerance. In 
Appendix D we present additional experiments demonstrating the satisfaction of the global semidefinite constraints.

It is possible that tuning the parameters ;, C, @ to a specific problem and specific choice of clusters could yield smoother conver-
gence profiles. However, even using our fixed choice for all problems, we achieve convergence of the per-site energy within 10−6
(which is dominated by the relaxation error itself) in a number of iterations that does not seem to grow with the cluster size. Though 
the asymptotic convergence of ADMM-type methods can be slow, for practical purposes we only need the convergence accuracy to be 
dominated by the relaxation error of the relaxed problem. If convergence to very high accuracy is required, alternative approaches 
such as inexact ALM [33] might be more appropriate.

Then we fix clusters of size 2 × 1 and vary the system size of the TFI model with ℎ = 0.5, 1, 1.5, to investigate the effect of system 
size on convergence. The results are shown in Fig. 4.4. The system size does not appear to have any obvious detrimental effect on 
the convergence rate.

To conclude, we report the relaxation energies obtained from these last experiments in Table 4. We observe that the relaxation 
energy approaches a limiting value in this thermodynamic limit, i.e., limit of infinite volume.
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Fig. 4.4. Per-site iteration-over-iteration energy change for periodic TFI models of different sizes with ℎ = 0.5, 1, 1.5 and fixed 2 × 1 cluster size (top row). Per-cluster 
feasibility error (4.1) for same problems (bottom row).

Table 4
Relaxation energy per site for TFI models of several sizes with ℎ = 0.5, 1, 1.5 and clusters of fixed 
size 2 × 1.

20 × 1 lattice 40 × 1 lattice 60 × 1 lattice 80 × 1 lattice 100 × 1 lattice
ℎ = 0.5 −1.064851 −1.064795 −1.064786 −1.064779 −1.064776
ℎ = 1 −1.283534 −1.283083 −1.283003 −1.282975 −1.282949
ℎ = 1.5 −1.672407 −1.672394 −1.672393 −1.672393 −1.672394
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Appendix A. Fermions

In this appendix we present the relevant background on fermionic many-body systems, following [25].

A.1. Background

Fermionic many-body problems in second quantization are specified in terms of the creation operators M†1, … , M†! and their 
Hermitian adjoints, the annihilation operators M", which can be viewed as operators on a vector space of dimension 2! called the 
Fock space  . The key properties of these operators are the canonical anticommutation relations

{M",M
†
&} = <"& , {M",M&} = {M†" ,M

†
&} = 0,

where { ⋅ , ⋅ } denotes the anticommutator. In terms of these operators we also define the number operators 9̂" ∶= M†" M", and the total 
number operator by N̂ ∶=∑!

"=1 9̂".
One can identify the Fock space with a quantum spin- 12 state space, i.e., identify  ≃⨂! ℂ2 ≃ℂ2! , via the correspondence

M†" ⇝ *- ⊗⋯⊗*-
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

"−1 factors

⊗
(
0 0
1 0

)
⊗.2 ⊗⋯⊗.2,

known as the Jordan-Wigner transformation (JWT). This transformation is unnatural in the sense that it depends on the ordering 
of the states. More precisely, permuting the states before the JWT is not equivalent to permuting the tensor factors after the JWT. 
Moreover, a fermionic operator such as M†" M& involving only two sites corresponds in general to a quantum spin operator involving 
potentially many more sites; hence the pairwise fermionic Hamiltonians that we consider below cannot be viewed in general as 
pairwise spin- 12 Hamiltonians.Next we define the notion of a pairwise fermionic Hamiltonian, and then we provide some examples. Unfortunately we cannot 
simply treat clusters of sites as ‘supersites’ without breaking the fermionic structure, so we approach the cluster framework directly, 
writing {1, … , !} as a disjoint union of clusters ⋃Nc

S=1>S specified by the user. We let

 ∶= ⟨1,M1,… ,M! ,M†1,… ,M†! ⟩
denote the star-algebra generated by the creation and annihilation operators subject to the canonical anticommutation relations 
{M", M†&} = <"& , {M", M&} = {M†" , M

†
&} = 0, and similarly, we let

> ∶=
⟨
{1} ∪ {M",M

†
" ∶ " ∈ >}

⟩

denote the subalgebra corresponding to a subset > ⊂ {1, … , !}. Then we consider pairwise Hamiltonians %̂ ∈ of the form

%̂ =
∑
S
%̂S +

∑
S<<

%̂S< ,

where %̂S ∈>S and %̂S< ∈>S∪>< are Hermitian operators. We are interested in the ground-state energy

)0 = inf
{⟨T|%̂|T⟩ ∶ |T⟩ ∈  , ⟨T|T⟩ = 1

}
.

For particle-number conserving Hamiltonians (i.e., Hamiltonians that commute with N̂), one may also consider the N -particle 
ground-state energy defined as

)0(N) = inf
{⟨T|%̂|T⟩ ∶ |T⟩ ∈  , ⟨T|T⟩ = 1, ⟨T|N̂|T⟩ =N}

,

though note that this is formally equivalent to the unconstrained ground-state energy )0 after subtracting ;N̂ from the Hamiltonian, 
where the Lagrange multiplier ; is called the chemical potential.

A.2. Examples

In this work we shall consider the half-filled lattice of spinless fermions [43] specified by the Hamiltonian

%̂ =
∑
"∼&

[
−M†" M& − M

†
& M" +L

(
9̂" −

1
2

)(
9̂& −

1
2

)]
, (A.1)

where L is a scalar parameter (the ‘interaction strength’) and the notion of adjacency " ∼ & is defined relative to a graph (usually a 
rectangular lattice) on the sites {1, … , !}. This operator is pairwise relative to any cluster decomposition. One can also consider an 
analogous model with long-range Coulomb interaction

%̂ =
∑
"∼&

[
−M†" M& − M

†
& M"

]
+L

∑
"≠&

1
F(", &)

(
9̂" −

1
2

)(
9̂& −

1
2

)
, (A.2)
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Fig. B.1. Left: per-site iteration-over-iteration energy change for 20 × 1 periodic TFI model with ℎ = 1 and 2 × 1 clusters. Right: per-cluster feasibility error (4.1) for 
same problem. Note that the computational cost of each iteration within the red curves is about 5 times greater than that of each iteration within the blue curves.

where F(", &) is the Euclidean distance between sites " and & on the lattice.
As outlined in [25], one can also consider spinful systems such as the Hubbard model [18], as well as quantum chemistry Hamil-

tonians arising from electronic structure problems after a suitable choice of basis [38], e.g., the recently developed discontinuous 
Galerkin basis [8].

A.3. The two-marginal relaxation

In order to realize the two-marginal relaxation as a concrete semidefinite program, it is necessary to choose a JWT for each 
pair of clusters as follows. (Note that there will be no need to consider any global JWT.) For 1 ≤ S ≤ Nc, let KS ∶= |>S |, and let 
US ∶ >S → {1, … , KS} be a bijection specifying an ordering for the sites in the S -th cluster. For 1 ≤ S < < ≤Nc, let KS< ∶= |>S | + |><|, 
and let US< ∶ >S ∪ >< → {1, … , KS<} be the bijection specifying an ordering for the sites in the (S , <)-th pair of clusters, uniquely 
specified by the conditions that US<|>S = US , US<|>< = U< , and US<(>S ) < US<(><). These orderings fix algebra isomorphisms S ∶
>S → End

(⨂KS
"=1ℂ

2
)
and S< ∶>S∪>< → End

(⨂KS<
"=1 ℂ

2
)
via the appropriate JWTs. Then the two-marginal relaxation is given 

concretely by

minimize
{0S },{0S<}S<<

∑
S
Tr

[S (%̂S
)
0S
]
+
∑
S<<

Tr
[S< (%̂S<

)
0S<

]
, (A.3)

subject to 0S< ⪰ 0, 1 ≤ S < < ≤Nc,

0S = TrUS< (>< )[0S<], 0< = TrUS< (>S )[0S<], 1 ≤ S < < ≤Nc,

Tr[0S ] = 1, S = 1,… ,Nc,

6
[
{0S},{0S<}S<<

]
⪰ 0,

where 6 is specified blockwise subordinate to a collection {4̂S ,8 ∶ 8 = 1, … , 9S} ⊂>S of operators on each cluster via

(
6S<

)
8: =

⎧
⎪
⎨
⎪⎩

Tr
([S (4̂S ,8)]† [S (4̂S ,:)]0S

)
, S = <

Tr
([S< (4̂S ,8)]† [S< (4̂<,:)]0S<

)
, S ≠ <.

Hence after the appropriate Jordan-Wignerized operators are formed, (A.3) is of identical form to (2.4).

Appendix B. Iterated primal update

In this section we explore the impact of repeating the block of primal updates within Algorithm 5 before each block of dual 
updates, as discussed in Section 3.2. We otherwise retain all the parameter choices used throughout Section 4. For illustration we 
consider the transverse-field Ising (TFI) model (2.2) on a 20 × 1 periodic lattice with ℎ = 1 and 2 × 1 clusters. The convergence of the 
iteration-over-iteration energy change and the feasibility error (4.1) are plotted in Fig. B.1 for an experiment in which the primal 
block is repeated once per dual update (default) and one in which it is repeated 5 times. Note that the per-iteration cost of the latter 
is roughly 5 times greater than the former, so Fig. B.1 clearly suggests that the default strategy is more efficient.
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Fig. C.1. Left: per-site iteration-over-iteration energy change for 20 × 1 periodic TFI model with ℎ = 1 and 2 × 1 clusters. Right: per-cluster feasibility error (4.1) for 
same problem. Curves are plotted for several values of the dual step size parameter E .

Fig. D.1. Slackness (D.2) and primal feasibility error (D.1), at top and bottom, respectively, over the course of optimization for the TFI model with ℎ = 1.0. Left, 
middle, and right panels correspond to clusters of size 1, 2, and 4 respectively.

Appendix C. Dual step size

In this section we explore the impact of a nontrivial dual step size E , as discussed in Section 3.2. We otherwise retain all the 
parameter choices used throughout Section 4. For illustration we consider again the transverse-field Ising (TFI) model (2.2) on a 
20 × 1 periodic lattice with ℎ = 1 and 2 × 1 clusters. The convergence of the iteration-over-iteration energy change and the feasibility 
error (4.1) are plotted in Fig. C.1 for the choices E = 1, E = 1.3, and E = (1 +

√
5)∕2 ≈ 1.618. The performance is similar in all cases, 

so we adopt E = 1 by default for simplicity.
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Appendix D. Checking the global semidefinite constraints

In this section we monitor the satisfaction of the global semidefinite constraints. Note that dual feasibility (i.e., # ⪰ 0) is satisfied 
automatically by projection. Hence we are interested in the failure primal feasibility (i.e., 6 =6[{0"}, {0"&}"<& ] ⪰ 0).

In the translation-invariant case we can define 6% in terms of 6 just as #% is defined in terms of # in Algorithm 6, and primal 
feasibility reduces to the condition that 6% ⪰ 0 for each mode %. Then we measure the primal feasibility error as

max
%

‖6% −Π⪰0(6%)‖F
1 + ‖6%‖F

(D.1)

We also monitor complementary slackness, i.e., the condition that Tr[#6] = 0. Under translation invariance, this reduces to the 
condition that Tr[#%6%] = 0 for all %. We measure the deviation as

max
%

||||
Tr[#%6%]

1 + ‖#%‖F + ‖6%‖F
|||| (D.2)

In Fig. D.1 we plot the convergence of both of these measures over the course of optimization for the TFI model with ℎ = 1.0, 
comparing several system sizes and trajectories, yielding errors on the order of 10−4 across all experiments after around 1000
iterations, after which additional accuracy is slower to attain. Note that we use the same optimization hyperparameters as in the 
main text and do not tune to the individual problems.
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