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Abstract. We introduce an ensemble Markov chain Monte Carlo approach to sampling from a probability
density with known likelihood. This method upgrades an underlying Markov chain by allowing an
ensemble of such chains to interact via a process in which one chain’s state is cloned as another’s is
deleted. This effective teleportation of states can overcome issues of metastability in the underlying
chain, as the scheme enjoys rapid mixing once the modes of the target density have been populated.
We derive a mean-field limit for the evolution of the ensemble. We analyze the global and local
convergence of this mean-field limit, showing asymptotic convergence independent of the spectral
gap of the underlying Markov chain, and moreover we interpret the limiting evolution as a gradient
flow. We explain how interaction can be applied selectively to a subset of state variables in order to
maintain advantage on very high-dimensional problems. Finally, we present the application of our
methodology to Bayesian hyperparameter estimation for Gaussian process regression.
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1. Introduction. In practice, the efficiency of a Markov chain Monte Carlo (MCMC) al-
gorithm is often limited by metastability, that is, the need to repeatedly transition between
high-probability regions separated by regions of low probability. Because an MCMC chain is
designed to sample each region according to its probability, it will necessarily visit the low-
probability region, and therefore also transition between the high-probability regions, only
infrequently. In practice, metastability is difficult to address without detailed insights into its
origins in the specific problem of interest (e.g., a description of relatively high-probability path-
ways connecting high-probability regions). Common approaches to overcoming metastability
involve the modification of a general-purpose MCMC algorithm (such as Metropolis—Hastings
or Langevin dynamics [23, 18]) by, e.g., rescaling the log target density by a small factor (as
in parallel tempering [23, 10]) or stratifying the sampling space (as in umbrella sampling [9,
25] and related schemes [6, 31]).

We propose an alternative strategy in which an interaction is introduced between mul-
tiple (otherwise independently evolving) chains, specifying the evolution for an ensemble of
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“walkers.” At each step of the algorithm, one walker is selected to be duplicated and moved
according to some proposal, and another is selected to be removed. If the duplicated and re-
moved walkers are different, we say that a walker has been “teleported.” The scheme involves a
Metropolis—Hastings accept-reject step and exactly preserves a specified target density. In the
mean-field limit of many walkers, the acceptance probability converges to 1, and our scheme
somewhat resembles a resampling strategy [7]. We identify the mean-field evolution and find
that its local convergence to the target is rapid even in cases that would lead to metastabilities
in standard single-chain MCMC schemes. In particular, we prove an asymptotic convergence
rate for the mean-field evolution that is independent of the spectral gap of the Markov chain
used to define the parallel walker evolutions. Moreover, we interpret the mean-field density
evolution as a gradient flow [2] of the y2-divergence [22] with respect to a metric that resembles
the Hellinger distance [22].

A shortcoming of our scheme is that the advantage from interaction tends to decrease as
the dimension of the sample space increases relative to the number of walkers. Fortunately, in
this limit our scheme reverts to running independent chains sampling from the target without
interaction. Moreover, as we demonstrate, for higher-dimensional sampling problems the
interaction we introduce can be restricted to a low-dimensional subspace of state variables.

Ensemble MCMC schemes are now implemented in several very popular software packages
and have found widespread use on a variety of parameter estimation problems. For example,
the affine invariant ensemble samplers of [15] are implemented in [11, 33]. Most of these
schemes use information from the ensemble of chains to address conditioning problems [14,
5, 8 15, 16, 19], i.e., they increase the size of the updates for each chain in directions in
which the target density m decays relatively slowly, while several articles have emphasized
the use of ensemble schemes to avoid gradient evaluations in traditional optimization and
sampling tasks [12, 13, 26, 27]. Recently, studies of the mean-field limit of such schemes have
yielded useful new insights [12, 13, 27]. Meanwhile, it seems that comparatively few ensemble
schemes have been proposed to address slow MCMC convergence due to metastability. In that
our ensemble scheme yields a nonlinear mean-field evolution, it is related to the “nonlinear”
MCMC schemes discussed in [4]. It is more closely related to the ensemble Langevin sampler
with birth and death introduced in [24], though that scheme involves additional parameter-
dependent approximations. Similar birth and death dynamics have been a fundamental tool
in rare event simulation since the 1950s (see [1] for a brief historical review). They were used
in [28] to accelerate training of neural network parameters.

This article is organized as follows. In section 2, we introduce our ensemble scheme. In
section 3, we formally derive the continuum evolution that emerges in the limit of a large
number of walkers, proving global convergence to the target with an asymptotic rate that
is independent of the spectral gap of the underlying single-walker Markov chain. We also
interpret the evolution as a gradient flow. In section 4, we explain how our scheme can be
adapted to introduce interaction only among a subset of state variables. In section 5, we
conclude with numerical experiments. Specifically, we provide a simple illustration of the
continuum evolution, and we demonstrate practical performance of our ensemble scheme on
Bayesian hyperparameter estimation problems for Gaussian process regression. Under a non-
Gaussian measurement noise model, the resulting sampling problem is very high-dimensional
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and requires us to introduce walker interaction only among a naturally chosen subset of state
variables.

2. Interacting walker proposal. Suppose that we are given (up to a possibly unknown
normalization) a probability density 7(z) on a space X and a Markov chain transition density
q(y|z) that might serve as a good proposal within a Metropolis—Hastings scheme sampling
the target m. We want to lift such an approach to an interacting walker approach on the
N-fold product space XV. Specifically, for a fixed walker number N, we want to sample
x = (z1,...,2n5) € X" from the probability measure dM (x) o II(x) dx, where

N
= HTF(ZEl)
i=1

Though the variables x1,...,z Ny are independent with respect to the joint measure II, our
chain on X will not decouple into N independent chains on X.

Note that to any x € X we can associate the empirical measure v(x) = % Efil 0y,. For
bounded continuous ¢ : X — R and Borel probability measures v, we define (¢,v) = E, [¢].
Then we may compute any expectation with respect to the original target measure y as

Ezr [0(2)] = Exonn [(@, v(x))]

provided that we can sample from M.

Consider the following proposal for an update x — x’. First uniformly select j €
{1,...,N} and sample z ~ ¢(-|z;). Intuitively, we think of the jth sample as being cloned
and then moved according to ¢ to produce z. Then we sample an index ¢ (possibly equal to
j) for a sample to delete from our original set of samples. The index i is sampled according
to the importance weights

o B CIDES W ATGIED /Z(M)’

m(w;)
where

T z+ x|
XZ I:Zq l| Zk#ZQ( l| k)

(@)

=1

Notice that if Q is the transition operator on measures induced by ¢, i.e., for a measure p,
Qutdy) = [ aldylz)du(o).

then the numerator ¢(z;|z) + Zi\;z q(z; | zy) appearing in the preceding expressions is the
density of the measure Q[d, + . 4 0z, ] evaluated at x;. Hence it is improbable to select ¢ for
deletion unless z; is “close” to one of the other samples, i.e., to some y € {z1,...,xn, 2} \{z;},
in the sense that ¢(z;|y) is nonnegligible. Then, having sampled 4, the proposal is given by
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x' = (z}), where z}, = zy, for all k # 4, 2} = z. In other words, z; is replaced by z in the
proposal.

Supposing that we have generated x’ via the procedure described above (i.e., so that i, j,
and z are defined as above), the Metropolis—Hastings acceptance probability can be computed

as
min (1, 2052 Y
Z (X/, .732)
(See Appendix A for a detailed calculation.) Observe that if none of the walkers are close

to one another according to g, i.e., if g(z;|xg) ~ 0 for all k # [ and moreover g(x;|z) ~ 0
for all [ # j, then we select i = j with high probability, and the acceptance probability is

approximately
. (Lq(xj\z) n(2) )
m(x;) q(z]z;)

so we default to simply performing a Metropolis update according to ¢ for the jth sample.

Meanwhile, as we shall discuss in more detail below, one expects Z(x, z) ~ Z(x', z;) when
the number of walkers is large. In other words, we expect that the acceptance probability will
approach 1 as the number of samples is increased, holding all else constant.

As N increases, one expects a transition from the small-N regime (in which the walkers
are isolated from one another relative to the proposal kernel) to the large- N regime (in which
each walker has several neighbors relative to the kernel). A curse of dimensionality enters
in that for a fixed proposal kernel that is narrow enough to yield a nonnegligible acceptance
probability, one must take N exponentially large in the dimension of X in order for each
walker to have several neighbors with respect to this kernel. However, the onset of the curse
is delayed as the proposal is improved; indeed, if ¢(y|x) = w(y), then by inspection one
observes that the importance weights w; are uniform, the acceptance probability is 1, and the
sampler reaches equilibrium in one step, just as is the case for ordinary MCMC with a perfect
proposal. In practice, we shall observe that the scheme can still succeed on practical problems
in dimensions that are much too high to treat simply by quadrature.

3. Large-N limit. Now we consider the scheme introduced in section 2 in the limit of large
N. In this limit we will try to identify the empirical measure v = v(x) with an absolutely
continuous measure dv = p dx. We shall provide a formal derivation of the dynamics that
emerge for p in this limit. Note that since each update step can only move a single walker,
we only make a change of order 1/N to v. Hence we want to think of At = 1/N. In the
following, unless otherwise noted, the domain of integration for all integrals is the set X.
Notice that if dv ~ pdx, we can approximate

Z(x,z Z(x', x; 1 d(Quv Qp(x
v = T e |5  = [ S e

where we abuse notation slightly to view Q is an operator on probability densities as well as
measures, i.e., we define Qp(z) = % where p is the density of u. Note that in particular

we expect the acceptance probability to converge to 1 as N — oo.

Copyright (© by SIAM and ASA. Unauthorized reproduction of this article is prohibited.



Downloaded 08/30/24 to 136.152.214.74 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

864 MICHAEL LINDSEY, JONATHAN WEARE, AND ANNA ZHANG

Consider ¢ : X — R. Then for x fixed and x’ randomly obtained by applying one step of
our chain to x, we have

E [(6,/(x') ~ ()] & TE[9(z) — 6(a)

for large N, since the acceptance probability is approximately 1. In the right-hand side, z is
sampled by sampling y ~ v(x) and then applying one step of ¢ to obtain z; i.e., z is sampled
from the density Qp, and the index ¢ is sampled according to the importance weight

Qp(x;
a(wi | 2) + S0 alws | ) &
Z(x,2) 7 o )
() %) () da’

Hence we can view y := x; as belng approximately sampled from the importance-weighted

density Zl Qﬂ” p, where Z, := [ = Qp(z o p( )dz, and therefore

sl [ onri . o

/qb {1 - Zﬂ Qp(z) dy.
E[(¢,0—v)]

Now we view =224 ~ [ ¢(x) dip(x) dz, where we view p = p;(x) now as time-dependent

and take Oypi(z) = %pt(m), so we infer

wi(X,z) :=

p(y) dy

Orpe(z) = i {Zpt - [7):((;6))

Z
For simplicity we shall often write p = p; and even omit dependence on z, as in

] Qpi(z).

Pt

(3.1 o=y [2-2] o

3.1. Global convergence analysis. Our goal in this section is to analyze the convergence
of the dynamics (3.1) to the target density m. We also highlight the contrast with the dy-
namics that arise from considering N independent Markov chains, each with transition Q
defined to be the Metropolized version of Q, which satisfies QTr = m. These dynamics are
specified by

(3.2) op=-(1a- Q) p,

as can be verified by an analogous (but simpler) formal calculation. Equivalently, we have
dm = —(Id — Q)n, where n := p — 7. These dynamics for the error conserve the constraint
[ ndz = 0. On the subspace defined by this constraint, the convergence of the dynamics is
linear with rate given by the spectral gap of Q [21]. Hence the convergence is slow when the
gap is small, which is known to be the case [20, 17], e.g., for multimodal 7 with local proposals
that cannot cross between modes.
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Our ensemble approach cannot “discover” new modes any faster than would an indepen-
dent-chain approach. This is intuitive from the construction, as well as the perspective of
section 3.3 below, which can be viewed in part as quantifying the difficulty of expanding the
support of p. However, once the modes are discovered, the convergence is potentially much
faster, as our local convergence analysis of the continuum limit shall indicate. By contrast, note
that for independent walkers, even if all modes are populated by the ensemble, fluctuations
in the populations of each mode will dissipate very slowly, leading to very slow convergence.

We approach questions of convergence first by identifying a convenient monotone quantity,
defined as a Pearson y2-divergence. Recall that this divergence is defined by the formula [22]

2 _ @)’ o) de — p1(z)? v
““W”’/Q mm>”“d‘/mwd .

Then the quantity x?(7 || p) is in fact monotone nonincreasing for the dynamics (3.1), which
can be verified formally via the computation

d d
X o) = ﬁ/dx
7T2

= — 2Zp [Z ——] Opdx

N [/ Qpde fpgidi]

gl/zgpdx(/wgpdmﬂ
(3.3) i_\é r[(w/g/ Qﬂdﬂf)} Qpdz

Here the first inequality follows from an application of Jensen’s inequality, and the last ex-
pression is interpreted as the variance of the function 7/p with respect to the density Qp.
Adopting this notation, we observe that x*( || p) = Var,(r/p).

Now the quantity Varg,(m/p) is nonnegative and, moreover, equal to zero only if 7 = p.
Furthermore, x?(7||p) > 0, with equality if and only if 7 = p. From monotonicity it should
follow that the dynamics converge to w. We formalize this claim in the following theorem,
adopting the simplifying assumption that the state space X is finite. (This assumption simpli-
fies the proof of global-in-time existence of the dynamics (3.1), but our quantitative arguments
rely on quantities expected to be robust in appropriate limits of infinite or continuous state
spaces.)

Theorem 1. Suppose X is finite, supp(w) = X, and supp(Qp) = X for any probability
density p. Then for any initial probability density po, the dynamics (3.1) admit a global-in-time
solution py which converges to m as t — co. In fact,

(3.4) (|| pe) < e (|| po),
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where

Var, (7/p)
yi= sup { ——— %
pEP(X) { Varg,(m/p)

Here P(X) denotes the space of probability densities on X. The same conclusion holds in the
case that X is finite, supp(w) = X, and Q =1d, as long as the initial condition po has global
support.

In particular, v =1 if Q@ =1d. In turn we we have the estimate

Var, (/p)
Varg,(/p)

(|l p) < X (m Hpo)} < 400.

(3.5) < llp/Qplloo

for all probability densities p.

The proof is given in Appendix B.

From (3.5) it follows that the asymptotic convergence rate is at least ||7/Qn|3l. In
particular, if Qr = 7, then the asymptotic convergence rate is at least 1 for the y2-divergence.
We shall see below that in this case, in fact 2 is the exact asymptotic convergence rate for
the x2-divergence. We will also see more generally that the lower bound of ||7/Qn||3! on the
asymptotic rate can be improved by a factor of 2.

Note that x2(r || p) = +oo if supp(p) # X. Therefore the error estimate (3.4) is mean-
ingless if the initial density does not have full support. However, the proof guarantees that
supp(p¢) = X for any ¢t > 0. One can in turn obtain an estimate by viewing some small ¢ > 0
as the initial time, but note that the initial x2-divergence may be extremely large if, e.g., po
puts very little probability on a mode of .

Finally, observe that in the case @ = Id, Theorem 1 furnishes an a priori global convergence
rate. However, note that the formal derivation of the continuum dynamics makes sense for a
continuous state space X only if Q is nontrivial. Indeed, if @ = Id, then the transition density
q(y|z) is not defined. Even if the formulas in section 2 are suitably modified to account for
this issue, one observes that the set of walker positions cannot be changed in this case, so the
ensemble chain cannot be ergodic for any finite N.

Intuitively, we may think of the case Q = Id as arising from first passing to the large-N
limit, and then passing to the Q@ — Id limit. If Q is very close to the identity, we must
take N very large to reach the continuum regime. To see this, note that the weights (2.1)
concentrate on the index ¢ = j unless some particle i # j is close to the cloned jth par-
ticle, relative to the width of the effective support of the transition kernel ¢q. As Q ap-
proaches the identity, meaning that the width of ¢ approaches zero, N must be taken larger
to ensure that every particle has a “neighbor” in this sense. Otherwise, no teleport moves—
in which the cloned particle index and deleted particle index differ—are proposed, and the
scheme effectively reverts to the scheme of independent chains, which is far from the N — oo
regime.

As an aside we comment that in the case of discrete X, as long as N > | X|, it is possible
for the scheme with Q = Id to be ergodic even for finite V.
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3.2. Asymptotic convergence analysis. Next, it is natural to linearize the dynamics (3.1)
about the fixed point p = 7 in order to better understand the asymptotic convergence regime.
We can rephrase (3.1) in terms of the error n = p — 7 as

1
Tt

T+
om=F(n) = 7

2o - 20 ot )
where F' is suitably defined. In Appendix C, we linearize the dynamics about 1 = 0 to derive
the linearized system

om = Jn,

where J with action defined by

Jn = DF(0)y = </ gQw(x)daz - Z) on

is the suitable Jacobian operator on S := {n : [ndz = 0}. One can verify by inspection that
J indeed preserves S, as it must because F preserves S as well.

Note that we do not necessarily have Om = 7 because the transition QO has not been
Metropolized with respect to m. However, in this natural special case the linearized dynamics
simplify tremendously, as the action of the Jacobian takes the form Jn = —n for any n € S.
Because x2(7||p) has a zero of multiplicity 2 in p at the limit point p = 7, this implies that
when Qm = 7, the asymptotic rate of decay of x?(r||p) is exactly 2.

More generally, the asymptotic convergence rate can be obtained as the smallest real part
of the eigenvalues of —J (viewed as an operator on S), provided that the eigenvalues of
J have strictly negative real parts. (In fact, we shall see that the eigenvalues are real and
strictly negative.) For simplicity we restrict our attention to the case of finite state space X,
so functions can be viewed as finite-dimensional vectors. In this setting, formal calculations
suffice to prove the following rigorously.

Theorem 2. If X is finite and supp(m) = supp(Qn) = X, then the spectrum o(J) of the
Jacobian J satisfies o(J) C (—00,0). Let « = —1/(supo(J)). Then a < ||7/On||c. Given
a choice of norm and an initial condition py sufficiently close to w, for any € > 0 there exists
C > 0 such that the dynamics (3.1) converge to m with ||p; — 7| < Ce~t/(@+e),

The proof is given in Appendix C.

Because of the multiplicity of the zero p = 7 of x?(7|p), Theorem 2 implies a lower bound
of 2||7/Qn||z} on the asymptotic rate of decay for x?(r || p), twice the asymptotic rate of
decay guaranteed by Theorem 1.

3.3. Gradient flow structure. The dynamics (3.1) admit characterization as a gradient
flow [2], as we shall now demonstrate formally.
As a warm-up we consider a special case: after taking the large-IN limit, consider then
taking the limit @ — Id, i.e., the limit in which the proposal is trivial. We obtain the equation
1 P

Op = 7[) [Zp— ;} p.
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Observe that the fixed points of the dynamics are those p such that p |supp(p) X 7 lsupp(p)» and
moreover, the dynamics cannot expand the support of p. In fact, if supp(p;) = supp(w) at
any time t, we will see that p; — 7 in a suitable sense as t — co.

To make matters simpler, consider a monotonic time-change 7 = 7(t), with inverse ¢ =
t(7), such that % = Zy,,. Then identifying p = py(;) (by a further slight abuse of notation),
we have

(3.6) Orp = [Zp—g]pz [1—§}p+0pp,

where C, := Z, — 1. Notice that C, is the unique choice of constant to ensure that the
dynamics conserve total probability.

We claim that (3.6) is the gradient flow of the energy E(p) := £x*(p||m) with respect
to the metric on the space of probability measures induced by the Hellinger distance H [22],
whose square is defined by

B o) =5 [ (V@) = V(@)

Notice that the pointwise square root maps probability densities to the unit sphere (i.e., L2-
normalized densities), and the Hellinger distance is the Euclidean distance pulled back via
this map. Notice further that expanding the support constitutes an infinitely steep move
according to the Hellinger distance (owing to the fact that d%|q:0\/§ = +00), consistent with
the fact that the dynamics for trivial ¢ cannot expand the support. Finally, observe that in
the energy FE(p), the target density m now appears in the second—mnot the first—slot of the
x2-divergence, by contrast to the expressions considered in our earlier convergence arguments.

Now the metric only matters (for the purpose of defining a gradient flow) up to the
Riemannian metric that it induces on the space of probability measures, i.e., its local expansion
up to second order [2], which we compute as

_ 1 [ Ap(x)?
Hz(p+Ap,p)—4/ o) dr +....

Hence H defines a diagonal Riemannian metric on the space of probability measures. In the
finite-dimensional setting, i.e., if p = (p;) is a density on a finite state space, the metric is

given by d;;/pi dp' dp’. Generally we will write our Riemannian metric as 6[()3(”—9’;’)) dp(x) dp(y).
Then the corresponding gradient flow is defined [2] by 0-p = lim._,o+ 22, where we in

turn define
. ~ 1 -
(37) pe = argnin { B(p) + 315 .
pEP(X) <
and where we allow P(X) to denote the space of probability densities on X. We formally
verify in Appendix D that this prescription recovers the dynamics (3.6).
By simple modifications to our calculations, we observe that instead of introducing the

time-change, we could have considered the original dynamics as a gradient flow of x2(p || )
with respect to the Riemannian metric

8Z,0(x,y)

() dp(x) dp(y).
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However, to the best of our knowledge this metric does not coincide with any named metric.

Finally, it follows from simple substitutions in our computations that the evolution (3.1)
for general Q can be retrieved as the gradient flow of x2(p || 7) with respect to the Riemannian
metric

8Z,0(x,y)
Qp(z)

which itself depends on the transition operator Q. Hence in particular the x?-divergence is
monotonically decreasing on the trajectory. Meanwhile, one notes via inspection of (3.1) that
the only fixed points of the dynamics are those p such that plsupp(0p) < T |supp(p)- If one
assumes that supp(Qp) = X for any p, then it follows that the only fixed point is p = .

dp(z) dp(y),

4. Interaction for a subset of variables. For very high-dimensional problems, the afore-
mentioned curse of dimensionality reduces the scheme outlined in section 2 to effectively
running N independent Markov chains. However, we can modify our scheme to treat some of
the state dimensions by an interacting walker scheme and the rest by ordinary independent
Markov chains. In practice, such a modification may be applicable if there is, e.g., multimodal-
ity with respect to some subset of the variables and fast mixing with respect to the others. In
fact, one might only be interested in expectations with respect to the former subset, in which
case the others may be viewed as “nuisance variables.”

Concretely, suppose that we can split X = X M x X@ and write z = (u,v) € X where
we XM ve X@. We will sample elements

x = (u,v) = (ug,...,un,v1,...,UN) € (X(D)N X (X(2)>N

according to the density

N
I(u,v) = [ [ w(ui,vi).
i=1

We will do so by alternating between two sampling stages. First, viewing v as fixed, we will

construct a Markov chain on u that conserves the distribution II(-,v) o [T7 7['1()}) (+), where

wqgl)(uz) := 7(u;,v;). This chain will correlate the samples uy,...,uy, and we will run it for
one step. Then for the second stage, we independently propose updates v, for the v; according
to some kernel (- | v;) on X and accept or reject according to the Metropolis-Hastings rule
for the density proportional to m(f.)( -) := 7(uy, - ). This step can be trivially parallelized over
the 7 and can in fact be repeated many times before returning to the first stage.

Now we turn to a more detailed description of the interacting stage, which proceeds by
analogy to the scheme considered above, subject to a few necessary modifications. Again we
sample j € {1,..., N} uniformly, and then sample z ~ ¢(-|u;), where ¢ is some transition
kernel on X Next, we sample i according to the importance weights

N
Ui | 2) + ; qUs | U
wy (1, 2) ;:m()})(z)q( | 2) (IZ)k;é q(u; | ug) Zo(u,2),
Trvi (U’L)
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where

N N
- q(ug | 2) + 3 g a(w | ug)
Zv(u, Z) = 2 71'1()1)(2«) 0 )

T, (ul)

Relative to our previous importance weights, we have included a factor of m(,})(z). In the
special case where X = X1 (i.e., the case considered earlier), such a factor does not affect
the importance weights since it simply acts as a scalar multiplier independent of ¢. However,

the factor ensures that the scheme is independent of the relative
normalizations of the 7“()13 As above, having sampled 4, the proposal is given by u’ = (u}),
where u), = uy, for all k # 4, u) = z. By analogous computations we find that the acceptance

in the more general case

probability is

(1)
7D ) Zy(u,2)
min | 1, D 7w |
75 (z) Zv(W, ui)

5. Numerical experiments. In this section we provide numerical illustrations of our en-
semble scheme and its continuum dynamics (3.1) in the large-N limit. First, in section 5.1,
we simulate (3.1) and contrast with the dynamics (3.2) that arise from the large-N limit for
independent (noninteracting) Markov chains.

Then in section 5.2 we demonstrate the application of the ensemble scheme itself to
Bayesian hyperparameter estimation problems in Gaussian process regression. Under a Gauss-
ian measurement noise model, the resulting sampling problems are low-dimensional enough
to approach with the fully interacting scheme of section 2. With non-Gaussian measurement
noise, we are led to a very high-dimensional sampling problem for which it is natural to
consider the scheme of section 4, which introduces interaction for a subset of variables.

5.1. Continuum dynamics. We illustrate the continuum dynamics (3.1) with a simple
numerical simulation. Consider the case X = R with the double-well probability density

m(x) = 6_6(1,4_562),

where 5 > 0 is an inverse temperature parameter. Note that 7 has modes at z = +4/1/2.
We consider the Gaussian proposal
g(w|2) oc e” T2V

where ¢ > 0 is a parameter controlling the standard deviation of the proposal. We will
compare the dynamics (3.1) against the continuum dynamics (3.2) for the Metropolized chain.
We refer to these two alternatives respectively as the nonlinear and linear dynamics.

As our initial condition pyp we consider a mixture of two Gaussians centered at the modes
of T,

26710-5 (:Jc+\/m>2 n ieflo-ﬁ (fo)2

pg(l’) X 10 10 )
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Figure 5.1. E(t) for the nonlinear dynamics (3.1) (left) and continuum Metropolis dynamics (3.2) (right)
for several different values of B,0. Note the different horizontal and vertical axis scales at left and right.

placing 90% probability on the left mode and 10% on the right, with standard deviations
tuned to remain within the effective support of .
As a proxy for measuring the convergence of p to m as t — 0o, we simply estimate

B =1 - / " pile) do,

where the integral measures the probability according to p of a nonnegative sample, which
approaches % from below according to either choice of dynamics, as probability is balanced
between the two modes.

We discretize both (3.1) and (3.2) with a simple forward Euler scheme with time-step
At = 0.01 on an evenly spaced discretization of the interval [—2, 2] with 1000 points, sufficient
for an accurate representation of the dynamics. We illustrate the convergence E(t) — 0 of
both dynamics in Figure 5.1.

Observe that within both schemes we observe linear convergence of the form
E(t) = Ce /e,

Note that a does not depend noticeably on 3,0 for the nonlinear dynamics (3.1) (and in fact
is numerically close to 1, consistent with Theorem 2). Meanwhile, as expected, « depends
dramatically on 3,0 for the continuum Metropolis dynamics (3.2).

For the nonlinear dynamics when S is large and o is small, we observe transient behavior
before the asymptotic convergence regime. This corresponds to the regime in which the
effective support of p expands to match that of w, at which point rapid convergence ensues.
This interpretation is visualized in Figure 5.2.

Observe that even in the preasymptotic regime, the dynamics are able to achieve approx-
imate balance between the probabilities of the two modes. This behavior (which may be
viewed as arising from the nonlocal walker moves in the underlying ensemble scheme) con-
trasts sharply with that of the continuum Metropolis dynamics (3.2) for the same problem,
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Figure 5.2. p, according to the monlinear dynamics (3.1) with 8 = 5, ¢ = 0.0125 at times t =
0, 2.5, 5, 7.5, 10, 12.5, 15, 17.5, 20,22.5, ordered left to right, then bottom to top. The profile at the last frame
(t = 22.5) is visually indistinguishable from that of 7. The interval of the horizontal azis is fized as [—1.5,1.5]
in all figures, but the interval of the vertical axis varies to accommodate the changing vertical scale.

250
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Figure 5.3. p: according to the continuum Metropolis dynamics (3.2) with 8 = 5, 0 = 0.0125 at several
different times. Note that even by time t = 1000, the dynamics are far from convergence, and the height of the
second mode has actually decreased relative to the initial condition.

visualized in Figure 5.3. Those dynamics can be viewed as locally “bulldozing” probability
from left to right, and in fact the height of the second mode initially decreases.

5.2. Gaussian progress regression with Bayesian hyperparameters. In this section we
consider the application of our method to Bayesian inference of hyperparameters in Gaussian
process regression. For consistency with the application, the variable names in this section are
not consistent with the choices made for the general setting considered above. The example
problems are adapted from one considered in [32], which is also concerned with sampling for
multimodal distributions.
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In our experiments, we assess the efficiency of our methods in terms of integrated auto-
correlation times (IATs) [29]. We are especially interested in the dependence of the efficiency
on the number N of walkers, with the case N = 1 corresponding to an ordinary chain.

Specifically, we compute the average of one of the hyperparameters over the ensemble
of walkers at each time to produce a time series. We define one step to be a move of a
single walker. For an ensemble of N walkers, we multiply the IAT of the aforementioned
time series (estimated via the emcee software package [11]) by a factor of 1/N. This allows
for a fair comparison between different ensemble sizes. To see this, consider an ensemble
scheme with N walkers which do not interact. The dynamics should be identical to N in-
dependent chains, each with a single walker. Since one step is defined by a move of one
walker, we will need N steps to move each independent chain once. Thus, dividing the IAT
by N makes the result consistent with that of a single chain. Note, moreover, that in an
efficient implementation, the computational cost of our method (as measured by the number
of calls to the likelihood function) with N interacting walkers is equivalent to the cost of
running N noninteracting chains. For more on measuring convergence of ensemble schemes,
see [15].

5.2.1. Univariate case. First we consider a univariate mean-zero Gaussian process GP
(0,3); see Appendix E for relevant background. We take the covariance to be

32
Y(z1,x2) = o exp <—($12x2)) ,
p

where o and p are parameters (that we want to infer). These parameters, if known, specify
our prior distribution GP (0,%) for an unknown function f.

Let us also assume that we are given several z;, i = 1,...,m, and that we have observed
the function values at these points, corrupted by some Gaussian noise, i.e., we have observed
the data

yi = f(z;) + €,

where ¢; ~ N(0,02). Here o is another model parameter that we wish to infer.

Let us collect our parameters as 0 = (a,p,0) and set fx = (f(z1),...,f(xm)). Fix
Ky := K(x,x), defined as in Appendix E, where here the subscript indicates the dependence
of K on 6. Then note that

y=Jxte
is a sum of independent Gaussians with distributions N'(0, K) and A(0,02I). Hence y is
distributed as N (0, K + o21).
Let p(#) denote our prior for §. We seek to sample 6 according to
p(01y) o ply | 0)p(0) ox K + 21|72 30 (Kete™D (),

where y is fixed throughout.
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Figure 5.4. Univariate case. Posterior marginal distribution of o and p (left) and numerically integrated
density compared with sampled posterior of p (right), obtained with ensemble size N = 50.

Table 1
Univariate case. Integrated autocorrelation times of the average of p over all walkers.

N 1 10 50
IAT 2111 857 97

For our experiments, we choose independent Cauchy ™ (0, 3) priors for # = (o, p, o). More-
over, we generate data x according to z; ~ N(0,1) and y according to y; = firue(zi) + &,
where

(5.1) firue (i) = 0.3 + 0.42; + 0.5sin(2.72;) + 1.1/(1 + z7)

and
N(0,0.1252), || < 1.5,
52 s

N(0,1.25%)  otherwise.

We sample from p(6|y) using the ensemble method of section 2, where the proposal ¢( - |0) is
N(0,5%I), B? = 0.01. In Figure 5.4, we plot posterior marginal distributions estimated from
samples and compare against a ground truth obtained via numerical quadrature, which is
feasible since 6 is only 3-dimensional. Notice the multimodality of these marginals, suggesting
the possibility of an advantage for the interacting walker scheme. In Table 1, we record
estimated TATs for different ensemble sizes N, confirming the advantage of taking N > 1. In
Figure 5.5, we plot the empirical acceptance probability A and empirical teleport probability
T as functions of N. (The teleport probability is the probability that the indices of the cloned
and removed walkers are different.)

5.2.2. Multivariate case. Next we consider the case of a multivariate Gaussian process
prior GP (0,3), where we take

Y(z1,x2) = o’ exp <—(ac1 —2) " 22" (2, — xg)) .

Copyright (©) by SIAM and ASA. Unauthorized reproduction of this article is prohibited.



Downloaded 08/30/24 to 136.152.214.74 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

MCMC WITH TELEPORTATION 875

0.55
0.50
0.45

< 0.40 .
0.35 0.4

0.30

0.20 0.0

0 200 400 600 800 1000 0 10 20 30 40 50
N N

Figure 5.5. Univariate case. The acceptance probability A versus N (left) and the teleport probability T
versus N (right), where N is the number of walkers.

Here oo € R and Z € R™ " (upper triangular) are parameters that we want to infer. Accord-
ingly we collect our hyperparameters as 6 = («, Z, o). We maintain the same priors on « and
o, but we must specify a special prior for the upper triangular hyperparameter Z.

We want to choose a prior for Z such that ZZ ' is distributed according to W, (I,,,n),
which is the Wishart distribution [3] with n degrees of freedom and scale matrix I,,. Following
the Bartlett decomposition [3], Z is sampled as

C1 0 0
Z91 (&) 0

4 = . )
Znl  2Zn2 Cn

where the entries are all independently distributed. Specifically, z;; ~ N (0,1) for all i > j,
and ¢; is distributed according to the chi distribution with n — ¢ + 1 degrees of freedom.

We generate data x according to z; ~ N (0,1,) and y according to y; = firue(2:) + 0i,
where

n
ferne(xi) = [ (0.3 4 0.4z + 0.5sin(2.7255) + 1.1/(1 + 7))
j=1

and 52 = E?:l 52'3', where

5o N(0,0.125%), |z;;] < 1.5,
v N(0,1.25%)  otherwise.

For our experiment we fix n = 3.
Again we sample from p(f |y) using the ensemble method of section 2, where the proposal

q(-10) is N'(6, D),
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01 0 0
D = 0 001 O
0 0 0.01

In Figures 5.6 and 5.7, we plot posterior marginal distributions estimated from samples,
though now validation via numerical quadrature is not feasible due to the increased dimension
of #. Again we observe multimodality, and Table 2 demonstrates improved efficiency for large
ensemble sizes N.

220 -15 -10 —05 0.0 05 1.0
221

Figure 5.6. Multivariate case, n = 3. Posterior marginal distribution of z21 and c1 (left) and of c¢1 and
z32 (Tight), obtained with ensemble size N = 100.

0.5 1.0 1.5 20 2.5

3.0
c

Figure 5.7. Multivariate case, n = 3. Sampled posterior marginal distribution of ci1, obtained with ensemble
sizes N =1, 10, and 100 and 107 time steps. For N > 1, only one walker (specifically, the one that was cloned)
was entered into the histogram per step, so using the same number of time steps for each ensemble size is a fair
comparison. Note the visible discrepancy for N = 1 due to a long autocorrelation time.

Copyright (© by SIAM and ASA. Unauthorized reproduction of this article is prohibited.



Downloaded 08/30/24 to 136.152.214.74 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

MCMC WITH TELEPORTATION 877

Table 2
Multivariate case, n = 3. Integrated autocorrelation times of the average of ci1 over all walkers.

N 1 10 20 50 100
IAT 1309 461 292 145 81

5.2.3. Non-Gaussian noise model. Finally, we return to the univariate case but consider
a non-Gaussian noise model for the ¢;. Note that in this general case, we cannot explicitly
“integrate out” the ¢; as above, and we are forced to think of them as additional Bayesian
parameters to be sampled. Then we must consider an expanded prior p(6, €) = p(6)gs(€), where
go denotes our non-Gaussian noise model, which may itself depend on the hyperparameters
f. Then we want to sample 6, € according to

p(0, €| y) < ply |0, €)p(0)ga(e) o |Kg| /% e 30— TK W= p(9) gy(e),

where y is fixed throughout. Since Ky is usually numerically low-rank, this expression is
not suitable for sampling. We consider the change of variable (6,¢) — (0,w) defined by
e=y+ Kgl/2w, motivating us to sample 6, w according to

p(8,w|y) o ez 117 () go(e).

We take the same prior p(#) for § = («, p, o) as above, and for our noise prior we consider
independent Student-¢ distributions for each ¢;, each with mean 0, scale o (a hyperparameter),
and v = 2 degrees of freedom.

We generate data x according to z; ~ N (0,1) and y according to y; = firue(x;) + d;, where
ferue and 0; are the same as in (5.1) and (5.2).

We sample from p(6,w |y) using the method of section 4, employing walker interaction
only for the 6 variables. The proposals ¢(-|6) and r( - |w) are distributed according to N'(6, D)
and N (w, 8%I), respectively, where

0.001 0 0
D= 0 0.001 0
0 0 0.0001

and 32 = 0.001. We run the parallel chains for the w variables for 30 steps between each
update step for the interacting 6 variables. In Figure 5.8, we plot a posterior marginal distri-
bution estimated from samples. Notice that, relative to Figure 5.4, the previously observed
multimodality vanishes for this noise model. Nonetheless, we still see an advantage for large
ensembles in Table 3.

Appendix A. Acceptance probability computations. Observe that the likelihood Q(x’ | x)

of the proposal of section 2 is given by

wi(x, 7h) % Zi}f:l q(z}|zy) if x" and x differ on a unique index i,

Q(X’!X)—{

0 otherwise.
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Figure 5.8. Non-Gaussian noise model. Posterior distribution of a and p, obtained with ensemble size
N = 60. Note that with the Student-t noise model, we lose the multimodality in p.

Table 3
Non-Gaussian noise model. Integrated autocorrelation times of the average of p over all walkers.

N 1 20 40 60
IAT 26016 20453 12428 6090

Supposing that we have generated x’ via the procedure described in section 2 (i.e., so
that i, j, and z are defined as in section 2), the Metropolis—Hastings acceptance probability
is given by

_ min II(x') Q(x | x)
A= <1’ () Q(x rx>)
. (1, m(2) wilx, @) Yy q(xiwg))

(i) wi(x,2) SN q(z|zg)

CAEDE DI (CAESY,
m(z) Z(x,z2) ( W(x;#) ) Z;CV:1 q(; | zy)
m(xi) Z(X, xi) (‘J(“"” |2) 450 als 'x’“)> > a(z|zx)

(@)

=min | 1,

But recall 2 = z, and z) = x;, for k # 4, and so
A= min [ 1 Z(x,2) q(z|xi)+ Z{c\;l q(z | k) Zszl q(xi|x})
2K wi) g | 2) + Y al@i k) Yopy a(2la)

i (17 2(6,2) Sy alz]m) Ty ol x@)

Z(x i) S0 gl | ) ey a(z| k)
i Z(x,z)
min (1, Z(X/,ﬂfi)> )

as desired.
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Appendix B. Global convergence proof.

Proof. For consistency of presentation, we will maintain the continuous notation, i.e.,
writing integrals over X instead of sums. Since X is finite, we have vol(X) := [ 1dz = |X].

First we assume that Qp has full support for any density p. From the dynamics (3.1) we
have

Op=Qp — Z;I%p =: Glpl.

Note that G[p](z) > 0 if p(z) = 0 because Qp has full support. By the continuity of G and the
compactness of the space of probability measures, for any x, we have d;p(z) = G[p](z) > 0 if
p(x) < 6 for some § > 0 sufficiently small. Consequently supp(p:) = X for all ¢ > 0 at which
pr is defined (even if supp(pg) # X ). Moreover, as the constraint that [ pdz =1 is conserved
by the dynamics (3.1), we also have that p; lies within the probability simplex for all times ¢
at which it is defined. This a priori bound within a compact region, together with a Lipschitz
condition on the dynamics within this domain, guarantees global-in-time existence of p; by
standard theory (cf. [30]).

Next, assume that alternatively @ = Id and moreover that pg has global support. Now
C~! <7 < C for some sufficiently large C' > 0, so

2
sz/frdsz‘l/PdeZ (C - vol(X))™H,

where the last inequality follows from Cauchy—Schwarz together with the fact that [ pdz = 1.
Then

Op > p(l—C’2-vol(X)p).

It follows that there exists 6 > 0 such that if p(x) € (0,6], then dp(x) > 0. By taking
0 > 0 possibly smaller, we can also assume that pg > 4. It follows that p, lies in the set
{p: p>4, [ pdx =1} for all times ¢ at which it is defined. This a priori bound guarantees
global-in-time existence by the same principle at above.

In either case, recall (3.3), i.e., that

d
S (| o) < —Vargy (/).
Define the sublevel set

Sy := {p prob.dens. : (7| p) < b},

and note by monotonicity that setting b = x?(7 || po), we have p; € S, for all t. Then evidently

Vargy(t/p)\ _ 1 2,
{Varp(w/p) }— Y x| ),

where « is defined as in the statement of the theorem. Then (3.4) follows from Gronwall’s
inequality, provided we can show that v < 4+o00. Note that v < +oo holds if we can show
(3.5), so it remains only to show (3.5).

d o '
— < —
X (7|l pr) < =Var,(7/pt) plélsi
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Now

Varg, [/] :/ U) = </7;de$>r Qpdx
> Hp/QpHgol/ [Z — </2dex>]2 pda.

But note that f(% — a)?pdz is minimized over a € R by taking a = [ % pdr =1, so

[~ Few)] sz vio

Hence Varg, [1/p] > ||p/Qp|lx Var,(m/p), which implies (3.5). [ ]

Appendix C. Linearization computations and asymptotic convergence proof. Let

1

F(n) = —
Zrtn

T™+n

{Zm - ] O(r +1)

as in section 3.2. Recall that Z, = [ p—gp dx. In particular, Z, = 1. We want to compute
DF(0). Now in our expression for F'(n), the middle factor is zero when 1 = 0; hence in the
product rule only one term contributes, and we have

SFO@)| o0 (@) + ()
on(y) = ) 5tw) =0 [Z”" () ]
— on(s) | 9 )
ikl [577(@/) o ) ] ’

where 0(z,y) = §(z — y) is the identity operator.
To deal with the partition function, observe that

. _ 1 . _ . _
Z, = p* [diag() IQ] p= §p* [diag(m) 19 + Q*diag(n) 1] p;
i.e., we may view Z, as a symmetric quadratic form in p. Here the notation diag(m) indicates
a diagonal matrix with vector m appearing on the diagonal, in the case of finite X. More
generally, it indicates the appropriate diagonal operator. Hence

5
5,20 = (diag(m) 1 Q + Q"diag(m) ™) p = % + o (9 '
But then
) 5 O Or
S| e =oes| Ze =" W)+ Q) = — W)+ 1,
o) |, ™ S|, T (W) +[Q"1)(y) = — ()

where 1 is the constant function taking value 1, and we used that Q*1 = 1 because Q is a
Markov transition operator.
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In summary, we have established that

@[, [on
J@y) = ny) lp—o ol )[W

where J(x,y) denotes the kernel of the operator DF'(0). Then

J=on (QW) - diag () + (@)1

™ m

_4(z,y)
(y) + @) |’

But since 1*n = 0 for all n € S, we have that

J =09r <Q7r> — diag <Q7r)
™ T
as an operator on S (and indeed one verifies easily that S is invariant under J so defined).

Proof of Theorem 2. For consistency of presentation, we maintain the continuous notation,
i.e., writing integrals over X instead of sums. In the finite-dimensional case, the computation
of the Jacobian DF(0) for the dynamics d;n = F(n) in Appendix C is rigorous without
further clarification. Then standard stable manifold theory for ODEs (cf. Theorem 9.4 of [30])
guarantees the result, provided we can show that o(J) C R with supo(J) < —||7/Qn||22.

First, note that taking D := diag(y/m) we have

= () (%) -am (%)

Then M is self-adjoint and hence diagonalizable with real eigenvalues. Since M and J are
similar, J is also diagonalizable with the same eigenvalues. Note that M is on operator on
DS ={f: [ fymdz =0} noton S.

To complete the proof it then suffices to show that f*Mf < —||x/Qn||;t f*f for any f
with [ fy/mdz = 0. Observe that

2
(C.1) fFMf = </\Q/;:fdx> — %de:E.

Since [ fy/7dx =0, we may write, for an arbitrary constant ¢ (to be optimized later),

(f Ferae) = (] )

_ VO Z L)
—</@ﬁfd$)

<[ era] [ (o) %]

where the inequality follows from the Cauchy—Schwarz inequality. But [ Qmdx = 1, and
expanding the square in the other integrand yields

2
( %f@) g/Q7T7Tf2dm—2c/f2d$+c2/g7;f2dx.
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By plugging this into (C.1) we see that
fMf < —20/f2d:r+c2/7rf2da;.
or

Then we want to optimize this bound over c¢. Evidently the optimal c is given by

B [ f?dax
Cc = j« &de.f’
which yields
i} B (f*f)2
M S
But f&fz dr < ||7/ 97|l f*f, s0 fF*Mf < —||m/OnllL f*f, as was to be shown. [ ]

Appendix D. Gradient flow computations. Expanding the expression in (3.7) to lowest
order, we obtain the asymptotically equivalent problem

= avemind [ OE®) o oy e L[ 8@ = @)
Pe= ﬁe%D(X) {/ ép(x) (plw) = plx) dw+ 8e p(z) ! }

Now

so we must solve

1 / p _ 1 [(p—p)? }
argmin { — ! —p)dr+— | ——dx ¢,

for which the optimality condition is
1 —

where A is a constant, namely the Lagrange multiplier for the constraint [ pdz = 1. Rear-
ranging, we obtain

pa=p+€[(1—§)p+Ap}7

where X is chosen so that f pe = 1. Notice that this means precisely that A\ = C);, hence we
obtain

Orp = (1— p)p+0pp,

™

as desired.
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Appendix E. Gaussian processes. A Gaussian process is a random function f : R™ — R
specified by a mean u(x) and covariance X (z1, z2) which satisfy

E[f(x)] = pu(x)
and
E[(f(z1) = plz2)) (f (21) — p(a2))] = B(z1, 22),
together with the specification that for any choice of x = (z1,...,%;,) € R™ ™, the random
vector

fxi=(f(@1), -, fn)

is Gaussian distributed. Hence note that in particular fx has mean

(1), .-, pwlzn))
and covariance

E(:L’l,l‘l) s Z(flaﬁn)
K(x,x) = : :
S(xp,x1) -0 B(xp,Tn)

In this case we say that f ~ GP (u, X).
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