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Variational Monte Carlo (VMC) is an approach for computing ground-state wave functions that has recently
become more powerful due to the introduction of neural network-based wave-function parametrizations. How-
ever, efficiently training neural wave functions to converge to an energy minimum remains a difficult problem.
In this work, we analyze optimization and sampling methods used in VMC and introduce alterations to improve
their performance. First, based on theoretical convergence analysis in a noiseless setting, we motivate a new
optimizer that we call the Rayleigh-Gauss-Newton method, which can improve upon gradient descent and natural
gradient descent to achieve superlinear convergence at no more than twice the computational cost. Second, to
realize this favorable comparison in the presence of stochastic noise, we analyze the effect of sampling error on
VMC parameter updates and experimentally demonstrate that it can be reduced by the parallel tempering method.
In particular, we demonstrate that RGN can be made robust to energy spikes that occur when the sampler moves
between metastable regions of configuration space. Finally, putting theory into practice, we apply our enhanced
optimization and sampling methods to the transverse-field Ising and XXZ models on large lattices, yielding

ground-state energy estimates with remarkably high accuracy after just 200 parameter updates.
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I. INTRODUCTION

Computing the ground-state wave function of a many-body
Hamiltonian operator is a demanding task, requiring the solu-
tion of an eigenvalue problem whose cost grows exponentially
with system size in traditional numerical approaches. Vari-
ational Monte Carlo (VMC, [1,2]) is an alternative strategy
that avoids this curse of dimensionality by using stochastic
optimization to find the best wave function within a tractable
function class.

VMC has recently seen rapid and encouraging develop-
ment due to the incorporation of insights from the machine
learning community. In 2017, Carleo and Troyer [3] applied
VMC with a two-layer neural network ansatz to accurately
represent the ground-state wave function of quantum spin
systems with as many as 100 spins. Since then, there has been
major progress in extending neural network-based VMC to
the setting of electronic structure, including the development
of the neural network backflow ansatz for second-quantized
lattice problems [4], as well as of FermiNet [5] and PauliNet
[6] for quantum chemistry problems in first quantization.
These new approaches have been extended to systems as large
as bicyclobutane (C4Hg), which has 30 interacting electrons
[5,7].

VMC is highly flexible, since it extends without significant
modification to systems of arbitrary spatial dimension. How-
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ever, the price paid for this flexibility is a difficult optimization
problem that relies on Monte Carlo sampling. Efficiently solv-
ing this optimization problem has proven challenging. Recent
works [4,6—10] raise concerns about the speed and stability
of wave-function training and report that VMC can suffer
from long training times [5,7], lose stability [10], or converge
to unreasonable solutions [11]. Thus, there is motivation for
the development of faster and more stable optimization and
sampling solutions.

Our goal is to apply numerical and probabilistic anal-
ysis to evaluate and improve upon the optimization and
sampling strategies in VMC. To this end, we first provide
a unified perspective on several major VMC optimizers,
namely, gradient descent, quantum natural gradient descent
(also known as stochastic reconfiguration), and the linear
method. Reviewing these methods in a unified way clari-
fies a path toward improvement. Specifically, we introduce a
new Rayleigh-Gauss-Newton (RGN) method and prove RGN
achieves superlinear convergence as the wave function ap-
proaches the ground state.

Next we analyze the Markov chain Monte Carlo (MCMC)
sampling used in VMC. We establish a quantitative extension
of the zero-variance principle [1,2] of VMC that we call the
vanishing-variance principle. This principle guarantees that
the energy estimates converge to the true energy as the wave
function nears an eigenstate. However, away from an eigen-
state, the accuracy of the energy estimates is not guaranteed.
The energy estimates can have a high variance and can even
exhibit energy spikes (see Fig. 4). To stabilize these energy
estimates, variance reduction strategies are needed. Using a
standard MCMC sampler as in [3], the wave function is slow
to recover from the energy spikes (~103 iterations); how-
ever, using the parallel tempering MCMC method [12], the
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recovery period is much quicker (~10? iterations). Variance
reduction strategies such as parallel tempering can be essential
for realizing the full potential of VMC in large-scale applica-
tions.

Lastly, by using the Rayleigh-Gauss-Newton method along
with parallel tempering, we obtain highly accurate variational
estimates for the ground-state energies of transverse-field
Ising and XX Z models with as many as 400 spins. Compared
to past benchmark results obtained using natural gradient
descent [3], we obtain the same or higher accuracy in fewer
iterations. Since RGN is only slightly more expensive than
natural gradient descent, by less than a factor of two in our
tests, we conclude that RGN can improve the overall effi-
ciency of VMC.

The rest of the paper is organized as follows. Section II
gives an overview of variational Monte Carlo, Sec. III an-
alyzes optimization methods, Sec. IV analyzes sampling
methods, Sec. V presents numerical experiments, and Sec. VI
concludes.

Throughout the paper, iz denotes the real part of a com-
plex number z. v”, ¥, and v* denote the transpose, complex
conjugate, and conjugate transpose of a vector v, and similar
conventions are adopted for matrices. We use single bars | - |
for the Euclidean norm of a scalar, vector, or matrix and || - ||,
for the spectral norm of a matrix. Last, we consider a finite-
or infinite-dimensional Hilbert space of unnormalized wave
functions ¢ and use (-, -) and || - || to denote the associated
inner product and norm.

II. OVERVIEW OF VMC

The main goal of variational Monte Carlo (VMC) is the
identification of the ground-state energy and wave function
of the Hamiltonian operator H for a quantum many-body
system. We denote the ground-state energy and wave func-
tion using Ao and v, respectively. In addition to solving the
eigenvalue equation Hyy = Ao, these admit a variational
characterization in terms of the energy functional

ety = L) M)

(V. ¥)
The ground-state energy A¢ is the minimum value of £, and
the ground-state wave function v is the minimizer, which we
assume to be unique up to an arbitrary multiplicative constant.

Identifying Ay and ¥y becomes difficult when the Hilbert
space associated with A is high-dimensional or infinite-
dimensional. For example, in the Heisenberg model for
spin-1/2 particles on a graph [13], H is the operator

H = Z []xa;‘o;‘ + Jyoiya}.v + Jzofaf] +h Z o, (2)

i~j i

where o7, crlzv, and o are Pauli operators for the ith spin,
i ~ j signifies that i and j are neighboring spins, and J, Jj,
J., and h are real-valued parameters. In the case, e.g., of a
10 x 10 square lattice, the ground-state wave function can be
viewed as a vector of length 2%, which is far too large to
store in memory, much less calculate with any conventional
eigensolver, direct or iterative.

VMC must approximate this high-dimensional eigenvector
using a tractable parametrization ¥ = 9, where @ is a vector
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FIG. 1. VMC ground-state energy estimates for a 200 x 1 Ising
model with a transverse magnetic field (h = 1.5). Computational
details are provided in Sec. V.

of real- or complex-valued parameters. VMC uses an iterative
approach for updating the 6 parameters, with the goal of min-
imizing the energy within the parametric class. VMC iterates
over the following three steps.

(1) Draw random samples from the wave-function density
o = [Vol*/(Wo, Vo).

(2) Use the random samples to estimate the energy E[vq],
the energy gradient Vy¢E[Yy], and possibly other quantities
needed for the optimization.

(3) Update the 6 parameters to reduce the energy.

In VMC, we ideally find that the estimated energies fall
quickly in the first iterations and decrease more slowly at
subsequent iterations, yielding increasingly accurate estimates
of A9, as shown in Fig. 1.

Additionally, as seen in Fig. 1, there is a vanishing-
variance principle by which the energy estimator’s variance
converges to zero as the wave function approaches the ground
state of H (see Proposition 3). Because of this principle,
reductions in the energy mean and reductions in the energy
variance both indicate that the wave function is approaching
the ground state. The vanishing-variance principle is essential
in applications, since it enables VMC to provide accurate
energy estimates even though the variance at the early stages
of the optimization would appear to render such high accuracy
impossible.

III. OPTIMIZATION APPROACHES

In this section, we obtain formulas for the energy gradi-
ent and Hessian, use these formulas to motivate optimization
methods for VMC, and lastly derive theoretical convergence
rates for VMC optimizers. Throughout the section, we assume
that optimization methods are applied exactly without any
Monte Carlo sampling.

A. The energy gradient and Hessian

To begin, we derive formulas for the energy gradient
and Hessian with respect to the parameters. By adopting
the convention of intermediate normalization [14], we obtain
compact expressions for these quantities that differ from past
presentations, e.g., Ref. [1, chap. 9].

We fix a vector of parameters # and consider a small
parameter update 6 + 8. The resulting wave function, after
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intermediate normalization, is written

{p\ _ (Yo, Vo)
" e, Yare)

This intermediate-normalized wave function is a scalar mul-
tiple of the unnormalized wave function /¢, 5 and hence has
the same energy. However, ¥.s has been rescaled to fix the
inner product with .

We assume that § — 1//g+5 is a locally analytic function
of real or complex parameters and consider the second-order
Taylor series expansion,

Yo1s. 3

—~ —~ —~ 1 —~
Vors =V + Z 8ivi+ 3 ; 88,0 +OUSP), (¥

where v, ¥, and v;; denote the normalized wave function
and its partial derivatives

v =0, Yi= 30,-12;07 17;1; = 3(3,0]1/#\0- (5)

Manipulating Eq. (4), we then decompose the energy dif-
ference E[Yg15] — E[WYe] into the sum of gradient and Hessian
terms:

Elos]

energy difference

— Yl = §'g+ g8 + 8 HS+ R T §)
N —— —

gradient terms Hessian terms

+ O(181%). (©)
These gradient and Hessian terms are given explicitly by
Wi, L) Wi, H )
8 = =~ ij= == (7)
W) oW
Jij = —=—=—, ®)
T oY)

where H=H — & [1’#\] is an energy-shifted version of the op-
erator H.

Equations (7) and (8) offer transparent formulas for the
energy gradient and Hessian. In the case of real-valued pa-
rameters, the energy gradient is 2g, and the energy Hessian is
2H + 2]. In the case of complex-valued parameters (such as
in the setting of Ref. [3]), the Wirtinger gradient [15,16] of the

energy is (g), and the Wirtinger Hessian is (I; %).

The structure of the Hessian simplifies near the ground
state, since J — 0 as the wave function approaches any eigen-
state of H.

Proposition 1. The matrix J is bounded by

||w,]|| Lo NG — wu
Il 2R g

Therefore, J — 0 as min; g [|(H — )\)W||/||1’p\|| — 0, assum-
ing uniformly bounded || v;;1|/1l ¥ || terms.

Proof. Apply the Cauchy-Schwartz inequality to Eq. (8),
and use the fact that | H ¥|| = minycr [|(H — A)Y || B

As the wave function approaches an eigenstate, Proposition
1 reveals that the Hessian or Wirtinger Hessian takes a simple
structure, depending only on first derivatives of the wave
function. To our knowledge this fact has not been previously
identified. An important implication, to be spelled out below

©))

IJij| <

in Sec. III D, is that first derivatives suffice to achieve superlin-
ear convergence in VMC optimization, under the assumption
that the true ground state lies within our parametric class.

B. Gradient descent methods

The main idea in gradient descent methods is to first ap-
proximate the energy using

— ElYpl = 8'g + g8 (10)

and then choose § to minimize Eq. (10), plus a penalization
term that keeps the update small. The penalization term may
take the form

5linear[‘ﬁ9+5]

1812 o X Vo, Yio+s )’

€ €

)

where € > 0 is a tunable parameter. In the first case, we are
restricting the Euclidean norm |§| and the resulting method is
standard gradient descent. In the second case, we are restrict-
ing the angle between wave functions:

P |(1/f0, Yors)|
Z , = arccos —————— 12
o) e sl
This leads to a method called “stochastic reconfiguration” or
“(quantum) natural gradient descent” [2], which has been used
extensively to optimize traditional [17,18] and more recent
[3,5] VMC wave-function ansatzes.

In a high-dimensional or infinite-dimensional Hilbert
space, the angle /(g Yg,s ) cannot be computed exactly, so
natural gradient descent takes advantage of the Taylor series
expansion

Z(Yg, Yors)* = §°S8 + O(I8]), (13)
where
Wi )
S = —==— 14
LWL (1

is a positive semidefinite matrix known as the Fubini-Study
metric or quantum information metric [19]. However, instead
of directly using a penalization term

§*S$8
€

, as)

natural gradient descent uses a slightly modified penalization
term

8 (S + n)é
—.

(16)

Here, n > 0 is a parameter that makes the matrix S + nl
positive definite and prevents large updates when the Taylor
series expansion (13) is not very accurate.

To make the preceding discussion precise, we formalize
gradient descent (GD) methods as follows.

Algorithm 1 (GD methods). Choose § to solve

§* RS
Inll’l [S*g +g'6+ j| 17

where R =1 in GD and R = S + nl in natural GD. Equiva-
lently, set

§=—eR7 g (18)
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In addition to GD and natural GD, alternative gradient
descent methods such as Adam [20] and AMSGrad [21] have
recently gained traction in the VMC community [5,22-24].
These “momentum-based” methods form updates by com-
bining the energy gradient at the current iteration and past
iterations. While such strategies are potentially promising,
recent tests [5,25] suggest that natural GD still outperforms
momentum-based methods on several challenging VMC test
problems. Therefore, we focus on GD and natural GD, leaving
analysis of other gradient descent methods for future work.

C. Rayleigh-Gauss-Newton method

Whereas gradient descent methods are based on a linear
approximation of the energy, we now introduce a method—
which we call the Rayleigh-Gauss-Newton (RGN) method—
based on the following quadratic energy approximation:

EquaalVors] — EMVl = g + g8 + 8°HS.  (19)

Here, §*g and g*§ are the exact gradient terms, while §*H4
is just one of the Hessian terms. There is a strong practical
motivation for ignoring the other Hessian term % (8" J§), since
evaluating this term would requiring taking second derivatives
of the wave function with respect to all pairs of parameters,
which becomes burdensome as the number of parameters
grows large.

In the RGN method, we minimize the quadratic objective
function (19) plus a “natural” penalization term, as described
below.

Algorithm 2 (RGN method). Choose § to solve

§*RS
msin [S*g +g'6+8HS+ } 20)
where R = S + nl. Equivalently, set
§=—H+e¢'R)'g (1)

The parameter n > 0 is again chosen to make H +
€~1(S + nI) positive definite and help prevent large parameter
updates.

To our knowledge, the RGN method has not appeared
before in the literature. However, it is closely connected to the
classical Gauss-Newton method for nonlinear least squares
problems [26], which can be viewed as deriving from a similar
Hessian splitting. Also, RGN is related to previous VMC
optimization methods, including the linear method for energy
minimization [2] and a Gauss-Newton-like method for vari-
ance minimization [27]. All these approaches can be can be
described by first linearizing a class of functions

Voss ~ 0+ 8, (22)

and then minimizing a nonlinear loss function applied to the
linearized function class

min ,C|:Iﬁ + Z 6,1&,-:|. (23)

For example, in the linear method for VMC, one /flrst lin-
earizes the intermediate-normalized wave function .5 and

then minimizes

~ —~ —~ 8 *§ 4+ 8*H
5[w+265w,}—5w1= §1E°01 90

1+6°S6

plus an additional penalization term. Minimization of Eq. (24)
is equivalent to solving the generalized eigenvalue problem

G W6 =6 J6) @

for the smallest eigenvalue-eigenvector pair [1,2]. As a penal-
ization term, the matrix H is padded with a diagonal matrix
€~ I, which is similar to the penalization term used in GD.

The linear method has been observed to yield fast asymp-
totic convergence in VMC applications with small parameter
sets. However, extending the linear method to larger parameter
sets is an ongoing challenge [22,28]. Motivated by the linear
method’s potential for fast asymptotic convergence, we intro-
duce RGN as an updated strategy with improved convergence.
RGN differs from the linear method in two ways, as detailed
below.

First, instead of approximating the energy using the for-
mula (24), RGN uses the quadratic approximation

EqaalVors] — EMVel = 8'g +g°8 + 8°HS.  (26)

This quadratic approximation agrees with Eq. (24) up to
O(|8]*) terms, but it only requires the solution of a linear
system instead of a generalized eigenvalue problem. Although
the parametrizations considered in our numerical experiments
below are small enough so that neither of these linear algebra
routines imposes a computational bottleneck, the distinction
may become important for large parameter sets. For exam-
ple, Ref. [28] introduced a matrix-free approach for solving
the linear system in stochastic reconfiguration, but a simi-
lar scheme for the generalized eigenvalue problem has not
achieved the same success [29].

Second, RGN wuses a “natural” penalization term
€7 18%(S + nI)§, which differs from the penalization term
used in the linear method. Because of the penalization, the
linear method converges as € — 0 to give standard GD
updates. In contrast, RGN converges as € — 0 to give natural
GD updates, which are more efficient than standard GD
updates when optimizing many VMC wave-function ansatzes
[5,25].

D. Convergence rate analysis

GD, natural GD, and RGN can all be presented in the
standardized form

PO —0)=—g@), i=12,... 7)
Here, the parameter update "' — @' is written as the solution
to a linear system involving a positive definite preconditioning
matrix P’ and a negative energy gradient —g(6'). Table I shows
the different preconditioners corresponding to the different
optimization approaches.

To help quantify the efficiency of the various optimiza-
tion methods, Proposition 2 considers a general sequence
of positive definite preconditioners P P>, ... and de-
rives sharp asymptotic bounds on the resulting energies
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TABLE 1. Different preconditioners for energy minimization.

Method Preconditioner P
Gradient descent eI
Natural gradient descent e (S +nl)

Rayleigh-Gauss-Newton H+e'(S+nl)

ElYgl, E[Yg], . ... Proposition 2 is based on standard op-
timization theory (e.g., Ref. [26]), but here we extend this
theory to the complex-valued wave functions often used in
VMC.

Proposition 2. Consider the parameter updates P'(§""" —
0') = —g(0). Assume 0', 6°, ... converges to a local energy
minimizer %, and the Hessian or Wirtinger Hessian is positive
definite at 8*. Then,

i o EVp] = El]
e’ Yyl — ElVe]

<limsup |1 — (H +J):P;'(H +J)%||i (28)

i—00
or

i o SVl = El]
e’ Yyl — ElVe]

w7 2) (6 2) G 7)
Llimsup (I —( = — — - =
i— 00 J H 0 Pi J H

in the real and complex cases, respectively, where H = H (6%)
and J = J(6").

Proof. See Appendix A. |

The convergence rate in Proposition 2 depends on a matrix
J which vanishes at the ground state. Therefore, if the RGN
method is applied with penalization parameters € = € tending
to infinity and wave functions v, approaching the ground
state, then the rate of convergence is superlinear, i.e.,

Yl — €l
S ol — Elve] 0

In practice, our parametric class does not usually contain the
exact ground state for H, but if € is large and the energy
minimizer is close to the ground state, then Proposition 2
still quantifies a fast linear convergence rate for RGN. In the
numerical experiments presented in Sec. V, we achieve such
a fast convergence rate by gradually moving the parameter €
closer to zero as we make progress in optimizing the wave
function.

2

2
(29)

IV. VMC SAMPLING ANALYSIS

In this section, we review VMC sampling and prove a
vanishing-variance principle that quantifies the sampling error
in the estimated energies and gradients. Then, we discuss chal-
lenges in VMC sampling and motivate strategies to improve
the sampling.

A. VMC sampling

VMC requires quantities such as &, g, S, and H that are
constructed as sums or integrals over a high-dimensional or
infinite-dimensional state space. To compute such quantities,
VMC relies on the power of Monte Carlo sampling. In VMC,

we first generate a large number of samples o1, 03, ...,07
from the normalized wave-function density
[y ()
plo) = , (31
(¥, ¥)

using an appropriate Markov chain Monte Carlo (MCMC
[30]) sampler. Then we approximate &, g, S, and H using the
following estimators:

& =EJEL(0)], (32)
& = covylvi(0), EL(0)], (33)
Sij = covyvi(a), v;(0)], (34)

N A A

H,‘j = COV[)[V,'(O'), ELJ'((T)] —gi]Ep[Vj(O’)] — gS,‘j. (35)

Here, E, and cov; denote expectations and covariances with
respect to the empirical measure

1 I
h=7 ;a (36)

and we have introduced the functions

_ Hy (o) . Hog (o)
EL(0) @) Epi(0) = e (37
09, ¥ (0)

i = —. 38
v;(o) @) (33)

The functions E; and v; are known as the local energy and
logarithmic derivative, respectively.

Next we state the vanishing-variance principle, which
quantifies the asymptotic variance of several VMC estimators
of interest.

Proposition 3. Assume the MCMC sampler is geomet-
rically ergodic with respect to p, and for some € >
0, E |EL(0)[*™ < 0o and sup; E |v;(a)[*" < co. Then, as
T — oo,

VT(& — &) B N0, v?), (39)

VT(gr —g) 3 N@©, %), (40)

where the asymptotic variances v> and X are given by

v? = Z COVgy~plEL(00), EL(0})]
t=0

+ Y coveyp[EL(0), EL(00)], 1)

t=1

oo
Zij = ) COVeyplg)(00), &(07)]

t=0

+ ) cova,,l€i(01), £,(00)], (42)

t=1
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and g’ is defined as
g(0) = {v(0) —Eg~ [v(@)}[EL(0) —E].  (43)

Proof. See Appendix A. |

As a major takeaway from Proposition 3, the energy and
energy gradient both have zero variance, i.e., v> =0 and
¥ = 0, when the local energy E| is constant, as occurs at any
eigenstate of H. Proposition 3 can thus be viewed as a robust
and quantitative extension of the classic zero-variance princi-
ple [1,2] of VMC. The vanishing-variance principle is robust,
since it holds when the wave function is not an eigenstate, and
quantitative, since it gives a precise formula for the asymptotic
variance of the energy and energy gradient estimators.

B. Improving estimation quality

Near an eigenstate, the vanishing-variance principle en-
sures the relative accuracy of VMC estimated energies.
However, away from an eigenstate, VMC estimated ener-
gies and energy gradients can have a high variance and
change erratically over the course of VMC estimation [11,24].
Therefore, variance reduction strategies are needed to ensure
VMC’s success.

Proposition 3 suggests three strategies for reducing the
variance. The first strategy is to increase the number of Monte
Carlo samples. We can do this either by running one MCMC
sampler for a long time or by running many MCMC samplers
in parallel and combining samples. The parallel sampling
approach often leads to computational advantages, since vec-
torized code runs quickly on modern computers and MCMC
samplers can be run on multiple nodes/cores to further cut
down on the runtime. In the numerical experiments in Sec. V,
we run 50 MCMC samplers per CPU core and use 48 CPU
cores, thus generating 2400 parallel MCMC samplers.

The second variance reduction strategy is to reduce cor-
relations among the samples oy, 03, ..., 07 by applying a
fast-mixing MCMC method such as parallel tempering [12].
Parallel tempering introduces interacting MCMC samplers
that target different densities

pi(@) o p(a)/™, i=0,1,...,m. (44)

Periodically, the samplers targeting adjacent densities p; and
pir1 Swap positions according to a Metropolis acceptance
probability [31], which improves the mixing time for each
of the samplers. Last, the samplers targeting p,, are used for
estimating &, g, S, and H. Parallel tempering has reduced
correlations in challenging VMC test problems in the past
[11,32], and in Sec. VB we apply parallel tempering to im-
prove the sampling for XX Z models on large lattices.

The third variance reduction strategy is to directly alter the
VMC update formula to improve its stability. For example,
Refs. [5,6] use an alternative gradient estimator in which the
most extreme local energy values are adjusted to be closer to
the median. Similarly, [4] rounds all positive gradient entries
to +1, round all negative gradient entries to —1, and then
assign a random independent magnitude to each entry. The
approaches [4-6] all improve the stability of VMC updates,
but they discard gradient information that could potentially be
helpful. Therefore, we adopt a slightly different stabilization
approach in Sec. V. At each iteration, we check that the

parameter update is less than twice as large as the previous pa-
rameter update (in Euclidean norm). If not, then we shrink € in
half repeatedly until the parameter update is sufficiently small.
This stabilization code eliminates the most erratic parameter
updates in our experiments. The code is rarely triggered for
TFI models (just 0-2 times per 1000 updates), but it is more
commonly triggered for XXZ models (9-34 times per 1000
updates).

V. NUMERICAL EXPERIMENTS

To test the performance of VMC optimization and sam-
pling methods, we estimate the ground-state energies for the
transverse-field Ising (TFI) and XXZ models on 1D and 2D
lattices with periodic boundary conditions. These models are
specified by the Hamiltonians

—Y oio} —hZal, (45)

i~j

Hxxz——AZO’ZO'7+Z

i~ i~j

Hrr =
o —oio? ] (46)

where 4 > 0 and A > 0 are positive-valued parameters. The
XXZ model is sometimes alternatively defined as

Hxxz = A Zafojz + Z [0/} +0/0]], 4T

i~j i~j

which is a unitary transformation of Eq. (46), assuming a
bipartite lattice. As a consequence of the Perron-Frobenius
theorem and translational symmetry, the models (45) and
(46) both admit unique, nonnegative, translationally invari-
ant ground-state wave functions. For 1D lattices but not 2D
lattices, the ground-state wave functions are known exactly
[33,34].

As a wave-function ansatz, we use a restricted Boltzmann
machine (RBM), which can be written as

anosh|:2w,j(7'a)j +bi| (48)

i=1 T

ww,b(o')

Here, « is the hidden-variable density that controls the number
of parameters, 7 ranges over the translation operators on the
periodic lattice, and w and b are vectors of complex-valued
parameters, called weights and biases. This ansatz is an ex-
ample of a two-layer neural network and is a simplification of
the RBM ansatz used for VMC optimization in Ref. [3]. The
ansatz involves «(n + 1) parameters, where 7 is the number of
spins and we set ¢ = 5 for all of our numerical experiments.
We report additional implementation details in Appendix B.

A. Comparing optimization methods

To compare different VMC optimizers in the noiseless set-
ting, we apply VMC to TFI model on a 10 x 1 lattice, which
is small enough so that £, g, S, and H can be computed by
exact summation without the need for Monte Carlo sampling.
Figure 2 evaluates the performance of different optimizers in
this setting, i.e., with deterministic parameter updates. The
figure shows that RGN leads to faster convergence and lower
errors than GD, natural GD, and the linear method.
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FIG. 2. RGN achieves low energy errors in ferromagnetic (h =
0.5, left), transitional (A = 1.0, center), and paramagnetic (h = 1.5,
right) regimes. Plot shows relative error in ground-state energy
estimates.

In light of Proposition 2, we expect the most rapid en-
ergy convergence when the preconditioner is close to the true

Hessian (? %). Indeed, Fig. 3 confirms that the Hessian

approximation used in RGN closely approximates the true
Hessian, in concordance with the fast observed convergence
rate.

B. Challenges in VMC sampling

We next apply VMC to larger lattices by incorporating
MCMC sampling. For the TFI model, we initialize the MCMC
samplers from a configuration chosen uniformly at random
and propose random updates based on flipping a single spin.
For the XXZ model, we confine the MCMC samplers to
“balanced” configurations for which the magnetization is the
same on both components of the bipartite lattice, since the
ground-state wave function is only supported on these config-
urations. We initialize from a random balanced configuration
and propose random balanced updates based on flipping two
spins.

At every new optimization step, the MCMC samplers are
continued from the final configurations at the previous step.
The MCMC samplers are then run for 20 x n time steps, and
the local energies and logarithmic derivatives are evaluated at
intervals of n time steps, where n denotes the number of spins.

The MCMC samplers are guaranteed to mix quickly when
sampling the ground-state wave functions for the TFI model

h=0.5 h=1.0 h=1.5
10°
s
3 q0-2
210
.©
wn
3 04
T 10
1076
0 500 1000 O 500 1000 O 500 1000
Iteration Iteration Iteration

FIG. 3. RGN achieves accurate Hessian approximations with
re(l)ative err(gs <107 for most iterations. Plot shows relative error
|(j %)l / |(j %)l computed at each iteration.

—— Natural GD
A=1.0

— RGN]

Energy error

5000 0 2500 5000
Iteration

0 2500
Iteration

5000 O 2500
Iteration

FIG. 4. VMC can lead to energy spikes if direct MCMC sam-
pling is used. Plot shows relative error in ground-state energy
estimates for an X XZ model on a 100 x 1 lattice.

at h = oo or the XXZ model at A = —1. For these extreme
parameter settings, every Metropolis proposal is accepted,
the relaxation time for the TFI sampler is n/2 [35], and the
relaxation time for the XX Z sampler is n/4 [36]. Yet, there is
no guarantee that the MCMC samplers remain efficient for the
h and A values more reasonably encountered.

Indeed, the RGN and natural GD optimizers encounter
difficulties when calculating ground-state energies for the
XXZ model, as shown in Fig. 4. Initially during the opti-
mization, the RGN energies decrease quickly, but at iteration
360 (A = 1.5) or 370 (A = 1.0), the energies exhibit a large
spike, which persists over roughly 1000 optimization steps.
The natural GD energies exhibit a spike later, during iterations
15004000 (A = 1.5), which makes sense because the natural
GD optimizer converges more slowly than the RGN optimizer
overall.

The energy spikes are a major difference between exact
VMC energies and energy estimates from MCMC sampling.
The exact energies change slowly and continuously, as seen
in Fig. 2. However, the MCMC energy estimates can spike if
a slowly mixing MCMC sampler moves between metastable
regions of configuration space. Indeed, Fig. 5 establishes that
all 2400 MCMC samples typically lie in the ferromagnetic re-
gion of configuration space. At the onset of the energy spikes,
a few MCMC samplers (5-30) enter the antiferromagnetic

[—-— Natural GD ~ —=— RGN]
A=0. A=1.0 A=1.5
30 0.5
L
225
(<2}
©
€20
e
Q15
€
10
(]
Qo
[S)
3
=2 0 o
0 2500 5000 O 2500 5000 O 2500 5000
Iteration Iteration Iteration

FIG. 5. Energy spikes occur when a few MCMC samplers en-
ter the antiferromagnetic region of configuration space, defined by
Do ;0i0; < 0. Plot shows number of samplers in the antiferromag-
netic region, evaluated at every 100 iterations.
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FIG. 6. VMC recovers more quickly from energy spikes if paral-
lel tempering is used.

region of configuration space, encountering high densities and
high local energies that have not been experienced before. The
densities and local energies are extremely large due to gener-
alization error, and the optimizers require 10004 iterations to
respond to the new MCMC data and eliminate the spikes.

To improve the sampling for XXZ models, we apply the
parallel tempering method described in Sec. IV B using fifty
target densities. Parallel tempering speeds up the mixing of
the MCMC samplers and reduces the magnitude and longevity
of the energy spikes, as shown in Fig. 6. With parallel tem-
pering, the same number of MCMC samples (2400 x 20)
are generated per iteration as in direct MCMC sampling, but
the quality of the samples is much higher. The high-quality
sampling reduces the generalization error and improves the
overall stability of VMC.

C. Results for larger systems

Lastly, we apply VMC to estimate ground-state energies
for TFI and XXZ models on lattices with up to 400 spins.
We train highly accurate VMC wave functions for these large
lattices by using RGN and (for XX Z models) parallel temper-
ing. For 1D systems, we compare the estimated ground-state
energies against the exact energies in Table II. For 2D systems,
we report the estimated energies themselves in Table III.

Summarizing Tables II and III, we find that RGN energies
converge more quickly and achieve greater accuracy than nat-
ural GD energies. In 1D lattices, RGN is more accurate than
natural GD by up to four orders of magnitude, reaching error

TABLE II. Relative errors in ground-state energy estimates after
1000 iterations. Lower errors are marked in bold.

200 x 1 TFI model

h=05 h=1.0 h=15
Natural GD 3.9 x 1073 1.4 x 1074 8.5x 1078
RGN 1.0 x 10~° 2.9 x 10~ 1.6 x 10~°
100 x 1 XXZ model
A=05 A=10 A=15
Natural GD 3.9 x 10°° 1.2 x 1073 5.4 x 1073
RGN 2.5x 1077 3.3x10°° 2.0 x 1075

TABLE III. Ground-state energy estimates, normalized by the
number of sites. Changes between iteration 200 and iteration 1000
are marked in bold.

20 x 20 TFI model, Natural GD

h=20 h=3.0 h=4.0
Iteration 200 —2.3375353 —3.1899006 —4.1337097
Iteration 1000 —2.5113061 —3.1950035 —4.1338352
20 x 20 TFI model, RGN
Iteration 200 —2.5113056 —3.1949262 —4.1335964
Iteration 1000 —2.5113069 —3.1949974 —4.1338354

levels as low as 1.0 x 107 and 1.6 x 10~°. In 2D lattices for
which exact reference energies are not available, the energy
estimates obtained by RGN are typically lower than those
obtained using natural GD, and the convergence is very fast.
After 200 iterations, RGN is converged to 46 significant dig-
its, whereas natural GD is only converged to 1-4 significant
digits.

We further illustrate the comparison between natural GD
and RGN for TFI models in Figs. 7 and 8. These figures,
showing the complete time series of energy estimates over
1000 optimization steps, demonstrate that RGN results after
200 iterations are typically more accurate than natural GD
results after 1000 iterations. Because RGN is only slightly
more expensive than natural GD (less than a factor of two in
our experiments), we conclude that RGN makes it possible to
obtain accurate ground-state estimates with reduced training
time and computational cost.

VI. CONCLUSION

This work has analyzed VMC optimization and sam-
pling methods, leading to both theoretical and computational
advancements. First, we showed that the energy Hessian sim-
plifies dramatically near an eigenstate, depending only on
first derivatives of the wave function with respect to the
parameters. Taking advantage of this simplification, we in-
troduced a new Rayleigh-Gauss-Newton (RGN) optimizer
that can achieve superlinear convergence. Second, we proved
a vanishing-variance property that guarantees VMC energy
estimates exhibit reduced variance near an eigenstate. This
principle ensures accuracy in the energies near the ground
state but not away from the ground state, so we suggested a
parallel tempering approach to improve energy and gradient
estimation for challenging test problems.

We highlight two opportunities for improving our opti-
mization and sampling methods even further. First, for very
large parametrizations, the linear system solve in the RGN
method becomes numerically challenging. To address this dif-
ficulty, the Kronecker-factored approximate curvature method
for efficient matrix inversion within natural gradient descent
[5,37], in addition to the aforementioned matrix-free approach
[28], could potentially be adapted to RGN. Second, while
parallel tempering is a simple, broadly applicable enhanced
sampling method, there exist a variety of alternative methods
[38]. We anticipate that further analysis of enhanced MCMC
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FIG. 7. RGN outperforms natural GD in ferromagnetic (h = 0.5, left), transitional (A = 1.0, center), and paramagnetic (h = 1.5, right)
Ising models on a 20 x 20 lattice. Plot shows ground-state energy estimates normalized by the number of sites.

sampling will play an important role in realizing the full
potential of VMC in future applications.

ACKNOWLEDGMENTS

R.J.W. and M.L. would like to acknowledge helpful con-
versations with Timothy Berkelbach, Aaron Dinner, Sam
Greene, Lin Lin, Verena Neufeld, James Smith, Jonathan
Siegel, Erik Thiede, Jonathan Weare, and Huan Zhang. R.J.W.
is supported by New York University’s Dean’s Dissertation
Fellowship and by the National Science Foundation through
Award No. DMS-1646339. M.L. is supported by the Na-
tional Science Foundation under Award No. DMS-1903031.
The authors acknowledge support from the Advanced Sci-
entific Computing Research Program within the DOE Office
of Science through Award No. DE-SC0020427. Computing
resources were provided by New York University’s High Per-
formance Computing.

APPENDIX A: PROOFS

Proof of Proposition 2. We prove only the second result.
The first result is well-known, and the proof is similar. Be-
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Proof of Proposition 3. The Markov chain central limit
theorem [39] guarantees that
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as T — oo. Next, using the identity
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FIG. 8. Relative error in ground-state energy estimates for TFI
models on a 200 x 1 lattice.

and substituting the empirical averages x = % Zthl v(a,) and
y= % Zthl Er(0;), we obtain
&r (A3)

[ ap— |
== ;V(Ut)EL(O't) ~ T2 Z v(o)EL(0,) (A9)

s,t=1

1
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=1

Slutsky’s lemma shows that the Op(%) term is asymptotically

negligible, and another application of the Markov chain cen-
tral limit theorem guarantees

VT (& — &) B N, ), (Al1)

VT(&r —8) 3 N©, %), (A12)

where the asymptotic variances v> and X are as given in
Egs. (41) and (42). |

APPENDIX B: COMPUTATIONS

Here, we discuss the computational details for our exper-
iments. These computations are implemented using the JAX
library for Python [40], and complete scripts and output are
available on github [41]. Using these scripts, estimating the
ground-state wave function for a large lattice is relatively fast,
requiring less than four days on a single 48-core CPU node
(see Table IV). The resulting energies are presented in Table II
for TFI models and Table III for XX Z models.

We initialize our neural network wave-function param-
eters as independent complex-valued A(0,0.001) random
variables, using a random seed of 123. We then update our

TABLEIV. Runtimes per 1000 optimization steps on a single 48-
core CPU node, with 2400 x 20 MCMC samples per optimization
step.

RGN Natural GD
TFI 200 x 1 18-21h 12-14h
TFI 20 x 20 58-63 h 30-32h
XXZ 100 x 1 97-100 h 85-90 h

TABLE V. Penalization parameters.

€min 0.001

€max 0.01 for GD and natural GD, 1 for LM, 1000 for RGN
Nmin 0.001

Nmax 0.001 for natural GD, 0.1 for RGN

T 100 for deterministic updates, 500 for stochastic updates

parameters using GD, natural GD, LM, or RGN over 1000
iterations, as described in Secs. III B and III C. During the
optimizations, we increase the penalization parameter € from
€ = €min t0 € = €max and increase n from n = Ny, to n =
Nmax at @ geometric rate over t iterations. Our specific choices
of parameters €min, €maxs Mmin» Mmax, and T are detailed below
in Table V.

Before evaluating the wave function ¥ (o) or wave function
derivative 1;(0), we check whether o has “mostly negative”
magnetization, as defined by

2) oi+0, <0. (B1)

If we encounter a configuration ¢ for which Eq. (B1) is not
satisfied, we transform it to —a. Indeed, the mostly negative
configurations suffice to determine the complete wave func-
tion given the symmetry condition (o) = ¥ (—0), and VMC
can lead to low-quality ground-state wave-function estimates
when this symmetry condition is not enforced.

For 1D and 2D lattices, we can evaluate the log wave
function and its derivatives in O(anlogn) operations using
the discrete Fourier transform F and its inverse 7 ~'. To show
this, we write

o

log Yy p(0) = Z Z log cosh 6;;, (B2)

i=1
where we have introduced angles
0;j = [F ' (Fw. © Fo)l; + b, (B3)

and we have used © to represent element-wise multiplication.
Similarly, we write

0 IOg '(pw,b
ob;

0 log I/fw,b
8w,~j

(0) = Z tanh 6, (B4)
J
(0) = {(F'[F(tanh ;) © Fol};. (B5)

When optimizing VMC wave functions, we occasionally
encounter a sudden increase in the norm of the parameter
updates, here defined as a factor of two or greater. When such
a large update occurs, in addition to immediately restricting
the size of the parameter update (by decreasing €), we restore
€ = €min and 1 = Nmin and restart the geometric progression.

Last, to obtain the energy estimates reported in Tables II
and III, we run the MCMC chains for an additional 2000 x n
time steps and evaluate the local energies at intervals of n time
steps.
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