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satisfies a backward Kolmogorov equation, and in typical high-dimensional settings of
interest, it is intractable to compute and store the solution with traditional numerical
methods. By parametrizing the committor function in a matrix product state/tensor train
format and using a similar representation for the equilibrium probability density, we solve
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1. Introduction

Understanding rare transitions between metastable states of a high-dimensional stochastic processes is a problem of
great importance in the applied sciences. Examples of interesting transition events include chemical reactions, nucleation
events during phase transitions, and conformational changes of molecules [25,33,57,58,4,11]. In such complex systems, the
dynamics linger near metastable states for long waiting periods, punctuated by sudden jumps from one metastable state to
another. One important tool for describing transition events is transition path theory [54,30,48,52], where the committor
function plays a central role. The committor function measures the probability that the process hits a certain metastable
state of the system before another and can be viewed as the solution of a backward Kolmogorov equation.

Computing the committor function in high-dimensional settings is a formidable task. Traditional numerical methods
such as finite difference and finite element methods become prohibitively expensive in even moderate dimensions. To
overcome the curse of dimensionality, significant efforts have been expended to apply deep learning framework to solve for
high dimensional partial differential equations [55,44,15,20,38]. Most recently [19,28,27] have suggested representing the
committor function using neural networks. Some of these approaches rely on sampling from the equilibrium distribution
and so work well when the transitions are easily observed. For, e.g., chemical systems at low temperature the committor
function can change sharply between the two metastable states, and transitions are rare and difficult to sample. To address
this problem, [41] has proposed an adaptive importance sampling scheme. Meanwhile, the dynamical Galerkin framework
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for computing committor functions [45], which represents functions in a basis rather than as neural networks, approaches
the sampling problem by initializing short trajectories uniformly according to known reaction coordinates.

Tensor network methods [8,35,51,34,9,22] have emerged as an alternative to neural networks as a tool for high-
dimensional problems in modern quantum physics and beyond. Typical tensor decomposition methods include tensor
trains [36] (also known as linear tensor networks or matrix product states [1,37,56]), the CP decomposition [16], and the
Tucker/Hierarchical Tucker decomposition [16,47,14]. These methods approximate tensors in compressed, structured for-
mats that enable efficient linear algebra operations. More details can be found in [23,13,12,21]. Moreover, tensor network
methods have also been applied to solve for high-dimensional partial differential equations [22,2].

In this paper we propose a novel approach to computing committor functions based on matrix product states/tensor
trains. Specifically, we approximate both the equilibrium probability distribution and the committor function using tensor
trains, achieving good performance even for high-dimensional problems in the low-temperature regime. This new approach
fully bypasses the aforementioned difficulties due to sampling and establishes an alternative method for studying rare
transition events between metastable states in complex, high-dimensional systems.

The rest of the paper is organized as follows. The committor function and its properties are reviewed in Section 2. Therein
we also explain how the boundary condition can be accommodated within our tensor format and provide a summary
of relevant tensor network methods. We introduce the key ingredients of our proposed method in Section 3. Numerical
experiments for two representative classes of examples are presented in Section 4, demonstrating the accuracy and efficiency
of the proposed algorithm. Finally, in Section 5 we summarize our findings.

2. Background and preliminaries

In this section we first review the motivation for computing committor functions, and summarize challenges and recent
advances relevant to this task. We then briefly discuss tensor train decompositions, introduce the basic tensor operations,
and define relevant associated notations used in this work. Throughout the paper, we use MATLAB notation for multidimen-
sional array indexing.

2.1. Committor functions

The underlying stochastic process of interest is the overdamped Langevin process, defined by

dX; =—VV(Xp)dt+ /28~ 1dW,, 1)

where X; € Q c RY is the state of the system, V : 2 c RY — R is a smooth potential energy function, 8 = 1/T is the
inverse of the temperature T, and W, is a d-dimensional Wiener process. If the potential energy function V is confining for
Q (see, e.g., [5, Definition 4.2]), then one can show that the equilibrium probability distribution of the Langevin dynamics
(2.1) is the Boltzmann-Gibbs distribution

1
p(X) = 7- exp(—BV(x)), (2.2)
B

where Zg = jQ exp(—pBV (x))dx is the partition function. We are interested in the transition between two simply connected
domains A, B C 2 with smooth boundaries. The associated committor function q: 2 — [0, 1] is defined by

qx)=P(tp <ta| Xo=%), (2.3)

where 74 and tp are the hitting times for the sets A and B, respectively. The committor function g provides a useful statis-
tical description of properties such as the density and probability of reaction trajectories [48,52,39]. However, computing the
committor function can be a formidable task since it involves solving the following (possibly high-dimensional) backward
Kolmogorov equation with Dirichlet boundary conditions:

—B7'Aqx) + VV (x) - Vg(x) =0in Q\(AUB), q(®)[sa =0, q(®)|sp = 1. (2.4)

For high-dimensional problems, traditional methods such as finite difference and finite element discretization are intractable.
Numerous alternative methods can effectively approximate the committor function under the assumption that the transition
paths from A to B are localized in a quasi-one-dimensional reaction tube or low-dimensional manifold. For example, the
finite temperature string method [53,49] approximates the isosurfaces of the committor function with hyperplanes normal
to the most probable transition paths. The diffusion map approach [7] aims to obtain the committor function on a set
of points by applying point cloud discretization to the generator L = —8~'A + VV (x) - V. The method presented in [24]
improves the diffusion map approach by discretizing L using a finite element method on local tangent planes of the point
cloud. Also an alternative approach was introduced by solving a potential function instead, see [31] for details.
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To compute the committor function, a classic approach is to solve the variational problem

arg;nin/IVq(x)lzp(x) dx, q®)pa =0, @) =1, (2.5)
Q

for which (2.4) is the Euler-Lagrange equation, see for example [32,19,28,27,41]. Specifically [19,28,27] proposed to
parametrize the committor function g using neural networks. In order to obtain an unconstrained optimization problem,
the boundary conditions are enforced in [19,27,41] by adding two extra penalty terms, as in

argqmin f IVa@®)|*px)dx + p f q®)*psa® dx+ p / @®) — 1)’ pyp(x) dx, (2.6)
Q A B

where pj4 and pyp define probability measures supported on the boundaries dA and dB respectively. In all of these works,
the objective is evaluated and optimized via stochastic sampling. By contrast, in this work, we propose to represent the
committor function q in a tensor train format, which will allow for optimization via stable and efficient deterministic linear
algebra operations.

Since the potential function V is confining, we can effectively restrict our domain of interest to a bounded subset of
Q. Outside of this subset, the density is small and contributes only negligibly contributes to the variational cost (2.5). For
simplicity we shall identify € with this subset and assume Q = €1 x Q2 x ...y where each €; € R is a bounded subset.

2.2. Soft boundary condition

Unfortunately, the formulation (2.6) is not immediately amenable to optimization within a tensor format for q. The
reason is that the surface measures on dA and dB cannot themselves be identified with functions on €2, much less than
functions that can be compressed in tensor format, so the penalty terms cannot simply be viewed as inner products of
tensor trains.

Therefore we instead consider an objective of the form

argmin [ Vg 2p@)dx + p / 402 pa() dx + p / @@ — 1’ ps @) dx. (2.7)
q
Q Q Q

Here p4 and pp are probability densities that are absolutely continuous with respect to the Lebesgue measure on €.

In fact, we show in Appendix A that the exact optimizer of (2.7) admits a probabilistic interpretation similar to that of
the usual committor function. As such we call the optimizer a ‘soft committor function.” Specifically, the interpretation is
based on a modification of the Langevin dynamics (2.1) in which one augments the state space  with two ‘cemetery states’
ca and cp. The process jumps randomly to these two states with instantaneous jump rates 224 and pﬂ‘.ppﬂ, respectively.
The soft committor function evaluates the probability that the modified process hits cp before c4. This formulation is rather
similar to the Poisson type equation introduced in [31] with some differences in the right hand side of the equation.

From a different perspective, when p is large and p4 and pp concentrate near dA and 9B, respectively, the soft com-
mittor function can be viewed as an approximation of the ordinary committor function. In fact, if p4 and pp are Gaussian
densities, then in high dimensions [6], p4 and pp each weakly approximates a uniform measure on a suitable hypersphere.
This is convenient because A and B are often chosen to be balls and the Gaussian densities have exact tensor train repre-
sentations. Section 3.3 provides two examples on the construction of p4 and pp using Gaussian densities. In practice we
choose pa and pp such that they are well-representable in tensor train format (introduced in Section 2.3). More details on
the construction of p4 and pp will be provided below in Section 3.

For simplicity, in what follows we will simply refer to soft committor functions as committor functions.

2.3. Tensors and tensor networks

In this subsection we summarize the basic tensor operations used in this work. In particular, for ease of exposition we
introduce tensor network diagram notation, which provides a convenient way of visually describing tensor operations. We
also introduce the matrix product state/tensor train format for parametrizing high-dimensional functions.

In tensor diagrams, a tensor is represented by a node, where the number of incoming legs indicates the dimensionality
of the tensor, i.e., the number of indices/arguments. There are two types of leg: legs indicating continuous arguments are
denoted by dashed lines, and legs indicating discrete indices are denoted by solid lines. For example, Fig. 2.1 (a) shows the
tensor diagram for a 3-tensor .4 and a 2-tensor 53, which can be viewed as two functions

A(x1,12,13),  B(j1,%2), (2.8)

respectively, where x1, x; are continuous variables and iy, i3, j; are discrete variables.
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Fig. 2.1. (a) Tensor diagrams for a 3-tensor .A and a 2-tensor B. (b) Tensor diagram for a d-dimensional Kronecker Delta node. Solid lines correspond to
discrete variables, and dashed lines correspond to continuous variables.
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Fig. 2.2. (a) Tensor contraction of discrete legs. (b) Tensor contraction of continuous legs.

We also define the multi-dimensional Kronecker delta tensor (depicted by an inverted triangular node as in Fig. 2.1 (b)):

1 ifxi=x2=---=x4.
S(X1,X2,...,X3) = . 29
(x1, %2 @) 0 otherwise. (29)

By a slight abuse of notation, we will use the same symbol to represent the appropriate Dirac delta function when the legs
represent continuous variables.

Next we describe a key operation called tensor contraction. This operation is indicated visually by joining legs from
different tensors. For example, in Fig. 2.2 (a), the third leg of A is joined with the first leg of 3. This corresponds to the
computation

Cxi.ia.x0) =Y A(xy, iz, k) Bk, x2), (2.10)
k

where it is implicitly assumed that the indices of the joined legs have the same range. Here x1, X, are continuous variables,
and i is a discrete variable.

Tensor contraction can be defined for continuous legs as well. For example, in Fig. 2.2 (b), continuous legs of A and B
are contracted, corresponding to the operation

D(ji. iz, i3) = / B(jr, 0.A, iz, i3) dx, (211)
Qo

for some suitable domain g, which is implicitly assumed to be the domain of both joined legs. The resulting tensor D is
a 3-tensor with only discrete legs.

A tensor network diagram consists of a collection of individual tensor diagrams with some pairs of legs joined, i.e.,
contracted. The contracted legs correspond to the so-called ‘internal indices’ for the tensor network, while the uncontracted
legs correspond to ‘external indices,” which are the indices remaining after all of the indicated contractions have been
performed.

Next we introduce several low-complexity tensor networks and their corresponding diagrams. A matrix product state
(MPS) or tensor train (TT) is a factorization of a d-tensor into a chain-like product of 3-tensors. Such a factorization al-
lows one to approximate high-dimensional tensors and manipulate them efficiently, typically with O(d) time and memory
complexity.

Definition 1. Let A € RM>*"2>X*Md he 3 d-tensor, with entries indexed by (i1, i2,...,i4). Then we say that A is a MPS/TT
with ranks r = (rg, ..., r4), where we fix ro =rq = 1 by convention, if one can write
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Fig. 2.3. (a) d-dimensional TT/MPS. (b) d-dimensional MPO. The indices depicted match the expressions in (2.12) and (2.14). Note that we omit the legs for
the trivial indices g and «g.

o Td
Alin, iz, ... i) = Y o Y Gileo, i1, a1)G2 (@, 12, @2) ... Ga(Xd-1, ia, @a)

ap=1 ag=1
= G1(,i1,)G2(,12,1) -+~ Ga(:, ig, 2) (2.12)

for all (i1, i2,...,i4). Here Gi(:, ik, :) € R™%-1*"k is viewed as a matrix for each k=1, ...,d, and the matrix product in (2.12)
is a 1 x 1 matrix, i.e., a scalar value. The 3-tensor G € R™-1*%>7k is called the k-th tensor core of A.

In tensor diagrams, an MPS/TT is represented by a chain of 3-tensors, as in Fig. 2.3 (a). Note that the 0-th and last tensor
cores can be viewed as 2-tensors since ro =14 = 1, and as such the corresponding legs can be omitted from the diagram.

A matrix product operator (MPO) is a tensor network in which each constituent tensor has two external, uncontracted
legs as well as two internal indices contracted with neighboring tensors in a chain-like fashion. Concretely, an MPO is a
tensor O e R (M1 xMmax--xma)x(m xn2x-xNa) that can be written in the form

O, ... g1y, ... i) = Y Gileo.ir.if. 1) ... Ga(@g-1. ia. i}, &tg) (213)
«ap,...,0q

= Gi1(, i1, 17,9 ... Ga( g, 1, 2), (2.14)

where the sum over «j has a range defined by a corresponding rank ry, as in Definition 1, and ro =14 =1 by convention.

In this case we similarly say that the MPO has ranks r = (rg, ..., rq). The 4-tensor G € R™-1*M>MxTk is called the k-th

tensor core. A corresponding tensor network diagram is shown in Fig. 2.3 (b).
For further background on tensor networks and diagrams, see [35].

3. Proposed method

In this work we obtain the committor function by solving the variational problem (2.7) within a MPS/TT parametrization
for the committor function q. We demonstrate that by approximating the equilibrium probability density p in MPS/TT for-
mat, this optimization problem can be solved using basic tensor operations. In particular the minimization is accomplished
using a standard alternating least squares approach.

3.1. Discretizing the variational problem

We will represent the unknown committor function in a tensor product basis according to the product structure of the
domain Q = Q1 x 23 x - -+ x Q4. Within this basis, we will approach the variational problem (2.7) by Galerkin approximation.
To begin, suppose that we have an orthogonal basis for each L?(€2), denoted by {‘751(‘,{)}?11- In order to obtain a finite-

dimensional problem we consider the subspace of LZ(%) spanned by only the first L®) basis functions. Here the L%,
k=1,...,d, are a set of positive integers which are either fixed or determined adaptively. Then given the finite basis
{(j);k)}]L.i)], which spans a subspace of L2() for each k=1, ...,d, we can consider an expansion of q in the corresponding

tensor product basis:

. . 1 d
q@ = Y Qlir.....i¢ x1)... 4 (xa).
i1,.0,ig
. (1 d
= Y )" (x1)... 0 (xa). (3.1)
i
where, for notational convenience, we have defined i := (i1, iz, ..., iq) and X := (X1, X2, ..., Xg). Additionally, we set ¢® :=

(¢](.k))§i)1. Each ¢® can be viewed as a 2-tensor via ¢® (j, x) = ¢>](.k) (x), where the first index is the basis function index and

the second (continuous) index is a spatial coordinate. Then the decomposition (3.1) for q can be depicted graphically as in
Fig. 3.1.
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Fig. 3.1. Tensor diagram for the decomposition (3.1) of the committor function.
To determine the committor function g within the truncated tensor product basis, we want to determine the coefficient

tensor Q that is optimal in the sense of (2.7). By inserting the parameterization (3.1) into the variational problem (2.7), we
can rewrite the optimization problem as follows,

d
arg min DD HE DM +p Y HAG: HOMHQU) + p ) HP(: HQWHQWU) —2p ) QDhE () +p,

k=1 i.j ij ij i
Jo!Va@®)2px)dx P foa@®)?pax)dx P fo@®—1)2pp(x)dx
(3.2)
where
0 0
keso o (1 (d) M (d)
HY G j) = / g ORI Pet RGO EICLE (33)
Q
HAG; j) = / 6 1) 0 ) (1) .. 0D (xa)pax) dx (34)
Q
HE (i j) = f 6 1) 0 xa)g (1) . 6D (xa) i (x) dx (3.5)
Q
w0 = [ 6] 02 ..o opa(a d. (36)
Q
Here (i; j) = (i1,...,14; j1, ..., ja) is a concatenation of multi-indices. We can simply ignore the last constant p since it

does not affect the minimizer. Computing the tensors {Hk}ﬁ:v HA, HB, and hB is prima facie intractable as it requires us

to perform integration over the d-dimensional domain €2, in addition to storing tensors of exponential size in d. Moreover,
the number of unknown tensor entries of Q is also exponential in d. Traditional approaches are therefore prohibitively
expensive for d of even moderate size.

In the next two sections we show how to use MPS/TT approximations to obtain {H"};Ll, HA, HB hB, allowing us to solve
the optimization problem (3.2) with computational and storage complexities of O(d).

3.2. Constructing H*

In this subsection we detail the construction of H¥, which corresponds to the variational energy term fQ|Vq(x)|2 p(x)dx
of (2.7). As mentioned above, in order to obtain each H¥ in (3.3), one needs to evaluate a d-dimensional integral and
store the resulting high-dimensional tensor. To circumvent the exponential complexity in d, we assume that the equilibrium
density p can be approximated as an MPS/TT as follows:

p@= Y Pi(co.mi.a)... Palea_1. Mg, 0ta) Vi, (x1) -~ Yine (Xa). (3.7)
ma,..., mgq
oQ,..., oq

where ¢ ® = (w;k))f:(k]) is a vector of univariate basis functions ©; — R. Fig. 3.2 illustrates the structure of the equilibrium
density p that we assume in this paper.

The construction of the MPS/TT format for a given equilibrium density p will be described in Section 4 in the contexts
of specific example problems.

Such an approximation of p amounts to changing the tensor representation of H* depicted graphically in Fig. 3.3 (a) to
the representation in Fig. 3.3 (b). Note that these calculations involve the derivatives of our univariate basis functions ¢®.
In our figures, we use a hollow node to represent the vector of basis functions ¢ and a filled node to represent its vector

6
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(a) H* (b) Approximation of H*

Fig. 3.3. (a) Tensor diagram for H¥, k = 3, as defined in (3.3). (b) Approximation of H¥ obtained by replacing p with its MPS/TT approximation (3.7). We
use red dashed boxes to indicate the region of replacement. The original basis functions ¢, I #k, are represented using hollow nodes, and the derivative
dg¢® /dx is distinguished using a filled node.

of derivatives, i.e., dp® /dx. We observe that the {Hk};z:1 are naturally viewed as MPOs, and moreover the construction of
these MPOs can be performed using basic tensor algebra in O(d) complexity. More precisely:

(1) To construct an MPO for H¥ following Fig. 3.3 (b), note that we need to perform two types of tensor contraction:
one involving the original basis functions ¢, I £k, and the other involving the derivatives d¢® /dx. Therefore we
precompute these two contractions, which can be recycled to form MPOs for the H¥, k=1,...,d. First, we form I,
I=1,...,d by contracting three tensors ®, ¥, ¢ and form I}, I =1, ..., d by contracting three tensors ¥®, dp® /dx,
d¢® /dx. The tensors I; and I; are defined graphically in Fig. 3.4 (a) and (b). These contractions can be performed by
univariate numerical integration. Next we contract each I; with the corresponding tensor core P; to obtain H; for
I=1,...,d. Similarly we contract I; with P, to obtain H;. These constructions are illustrated in Fig. 3.4 (a) and (b),
respectively.

(2) Next we assemble H¥ by substituting H;, H;, [ =1, ..., d into the red boxes in Fig. 3.4 (c) as needed. This yields an MPO
as shown in Fig. 3.4 (c) on the right. We denote I-th tensor core of H* by Hf.

(3) Finally we repeat step (2) for all k=1,...,d.

The algorithm outputs core tensors H¥, ...,H’C‘l for the MPO H¥, k=1, ...,d. The computational complexity of form-
ing each pair I, I; is O(K®L®2) since a univariate numerical integration is performed for each entry. Hence the cost of
computing all of the I}, I; is O(dKL?), where we define K := max; K©, L := max L®.

If we assume that the MPS/TT format for p has ranks r = (ro, 71,12, ...,74), and set r = max; r;, then the contraction steps
with the P; altogether cost O(dr2KL2). Therefore to construct the tensor cores H¥, ..., H’é, the total computational cost is

O(dr2KL?). The memory complexity, including that of storing the intermediate tensors I}, I;, H;, Hj, is O(dKL? + dr2L?).

Remark 1. Our approach relies on the assumption that the equilibrium density of the system can be efficiently represented
or approximated in MPS/TT format. The MPS/TT structure makes it possible to perform numerical integration for each
individual tensor core, thus resulting in a computational complexity that is linear in d. When the assumptions are violated,
the TT rank of the equilibrium density can grow with d, indicating the true computational complexity can be higher than
our analysis.
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o)

P P
(b) A

(©)

Fig. 3.4. Diagrammatic illustration of the construction of an MPO format for H¥. (a) Precompute tensors H;. (b) Precompute tensors H;. (c) Assemble H¥,
k =3, by substituting tensors H; and H;. We use red dashed boxes to indicate the region of replacement. A similar construction is repeated for other k.
(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

3.3. Constructing HA and HB

The tensors HA and H® derive from the two soft boundary penalty terms p [, q(%)?pa(x)dx and p [,,(q(x) —1)?pp(x) dx
in (2.7). The construction of the MPO format for H4 and H? is similar to that of H* detailed above in Section 3.2. However,
we now further need to represent the soft boundary measures ps and pp as MPS/TT. Recall our motivation that ps and
pp weakly approximate surface measures on the boundaries dA and 9B, though for any choice of p4 and pg we may
still interpret the soft committor function probabilistically following Appendix A. The construction of approximate surface
measures varies depending on the specific geometry of A and B. In many applications, A and B are balls or half-spaces, so
9A and 0B are spheres or hyperplanes. We discuss these two cases in detail presently.

For the case of a sphere, the Gaussian annulus theorem [6, Theorem 2.8] indicates that most of the mass of a high-
dimensional Gaussian distribution concentrates on a shell. If we assume that region A is a d-dimensional ball with center
x4 and radius R4, we can approximate the uniform measure on dA by a Gaussian density,

1 % — x4l Ra
X)=————exp| —————— ), where 0 = —. 3.8
pAR) (zn)d/zgd p( 202 \/a (3.8)
More precisely, under this probability measure, we have that
(2
Prob (‘ llx]l2 — «/ao*‘ > ta) < exp (——) , forallt > 0, (3.9)
K

where k > 0 is a constant [50]. This bound indicates that the mass of ps concentrates on a shell with radius R4 and
thickness O (1/+/d). It is straightforward to convert (3.8) into MPS/TT format since it is in fact a pure tensor product of
univariate functions of each scalar variable x;. As such our resulting MPS/TT should have ranks all equal to 1.

For the case of a hyperplane, suppose in particular that 34 = {x € R? : x; = c}. In this case consider

1 i —©)?
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Td

Fig. 3.5. Tensor diagrams for (a) p4 as in (3.11) and (b) pp as in (3.12).

where o controls the sharpness of the approximation. This choice of pa is again a pure tensor product of univariate
functions.

Now suppose that we have ps and pp in MPS/TT form. Specifically, assume that we have tensor cores {.A,-}?:1 with
k

. . . . Kk®
associated ranks s = (g, s1, ..., Sq4), together with a vector of basis functions a® := (aﬁ.k))j;*1 for each k=1,...,d. Also
. . . Kk
assume that we have tensor cores {Bi}f:1 with ranks t = (to, t1,...,tq) and a vector of basis functions b® := (b;k))jj].

Then we assume that we can write p4 and pp as

pa® = Y Aileo.mi,a)... Aa(@_1. Mg, 0a)am, (x1) ... a5 (%) (3.11)
mp,..., mgq
QQ,..., oq

ppX) =Y Bi(ato, my, 1) ... By(@tg—1. Mg, otg)bin, (x1) ... b (xq).- (312)
mq,..., mq
oQ,..., oq

In Fig. 3.5 we illustrate these formats graphically.

Now in light of the resemblance among (3.3), (3.4), and (3.5), we can use the same procedure described in Section 3.2
to approximate HA and H® as MPOs. To wit, we simply replace p in Fig. 3.3 with the MPS/TT approximations of p34 or
pas and replace all derivatives d¢® /dx by ¢ since there are no derivatives in (3.4) and (3.5). Ultimately we obtain MPO
formats for H4 and Hp with ranks s and t and cores H ,ﬁ‘ and H,’f, k=1,...,d respectively. The computational complexities
of constructing HA and H® are O(ds2K4L?) and O(dt>KgL?), respectively, where we define s := max;s;, t := max;t;, K :=
max; KX), and K := max I(g). The memory complexities are O(dK4L? + ds?L?) and O(dKgL? + dt?L?), respectively.

3.4. Constructing h8

In this subsection we focus on constructing h?, which comes from the cross term in the second penalty term o fg (qx) —
1)2pg(x) dx within (2.7). The ideas are again very similar to Section 3.2. The tensor diagram for h® is shown in Fig. 3.6 (a).
By plugging in the MPS/TT approximation of the soft boundary measure pp (3.12), we obtain the approximation of h®
illustrated in Fig. 3.6 (b). One can further bring h® to a standard MPS/TT form, using the contractions shown in Fig. 3.7. In
detail, the procedure is as follows:

(1) In Fig. 3.7 (a), we contract the two connected basis function nodes in the red box. This results in tensors Ji, k=1,...,d,
seen in Fig. 3.7 (a) on the right. This contraction requires univariate numerical integrations.
(2) Next we merge the computed tensor J; and the tensor core By for k=1, ..., d. The resulting 3-tensors, which are the

tensor cores for h®, are denoted hf. This step is shown in Fig. 3.7 (b).

This procedure yields h® in MPS/TT format with tensor cores h%, ..., hg . The computational and memory complexities
of constructing h® are O(@dt2KgL) and O(dKgL + dt2L), respectively.

3.5. Optimization

We have discussed how the MPS/TT format can be used to compress the tensors {Hk}z:1, HA, HE, and hB. In order to
obtain a tractable algorithm for computing the committor function, it is natural to represent the unknown tensor Q in a
compatible format. Indeed, without imposing some additional structure on the parameterization (3.1), the unknown tensor
core Q is still of size exponential in d. Thus we approximate Q as in MPS/TT format as

Qi):= Y Qiao, i1, 1) (@1, iz, @) ... Qul@d_1, i, ). (313)
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Fig. 3.6. (a) Tensor diagram for h® as in (3.6). (b) Approximation of h® obtained by replacing the soft boundary measure pg with its MPS/TT approximation
(3.12). We use red dashed boxes to indicate the region of replacement.
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Fig. 3.7. lllustration of the construction of h® in MPS/TT format. (a) Contract tensors ¢’ and b® to get J;. (b) Contract tensors J; and B; to get h,B . We use
red dashed boxes emphasize the contractions.

o] z3) Zq

Qu

Fig. 3.8. Tensor diagram for the parametrization of q following (3.1) and (3.13).

The tensor diagram for g is shown in Fig. 3.8. Empirically we observe that this format is able to capture the structure
of q accurately, i.e., without growth of the ranks of the tensor cores. The MPS/TT format (3.13) for q greatly simplifies the
solution of the variational problem (3.2). In Fig. 3.9 we compare the tensor diagram depictions of the original variational
problem and the new simplified problem by replacing Q with its MPS/TT approximation. We note that all terms in the
simplified form (Fig. 3.9 (b)) can be computed with standard MPO-MPS or MPS-MPS contractions in O(d) time.

In Fig. 3.9, the unknown tensor cores of MPS Q are marked in red. A standard approach for optimization problems of
the form Fig. 3.9 (b) is alternating least squares (ALS). In each ALS iteration, we loop over the dimensions k=1, ...,d. For
each k, we treat all coefficient tensor cores but Oy as constant. This yields an unconstrained least squares problem for Q.
Naively the computational complexity is O(d?) since the bottleneck is the summation of d terms in Fig. 3.9 (b) and each

10
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arg min Z
Q

k=1

arg min Z
{Qi}1 k=1

.
'
'
1

(b) Approximated variational problem

Fig. 3.9. (a) Tensor diagram representation of the variational problem corresponding to (3.2). (b) Approximate variational problem obtained by replacing Q
with its MPS/TT approximation (3.13). We use red dashed boxes to indicate the region of replacement. Specifically the red filled tensor cores are unknown
variables in the optimization.

term requires at least O(d) tensor contractions. However by using the same trick as in the construction of H* and carefully
reusing the computed nodes, one can bring the computational complexity down to O(d).

Remark 2. Similar to the discussions for the equilibrium density, our complexity analysis relies crucially on the assumption
that the TT ranks of the committor function are bounded by a constant as the dimension grows. Here we parametrize the
committor function by an MPS/TT with fixed TT rank. In practice we can tune the rank parameter and monitor the numerical
rank between the cores. If the rank grows rapidly with the dimensions, our complexity analysis can underestimate the true
computational complexity and MPS/TT may not be the most efficient format of parametrizing the true committor function.

4. Numerical experiments

In this section, we present numerical results that demonstrate the accuracy and efficiency of the proposed method.

4.1. Double-well potential

In the first numerical experiment, we consider the following potential

d
V@) =0 -1)7+03) «7, (4.1)
i=2

and we let A, B be the half-spaces

A={xeRYx; <—-1}, B={xecR%x >1}. (4.2)

Now (4.1) is a double-well potential along dimension x;, and the two boundaries dA and 9B are located in the potential
wells. When the temperature T = 1/8 is low, the equilibrium density p oc e=#Y is concentrated within the two wells.
Meanwhile, in this case q is mostly flat with a sharp transition from O to 1 at x; =0.

For this example, we can compute a ground truth solution. By symmetry, we can obtain the committor function by
solving the backward Kolmogorov equation in the first dimension, i.e., setting qiue (X) = f (x1), where

d*f (x1) df (x1) _

dx? dxq

—4x;(x2 = 1) 0, f(-1)=0, f()=1. (4.3)
We can solve this ODE numerically using a finite difference method on a very fine grid to produce qye. The performance
of our proposed method is evaluated by the following relative error metric

— 2
E— g — Geruell @\AUB) (4.4)
lGtrue ll 2@\ (auB))

11
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Fig. 4.1. Numerical results for the double-well potential, T = 0.2. (a) The numerical solution of the committor function g, compared with the ground truth
Qtrue, Dlotted along the x; dimension. (b) The residual plot ¢ — e along the x; dimension.

where || - |2\ (aupy) denotes the L2-norm with respect to uniform measure over the domain ©\(A U B). The other error
metric we use is

19 — Gurell 2o\ (auB). p)
2 =

’ (4.5)
lqtruell 2@\ auB), p)

where || - ll;2(Q\(auB), p) denotes the LZ-norm with respect to the equilibrium density p defined in (2.2) over the domain
Q\(AUB).

We enforce the boundary conditions by constructing soft boundary measures ps and pp in MPS/TT format following
(3.10). Meanwhile, we can exactly treat the equilibrium density p in MPS/TT format since it factorizes as a pure tensor
product

d
p@) =[] prxo)

k=1

of univariate functions, given the choice of potential (4.1).

It remains to fix a univariate basis for each dimension of the committor function q. One could of course choose a generic
basis such as Chebyshev polynomials, Legendre polynomials, or Fourier series. For this example, however, a better choice is
to construct an appropriate truncated orthogonal polynomial basis for each dimension k according to the univariate density
Dk-

We solve for the committor function at two representative temperatures T = 0.2 and T = 0.05 in d = 20 dimensions. For
T = 0.2, we use the first 30 orthongonal polynomials for all dimensions. For the lower temperature T = 0.05, we use 60
orthogonal polynomial basis functions since the true committor function changes more sharply near x; = 0. We show g and
Guue for T =0.2 in Fig. 4.1 (a) and the corresponding residual q — qrye in Fig. 4.1 (b). Numerical results for T = 0.05 are
illustrated similarly in Fig. 4.2.

We compute the relative error E; in (4.4) using 10° uniformly distributed samples between [—1, 1] for x;. The relative
error is E; =2.36 x 107% for T =0.2 and E; = 1.67 x 1073 for T = 0.05. With 107 samples, we obtain relative error
E; =1.60 x 10~* defined in (4.5) for T = 0.2 and E; = 6.77 x 10~4 for T = 0.05. Additional tests were performed with
other bases such as Chebyshev polynomials and Fourier series and the behavior was similar.

We show the numerical convergence of the solution with respect to the number of basis functions by examining the
coefficient tensor of the committor function. Take T = 0.05 as an example where we use 60 orthogonal polynomial basis in
each dimension, all basis coefficients form a 60¢ coefficient tensor Q = Qiy,---,ig) foriq,---,ig=1,---,60. Specifically,
the first dimension is most meaningful and the rest of the dimensions are equivalent due to permutation symmetry.

We visualize the numerical convergence by a slice of the committor’s coefficient tensor in the first dimension (Fig. 4.3
(a)) and the second dimension (Fig. 4.3 (b)). We can observe that the basis coefficients for the first dimension decay roughly
exponentially as i; increases. Since the committor function value should be a constant in x, ..., X4, we observe the coeffi-
cient associated with i; =1 is large while the rest of the coefficients are nearly zero.

4.2. Ginzburg-Landau potential
The Ginzburg-Landau theory was developed to provide a mathematical description of superconductivity [17]. In this
numerical example, we consider a simplified Ginzburg-Landau model, in which the Ginzburg-Landau energy is defined for

a one-dimensional scalar field u:[0,1] — R as follows:

12
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Fig. 4.2. Numerical results for the double-well potential, T = 0.05. (a) The numerical solution of the committor function q, compared with the ground truth
Qtrue, Plotted along the x; dimension. (b) The residual plot ¢ — e along the x; dimension.

SN

Log10(\Q(i1,1 \.

Fig. 4.3. Coefficients of basis function representation for the double-well potential model, T = 0.05. (a) Log magnitude of the coefficients for the x; dimen-
sion Q(i1,1,---,1). (b) Log magnitude of the coefficients for the x, dimension Q(1,i3,1,---,1).

1
Viul :/ B(u’)2 + 41—/\(1 - uz)z}dx, (4.6)
0

where A is a small positive parameter and u satisfies the boundary conditions u(0) = u(1) = 0. We discretize u uniformly
on [0,1] as U = (Uy, Uy, ..., Uy) with boundary conditions Ug = Ug41 = 0. Then we approximate the continuous Ginzburg-
Landau energy (4.6) with the discretization

A (Ui—U_ 2 1 -

V(U)._Z;z( p ) + 4 1-UD?, (4.7)
where the grid spacing h =1/(d + 1). We fix d =50 and A = 0.03. Note that V(U) has two global minima U illustrated
in Fig. 4.4. We let A and B be the balls {U : ||[U — U+| < R} centered at the global minima. The radius R is set to be 2.5,
chosen such that the balls A and B roughly contain the regions of high equilibrium probability density around the two
centers.

We present numerical results for two representative temperatures T = 8 and T = 16. We enforce the boundary conditions
by constructing soft boundary measures p4 and pg in MPS/TT format following (3.8). We detail the approximation of the
equilibrium probability density p in MPS/TT format in Appendix B.

We define the domain to be the hypercube € = [—y, ¥1°°. Based on our choices of A and B, we take y = 2.6 since
this choice guarantees that the equilibrium density has negligible mass outside of 2. To represent the committor function
q, we use the first 5 Fourier basis functions {1, cos (7x/y),sin (wx/y), cos (2mwx/y), sin(2mwx/y)} for each dimension. The
ranks of the coefficient MPS/TT Q are all taken to be 6. We initialize all the entries of the unknown tensor cores of Q with
normal N (0, 1) random numbers and then perform ALS, gradually increasing the penalty parameter o to better enforce the
boundary conditions. In practice we observe that different initializations have little effect on the output of the algorithm.

For problems of this size, traditional methods are intractable, making it difficult to obtain an exact reference e for
comparison. Instead, as a proxy we study a ‘thickened isosurface’ around q = 0.5, defined as I'c = {U : ||q(U) — 0.5| < €},
where € > 0 is a small threshold parameter. If the solution q is indeed a satisfactory approximation of the true committor

13
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Fig. 4.4. The two global minima of the Ginzburg-Landau energy (4.7) with d =50 and 1 = 0.03.
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function, then for any trajectories given by (2.1) starting from points in I'¢, the probability of entering region B before A
should be close to 0.5.

To verify this, we generate samples from the equilibrium distribution by simulating the process (2.1). Then we filter to
keep samples on the isosurface I'c using the computed committor function q and the threshold € of our choice. Let us pick
N; points in ¢, denoted {Uj}?lil. For each point f]j, we generate N; trajectories by simulating the Langevin process (2.1)
and use n; to denote the number of trajectories ending up in region B before A. By the central limit theorem, when N is
large, the distribution of n;/N¢ should be well-approximated by the normal distribution /\/(%, (4Np)~ 1. In our numerical
tests, we set € =5 x 1073, Ny = 5000, and N; = 100. The results for T =8 and T = 16 are illustrated in Fig. 4.5 and Fig. 4.6,
respectively. We compare the histogram of {n;/ Nt}?gqo with the normal distribution (3, 1/400) on the left and show the

Q-Q (quantile-quantile) plot of the distribution of {nj/N[}?g%O versus N(%,1/400) on the right. These figures demonstrate

that the distribution of {n; /N[}?g({o is indeed in good agreement with the normal distribution (3, 1/400), which indicates
that our solution g provides a good approximation of the true isosurface.

Next, consider the restriction of the equilibrium density to the g = 0.5 isosurface. Intuitively, the first term in the
Ginzburg-Landau potential (4.7) encourages the configuration U to be as flat as possible. Therefore, to transition between
the two boundary states U_ and U, it is favorable in terms of energy to have only a single sign change in the discretized
function U. We compute 107 samples from the equilibrium density by running the overdamped Langevin process (2.1), ini-
tialized at random states in 2. We retain only the samples that fall in the thickened isosurface I'¢, € =5 x 1073, Then we
perform 2-means clustering on these samples. In Fig. 4.7 (a) and Fig. 4.8 (a), we show the centroids U™ and U® of the
two clusters for T =8 and T = 16, respectively. These configurations are symmetric with a single sign change.

Next we project all samples in the g = 0.5 isosurface to the line containing the two centroids, i.e., to points of the form
oUM + (1 —9)UP. In Fig. 4.7 (b) and Fig. 4.8 (b) we plot the histograms of 6 for all samples to demonstrate that these
distributions are indeed bimodal. Observe that at higher temperature, the bimodality is less pronounced.

Finally, we study transition paths via the deterministic reactive flow [24]:

aue _ 1 u)vqU( 4.8
i = gPUOVIU o). (48)
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Fig. 4.7. Analysis of the g = 0.5 isosurface for T = 8. (a) Centroids of the two clusters in the g = 0.5 isosurface. (b) Histogram of the 1-dimensional
coordinate 6 of the isosurface samples along the line between the two clusters.
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Fig. 4.8. Analysis of the g = 0.5 isosurface for T = 16. (a) Centroids of the two clusters in the g = 0.5 isosurface. (b) Histogram of the 1-dimensional
coordinate 6 of the isosurface samples along the line between the two clusters.

Based on Fig. 4.7, we expect that at low temperatures the transition paths between A and B are localized within in two
reaction tubes. We visualize one of the transition paths at temperature T = 8 in Fig. 4.9. The leftmost curve corresponds to

the initial state of (4.8), for which ¢ = 0.1. Meanwhile g = 0.9 for the rightmost curve. The red arrow indicates the direction
of time evolution.

4.3. Gaussian mixture equilibrium density

To evaluate the model performance on rugged energy landscape, we consider constructing a more complicated equilib-
rium distribution with several isolated local maxima using Gaussian mixture models. In this example we use a mixture of
7 Gaussian densities,
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Fig. 4.10. The Gaussian mixture model equilibrium density visualized in the first two dimensions. (a) Equilibrium density in 2D. (b) Equilibrium density
where the mean of Gaussians is in high dimension.

3 5
p(x) =exp(—Bllx — Call) +exp(—Bllx — Cgll) + O.GZeXp(—ﬁIIX =Gl +n ZGXP(—ﬁIIX = Gil), (4.9)
i=1 i=4
where Cy4, Cp and C; for i =1,---,5 are the 7 Gaussian centers. 1 is some parameter. In this example let the problem

dimension d = 10 and all the centers be roughly contained in the first two dimensions for visualization purpose. Specifically
for the first two dimensions, C4 = (—1.6,—1.6), Cg = (1.6, 1.6), C; = (-0.5, —-1.4), C; = (0.5, -0.8), C3 =(1.2,0.2), C4 =
(—1.4,0.6), C5 = (—0.1,1.9). If we pad all 8 other dimensions with 0, the centers strictly lie on a 2-dimensional subspace.
In Fig. 4.10 (a) we show the density in 2D. To make the problem more difficult, we perturb the mean of these Gaussians
with small independent Gaussian noise 0.1N(0, 1). The magnitude of the perturbation is chosen such that the Gaussian
centers can still be visualized in the first two dimensions. In Fig. 4.10 (b) we show the “perturbed” density, which is used
in the following numerical tests.

Note the five Gaussian centers in the middle are roughly aligned on two curves: a lower curve containing Cq, C2, C3 and
an upper curve containing Cg4, Cs. Both curves share C4 and Cp as their end points. Similarly we study the transition paths
between the two boundaries by simulating the reactive flow (4.8). Specifically we study how the transition path changes
with the additional local maxima of the equilibrium density. To this end, we pick two n values 0.6 and 1.6 to alter the
magnitude the top two Gaussian densities.

Let the boundaries A and B be the balls centered at two centers {x: ||x — Ca|| < R} and {x: ||x — Cp|| < R}, respectively.
In this example R = 0.22, chosen such that balls A and B roughly contained the regions of high equilibrium density around
the two centers. The temperature is set to be T = 0.1. We define the solution domain to be the hypercube Q =[—2.4, 2.4]'°,
which guarantees the equilibrium density has negligible mass outside the solution domain. We use the first 60 Fourier basis
to parameterize the committor function. The ranks of the coefficient MPS/TT Q are all taken to be 4.

In Fig. 4.11, we show the transition path between boundaries A, B for n = 0.6, 1.6. Both the transition paths share the
same starting point [—1.2, —1.6]. We can observe that the transition path is shifting towards the top as the magnitude
increases.
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(a) n = 0.6 transition trajectory (b) n = 1.6 transition trajectory
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Fig. 4.11. Transition paths (black curves) overlayed on the Gaussian mixture model equilibrium density visualized in the first two dimensions for (a) n = 0.6
and (b) n =1.6. Committor function values along the transition path for (c) n =0.6 and (d) n =1.6.

5. Conclusion

In this paper, we propose a novel approach for computing high-dimensional committor functions using MPS/TT. In
particular, we start from the variational formulation (2.7) for the soft committor function, which can be viewed as an
approximation of the committor function but which also enjoys a probabilistic interpretation in its own right. To compute
high-dimensional integrals, we approximate the equilibrium density and soft boundary measures in MPS/TT format. Mean-
while, the unknown committor function q is also parametrized in MPS/TT format. The variational problem can then be
reformulated using standard MPO and MPS/TT operations, and the optimization of g can be performed with O(d) complex-
ity. Extensive numerical experiments demonstrate the computational efficiency and accuracy of the proposed method.

Notice that our proposed method relies on the assumption of certain structures of the variables in order to approximate
the equilibrium density efficiently in MPS/TT format. One expects the MPS/TT-based approximation to be successful in a
very high-dimensional limit when there is a 1D or quasi-1D graphical model structure underlying the equilibrium measure.
Already we believe that the capacity to treat such systems with high accuracy is a meaningful contribution, since many
previous works in the literature have considered problems with such structure, such as the double-well and rugged-Muller
potentials (embedded in high dimensions) and the Ginzburg-Landau potential [19,24,26,42]. Even in the case without ob-
vious 1D ordering, MPS/TT have demonstrated excellent empirical performance in high-dimensional PDE and chemistry
[40,2,43,3].

However in principle our method can also be extended to more complicated systems and more general network with
significant interactions between any particles, provided that suitable tensor network contractions can be performed. It has
become an active research field of extending the tensor network algorithm to more general systems, see for example [18].
Our complexity analysis relies on the assumption that the rank of g remains constant as the number of dimension increases,
which may not hold for complicated networks. As a future work, one can monitor the rank of the committor function g
via a two-site alternating minimization scheme. If we see any signs of rapidly growing rank, it may indicate the method is
more computationally expensive than expected and MPS/TT is not the most efficient format to represent the true committor
function. As a future work, one can monitor the rank of the committor function q via a two-site alternating minimization
scheme [10].
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Appendix A. Soft committor functions

Consider the optimization problem (2.7). We offer a probabilistic interpretation of the optimizer g, which we call a ‘soft
committor function.” This probabilistic interpretation will justify its use qualitatively and quantitatively as a proxy for the
committor function.

Define

P DA P - DB
fi= , &= ,
B-p B-p

and note that the Euler-Lagrange equation associated to (2.7) then reads as

—BTAQ®) + VV () - Va®) + (f () + (X)) q(x) = g(X). (A1)
We shall now rederive this PDE (A.1) via a probabilistic construction. In particular this construction will imply that the

solution q satisfies 0 < q(x) <1 for all x € Q.
Consider a stochastic process X; that modifies the standard overdamped Langevin diffusion

dX¢ = —-VV(Xp)dt +,/2871dWy,,

where W, is a Wiener process, by adding jumps to one of two possible ‘cemetery states’ ca, cg with state-dependent rates
specified by f, g, respectively.

In other words, we view X; € QU {ca} U {cp} as the continuous-time limit of the discrete-time Markov chain (also
denoted X;, abusing notation slightly) defined by the update

ca, ifUR < f(X¢) AL,
Xyt = {Cs, otherwise if U2 < g(X;) At
X: — VV(X¢) At + /28~ 1At Z; otherwise,
whenever X; € Q. Here the U/, UtB are i.i.d. uniformly distributed random variables on [0, 1], and the Z; are i.i.d. standard
Gaussian random variables. In other words, at each time step the stochastic process is sent to the cemetery state c4 with
probability f(X;) At and the cemetery state cg with probability g(X;) At, else it is advanced by the usual overdamped
Langevin dynamics. Note that in the limit of At small, it is unlikely for both U{‘ < f(X¢) At and UtB < g(X¢) At to hold.
Specifically, the probability of this is only O(At?) and does not affect the continuous-time limit.
Moreover, if X; =c4 (resp., cg), then we define X A =ca (resp., cg) deterministically. Then define the stopping time
T as
T =inf{t : X; € {ca,cB}},

and define q: Q — [0, 1] by
qx) =P (X;=cp|Xo=2%).
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We claim that q so defined (in the continuous-time limit At — 0) satisfies the PDE (A.1). Note that this construction
of g coincides with the usual probabilistic construction for the committor function, modulo a change in the underlying
stochastic process. We justify the claim only formally. A rigorous argument can be made by analogy to arguments made for
the ordinary committor function [5].

A.l. Formal PDE derivation

The PDE is derived by conditioning on Xo = &, and writing
q(x) =P (X =cp)
=P(Xar=cp) +P(Xar ¢ {ca.cBHE [P (X, =cp| Xy =Xar)] + 0 (A%,
where X is an independent dummy stochastic process with the same law as X;. But then
q®) =P (Xar = cp) + P(Xar ¢ {ca. cB) E[q(Xan)]+ O(AL).

Expanding further we obtain

qx) =g@® At+ (1— f(x) At —g(®) AD E |:q (x —VV(x) At + ,/2ﬁf1Atzo>] +0(AD). (A2)

Then we can expand g via Taylor expansion:

q (x— VV(x) At + ,/ZﬂflAtz())

=q(x) — VV () - Vq(X) At +,/2B~ 1AL Zo - VV (%) + BT At Z V2q(®)Zo + 0(AD),

from which we obtain
E [q (x —VV(x) At + /271 Atz())] = q(x) + (—VV(x) -Vq(x) + ﬂ’l Aq(x)) At + o(At).
It follows from plugging into (A.2) that

q(®) =q@®) + [2X) — VV®) - Va®) + B Ag(®) — (f(X) + 2X))q(®)] At + 0(Al).
Canceling q(x) from both sides, dividing by At, and taking the limit as At — 0, we obtain precisely (A.1), as desired.

Appendix B. Discretization of the Ginzburg-Landau density

In this section, we show that one can approximate the equilibrium distribution of the Ginzburg-Landau potential as (3.7)
via the eigenfunctions of a certain kernel.

The computation of the committor function for the Ginzburg-Landau potential requires the numerical approximation of
the operator H : L%([—R, R])? — R defined by

R R
H[¢1,...,¢d] :C)L/---/K(O,XOK(X],)Q) K(Xz,X3) K(xd_1,xd)
—R —R

x K(xq,0) ¢1(x1) ... Pa(Xq) dx1 ... dxq,
where
s 2
K(x,y)= e 5 (1= 037 (7) e’;*k(]’yz)z,
= 6’417, and R is some fixed positive constant.

Considering the operator Hg : L2([—R, R]) — L%([—R, R]) defined by

Holpl(x) =/K(X, y)o(y)dy,
Q

we observe that it is compact, symmetric, and positive semi-definite. In particular, it has an eigendecomposition consist-
ing of a countable basis of orthonormal eigenfunctions ui, uy, - - - € L2([—R, R]), together with corresponding non-negative
eigenvalues Aq > Xy >---> A, >--- >0, such that
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R
/K(x Y y)dy = Zk,uj(X)/ uj(y)p () dy
—R j=1

for all ¢ € L2([—R, R]). Moreover, for the kernel K defined above it is easily shown that Aj € o(e~*J) for any o > 0 as
j— oo (see [29] for example). We note that the implicit constant in the previous estimate will depend on « but not on j,
and increases rapidly as o — oo. For convenience, let us define the re-scaled eigenfunctions v; = 4/Aju;. Upon substitution
of the eigendecomposition of # into the definition of #, we obtain

o0

Hlp1, ..., ¢4l =ca Z Vo (0)Ajy jy 11+ Aj, ., jg[Dalv, (0), (B.1)

where Aj[¢] = fQ Vi(X)ve(x)¢ (x) dx. We observe that

[Ajel@d]l < /Ajhell@llreo,

and thus, if the sums in (B.1) are truncated at term J, then

’H[‘Pl’ s pal = HD[gn, ~~’¢d]’
< 2cli¢rlle - lgallee/ K (0, 0)K D) (O, 0)Tr(Ho)? "2

o
+d =1 caliprlle - lgall=K (0, 0)Tr(H)* ™ Y~ 4j,
j=J+1

where K (0,0) := PO vj(0)2 < K(0,0) and H) denotes the truncation of H. The analyticity of K guarantees that
Z;’iﬁ_l Aj go to zero exponentially quickly [29]) and hence for any o > 0 there exists a constant My , 4 g depending on «,
A, d, and R such that

(H[¢1,...,¢d] - H<f’[¢1,...,¢>d]] <M gre 2yl pallie,

for all J >1.
Next, we express the input functions ¢; in a basis of (suitably-scaled) Chebyshev polynomials,

$i(0) = i«m,nn (%)
n=0

where T, is the nth standard Chebyshev polynomial. Let d)i(N) denote the Nth order truncation of ¢; defined by

o™ (%) := XN: PinTn (%) )
n=0

Then, substituting these Chebyshev expansions into our expression for H, we find

Hip1,.... pal =Cx Z Z A i AT VoV, (0) finy - b g (B2)

Josenjg=1n1,...,ng=1

where
AT, =Aje[Ta(/R)].

In the following, we assume that ¢, ..., ¢q are in CPT1([—R, R]) for some fixed integer p > 1 and set

dp+1
cbcl’—“¢i (x/R)

Vp= miax

LY([-1,1])
A standard estimate from approximation theory [46] gives the following bound on the rate of decay of the coefficients of
D1y, P
2V,
nm—1)---(n—p)’

|pinl <
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In particular,

o0

T ap(N =y

n=N+1

If the sums over the Chebyshev coefficients (the n indices) in (B.2) are truncated at a fixed integer N and the sums over
the eigenvalues (the j indices) are truncated at J, then the error is bounded by

[Hig1,...gal = HIV (g, g

— 2dCxV 2V
< Myare 2l - I dalli + ; (l (N )P

d—1
To(N — )P K(0,0)T d a1
mp(N —p)P wp(N — p)P) (0,0) Tr(Ho) miax llgill}

Here 7-N) denotes the operator obtained by truncating the sums over eigenvalues in # at J and projecting onto the first
N +1 terms in the Chebyshev expansions of ¢1, ..., ¢4. This latter projection, along with the eigendecomposition of Hg, can
be performed easily on the computer using standard numerical integration. This yields a discrete, finite-dimensional tensor
which is the object we use in our approach when approximating .
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