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We propose a novel approach for computing committor functions, which describe 
transitions of a stochastic process between metastable states. The committor function 
satisfies a backward Kolmogorov equation, and in typical high-dimensional settings of 
interest, it is intractable to compute and store the solution with traditional numerical 
methods. By parametrizing the committor function in a matrix product state/tensor train 
format and using a similar representation for the equilibrium probability density, we solve 
the variational formulation of the backward Kolmogorov equation with linear time and 
memory complexity in the number of dimensions. This approach bypasses the need for 
sampling the equilibrium distribution, which can be difficult when the distribution has 
multiple modes. Numerical results demonstrate the effectiveness of the proposed method 
for high-dimensional problems.

 2022 Elsevier Inc. All rights reserved.

1. Introduction

Understanding rare transitions between metastable states of a high-dimensional stochastic processes is a problem of 
great importance in the applied sciences. Examples of interesting transition events include chemical reactions, nucleation 
events during phase transitions, and conformational changes of molecules [25,33,57,58,4,11]. In such complex systems, the 
dynamics linger near metastable states for long waiting periods, punctuated by sudden jumps from one metastable state to 
another. One important tool for describing transition events is transition path theory [54,30,48,52], where the committor 
function plays a central role. The committor function measures the probability that the process hits a certain metastable 
state of the system before another and can be viewed as the solution of a backward Kolmogorov equation.

Computing the committor function in high-dimensional settings is a formidable task. Traditional numerical methods 
such as finite difference and finite element methods become prohibitively expensive in even moderate dimensions. To 
overcome the curse of dimensionality, significant efforts have been expended to apply deep learning framework to solve for 
high dimensional partial differential equations [55,44,15,20,38]. Most recently [19,28,27] have suggested representing the 
committor function using neural networks. Some of these approaches rely on sampling from the equilibrium distribution 
and so work well when the transitions are easily observed. For, e.g., chemical systems at low temperature the committor 
function can change sharply between the two metastable states, and transitions are rare and difficult to sample. To address 
this problem, [41] has proposed an adaptive importance sampling scheme. Meanwhile, the dynamical Galerkin framework 
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for computing committor functions [45], which represents functions in a basis rather than as neural networks, approaches 
the sampling problem by initializing short trajectories uniformly according to known reaction coordinates.

Tensor network methods [8,35,51,34,9,22] have emerged as an alternative to neural networks as a tool for high-
dimensional problems in modern quantum physics and beyond. Typical tensor decomposition methods include tensor 
trains [36] (also known as linear tensor networks or matrix product states [1,37,56]), the CP decomposition [16], and the 
Tucker/Hierarchical Tucker decomposition [16,47,14]. These methods approximate tensors in compressed, structured for-
mats that enable efficient linear algebra operations. More details can be found in [23,13,12,21]. Moreover, tensor network 
methods have also been applied to solve for high-dimensional partial differential equations [22,2].

In this paper we propose a novel approach to computing committor functions based on matrix product states/tensor 
trains. Specifically, we approximate both the equilibrium probability distribution and the committor function using tensor 
trains, achieving good performance even for high-dimensional problems in the low-temperature regime. This new approach 
fully bypasses the aforementioned difficulties due to sampling and establishes an alternative method for studying rare 
transition events between metastable states in complex, high-dimensional systems.

The rest of the paper is organized as follows. The committor function and its properties are reviewed in Section 2. Therein 
we also explain how the boundary condition can be accommodated within our tensor format and provide a summary 
of relevant tensor network methods. We introduce the key ingredients of our proposed method in Section 3. Numerical 
experiments for two representative classes of examples are presented in Section 4, demonstrating the accuracy and efficiency 
of the proposed algorithm. Finally, in Section 5 we summarize our findings.

2. Background and preliminaries

In this section we first review the motivation for computing committor functions, and summarize challenges and recent 
advances relevant to this task. We then briefly discuss tensor train decompositions, introduce the basic tensor operations, 
and define relevant associated notations used in this work. Throughout the paper, we use MATLAB notation for multidimen-
sional array indexing.

2.1. Committor functions

The underlying stochastic process of interest is the overdamped Langevin process, defined by

dX t = −∇V (X t)dt +
√

2β−1 dW t, (2.1)

where X t ∈ " ⊂ Rd is the state of the system, V : " ⊂ Rd → R is a smooth potential energy function, β = 1/T is the 
inverse of the temperature T , and W t is a d-dimensional Wiener process. If the potential energy function V is confining for 
" (see, e.g., [5, Definition 4.2]), then one can show that the equilibrium probability distribution of the Langevin dynamics 
(2.1) is the Boltzmann-Gibbs distribution

p(x) = 1
Zβ

exp(−βV (x)), (2.2)

where Zβ =
∫
" exp(−βV (x)) dx is the partition function. We are interested in the transition between two simply connected 

domains A, B ⊂ " with smooth boundaries. The associated committor function q : " → [0, 1] is defined by

q(x) = P (τB < τA | X0 = x), (2.3)

where τA and τB are the hitting times for the sets A and B , respectively. The committor function q provides a useful statis-
tical description of properties such as the density and probability of reaction trajectories [48,52,39]. However, computing the 
committor function can be a formidable task since it involves solving the following (possibly high-dimensional) backward 
Kolmogorov equation with Dirichlet boundary conditions:

−β−1$q(x) + ∇V (x) · ∇q(x) = 0 in "\(A ∪ B), q(x)|∂ A = 0, q(x)|∂ B = 1. (2.4)

For high-dimensional problems, traditional methods such as finite difference and finite element discretization are intractable. 
Numerous alternative methods can effectively approximate the committor function under the assumption that the transition 
paths from A to B are localized in a quasi-one-dimensional reaction tube or low-dimensional manifold. For example, the 
finite temperature string method [53,49] approximates the isosurfaces of the committor function with hyperplanes normal 
to the most probable transition paths. The diffusion map approach [7] aims to obtain the committor function on a set 
of points by applying point cloud discretization to the generator L = −β−1$ + ∇V (x) · ∇ . The method presented in [24]
improves the diffusion map approach by discretizing L using a finite element method on local tangent planes of the point 
cloud. Also an alternative approach was introduced by solving a potential function instead, see [31] for details.
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To compute the committor function, a classic approach is to solve the variational problem

arg min
q

∫

"

|∇q(x)|2 p(x)dx, q(x)|∂ A = 0, q(x)|∂ B = 1, (2.5)

for which (2.4) is the Euler-Lagrange equation, see for example [32,19,28,27,41]. Specifically [19,28,27] proposed to 
parametrize the committor function q using neural networks. In order to obtain an unconstrained optimization problem, 
the boundary conditions are enforced in [19,27,41] by adding two extra penalty terms, as in

arg min
q

∫

"

|∇q(x)|2 p(x)dx + ρ

∫

∂ A

q(x)2 p∂ A(x)dx + ρ

∫

∂ B

(q(x) − 1)2 p∂ B(x)dx, (2.6)

where p∂ A and p∂ B define probability measures supported on the boundaries ∂ A and ∂ B respectively. In all of these works, 
the objective is evaluated and optimized via stochastic sampling. By contrast, in this work, we propose to represent the 
committor function q in a tensor train format, which will allow for optimization via stable and efficient deterministic linear 
algebra operations.

Since the potential function V is confining, we can effectively restrict our domain of interest to a bounded subset of 
". Outside of this subset, the density is small and contributes only negligibly contributes to the variational cost (2.5). For 
simplicity we shall identify " with this subset and assume " = "1 × "2 × . . ."d where each "i ∈R is a bounded subset.

2.2. Soft boundary condition

Unfortunately, the formulation (2.6) is not immediately amenable to optimization within a tensor format for q. The 
reason is that the surface measures on ∂ A and ∂ B cannot themselves be identified with functions on ", much less than 
functions that can be compressed in tensor format, so the penalty terms cannot simply be viewed as inner products of 
tensor trains.

Therefore we instead consider an objective of the form

arg min
q

∫

"

|∇q(x)|2 p(x)dx + ρ

∫

"

q(x)2 p A(x)dx + ρ

∫

"

(q(x) − 1)2 pB(x)dx. (2.7)

Here p A and pB are probability densities that are absolutely continuous with respect to the Lebesgue measure on ".
In fact, we show in Appendix A that the exact optimizer of (2.7) admits a probabilistic interpretation similar to that of 

the usual committor function. As such we call the optimizer a ‘soft committor function.’ Specifically, the interpretation is 
based on a modification of the Langevin dynamics (2.1) in which one augments the state space " with two ‘cemetery states’ 
c A and cB . The process jumps randomly to these two states with instantaneous jump rates ρ · p A

β · p and ρ · pB
β · p , respectively. 

The soft committor function evaluates the probability that the modified process hits cB before c A . This formulation is rather 
similar to the Poisson type equation introduced in [31] with some differences in the right hand side of the equation.

From a different perspective, when ρ is large and p A and pB concentrate near ∂ A and ∂ B , respectively, the soft com-
mittor function can be viewed as an approximation of the ordinary committor function. In fact, if p A and pB are Gaussian 
densities, then in high dimensions [6], p A and pB each weakly approximates a uniform measure on a suitable hypersphere. 
This is convenient because A and B are often chosen to be balls and the Gaussian densities have exact tensor train repre-
sentations. Section 3.3 provides two examples on the construction of p A and pB using Gaussian densities. In practice we 
choose p A and pB such that they are well-representable in tensor train format (introduced in Section 2.3). More details on 
the construction of p A and pB will be provided below in Section 3.

For simplicity, in what follows we will simply refer to soft committor functions as committor functions.

2.3. Tensors and tensor networks

In this subsection we summarize the basic tensor operations used in this work. In particular, for ease of exposition we 
introduce tensor network diagram notation, which provides a convenient way of visually describing tensor operations. We 
also introduce the matrix product state/tensor train format for parametrizing high-dimensional functions.

In tensor diagrams, a tensor is represented by a node, where the number of incoming legs indicates the dimensionality 
of the tensor, i.e., the number of indices/arguments. There are two types of leg: legs indicating continuous arguments are 
denoted by dashed lines, and legs indicating discrete indices are denoted by solid lines. For example, Fig. 2.1 (a) shows the 
tensor diagram for a 3-tensor A and a 2-tensor B, which can be viewed as two functions

A(x1, i2, i3), B( j1, x2), (2.8)

respectively, where x1, x2 are continuous variables and i2, i3, j1 are discrete variables.
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Fig. 2.1. (a) Tensor diagrams for a 3-tensor A and a 2-tensor B. (b) Tensor diagram for a d-dimensional Kronecker Delta node. Solid lines correspond to 
discrete variables, and dashed lines correspond to continuous variables.

Fig. 2.2. (a) Tensor contraction of discrete legs. (b) Tensor contraction of continuous legs.

We also define the multi-dimensional Kronecker delta tensor (depicted by an inverted triangular node as in Fig. 2.1 (b)):

δ(x1, x2, . . . , xd) =
{

1 if x1 = x2 = · · · = xd.

0 otherwise.
(2.9)

By a slight abuse of notation, we will use the same symbol to represent the appropriate Dirac delta function when the legs 
represent continuous variables.

Next we describe a key operation called tensor contraction. This operation is indicated visually by joining legs from 
different tensors. For example, in Fig. 2.2 (a), the third leg of A is joined with the first leg of B. This corresponds to the 
computation

C(x1, i2, x2) =
∑

k

A(x1, i2,k)B(k, x2), (2.10)

where it is implicitly assumed that the indices of the joined legs have the same range. Here x1, x2 are continuous variables, 
and i2 is a discrete variable.

Tensor contraction can be defined for continuous legs as well. For example, in Fig. 2.2 (b), continuous legs of A and B
are contracted, corresponding to the operation

D( j1, i2, i3) =
∫

"0

B( j1, x)A(x, i2, i3)dx, (2.11)

for some suitable domain "0, which is implicitly assumed to be the domain of both joined legs. The resulting tensor D is 
a 3-tensor with only discrete legs.

A tensor network diagram consists of a collection of individual tensor diagrams with some pairs of legs joined, i.e., 
contracted. The contracted legs correspond to the so-called ‘internal indices’ for the tensor network, while the uncontracted 
legs correspond to ‘external indices,’ which are the indices remaining after all of the indicated contractions have been 
performed.

Next we introduce several low-complexity tensor networks and their corresponding diagrams. A matrix product state 
(MPS) or tensor train (TT) is a factorization of a d-tensor into a chain-like product of 3-tensors. Such a factorization al-
lows one to approximate high-dimensional tensors and manipulate them efficiently, typically with O(d) time and memory 
complexity.

Definition 1. Let A ∈ Rn1×n2×···×nd be a d-tensor, with entries indexed by (i1, i2, . . . , id). Then we say that A is a MPS/TT 
with ranks r = (r0, . . . , rd), where we fix r0 = rd = 1 by convention, if one can write
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Fig. 2.3. (a) d-dimensional TT/MPS. (b) d-dimensional MPO. The indices depicted match the expressions in (2.12) and (2.14). Note that we omit the legs for 
the trivial indices α0 and αd .

A(i1, i2, . . . , id) =
r0∑

α0=1

· · ·
rd∑

αd=1

G1(α0, i1,α1)G2(α1, i2,α2) . . .Gd(αd−1, id,αd)

= G1(:, i1, :)G2(:, i2, :) · · ·Gd(:, id, :) (2.12)

for all (i1, i2, . . . , id). Here Gk(:, ik, :) ∈Rrk−1×rk is viewed as a matrix for each k = 1, . . . , d, and the matrix product in (2.12)
is a 1 × 1 matrix, i.e., a scalar value. The 3-tensor Gk ∈Rrk−1×nk×rk is called the k-th tensor core of A.

In tensor diagrams, an MPS/TT is represented by a chain of 3-tensors, as in Fig. 2.3 (a). Note that the 0-th and last tensor 
cores can be viewed as 2-tensors since r0 = rd = 1, and as such the corresponding legs can be omitted from the diagram.

A matrix product operator (MPO) is a tensor network in which each constituent tensor has two external, uncontracted 
legs as well as two internal indices contracted with neighboring tensors in a chain-like fashion. Concretely, an MPO is a 
tensor O ∈R(m1×m2×···×md)×(n1×n2×···×nd) that can be written in the form

O(i1, . . . , id; i′1, . . . , i′d) =
∑

α0,...,αd

G1(α0, i1, i′1,α1) . . .Gd(αd−1, id, i′d,αd) (2.13)

= G1(:, i1, i′1, :) . . .Gd(:, id, i′d, :), (2.14)

where the sum over αk has a range defined by a corresponding rank rk , as in Definition 1, and r0 = rd = 1 by convention. 
In this case we similarly say that the MPO has ranks r = (r0, . . . , rd). The 4-tensor Gk ∈ Rrk−1×mk×nk×rk is called the k-th 
tensor core. A corresponding tensor network diagram is shown in Fig. 2.3 (b).

For further background on tensor networks and diagrams, see [35].

3. Proposed method

In this work we obtain the committor function by solving the variational problem (2.7) within a MPS/TT parametrization 
for the committor function q. We demonstrate that by approximating the equilibrium probability density p in MPS/TT for-
mat, this optimization problem can be solved using basic tensor operations. In particular the minimization is accomplished 
using a standard alternating least squares approach.

3.1. Discretizing the variational problem

We will represent the unknown committor function in a tensor product basis according to the product structure of the 
domain " = "1 ×"2 × · · ·×"d . Within this basis, we will approach the variational problem (2.7) by Galerkin approximation.

To begin, suppose that we have an orthogonal basis for each L2("k), denoted by {φ(k)
j }∞j=1. In order to obtain a finite-

dimensional problem we consider the subspace of L2("k) spanned by only the first L(k) basis functions. Here the L(k) , 
k = 1, . . . , d, are a set of positive integers which are either fixed or determined adaptively. Then given the finite basis 
{φ(k)

j }L(k)

j=1, which spans a subspace of L2("k) for each k = 1, . . . , d, we can consider an expansion of q in the corresponding 
tensor product basis:

q(x) =
∑

i1,...,id

Q(i1, . . . , id)φ
(1)
i1

(x1) . . .φ
(d)
id

(xd),

:=
∑

i

Q(i)φ(1)
i1

(x1) . . .φ
(d)
id

(xd), (3.1)

where, for notational convenience, we have defined i := (i1, i2, . . . , id) and x := (x1, x2, . . . , xd). Additionally, we set φ(k) :=
(φ

(k)
j )L(k)

j=1. Each φ(k) can be viewed as a 2-tensor via φ(k)( j, x) = φ
(k)
j (x), where the first index is the basis function index and 

the second (continuous) index is a spatial coordinate. Then the decomposition (3.1) for q can be depicted graphically as in 
Fig. 3.1.
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Fig. 3.1. Tensor diagram for the decomposition (3.1) of the committor function.

To determine the committor function q within the truncated tensor product basis, we want to determine the coefficient 
tensor Q that is optimal in the sense of (2.7). By inserting the parameterization (3.1) into the variational problem (2.7), we 
can rewrite the optimization problem as follows,

arg min
Q

d∑

k=1

∑

i, j

Hk(i; j)Q(i)Q( j)

︸ ︷︷ ︸∫
"|∇q(x)|2 p(x)dx

+ρ
∑

i, j

H A(i; j)Q(i)Q( j)

︸ ︷︷ ︸
ρ

∫
" q(x)2 p A(x)dx

+ ρ
∑

i, j

H B(i; j)Q(i)Q( j) − 2ρ
∑

i

Q(i)hB(i) + ρ

︸ ︷︷ ︸
ρ

∫
"(q(x)−1)2 pB (x)dx

,

(3.2)

where

Hk(i; j) =
∫

"

∂

∂xk

[
φ

(1)
i1

(x1) . . .φ
(d)
id

(xd)
] ∂

∂xk

[
φ

(1)
j1

(x1) . . .φ
(d)
jd

(xd)
]

p(x)dx (3.3)

H A(i; j) =
∫

"

φ
(1)
i1

(x1) . . .φ
(d)
id

(xd)φ
(1)
j1

(x1) . . .φ
(d)
jd

(xd)p A(x)dx (3.4)

H B(i; j) =
∫

"

φ
(1)
i1

(x1) . . .φ
(d)
id

(xd)φ
(1)
j1

(x1) . . .φ
(d)
jd

(xd)pB(x)dx (3.5)

hB(i) =
∫

"

φ
(1)
i1

(x1)φ
(2)
i2

(x2) . . .φ
(d)
id

(xd)pB(x)dx. (3.6)

Here (i; j) = (i1, . . . , id; j1, . . . , jd) is a concatenation of multi-indices. We can simply ignore the last constant ρ since it 
does not affect the minimizer. Computing the tensors {Hk}d

k=1, H A , H B , and hB is prima facie intractable as it requires us 
to perform integration over the d-dimensional domain ", in addition to storing tensors of exponential size in d. Moreover, 
the number of unknown tensor entries of Q is also exponential in d. Traditional approaches are therefore prohibitively 
expensive for d of even moderate size.

In the next two sections we show how to use MPS/TT approximations to obtain {Hk}d
k=1, H

A, H B , hB , allowing us to solve 
the optimization problem (3.2) with computational and storage complexities of O(d).

3.2. Constructing Hk

In this subsection we detail the construction of Hk , which corresponds to the variational energy term 
∫
"|∇q(x)|2 p(x)dx

of (2.7). As mentioned above, in order to obtain each Hk in (3.3), one needs to evaluate a d-dimensional integral and 
store the resulting high-dimensional tensor. To circumvent the exponential complexity in d, we assume that the equilibrium 
density p can be approximated as an MPS/TT as follows:

p(x) =
∑

m1,...,md
α0,...,αd

P1(α0,m1,α1) . . .Pd(αd−1,md,αd)ψ
(1)
m1 (x1) · · ·ψ (d)

md
(xd), (3.7)

where ψ (k) := (ψ
(k)
j )K (k)

j=1 is a vector of univariate basis functions "i →R. Fig. 3.2 illustrates the structure of the equilibrium 
density p that we assume in this paper.

The construction of the MPS/TT format for a given equilibrium density p will be described in Section 4 in the contexts 
of specific example problems.

Such an approximation of p amounts to changing the tensor representation of Hk depicted graphically in Fig. 3.3 (a) to 
the representation in Fig. 3.3 (b). Note that these calculations involve the derivatives of our univariate basis functions φ(k) . 
In our figures, we use a hollow node to represent the vector of basis functions φ(k) and a filled node to represent its vector 
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Fig. 3.2. Tensor diagram for the approximate equilibrium density p (3.7).

Fig. 3.3. (a) Tensor diagram for Hk , k = 3, as defined in (3.3). (b) Approximation of Hk obtained by replacing p with its MPS/TT approximation (3.7). We 
use red dashed boxes to indicate the region of replacement. The original basis functions φ(l) , l += k, are represented using hollow nodes, and the derivative 
dφ(k)/dx is distinguished using a filled node.

of derivatives, i.e., dφ(k)/dx. We observe that the {Hk}d
k=1 are naturally viewed as MPOs, and moreover the construction of 

these MPOs can be performed using basic tensor algebra in O(d) complexity. More precisely:

(1) To construct an MPO for Hk following Fig. 3.3 (b), note that we need to perform two types of tensor contraction: 
one involving the original basis functions φ(l) , l += k, and the other involving the derivatives dφ(k)/dx. Therefore we 
precompute these two contractions, which can be recycled to form MPOs for the Hk , k = 1, . . . , d. First, we form Il , 
l = 1, . . . , d by contracting three tensors ψ (l) , φ(l) , φ(l) and form Ĩl , l = 1, . . . , d by contracting three tensors ψ (l) , dφ(l)/dx, 
dφ(l)/dx. The tensors Il and Ĩl are defined graphically in Fig. 3.4 (a) and (b). These contractions can be performed by 
univariate numerical integration. Next we contract each Il with the corresponding tensor core Pl to obtain Hl for 
l = 1, . . . , d. Similarly we contract Ĩl with Pl to obtain H̃l . These constructions are illustrated in Fig. 3.4 (a) and (b), 
respectively.

(2) Next we assemble Hk by substituting Hl, H̃l , l = 1, . . . , d into the red boxes in Fig. 3.4 (c) as needed. This yields an MPO 
as shown in Fig. 3.4 (c) on the right. We denote l-th tensor core of Hk by Hk

l .
(3) Finally we repeat step (2) for all k = 1, . . . , d.

The algorithm outputs core tensors Hk
1, . . . , H

k
d for the MPO Hk , k = 1, . . . , d. The computational complexity of form-

ing each pair Il, ̃Il is O(K (l)L(l)2) since a univariate numerical integration is performed for each entry. Hence the cost of 
computing all of the Il, ̃Il is O(dK L2), where we define K := maxl K (l) , L := maxl L(l) .

If we assume that the MPS/TT format for p has ranks r = (r0, r1, r2, . . . , rd), and set r = maxl rl , then the contraction steps 
with the Pl altogether cost O(dr2 K L2). Therefore to construct the tensor cores Hk

1, . . . , H
k
d , the total computational cost is 

O(dr2 K L2). The memory complexity, including that of storing the intermediate tensors Il , Ĩl , Hl , H̃l , is O(dK L2 + dr2L2).

Remark 1. Our approach relies on the assumption that the equilibrium density of the system can be efficiently represented 
or approximated in MPS/TT format. The MPS/TT structure makes it possible to perform numerical integration for each 
individual tensor core, thus resulting in a computational complexity that is linear in d. When the assumptions are violated, 
the TT rank of the equilibrium density can grow with d, indicating the true computational complexity can be higher than 
our analysis.
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Fig. 3.4. Diagrammatic illustration of the construction of an MPO format for Hk . (a) Precompute tensors Hl . (b) Precompute tensors H̃l . (c) Assemble Hk , 
k = 3, by substituting tensors Hl and H̃l . We use red dashed boxes to indicate the region of replacement. A similar construction is repeated for other k. 
(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

3.3. Constructing H A and H B

The tensors H A and H B derive from the two soft boundary penalty terms ρ
∫
" q(x)2 p A(x) dx and ρ

∫
"(q(x) −1)2 pB(x) dx

in (2.7). The construction of the MPO format for H A and H B is similar to that of Hk detailed above in Section 3.2. However, 
we now further need to represent the soft boundary measures p A and pB as MPS/TT. Recall our motivation that p A and 
pB weakly approximate surface measures on the boundaries ∂ A and ∂ B , though for any choice of p A and pB we may 
still interpret the soft committor function probabilistically following Appendix A. The construction of approximate surface 
measures varies depending on the specific geometry of A and B . In many applications, A and B are balls or half-spaces, so 
∂ A and ∂ B are spheres or hyperplanes. We discuss these two cases in detail presently.

For the case of a sphere, the Gaussian annulus theorem [6, Theorem 2.8] indicates that most of the mass of a high-
dimensional Gaussian distribution concentrates on a shell. If we assume that region A is a d-dimensional ball with center 
xA and radius R A , we can approximate the uniform measure on ∂ A by a Gaussian density,

p A(x) = 1
(2π)d/2σ d

exp
(

−‖x − xA‖2

2σ 2

)
, where σ = R A√

d
. (3.8)

More precisely, under this probability measure, we have that

Prob
(∣∣∣‖x‖2 −

√
dσ

∣∣∣ ≥ tσ
)

≤ exp
(

− t2

κ

)
, for all t > 0, (3.9)

where κ > 0 is a constant [50]. This bound indicates that the mass of p A concentrates on a shell with radius R A and 
thickness O (1/

√
d). It is straightforward to convert (3.8) into MPS/TT format since it is in fact a pure tensor product of 

univariate functions of each scalar variable xk . As such our resulting MPS/TT should have ranks all equal to 1.
For the case of a hyperplane, suppose in particular that ∂ A = {x ∈Rd : xi = c}. In this case consider

p A(x) = 1
(2π)1/2σ

exp
(

− (xi − c)2

2σ 2

)
, (3.10)
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Fig. 3.5. Tensor diagrams for (a) p A as in (3.11) and (b) pB as in (3.12).

where σ controls the sharpness of the approximation. This choice of p A is again a pure tensor product of univariate 
functions.

Now suppose that we have p A and pB in MPS/TT form. Specifically, assume that we have tensor cores {Ai}d
i=1 with 

associated ranks s = (s0, s1, . . . , sd), together with a vector of basis functions a(k) := (a(k)
j )

K (k)
A

j=1 for each k = 1, . . . , d. Also 

assume that we have tensor cores {Bi}d
i=1 with ranks t = (t0, t1, . . . , td) and a vector of basis functions b(k) := (b(k)

j )
K (k)

B
j=1. 

Then we assume that we can write p A and pB as

p A(x) =
∑

m1,...,md
α0,...,αd

A1(α0,m1,α1) . . .Ad(αd−1,md,αd)a
(1)
m1 (x1) . . .a(d)

md
(xd). (3.11)

pB(x) =
∑

m1,...,md
α0,...,αd

B1(α0,m1,α1) . . .Bd(αd−1,md,αd)b
(1)
m1 (x1) . . .b(d)

md
(xd). (3.12)

In Fig. 3.5 we illustrate these formats graphically.
Now in light of the resemblance among (3.3), (3.4), and (3.5), we can use the same procedure described in Section 3.2

to approximate H A and H B as MPOs. To wit, we simply replace p in Fig. 3.3 with the MPS/TT approximations of p∂ A or 
p∂ B and replace all derivatives dφ(l)/dx by φ(l) since there are no derivatives in (3.4) and (3.5). Ultimately we obtain MPO 
formats for H A and H B with ranks s and t and cores H A

k and H B
k , k = 1, . . . , d respectively. The computational complexities 

of constructing H A and H B are O(ds2 K A L2) and O(dt2 K B L2), respectively, where we define s := maxl sl , t := maxl tl , K A :=
maxl K (l)

A , and K B := maxl K (l)
B . The memory complexities are O(dK A L2 + ds2L2) and O(dK B L2 + dt2L2), respectively.

3.4. Constructing hB

In this subsection we focus on constructing hB , which comes from the cross term in the second penalty term ρ
∫
"(q(x) −

1)2 pB(x) dx within (2.7). The ideas are again very similar to Section 3.2. The tensor diagram for hB is shown in Fig. 3.6 (a). 
By plugging in the MPS/TT approximation of the soft boundary measure pB (3.12), we obtain the approximation of hB

illustrated in Fig. 3.6 (b). One can further bring hB to a standard MPS/TT form, using the contractions shown in Fig. 3.7. In 
detail, the procedure is as follows:

(1) In Fig. 3.7 (a), we contract the two connected basis function nodes in the red box. This results in tensors Jk, k = 1, . . . , d, 
seen in Fig. 3.7 (a) on the right. This contraction requires univariate numerical integrations.

(2) Next we merge the computed tensor Jk and the tensor core Bk for k = 1, . . . , d. The resulting 3-tensors, which are the 
tensor cores for hB , are denoted hB

k . This step is shown in Fig. 3.7 (b).

This procedure yields hB in MPS/TT format with tensor cores hB
1 , . . . , hB

d . The computational and memory complexities 
of constructing hB are O(dt2 K B L) and O(dK B L + dt2L), respectively.

3.5. Optimization

We have discussed how the MPS/TT format can be used to compress the tensors {Hk}d
k=1, H A , H B , and hB . In order to 

obtain a tractable algorithm for computing the committor function, it is natural to represent the unknown tensor Q in a 
compatible format. Indeed, without imposing some additional structure on the parameterization (3.1), the unknown tensor 
core Q is still of size exponential in d. Thus we approximate Q as in MPS/TT format as

Q(i) :=
∑

α0,...,αd

Q1(α0, i1,α1)Q2(α1, i2,α2) . . .Qd(αd−1, id,αd). (3.13)

9
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Fig. 3.6. (a) Tensor diagram for hB as in (3.6). (b) Approximation of hB obtained by replacing the soft boundary measure pB with its MPS/TT approximation 
(3.12). We use red dashed boxes to indicate the region of replacement.

Fig. 3.7. Illustration of the construction of hB in MPS/TT format. (a) Contract tensors φ(l) and b(l) to get Jl . (b) Contract tensors Jl and Bl to get hB
l . We use 

red dashed boxes emphasize the contractions.

Fig. 3.8. Tensor diagram for the parametrization of q following (3.1) and (3.13).

The tensor diagram for q is shown in Fig. 3.8. Empirically we observe that this format is able to capture the structure 
of q accurately, i.e., without growth of the ranks of the tensor cores. The MPS/TT format (3.13) for q greatly simplifies the 
solution of the variational problem (3.2). In Fig. 3.9 we compare the tensor diagram depictions of the original variational 
problem and the new simplified problem by replacing Q with its MPS/TT approximation. We note that all terms in the 
simplified form (Fig. 3.9 (b)) can be computed with standard MPO-MPS or MPS-MPS contractions in O(d) time.

In Fig. 3.9, the unknown tensor cores of MPS Q are marked in red. A standard approach for optimization problems of 
the form Fig. 3.9 (b) is alternating least squares (ALS). In each ALS iteration, we loop over the dimensions k = 1, . . . , d. For 
each k, we treat all coefficient tensor cores but Qk as constant. This yields an unconstrained least squares problem for Qk . 
Naively the computational complexity is O(d2) since the bottleneck is the summation of d terms in Fig. 3.9 (b) and each 
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Fig. 3.9. (a) Tensor diagram representation of the variational problem corresponding to (3.2). (b) Approximate variational problem obtained by replacing Q
with its MPS/TT approximation (3.13). We use red dashed boxes to indicate the region of replacement. Specifically the red filled tensor cores are unknown 
variables in the optimization.

term requires at least O(d) tensor contractions. However by using the same trick as in the construction of Hk and carefully 
reusing the computed nodes, one can bring the computational complexity down to O(d).

Remark 2. Similar to the discussions for the equilibrium density, our complexity analysis relies crucially on the assumption 
that the TT ranks of the committor function are bounded by a constant as the dimension grows. Here we parametrize the 
committor function by an MPS/TT with fixed TT rank. In practice we can tune the rank parameter and monitor the numerical 
rank between the cores. If the rank grows rapidly with the dimensions, our complexity analysis can underestimate the true 
computational complexity and MPS/TT may not be the most efficient format of parametrizing the true committor function.

4. Numerical experiments

In this section, we present numerical results that demonstrate the accuracy and efficiency of the proposed method.

4.1. Double-well potential

In the first numerical experiment, we consider the following potential

V (x) = (x2
1 − 1)2 + 0.3

d∑

i=2

x2
i , (4.1)

and we let A, B be the half-spaces

A = {x ∈Rd|x1 ≤ −1}, B = {x ∈Rd|x1 ≥ 1}. (4.2)

Now (4.1) is a double-well potential along dimension x1, and the two boundaries ∂ A and ∂ B are located in the potential 
wells. When the temperature T = 1/β is low, the equilibrium density p ∝ e−βV is concentrated within the two wells. 
Meanwhile, in this case q is mostly flat with a sharp transition from 0 to 1 at x1 = 0.

For this example, we can compute a ground truth solution. By symmetry, we can obtain the committor function by 
solving the backward Kolmogorov equation in the first dimension, i.e., setting qtrue(x) = f (x1), where

d2 f (x1)

dx2
1

− 4x1(x2
1 − 1)

df (x1)

dx1
= 0, f (−1) = 0, f (1) = 1. (4.3)

We can solve this ODE numerically using a finite difference method on a very fine grid to produce qtrue. The performance 
of our proposed method is evaluated by the following relative error metric

E1 =
‖q − qtrue‖L2("\(A∪B))

‖qtrue‖L2("\(A∪B))

, (4.4)
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Fig. 4.1. Numerical results for the double-well potential, T = 0.2. (a) The numerical solution of the committor function q, compared with the ground truth 
qtrue, plotted along the x1 dimension. (b) The residual plot q − qtrue along the x1 dimension.

where ‖ · ‖L2("\(A∪B)) denotes the L2-norm with respect to uniform measure over the domain "\(A ∪ B). The other error 
metric we use is

E2 =
‖q − qtrue‖L2("\(A∪B),p)

‖qtrue‖L2("\(A∪B),p)

, (4.5)

where ‖ · ‖L2("\(A∪B),p) denotes the L2-norm with respect to the equilibrium density p defined in (2.2) over the domain 
"\(A ∪ B).

We enforce the boundary conditions by constructing soft boundary measures p A and pB in MPS/TT format following 
(3.10). Meanwhile, we can exactly treat the equilibrium density p in MPS/TT format since it factorizes as a pure tensor 
product

p(x) =
d∏

k=1

pk(xk)

of univariate functions, given the choice of potential (4.1).
It remains to fix a univariate basis for each dimension of the committor function q. One could of course choose a generic 

basis such as Chebyshev polynomials, Legendre polynomials, or Fourier series. For this example, however, a better choice is 
to construct an appropriate truncated orthogonal polynomial basis for each dimension k according to the univariate density 
pk .

We solve for the committor function at two representative temperatures T = 0.2 and T = 0.05 in d = 20 dimensions. For 
T = 0.2, we use the first 30 orthongonal polynomials for all dimensions. For the lower temperature T = 0.05, we use 60
orthogonal polynomial basis functions since the true committor function changes more sharply near x1 = 0. We show q and 
qtrue for T = 0.2 in Fig. 4.1 (a) and the corresponding residual q − qtrue in Fig. 4.1 (b). Numerical results for T = 0.05 are 
illustrated similarly in Fig. 4.2.

We compute the relative error E1 in (4.4) using 105 uniformly distributed samples between [−1, 1] for x1. The relative 
error is E1 = 2.36 × 10−4 for T = 0.2 and E1 = 1.67 × 10−3 for T = 0.05. With 107 samples, we obtain relative error 
E2 = 1.60 × 10−4 defined in (4.5) for T = 0.2 and E2 = 6.77 × 10−4 for T = 0.05. Additional tests were performed with 
other bases such as Chebyshev polynomials and Fourier series and the behavior was similar.

We show the numerical convergence of the solution with respect to the number of basis functions by examining the 
coefficient tensor of the committor function. Take T = 0.05 as an example where we use 60 orthogonal polynomial basis in 
each dimension, all basis coefficients form a 60d coefficient tensor Q = Q(i1, · · · , id) for i1, · · · , id = 1, · · · , 60. Specifically, 
the first dimension is most meaningful and the rest of the dimensions are equivalent due to permutation symmetry.

We visualize the numerical convergence by a slice of the committor’s coefficient tensor in the first dimension (Fig. 4.3
(a)) and the second dimension (Fig. 4.3 (b)). We can observe that the basis coefficients for the first dimension decay roughly 
exponentially as i1 increases. Since the committor function value should be a constant in x2, . . . , xd , we observe the coeffi-
cient associated with i2 = 1 is large while the rest of the coefficients are nearly zero.

4.2. Ginzburg-Landau potential

The Ginzburg-Landau theory was developed to provide a mathematical description of superconductivity [17]. In this 
numerical example, we consider a simplified Ginzburg-Landau model, in which the Ginzburg-Landau energy is defined for 
a one-dimensional scalar field u : [0, 1] →R as follows:
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Fig. 4.2. Numerical results for the double-well potential, T = 0.05. (a) The numerical solution of the committor function q, compared with the ground truth 
qtrue, plotted along the x1 dimension. (b) The residual plot q − qtrue along the x1 dimension.

Fig. 4.3. Coefficients of basis function representation for the double-well potential model, T = 0.05. (a) Log magnitude of the coefficients for the x1 dimen-
sion Q(i1, 1, · · · , 1). (b) Log magnitude of the coefficients for the x2 dimension Q(1, i2, 1, · · · , 1).

Ṽ [u] =
1∫

0

[
λ

2
(u′)2 + 1

4λ
(1 − u2)2

]
dx, (4.6)

where λ is a small positive parameter and u satisfies the boundary conditions u(0) = u(1) = 0. We discretize u uniformly 
on [0, 1] as U = (U1, U2, . . . , Ud) with boundary conditions U0 = Ud+1 = 0. Then we approximate the continuous Ginzburg-
Landau energy (4.6) with the discretization

V (U ) :=
d+1∑

i=1

λ

2

(
Ui − Ui−1

h

)2

+ 1
4λ

(1 − U 2
i )2, (4.7)

where the grid spacing h = 1/(d + 1). We fix d = 50 and λ = 0.03. Note that V (U ) has two global minima U± illustrated 
in Fig. 4.4. We let A and B be the balls {U : ‖U − U±‖ ≤ R} centered at the global minima. The radius R is set to be 2.5, 
chosen such that the balls A and B roughly contain the regions of high equilibrium probability density around the two 
centers.

We present numerical results for two representative temperatures T = 8 and T = 16. We enforce the boundary conditions 
by constructing soft boundary measures p A and pB in MPS/TT format following (3.8). We detail the approximation of the 
equilibrium probability density p in MPS/TT format in Appendix B.

We define the domain to be the hypercube " = [−γ , γ ]50. Based on our choices of λ and β , we take γ = 2.6 since 
this choice guarantees that the equilibrium density has negligible mass outside of ". To represent the committor function 
q, we use the first 5 Fourier basis functions {1, cos (πx/γ ), sin (πx/γ ), cos (2πx/γ ), sin (2πx/γ )} for each dimension. The 
ranks of the coefficient MPS/TT Q are all taken to be 6. We initialize all the entries of the unknown tensor cores of Q with 
normal N (0, 1) random numbers and then perform ALS, gradually increasing the penalty parameter ρ to better enforce the 
boundary conditions. In practice we observe that different initializations have little effect on the output of the algorithm.

For problems of this size, traditional methods are intractable, making it difficult to obtain an exact reference qtrue for 
comparison. Instead, as a proxy we study a ‘thickened isosurface’ around q = 0.5, defined as 0ε = {U : ‖q(U ) − 0.5‖ ≤ ε}, 
where ε > 0 is a small threshold parameter. If the solution q is indeed a satisfactory approximation of the true committor 
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Fig. 4.4. The two global minima of the Ginzburg-Landau energy (4.7) with d = 50 and λ = 0.03.

Fig. 4.5. Comparison of distributions for T = 8. (a) Empirical histogram for {n j/Nt }5000
j=1 compared with the density of N ( 1

2 , 1/400). (b) Q-Q (quantile-

quantile) plot of {n j/Nt }5000
j=1 compared with N ( 1

2 , 1/400).

function, then for any trajectories given by (2.1) starting from points in 0ε , the probability of entering region B before A
should be close to 0.5.

To verify this, we generate samples from the equilibrium distribution by simulating the process (2.1). Then we filter to 
keep samples on the isosurface 0ε using the computed committor function q and the threshold ε of our choice. Let us pick 
Ns points in 0ε , denoted {Ũ j}Ns

j=1. For each point Ũ j , we generate Nt trajectories by simulating the Langevin process (2.1)
and use n j to denote the number of trajectories ending up in region B before A. By the central limit theorem, when Nt is 
large, the distribution of n j/Nt should be well-approximated by the normal distribution N ( 1

2 , (4Nt)
−1). In our numerical 

tests, we set ε = 5 × 10−3, Ns = 5000, and Nt = 100. The results for T = 8 and T = 16 are illustrated in Fig. 4.5 and Fig. 4.6, 
respectively. We compare the histogram of {n j/Nt}5000

j=1 with the normal distribution N ( 1
2 , 1/400) on the left and show the 

Q–Q (quantile-quantile) plot of the distribution of {n j/Nt}5000
j=1 versus N ( 1

2 , 1/400) on the right. These figures demonstrate 
that the distribution of {n j/Nt}5000

j=1 is indeed in good agreement with the normal distribution N ( 1
2 , 1/400), which indicates 

that our solution q provides a good approximation of the true isosurface.
Next, consider the restriction of the equilibrium density to the q = 0.5 isosurface. Intuitively, the first term in the 

Ginzburg-Landau potential (4.7) encourages the configuration U to be as flat as possible. Therefore, to transition between 
the two boundary states U− and U+ , it is favorable in terms of energy to have only a single sign change in the discretized 
function U . We compute 107 samples from the equilibrium density by running the overdamped Langevin process (2.1), ini-
tialized at random states in ". We retain only the samples that fall in the thickened isosurface 0ε , ε = 5 × 10−3. Then we 
perform 2-means clustering on these samples. In Fig. 4.7 (a) and Fig. 4.8 (a), we show the centroids U (1) and U (2) of the 
two clusters for T = 8 and T = 16, respectively. These configurations are symmetric with a single sign change.

Next we project all samples in the q = 0.5 isosurface to the line containing the two centroids, i.e., to points of the form 
θU (1) + (1 − θ)U (2) . In Fig. 4.7 (b) and Fig. 4.8 (b) we plot the histograms of θ for all samples to demonstrate that these 
distributions are indeed bimodal. Observe that at higher temperature, the bimodality is less pronounced.

Finally, we study transition paths via the deterministic reactive flow [24]:

dU (t)
dt

= 1
β

p(U (t))∇q(U (t)). (4.8)
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Fig. 4.6. Comparison of distributions for T = 16. (a) Empirical histogram for {n j/Nt }5000
j=1 compared with the density of N ( 1

2 , 1/400). (b) Q-Q (quantile-

quantile) plot of {n j/Nt }5000
j=1 compared with N ( 1

2 , 1/400).

Fig. 4.7. Analysis of the q = 0.5 isosurface for T = 8. (a) Centroids of the two clusters in the q = 0.5 isosurface. (b) Histogram of the 1-dimensional 
coordinate θ of the isosurface samples along the line between the two clusters.

Fig. 4.8. Analysis of the q = 0.5 isosurface for T = 16. (a) Centroids of the two clusters in the q = 0.5 isosurface. (b) Histogram of the 1-dimensional 
coordinate θ of the isosurface samples along the line between the two clusters.

Based on Fig. 4.7, we expect that at low temperatures the transition paths between A and B are localized within in two 
reaction tubes. We visualize one of the transition paths at temperature T = 8 in Fig. 4.9. The leftmost curve corresponds to 
the initial state of (4.8), for which q = 0.1. Meanwhile q = 0.9 for the rightmost curve. The red arrow indicates the direction 
of time evolution.

4.3. Gaussian mixture equilibrium density

To evaluate the model performance on rugged energy landscape, we consider constructing a more complicated equilib-
rium distribution with several isolated local maxima using Gaussian mixture models. In this example we use a mixture of 
7 Gaussian densities,
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Fig. 4.9. Visualization of one transition path for T = 8.

Fig. 4.10. The Gaussian mixture model equilibrium density visualized in the first two dimensions. (a) Equilibrium density in 2D. (b) Equilibrium density 
where the mean of Gaussians is in high dimension.

p(x) = exp(−β‖x − C A‖) + exp(−β‖x − C B‖) + 0.6
3∑

i=1

exp(−β‖x − Ci‖) + η
5∑

i=4

exp(−β‖x − Ci‖), (4.9)

where C A , C B and Ci for i = 1, · · · , 5 are the 7 Gaussian centers. η is some parameter. In this example let the problem 
dimension d = 10 and all the centers be roughly contained in the first two dimensions for visualization purpose. Specifically 
for the first two dimensions, C A = (−1.6, −1.6), C B = (1.6, 1.6), C1 = (−0.5, −1.4), C2 = (0.5, −0.8), C3 = (1.2, 0.2), C4 =
(−1.4, 0.6), C5 = (−0.1, 1.9). If we pad all 8 other dimensions with 0, the centers strictly lie on a 2-dimensional subspace. 
In Fig. 4.10 (a) we show the density in 2D. To make the problem more difficult, we perturb the mean of these Gaussians 
with small independent Gaussian noise 0.1N(0, 1). The magnitude of the perturbation is chosen such that the Gaussian 
centers can still be visualized in the first two dimensions. In Fig. 4.10 (b) we show the “perturbed” density, which is used
in the following numerical tests.

Note the five Gaussian centers in the middle are roughly aligned on two curves: a lower curve containing C1, C2, C3 and 
an upper curve containing C4, C5. Both curves share C A and C B as their end points. Similarly we study the transition paths 
between the two boundaries by simulating the reactive flow (4.8). Specifically we study how the transition path changes 
with the additional local maxima of the equilibrium density. To this end, we pick two η values 0.6 and 1.6 to alter the 
magnitude the top two Gaussian densities.

Let the boundaries A and B be the balls centered at two centers {x : ‖x − C A‖ ≤ R} and {x : ‖x − C B‖ ≤ R}, respectively. 
In this example R = 0.22, chosen such that balls A and B roughly contained the regions of high equilibrium density around 
the two centers. The temperature is set to be T = 0.1. We define the solution domain to be the hypercube " = [−2.4, 2.4]10, 
which guarantees the equilibrium density has negligible mass outside the solution domain. We use the first 60 Fourier basis 
to parameterize the committor function. The ranks of the coefficient MPS/TT Q are all taken to be 4.

In Fig. 4.11, we show the transition path between boundaries A, B for η = 0.6, 1.6. Both the transition paths share the 
same starting point [−1.2, −1.6]. We can observe that the transition path is shifting towards the top as the magnitude η
increases.
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Fig. 4.11. Transition paths (black curves) overlayed on the Gaussian mixture model equilibrium density visualized in the first two dimensions for (a) η = 0.6
and (b) η = 1.6. Committor function values along the transition path for (c) η = 0.6 and (d) η = 1.6.

5. Conclusion

In this paper, we propose a novel approach for computing high-dimensional committor functions using MPS/TT. In 
particular, we start from the variational formulation (2.7) for the soft committor function, which can be viewed as an 
approximation of the committor function but which also enjoys a probabilistic interpretation in its own right. To compute 
high-dimensional integrals, we approximate the equilibrium density and soft boundary measures in MPS/TT format. Mean-
while, the unknown committor function q is also parametrized in MPS/TT format. The variational problem can then be 
reformulated using standard MPO and MPS/TT operations, and the optimization of q can be performed with O(d) complex-
ity. Extensive numerical experiments demonstrate the computational efficiency and accuracy of the proposed method.

Notice that our proposed method relies on the assumption of certain structures of the variables in order to approximate 
the equilibrium density efficiently in MPS/TT format. One expects the MPS/TT-based approximation to be successful in a 
very high-dimensional limit when there is a 1D or quasi-1D graphical model structure underlying the equilibrium measure. 
Already we believe that the capacity to treat such systems with high accuracy is a meaningful contribution, since many 
previous works in the literature have considered problems with such structure, such as the double-well and rugged-Muller 
potentials (embedded in high dimensions) and the Ginzburg-Landau potential [19,24,26,42]. Even in the case without ob-
vious 1D ordering, MPS/TT have demonstrated excellent empirical performance in high-dimensional PDE and chemistry 
[40,2,43,3].

However in principle our method can also be extended to more complicated systems and more general network with 
significant interactions between any particles, provided that suitable tensor network contractions can be performed. It has 
become an active research field of extending the tensor network algorithm to more general systems, see for example [18]. 
Our complexity analysis relies on the assumption that the rank of q remains constant as the number of dimension increases, 
which may not hold for complicated networks. As a future work, one can monitor the rank of the committor function q
via a two-site alternating minimization scheme. If we see any signs of rapidly growing rank, it may indicate the method is 
more computationally expensive than expected and MPS/TT is not the most efficient format to represent the true committor 
function. As a future work, one can monitor the rank of the committor function q via a two-site alternating minimization 
scheme [10].
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Appendix A. Soft committor functions

Consider the optimization problem (2.7). We offer a probabilistic interpretation of the optimizer q, which we call a ‘soft 
committor function.’ This probabilistic interpretation will justify its use qualitatively and quantitatively as a proxy for the 
committor function.

Define

f := ρ · p A

β · p
, g := ρ · pB

β · p
,

and note that the Euler-Lagrange equation associated to (2.7) then reads as

−β−1$q(x) + ∇V (x) · ∇q(x) + ( f (x) + g(x))q(x) = g(x). (A.1)

We shall now rederive this PDE (A.1) via a probabilistic construction. In particular this construction will imply that the 
solution q satisfies 0 ≤ q(x) ≤ 1 for all x ∈ ".

Consider a stochastic process X t that modifies the standard overdamped Langevin diffusion

dX t = −∇V (X t)dt +
√

2β−1 dW t,

where W t is a Wiener process, by adding jumps to one of two possible ‘cemetery states’ c A, cB with state-dependent rates 
specified by f , g , respectively.

In other words, we view X t ∈ " ∪ {c A} ∪ {cB} as the continuous-time limit of the discrete-time Markov chain (also 
denoted X t , abusing notation slightly) defined by the update

X t+$t =






c A, if U A
t < f (X t)$t,

cB , otherwise if U B
t < g(X t)$t

X t − ∇V (X t)$t +
√

2β−1$t Z t otherwise,

whenever X t ∈ ". Here the U A
t , U B

t are i.i.d. uniformly distributed random variables on [0, 1], and the Z t are i.i.d. standard 
Gaussian random variables. In other words, at each time step the stochastic process is sent to the cemetery state c A with 
probability f (Xt) $t and the cemetery state cB with probability g(Xt) $t , else it is advanced by the usual overdamped 
Langevin dynamics. Note that in the limit of $t small, it is unlikely for both U A

t < f (X t) $t and U B
t < g(X t) $t to hold. 

Specifically, the probability of this is only O ($t2) and does not affect the continuous-time limit.
Moreover, if Xt = c A (resp., cB), then we define X t+$t = c A (resp., cB) deterministically. Then define the stopping time 

τ as

τ = inf {t : X t ∈ {c A, cB}} ,

and define q : " → [0, 1] by

q(x) = P (Xτ = cB | X0 = x) .
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We claim that q so defined (in the continuous-time limit $t → 0) satisfies the PDE (A.1). Note that this construction 
of q coincides with the usual probabilistic construction for the committor function, modulo a change in the underlying 
stochastic process. We justify the claim only formally. A rigorous argument can be made by analogy to arguments made for 
the ordinary committor function [5].

A.1. Formal PDE derivation

The PDE is derived by conditioning on X0 = x, and writing

q(x) =P (Xτ = cB)

=P (X$t = cB) + P (X$t /∈ {c A, cB})E
[
P

(
X ′

τ = cB | X ′
0 = X$t

)]
+ O ($t2),

where X ′
t is an independent dummy stochastic process with the same law as X t . But then

q(x) = P (X$t = cB) + P (X$t /∈ {c A, cB})E [q(X$t)] + O ($t2).

Expanding further we obtain

q(x) = g(x)$t + (1 − f (x)$t − g(x)$t) E
[

q
(

x − ∇V (x)$t +
√

2β−1$t Z 0

)]
+ O ($t2). (A.2)

Then we can expand q via Taylor expansion:

q
(

x − ∇V (x)$t +
√

2β−1$t Z 0

)

= q(x) − ∇V (x) · ∇q(x)$t +
√

2β−1$t Z 0 · ∇V (x) + β−1$t Z1
0 ∇2q(x)Z 0 + o($t),

from which we obtain

E
[

q
(

x − ∇V (x)$t +
√

2β−1$t Z 0

)]
= q(x) +

(
−∇V (x) · ∇q(x) + β−1$q(x)

)
$t + o($t).

It follows from plugging into (A.2) that

q(x) = q(x) +
[

g(x) − ∇V (x) · ∇q(x) + β−1$q(x) − ( f (x) + g(x))q(x)
]
$t + o($t).

Canceling q(x) from both sides, dividing by $t , and taking the limit as $t → 0, we obtain precisely (A.1), as desired.

Appendix B. Discretization of the Ginzburg-Landau density

In this section, we show that one can approximate the equilibrium distribution of the Ginzburg-Landau potential as (3.7)
via the eigenfunctions of a certain kernel.

The computation of the committor function for the Ginzburg-Landau potential requires the numerical approximation of 
the operator H : L2([−R, R])d →R defined by

H[φ1, . . . ,φd] =cλ

R∫

−R

· · ·
R∫

−R

K (0, x1) K (x1, x2) K (x2, x3) . . . K (xd−1, xd)

× K (xd,0)φ1(x1) . . .φd(xd)dx1 . . . dxd,

where

K (x, y) = e− 1
8λ (1−x2)2

e
λ

2h2 (x−y)2
e− 1

8λ (1−y2)2
,

cλ = e− 1
4λ , and R is some fixed positive constant.

Considering the operator H0 : L2([−R, R]) → L2([−R, R]) defined by

H0[φ](x) =
∫

"

K (x, y)φ(y)dy,

we observe that it is compact, symmetric, and positive semi-definite. In particular, it has an eigendecomposition consist-
ing of a countable basis of orthonormal eigenfunctions u1, u2, · · · ∈ L2([−R, R]), together with corresponding non-negative 
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn ≥ · · · ≥ 0, such that
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R∫

−R

K (x, y)φ(y)dy =
∞∑

j=1

λ ju j(x)

R∫

−R

u j(y)φ(x)dy

for all φ ∈ L2([−R, R]). Moreover, for the kernel K defined above it is easily shown that λ j ∈ o(e−α j) for any α > 0 as 
j → ∞ (see [29] for example). We note that the implicit constant in the previous estimate will depend on α but not on j, 
and increases rapidly as α → ∞. For convenience, let us define the re-scaled eigenfunctions vi = √

λiui . Upon substitution 
of the eigendecomposition of H0 into the definition of H, we obtain

H[φ1, . . . ,φd] = cλ

∞∑

j0,..., jd=1

v j0(0)A j0, j1 [φ1] · · · A jd−1, jd [φd]v jd (0), (B.1)

where A j,4[φ] =
∫
" v j(x)v4(x)φ(x) dx. We observe that

|A j,4[φ]| ≤
√

λ jλ4‖φ‖L∞ ,

and thus, if the sums in (B.1) are truncated at term J , then
∣∣∣H[φ1, . . . ,φd] − H( J )[φ1, . . . ,φd]

∣∣∣

≤ 2 cλ‖φ1‖L∞ · · ·‖φd‖L∞

√
K (0,0)K ( j)(0,0)T r(H0)

d− 1
2

√√√√
∞∑

j= J+1

λ j

+ (d − 1) cλ‖φ1‖L∞ · · ·‖φd‖L∞ K (0,0)Tr(H0)
d−1

∞∑

j= J+1

λ j,

where K ( J )(0, 0) := ∑∞
j= J+1 v j(0)2 ≤ K (0, 0) and H( J ) denotes the truncation of H. The analyticity of K guarantees that ∑∞

j= J+1 λ j go to zero exponentially quickly [29]) and hence for any α > 0 there exists a constant Mα,λ,d,R depending on α, 
λ, d, and R such that

∣∣∣H[φ1, . . . ,φd] − H( J )[φ1, . . . ,φd]
∣∣∣ ≤ Mλ,d,R e−α J/2‖φ1‖L∞ · · ·‖φd‖L∞ ,

for all J ≥ 1.
Next, we express the input functions φi in a basis of (suitably-scaled) Chebyshev polynomials,

φi(x) =
∞∑

n=0

φi,n Tn

( x
R

)
,

where Tn is the nth standard Chebyshev polynomial. Let φ(N)
i denote the Nth order truncation of φi defined by

φ
(N)
i (x) :=

N∑

n=0

φi,n Tn

( x
R

)
.

Then, substituting these Chebyshev expansions into our expression for H, we find

H[φ1, . . . ,φd] = cλ

∞∑

j0,..., jd=1

∞∑

n1,...,nd=1

An1
j0, j1

· · · And
jd−1, jd

v j0(0)v jd (0)φ1,n1 . . .φd,nd , (B.2)

where

An
j,4 = A j,4 [Tn(x/R)] .

In the following, we assume that φ1, . . . , φd are in C p+1([−R, R]) for some fixed integer p ≥ 1 and set

V p = max
i

∥∥∥∥
dp+1

dxp+1 φi(x/R)

∥∥∥∥
L1([−1,1])

.

A standard estimate from approximation theory [46] gives the following bound on the rate of decay of the coefficients of 
φ1, . . . , φd:

|φi,n| ≤
2V p

πn(n − 1) · · · (n − p)
.
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In particular,

∞∑

n=N+1

|φi,n| ≤
2V p

π p(N − p)p .

If the sums over the Chebyshev coefficients (the n indices) in (B.2) are truncated at a fixed integer N and the sums over 
the eigenvalues (the j indices) are truncated at J , then the error is bounded by

∣∣∣H[φ1, . . . ,φd] − H( J ,N)[φ1, . . . ,φd]
∣∣∣

≤ Mλ,d,R e−α J/2‖φ1‖L∞ · · ·‖φd‖L∞ + 2dcλV p

π p(N − p)p

(
1 + 2V p

π p(N − p)p

)d−1

K (0,0)Tr(H0)
d max

i
‖φi‖d−1

L∞ .

Here H( J ,N) denotes the operator obtained by truncating the sums over eigenvalues in H at J and projecting onto the first 
N +1 terms in the Chebyshev expansions of φ1, . . . , φd . This latter projection, along with the eigendecomposition of H0, can 
be performed easily on the computer using standard numerical integration. This yields a discrete, finite-dimensional tensor 
which is the object we use in our approach when approximating H.
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