
Appl. Comput. Harmon. Anal. 67 (2023) 101575

Contents lists available at ScienceDirect

Applied and Computational Harmonic Analysis

journal homepage: www.elsevier.com/locate/acha

Generative modeling via tensor train sketching
YoonHaeng Hur a,∗, Jeremy G. Hoskins a, Michael Lindsey b, E.M. Stoudenmire c,
Yuehaw Khoo a

a Department of Statistics, University of Chicago, United States of America
b Department of Mathematics, Courant Institute of Mathematical Sciences, New York University,
United States of America
c Center for Computational Quantum Physics, Flatiron Institute, United States of America

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 May 2022
Received in revised form 23 June
2023
Accepted 10 July 2023
Available online 17 July 2023
Communicated by Jared Tanner

Keywords:
Tensor decompositions
Tensor train
Randomized algorithm
Generative modeling
High-dimensional function
approximation

In this paper, we introduce a sketching algorithm for constructing a tensor train
representation of a probability density from its samples. Our method deviates
from the standard recursive SVD-based procedure for constructing a tensor train.
Instead, we formulate and solve a sequence of small linear systems for the individual
tensor train cores. This approach can avoid the curse of dimensionality that
threatens both the algorithmic and sample complexities of the recovery problem.
Specifically, for Markov models under natural conditions, we prove that the tensor
cores can be recovered with a sample complexity that scales logarithmically in the
dimensionality. Finally, we illustrate the performance of the method with several
numerical experiments.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Given independent samples from a probability distribution, learning a generative model [24] that can
produce additional samples is a task of fundamental importance in machine learning and data science.
The generative modeling of high-dimensional probability distributions has seen significant recent progress,
particularly due to the use of neural-network based parametrizations within both old and new paradigms
such as generative adversarial networks (GANs) [11], variational autoencoders (VAE) [16], and normalizing
flows [22,30]. Among these three major paradigms, only normalizing flows furnish an analytic formula for
the probability density function, and in all cases the computation of downstream quantities of interest can
only be achieved via Monte Carlo sampling-based approaches with a relatively low order of convergence.

* Corresponding author.
E-mail addresses: yoonhaenghur@uchicago.edu (Y. Hur), jeremyhoskins@uchicago.edu (J.G. Hoskins),

michael.lindsey@cims.nyu.edu (M. Lindsey), mstoudenmire@flatironinstitute.org (E.M. Stoudenmire), ykhoo@uchicago.edu
(Y. Khoo).

https://doi.org/10.1016/j.acha.2023.101575
1063-5203/© 2023 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.acha.2023.101575
https://www.sciencedirect.com/
http://www.elsevier.com/locate/acha
http://crossmark.crossref.org/dialog/?doi=10.1016/j.acha.2023.101575&domain=pdf
mailto:yoonhaenghur@uchicago.edu
mailto:jeremyhoskins@uchicago.edu
mailto:michael.lindsey@cims.nyu.edu
mailto:mstoudenmire@flatironinstitute.org
mailto:ykhoo@uchicago.edu
https://doi.org/10.1016/j.acha.2023.101575

2 Y. Hur et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101575

More precisely, suppose we are given N independent samples

(y(1)
1 , . . . , y(1)

d), . . . , (y(N)
1 , . . . , y(N)

d) ∼ p!

drawn from an underlying probability density p! : Rd → R, our goal is to estimate p! from the empirical
distribution

p̂(x1, . . . , xd) = 1
N

N∑

i=1
δ(y(i)

1 ,...,y(i)
d)(x1, . . . , xd), (1)

where δ(y1,...,yd) is the δ-measure supported on (y1, . . . , yd) ∈ Rd. In this paper, assuming that the underlying
density p! takes a low-rank tensor train (TT) [20] format (known as a matrix product state (MPS) in the
physics literature [21,34]), we propose and analyze an algorithm that outputs a TT format of p̂ to estimate
p!. Such a TT ansatz has found applications in generative modeling; for instance, [14] (and its extension [6])
utilizes it to learn the distribution of handwritten digit images. In particular, the TT ansatz offers several
benefits. First, generating independent and identically distributed (i.i.d.) samples can be done efficiently
by applying conditional distribution sampling [9] to the obtained TT format; it can also be used for other
downstream tasks, such as direct (deterministic) computation of the moments. However, in order to exploit
these benefits, we need to be able to determine the TT representation efficiently. Our algorithm, which
we name Tensor Train via Recursive Sketching (TT-RS), provides computationally/statistically efficient
estimation of p!, making the following contributions.

• By a sketching technique, we can estimate the tensor components of the TT via a sequence of linear
systems, with a complexity that is linear in both the dimension d and the sample size N .

• In the setting of a Markovian density with dimension-independent transition kernels, we prove that the
tensor cores can be estimated from a number of samples that scales as log(d).

1.1. Prior work

In the literature, generally two types of input data are considered for the recovery of low-rank TTs. In
the first case, one assumes that one has the ability to evaluate a d-dimensional function p at arbitrary points
and seeks to recover p in a TT format with a limited (in particular, polynomial in d) number of evaluations.
In this context, various methods such as TT-cross [19], DMRG-cross [25], and TT completion [27] have been
considered. Furthermore, generalizations such as [15,31] have been developed to treat densities which have
a tensor ring structure. In the second case, which is the case of this paper, one only has access to a fixed
collection of empirical samples from the density. Importantly, one does not have access to the value of the
density at the given samples. In this case, the ideas of the TT methods that we mentioned earlier cannot
be applied directly.

In order to understand how the proposed method differs from the previous methods, we first show that
in generative modeling, the nature of the problem is different. More precisely, we are mainly dealing with
an estimation problem rather than an approximation problem, where we want to estimate the underlying
density p! that gives the empirical distribution p̂, in terms of a TT. In such a generative modeling setting,
suppose one designs an algorithm A that takes any d-dimensional function p and gives A(p) as a TT, then
one would like such A to minimize the following differences

p! −A(p̂) = p! −A(p!)︸ ︷︷ ︸
approximation error

+ A(p!) −A(p̂)︸ ︷︷ ︸
estimation error

.

Y. Hur et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101575 3

In generative modeling, p̂ suffers from sample variance, which leads to variance in A(p̂) and hence the
estimation error. Our focus is to reduce such an error so that there is no curse of dimensionality in estimating
p!. While our method is inspired by sketching ideas from randomized linear algebra [17,23], which have found
applications in the tensor computation field [3,8,29], there are several notable differences with the current
literature.

• In relation to TT-compression algorithms: Algorithms based on singular value decomposition (SVD)
[20] and randomized linear algebra [19,25,26] aim to compress the input function p as a TT such that
A(p) ≈ p. If such a compression is successful, the above approximation error can be made small, that is,
p! −A(p!) ≈ 0, and we also have A(p̂) ≈ p̂; accordingly, the estimation error becomes A(p!) −A(p̂) ≈
p! − p̂. Such an estimation error, however, grows exponentially in d when having a fixed number of
samples. In this paper, we focus on developing methods that reduce the estimation error due to sample
variance such that there is no curse of dimensionality, and such a setting has not been considered in the
previous TT-compression literature.
A recent work [26] determines a TT from values of a high-dimensional function in a computationally
distributed fashion. In particular, [26] forms an independent set of equations with sketching techniques
from randomized linear algebra to determine the tensor cores in a parallel way. While our method has
similarities with [26], our goal, which is to estimate a TT based on empirical samples of a density,
is different from [26]. Therefore, the purpose and means of sketching are fundamentally different. We
apply sketching such that each equation in the independent system of equations has size that is constant
with respect to the dimension of the problem (unlike the case in [26]), and hence we can estimate the
coefficient matrices of the linear system in a statistically efficient way. Furthermore, our use of parallelism
in setting up the system is mainly to prevent error accumulation in the estimation of tensor cores.

• In relation to optimization-based algorithms: A more principled approach for estimating the underlying
density p! is to perform maximum likelihood estimation, i.e. minimizing the Kullback-Leibler (KL) di-
vergence between the TT ansatz and the empirical distribution [2,14,18]. Although maximum likelihood
estimation is statistically efficient in terms of having a low-variance estimator, due to the non-convex
nature of the minimization, these methods can suffer from local minima. Furthermore, these iterative
procedures require multiple passes over N data points. In contrast, the method described in this paper
recovers the cores with a single sweep across all tensor cores.

1.2. Organization

The paper is organized as follows. First, we briefly describe the main idea of our algorithm in Section 2.
Details of the algorithm are presented in Section 3 and conditions for the algorithm to work are discussed
in Section 4. In Section 5, we examine how the conditions in Section 4 lead to exact and stable recovery of
tensor cores under a Markov model assumption of the density. In Section 6, we illustrate the performance
of our algorithm with several numerical examples. We conclude in Section 7.

1.3. Notations

For an integer n ∈ N, we define [n] = {1, . . . , n}. Note that for m, n ∈ N, a function c : [m] × [n] → R
may also be viewed as a matrix of size m ×n. We alternate between these two viewpoints often throughout
the paper. For any a, b ∈ R, we define a ∨ b := max(a, b) and a ∧ b := min(a, b). For a, b ∈ N where b ≥ a,
we may use the “MATLAB notation” a : b to denote the set {a, a + 1 . . . , b}.

Our primary objective in this paper is to obtain a TT representation of a d-dimensional function. Through-
out the remainder of this paper, we fix a d-dimensional function p : X1×· · ·×Xd → R, where X1, . . . , Xd ⊂ R.

4 Y. Hur et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101575

Fig. 1. Tensor diagram illustrating the TT representation of p (Definition 1). The variables xi’s correspond to the outward solid
lines in both sides. The solid lines between two adjacent cores on the right-hand side depict the contraction. See [4] for a detailed
introduction to tensor network diagram notation.

Unless stated otherwise, p may not be a density, that is, it can take negative values or its integral may not
be 1. Whenever we are interested in a density, we will mention explicitly that p is a density or use p! instead.

Definition 1. We say that p admits a TT representation of rank (r1, . . . , rd−1) if there exist G1 : X1×[r1] → R,
Gk : [rk−1] ×Xk × [rk] → R for k = 2, . . . , d − 1, and Gd : [rd−1] ×Xd → R such that

p(x1, . . . , xd) =
r1∑

α1=1
· · ·

rd−1∑

αd−1=1
G1(x1,α1)G2(α1, x2,α2) · · ·Gd−1(αd−2, xd−1,αd−1)Gd(αd−1, xd)

for all (x1, . . . , xd) ∈ X1 × · · ·×Xd. In this case, we call G1, . . . , Gd the cores of p. For notational simplicity,
in the following we often replace the right-hand side of the above equation (and similar expressions involving
contractions of several tensors) with G1 ◦ · · · ◦Gd, where ‘◦’ represents the contraction of the cores. We will
also sometimes express the TT representation of p diagrammatically as shown in Fig. 1.

Remark 1. In Definition 1, the sets X1, . . . , Xd ⊂ R may be infinite; in such a case, the representation in
Definition 1 is also called a functional TT representation [1,12].

Finally, when working with high-dimensional functions, it is often convenient to group the variables into
two subsets and think of the resulting object as a matrix. We call these matrices unfolding matrices. In
particular, for k = 1, . . . , d − 1, we define the k-th unfolding matrix by p(x1, . . . , xk; xk+1, . . . , xd); namely,
group the first k and the last d − k variables to form rows and columns, respectively. In certain situations,
for ease of exposition we write xS to denote the joint variable (xi1 , . . . , xik), where S = {i1, . . . , ik} and
1 ≤ i1 ≤ · · · ≤ ik ≤ d. For example, we may write p(x1, . . . , xk; xk+1, . . . , xd) as p(x1:k; xk+1:d).

2. Main idea of the algorithm

In this section, we sketch the main idea of the TT-RS algorithm. We start with the following simple
observation in the discrete case, i.e., the case where p : [n1] × · · ·× [nd] → R for n1, . . . , nd ∈ N. Supposing
that p is representable in a TT format with rank (r, . . . , r), then the k-th unfolding matrix p(x1:k; xk+1:d)
is low-rank. Indeed, we can write

p(x1:k;xk+1:d) =
r∑

αk=1
Φk(x1:k;αk)Ψk(αk;xk+1:d)

for some Φk : [n1] × · · · × [nk] × [r] → R and Ψk : [r] × [nk+1] × · · · × [nd] → R. On the other hand, the
TT-format assumption on p implies that there exist G1, . . . , Gd such that

Φk(x1:k,αk) :=
r∑

α1=1
· · ·

r∑

αk−1=1
G1(x1,α1) · · ·Gk(αk−1, xk,αk),

Y. Hur et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101575 5

Ψk(αk, xk+1:d) :=
r∑

αk+1=1
· · ·

r∑

αd−1=1
Gk+1(αk, xk+1,αk+1) · · ·Gd(αd−1, xd),

so that p = G1 ◦ · · · ◦Gd. In other words, contractions of the first k and the last d − k cores of G1, . . . , Gd

yield spanning vectors for the r-dimensional column and the row spaces, respectively, of the k-th unfolding
matrix.

This observation motivates the following procedure to obtain the cores. Suppose that the rank of the
k-th unfolding matrix of p is r. We consider Φk : [n1] × · · ·× [nk] × [r] → R such that the column space of
Φk(x1:k; αk) is the same as that of the k-th unfolding matrix; for instance, a suitable Φk can be constructed
by forming the SVD of the k-th unfolding matrix p(x1:k; xk+1:d) and setting Φk(x1:k; αk) to be the matrix
of left-singular vectors. Next, we attempt to find cores G1, . . . , Gd−1 such that

Φk(x1:k,αk) =
r∑

α1=1
· · ·

r∑

αk−1=1
G1(x1,α1) · · ·Gk(αk−1, xk,αk) (2)

for k = 1, . . . , d −1. Equivalently, we let G1 = Φ1 and solve the following equations for the cores Gk : [rk−1] ×
[nk] × [rk] → R for k = 2, . . . , d − 1:

Φk(x1:k,αk) =
r∑

αk−1=1
Φk−1(x1:k−1,αk−1)Gk(αk−1, xk,αk). (3)

The above discussion has also been studied in [7,26]. For completeness, we formally state it as follows.

Proposition 2. For each k = 1, . . . , d − 1, suppose that the rank of the k-th unfolding matrix of p is rk and
define Φk : [n1] × · · · × [nk] × [rk] → R so that the column space of Φk(x1:k; αk) is the same as that of the
k-th unfolding matrix of p. Consider the following d matrix equations with unknowns G1 : [n1] × [r1] → R,
Gk : [rk−1] × [nk] × [rk] → R for k = 2, . . . , d − 1, and Gd : [rd−1] × [nd] → R:

G1(x1;α1) = Φ1(x1;α1),
rk−1∑

αk−1=1
Φk−1(x1:k−1;αk−1)Gk(αk−1;xk,αk) = Φk(x1:k−1;xk,αk) k = 2, . . . , d− 1,

rd−1∑

αd−1=1
Φd−1(x1:d−1;αd−1)Gd(αd−1;xd) = p(x1:d−1;xd).

(4)

Then, each equation of (4) has a unique solution, and the solutions G1, . . . , Gd satisfy

p(x1, . . . , xd) =
r1∑

α1=1
· · ·

rd−1∑

αd−1=1
G1(x1,α1) · · ·Gd(αd−1, xd). (5)

Hence, by solving these equations we obtain a TT representation of p with cores G1, . . . , Gd. We call (4) the
Core Determining Equations (CDEs) formed by Φ1, . . . , Φd−1.

Proposition 2, which we prove in Appendix A, implies that the cores Gk can be obtained by solving
matrix equations. That said, it should be noted that the coefficient matrices of the CDEs, Φk(x1:k; αk) for
k = 1, . . . , d − 1, are exponentially sized in the dimension d.

In what follows, we take an approach that is similar in spirit to the “sketching” techniques commonly
employed in the randomized SVD literature [13], which are used to dramatically reduce the computational

6 Y. Hur et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101575

cost of computing the SVD of several broad classes of matrices. In this paper, however, sketching plays
a fundamentally different role. Here, sketching is crucial for the stability of the algorithm, though it also
yields an improvement in computational complexity. For our problem, i.e., to determine a TT from samples,
the most important function of sketching is to reduce the size of CDEs such that the reduced coefficient
matrices can be estimated efficiently with a small sample size N . Furthermore, the choice of sketches cannot
be arbitrary (e.g., Gaussian random matrices) but must be chosen carefully to reduce the variance of
the coefficient matrices as much as possible. The features and requirements of this sketching strategy are
particularly apparent in the case of their application to Markov models, which is treated in Section 5. More
concretely, in order to reduce the size of the CDEs, for some function Sk−1 : [mk−1] × [n1] × · · · [nk−1] → R,
contracting Sk−1 against (4) (i.e., multiplying both sides by Sk−1 and summing over x1, . . . , xk−1) we find:

rk−1∑

αk−1=1




n1∑

x1=1
· · ·

nk−1∑

xk−1=1
Sk−1(βk−1;x1:k−1)Φk−1(x1:k−1;αk−1)



Gk(αk−1;xk,αk)

=
n1∑

x1=1
· · ·

nk−1∑

xk−1=1
Sk−1(βk−1;x1:k−1)Φk(x1:k−1;xk,αk).

(6)

Note that the number of rows of the new coefficient matrix on the left-hand side of (6) is mk−1. Hence,
sketching in this way reduces the number of equations to mk−1nkrk when determining each Gk. Of course,
one must be careful to choose suitable sketch functions Sk−1, as mentioned previously. As we shall see, Φk’s
are also obtained from some right sketching functions Tk : [nk+1] × · · · [nd] × [lk] → R to be contracted with
p over the variables xk+1, . . . , xd.

In the next section, we present the details of the proposed algorithm, TT-RS, which gives a set of
equations of the form (6).

Remark 2. We pause here to comment on why we solve (2) in the form of (3). To solve (2), one can in
principle determine G1, . . . , Gd successively, i.e. after determining G1, . . . Gk−1, plug them into (2) to solve
for Gk. In principle, this is the same as solving (3) where each G1, . . . , Gd is determined independently.
But in practice, when Φk’s contain noise, determining G1, . . . , Gd successively via substitutions leads to
noise accumulation. As we will see later, solving the independent set of equations (3) is more robust against
perturbations on the coefficients Φk’s. We again remark that this independent set of equations is similar to
the ones presented in a recent work [26]. However, as mentioned in Section 1.1, our main algorithm presented
in the next section is designed to improve statistical estimation, where it is instrumental to reduce the size
of the coefficients Φk’s via the sketching using Sk−1’s, whereas equations in [26] are exponentially large.

3. Description of the main algorithm: TT-RS

In this section, we present the algorithm TT-RS (Algorithm 1 below) for the case of determining a TT
representation of any discrete d-dimensional function p, where we assume p : [n1] × · · ·× [nd] → R for some
n1, . . . , nd ∈ N. The stages of Algorithm 1 are depicted in Fig. 2.

Algorithm 1 is divided into four parts: Sketching (Algorithm 2), Trimming (Algorithm 3), System-
Forming (Algorithm 4), and solving d matrix equations (7). As input, Algorithm 1 requires functions
T2, . . . , Td and s1, . . . , sd−1; we call them right and left sketch functions, respectively. Sketching applies
these sketch functions to p so that Φ̃k resembles the right-hand side of the reduced CDEs (6). In particular,
if lk denotes the number of right sketches and we set lk = rk for each k where r1, . . . , rd−1 are the target
ranks of the TT, then one could in principle replace the right-hand side of (6) with Φ̃k. In practice, we
choose lk > rk, and use Trimming to generate suitable Bk’s, to be defined below, from the corresponding
Φ̃k’s. These can in turn be used to form a right-hand side in the sense of (6). Lastly, based on B1, . . . , Bd−1,

Y. Hur et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101575 7

Algorithm 1 TT-RS for a discrete function p.
Require: p : [n1] × · · · × [nd] → R and target ranks r1, . . . , rd−1.
Require: Tk : [nk] × · · · × [nd] × [lk−1] → R with lk−1 ≥ rk−1 for k = 2, . . . , d.
Require: s1 : [m1] × [n1] → R and sk : [mk] × [nk] × [mk−1] → R for k = 2, . . . , d − 1.
1: Φ̃1, . . . , ̃Φd ← Sketching(p, T2, . . . , Td, s1, . . . , sd−1).
2: B1, . . . , Bd ← Trimming(Φ̃1, . . . , ̃Φd, r1, . . . , rd−1).
3: A1, . . . , Ad−1 ← SystemForming(B1, . . . , Bd−1, s1, . . . , sd−1).
4: Solve the following d matrix equations via least-squares for the variables G1 : [n1] × [r1] → R, Gk : [rk−1] × [nk] × [rk] → R

for k = 2, . . . , d − 1, and Gd : [rd−1] × [nd] → R:

G1 = B1,

rk−1∑

αk−1=1
Ak−1(βk−1;αk−1)Gk(αk−1; xk,αk) = Bk(βk−1; xk,αk) k = 2, . . . , d − 1,

rd−1∑

αd−1=1
Ad−1(βd−1;αd−1)Gd(αd−1; xd) = Bd(βd−1; xd).

(7)

5: return G1, . . . , Gd

Fig. 2. Tensor diagrams illustrating the four steps of the TT-RS algorithm (Algorithm 1), explicitly showing the case of step k = 3
for a d = 6 dimensional distribution. Sketching produces Φ̃k by applying sketch functions Sk−1 and Tk+1 to p. Trimming generates
Bk from Φ̃k using the SVD. SystemForming outputs Ak based on Bk. Lastly, collecting the outputs Ak’s and Bk’s, we form (7)
and solve for Gk’s. See Section 3.1 for full details.

SystemForming outputs A1, . . . , Ad−1, which resemble the coefficient matrices on the left-hand side of (6).
Detailed descriptions of each subroutine are given in the following subsection. In what follows, we constantly
refer back to Section 2 to motivate the algorithm.

Remark 3. The choice of sketch functions is based on two criteria: (i) When p actually has an underlying TT
representation, solving the equations (7) should produce suitable cores G1, . . . , Gd. A proof of such an exact
recovery property is given in Section 4, where we also discuss the conditions that the sketch functions have
to satisfy. (ii) Let Ĝ1, . . . , Ĝd be the results of TT-RS with p̂ as input, where p̂ is an empirical distribution
constructed based on i.i.d. samples from some density p!. We would like to have p! ≈ Ĝ1 ◦ · · · ◦ Ĝd if p̂ is a

8 Y. Hur et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101575

good approximation to p!. This requires A1, . . . , Ad−1, B1, . . . , Bd to have a small variance, and the variance
of these objects depends on the choice of sketches. We discuss these considerations in Section 5 for Markov
models.

Remark 4. The above algorithm is written only for the case where we consider densities p over a finite
state space. However, if p is in L2(X1) × · · · × L2(Xd) then one can pass to a suitable tensor product of
orthonormal bases in each dimension and work with truncated coefficient tensors instead. We summarize the
necessary modifications required for continuous functions in Appendix C. We call this “continuous” version
of the algorithm TT-RS-Continuous (TT-RS-C) (Algorithm 9). There will, of course, be a new source of
error associated with the choice of how to truncate the coefficients. Standard estimates from approximation
theory can be used to relate the smoothness of p to the decay of coefficients in each dimension.

3.1. Details of the subroutines

In this section, we provide details of the three main subroutines used in TT-RS. First, Sketching
(Algorithm 2) converts each unfolding matrix of p into a smaller matrix using sketch functions. For each
k = 2, . . . , d −1, by contracting the k-th unfolding matrix of p with the right and left sketch functions, Tk+1
and Sk−1, we obtain Φ̃k, which can be thought of as a three-dimensional tensor of size Rmk−1×nk×lk as in
Step 1 of Fig. 2. This “sketched” version of the k-th unfolding matrix of p is no longer exponentially large
in d. In Sketching, each Φ̄k plays the role of Φk in the left-hand side of (2), which captures the range of
the k-th unfolding matrix of p. The extra “bar” in the notation for Φ̄k is used to distinguish this object
from Φk, as Φ̄k(x1:k; γk) has lk ≥ rk columns, while Φk(x1:k; αk) only has rk columns. Such “oversampling”
[13] is standard in randomized linear algebra algorithms for capturing the range of a matrix effectively.
Then, as in (6), left sketches Sk’s are applied to further reduce Φ̄k’s to Φ̃k’s. As mentioned previously,
Φ̃k resembles the right-hand side of (6), though the Φ̃k’s need to be further processed by Trimming.
An important remark here is that unlike the right sketch functions T2, . . . Td, the left sketch functions
S2, . . . , Sd−1 are constructed sequentially, i.e., Sk is obtained by contracting a small block sk with Sk−1;
hence, it is a sequential contraction of s1, . . . , sk. Such a design is necessary as is shown in SystemForming.
Another remark is that Algorithm 2 is presented in a modular fashion for the sake of clarity. In fact, many
computations in Algorithm 2 can be re-used by leveraging the fact that Sk is obtained from the contraction
of Sk−1 and sk. Hence, Φ̃k can be obtained recursively from Φ̃k−1.

Trimming takes the outputs Φ̃1, . . . , Φ̃d−1 of Sketching and further process them to have the appro-
priate rank of the underlying TT using the SVD. This procedure is illustrated in Step 2 in Fig. 2. It should
be noted that this procedure is not necessary if for any k, lk = rk. In this case, one should directly let
Bk = Φ̃k for each k.

Finally, SystemForming forms the coefficient matrices to solve for G1, . . . , Gd from the output
B1, . . . , Bd−1 of Trimming by contracting s1, . . . , sd−1 with them, which results in A1, . . . , Ad−1, respec-
tively, as in Step 3 of Fig. 2. The matrices A1, . . . , Ad−1 play the role of the coefficient matrices appearing
on the left-hand side of (6). As we see in the algorithm, the fact that the sketch functions S1, · · · , Sd−1 are
obtained by successive contractions of s1, . . . , sd−1 allows Ak to be constructed from Bk. We stress that
this is not merely for the sake of efficient computation. In fact, it is important for the correctness of the
algorithm, as illustrated in the proof of recovery for Markov models in Section 5 below.

3.2. Complexity

As noted earlier, we are practically interested in the case where p is an empirical distribution p̂ constructed
from N i.i.d. samples from an underlying density p!. In such a case, p̂ is N -sparse. The high-dimensional
integrals within TT-RS can be efficiently computed in this case. To see this, suppose that the input p

Y. Hur et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101575 9

Algorithm 2 Sketching.
Require: p, T2, . . . , Td, and s1, . . . , sd−1 as given in Algorithm 1.

for k = 1 to d − 1 do
Right sketching: define Φ̄k : [n1] × · · · × [nk] × [lk] → R as

Φ̄k(x1:k, γk) =
nk+1∑

xk+1=1
· · ·

nd∑

xd=1
p(x1:k, xk+1:d)Tk+1(xk+1:d, γk).

if k > 1 then
Left sketching: define Φ̃k : [mk−1] × [nk] × [lk] → R as

Φ̃k(βk−1, xk, γk) =
n1∑

x1=1
· · ·

nk−1∑

xk−1=1
Sk−1(βk−1, x1:k−1)Φ̄k(x1:k−1, xk, γk).

Compute sketch function Sk : [mk] × [n1] × · · · × [nk] → R for the next iteration:

Sk(βk, x1:k) =
mk−1∑

βk−1=1
sk(βk, xk,βk−1)Sk−1(βk−1, x1:k−1).

else
Define

Φ̃1(x1, γ1) = Φ̄1(x1, γ1).

Define sketch function

S1(β1, x1) = s1(β1, x1).

end if
end for
Left sketching: define Φ̃d : [md−1] × [nd] → R as

Φ̃d(βd−1, xd) =
n1∑

x1=1
· · ·

nd−1∑

xd−1=1
Sd−1(βd−1, x1:d−1)p(x1:d−1, xd).

return Φ̃1, . . . , ̃Φd.

Algorithm 3 Trimming.
Require: Φ̃1, . . . , ̃Φd from Algorithm 2.
Require: Target ranks r1, . . . , rd−1 as given in Algorithm 1.

for k = 1 to d − 1 do
if k = 1 then

Compute the first r1 left singular vectors of Φ̃1(x1; γ1) and define B1 : [n1] × [r1] → R so that these singular vectors are
the columns of B1(x1; α1).

else
Compute the first rk left singular vectors of Φ̃k(βk−1, xk; γk) and define Bk : [mk−1] × [nk] × [rk] → R so that these
singular vectors are the columns of Bk(βk−1, xk; αk).

end if
end for
Let Bd(βd−1, xd) = Φ̃d(βd−1, xd).
return B1, . . . , Bd.

of Algorithm 1 is N -sparse, and let n = max1≤k≤d nk, m = max1≤k≤d−1 mk, l = max1≤k≤d−1 lk, and
r = max1≤k≤d−1 rk. Note that the complexity of Sketching is O(mlNd) since each Φ̃k can be computed
in O(mlN) time. Trimming requires O(mnl2d) operations as each Bk is computed using SVD in O(mnl2)
times. Also, SystemForming is achieved in O(m2nrd) time. Lastly, the equations (7) can be solved in
O(mnr3d) time. In summary, the total computational cost of TT-RS with N -sparse input is

10 Y. Hur et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101575

Algorithm 4 SystemForming.
Require: B1, . . . , Bd−1 from Algorithm 2.
Require: s1, . . . , sd−1 as given in Algorithm 1.

for k = 1 to d − 1 do
if k = 1 then

Compute A1 : [m1] × [r1] → R:

A1(β1,α1) =
n1∑

x1=1
s1(β1, x1)B1(x1,α1).

else
Compute Ak : [mk] × [rk] → R:

Ak(βk,αk) =
nk∑

xk=1

mk−1∑

βk−1=1
sk(βk, xk, βk−1)Bk(βk−1, xk,αk).

end if
end for
return A1, . . . , Ad−1.

O(mlNd) + O(mnl2d) + O(m2nrd) + O(mnr3d).

Note that this cost is linear in both n and the dimension d of the distribution.

Remark 5. The term “recursive sketching” in the name TT-RS is due to the sequential contraction of
the left sketch functions s1, . . . , sd−1. We remark that it is possible to design an algorithm without such
“recursiveness”, which we call TT-Sketch (TT-S); see Appendix B for the details.

4. Conditions for exact recovery for TT-RS

The main purpose of this section is to provide sufficient conditions for when TT-RS can recover an
underlying TT if the input function p admits a representation by a tensor train. In particular, the following
theorem provides a guideline for choosing the sketch functions in TT-RS.

Theorem 3. Assume the rank (in exact arithmetic) of the k-th unfolding matrix of p is rk for each k =
1, . . . , d − 1. Suppose T2, . . . , Td and s1, . . . , sd−1 of Algorithm 1 satisfy the following.

(i) Φ̄k(x1:k; γk) and p(x1:k; xk+1:d) have the same column space for k = 1, . . . , d − 1.
(ii) Φ̃k(βk−1, xk; γk) and Φ̄k(x1:k; γk) have the same row space for k = 2, . . . , d − 1.
(iii) Ak(βk; αk) is rank-rk for k = 1, . . . , d − 1.

Then, each equation of (7) has a unique solution, and the solutions G1, . . . , Gd are cores of p.

We first present a lemma showing that Sketching and Trimming give rise to the right-hand side of (6)
for determining the cores of p.

Lemma 4. Under the assumptions of Theorem 3, consider the results B1, . . . , Bd−1 produced by Algorithms 2
and 3. The column space of B1(x1; α1) is the same as that of the first unfolding matrix of p. Also, for each
k = 2, . . . , d − 1, there exists a Φk : [n1] × · · ·× [nk] × [rk] → R such that the column space of Φk(x1:k; αk)
is the same as that of the k-th unfolding matrix and

Bk(βk−1, xk,αk) =
n1∑

x1=1
· · ·

nk−1∑

xk−1=1
Sk−1(βk−1, x1:k−1)Φk(x1:k−1, xk,αk). (8)

Y. Hur et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101575 11

Proof. (i) implies that Φ̃1(x1; γ1) = Φ̄1(x1; γ1) and p(x1; x2:d) have the same r1-dimensional column space,
which is the same as the column space of B1(x1; α1) by the definition of B1.

For k = 2, . . . , d − 1, (i) and (ii) imply that Φ̃k(βk−1, xk; γk) is still rank-rk. Since the columns of
Bk(βk−1, xk; αk) are the first rk left singular vectors of Φ̃k(βk−1, xk; γk), we may write

Bk(βk−1, xk;αk) =
lk∑

γk=1
Φ̃k(βk−1, xk; γk)qk+1(γk;αk)

for some qk+1 : [lk] × [rk] → R; here, the column space of qk+1(γk; αk) is the same as the row space of
Φ̃k(βk−1, xk; γk). Now, we define Φk : [n1] × · · · [nk] × [rk] → R by

Φk(x1:k,αk) =
lk∑

γk=1
Φ̄k(x1:k, γk)qk+1(γk,αk). (9)

Next, we observe that (8) holds since

Bk(βk−1, xk,αk) =
lk∑

γk=1
Φ̃k(βk−1, xk, γk)qk+1(γk,αk)

=
lk∑

γk=1

n1∑

x1=1
· · ·

nk−1∑

xk−1=1
Sk−1(βk−1, x1:k−1)Φ̄k(x1:k−1, xk, γk)qk+1(γk,αk).

We claim that the column space of Φk(x1:k; αk) is the same as that of the k-th unfolding matrix. Indeed,
due to (9), the column space of Φk(x1:k; αk) is contained in that of Φ̄k(x1:k; γk), which is the column space
of the k-th unfolding matrix because of (i). Now, it suffices to prove that Φk(x1:k; αk) has full column rank.
This is true because the column space of qk+1(γk; αk) is the same as the row space of Φ̃k(βk−1, xk; γk) by
construction, which is equivalent to the row space of Φ̄k(x1:k; γk) due to (ii). !

In Lemma 4, we showed that Sketching and Trimming give the right-hand sides of (6) (i.e., Bk in (8)),
without forming the exponentially-sized Φk explicitly. Lastly, by combining Sketching and Trimming with
SystemForming, we have a well-defined system of equations for determining G1, . . . , Gd, as in Algorithm 1.
This is shown in the following proof for Theorem 3.

Proof of Theorem 3. Due to Lemma 4, there exists Φ2, . . . , Φd−1 such that (8) holds; also, letting Φ1 = B1,
we have shown that Φk(x1:k; αk) and the k-th unfolding matrix have the same column space for k =
1, . . . , d − 1. Hence, we can consider CDEs (4) formed by Φ1, . . . , Φd−1. First, we verify that the equations
in (7) are implied by (4), obtained by applying sketch functions to both sides of (4). The first equation
G1 = Φ1 is the same in both (7) and (4). For k = 2, . . . , d − 1, if we apply Sk−1 to both sides of the k-th
equation of (4), then

n1∑

x1=1
· · ·

nk−1∑

xk−1=1
Sk−1(βk−1, x1:k−1)

rk−1∑

αk−1=1
Φk−1(x1:k−1,αk−1)Gk(αk−1, xk,αk)

=
n1∑

x1=1
· · ·

nk−1∑

xk−1=1
Sk−1(βk−1, x1:k−1)Φk(x1:k,αk).

(10)

Note that the right-hand side of (10) is simply Bk(βk−1, xk, αk), which is the right-hand side of the k-
th equation of (7). We now want to show that the coefficient matrix on the left-hand side of (10) is the
coefficient matrix Ak−1(βk−1, αk−1) of the k-th equation of (7), that is, we want to prove for k = 2, . . . , d −1,

12 Y. Hur et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101575

n1∑

x1=1
· · ·

nk−1∑

xk−1=1
Sk−1(βk−1, x1:k−1)Φk−1(x1:k−1,αk−1) = Ak−1(βk−1,αk−1), (11)

This is implied by Algorithm 4. To see this, for k = 2, note that (11) amounts to

n1∑

x1=1
s1(β1, x1)B1(x1,α1) = A1(β1,α1),

which follows immediately from Algorithm 4. For 2 < k ≤ d − 1, (11) holds because

n1∑

x1=1
· · ·

nk−1∑

xk−1=1
Sk−1(βk−1, x1:k−1)Φk−1(x1:k−1,αk−1)

=
n1∑

x1=1
· · ·

nk−1∑

xk−1=1

mk−2∑

βk−2=1
sk−1(βk−1, xk−1,βk−2)Sk−2(βk−2, x1:k−2)Φk−1(x1:k−1,αk−1)

=
nk−1∑

xk−1=1

mk−2∑

βk−2=1
sk−1(βk−1, xk−1,βk−2)Bk−1(βk−2, xk−1,αk−1)

= Ak−1(βk−1,αk−1),

where the first equality holds since Sk−1 is a contraction of sk−1 and Sk−2, the second equality holds because
of (8), and the last equality is given in Algorithm 4. Hence, we have shown that for k = 2, . . . , d − 1, the
k-th equation of (7) is indeed obtained by applying Sk−1 to both sides of the k-th equation of (4). Similarly,
the last equation of (7) is obtained by applying Sd−1 to both sides of the last equation of (4). From this
it is clear that solutions G1, . . . , Gd of (4) formed by Φ1, . . . , Φd−1 satisfy (7). Now, we use condition (iii)
in Theorem 3; this means that the coefficient matrices A1, . . . , Ad−1 have full column rank, and thus each
equation of (7) must have a unique solution. Therefore, a unique set of solutions G1, . . . , Gd of (4) formed
by Φ1, . . . , Φd−1 discussed in Proposition 2 gives rise to a unique set of solutions of (7). Additionally, as in
Proposition 2, G1, . . . , Gd give a TT representation of p. !

5. Application of TT-RS to Markov model

In this section, we demonstrate how model assumptions on p can guide the choice of sketch functions
T2, . . . , Td and s1, . . . , sd−1 to guarantee that the conditions (i)-(iii) of Theorem 3 are satisfied. More pre-
cisely, we show that for Markov models, suitable sketch functions exist, and moreover, we give an explicit
construction. In Section 5.2 we prove that the sketch functions we construct satisfy the requisite conditions.
When working with an empirical distribution p̂ which is constructed based on i.i.d. samples from some
underlying density p!, TT-RS requires obtaining B1, . . . , Bd, A1, . . . , Ad−1 by taking expectations over the
empirical distribution. Though the variance can be large, in Section 5.3, we show that under certain natural
conditions, our choice of sketch functions does not suffer from the “curse of dimensionality” when estimating
the cores from the empirical distribution.

Throughout this section, we assume that the input p of TT-RS (Algorithm 1) is a Markov model, that
is, p is a probability density function and satisfies

p(x1, . . . , xd) = p(x1)p(x2|x1) · · · p(xd|xd−1). (12)

Here, by abuse of notation, for any i < j, we denote the marginal density of (xi, . . . , xj) as p(xi, . . . , xj).
Depending on the situation, we also use

Y. Hur et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101575 13

(MSp)(xS) := p(xS), S ⊂ [d] (13)

to denote the marginalization of p to the variables given by the index set S, which is a |S|-dimensional
function. Also, p(xi, . . . , xj |xk) denotes the conditional density of (xi, . . . , xj) given xk. For a Markov model
p, the conditional probabilities p(x2|x1), . . . , p(xd|xd−1) in (12) are referred to as the transition kernels.

5.1. Choice of sketch

We start with the following simple lemma that shows the low-dimensional nature of the column and row
spaces of the unfolding matrices.

Lemma 5. Suppose p is a Markov model. For any i ≤ k < j,

(i) p(xi:k; xk+1:j) and p(xi:k; xk+1) have the same column spaces,
(ii) p(xi:k; xk+1:j) and p(xk; xk+1:j) have the same row spaces.

Proof. Since xi:k ⊥ xk+2:j | xk+1 (conditional independence), we have that

p(xi:k;xk+1:j) = p(xi:k|xk+1)p(xk+2:j |xk+1)p(xk+1),

which implies that the column space of p(xi:k; xk+1:j) is not affected by xk+2:j . For the same reason,
xi:k−1 ⊥ xk+1:j | xk implies

p(xi:k;xk+1:j) = p(xi:k−1|xk)p(xk+1:j |xk)p(xk),

and hence the row space of p(xi:k; xk+1:j) is not affected by xi:k−1. !

An immediate consequence of Lemma 5 is that each unfolding matrix p(x1:k; xk+1:d) may be replaced by
p(x1:k; xk+1) if our main focus is the column space. This motivates a specific choice of sketch functions for
a Markov model. For each k = 1, . . . , d − 1, let lk = nk+1 and define

Tk+1(xk+1:d, γk) = Ik+1(xk+1; γk), (14)

where Ik+1 : [nk+1] × [nk+1] → R such that Ik+1(xk+1; γk) is the identity matrix. This choice of Tk+1 yields

Φ̄k(x1:k, γk) = (M1:k+1p)(x1:k, γk). (15)

In other words, contracting Tk+1 with the k-th unfolding matrix amounts to marginalizing out variables
xk+2, . . . , xd.

Similarly, we let mk = nk for each k = 1, . . . , d − 1, and define

s1(β1, x1) = I1(β1;x1), sk(βk, xk,βk−1) = Ik(βk;xk), (16)

where I1 : [n1] ×[n1] → R is defined so that I1(β1; x1) is the identity matrix, which gives rise to Sk(βk, x1:k) =
Ik(βk, xk) and

Φ̃1 = M{1,2}p, Φ̃k = M{k−1,k,k+1}p, 2 ≤ k ≤ d− 1, Φ̃d = M{d−1,d}p. (17)

Again, this choice of left sketch functions leads to Sk−1 that marginalizes out variables x1, . . . , xk−2.

14 Y. Hur et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101575

In summary, with these sketch functions, Sketching outputs marginals of p. Now, it is obvious that
Algorithm 3 and 4 can be done efficiently; it just performs an SVD on these small marginal matrices and
computes both A1 = B1 and

Ak(xk,αk) =
nk−1∑

xk−1=1
Bk(xk−1, xk,αk)

for k ≥ 2.

Remark 6. For the situation where p is a function of continuous variables, in Appendix C.1 we discuss how
to adapt TT-RS-C (Algorithm 9) to the Markov case.

5.2. Exact recovery for Markov models

In this subsection, we prove that if we use TT-RS (Algorithm 1) in conjunction with the sketches defined
in (14) and (16), then the resulting algorithm enjoys the exact recovery property. Using Theorem 3, it suffices
to check the choice of sketch functions mentioned in the previous subsection satisfies (i)-(iii) of Theorem 3.

Theorem 6. Let p be a discrete Markov model such that the rank (in exact arithmetic) of the k-th unfolding
matrix of p is rk for each k = 1, . . . , d − 1. With right and left sketches in (14), (16), Algorithm 1 returns
G1, . . . , Gd as cores of p.

Proof. It suffices to check that (i)-(iii) of Theorem 3 are satisfied. As noted earlier, for each k = 1, . . . , d −1,
(15) holds. Hence, Φ̄k(x1:k; γk) and p(x1:k; xk+1:d) have the same column space by Lemma 5. Thus, (i) of
Theorem 3 holds. Similarly, for each k = 2, . . . , d − 1, (17) holds, hence, Φ̃k(βk−1, xk; γk) and Φ̄k(x1:k; γk)
have the same row space. Thus, (ii) of Theorem 3 holds.

Lastly, we claim Ak(xk; αk) is rank-rk for all k = 1, . . . , d − 1 (condition (iii) of Theorem 3). Clearly,
A1(x1; α1) = B1(x1; α1) is rank-r1 by definition. For k = 2, . . . , d − 1, by definition of Bk, we can find
qk+1 : [nk+1] × [rk] → R such that the column space of qk+1(xk+1; αk) is the same as the row space of
p(xk−1, xk; xk+1) and

Bk(xk−1, xk,αk) =
nk+1∑

xk+1=1
p(xk−1, xk, xk+1)qk+1(xk+1,αk).

Hence,

Ak(xk,αk) =
nk−1∑

xk−1=1
Bk(xk−1, xk,αk)

=
nk−1∑

xk−1=1

nk+1∑

xk+1=1
p(xk−1, xk, xk+1)qk+1(xk+1,αk).

=
nk+1∑

xk+1=1




nk−1∑

xk−1=1
p(xk−1, xk, xk+1)



 qk+1(xk+1,αk)

=
nk+1∑

xk+1=1
p(xk, xk+1)qk+1(xk+1,αk).

Y. Hur et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101575 15

By Lemma 5, p(xk−1, xk; xk+1) and p(xk; xk+1) have the same row space. Therefore, the column space of
qk+1(xk+1; αk) is the same as the row space of p(xk; xk+1), where both are rank-rk. Thus, Ak(xk; αk) must
be rank-rk by construction. !

5.3. Stable estimation for Markov models

In this section, we present an informal result regarding the stability of the TT-RS algorithm when an
empirical distribution p̂ is provided as input instead of the true density p!. The precise statement of the
theorem is deferred to Appendix D. If p̂ is taken as the input of Algorithm 1, the results Φ̃1, . . . , Φ̃d of
Sketching have certain variances that get propagated to the final output G1, . . . , Gd via the coefficient
matrices A1, . . . , Ad−1, B1, . . . , Bd. The variances of Φ̃1, . . . , Φ̃d depend critically on the choice of sketch
functions. In what follows, we show that the sketches (14) and (16) give a nearly dimension-independent
error when estimating the tensor cores if p! is a Markov model satisfying the following natural condition.

Condition 1. The transition kernels p!(x2|x1), . . . , p!(xd|xd−1) are independent of d.

Theorem 7 (Informal statement of Theorem 19). Suppose p! is a discrete Markov model that satisfies Con-
dition 1 and admits a TT-representation with rank (r1, . . . , rd−1). Consider an empirical distribution p̂
constructed based on N i.i.d. samples from p!. Let Ĝ1, . . . , Ĝd and G!

1, . . . , G
!
d be the results of TT-RS with

p̂ and p! as input, respectively. Then, with high probability,

dist(Ĝk, G!
k)

~G!
k~ ≤ O

(√
log(d)√
N

)
∀k = 1, . . . , d, (18)

where the hidden constant in the “big-O” notation does not depend on the dimensionality d, ~·~ is some
appropriate norm, and dist(·, ·) is a suitable measure of distance between cores.

In Theorem 7, the errors in the cores show
√

log(d)-dependence which grows very slowly in d; the term √
log(d) is a consequence of the union bound required to derive a probabilistic bound on d objects (the

cores) simultaneously. We remark, however, that near dimension-independent errors in the pairs (G!
k, Ĝk)

do not necessarily imply such an error in approximating p! by Ĝ1 ◦ · · · ◦ Ĝd, the results of TT-RS with
p̂ as input. Instead, we can derive an error that scales almost linearly in d, thereby avoiding the curse of
dimensionality. The precise statement is deferred to Appendix D; here, we provide an informal statement
summarizing this result.

Corollary 8 (Informal statement of Theorem 20). In the setting of Theorem 7, with high probability,

‖Ĝ1 ◦ · · · ◦ Ĝd −G!
1 ◦ · · · ◦G!

d‖∞
~G!

1~ . . .~G!
d~ ≤ O

(
d
√

log(d)√
N

)
,

where ‖ · ‖∞ denotes the largest absolute value of the entries of a tensor.

In Section 6, we verify from the experiments that such d
√

log(d)-dependence of the error indeed suggests
near-linear dependence on the dimensionality d.

Remark 7. Extensive numerical experiments suggest that Theorem 7 and Corollary 20 are valid for a broad
class of Markov models that may not necessarily satisfy Condition 1. See Remark 11 for details.

16 Y. Hur et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101575

5.4. Higher-order Markov models

We conclude this section with a brief discussion on higher-order Markov models. For m ∈ N, we call p
an order-m Markov model if it is a density and satisfies

p(x1, . . . , xd) = p(x1, . . . , xm)p(xm+1|x1, . . . , xm) · · · p(xd|xd−m, . . . , xd−1).

What we have presented so far, i.e., the case m = 1, can be generalized to any m ∈ N by a suitable
replacement of the sketch functions T2, . . . , Td and s1, s2, . . . , sd−1. Recall that the sketch functions for
the case where m = 1 are chosen based on Lemma 5, which can be properly generalized to any order-m
Markov model. For instance, we can say that p(xi:k; xk+1:k+j) and p(xi:k; xk+1:k+m) have the same column
space for any j ≥ m. Based on this generalization, the choice of the sketch functions for general m ∈ N is
straightforward: they are chosen such that

Φ̄k = M1:(k+m)∧dp,

Φ̃k = Mk−1:(k+m)∧dp.

In particular, using such Φ̃k’s as the input to Trimming and subsequently SystemForming, we obtain an
algorithm for a discrete order-m Markov density.

6. Numerical experiments

In this section, we illustrate the performance of our algorithm with concrete examples. More specifically,
given i.i.d. samples of some ground truth density p!, we construct an empirical density p̂ and apply TT-RS
(or TT-RS-C) to it to obtain cores G1, . . . , Gd such that p! ≈ G1 ◦ · · · ◦Gd =: q.

6.1. Ginzburg-Landau distribution

We consider the following probability density defined on [a, b]d:

pGL(x1, . . . , xd) ∝ exp
(
−β

d∑

k=0

(
λ

2

(
xk − xk+1

h

)2
+ 1

4λ (x2
k − 1)2

))
,

where x0 = xd+1 = 0. This is the Boltzmann distribution of a Ginzburg-Landau potential, which is classically
used to model phase transitions in physics and also more recently as a test case in generative modeling [10].
Throughout the section, we fix [a, b] = [−4, 4] and β = λ = h = 1.

First, we consider a discretized version of p. To discretize p, we choose n uniform grid points of [a, b],
that is, Z =

{
a + i

n−1 (b− a)
}n−1

i=0
, and define a discretized density pD : [n]d → R as

pD := [pGL(x1, . . . , xd)](x1,...,xd)∈Zd .

Hence, pD is essentially a multi-dimensional array of size nd. Notice that pGL is a Markov model, hence so
is pD. We obtain N i.i.d. samples from pD using a Gibbs sampler and construct an empirical density based
on these samples, which form the empirical measure p̂D. We apply TT-RS with sketches (14) and (16) to
p̂D and let qD := G1 ◦ · · · ◦Gd be the contraction of the cores obtained by the algorithm. We compute the
following relative l2 error:

‖pD − qD‖2
‖pD‖2

,

Y. Hur et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101575 17

Fig. 3. Relative l2 errors for the discretized case. In (A), we fix d = 8 and change the sample size N ∈ {28, 29, . . . , 217}. In (B),
we fix the sample size N = 50000 and change d ∈ {3, 6, . . . , 27, 30}. In both cases, we use the fixed number of grid points n = 9,
and TT-RS (Algorithm 1) is applied with r1 = · · · = rd = 3. Each error bar is centered at the average of 20 realizations, with the
standard deviation as its vertical length.

where ‖f‖2
2 :=

∑n
x1=1 · · ·

∑n
xd=1 f(x1, . . . , xd)2 for any f : [n]d → R. We see in Fig. 3(A) that the error

decreases with rate O
(

1√
N

)
as sample size N increases when we fix d. Furthermore, when we fix N and let

d grow, we see a linear growth in the error (Fig. 3(B)).
Next, we repeat the same procedure with a continuous density pGL. Now we obtain N i.i.d. samples from

pGL using the Metropolis-Hastings algorithm and construct an empirical density p̂ based on them. Then,
we apply Algorithm 13 to p̂, where we choose the basis functions φ1, . . . , φM as Fourier basis functions on
[a, b]. Recall that contraction of the resulting cores gives a function q such that

q(x1, . . . , xd) =
M∑

j1=1
· · ·

M∑

jd=1




r1∑

α1=1
· · ·

rd−1∑

αd−1=1
g1(j1,α1) · · · gd(αd−1, jd)



φj1(x1) · · ·φjd(xd).

Then, we compute the relative L2 error:

errt = ‖pGL − q‖2
‖pGL‖2

,

where ‖f‖2
2 =

´
[a,b]d f(x1, . . . , xd)2 dx1 · · · dxd for any f defined on [a, b]d. Since q is an element of the

function space ΠM := {φj1 ⊗ · · ·⊗ φjd : j1, . . . , jd ∈ [M]}, we may decompose this L2 error as follows using
the orthogonality:

err2t =
(
‖pGL − pA‖2

‖pGL‖2

)2

︸ ︷︷ ︸
=:err2a

+
(
‖pA − q‖2
‖pGL‖2

)2

︸ ︷︷ ︸
=:err2e

,

where

pA(x1, . . . , xd) =
M∑

j1=1
· · ·

M∑

jd=1
ν(j1, . . . , jd)φj1(x1) · · ·φjd(xd),

ν(j1, . . . , jd) =
ˆ

pA(x1, . . . , xd)φj1(x1) · · ·φjd(xd) dx1 · · · dxd.

18 Y. Hur et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101575

Table 1
L2 errors for Ginzburg-Landau Gibbs measure in the continuous case. Sample size N is fixed to 106, and Algorithm 13 is applied
with r1 = · · · = rd = 3. Each erre is averaged over 20 realizations, and the number in the parentheses denotes the standard
deviation.

d = 5 d = 10 d = 15
M erra erre errt erra erre errt erra erre errt
7 0.2693 0.0202 (0.0023) 0.2701 0.4144 0.0392 (0.0032) 0.4163 0.5104 0.0582 (0.0041) 0.5138
9 0.1617 0.0334 (0.0018) 0.1651 0.2511 0.0621 (0.0027) 0.2587 0.3142 0.0908 (0.0041) 0.3270
11 0.0867 0.0411 (0.0016) 0.0960 0.1365 0.0754 (0.0024) 0.1559 0.1722 0.1100 (0.0039) 0.2044
13 0.0400 0.0433 (0.0015) 0.0589 0.0655 0.0802 (0.0023) 0.1036 0.0837 0.1186 (0.0039) 0.1451
15 0.0201 0.0446 (0.0015) 0.0489 0.0330 0.0833 (0.0023) 0.0896 0.0421 0.1246 (0.0038) 0.1315

In other words, pA is the approximation of p within the space ΠM spanned by the product basis, thus
erra represents an approximation error. Accordingly, we can think of erre as an estimation error, where the
resulting g1, . . . , gd can be thought of as approximate cores of ν. All the integrals above are approximated
using the Gauss-Legendre quadrature rule with 50 nodes.

The resulting L2 errors are shown in Table 1. As M increases, the approximation error erra decreases
quickly to 0. On the other hand, larger M leads to a larger estimation error erre as one needs to estimate
a larger size of coefficient tensor ν.

6.2. Ising-type model

For our next example we consider the following slight generalization of the one-dimensional Ising model.
Define p : {±1}d → R by

pI(x1, . . . , xd) ∝ exp



−β
d∑

i,j=1
Jijxixj



 , (19)

where β > 0 and the interaction Jij is given by

Jij =
{
−(1 + |i− j|)−1 |i− j| ≤ 2
0 otherwise.

From this, we can easily see that pI is an order-2 Markov model. For such a model we can apply TT-RS
with the sketch functions described in Section 5.4.

As in the previous section, we obtain N i.i.d. samples from pI using a Gibbs sampler and construct
an empirical density based on them, p̂. Then, we apply Algorithm TT-RS, with the sketch functions in
Section 5.1 and with the modifications outlined in Section 5.4, to obtain the contraction of the resulting
cores q1 and q2, respectively. Then, we compare the two relative l2 errors:

err1 = ‖pI − q1‖2
‖pI‖2

and err2 = ‖pI − q2‖2
‖pI‖2

.

The errors are plotted in Fig. 4, in which the dashed curves denote the result err1 of TT-RS with sketches
as in Section 5.1 and the solid curves correspond to err2 from TT-RS with the sketches as in Section 5.4.
Clearly, as expected, the error is smaller when using the sketches from Section 5.4.

Lastly, we repeat the same procedure for pI where xk ∈ {−2, −1, 0, 1, 2} for k = 1, . . . , d in (19). The
results are shown in Fig. 5, which demonstrates that TT-RS with appropriate sketching yields small error
in the case of higher-order Markov distributions.

Y. Hur et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101575 19

Fig. 4. Relative l2 errors for the order-2 Ising model. In (A), we fix d = 8 and change the sample size N ∈ {28, 29, . . . , 217}. In (B),
we fix the sample size N = 50000 and change d ∈ {3, 6, . . . , 27, 30}. In both cases, we use β = 0.4, and TT-RS (Algorithm 1) is
applied with (r1, . . . , rd) = (2, 3, . . . , 3, 2). Errors are shown as shaded regions, where both solid and dashed curves connect the
averages of errors from 20 realizations, with the standard deviation as the vertical width.

Fig. 5. Relative l2 errors for the order-2 Ising model on {−2, −1, 0, 1, 2}d. In (A), we fix d = 8 and change the sample size
N ∈ {28, 29, . . . , 217}. In (B), we fix the sample size N = 50000 and change d ∈ {3, 6, . . . , 27, 30}. In both cases, we use β = 0.2,
and TT-RS (Algorithm 1) is applied with (r1, . . . , rd) = (2, 3, . . . , 3, 2). Each error bar is centered at the average of 20 realizations,
with the standard deviation as its vertical length.

7. Conclusion

We have described an algorithm TT-RS which obtains a tensor train representation of a probability
density from a collection of its samples. This is done by formulating a sequence of equations, one for each
core, which can be solved independently. Additionally, in order to reduce the variance in the coefficient
matrices of these equations (which are constructed from the empirical distribution) sketching is required.
For Markov (and higher-order Markov) models we give explicit constructions of suitable sketches and provide
guarantees on the accuracy of the resulting algorithm.

Lastly, we briefly mention several possible extensions for future research. First, we can apply TT-RS to
more complicated models such as hidden Markov models. The ideas that we discussed based on (higher-
order) Markov models can be generalized to various models by specifying concrete sketch functions for such
models. More generally, future research could focus on adapting TT-RS to tree tensor networks, aiming at
generalizing TT-RS to distributions with more general graphical structure. By designing sketch functions
for a broader class of models, one can bring TT-RS closer to a wide range of applications and we leave this
as future work.

20 Y. Hur et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101575

Data availability

Data will be made available on request.

Acknowledgments

The work of YH and YK was partially supported by the National Science Foundation under Award
No. DMS-211563 and the Department of Energy under Award No. DE-SC0022232. The work of ML was
partially supported by the National Science Foundation under Award No. 1903031. The Flatiron Institute
is a division of the Simons Foundation.

Appendix A. Validity of solving CDEs

In this section, we give the proof of Proposition 2.

Proof of Proposition 2. For k = 2, . . . , d − 1, consider the k-th equation in (4):

rk−1∑

αk−1=1
Φk−1(x1:k−1;αk−1)Gk(αk−1;xk,αk) = Φk(x1:k−1;xk,αk). (20)

By definition, Φk−1(x1:k−1; αk−1) is the left factor in an exact low-rank factorization of p, so Φk−1 has full
column rank and the uniqueness of solutions is guaranteed. To prove a solution also exists, we need to show
that columns of Φk(x1:k−1; xk, αk) are contained within the column space of Φk−1(x1:k−1; αk−1).

By the definition of Φk−1 and Φk, we know there exists Ψk : [rk−1] ×[nk] ×· · ·×[nd] → R and Ψk+1 : [rk] ×
[nk+1] × · · ·× [nd] → R such that

p(x1:k−1;xk:d) =
rk−1∑

αk−1=1
Φk−1(x1:k−1;αk−1)Ψk(αk−1;xk:d),

p(x1:k;xk+1:d) =
rk∑

αk=1
Φk(x1:k;αk)Ψk+1(αk;xk+1:d). (21)

Note that these are rank-rk−1 and rank-rk decomposition of the (k − 1)-th and k-th unfolding matrices,
respectively. Defining tk+1 : [nk+1] × · · · × [nd] × [rk] → R so that tk+1(xk+1:d; αk) is the pseudoinverse of
Ψk+1(αk; xk+1:d), we obtain

Φk(x1:k;αk) =
nk+1∑

xk+1=1
· · ·

nd∑

xd=1
p(x1:k;xk+1:d)tk+1(xk+1:d;αk).

Then, one can easily verify that the k-th equation (20) holds if we let

Gk(αk−1, xk,αk) =
nk+1∑

xk+1=1
· · ·

nd∑

xd=1
Ψk(αk−1, xk, xk+1:d)tk+1(xk+1:d,αk)

along with (21). Thus, we have not only proved the existence of solutions to the k-th equation, but also
obtained the exact form of the solution in terms of Ψk and tk+1.

Similarly, we can show that the equation in (20) for Gd is well-defined. By construction, it then follows
that (5) holds. !

Y. Hur et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101575 21

Appendix B. Non-recursive TT-RS: TT-Sketch (TT-S)

B.1. Role of recursive left sketches and possibility of non-recursive sketches

In this subsection, we discuss the importance of forming the recursive right sketches S1, . . . , Sd−1 from
s1, . . . , sd, noting that for T2, . . . , Td there is no such need. The requirement of “recursiveness” in the
construction of the Sk’s is a consequence of the Trimming step, which introduces an arbitrary projection
matrix in the factorization of the k-th unfolding of p. To see this, consider first the case without Trimming,
i.e., using sketches Tk+1 with lk = rk. Then one can use Φ̄k (defined in Algorithm 2) in the CDEs (4), i.e.
solve

rk−1∑

αk−1=1
Φ̄k−1(x1:k−1;αk−1)Gk(αk−1;xk,αk) = Φ̄k(x1:k−1;xk,αk) (22)

if each Φ̄k has rank rk. To reduce the system size further one could simply apply arbitrary left sketches as

n1∑

x1=1
· · ·

nk−1∑

xk−1=1
Sk−1(βk−1;x1:k−1)

rk−1∑

αk−1=1
Φ̄k−1(x1:k−1;αk−1)Gk(αk−1;xk,αk)

=
n1∑

x1=1
· · ·

nk−1∑

xk−1=1
Sk−1(βk−1;x1:k−1)Φ̄k(x1:k−1;xk,αk)

(23)

so long as the reduced CDEs remain well-posed. In this case, one could set Bk = Sk−1Φ̄k and Ak−1 =
Sk−1Φ̄k−1.

Unfortunately, a complication arises when we use sketches Tk+1 with lk > rk. In this case we cannot
simply solve (22) or (23) as it gives TT with excessively large rank. We then need to apply a suitable further
projection qk ∈ Rlk−1×rk−1 , qk+1 ∈ Rlk×rk in (22) and (23)

Φ̄k−1 → Φ̄k−1qk, Φ̄k → Φ̄kqk+1 (24)

treating Φ̄k−1 and Φ̄k as matrices of size n1 · · ·nk−1 × lk−1 and n1 · · ·nk × lk, respectively. This is the idea
behind Trimming. However, rather than explicitly applying the projection qk, Trimming performs the
projections implicitly, i.e., it directly gives

Bk(βk−1, xk,αk) =
∑

x1,...,xk−1

Sk−1(βk−1, x1:k−1)
∑

γk

Φ̄k(x1:k−1, xk, γk)qk+1(γk,αk) (25)

via an SVD without obtaining the qk’s. This presents a complication: in order to solve (23), one needs to
form

Ak−1(βk−1,αk−1) =
∑

x1,...,xk−1

Sk−1(βk−1, x1:k−1)
∑

γk−1

Φ̄k−1(x1:k−1, γk−1)qk(γk−1,αk−1), (26)

but all we have access to is Bk−1 which contains qk implicitly (note that Ak−1 is not Bk−1). It is unclear
how to obtain Ak−1 without knowing qk explicitly.

There are two remedies for this. The first one is recursive left sketching, and the second one is to obtain
projections (the qk’s) directly. The second remedy is more complicated than the first, though it does not
require recursive sketching. In this paper, we have focused primarily on the recursive left sketching approach,
which allows us to obtain Ak’s directly from Bk’s. In the next subsection, we provide details of the second
remedy in the following subsection.

22 Y. Hur et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101575

B.2. Non-recursive sketches

Suppose now S1, . . . , Sd−1 in Algorithm 2 are arbitrary sketches that are non-recursive, meaning that
they are not in the form of

Sk−1(βk−1, x1:k−1) =
∑

βk−2

sk−1(βk−1, xk−1,βk−2)Sk−2(βk−2, x1:k−2). (27)

Evidently, Trimming gives the following expression for Bk in terms of the sketched unfolding matrix (in
Algorithm 3) and some “gauge” qk+1

Bk(βk−1, xk;αk) =
∑

γk

Φ̃k(βk−1, xk; γk)qk+1(γk,αk) (28)

where

qk+1 = VkΣ−1
k (29)

and

Φ̃k ≈ UkΣkV
+
k , Uk ∈ Rmk−1nk×rk , Σk ∈ Rrk×rk , Vk ∈ Rlk×rk (30)

being the best rank-rk approximation of Φ̃k ∈ Rmk−1nk×lk (defined in Algorithm 3) obtained via the SVD.
Now, after obtaining the qk’s in this manner, we can use them to construct the Ak’s in (26). In this case,
we do not need to use Bk’s to obtain Ak’s, as in the case when using recursive sketches.

In what follows, we summarize this approach in TT-S (Algorithm 5) which removes the necessity of
recursive sketching. The main difference between TT-S and TT-RS is that TT-S keeps track of the projection
matrices q2, . . . qd in (26) obtained via Algorithm 7 when performing Trimming-TT-S and uses them in
Algorithm 8. In this way, one eliminates the need for obtaining the Ak’s via the Bk’s from recursive sketching.

Algorithm 5 TT-S for a discrete function p.
Require: p : [n1] × · · · × [nd] → R and target ranks r1, . . . , rd−1.
Require: Tk : [nk] × · · · × [nd] × [lk−1] → R with lk−1 ≥ rk−1 for k = 2, . . . , d.
Require: Sk : [mk] × [n1] × · · · × [nk] → R for k = 1, . . . , d − 1.
1: Φ̃1, . . . , ̃Φd, ̄Φ1, . . . , ̄Φd−1 ← Sketching-TT-S(p, T2, . . . , Td, S1, . . . , Sd−1).
2: B1, . . . , Bd, q2, . . . , qd ← Trimming-TT-S(Φ̃1, . . . , ̃Φd, r1, . . . , rd−1).
3: A1, . . . , Ad−1 ← SystemForming-TT-S(Φ̄1, . . . , ̄Φd−1, q2, . . . , qd, S1, . . . , Sd−1).
4: Solve the following d matrix equations via least-squares for the variables G1 : [n1] × [r1] → R, Gk : [rk−1] × [nk] × [rk] → R

for k = 2, . . . , d − 1, and Gd : [rd−1] × [nd] → R:

G1 = B1,

rk−1∑

αk−1=1
Ak−1(βk−1;αk−1)Gk(αk−1; xk,αk) = Bk(βk−1; xk,αk) k = 2, . . . , d − 1,

rd−1∑

αd−1=1
Ad−1(βd−1;αd−1)Gd(αd−1; xd) = Bd(βd−1; xd).

(31)

5: return G1, . . . , Gd.

Y. Hur et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101575 23

Algorithm 6 Sketching-TT-S.
Require: p, T2, . . . , Td, and S1, . . . , Sd−1 as given in Algorithm 5.

for k = 1 to d − 1 do
Right sketching: define Φ̄k : [n1] × · · · × [nk] × [lk] → R as

Φ̄k(x1:k, γk) =
nk+1∑

xk+1=1
· · ·

nd∑

xd=1
p(x1:k, xk+1:d)Tk+1(xk+1:d, γk).

if k > 1 then
Left sketching: define Φ̃k : [mk−1] × [nk] × [lk] → R as

Φ̃k(βk−1, xk, γk) =
n1∑

x1=1
· · ·

nk−1∑

xk−1=1
Sk−1(βk−1, x1:k−1)Φ̄k(x1:k−1, xk, γk).

else
Define

Φ̃1(x1, γ1) = Φ̄1(x1, γ1).

end if
end for
Left sketching: define Φ̃d : [md−1] × [nd] → R as

Φ̃d(βd−1, xd) =
n1∑

x1=1
· · ·

nd−1∑

xd−1=1
Sd−1(βd−1, x1:d−1)p(x1:d−1, xd).

return Φ̃1, . . . , ̃Φd, Φ̄1, . . . , ̄Φd−1.

Algorithm 7 Trimming-TT-S.
Require: Φ̃1, . . . , ̃Φd from Algorithm 6.
Require: Target ranks r1, . . . , rd−1 as given in Algorithm 5.

for k = 1 to d − 1 do
if k = 1 then

Let U1Σ1V
"
1 , where U1 ∈ Rn1×r1 , V1 ∈ Rl1×r1 , Σ1 ∈ Rr1×r1 , be the best rank-r1 approximation to the matrix Φ̃1(x1; α1)

via SVD. Define B1 : [n1] × [r1] → R where B1(x1; α1) = U1(x1; α1). Furthermore, let q2 = V1Σ−1
1 .

else
Let UkΣkV

"
k , where Uk ∈ Rmk−1nk×rk , Vk ∈ Rlk×rk , Σk ∈ Rrk×rk , be the best rank-rk approximation to the matrix

Φ̃k(βk−1, xk; γk) via SVD. Define Bk : [mk−1] × [nk] × [rk] → R where Bk(βk−1, xk; αk) = Uk(βk−1, xk; αk). Furthermore,
let qk+1 = VkΣ−1

k .
end if

end for
Let Bd(βd−1, xd) = Φ̃d(βd−1, xd).
return B1, . . . , Bd, q2, . . . , qd.

Algorithm 8 SystemForming-TT-S.
Require: Φ̄1, . . . , ̄Φd−1 from Algorithm 6
Require: q2 . . . , qd from Algorithm 7.
Require: S1, . . . , Sd−1 as given in Algorithm 5.

for k = 1 to d − 1 do
Compute Ak : [mk] × [rk] → R:

Ak(βk,αk) =
n1∑

x1=1
· · ·

nk∑

xk=1
Sk(βk, x1:k)

lk∑

γk=1
Φ̄k(x1:k, γk)qk+1(γk,αk).

end for
return A1, . . . , Ad−1.

24 Y. Hur et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101575

Appendix C. Continuous TT-RS

In this section, we consider a general function p : X1 × · · · × Xd → R, where X1, . . . , Xd ⊂ R. It turns
out that everything presented in previous sections is still valid if we replace every discrete quantity with its
continuous counterpart; concretely, we replace [nk], [mk], and [lk] with Xk, Bk, and Ck, respectively, where
Bk and Ck are appropriate domains that can be chosen by model assumptions. Accordingly, we also replace
all the summation over these sets with appropriate integration; for instance, replace

∑nk

xk=1 and
∑mk

βk=1
with

´
Xk

dxk and
´
Bk

dβk, respectively. As a result, we obtain Algorithms 9, 10, 11, and 12 as continuous
counterparts of Algorithms 1, 2, 3, and 4.

Algorithm 9 TT-RS-C for a continuous function p.
Require: p : X1 × · · · × Xd → R and target ranks r1, . . . , rd−1.
Require: Tk : Xk × · · · × Xd × Ck−1 → R for k = 2, . . . , d.
Require: s1 : B1 × X1 → R and sk : Bk × Xk × Bk−1 → R for k = 2, . . . , d − 1.
1: Φ̃1, . . . , ̃Φd ← Sketching-c(p, T2, . . . , Td, s1, . . . , sd−1).
2: B1, . . . , Bd ← Trimming-c(Φ̃1, . . . , ̃Φd, r1, . . . , rd−1).
3: A1, . . . , Ad−1 ← SystemForming-c(B1, . . . , Bd−1, s1, . . . , sd−1).
4: Solve the following d matrix equations via least-squares for the variables G1 : X1 × [r1] → R, Gk : [rk−1] × Xk × [rk] → R for

k = 2, . . . , d − 1, and Gd : [rd−1] × Xd → R.

G1 = B1,

rk−1∑

αk−1=1
Ak−1(βk−1;αk−1)Gk(αk−1; xk,αk) = Bk(βk−1; xk,αk) k = 2, . . . , d − 1,

rd−1∑

αd−1=1
Ad−1(βd−1;αd−1)Gd(αd−1; xd) = Bd(βd−1; xd).

(32)

5: return G1, . . . , Gd.

First, note that the main algorithm for the continuous case, TT-RS-C (Algorithm 9), has equations (32)
which are exactly the same as (7) of Algorithm 1. Now, (32) are infinite-dimensional matrix equations, that is,
coefficients and cores are functions. Also, the sketching algorithm for a continuous density (Algorithm 10),
which we call Sketching-c, is simply a modification of Sketching by replacing all the summations
with integrals properly. We modify Trimming similarly to obtain its continuous counterpart Trimming-c.
In this case, Trimming-c should be done by applying functional SVD [28,35] to Φ̃1, . . . , Φ̃d−1 to obtain
B1, . . . , Bd−1, respectively. We demonstrate how such a functional SVD works in the next subsection with
a concrete example.

C.1. Applying TT-RS-C to the Markov case

In this subsection, we assume p is a continuous Markov model, that is, p is a continuous density and
satisfies (12). For simplicity, we assume X1 = · · · = Xd = [a, b] and (φn)n∈N be a countable orthonormal
basis of L2([a, b]) such that φ1 is a constant function, say φ1(x) ≡ c. Due to orthogonality,

bˆ
a

φn(x) dx = 0

for all n ≥ 2. Suppose each marginal density of p is well approximated using the first M basis functions
φ1, . . . , φM . Based on Lemma 5, we now show that we can choose concrete sketch functions T2, . . . , Td and
s1, . . . , sd−1 so that Algorithm 9 exactly recovers the cores of p, when provided with p̂ = p.

Y. Hur et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101575 25

Algorithm 10 Sketching-C.
Require: p, T2, . . . , Td, and s1, . . . , sd−1 as given in Algorithm 9.

for k = 1 to d − 1 do
Right sketching: define Φ̄k : X1 × · · · × Xk × Ck → R as

Φ̄k(x1:k, γk) =
ˆ

p(x1:k, xk+1:d)Tk+1(xk+1:d, γk) dxk+1 · · · dxd.

if k > 1 then
Left sketching: define Φ̃k : Bk−1 × Xk × Ck → R as

Φ̃k(βk−1, xk, γk) =
ˆ

Sk−1(βk−1, x1:k−1)Φ̄k(x1:k−1, xk, γk) dx1 · · · dxk−1.

Compute Sk : Bk × X1 × · · · × Xk → R for the next iteration:

Sk(βk, x1:k) =
ˆ

sk(βk, xk, βk−1)Sk−1(βk−1, x1:k−1) dβk−1.

else
Define

Φ̃1(x1, γ1) = Φ̄1(x1, γ1).

Define sketch function

S1(β1, x1) = s1(β1, x1).

end if
end for
Left sketching: define Φ̃d : Bd−1 × Xd → R as

Φ̃d(βd−1, xd) =
ˆ

Sd−1(βd−1, x1:d−1)p(x1:d−1, xd) dx1 · · · dxd−1.

return Φ̃1, . . . , ̃Φd.

Algorithm 11 Trimming-C.
Require: Φ̃1, . . . , ̃Φd from Algorithm 10.
Require: Target ranks r1, . . . , rd−1 as given in Algorithm 9.

for k = 1 to d − 1 do
if k = 1 then

Compute the first r1 left singular vectors of Φ̃1(x1; γ1) and define B1 : X1 × [r1] → R so that these singular vectors are
the columns of B1(x1; α1).

else
Compute the first rk left singular vectors of Φ̃k(βk−1, xk; γk) and define Bk : Bk−1 ×Xk × [rk] → R so that these singular
vectors are the columns of Bk(βk−1, xk; αk).

end if
end for
Let Bd(βd−1, xd) = Φ̃d(βd−1, xd).
return B1, . . . , Bd.

First, let Bk = Ck = [M] for k = 1, . . . , d − 1, where r1, . . . , rd−1 ≤ M . Then, we define Tk+1 : Xk+1 ×
· · ·×Xd × Ck → R as

Tk+1(xk+1:d, γk) = φγk(xk+1)

which gives

Φ̄k(x1:k, γk) =
ˆ

p(x1:k, xk+1)φγk(xk+1) dxk+1.

26 Y. Hur et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101575

Algorithm 12 SystemForming-C.
Require: B1, . . . , Bd−1 from Algorithm 11.
Require: s1, . . . , sd−1 as given in Algorithm 9.

for k = 1 to d − 1 do
if k = 1 then

Compute A1 : B1 × [r1] → R:

A1(β1,α1) =
ˆ

s1(β1, x1)B1(x1,α1) dx1.

else
Compute Ak : Bk × [rk] → R:

Ak(βk,αk) =
ˆ

sk(βk, xk, βk−1)Bk(βk−1, xk,αk) dxkdβk−1.

end if
end for
return A1, . . . , Ad−1.

Tk+1 marginalizes out xk+2, . . . , xd as in the discrete case and it replaces the variable xk+1 with the index
γk ∈ [M] based on the fact that the marginal density can be approximated well by the fist M basis functions.

Similarly, define S1 : B1 ×X1 → R such that B1 = X1

s1(β1, x1) = φβ1(x1), sk(βk, xk,βk−1) = φβk(xk)δ(βk−1 − 1),

where δ is the Dirac delta function. Then,

Sk(βk, x1:k) = φβk(xk)φ1(xk−1) · · ·φ1(x1) = ck−1φβk(xk),

thus

Φ̃k(βk−1, xk, γk) =
ˆ

Sk−1(βk−1, x1:k−1)Φ̄k(x1:k−1, xk, γk) dx1 · · · dxk−1

=
ˆ

ck−2φβk−1(xk−1)p(x1:k, xk+1)φγk(xk+1) dxk+1dx1 · · · dxk−1

= ck−2
ˆ

φβk−1(xk−1)p(xk−1, xk, xk+1)φγk(xk+1) dxk+1dxk−1.

and

Φ̃d(βd−1, xd) =
ˆ

Sd−1(βd−1, x1:d−1)p(x1:d−1, xd) dx1 · · · dxd−1

= cd−2
ˆ

φβd−1(xd−1)p(xd−1, xd) dxd−1.

In other words, Sk−1 marginalizes out variables x1, . . . , xk−2 as in the discrete case; furthermore, it replaces
the variable xk−1 with the index βk−1 by integration against basis functions.

Using the results Φ̃1, . . . , Φ̃d from Sketching-C, we now explain how to implement Trimming-C via
functional SVD. The idea is to use basis expansion with respect to each node xk ∈ Xk and then apply SVD.
For instance, consider Φ̃1(x1, γ1). For large enough M ∈ N, we have

Φ̃1(x1, γ1) ≈
M∑

β1=1
ν1(β1, γ1)φβ1(x1),

Y. Hur et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101575 27

where ν1 : [M] × [M] → R is given as

ν1(β1, γ1) =
ˆ

Φ̃1(x1, γ1)φβ1(x1) dx1.

Now, we can apply SVD to a matrix ν1(β1; γ1); compute the first rk left singular vectors of ν1(β1; γ1) and
define B̃1 : [M] × [r1] → R so that these singular vectors are the columns of B̃1(β1; α1). Then, we define
B1 : X1 × [r1] → R as

B1(x1,α1) :=
M∑

β1=1
B̃1(β1,α1)φβ1(x1).

Then,

A1(β1,α1) =
ˆ

B1(x1,α1)φβ1(x1)dx1 = B̃1(β1,α1).

Similarly, for k = 2, . . . , d − 1, we have

Φ̃k(βk−1, xk, γk) ≈
M∑

jk=1
νk(βk−1, jk, γk)φjk(xk),

where νk : [M] × [M] × [M] → R is given as

νk(βk−1, jk, γk) =
ˆ

Φ̃k(βk−1, xk, γk)φjk(xk) dxk.

We compute the first rk left singular vectors of νk(βk−1, jk; γk) and define B̃k : [M] × [M] × [rk] → R so that
these singular vectors are the columns of B̃k(βk−1, jk; αk). Then, we define Bk : [M] ×Xk × [rk] → R as

Bk(βk−1, xk,αk) =
M∑

jk=1
B̃k(βk−1, jk,αk)φjk(xk),

which yields Ak : [M] × [rk] → R as

Ak(βk,αk) :=
ˆ M∑

βk−1=1
sk(βk, xk,βk−1)Bk(βk−1, xk,αk) dxk

=
ˆ

φβk(xk)Bk(1, xk,αk) dxk

=
M∑

jk=1
B̃k(1, jk,αk)

ˆ
φβk(xk)φjk(xk) dxk

= B̃k(1,βk,αk).

Lastly, we apply basis expansion to Bd as well. Define

B̃d(βd−1, jd) =
ˆ

Bd(βd−1, xd)φjd(xd) dxd

so that

28 Y. Hur et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101575

Bd(βd−1, xd) ≈
M∑

jd=1
B̃d(βd−1, jd)φjd(xd).

Now, one can easily verify that solving (32) for G1, . . . , Gd amounts to solving

g1 = B̃1,

rk−1∑

αk−1=1
Ak−1(βk−1,αk−1)gk(αk−1, jk,αk) = B̃k(βk−1, jk,αk) k = 2, . . . , d− 1,

rd−1∑

αd−1=1
Ad−1(βd−1,αd−1)gd(αd−1, jd) = B̃d(βd−1, jd)

(33)

for the variables g1 : [M] ×[r1] → R, gk : [rk−1] ×[M] ×[rk] → R for k = 2, . . . , d −1, and gd : [rd−1] ×[M] → R
and letting

G1(x1,α1) =
M∑

j1=1
g1(j1,α1)φj1(x1),

Gk(αk−1, xk,αk) =
M∑

jk=1
gk(αk−1, jk,αk)φjk(xk) k = 2, . . . , d− 1,

Gd(αd−1, xd) =
M∑

jd=1
gd(αd−1, jd)φjd(xd).

In this case, the resulting TT-format is

r1∑

α1=1
· · ·

rd−1∑

αd−1=1
G1(x1,α1) · · ·Gd(αd−1, xd)

=
M∑

j1=1
· · ·

M∑

jd=1




r1∑

α1=1
· · ·

rd−1∑

αd−1=1
g1(j1,α1) · · · gd(αd−1, jd)



φj1(x1) · · ·φjd(xd).

We summarize the case of specializing Algorithm 9 to the case of Markov density in Algorithm 13. We note
that one should be able to prove a result similar to Theorem 6 under mild assumptions.

Appendix D. Perturbation results

This section provides perturbation results of Algorithm 1. First, we prove that small perturbation on the
coefficients and the right-hand sides of (7) of Algorithm 1 leads to small perturbations of the cores. Using
this result we show that Algorithm 1 with sketches (14) and (16) is robust against small perturbations for
a discrete Markov density p. From this, we prove that Algorithm 1 with sketches (14) and (16) applied to
the empirical density p̂, which is constructed based on N i.i.d. samples from a discrete density p!, recovers
p! with high probability given N is large enough; a concrete sample complexity is then derived.

D.1. Preliminaries

In what follows, for a given vector x we let ‖x‖ and ‖x‖∞ denote its Euclidean norm and its supremum
norm, respectively. For a matrix A, we denote its spectral norm, Frobenius norm, and the r-th singular

Y. Hur et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101575 29

Algorithm 13 Main algorithm for a continuous Markov density.
Require: p : [a, b]d → R and target ranks r1, . . . , rd−1.
Require: Orthonormal functions φ1, . . . , φM in L2([a, b]) with φ1 ≡ c and M ≥ r1, . . . , rd−1.
1: for k = 1 to d − 1 do
2: if k = 1 then
3: Define ν1 : [M] × [M] → R as

ν1(β1, γ1) =
¨

p(x1, x2)φβ1 (x1)φγ1 (x2) dx1dx2.

4: Compute the first r1 left singular vectors of ν1(β1; γ1) and define B̃1 : [M] × [r1] → R so that these singular vectors are
the columns of B̃1(β1; α1).

5: Define A1 : [M] × [r1] → R so that

A1 = B̃1.

6: else if k < d then
7: Define νk : [M] × [M] × [M] → R as

νk(βk−1, jk, γk) = ck−2
ˆ

p(xk−1, xk, xk+1)φβk−1 (xk−1)φjk
(xk)φγk

(xk+1) dxk−1dxkdxk+1.

8: Compute the first rk left singular vectors of νk(βk−1, jk; γk) and define B̃k : [M] × [M] × [rk] → R so that these singular
vectors are the columns of B̃k(βk−1, jk; αk).

9: Define Ak : [M] × [rk] → R so that

Ak(βk,αk) = B̃k(1,βk,αk).

10: else
11: Define B̃d : [M] × [M] → R as

B̃d(βd−1, jd) = cd−2
ˆ

φβd−1 (xd−1)p(xd−1, xd)φjd
(xd) dxd−1dxd.

12: end if
13: end for
14: Solve the following d matrix equations via least-squares for the variables g1 : [M] × [r1] → R, gk : [rk−1] × [M] × [rk] → R for

k = 2, . . . , d − 1, and gd : [rd−1] × [M] → R.

g1 = B̃1,

rk−1∑

αk−1=1
Ak−1(βk−1;αk−1)gk(αk−1; jk,αk) = B̃k(βk−1; jk,αk) k = 2, . . . , d − 1,

rd−1∑

αd−1=1
Ad−1(βd−1;αd−1)gd(αd−1; jd) = B̃d(βd−1; jd).

(34)

15: return G1, . . . , Gd by letting

G1(x1,α1) =
M∑

j1=1
g1(j1,α1)φj1 (x1),

Gk(αk−1, xk,αk) =
M∑

jk=1
gk(αk−1, jk,αk)φjk

(xk) k = 2, . . . , d − 1,

Gd(αd−1, xd) =
M∑

jd=1
gd(αd−1, jd)φjd

(xd).

30 Y. Hur et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101575

value by ‖A‖, ‖A‖F , and σr(A), respectively. With some abuse of notation, we also let ‖A‖∞ denote the
largest absolute value of the entries of A. Lastly, the orthogonal group in dimension r is denoted by O(r).

We also introduce the following norms for 3-tensors.

Definition 9. For any 3-tensor G ∈ Rn1×n2×n3 , or equivalently, G : [n1] × [n2] × [n3] → R, we define the
norm

~G~ := max
i2∈[n2]

‖G(·, i2, ·)‖.

Here, G(·, i2, ·) ∈ Rn1×n2 denotes a matrix, and ‖G(·, i2, ·)‖ denotes its spectral norm. Also, we define ‖G‖∞
by

‖G‖∞ = max
(i1,i2,i3)∈[n1]×[n2]×[n3]

|G(i1, i2, i3)|.

Remark 8. Such a norm ~·~ is useful for bounding the norm of a contraction of cores. Throughout the
section, we will analyze cores obtained by our algorithm: G1 : [n1] × [r1] → R, Gk : [rk−1] × [nk] × [rk] → R
for k = 2, . . . , d − 1, and Gd : [rd−1] × [nd] → R. For ease of exposition, for the specific matrices G1 and
Gd produced by the algorithm (and any perturbations of them), set ~G1~ = maxx1∈[n1] ‖G(x1, ·)‖ and
~Gd~ = maxxd∈[nd] ‖G(·, xd)‖. Then, one can easily verify that

‖G1 ◦ · · · ◦Gd‖∞ ≤ ~G1~ · · ·~Gd~,

where ‖G1 ◦ · · · ◦Gd‖∞ denotes the supremum norm of the function (G1 ◦ · · · ◦Gd) : [n1] × · · ·× [nd] → R.
In summary, the supremum norm of the contraction is easily bounded by the product of ~·~’s.

We start with the following basic perturbation result on a linear system Ax = b.

Lemma 10 (Theorem 3.48 of [33]). For A ∈ Rm×n, suppose rank(A) = n ≤ m. Let ∆A ∈ Rm×n be a
perturbation such that ‖A†‖‖∆A‖ < 1. Then, rank(A + ∆A) = n. Moreover, let x and x + ∆x be least-
squares solutions to linear systems Ax = b and (A + ∆A)x = b + ∆b, respectively. Then,

‖∆x‖
‖x‖ ≤ ‖A‖‖A†‖

1 − ‖A†‖‖∆A‖

[
‖∆A‖
‖A‖

(
1 + κ(A)‖Ax− b‖

‖A‖‖x‖

)
+ ‖∆b‖

‖A‖‖x‖

]
.

Using this we prove the following lemma which bounds the perturbation of solutions of the tensor equation
A ◦X = B, where A is a matrix, and both X and B are three-tensors. The contraction here is performed
over the second index of A and the first index of X.

Lemma 11. For A ∈ Rm×n suppose rank(A) = n ≤ m. Let ∆A ∈ Rm×n be a perturbation such that
‖A†‖‖∆A‖ < 1. Then, rank(A + ∆A) = n. Let B ∈ Rm×l1×l2 and ∆B be its perturbation. Also, let
X ∈ Rn×l1×l2 and X+∆X be least-squares solutions to the tensor equations A ◦X = B and (A +∆A) ◦X =
B + ∆B, respectively. Suppose the column space of B ∈ Rm×l1×l2 is contained in that of A, then

~∆X~ ≤
√

2ml2‖A†‖
1 − ‖A†‖‖∆A‖ (‖∆A‖~X~ + ‖∆B‖∞) .

In particular, if ~X~ ≥ χ > 0 for some constant χ, and ∆A satisfies ‖A†‖‖∆A‖ ≤ 1/2, then

~∆X~
~X~ ≤

√
8ml2‖A†‖

(
‖∆A‖ + ‖∆B‖∞χ−1) .

Y. Hur et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101575 31

Proof. For any i = (i1, i2) with 1 ≤ i1 ≤ l1 and 1 ≤ i2 ≤ l2, we set xi = X(·, i1, i2) and bi = B(·, i1, i2) to
be “columns” of X and B respectively. For each equation, since bi is contained in the column space of A,
the previous lemma implies that

‖∆xi‖ ≤ ‖A‖‖A†‖
1 − ‖A†‖‖∆A‖

(
‖∆A‖
‖A‖ ‖xi‖ + ‖∆bi‖

‖A‖

)
= ‖A†‖

1 − ‖A†‖‖∆A‖︸ ︷︷ ︸
=:C

(‖∆A‖‖xi‖ + ‖∆bi‖) .

Now, for each 1 ≤ i1 ≤ l1,

‖∆X(·, i1, ·)‖F =
n∑

j=1

l2∑

i2=1
|∆X(j, i1, i2)|2

=
l2∑

i2=1
‖∆x(i1,i2)‖

2

≤
l2∑

i2=1
C2(‖∆A‖ ‖x(i1,i2)‖ + ‖∆b(i1,i2)‖)2

≤
l2∑

i2=1
2C2(‖∆A‖2‖x(i1,i2)‖

2 + ‖∆b(i1,i2)‖
2)

= 2C2(‖∆A‖2‖X(·, i1, ·)‖2
F + ‖∆B(·, i1, ·)‖2

F)
≤ 2C2(l2‖∆A‖2‖X(·, i1, ·)‖2 + ml2‖∆B‖2

∞).

Thus,

~∆X~ = max
i1

‖∆X(·, i1, ·)‖

≤ max
i1

‖∆X(·, i1, ·)‖F

≤
(

2C2(l2‖∆A‖2 max
i1

‖X(·, i1, ·)‖2 + ml2‖∆B‖2
∞)

)1/2

=
(
2C2(l2‖∆A‖2~X~2 + ml2‖∆B‖2

∞)
)1/2

≤
√

2ml2C (‖∆A‖~X~ + ‖∆B‖∞) ,

from which the rest of the result follows immediately. !

Lemma 12. Let G1 : [n1] ×[r1] → R, Gk : [rk−1] ×[nk] ×[rk] → R for k = 2, . . . , d −1, and Gd : [rd−1] ×[nd] →
R. Denote their corresponding perturbations by ∆Gk. Suppose that there exist δk > 0, k = 1, . . . , d such that
~∆Gk~ ≤ δk~Gk~ for all k = 1, . . . , d. Set

∆(G1 ◦ · · · ◦Gd) := (G1 + ∆G1) ◦ · · · ◦ (Gd + ∆Gd) −G1 ◦ · · · ◦Gd.

Then

‖∆(G1 ◦ · · · ◦Gd)‖∞ ≤ ~G1~ · · ·~Gd~
(

d∑

k=1
δk

)
exp

(
d∑

k=1
δk

)
.

The following corollary is an immediate consequence of the previous lemma.

32 Y. Hur et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101575

Corollary 13. Under the same assumptions as the previous lemma, let ε ∈ (0, 1) be given. If δ :=
max1≤k≤d δk ≤ ε/(3d) then

‖∆(G1 ◦ · · · ◦Gd)‖∞
~G1~ · · ·~Gd~ ≤ ε.

Proof of Lemma 12. For ease of exposition, we set G∗
k = Gk + ∆Gk for k = 1, . . . , d. Next, we observe that

∆(G1 ◦ · · · ◦Gd) =(G∗
1 ◦ · · · ◦G∗

d) − (G1 ◦G∗
2 ◦ · · · ◦G∗

d)
+ (G1 ◦G∗

2 ◦ · · · ◦G∗
d) − (G1 ◦G2 ◦G∗

3 ◦ · · · ◦G∗
d)

+ . . .

+ (G1 ◦ · · · ◦Gd−1 ◦G∗
d) − (G1 ◦ · · · ◦Gd).

(35)

The first line on the right-hand side of the previous equation reduces to ∆G1 ◦G∗
2 ◦ . . . G∗

d. As in Remark 8,

‖∆G1 ◦G∗
2 ◦ · · · ◦G∗

d‖∞ ≤ ~∆G1~~G∗
2~ · · ·~G∗

d~.

Furthermore, for k = 1, . . . , d,

~Gk + ∆Gk~ ≤ ~Gk~ + ~∆Gk~ ≤ (1 + δk)~Gk~,

and hence

‖∆G1 ◦G∗
2 ◦ · · · ◦G∗

d‖∞ ≤ δ1

d∏

k=2
(1 + δk)~G1~ · · ·~Gd~.

The other lines on the right-hand side of (35) can be bounded similarly. Thus, summing over all the terms
on the right-hand side of (35), we find

‖∆(G1 ◦ · · · ◦Gd)‖∞ ≤ ~G1~ · · ·~Gd~
(

d∑

k=1
δk

)
exp

(
d∑

k=1
δk

)
,

where we have used the fact that 1 + x < exp(x). !

Remark 9. We note that in the previous lemma, the bounds we obtain are quite pessimistic, since they do
not account for possible cancellations in contractions of multiple Gk’s. The product of ~Gk~’s could instead
be replaced by the more cumbersome, but sharper, expression

max
k

max
σl,σr∈{0,1}

max
x1,...,xd

‖Gσl
1 ◦ · · · ◦Gσl

k−1‖ · ~Gk~ · ‖Gσr
k+1 ◦ · · · ◦G

σr
d ‖,

where G0
k = Gk and G1

k = G∗
k.

D.2. Perturbation results

We have seen from Theorem 3 that under certain mild assumptions Algorithm 1 produces a well-defined
set of matrix equations (7). The following result shows that small perturbations of the coefficients and the
right-hand sides of (7) result in small perturbations of the output of Algorithm 1.

Y. Hur et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101575 33

Lemma 14. Under the assumptions of Theorem 3, let G1, . . . , Gd be the solutions to (7). Given δ ∈ (0, 1),
suppose that the coefficients and right-hand sides of (7) are perturbed such that

‖∆A1‖, . . . , ‖∆Ad−1‖, ‖∆B1‖∞, . . . , ‖∆Bd‖∞ ≤ δβ =: δ
(√

8rmax(m,n)cA
(

1 + 1
cG

))−1

where the constants are defined as follows:

• r = max1≤k≤d−1 rk,
• m = max1≤k≤d−1 mk,
• n = max1≤k≤d nk,
• cG = min1≤k≤d~Gk~,
• cA = 1 ∨ max1≤k≤d−1 ‖A†

k‖.

Then, the perturbed version of (7) has Gk + ∆Gk as least-squares solutions such that

~∆Gk~
~Gk~ ≤ δ.

Proof. First, we compute a perturbation bound for the solution of the first equation: notice that √
8rmax(m,n)cA ≥

√
nr, which implies β ≤ cG√

nr
, hence

~∆G1~
~G1~ = ~∆B1~

~G1~ ≤
√
nr‖∆B1‖∞

~G1~ ≤
√
nrβδ

cG
≤

√
nr

cG

cG√
nr

δ = δ.

Next, we observe that

‖∆Ak‖ ≤ β ≤ 1
2cA

≤ 1
2‖A†

k‖
,

from which it follows that ‖∆Ak‖ ‖A†
k‖ ≤ 1/2 for all k = 1, . . . , d −1, and therefore we may apply Lemma 11.

In particular,

~∆Gk~
~Gk~ ≤

√
8mk−1rk‖A†

k−1‖
(
‖∆Ak−1‖ + ‖∆Bk‖∞

cG

)

≤
√

8mrcA

(
1 + 1

cG

)
βδ

≤ δ. !

Next, we analyze the effect of a perturbation ∆p of the input p of Algorithm 1. Having established
Lemma 14, it suffices to quantify ∆Ak and ∆Bk in terms of ∆p. First, the perturbation on Φ̃k from
Sketching is obvious; we may roughly say ∆Φ̃k ≈ Sk−1 ◦ ∆p ◦ Tk+1. Now that Bk is obtained as the left
singular vectors of Φ̃k in Trimming, we invoke Wedin’s theorem [32] to quantify ∆Bk in terms of ∆Φ̃k. To
this end, we first introduce the following distance comparing two 3-tensors up to rotation, which is common
in spectral analysis of linear algebra, see Chapter 2 of [5].

Definition 15. For any 3-tensors Ĝ, G ∈ Rr1×n×r2 , we define

dist(Ĝ,G) := min
R1∈O(r1),R2∈O(r2)

~Ĝ−R1 ◦G ◦R2~.

34 Y. Hur et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101575

Here, R1 ◦G ◦R2 denotes a 3-tensor formed by contracting the second index of R1 and the first index of G
and contracting the first index of R2 and the third index of G.

Using this distance, we compare the Ĝ1, . . . , Ĝd, the which result from applying Algorithm 1 to p̂ = p +∆p

as input, with G1, . . . , Gd, the results of Algorithm 1 with p as input. We will restrict our analysis to the
case where p is a Markov model and Algorithm 1 is implemented with sketches (14) and (16) as in Section 5.

Remark 10. As in Remark 8, we define dist(·, ·) for the first and last cores as well. Accordingly, we set

dist(Ĝ1, G1) = min
R∈O(r1)

~Ĝ1 −G1R~,

dist(Ĝd, Gd) = min
R∈O(rd−1)

~Ĝd −RGd~,

where G1, Ĝ1 : [n1] × [r1] → R and Gd, Ĝd : [rd−1] × [nd] → R are the first and last cores produced by the
algorithm, respectively. Here ~·~ on the right-hand sides of the previous equations are the norms defined
for the first and last cores introduced in Remark 8.

Proposition 16. Under the assumptions of Theorem 6, let G1, . . . , Gd be the cores of p obtained as solutions
to (7). Suppose we apply Algorithm 1 to the perturbed input p̂ = p + ∆p with sketches (14) and (16) as in
Theorem 6; the results are denoted as Ĝ1, . . . , Ĝd. Suppose further that for some fixed δ ∈ (0, 1),

‖∆p(x1;x2)‖∞, ‖∆p(x1, x2;x3)‖∞, . . . , ‖∆p(xd−2, xd−1;xd)‖∞‖∆p(xd−1;xd)‖∞

≤ cP
2n2(1 + cP)

(√
8rncA

(
1 + 1

cG

))−1
δ =: γδ

(36)

where the constants are defined as follows:

• n = max1≤k≤d nk,
• cP = σr1(p(x1; x2)) ∧ mink=2,...,d−1 σrk(p(xk−1, xk; xk+1)),
• cG = min1≤k≤d~Gk~,
• cA = 1 ∨ max1≤k≤d−1 ‖A†

k‖.

Then, for k = 1, . . . , d,

dist(Ĝk, Gk)
~Gk~ ≤ δ.

Proof. We apply Algorithm 1 to p and p̂ with sketches (14) and (16) as in Theorem 6; the resulting coefficient
matrices and right-hand sides of (7) are

A1, . . . , Ad−1, B1, . . . , Bd−1, p(xd−1, xd) and Â1, . . . , Âd−1, B̂1, . . . , B̂d−1, p̂(xd−1, xd),

respectively. Our goal is to quantify their differences.
Recall that B1 and B̂1 are the first r1 left singular vectors of p(x1; x2) and p̂(x1; x2), respectively. We apply

Wedin’s theorem presented in Theorem 2.9 of [5]; if ‖∆p(x1; x2)‖ < σr1(p(x1; x2)), we can find R1 ∈ O(r1)
such that

B̂1(x1;α1) =
r1∑

a1=1
B1(x1; a1)R1(a1;α1) + E1(x1;α1),

Y. Hur et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101575 35

and

‖E1(x1;α1)‖ ≤
√

2‖∆p(x1;x2)+B1(x1; a1)‖
σr1(p(x1;x2)) − ‖∆p(x1;x2)‖

.

In particular, if ‖∆p(x1; x2)‖ ≤ (1 − 1/
√

2)σr1(p(x1; x2)), using ‖B1(x1; a1)‖ = 1, we have

‖E1(x1;α1)‖ ≤ 2‖∆p(x1;x2)‖
σr1(p(x1;x2))

.

Similarly, for k = 2, . . . , d − 1, if ‖∆p(xk−1, xk; αk)‖ ≤ (1 − 1/
√

2)σrk(p(xk−1, xk; xk+1)), we can find
Rk ∈ O(rk) such that

B̂k(xk−1, xk;αk) =
rk∑

ak=1
Bk(xk−1, xk; ak)Rk(ak;αk) + Ek(xk−1, xk;αk),

and

‖Ek(xk−1, xk;αk)‖ ≤ 2‖∆p(xk−1, xk;xk+1)‖
σrk(p(xk−1, xk;xk+1))

.

Accordingly, for k = 2, . . . , d − 1,

Âk(xk;αk) =
rk∑

ak=1
Ak(xk; ak)Rk(ak;αk) +

nk−1∑

xk−1=1
Ek(xk−1, xk;αk).

Conceptually speaking, we see that the perturbation in the coefficients and right-hand sides of equations
(7) for G1, . . . , Gd consist of two parts: a rotation and an additive error. We will see that though the rotations
affect the individual Gk’s, they do not change the final contraction G1 ◦ · · · ◦Gd, and hence do not directly
contribute to the pointwise error in the compressed representation of the density. To that end, we define
the rotated quantities Φ∗

1, A∗
k, and B∗

k as follows:

B∗
1(x1,α1) :=

r1∑

a1=1
B1(x1, a1)R1(a1,α1) =: A∗

1(x1,α1),

B∗
k(xk−1, xk,αk) :=

rk∑

ak=1
Bk(xk−1, xk, ak)Rk(ak,αk),

A∗
k(xk,αk) :=

nk−1∑

xk−1=1
B∗

k(xk−1, xk,αk) =
rk∑

ak=1
Ak(xk, ak)Rk(ak,αk).

Now, consider the following equations:

G∗
1 = B∗

1 ,

rk−1∑

αk−1=1
A∗

k−1(xk−1,αk−1)G∗
k(αk−1, xk,αk) = B∗

k(xk−1, xk,αk) k = 2, . . . , d− 1

rd−1∑

αd−1=1
A∗

d−1(xd−1,αd−1)G∗
d(αd−1, xd) = p(xd−1, xd).

(37)

36 Y. Hur et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101575

These equations can be viewed as the rotated version of the original equations for G1, . . . , Gd. In fact, the
solutions are also simply rotated from the original solutions G1, . . . , Gd as follows1:

G∗
1 =

r1∑

a1=1
G1(x1, a1)R1(a1,α1),

G∗
k(αk−1, xk,αk) =

rk−1∑

ak−1=1

rk∑

ak=1
Rk−1(ak−1,αk−1)Gk(ak−1, xk, ak)Rk(ak,αk) k = 2, . . . , d− 1,

G∗
d(αd−1, xd) =

rd−1∑

ad−1=1
Rd−1(ad−1,αd−1)Gd(ad−1, xd).

By definition, it is obvious that ~Gk~ = ~G∗
k~ for all k = 1, . . . , d and G1 ◦ · · · ◦Gd = G∗

1 ◦ · · · ◦G∗
d.

We now address the effect of the additive error. As a result of the above discussion, running our algorithm
with input p̂ amounts to a perturbed version of (37), where the coefficients and the right-hand sides are
perturbed as follows:

B̂k = B∗
k + ∆B∗

k , Âk = A∗
k + ∆A∗

k k = 1, . . . , d− 1,
p̂(xd−1;xd) = p(xd−1;xd) + ∆p(xd−1;xd).

By construction, ∆B∗
1 = ∆A∗

1 = E1,

∆B∗
k = Ek, ∆A∗

k(xk;αk) =
nk−1∑

xk−1=1
Ek(xk−1, xk;αk) k = 2, . . . , d− 1.

We now look for suitable bounds on Ĝk −G∗
k for k = 1, . . . , d. In light of Lemma 14, it suffices to construct

suitable bounds for ‖∆A∗
1‖, . . . , ‖∆A∗

d−1‖, ‖∆B∗
1‖∞, . . . , ‖∆B∗

d−1‖∞, and ‖∆p(xd−1; xd)‖∞. In particular,
we claim

‖E1‖, ‖∆A∗
2‖ . . . , ‖∆A∗

d−1‖, ‖E1‖∞, . . . ‖Ed−1‖∞, ‖∆p(xd−1;xd)‖∞ ≤ βδ, (38)

where β is as in Lemma 14, namely,

β =
(√

8rncA
(

1 + 1
cG

))−1
.

Here, we use the fact that mk = nk and max1≤k≤d−1 rk ≤ n. Essentially, we have

γ = cP
2n2(1 + cP)β.

By definition of G∗
k and A∗

k, it is obvious that cG = min1≤k≤d~Gk~ = min1≤k≤d~G∗
k~ and cA =

max1≤k≤d−1 ‖A†
k‖ = max1≤k≤d−1 ‖(A∗

k)†‖. Hence, by Lemma 14, it suffices to check (38) to prove that
for k = 1, . . . , d,

~Ĝk −G∗
k~

~G∗
k~ ≤ δ. (39)

1 More simply, G∗
1 = G1R1, G∗

k = R"
k−1 ◦ Gk ◦ Rk for k = 2, . . . , d − 1, and G∗

d = R"
d−1Gd.

Y. Hur et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101575 37

Let us verify (38). First,

‖∆p(xd−1;xd)‖∞ ≤ γδ ≤ βδ.

Moreover, as we showed above,

‖E1‖∞ ≤ ‖E1‖ ≤ 2‖∆p(x1;x2)‖
σr1(p(x1;x2))

≤ 2n‖∆p(x1;x2)‖∞
σr1(p(x1;x2))

≤ 2n
cP

γδ ≤ βδ.

For k = 2, . . . , d − 1, we verify ‖∆A∗
k‖ ≤ n1/2‖Ek(xk−1, xk; αk)‖. Note that ∆A∗

k = PkEk(xk−1, xk; αk);
here Pk ∈ Rnk×nknk−1 = [Ik, . . . , Ik], where Ik ∈ Rnk×nk is the identity matrix. Hence, ‖∆A∗

k‖ ≤
‖Pk‖‖Ek(xk−1, xk; αk)‖ ≤ n1/2‖Ek(xk−1, xk; αk)‖ because ‖Pk‖ = √

nk−1 ≤ n1/2. Therefore,

‖∆A∗
k‖, ‖Ek‖∞ ≤ n1/2‖Ek(xk−1, xk;αk)‖

≤ 2n1/2‖∆p(xk−1, xk;xk+1)‖
σrk(p(xk−1, xk;xk+1))

≤ 2n2‖∆p(xk−1, xk;xk+1)‖∞
σrk(p(xk−1, xk;xk+1))

≤ 2n2γ

cP
δ ≤ βδ.

Hence, (38) is satisfied, thus (39) holds. By definition of dist(·, ·) and ~·~, we have for k = 1, . . . , d,

dist(Ĝk, Gk)
~Gk~ ≤ ~Ĝk −G∗

k~
~Gk~ = ~Ĝk −G∗

k~
~G∗

k~ ≤ δ. !

The following result on the error of the contraction follows immediately from the previous Proposition,
combined with Corollary 13.

Theorem 17. Under the assumptions of Theorem 6, let G1, . . . , Gd be the cores of p obtained as solutions
to (7). Suppose we apply Algorithm 1 to the perturbed input p̂ = p + ∆p with sketches (14) and (16) as in
Theorem 6; the results are denoted as Ĝ1, . . . , Ĝd. Suppose further that for some fixed ε ∈ (0, 1),

‖∆p(x1;x2)‖∞, ‖∆p(x1, x2;x3)‖∞, . . . , ‖∆p(xd−2, xd−1;xd)‖∞‖∆p(xd−1;xd)‖∞

≤ cP
6dn2(1 + cP)

(√
8rncA

(
1 + 1

cG

))−1
ε,

where the constants n, cP , cG, cA are as in Proposition 16. Then,

‖Ĝ1 ◦ · · · ◦ Ĝd −G1 ◦ · · · ◦Gd‖∞
~G1~ . . .~Gd~ ≤ ε.

D.3. Estimation error analysis

Lastly, we present a precise version of Theorem 7. Recall that our main interest is to apply Algorithm 1
to an empirical density p̂ constructed based on N i.i.d. samples from some underlying density p!; letting
Ĝ1, . . . , Ĝd be the results of Algorithm 1 applied to p̂, we hope to claim p! ≈ Ĝ1 ◦ · · · ◦ Ĝd.

Using the previous perturbation result (Proposition 16), we will quantify a difference between Ĝk and
G!

k, where G!
1, . . . , G

!
d are the results of Algorithm 1 applied to p!. The only technicality here is that the

38 Y. Hur et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101575

perturbed input is not arbitrary, but given as an empirical density. Therefore, the perturbation p̂− p! can
be represented in terms of the sample size N . The following lemma derives a concrete bound on p̂−p! using
simple concentration inequalities.

Lemma 18. Let p! : [n1] × · · · × [nd] → R be a density. Suppose p̂ is an empirical density based on N i.i.d.
samples from p!. Let ∆p! = p̂− p! and n = max1≤k≤d nk, then for any η ∈ (0, 1), the following inequalities
hold with probability at least 1 − η:

‖∆p!(x1;x2)‖∞ ≤
√

log(2n2d/η)
2N ,

‖∆p!(xk−1, xk;xk+1)‖∞ ≤
√

log(2n3d/η)
2N k = 2, . . . , d− 1,

‖∆p!(xd−1;xd)‖∞ ≤
√

log(2n2d/η)
2N .

Proof. Since Np̂ is the sum of N independent Bernoulli random variables, concentration inequalities imply
that for any fixed x1 ∈ [n1] and x2 ∈ [n2] and t ≥ 0,

P (|∆p!(x1, x2)| > t) ≤ 2e−2Nt2 .

Due to the union bound, ‖∆p!(x1; x2)‖∞ ≤ t holds with probability at least 1 − 2n2e−2Nt2 . Equivalently,

‖∆p!(x1;x2)‖∞ ≤
√

log(2n2/η)
2N

holds with probability at least 1 − η. Similarly, for k = 2, . . . , d − 1,

‖∆p!(xk−1, xk;xk+1)‖∞ ≤
√

log(2n3/η)
2N

holds with probability at least 1 − η. Due to the union bound,

‖∆p!(x1;x2)‖∞ ≤
√

log(2n2d/η)
2N ,

‖∆p!(xk−1, xk;xk+1)‖∞ ≤
√

log(2n3d/η)
2N k = 2, . . . , d− 1,

‖∆p!(xd−1;xd)‖∞ ≤
√

log(2n2d/η)
2N

hold with probability at least 1 − η. !

Hence, we have proved that the perturbation p̂− p! is bounded above by O(1/
√
N). Now, by comparing

this bound with the right-hand sides of (36), we obtain a complexity. Again, we will restrict our analysis
to the case where p! is a Markov model and Algorithm 1 is implemented with sketches (14) and (16) as in
Section 5.

Theorem 19. Let p! : [n1] × · · ·× [nd] → R be a Markov density satisfying Condition 1 such that the rank of
the k-th unfolding matrix of p! is rk for each k = 1, . . . , d − 1. Let G!

1, . . . , G
!
d be the cores of p! obtained

by applying Algorithm 1 to p! with sketches (14) and (16) as in Theorem 6; A!
1, . . . , A

!
d−1 are the resulting

coefficient matrices in (7).

Y. Hur et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101575 39

Now, let p̂ be an empirical density based on N i.i.d. samples from p!. Let Ĝ1, . . . , Ĝd be the results of
applying Algorithm 1 to p̂ with sketches (14) and (16) as in Theorem 6. Given δ ∈ (0, 1) and η ∈ (0, 1),
suppose

N ≥ 16c2A
(

1 + 1
cG

)2 (
1 + 1

cP

)2 n5r log(2n3d/η)
δ2 , (40)

where

• n = max1≤k≤d nk,
• cP = σr1(p!(x1; x2)) ∧ mink=2,...,d−1 σrk(p!(xk−1, xk; xk+1)),
• cG = min1≤k≤d~G!

k~,
• cA = 1 ∨ max1≤k≤d−1 ‖(A!

k)†‖.

Then,

dist(Ĝk, G!
k)

~G!
k~ ≤ δ ∀k = 1, . . . , d

with probability at least 1 − η.

Proof. Due to Proposition 16, it suffices to show that N satisfies

√
log(2n3d/η)

2N ≤ cP
2n2(1 + cP)

(√
8rncA

(
1 + 1

cG

))−1
δ,

which is equivalent to (40). !

In addition, using Proposition 17, we obtain the following sample complexity for bounding the error of
the contraction.

Theorem 20. Let p! : [n1] × · · ·× [nd] → R be a Markov density satisfying Condition 1 such that the rank of
the k-th unfolding matrix of p! is rk for each k = 1, . . . , d − 1. Let G!

1, . . . , G
!
d be the cores of p! obtained

by applying Algorithm 1 to p! with sketches (14) and (16) as in Theorem 6; A!
1, . . . , A

!
d−1 are the resulting

coefficient matrices in (7).
Now, let p̂ be an empirical density based on N i.i.d. samples from p!. Let Ĝ1, . . . , Ĝd be the results of

applying Algorithm 1 to p̂ with sketches (14) and (16) as in Theorem 6. Given ε ∈ (0, 1) and η ∈ (0, 1),
suppose

N ≥ 144c2A
(

1 + 1
cG

)2 (
1 + 1

cP

)2 d2n5r log(2n3d/η)
ε2

,

where

• n = max1≤k≤d nk,
• cP = σr1(p!(x1; x2)) ∧ mink=2,...,d−1 σrk(p!(xk−1, xk; xk+1)),
• cG = min1≤k≤d~G!

k~,
• cA = 1 ∨ max1≤k≤d−1 ‖(A!

k)†‖.

40 Y. Hur et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101575

Then,

‖Ĝ1 ◦ · · · ◦ Ĝd −G!
1 ◦ · · · ◦G!

d‖∞
~G!

1~ . . .~G!
d~ ≤ ε

with probability at least 1 − η.

Remark 11. In Theorems 19 and 20, notice that the constants cP , cG, cA are independent of d; to see this,
observe that they are determined by the marginals of p!, namely, p!(x1; x2) and p!(xk−1, xk; xk+1), which
are independent of d under Condition 1. Therefore, we obtain Theorem 7 and Corollary 8, where the
upper bounds hide those constants under the “big-O” notation as they are independent of d. Meanwhile,
notice that Theorems 19 and 20 are valid for p! that may not satisfy Condition 1; in such a case, the
constants cP , cG, cA may depend on d in principle. Extensive numerical experiments, however, suggest that
the constants cP , cG, cA are often nearly independent of d for a broad class of Markov models that may not
satisfy Condition 1, such as the Ginzburg-Landau model used in Section 6.

References

[1] Daniele Bigoni, Allan P. Engsig-Karup, Youssef M. Marzouk, Spectral tensor-train decomposition, SIAM J. Sci. Comput.
38 (4) (2016) A2405–A2439.

[2] Tai-Danae Bradley, E. Miles Stoudenmire, John Terilla, Modeling sequences with quantum states: a look under the hood,
Mach. Learn.: Sci. Technol. 1 (3) (2020) 035008.

[3] Maolin Che, Yimin Wei, Randomized algorithms for the approximations of Tucker and the tensor train decompositions,
Adv. Comput. Math. 45 (1) (2019) 395–428.

[4] Yian Chen, Jeremy Hoskins, Yuehaw Khoo, Michael Lindsey, Committor functions via tensor networks, arXiv preprint,
arXiv :2106 .12515, 2021.

[5] Yuxin Chen, Yuejie Chi, Jianqing Fan, Cong Ma, Spectral methods for data science: a statistical perspective, Found.
Trends Mach. Learn. 14 (5) (2021) 566–806.

[6] Song Cheng, Lei Wang, Tao Xiang, Pan Zhang, Tree tensor networks for generative modeling, Phys. Rev. B. 99 (15) (2019)
155131.

[7] Hussam Al Daas, Grey Ballard, Peter Benner, Parallel algorithms for tensor train arithmetic, SIAM J. Sci. Comput. 44 (1)
(2022) C25–C53.

[8] Hussam Al Daas, Grey Ballard, Paul Cazeaux, Eric Hallman, Agnieszka Miedlar, Mirjeta Pasha, Tim W. Reid, Arvind
K. Saibaba, Randomized algorithms for rounding in the tensor-train format, arXiv preprint, arXiv :2110 .04393, 2021.

[9] Sergey Dolgov, Karim Anaya-Izquierdo, Colin Fox, Robert Scheichl, Approximation and sampling of multivariate proba-
bility distributions in the tensor train decomposition, Stat. Comput. 30 (2020) 603–625.

[10] Marylou Gabrié, Grant M. Rotskoff, Eric Vanden-Eijnden, Adaptive Monte Carlo augmented with normalizing flows, arXiv
preprint, arXiv :2105 .12603, 2021.

[11] Ian Goodfellow, Jean Pouget-Abadie Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua
Bengio, Generative adversarial nets, Advances in Neural Information Processing Systems (2014).

[12] Alex Gorodetsky, Sertac Karaman, Youssef Marzouk, A continuous analogue of the tensor-train decomposition, Comput.
Methods Appl. Mech. Eng. 347 (2019) 59–84.

[13] Nathan Halko, Per-Gunnar Martinsson, Joel A. Tropp, Finding structure with randomness: probabilistic algorithms for
constructing approximate matrix decompositions, SIAM Rev. 53 (2) (2011) 217–288.

[14] Zhao-Yu Han, Jun Wang, Heng Fan, Lei Wang, Pan Zhang, Unsupervised generative modeling using matrix product states,
Phys. Rev. X. 8 (2018) 031012.

[15] Yuehaw Khoo, Jianfeng Lu, Lexing Ying, Efficient construction of tensor ring representations from sampling, Multiscale
Model. Simul. 19 (3) (2021) 1261–1284.

[16] Diederik P. Kingma, Max Welling, Auto-encoding variational Bayes, arXiv preprint, arXiv :1312 .6114, 2013.
[17] Yuji Nakatsukasa, Joel A. Tropp, Fast & accurate randomized algorithms for linear systems and eigenvalue problems,

arXiv preprint, arXiv :2111 .00113, 2021.
[18] Georgii S. Novikov, Maxim E. Panov, Ivan V. Oseledets, Tensor-train density estimation, Uncertainty in Artificial Intelli-

gence (2021) 1321–1331.
[19] Ivan Oseledets, Eugene Tyrtyshnikov, TT-cross approximation for multidimensional arrays, Linear Algebra Appl. 432 (1)

(2010) 70–88.
[20] Ivan V. Oseledets, Tensor-train decomposition, SIAM J. Sci. Comput. 33 (5) (2011) 2295–2317.
[21] D. Perez-Garcia, F. Verstraete, M.M. Wolf, J.I. Cirac, Matrix product state representations, Quantum Info. Comput. 7 (5)

(2007) 401–430.
[22] Danilo Rezende, Shakir Mohamed, Variational inference with normalizing flows, in: International Conference on Machine

Learning, 2015, pp. 1530–1538.

http://refhub.elsevier.com/S1063-5203(23)00062-3/bibB01EEDE95078D2688D94B2A68E0C37D9s1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bibB01EEDE95078D2688D94B2A68E0C37D9s1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bib28C107456C83816B4BDE52D71289F998s1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bib28C107456C83816B4BDE52D71289F998s1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bibF35428AAA40E48AE73C49BB9602A4880s1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bibF35428AAA40E48AE73C49BB9602A4880s1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bibCAE6834B195CD9E72C44A17C671ED4B4s1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bibCAE6834B195CD9E72C44A17C671ED4B4s1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bibE2F393E92CABCEF67DE8E23A56F5CAA4s1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bibE2F393E92CABCEF67DE8E23A56F5CAA4s1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bibD9F17F29B117F39DEDD8FAD83CF0CDF5s1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bibD9F17F29B117F39DEDD8FAD83CF0CDF5s1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bib9E59BA2055C996D40690E9350D83E5F6s1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bib9E59BA2055C996D40690E9350D83E5F6s1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bibE102C0D16235C26DF10D3864D2D025F1s1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bibE102C0D16235C26DF10D3864D2D025F1s1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bibA6B57DBC9C3EA1697FADE73990BB10EBs1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bibA6B57DBC9C3EA1697FADE73990BB10EBs1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bib4DCCDDD27A36575900D32783712D6E4Cs1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bib4DCCDDD27A36575900D32783712D6E4Cs1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bib47F0FA1194A7FD04DA0AEA385E98910Bs1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bib47F0FA1194A7FD04DA0AEA385E98910Bs1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bib8E69AE05C6C7F6BAA95E731BC857975Fs1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bib8E69AE05C6C7F6BAA95E731BC857975Fs1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bibB78A2D59371D35064AD9317A8465B0E2s1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bibB78A2D59371D35064AD9317A8465B0E2s1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bibF687685213BF723B35C3A6FE2FDD815Es1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bibF687685213BF723B35C3A6FE2FDD815Es1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bib2D56A5717F6B1ECDD743EDD53666DB0Cs1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bib2D56A5717F6B1ECDD743EDD53666DB0Cs1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bib91954247EE2A8CF85E54F5A9A9E48B46s1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bibEF4BB9CD19980902990B1D3EAD22BCDBs1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bibEF4BB9CD19980902990B1D3EAD22BCDBs1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bib42DB5C86033915144FF7E3CD346126CCs1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bib42DB5C86033915144FF7E3CD346126CCs1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bib2ED7029D65DE2CA32A3CFD47E167BA27s1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bib2ED7029D65DE2CA32A3CFD47E167BA27s1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bibBF8BDAFE1B330326505700455D083920s1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bibE6383860D0C43083DB8F1A361B5CB8CBs1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bibE6383860D0C43083DB8F1A361B5CB8CBs1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bibC2F7D49CE603C71C6D0CAAC67519C9DDs1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bibC2F7D49CE603C71C6D0CAAC67519C9DDs1

Y. Hur et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101575 41

[23] Vladimir Rokhlin, Mark Tygert, A fast randomized algorithm for overdetermined linear least-squares regression, Proc.
Natl. Acad. Sci. 105 (36) (2008) 13212–13217.

[24] Lars Ruthotto, Eldad Haber, An introduction to deep generative modeling, GAMM-Mitteilungen 44 (2) (2021) e202100008.
[25] Dmitry Savostyanov, Ivan Oseledets, Fast adaptive interpolation of multi-dimensional arrays in tensor train format, The

2011 International Workshop on Multidimensional (nD) Systems (2011) 1–8.
[26] Tianyi Shi, Maximilian Ruth, Alex Townsend, Parallel algorithms for computing the tensor-train decomposition, arXiv

preprint, arXiv :2111 .10448, 2021.
[27] Michael Steinlechner, Riemannian optimization for high-dimensional tensor completion, SIAM J. Sci. Comput. 38 (5)

(2016) S461–S484.
[28] Endre Süli, David F. Mayers, An Introduction to Numerical Analysis, Cambridge University Press, 2003.
[29] Yiming Sun, Yang Guo, Charlene Luo, Joel Tropp, Madeleine Udell, Low-rank Tucker approximation of a tensor from

streaming data, SIAM J. Math. Data. Sci. 2 (4) (2020) 1123–1150.
[30] Esteban G. Tabak, Eric Vanden-Eijnden, Density estimation by dual ascent of the log-likelihood, Commun. Math. Sci.

8 (1) (2010) 217–233.
[31] Wenqi Wang, Vaneet Aggarwal, Shuchin Aeron, Efficient low rank tensor ring completion, International Conference on

Computer Vision (2017) 5697–5705.
[32] Per-Åke Wedin, Perturbation bounds in connection with singular value decomposition, BIT Numer. Math. 12 (1) (1972)

99–111.
[33] Holger Wendland, Numerical Linear Algebra: An Introduction, Cambridge Texts in Applied Mathematics, Cambridge

University Press, 2017.
[34] Steven R. White, Density matrix formulation for quantum renormalization groups, Phys. Rev. Lett. 69 (1992) 2863–2866.
[35] Wenjing Yang, Hans-Georg Müller, Ulrich Stadtmüller, Functional singular component analysis, J. R. Stat. Soc. Ser. B:

Stat. Methodol. 73 (3) (2011) 303–324.

http://refhub.elsevier.com/S1063-5203(23)00062-3/bib9C33D98072C84CCD32B6E8B999681AA9s1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bib9C33D98072C84CCD32B6E8B999681AA9s1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bib7E0ED38B50BFCE1341D695DACE99EDCEs1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bib20FE2F2896D5B3800CA32A55053E8A0Bs1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bib20FE2F2896D5B3800CA32A55053E8A0Bs1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bibE4A18B6BF966E48433743AC21E444410s1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bibE4A18B6BF966E48433743AC21E444410s1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bibE11ACF36CE067E55FF4CEFDEA0C375B9s1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bibE11ACF36CE067E55FF4CEFDEA0C375B9s1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bibE29B94BC8538C9BE6813ED58A696F38Ds1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bib8FE009547C0CC8770F7B3CC6C5FD9EDCs1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bib8FE009547C0CC8770F7B3CC6C5FD9EDCs1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bib23084DE45BE7CDDD6396E9C11F550D52s1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bib23084DE45BE7CDDD6396E9C11F550D52s1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bibB69352CD107A08E4DBA9E5E58A787708s1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bibB69352CD107A08E4DBA9E5E58A787708s1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bib244F41111378E0FB0B4A3AB1BE0922C2s1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bib244F41111378E0FB0B4A3AB1BE0922C2s1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bib0B4CE319E280DA19A4F911B00820C473s1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bib0B4CE319E280DA19A4F911B00820C473s1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bibD4BA2B6412EA7272DD4D4014B36534DEs1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bib7625AC700F09F21424F9148181F33651s1
http://refhub.elsevier.com/S1063-5203(23)00062-3/bib7625AC700F09F21424F9148181F33651s1

	Generative modeling via tensor train sketching
	1 Introduction
	1.1 Prior work
	1.2 Organization
	1.3 Notations

	2 Main idea of the algorithm
	3 Description of the main algorithm: TT-RS
	3.1 Details of the subroutines
	3.2 Complexity

	4 Conditions for exact recovery for TT-RS
	5 Application of TT-RS to Markov model
	5.1 Choice of sketch
	5.2 Exact recovery for Markov models
	5.3 Stable estimation for Markov models
	5.4 Higher-order Markov models

	6 Numerical experiments
	6.1 Ginzburg-Landau distribution
	6.2 Ising-type model

	7 Conclusion
	Data availability
	Acknowledgments
	Appendix A Validity of solving CDEs
	Appendix B Non-recursive TT-RS: TT-Sketch (TT-S)
	B.1 Role of recursive left sketches and possibility of non-recursive sketches
	B.2 Non-recursive sketches

	Appendix C Continuous TT-RS
	C.1 Applying TT-RS-C to the Markov case

	Appendix D Perturbation results
	D.1 Preliminaries
	D.2 Perturbation results
	D.3 Estimation error analysis

	References

