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from the standard recursive SVD-based procedure for constructing a tensor train.
Instead, we formulate and solve a sequence of small linear systems for the individual
tensor train cores. This approach can avoid the curse of dimensionality that
threatens both the algorithmic and sample complexities of the recovery problem.
Specifically, for Markov models under natural conditions, we prove that the tensor
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Tensor decompositions dimensionality. Finally, we illustrate the performance of the method with several
Tensor train numerical experiments.
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1. Introduction

Given independent samples from a probability distribution, learning a generative model [24] that can
produce additional samples is a task of fundamental importance in machine learning and data science.
The generative modeling of high-dimensional probability distributions has seen significant recent progress,
particularly due to the use of neural-network based parametrizations within both old and new paradigms
such as generative adversarial networks (GANs) [11], variational autoencoders (VAE) [16], and normalizing
flows [22,30]. Among these three major paradigms, only normalizing flows furnish an analytic formula for
the probability density function, and in all cases the computation of downstream quantities of interest can
only be achieved via Monte Carlo sampling-based approaches with a relatively low order of convergence.
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More precisely, suppose we are given N independent samples

1 1 N N *

drawn from an underlying probability density p*: R* — R, our goal is to estimate p* from the empirical
distribution

N

N 1

p(mla s 75Ed) = N E 5(y§i)7‘__,y£li))(xla cee xd)a (1)
=1

where 0(,, .., is the 6-measure supported on (y1,...,¥q) € R<. In this paper, assuming that the underlying
density p* takes a low-rank tensor train (TT) [20] format (known as a matrix product state (MPS) in the
physics literature [21,34]), we propose and analyze an algorithm that outputs a TT format of p to estimate
p*. Such a TT ansatz has found applications in generative modeling; for instance, [14] (and its extension [6])
utilizes it to learn the distribution of handwritten digit images. In particular, the TT ansatz offers several
benefits. First, generating independent and identically distributed (i.i.d.) samples can be done efficiently
by applying conditional distribution sampling [9] to the obtained TT format; it can also be used for other
downstream tasks, such as direct (deterministic) computation of the moments. However, in order to exploit
these benefits, we need to be able to determine the TT representation efficiently. Our algorithm, which
we name Tensor Train via Recursive Sketching (TT-RS), provides computationally /statistically efficient
estimation of p*, making the following contributions.

o By a sketching technique, we can estimate the tensor components of the TT via a sequence of linear
systems, with a complexity that is linear in both the dimension d and the sample size .

e In the setting of a Markovian density with dimension-independent transition kernels, we prove that the
tensor cores can be estimated from a number of samples that scales as log(d).

1.1. Prior work

In the literature, generally two types of input data are considered for the recovery of low-rank TTs. In
the first case, one assumes that one has the ability to evaluate a d-dimensional function p at arbitrary points
and seeks to recover p in a TT format with a limited (in particular, polynomial in d) number of evaluations.
In this context, various methods such as TT-cross [19], DMRG-cross [25], and TT completion [27] have been
considered. Furthermore, generalizations such as [15,31] have been developed to treat densities which have
a tensor ring structure. In the second case, which is the case of this paper, one only has access to a fixed
collection of empirical samples from the density. Importantly, one does not have access to the value of the
density at the given samples. In this case, the ideas of the TT methods that we mentioned earlier cannot
be applied directly.

In order to understand how the proposed method differs from the previous methods, we first show that
in generative modeling, the nature of the problem is different. More precisely, we are mainly dealing with
an estimation problem rather than an approximation problem, where we want to estimate the underlying
density p* that gives the empirical distribution p, in terms of a TT. In such a generative modeling setting,
suppose one designs an algorithm A that takes any d-dimensional function p and gives A(p) as a TT, then
one would like such A to minimize the following differences

pr=AP) = p A + Al —AD).
———— —_———

approximation error estimation error
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In generative modeling, p suffers from sample variance, which leads to variance in A(p) and hence the
estimation error. Our focus is to reduce such an error so that there is no curse of dimensionality in estimating
p*. While our method is inspired by sketching ideas from randomized linear algebra [17,23], which have found
applications in the tensor computation field [3,8,29], there are several notable differences with the current
literature.

o In relation to TT-compression algorithms: Algorithms based on singular value decomposition (SVD)

[20] and randomized linear algebra [19,25,26] aim to compress the input function p as a TT such that
A(p) = p. If such a compression is successful, the above approximation error can be made small, that is,
p* — A(p*) = 0, and we also have A(p) = p; accordingly, the estimation error becomes A(p*) — A(p) ~
p* — p. Such an estimation error, however, grows exponentially in d when having a fixed number of
samples. In this paper, we focus on developing methods that reduce the estimation error due to sample
variance such that there is no curse of dimensionality, and such a setting has not been considered in the
previous TT-compression literature.
A recent work [26] determines a TT from values of a high-dimensional function in a computationally
distributed fashion. In particular, [26] forms an independent set of equations with sketching techniques
from randomized linear algebra to determine the tensor cores in a parallel way. While our method has
similarities with [26], our goal, which is to estimate a TT based on empirical samples of a density,
is different from [26]. Therefore, the purpose and means of sketching are fundamentally different. We
apply sketching such that each equation in the independent system of equations has size that is constant
with respect to the dimension of the problem (unlike the case in [26]), and hence we can estimate the
coefficient matrices of the linear system in a statistically efficient way. Furthermore, our use of parallelism
in setting up the system is mainly to prevent error accumulation in the estimation of tensor cores.

¢ In relation to optimization-based algorithms: A more principled approach for estimating the underlying
density p* is to perform maximum likelihood estimation, i.e. minimizing the Kullback-Leibler (KL) di-
vergence between the TT ansatz and the empirical distribution [2,14,18]. Although maximum likelihood
estimation is statistically efficient in terms of having a low-variance estimator, due to the non-convex
nature of the minimization, these methods can suffer from local minima. Furthermore, these iterative
procedures require multiple passes over N data points. In contrast, the method described in this paper
recovers the cores with a single sweep across all tensor cores.

1.2. Organization

The paper is organized as follows. First, we briefly describe the main idea of our algorithm in Section 2.
Details of the algorithm are presented in Section 3 and conditions for the algorithm to work are discussed
in Section 4. In Section 5, we examine how the conditions in Section 4 lead to exact and stable recovery of
tensor cores under a Markov model assumption of the density. In Section 6, we illustrate the performance
of our algorithm with several numerical examples. We conclude in Section 7.

1.8. Notations

For an integer n € N, we define [n] = {1,...,n}. Note that for m,n € N, a function ¢: [m] x [n] = R
may also be viewed as a matrix of size m x n. We alternate between these two viewpoints often throughout
the paper. For any a,b € R, we define a V b := max(a,b) and a A b := min(a,b). For a,b € N where b > q,
we may use the “MATLAB notation” a : b to denote the set {a,a+1...,b}.

Our primary objective in this paper is to obtain a T'T representation of a d-dimensional function. Through-
out the remainder of this paper, we fix a d-dimensional function p: X1 x---xXg — R, where X1,..., X4 C R.
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Fig. 1. Tensor diagram illustrating the TT representation of p (Definition 1). The variables z;’s correspond to the outward solid
lines in both sides. The solid lines between two adjacent cores on the right-hand side depict the contraction. See [4] for a detailed
introduction to tensor network diagram notation.

Unless stated otherwise, p may not be a density, that is, it can take negative values or its integral may not
be 1. Whenever we are interested in a density, we will mention explicitly that p is a density or use p* instead.

Definition 1. We say that p admits a TT representation of rank (r1,...,r4_1) if there exist G1: X7 x[r1] = R,
Gi: [re—1] X X x [rg]) = Rfor k=2,...,d—1, and Gg: [r4—1] X X4 — R such that

Td—1
p(z1, .. Z Z Gi(z1,01)Ga(ar, v, ) -+ - Ga—1(aa—2,Ta—1,0q-1)Ga(g—1,24)
a1 = 1 ad—1=— =1
for all (z1,...,24) € X1 X -+ x Xg4. In this case, we call Gy,...,Gq the cores of p. For notational simplicity,

in the following we often replace the right-hand side of the above equation (and similar expressions involving
contractions of several tensors) with G o - -0 Gy, where ‘o’ represents the contraction of the cores. We will
also sometimes express the TT representation of p diagrammatically as shown in Fig. 1.

Remark 1. In Definition 1, the sets Xi,..., Xy C R may be infinite; in such a case, the representation in
Definition 1 is also called a functional TT representation [1,12].

Finally, when working with high-dimensional functions, it is often convenient to group the variables into
two subsets and think of the resulting object as a matrix. We call these matrices unfolding matrices. In
particular, for k = 1,...,d — 1, we define the k-th unfolding matrix by p(z1,..., Tk Tkt1,. .., Tq); namely,
group the first k£ and the last d — k variables to form rows and columns, respectively. In certain situations,
for ease of exposition we write zs to denote the joint variable (z;,,...,2;, ), where & = {i1,...,ix} and
1 <4y <--- <i, <d. For example, we may write p(z1,..., Tk Tht1,---,Zd) a8 P(T1.k; Tht1:d)-

2. Main idea of the algorithm

In this section, we sketch the main idea of the TT-RS algorithm. We start with the following simple
observation in the discrete case, i.e., the case where p: [n1] X -+ x [ng] = R for nq,...,nq € N. Supposing
that p is representable in a TT format with rank (r,...,r), then the k-th unfolding matrix p(z1.x; Tk+1:4)
is low-rank. Indeed, we can write

T

P1a; Thrra) = Y Pr(@rns o) U0k Thi:a)
Oékil

for some @ : [n1] X -+ x [ng] X [r] = R and Wg: [r] X [ngs1] X -+ X [ng] — R. On the other hand, the
TT-format assumption on p implies that there exist G, ..., G4 such that

Dy (212, ) § § Gi(z1,01) - Grlag—1, Tk, o),

o=1 ag—1=1
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Wik, Tptta) : Z Z Grri (ks Tht1, rgr) -+ Galoa—1, Ta),

app1=1 ag_1=1

so that p = G1 o --- 0 Gy. In other words, contractions of the first k£ and the last d — k cores of Gy1,...,Gy
yield spanning vectors for the r-dimensional column and the row spaces, respectively, of the k-th unfolding
matrix.

This observation motivates the following procedure to obtain the cores. Suppose that the rank of the
k-th unfolding matrix of p is r. We consider ®y: [nq] x -+ X [ng] X [r] = R such that the column space of
Oy (z1.5; o) is the same as that of the k-th unfolding matrix; for instance, a suitable ®; can be constructed
by forming the SVD of the k-th unfolding matrix p(21.x; 2x+1.4) and setting @ (z1.5; ax) to be the matrix

of left-singular vectors. Next, we attempt to find cores Gy, ...,G4_1 such that
(2128, k) Z Z Gi(z1,0n) - Gr(ag—1, Tk, o) (2)
Q1= 1 A —1— 1
fork=1,...,d—1. Equivalently, we let G; = ®; and solve the following equations for the cores Gy : [ri_1] X

[ng] x [re] = Rfor k=2,...,d—1:

r

Op(rm, k) = Y, Proa(@rn-1, k1) Grlah_1, Tk, ). (3)

Oékll

The above discussion has also been studied in [7,26]. For completeness, we formally state it as follows.

Proposition 2. For each k = 1,...,d — 1, suppose that the rank of the k-th unfolding matriz of p is ri and
define ¥y : [n1] X -+ X [ng] X [rx] = R so that the column space of Py (x1.x; ) s the same as that of the
k-th unfolding matriz of p. Consider the following d matriz equations with unknowns Gp: [n1] X [r1] = R,
Gr: [re—1] X [ng] x [ri] = R fork=2,...,d—1, and Gg: [rg—1] X [n4] = R:

Gi(z1;00) = @1(z1500),

Tk—1
> (@1 ok 1)Grlak-1; 2k, k) = BTk ;zh,00) k=2,...,d—1,
ak_lzl (4)
Td—1
> a1 (21d-1; @a-1)GalCd—13 7a) = p(T1:a-1; Ta).
ag—1=1
Then, each equation of (4) has a unique solution, and the solutions G, ...,Gq satisfy
Td—1
p(z1, .. Z -+ > Gilz,on) - Galag-1, wa)- (5)
1= 1 ag—1=— =1
Hence, by solving these equations we obtain a TT representation of p with cores Gy, ...,Gq. We call (4) the

Core Determining Equations (CDFEs) formed by ®1,...,®4_1.

Proposition 2, which we prove in Appendix A, implies that the cores Gy can be obtained by solving
matrix equations. That said, it should be noted that the coefficient matrices of the CDEs, @y (x1.x; k) for
k=1,...,d—1, are exponentially sized in the dimension d.

In what follows, we take an approach that is similar in spirit to the “sketching” techniques commonly
employed in the randomized SVD literature [13], which are used to dramatically reduce the computational
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cost of computing the SVD of several broad classes of matrices. In this paper, however, sketching plays
a fundamentally different role. Here, sketching is crucial for the stability of the algorithm, though it also
yields an improvement in computational complexity. For our problem, i.e., to determine a TT from samples,
the most important function of sketching is to reduce the size of CDEs such that the reduced coefficient
matrices can be estimated efficiently with a small sample size N. Furthermore, the choice of sketches cannot
be arbitrary (e.g., Gaussian random matrices) but must be chosen carefully to reduce the variance of
the coefficient matrices as much as possible. The features and requirements of this sketching strategy are
particularly apparent in the case of their application to Markov models, which is treated in Section 5. More
concretely, in order to reduce the size of the CDEs, for some function Sy_1: [mg_1] X [n1] X - - [ng—1] = R,

contracting Si_; against (4) (i.e., multiplying both sides by Sx_; and summing over z1,...,z;_1) we find:
Thk—1 ni Nk—1
S D DD SeaBeoti vtk ) Phoa (@i on1) | Grlok—1; 2k, o)
ar_1=1 \z1=1 Tp—1=1

ni Nk —1

= Z Z Sk—1(Br—1; T1:6—1)Pr(T1:6—1; T, Ok

w1:1 1k71:1

Note that the number of rows of the new coefficient matrix on the left-hand side of (6) is mg—_;. Hence,
sketching in this way reduces the number of equations to my_1n;rr when determining each G. Of course,
one must be careful to choose suitable sketch functions Si_1, as mentioned previously. As we shall see, ®y’s
are also obtained from some right sketching functions Ty : [ng41] X -+ - [na] X [lx] = R to be contracted with
p over the variables xy41,...,2q4.

In the next section, we present the details of the proposed algorithm, TT-RS, which gives a set of
equations of the form (6).

Remark 2. We pause here to comment on why we solve (2) in the form of (3). To solve (2), one can in

principle determine Gy, ..., G4 successively, i.e. after determining Gy, ...Gg_1, plug them into (2) to solve
for G. In principle, this is the same as solving (3) where each Gy,..., Gy is determined independently.
But in practice, when ®’s contain noise, determining G, ..., Gy successively via substitutions leads to

noise accumulation. As we will see later, solving the independent set of equations (3) is more robust against
perturbations on the coefficients ®;’s. We again remark that this independent set of equations is similar to
the ones presented in a recent work [26]. However, as mentioned in Section 1.1, our main algorithm presented
in the next section is designed to improve statistical estimation, where it is instrumental to reduce the size
of the coefficients ®y’s via the sketching using Sk_1’s, whereas equations in [26] are exponentially large.

3. Description of the main algorithm: TT-RS

In this section, we present the algorithm TT-RS (Algorithm 1 below) for the case of determining a TT
representation of any discrete d-dimensional function p, where we assume p: [nq] X - -+ X [ng] = R for some
ni,...,nq € N. The stages of Algorithm 1 are depicted in Fig. 2.

Algorithm 1 is divided into four parts: SKETCHING (Algorithm 2), TRIMMING (Algorithm 3), SYSTEM-
FORMING (Algorithm 4), and solving d matrix equations (7). As input, Algorithm 1 requires functions
To,..., Ty and sq,...,84-1; we call them right and left sketch functions, respectively. SKETCHING applies
these sketch functions to p so that &)k resembles the right-hand side of the reduced CDEs (6). In particular,
if I, denotes the number of right sketches and we set [ = 7 for each k where r1,...,74_1 are the target
ranks of the TT, then one could in principle replace the right-hand side of (6) with ®;,. In practice, we
choose I, > ri, and use TRIMMING to generate suitable By’s, to be defined below, from the corresponding
ka’s. These can in turn be used to form a right-hand side in the sense of (6). Lastly, based on By, ..., Bg_1,
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Algorithm 1 TT-RS for a discrete function p.

Require: p: [n1] X - -+ X [ng] — R and target ranks r1,...,74—1.
Require: T%: [ng] X -+ X [ng] X [lk—1] = R with {1 > rr_1 for k=2,...,d.
Require: sq: [m1] X [n1] — R and si: [mg] X [ng] X [mr—1] = Rfor k=2,...,d— 1.

10 Bqp,...,Dq «— SKETCHING(p, T2, ..., Td, 81, ..., Sd—1)-

2: By,...,Bq TRJMMLNG(@l, o ®a,T, . JTd—1)-

3: A1,...,Aq_1 < SYSTEMFORMING(B1,...,Bd—1,51,.,8d—1)-

4: Solve the following d matrix equations via least-squares for the variables G1: [n1] X [r1] = R, Gg: [re—1] X [ng] X [rx] = R

fork=2,...,d—1, and Ggq: [rq—1] X [nq] — R:

G1 = By,

Tk—1
> A a(Brotson_1)Gr(ok—1; 3k, ak) = Be(Br—1; ok, 08) k=2,...,d—1,
an_1=1 (7)

Td—1

> Ag1(Ba—1;aa—1)Gal(aa—1;7a) = Ba(Ba—1;Ta).

ag1=1

5: return Gq,...,Gq

B2 3 3
T B2 x3 73
1: SKETCHING
P o,
B2 T3 V3 T3
SVD as
2: TRIMMING = b s
By Bs
Bs
53
5
3: SYSTEMFORMING ’ o = By —@— as
B As
T3 T3
4: SOLVING BQ—Q—‘— a3 = [ﬁ-*- ag
A2 G3 BS

Fig. 2. Tensor diagrams illustrating the four steps of the TT-RS algorithm (Algorithm 1), explicitly showing the case of step k = 3
for a d = 6 dimensional distribution. SKETCHING produces 53% by applying sketch functions Si_1 and Tx41 to p. TRIMMING generates
By from <T>k using the SVD. SYSTEMFORMING outputs Aj based on Bj. Lastly, collecting the outputs Ax’s and By’s, we form (7)
and solve for G ’s. See Section 3.1 for full details.

SYSTEMFORMING outputs Ay, ..., Aj_1, which resemble the coefficient matrices on the left-hand side of (6).
Detailed descriptions of each subroutine are given in the following subsection. In what follows, we constantly
refer back to Section 2 to motivate the algorithm.

Remark 3. The choice of sketch functions is based on two criteria: (i) When p actually has an underlying TT
representation, solving the equations (7) should produce suitable cores G, ..., Gq4. A proof of such an exact
recovery property is given in Section 4, where we also discuss the conditions that the sketch functions have
to satisfy. (i) Let Gi,..., G4 be the results of TT-RS with  as input, where  is an empirical distribution
constructed based on i.i.d. samples from some density p*. We would like to have p* = Gio---0Gyif pisa
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good approximation to p*. This requires Ay, ..., Ag_1, B1, ..., Bg to have a small variance, and the variance
of these objects depends on the choice of sketches. We discuss these considerations in Section 5 for Markov
models.

Remark 4. The above algorithm is written only for the case where we consider densities p over a finite
state space. However, if p is in La(X7) x -+ X La(X,4) then one can pass to a suitable tensor product of
orthonormal bases in each dimension and work with truncated coefficient tensors instead. We summarize the
necessary modifications required for continuous functions in Appendix C. We call this “continuous” version
of the algorithm TT-RS-Continuous (TT-RS-C) (Algorithm 9). There will, of course, be a new source of
error associated with the choice of how to truncate the coefficients. Standard estimates from approximation
theory can be used to relate the smoothness of p to the decay of coefficients in each dimension.

8.1. Details of the subroutines

In this section, we provide details of the three main subroutines used in TT-RS. First, SKETCHING
(Algorithm 2) converts each unfolding matrix of p into a smaller matrix using sketch functions. For each
k=2,...,d—1, by contracting the k-th unfolding matrix of p with the right and left sketch functions, Tj41
and Si_1, we obtain (5k, which can be thought of as a three-dimensional tensor of size R™*~1X"k Xl ag in
Step 1 of Fig. 2. This “sketched” version of the k-th unfolding matrix of p is no longer exponentially large
in d. In SKETCHING, each ®;, plays the role of ®; in the left-hand side of (2), which captures the range of
the k-th unfolding matrix of p. The extra “bar” in the notation for ®; is used to distinguish this object
from @, as @y (x1.x;vk) has I > ), columns, while @y (z1.,; ) only has rj, columns. Such “oversampling”
[13] is standard in randomized linear algebra algorithms for capturing the range of a matrix effectively.
Then, as in (6), left sketches Sy’s are applied to further reduce ®;’s to ®,’s. As mentioned previously,
EI;k resembles the right-hand side of (6), though the &Jk’s need to be further processed by TRIMMING.
An important remark here is that unlike the right sketch functions T5,...T,, the left sketch functions
So,...,S84-1 are constructed sequentially, i.e., Sy is obtained by contracting a small block s; with Sg_1;
hence, it is a sequential contraction of sq, ..., sk. Such a design is necessary as is shown in SYSTEMFORMING.
Another remark is that Algorithm 2 is presented in a modular fashion for the sake of clarity. In fact, many
computations in Algorithm 2 can be re-used by leveraging the fact that Sy is obtained from the contraction
of S;_1 and si. Hence, E)k can be obtained recursively from (f)k_l.

TRIMMING takes the outputs <AI;1, ceey 5(1_1 of SKETCHING and further process them to have the appro-
priate rank of the underlying TT using the SVD. This procedure is illustrated in Step 2 in Fig. 2. It should
be noted that this procedure is not necessary if for any k, I = ri. In this case, one should directly let
By, = (fk for each k.

Finally, SYSTEMFORMING forms the coefficient matrices to solve for Gi,...,G4 from the output
By,...,Bg_1 of TRIMMING by contracting si,...,S8q_1 with them, which results in A;,..., Ay_1, respec-
tively, as in Step 3 of Fig. 2. The matrices A1,..., Aq_1 play the role of the coefficient matrices appearing
on the left-hand side of (6). As we see in the algorithm, the fact that the sketch functions Sy, - ,Sg—1 are
obtained by successive contractions of si,...,s4_1 allows Ay to be constructed from Bjy. We stress that
this is not merely for the sake of efficient computation. In fact, it is important for the correctness of the
algorithm, as illustrated in the proof of recovery for Markov models in Section 5 below.

3.2. Complexity
As noted earlier, we are practically interested in the case where p is an empirical distribution p constructed

from N i.i.d. samples from an underlying density p*. In such a case, p is N-sparse. The high-dimensional
integrals within TT-RS can be efficiently computed in this case. To see this, suppose that the input p
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Algorithm 2 SKETCHING.

Require: p, To,..., T4, and s1,...,S4—1 as given in Algorithm 1.
for k=1tod—1do B
Right sketching: define ®y: [n1] X - -+ X [ng] X [lx] = R as

MNk+1 ndq
D4 (T1.k,YH) = Z Z P(T1k, Thop1:d) Tt 1 (Thig1:d, Vi)
Tpp1=1 zg=1

if £ > 1 then ~
Left sketching: define @5 : [mr_1] X [ng] X [lx] = R as

g M1
D (Br—1, Ths k) = D 0 Y Sko1(Br—1,1:k—1) Pk (T1k—1, Thy k)
©i=1 @y =1
Compute sketch function S : [mg] X [n1] X - -+ X [ng] — R for the next iteration:
™My _1
Sk(Besmrk) = > sk(Bry Tk, Br—1)Sk—1(Br—1, T1k-1)-
Br-1=1
else
Define

‘%1(1717’71) = <I>1(117’Yl)-

Define sketch function

S1(B1, 1) = s1(B1,21)-

end if
end for ~
Left sketching: define ®4: [mg_1] X [ng] — R as

n MNg—1
Pa(Ba—1,wa) = -+ Y, Sa—1(Ba—1,%1:4-1)p(T1:a—1,Ta).
@y =1 g 1=1

return 51, e <‘Iv>d‘
Algorithm 3 TRIMMING.
Require: 5131, - ,<T>d from Algorithm 2.
Require: Target ranks r1,...,7r4_1 as given in Algorithm 1.

for k=1tod—1do

if £ = 1 then

Compute the first r; left singular vectors of <I>1(ac1; ~1) and define By : [n1] X [r1] — R so that these singular vectors are
the columns of B (z1;a1).
else

Compute the first 7, left singular vectors of ik(ﬁk,l,xk;yk) and define By: [myr_1] X [nk] X [rx] — R so that these
singular vectors are the columns of By (Br—1,Tk; ak)-

end if
end for _
Let Bq(Ba—1,%a) = ®a(Ba—1,Ta)-
return Bi,..., Bg.

of Algorithm 1 is N-sparse, and let n = maxij<k<qni, M = MaxXi<p<d—1 Mk, | = Maxi<g<d—1lg, and
T = maxi<g<d—1 k- Note that the complexity of SKETCHING is O(miNd) since each E>k can be computed
in O(mIN) time. TRIMMING requires O(mnl?d) operations as each By is computed using SVD in O(mnl?)
times. Also, SYSTEMFORMING is achieved in O(m?nrd) time. Lastly, the equations (7) can be solved in
O(mnr3d) time. In summary, the total computational cost of TT-RS with N-sparse input is
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Algorithm 4 SYSTEMFORMING.

Require: Bi,...,Bg—1 from Algorithm 2.
Require: si,...,84—1 as given in Algorithm 1.
for k=1tod—1do
if k = 1 then
Compute A;: [m1] X [r1] = R:

nq

A1 (Br, 1) = Z s1(B1,z1)Bi(z1, a1).

xr;=1

else
Compute Ay : [my] X [rx] = R:

ng ME—1

Ap(Brrax) = D> > sk(Br @k, Br—1)Br(Be—1, Tk, k).

zr=1Br_1=1

end if
end for
return Ap,...,Aq_1.

O(mINd) + O(mnl*d) + O(m*nrd) + O(mnr3d).
Note that this cost is linear in both n and the dimension d of the distribution.

Remark 5. The term “recursive sketching” in the name TT-RS is due to the sequential contraction of
the left sketch functions si,...,s4_1. We remark that it is possible to design an algorithm without such
“recursiveness”, which we call TT-Sketch (TT-S); see Appendix B for the details.

4. Conditions for exact recovery for TT-RS

The main purpose of this section is to provide sufficient conditions for when TT-RS can recover an
underlying T'T if the input function p admits a representation by a tensor train. In particular, the following
theorem provides a guideline for choosing the sketch functions in TT-RS.

Theorem 3. Assume the rank (in exact arithmetic) of the k-th unfolding matriz of p is ry for each k =
1,...,d—1. Suppose Ty, ..., Ty and s1,...,8q—1 of Algorithm 1 satisfy the following.
(i) Pr(x1.p:v) and p(x1.x; Trr1:q) have the same column space for k=1,...,d — 1.
(ii) Pr(Br—1,zK;7k) and @k(aslzk; k) have the same row space for k =2,...,d — 1.
(iii) Ag(Br; k) is rank-rg fork=1,...,d— 1.

Then, each equation of (7) has a unique solution, and the solutions G1,...,Gq are cores of p.

We first present a lemma showing that SKETCHING and TRIMMING give rise to the right-hand side of (6)
for determining the cores of p.

Lemma 4. Under the assumptions of Theorem 3, consider the results By, ..., Bq_1 produced by Algorithms 2
and 3. The column space of By(x1; 1) is the same as that of the first unfolding matriz of p. Also, for each
k=2,...,d—1, there exists a Py: [n1] x -+ x [ng] x [rx] = R such that the column space of @y (x1.1; )

is the same as that of the k-th unfolding matriz and

Ng—1

Be(Br-1, ko) = > oo Y Skoa(Be1, @1k 1) Ph(@1k1, Ty k) (8)

r1=1 Tp_1=1



Y. Hur et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101575 11

Proof. (i) implies that 51(951; 71) = ®1(21;71) and p(x1; x9.9) have the same r;-dimensional column space,
which is the same as the column space of By(x1;a1) by the definition of Bj.

For k = 2,...,d — 1, (i) and (ii) imply that ®;(Br_1,zk;Vk) is still rank-rg. Since the columns of
By (Br—1,xk; ) are the first i, left singular vectors of @y (8k—1, Tx; k), we may write

lk

By (Br—1,xk; 1) = Z B (Br1, 5 V) Grrr (Vs k)
=1

for some qgy1: [lk] X [r] — R; here, the column space of gxy1(7k; @) is the same as the row space of
@1 (Br—1, Tk k). Now, we define ®p: [ng] x - -+ [ng] x [r] — R by

Ik

O (1k, k) = Y Pr(@rk, Vo) Qo1 (Vi k) (9)
V=1

Next, we observe that (8) holds since

I
Be(Br-1, Tk 0k) = Y C(Brot, Ty Vo) Qi1 (Y o)
=1
I ni Nk —1 B
=) > Sk (Bt k) Pk, Th, Vi) D1 (Ve k)
Ye=1lz1=1 Tp_1=1

We claim that the column space of ®y(x1.5; ) is the same as that of the k-th unfolding matrix. Indeed,
due to (9), the column space of @ (x1.x; k) is contained in that of (i)k(l'l:k; k), which is the column space
of the k-th unfolding matrix because of (i). Now, it suffices to prove that ®y(z1.x; ax) has full column rank.
This is true because the column space of qxy1(7k; ) is the same as the row space of ik(ﬁk_l,xk;'yk) by
construction, which is equivalent to the row space of ®(z1.4;7x) due to (ii). O

In Lemma 4, we showed that SKETCHING and TRIMMING give the right-hand sides of (6) (i.e., By in (8)),
without forming the exponentially-sized ®j, explicitly. Lastly, by combining SKETCHING and TRIMMING with
SYSTEMFORMING, we have a well-defined system of equations for determining Gy, ..., Gy, as in Algorithm 1.
This is shown in the following proof for Theorem 3.

Proof of Theorem 3. Due to Lemma 4, there exists ®o, ..., ®,4_1 such that (8) holds; also, letting ®; = By,
we have shown that ®j(z1.5x; ) and the k-th unfolding matrix have the same column space for k =
1,...,d — 1. Hence, we can consider CDEs (4) formed by ®1,...,®4_;. First, we verify that the equations
in (7) are implied by (4), obtained by applying sketch functions to both sides of (4). The first equation
G1 = ¥, is the same in both (7) and (4). For k = 2,...,d — 1, if we apply Sk_1 to both sides of the k-th
equation of (4), then

ni Nk—1 Thk—1
S > Sea(Be-1w1k-1) Y Pro1(@r—1, k1) Gk, Tk, )
x1=1 Tp_1=1 ap_1=1
ni NEg—1 (10)
=) Y Ska(Bror, mrk-1) Pr (ks o).
Ilzl Ik_lzl

Note that the right-hand side of (10) is simply Bg(Bk—1, Tk, ax), which is the right-hand side of the k-
th equation of (7). We now want to show that the coefficient matrix on the left-hand side of (10) is the
coefficient matrix Ag_1(Br—1, ag—1) of the k-th equation of (7), that is, we want to prove for k = 2,...,d—1,
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ni Nk —1
S > Sea(Be1s w1k 1) ko1 (P11, k1) = Ap_1(Br-1, k1), (11)
I1:1 Ik_lzl

This is implied by Algorithm 4. To see this, for k = 2, note that (11) amounts to

ni

Z s1(B1,z1)Bi(z1, o) = A1(Br, an),

xr1=1
which follows immediately from Algorithm 4. For 2 < k <d — 1, (11) holds because

MNk—1

ni

Z Z Sk—1(Br—1, T1:6-1)Pr—1(T1:5—1, ¥g—1)
.'L'1:1 (I,‘k,1:1

ni Nk—1 mrg—2

S0 ska(Brotwho1, Be—2)Sk—2(Br—2, Trk—2) P (X161, k1)
z1=1 Tp—1=1Br_2=1

Nk—1 mg—2

> sk1(Beot who1, Be—2)Bro1(Br—2, k1, k1)

Tp—1=1 Pr_2=1

= Ak71(5k717 akfl)v

where the first equality holds since Si_1 is a contraction of s;_; and Sk_o, the second equality holds because
of (8), and the last equality is given in Algorithm 4. Hence, we have shown that for k = 2,...,d — 1, the
k-th equation of (7) is indeed obtained by applying S;_1 to both sides of the k-th equation of (4). Similarly,
the last equation of (7) is obtained by applying Sy—1 to both sides of the last equation of (4). From this
it is clear that solutions Gi,...,Gq4 of (4) formed by ®1,..., P41 satisfy (7). Now, we use condition (iii)

in Theorem 3; this means that the coefficient matrices Aj, ..., Ag_1 have full column rank, and thus each
equation of (7) must have a unique solution. Therefore, a unique set of solutions G, ...,G4 of (4) formed
by ®4,...,P4_1 discussed in Proposition 2 gives rise to a unique set of solutions of (7). Additionally, as in
Proposition 2, G, ...,Gq give a TT representation of p. O

5. Application of TT-RS to Markov model

In this section, we demonstrate how model assumptions on p can guide the choice of sketch functions
To,..., Ty and sq1,...,84—1 to guarantee that the conditions (i)-(iii) of Theorem 3 are satisfied. More pre-
cisely, we show that for Markov models, suitable sketch functions exist, and moreover, we give an explicit
construction. In Section 5.2 we prove that the sketch functions we construct satisfy the requisite conditions.
When working with an empirical distribution p which is constructed based on i.i.d. samples from some
underlying density p*, TT-RS requires obtaining By, ..., Bg, A1,..., Ag—1 by taking expectations over the
empirical distribution. Though the variance can be large, in Section 5.3, we show that under certain natural
conditions, our choice of sketch functions does not suffer from the “curse of dimensionality” when estimating
the cores from the empirical distribution.

Throughout this section, we assume that the input p of TT-RS (Algorithm 1) is a Markov model, that
is, p is a probability density function and satisfies

p(x1, .. 2q) = plo)p(xe|ry) - - - p(walra—1)- (12)

Here, by abuse of notation, for any i < j, we denote the marginal density of (x;,...,z;) as p(z;,...,x;).
Depending on the situation, we also use
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(Msp)(zs) :==plzs), S C|d] (13)

to denote the marginalization of p to the variables given by the index set S, which is a |S|-dimensional
function. Also, p(;, ..., x;j|zk) denotes the conditional density of (z;,...,z;) given xj. For a Markov model
p, the conditional probabilities p(za|z1),...,p(xq|xq—1) in (12) are referred to as the transition kernels.

5.1. Choice of sketch

We start with the following simple lemma that shows the low-dimensional nature of the column and row
spaces of the unfolding matrices.

Lemma 5. Suppose p is a Markov model. For any i < k < j,

(1) p(zi:k; Tht1:5) and p(zix; Tu+1) have the same column spaces,
(1) p(zik; Trri1:j) and p(xy; Tri1:5) have the same row spaces.

Proof. Since x;.; L xpyo.; | Tr41 (conditional independence), we have that

P(Ticks Thg1:5) = D(@ick | Tt 1)D(Thg2:5 | Thp1)PD(Xhop1),

which implies that the column space of p(xi;k;xk+1:j) is not affected by xy4o.;. For the same reason,
Tikh—1 L Thy1:j | ox implies

p(l‘i:k; $k+1:j) = p(%’:k—l\xk)p($k+1:j|$k)p($k)7
and hence the row space of p(x;.x; Tr+1:5) is not affected by ;1. O

An immediate consequence of Lemma 5 is that each unfolding matrix p(x1.x; Zx+1.4) may be replaced by
p(x1.5; Tg41) if our main focus is the column space. This motivates a specific choice of sketch functions for
a Markov model. For each k =1,...,d — 1, let [y = ny41 and define

Tt 1 (T 1:d, k) = Tiot1 (Thg13 k) (14)

where Tj11: [ng11] X [ng4+1] = R such that I4q (2k41;7%) is the identity matrix. This choice of Ty yields

Pp (w1, %) = (Mrk1D) (11, Vi) (15)
In other words, contracting Ty11 with the k-th unfolding matrix amounts to marginalizing out variables

Lh42y-+-5Td-
Similarly, we let mj = ny for each k =1,...,d — 1, and define

s1(Br,z1) = Li(Brix1),  Sk(Brs @k, Be—1) = I (Br; k), (16)

where I7: [n1]x[n1] — R is defined so that I1 (81; z1) is the identity matrix, which gives rise to Sk (8, 1.x) =
I, (B, xx) and

&) = Mi1,23p, Oy = M1k psyp, 2<k<d—1, By = Ma—1,4yp- (17)

Again, this choice of left sketch functions leads to Si_; that marginalizes out variables 1, ..., Zk_o.
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In summary, with these sketch functions, SKETCHING outputs marginals of p. Now, it is obvious that
Algorithm 3 and 4 can be done efficiently; it just performs an SVD on these small marginal matrices and
computes both A; = By and

MNk—1

Ap(zp, o) = Z By (z—1, %k, o)

Tp—1=1

for k > 2.

Remark 6. For the situation where p is a function of continuous variables, in Appendix C.1 we discuss how
to adapt TT-RS-C (Algorithm 9) to the Markov case.

5.2. Ezact recovery for Markov models

In this subsection, we prove that if we use TT-RS (Algorithm 1) in conjunction with the sketches defined
in (14) and (16), then the resulting algorithm enjoys the exact recovery property. Using Theorem 3, it suffices
to check the choice of sketch functions mentioned in the previous subsection satisfies (i)-(iii) of Theorem 3.

Theorem 6. Let p be a discrete Markov model such that the rank (in exact arithmetic) of the k-th unfolding
matriz of p is v for each k =1,...,d — 1. With right and left sketches in (14), (16), Algorithm 1 returns
G1,...,G4 as cores of p.

Proof. It suffices to check that (i)-(iii) of Theorem 3 are satisfied. As noted earlier, for each k =1,...,d—1,
(15) holds. Hence, ®x(x1.x;vx) and p(1.x; Ty 1.4) have the same column space by Lemma 5. Thus, (i) of
Theorem 3 holds. Similarly, for each £ = 2,...,d — 1, (17) holds, hence, &)k(ﬂk,hxk;%) and @k(xlzk;vk)
have the same row space. Thus, (ii) of Theorem 3 holds.

Lastly, we claim Ay (zg; o) is rank-ry for all k = 1,...,d — 1 (condition (iii) of Theorem 3). Clearly,
Ai(z1;1) = Bi(x1;aq) is rank-r; by definition. For k = 2,...,d — 1, by definition of By, we can find
Qk+1: [Pe+1] X [re] — R such that the column space of qxi1(2k4+1; ) is the same as the row space of
P(Tp—1,Tk; Tpyr) and

MNk+41

Bk(l’k—l,xk,ak): Z P(Ik—l,mk,$k+1)Qk+1($k+1,Oék)-
wk+1:1
Hence,
Nk—1
Ag(zg,or) = > Br(wr—1, 2, ax)
:Ek,1:1

MNk—1 Nk+1

Z Z p(mk—h$k,ﬂ7k+1)Qk+1(xk+170¢k)-

Tp—1=1xpr1=1

MNk+1 Nkg—1

Z Z p(xk—laxkvxk+1) Qk+1(9€k+1,0¢k)

Trr1=1 \zp_1=1

MNk+1

Z P(T, Trt 1) Qo1 (Tht1, k).

Tp41=1
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By Lemma 5, p(zx—1,xk; Tx4+1) and p(xg; xx+1) have the same row space. Therefore, the column space of
Qr+1(Tg+1; k) is the same as the row space of p(zk; r41), where both are rank-ry. Thus, Ay (zk; o) must
be rank-r; by construction. 0O

5.3. Stable estimation for Markov models

In this section, we present an informal result regarding the stability of the TT-RS algorithm when an
empirical distribution p is provided as input instead of the true density p*. The precise statement of the
theorem is deferred to Appendix D. If p is taken as the input of Algorithm 1, the results &)1, cee dy of
SKETCHING have certain variances that get propagated to the final output G1,..., Gy via the coefficient
matrices Aq,...,Aq_1,B1,...,Bg. The variances of &)17 .. .,EI;d depend critically on the choice of sketch
functions. In what follows, we show that the sketches (14) and (16) give a nearly dimension-independent
error when estimating the tensor cores if p* is a Markov model satisfying the following natural condition.

Condition 1. The transition kernels p*(z2|z1),...,p*(z4|zq4—1) are independent of d.

Theorem 7 (Informal statement of Theorem 19). Suppose p* is a discrete Markov model that satisfies Con-
dition 1 and admits a TT-representation with rank (r1,...,rq—1). Consider an empirical distribution p
constructed based on N i.i.d. samples from p*. Let G1,...,Gq and G7,...,GY be the results of TT-RS with
p and p* as input, respectively. Then, with high probability,

dist(Gg, G7) log(d)
Tk T oo Y22 ) vk =1,...,4d, 18
] N (18)

where the hidden constant in the “big-O” notation does not depend on the dimensionality d, ||-|| is some
appropriate norm, and dist(-,-) is a suitable measure of distance between cores.

In Theorem 7, the errors in the cores show \/log(d)-dependence which grows very slowly in d; the term

log(d) is a consequence of the union bound required to derive a probabilistic bound on d objects (the
cores) simultaneously. We remark, however, that near dimension-independent errors in the pairs (G}, G’k)
do not necessarily imply such an error in approximating p* by Gio--o éd, the results of TT-RS with
p as input. Instead, we can derive an error that scales almost linearly in d, thereby avoiding the curse of
dimensionality. The precise statement is deferred to Appendix D; here, we provide an informal statement
summarizing this result.

Corollary 8 (Informal statement of Theorem 20). In the setting of Theorem 7, with high probability,

Hélo...oéd—G;o...oG;Hm<O d+/log(d)
G- NG - VN )7

where || - ||oo denotes the largest absolute value of the entries of a tensor.

In Section 6, we verify from the experiments that such d/log(d)-dependence of the error indeed suggests
near-linear dependence on the dimensionality d.

Remark 7. Extensive numerical experiments suggest that Theorem 7 and Corollary 20 are valid for a broad
class of Markov models that may not necessarily satisfy Condition 1. See Remark 11 for details.
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5.4. Higher-order Markov models

We conclude this section with a brief discussion on higher-order Markov models. For m € N, we call p
an order-m Markov model if it is a density and satisfies

p(x1,. . xq) = p(1, s TP @mg1 |21, ) - D(Ta|Td—my - - Ta—1)-

What we have presented so far, i.e., the case m = 1, can be generalized to any m € N by a suitable
replacement of the sketch functions T5,...,Ty and si,S2,...,84—1. Recall that the sketch functions for
the case where m = 1 are chosen based on Lemma 5, which can be properly generalized to any order-m
Markov model. For instance, we can say that p(z;.x; Trt1:6+;5) and p(Tix; Tr41:64m) have the same column
space for any j > m. Based on this generalization, the choice of the sketch functions for general m € N is
straightforward: they are chosen such that

(ik = Ml:(k+m)/\dp>
D = Mp_1:(kt-m)AdD-

In particular, using such (5;6’8 as the input to TRIMMING and subsequently SYSTEMFORMING, we obtain an
algorithm for a discrete order-m Markov density.

6. Numerical experiments

In this section, we illustrate the performance of our algorithm with concrete examples. More specifically,
given i.i.d. samples of some ground truth density p*, we construct an empirical density p and apply TT-RS
(or TT-RS-C) to it to obtain cores G, ..., Gy such that p* = G100 Gy =: q.

6.1. Ginzburg-Landau distribution

We consider the following probability density defined on [a, b]¢:

d 2
A — 1
pcL(T1,. .., %q) X exp (-5 > (5 (L]fkﬂ> +ﬁ($ﬁ—1)2>> :
k=0

where g = 2441 = 0. This is the Boltzmann distribution of a Ginzburg-Landau potential, which is classically
used to model phase transitions in physics and also more recently as a test case in generative modeling [10].
Throughout the section, we fix [a,b] = [-4,4] and B=A=h = 1.

First, we consider a discretized version of p. To discretize p, we choose n uniform grid points of [a, b],

i n—1
that is, £ = {a + —+-(b— a)}‘ , and define a discretized density pp: [n]? — R as

n—1 _

bp = [pGL(Ila s 7$d)](z1,...,xd)62d-

Hence, pp is essentially a multi-dimensional array of size n%. Notice that pqr, is a Markov model, hence so
is pp. We obtain N i.i.d. samples from pp using a Gibbs sampler and construct an empirical density based
on these samples, which form the empirical measure pp. We apply TT-RS with sketches (14) and (16) to
pp and let gqp := G1 o --- oGy be the contraction of the cores obtained by the algorithm. We compute the
following relative {? error:

lpp — apll2
Ippll2
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Fig. 3. Relative [y errors for the discretized case. In (A), we fix d = 8 and change the sample size N € {28,2° ...,2'7}. In (B),
we fix the sample size N = 50000 and change d € {3,6,...,27,30}. In both cases, we use the fixed number of grid points n =9,
and TT-RS (Algorithm 1) is applied with 7y = -+ = r4 = 3. Each error bar is centered at the average of 20 realizations, with the

standard deviation as its vertical length.

where ||f||3 :== >0 - >0 4 f(x1,...,xq)? for any f: [n]? — R. We see in Fig. 3(A) that the error

r1=1
decreases with rate O (ﬁ) as sample size N increases when we fix d. Furthermore, when we fix N and let
d grow, we see a linear growth in the error (Fig. 3(B)).
Next, we repeat the same procedure with a continuous density pgr. Now we obtain NV i.i.d. samples from
per using the Metropolis-Hastings algorithm and construct an empirical density p based on them. Then,
we apply Algorithm 13 to p, where we choose the basis functions ¢1, ..., ¢y as Fourier basis functions on

[a, b]. Recall that contraction of the resulting cores gives a function ¢ such that

M M T1 Td—1
q(z1,...,2q) = Z Z Z Z g1(jr, 1) -+ gal@a—1,ja) | ¢4, (w1) -+ @5, (wa)-
j1=1 ja=1 \a1=1 ag_1=1
Then, we compute the relative L? error:
_par = dqll2
erry = ————
Ipcrll2
where | f||I3 = f[a b f(z1,...,24)%dxy - - - dvg for any f defined on [a,b]?. Since ¢ is an element of the
function space Iy := {¢;, @ -+ @ dj, : j1,--.,7a € [M]}, we may decompose this L? error as follows using

the orthogonality:

2 2
orr? — <|pGL_pA||2> +(||PA—CI||2>
! IpcLll2 lpacllza /7

=:err2 =:err2
where
M M
pa(@i, ) = > o Yy vt da)d (31) - 6, (Ta),
j1=1 Jja=1

v(ji,--..Jda) = /pA(Jil,-~-7$d)¢j1(931) gy, (xa) dey - - - dxg.
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Table 1

L? errors for Ginzburg-Landau Gibbs measure in the continuous case. Sample size N is fixed to 10, and Algorithm 13 is applied
with 1 = -+ = rq4 = 3. Each err. is averaged over 20 realizations, and the number in the parentheses denotes the standard
deviation.

d=5 d=10 d=15

M errg, erre erry errg, erre erry errg, erre erry

7 0.2693 0.0202 (0.0023) 0.2701 0.4144 0.0392 (0.0032) 0.4163 0.5104 0.0582 (0.0041) 0.5138
9 0.1617 0.0334 (0.0018) 0.1651 0.2511 0.0621 (0.0027) 0.2587 0.3142 0.0908 (0.0041) 0.3270
11 0.0867 0.0411 (0.0016) 0.0960 0.1365 0.0754 (0.0024) 0.1559 0.1722 0.1100 (0.0039) 0.2044
13 0.0400 0.0433 (0.0015) 0.0589 0.0655 0.0802 (0.0023) 0.1036 0.0837 0.1186 (0.0039) 0.1451
15 0.0201 0.0446 (0.0015) 0.0489 0.0330 0.0833 (0.0023) 0.0896 0.0421 0.1246 (0.0038) 0.1315

In other words, pa is the approximation of p within the space II); spanned by the product basis, thus
err, represents an approximation error. Accordingly, we can think of err. as an estimation error, where the
resulting ¢1,...,9q4 can be thought of as approximate cores of v. All the integrals above are approximated
using the Gauss-Legendre quadrature rule with 50 nodes.

The resulting L? errors are shown in Table 1. As M increases, the approximation error err, decreases
quickly to 0. On the other hand, larger M leads to a larger estimation error err, as one needs to estimate
a larger size of coefficient tensor v.

6.2. Ising-type model

For our next example we consider the following slight generalization of the one-dimensional Ising model.
Define p: {£1}¢ — R by

d
pr(z,... xa) <cexp [ =B Y Jymia |, (19)

ij=1

where > 0 and the interaction J;; is given by

iy = .
0 otherwise.

; {—<1+|z'—j|>—1 i~ <2
From this, we can easily see that p; is an order-2 Markov model. For such a model we can apply TT-RS
with the sketch functions described in Section 5.4.

As in the previous section, we obtain IV i.i.d. samples from p; using a Gibbs sampler and construct
an empirical density based on them, p. Then, we apply Algorithm TT-RS, with the sketch functions in
Section 5.1 and with the modifications outlined in Section 5.4, to obtain the contraction of the resulting
cores q; and ¢y, respectively. Then, we compare the two relative [? errors:

_ lpr — qull2

err; = _ lor — goll2
prll2

and errg = T
Ill2

The errors are plotted in Fig. 4, in which the dashed curves denote the result err; of TT-RS with sketches
as in Section 5.1 and the solid curves correspond to erry from TT-RS with the sketches as in Section 5.4.
Clearly, as expected, the error is smaller when using the sketches from Section 5.4.

Lastly, we repeat the same procedure for p; where z € {—2,-1,0,1,2} for k = 1,...,d in (19). The
results are shown in Fig. 5, which demonstrates that TT-RS with appropriate sketching yields small error
in the case of higher-order Markov distributions.
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Fig. 4. Relative Iy errors for the order-2 Ising model. In (A), we fix d = 8 and change the sample size N € {28,2° ...,2'7}. In (B),
we fix the sample size N = 50000 and change d € {3,6,...,27,30}. In both cases, we use 8 = 0.4, and TT-RS (Algorithm 1) is
applied with (r1,...,7q) = (2,3,...,3,2). Errors are shown as shaded regions, where both solid and dashed curves connect the

averages of errors from 20 realizations, with the standard deviation as the vertical width.
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Fig. 5. Relative lo errors for the order-2 Ising model on {—2,—1,0,1,2}%. In (A), we fix d = 8 and change the sample size
N e {28,2° ...,2'7}. In (B), we fix the sample size N = 50000 and change d € {3,6,...,27,30}. In both cases, we use 8 = 0.2,
and TT-RS (Algorithm 1) is applied with (r1,...,7r4) = (2,3,...,3,2). Each error bar is centered at the average of 20 realizations,
with the standard deviation as its vertical length.

7. Conclusion

We have described an algorithm TT-RS which obtains a tensor train representation of a probability
density from a collection of its samples. This is done by formulating a sequence of equations, one for each
core, which can be solved independently. Additionally, in order to reduce the variance in the coefficient
matrices of these equations (which are constructed from the empirical distribution) sketching is required.
For Markov (and higher-order Markov) models we give explicit constructions of suitable sketches and provide
guarantees on the accuracy of the resulting algorithm.

Lastly, we briefly mention several possible extensions for future research. First, we can apply TT-RS to
more complicated models such as hidden Markov models. The ideas that we discussed based on (higher-
order) Markov models can be generalized to various models by specifying concrete sketch functions for such
models. More generally, future research could focus on adapting TT-RS to tree tensor networks, aiming at
generalizing TT-RS to distributions with more general graphical structure. By designing sketch functions
for a broader class of models, one can bring TT-RS closer to a wide range of applications and we leave this
as future work.
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Appendix A. Validity of solving CDEs
In this section, we give the proof of Proposition 2.

Proof of Proposition 2. For k = 2,...,d — 1, consider the k-th equation in (4):

Tk—1

Z Qp_1(wrp—1; 0—1)Gr(ap—1; Tk, ) = Pp(@1p—15 Tk, k). (20)

ak,1:1

By definition, ®;_1(x1.k—1; ag—1) is the left factor in an exact low-rank factorization of p, so ®_; has full
column rank and the uniqueness of solutions is guaranteed. To prove a solution also exists, we need to show
that columns of ®y(x1.5—1; Tk, @) are contained within the column space of ®p_1(z1.5—1; @—1).

By the definition of ®;_; and @y, we know there exists Uy : [rp_1] X [ng] X - x[ng] = Rand Ugqq: [rg] X
[nEgt1] X« -+ X [ng] = R such that

Thk—1
Pk 1;Tha) = Y Ppoa(@iko1; ho1) Vh(ak_1; Thea),
Oék_lzl
Tk
P Thrra) = Y Pr(@rn; o) Prp (0 Tri1a)- (21)
Oék,Zl

Note that these are rank-rip_; and rank-r; decomposition of the (k — 1)-th and k-th unfolding matrices,
respectively. Defining ti41: [ngt1] X -+ X [ng] X [rx] = R so that txq1(xg+1.4; %) is the pseudoinverse of
Upt1(Qg; Th+1:4), We obtain

Nk+1 Nnd
O (1p; ) = Z Z P(Z 125 Tho1:d) 1 (Tt 1:d5 Ok )-
:Dk+1:1 Idzl

Then, one can easily verify that the k-th equation (20) holds if we let

MNk+1 ng

Gr(ag—1, Tk, ar) = Z Z Uy (k—1, Tk, Thot1:d) ket 1 (Tht1:d> OK)

Tp41=1 xq=1

along with (21). Thus, we have not only proved the existence of solutions to the k-th equation, but also
obtained the exact form of the solution in terms of ¥y and tx1.

Similarly, we can show that the equation in (20) for G4 is well-defined. By construction, it then follows
that (5) holds. O
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Appendix B. Non-recursive TT-RS: TT-Sketch (TT-S)
B.1. Role of recursive left sketches and possibility of non-recursive sketches

In this subsection, we discuss the importance of forming the recursive right sketches Si,...,S4_1 from
$1,...,84, noting that for T,...,Ty there is no such need. The requirement of “recursiveness” in the
construction of the S’s is a consequence of the TRIMMING step, which introduces an arbitrary projection
matrix in the factorization of the k-th unfolding of p. To see this, consider first the case without TRIMMING,
i.e., using sketches Ty, with I, = r1. Then one can use ®; (defined in Algorithm 2) in the CDEs (4), i.e.
solve

Tk—1
Z g1 (T1:0—15 0p—1) Gr(h—1; Tk, ) = Pp(T1.8-1; Thor k) (22)

ap-—1=1

if each ®;, has rank 7. To reduce the system size further one could simply apply arbitrary left sketches as

ni Nk—1 Tk—1 _
S > SkaBenirie-1) Y, Pro1(@rao1;ono1)Grlok-1; Tk, o)
11:1 Ik_lzl ak_lzl
(23)
niy Nkg—1 _
= Z Z Sk—1(Br—1; 1:6—1) Pr(T1:6-1; Tk, k)
1‘1:1 :Ek,1:1

so long as the reduced CDEs remain well-posed. In this case, one could set By = S,_1®; and A;_; =
Sp—1Pp_1.

Unfortunately, a complication arises when we use sketches Tyq with { > 7. In this case we cannot
simply solve (22) or (23) as it gives TT with excessively large rank. We then need to apply a suitable further
projection g € RU—1X"k=1 ;1 € RUXT% in (22) and (23)

Ppoy = Pp_1qr, P — Crgri1 (24)

treating ®,_, and @, as matrices of size ny -+ np_1 X {1 and ny - - - ng X l;, respectively. This is the idea
behind TRIMMING. However, rather than explicitly applying the projection g, TRIMMING performs the
projections implicitly, i.e., it directly gives

Bi(Br—1,xk, o) = Z Sk—l(ﬂk—l,xl:k—ﬂZ‘i’k(xl:k—hﬂfk,’Yk)QkH(’Vk,Oék) (25)

L1y Th—1 Tk

via an SVD without obtaining the gi’s. This presents a complication: in order to solve (23), one needs to
form

A (B on1) = Y Ska(Be-1, 1) Y, Phoa(@rh—1, Yeo1)ak(Ve—1, k1), (26)

L1y Th—1 Ye—1

but all we have access to is Bi—1 which contains g implicitly (note that Ay_; is not Bi_1). It is unclear
how to obtain Ag_; without knowing g, explicitly.

There are two remedies for this. The first one is recursive left sketching, and the second one is to obtain
projections (the gy’s) directly. The second remedy is more complicated than the first, though it does not
require recursive sketching. In this paper, we have focused primarily on the recursive left sketching approach,
which allows us to obtain Ay’s directly from Bj’s. In the next subsection, we provide details of the second
remedy in the following subsection.
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B.2. Non-recursive sketches

Suppose now Si,...,Sg_1 in Algorithm 2 are arbitrary sketches that are non-recursive, meaning that
they are not in the form of

Sk—1(Bk—1,T1:6-1) = Z Sk—1(Br=1,Tk—1, Br—2)Sk—2(Br—2, T1:5—2). (27)
Br—2

Evidently, TRIMMING gives the following expression for By in terms of the sketched unfolding matrix (in
Algorithm 3) and some “gauge” qx+1

By (Br—1,Tk; on) = Z O (Br—1, 213 ) Qo1 (Ve k) (28)
Vi
where
Ghi1 = Vil ! (29)
and
By ~ UpSi Vi, Uy € R™176XTh 3y e R7EXTR Y @ RUXTS (30)

being the best rank-rj, approximation of ®; € R™+-1"+x!% (defined in Algorithm 3) obtained via the SVD.
Now, after obtaining the g;’s in this manner, we can use them to construct the A’s in (26). In this case,
we do not need to use Bj’s to obtain Ag’s, as in the case when using recursive sketches.

In what follows, we summarize this approach in TT-S (Algorithm 5) which removes the necessity of
recursive sketching. The main difference between TT-S and TT-RS is that TT-S keeps track of the projection
matrices ¢a,...qq in (26) obtained via Algorithm 7 when performing TRIMMING-TT-S and uses them in
Algorithm 8. In this way, one eliminates the need for obtaining the A;’s via the By’s from recursive sketching.

Algorithm 5 TT-S for a discrete function p.

Require: p: [n1] X -+ X [ng] = R and target ranks rq,...,rq_1.
Require: T} : [ng] X -+ X [ng] X [lk—1] = R with lj_1 > rp_q1 for k=2,...,d.
Require: Sy : [mg] X [n1] X --- X [ng] > Rfor k =1,...,d— 1.

1: &p,...,%q,81,...,Pq_1 « SKETCHING-TT-S(p, Ts, ..., Ta,S1,...,Sd—1).

2: B1,...,Ba,q2,...,q4 <+ TRIMMING-TT-S(@I, R <f>d,r1, e Td—1)-

3: Ay,...,Ag_1 < SYSTEMFORMING-TT-S(®1,...,Pa_1,q2,---,dd;S1,---,Sd_1)-

4: Solve the following d matrix equations via least-squares for the variables G1: [n1] X [r1] = R, Gg: [rx—1] X [ng] X [rx] = R

fork=2,...,d—1, and Gq: [ra—1] X [nq] = R:

G1 = By,

Th—1

Z Ap_1(Br—1;086-1)Gr(ar—1;2k, k) = Bp(Br—1; Tk, ) k=2,...,d—1,
ap_1=1 (31)

Td—1

> Aaa(Ba-1;aa—1)Gal(aa—1;wa) = Ba(Ba—1;Ta).

ag1=1

5: return Gq,...,Gq.
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Algorithm 6 SKETCHING-TT-S.

Require: p, To,...,T4, and S1,...,Sq_1 as given in Algorithm 5.
for k=1tod—1do B
Right sketching: define ®5: [n1] X -+ X [ng] X [lg] = R as

M1 g

D4 (T1.k, V) = z Z P(T1k, Thop1:d) Tt 1 (Thg1:d, Vo)

Zpp1=1 zg=1

if £ > 1 then ~
Left sketching: define @y : [mg_1] X [ng] X [lx] = R as

ny MNk—1
B (Br—1, Th, k) = D 0 Y Sko1(Br—1,T1:h—1) Pk (T1k—1, Thy k)
x;=1 xTp_1=1

else
Define

®1(1,71) = P1(21,71).

end if
end for _
Left sketching: define ®4: [mg_1] X [ng] — R as

ny Ng_1
C4(Ba—1,zd) = Z Z Sa—1(Ba—1,21:a—1)P(T1:4—1, Ta)-
zr;=1 xg_1=1

return ®y,..., 84, By,..., Py 1.
Algorithm 7 TRIMMING-TT-S.
Require: 51, RN 'i)d from Algorithm 6.
Require: Target ranks r1,...,74_1 as given in Algorithm 5.

for k=1tod—1do

if £ = 1 then

Let Ui 34 VlT, where U; € R™*"™ V) € RUxm , ¥, € R™M*"™ be the best rank-r; approximation to the matrix <f>1(1:1; 1)
via SVD. Define By : [n1] X [r1] — R where Bi(z1;a1) = Ui (21; @1). Furthermore, let g2 = VlEfl.

else
Let UpSxV,', where U, € R™—1"X™ V¢ RX"™ 53 € R"™ X" be the best rank-rj approximation to the matrix
Dk (Br—1,Tk;vk) via SVD. Define By : [mr_1] X [ng] X [ry] — R where By (Br—1, xk; k) = Up(Br—1, Tk; ar). Furthermore,
let gri1 = ViZy '

end if
end for _
Let Ba(Ba—1,za) = ®Pa(Bi—1,za)-
return Bi,...,Ba4,q2,...,94.

Algorithm 8 SYSTEMFORMING-TT-S.

Require: ®,,...,P4_; from Algorithm 6
Require: g5 ..., qq from Algorithm 7.
Require: Sq,...,Sgq_1 as given in Algorithm 5.

for k=1tod—1do
Compute Ay : [my] X [ri] = R:

ny n Iy

Ac(Brrar) = Y o D> Sk(Br,wrk) Y. Prl@rk, Vh)dht1 (Vhs o).

x;=1 xp=1 Ye=1

end for
return Ay, ..., Aq_1.
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Appendix C. Continuous TT-RS

In this section, we consider a general function p: X; x --- x Xy — R, where X;,..., Xy C R. It turns
out that everything presented in previous sections is still valid if we replace every discrete quantity with its
continuous counterpart; concretely, we replace [ng], [mx], and [Ix] with Xy, By, and Cy, respectively, where

B, and Cy, are appropriate domains that can be chosen by model assumptions. Accordingly, we also replace
my

all the summation over these sets with appropriate integration; for instance, replace ZZ:ZI and > =1

with [ Xi dzy, and [, B dpy, respectively. As a result, we obtain Algorithms 9, 10, 11, and 12 as continuous
counterparts of Algorithms 1, 2, 3, and 4.

Algorithm 9 TT-RS-C for a continuous function p.

Require: p: X; X --- X X4 — R and target ranks r1,...,7rq_1.
Require: Th: Xp X -+ X Xg X Cr_1 - R for k=2,...,d.
Require: s1: By X X1 - R and sg: By X Xpg X By_1 >R fork=2,...,d— 1.
10 Byp,..., Dy «— SKETCHING-C(p, T2, ..., Ta, S$1,...,8d—1)-
2: By,...,Bq + TRIMMING—C(&H, R 5(1, T1yeeoyTd—1)-
3: A1,...,Aq_1 < SYSTEMFORMING-C(B1,...,Bd—1,51,-,8d—1)-
4: Solve the following d matrix equations via least-squares for the variables G1: X1 X [r1] = R, Gi: [rr—1] X X X [rx] = R for

k:2,...,d71, and Gd: [Td_l}XXd*)R.

G1 = By,

Tk—1

> Apo1(Br—1;ak—1)Gr(h—1; T, ap) = Be(Br—1; a5, ax) k=2,...,d—1,
ap_1=1 (32)

Td—1

> Aa1(Ba-1;aa—1)Galaa—1;7a) = Ba(Ba—1;Ta).

ag_1=1

5: return Gq,...,Gq.

First, note that the main algorithm for the continuous case, TT-RS-C (Algorithm 9), has equations (32)
which are exactly the same as (7) of Algorithm 1. Now, (32) are infinite-dimensional matrix equations, that is,
coefficients and cores are functions. Also, the sketching algorithm for a continuous density (Algorithm 10),
which we call SKETCHING-C, is simply a modification of SKETCHING by replacing all the summations
with integrals properly. We modify TRIMMING similarly to obtain its continuous counterpart TRIMMING-C.
In this case, TRIMMING-C should be done by applying functional SVD [28,35] to :I')l, .. .,(T)d,l to obtain
Bi,...,Bg_1, respectively. We demonstrate how such a functional SVD works in the next subsection with
a concrete example.

C.1. Applying TT-RS-C to the Markov case

In this subsection, we assume p is a continuous Markov model, that is, p is a continuous density and
satisfies (12). For simplicity, we assume X; = --- = X4 = [a,b] and (¢,)nen be a countable orthonormal
basis of L?([a,b]) such that ¢; is a constant function, say ¢1(x) = c. Due to orthogonality,

/b¢>n(m) dz =0

for all n > 2. Suppose each marginal density of p is well approximated using the first M basis functions
¢1,...,¢p. Based on Lemma 5, we now show that we can choose concrete sketch functions T5, ..., Ty and
81,--.,84—1 so that Algorithm 9 exactly recovers the cores of p, when provided with p = p.
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Algorithm 10 SKETCHING-C.
Require: p, To,..., T4, and s1,...,S4—1 as given in Algorithm 9.
for k=1tod—1do B
Right sketching: define ®;: X1 X -+ X X X Cr, — R as

O (1., 7)) = /p(xl:kyxk+1:d)Tk+1(xk+1:d77k) dxpiy - -deg.

if £ > 1 then _
Left sketching: define @y : Br_1 X X X Cr — R as

P (Br—1, T, 1) = /Sk—1(5k—17I1:k—1)<f’k(11:k—1,1’k,’wc) dxy---drg_1.
Compute Si: B X X1 X -+ X X, — R for the next iteration:

Sk (Br, 1:k) :/Sk(ﬁk,fﬂk,ﬁk—l)sk—l(ﬁk—hzl:k—l)dﬂk—L

else
Define

Il
K

@1 (21,71) 1(z1,71)-

Define sketch function

S1(B1, 1) = s1(B1,21)-

end if
end for _
Left sketching: define ®4: By—1 X Xq4 — R as

4(Ba1,xa) = / Sa—1(Ba—1,%1:a—1)P(T1:4—1,Ta) dx1 -+ -dxa_1.

return %1, e, @y

Algorithm 11 TRIMMING-C.

Require: <i>1, S ,<i>d from Algorithm 10.
Require: Target ranks r1,...,74_1 as given in Algorithm 9.
for k=1tod—1do
if £ = 1 then

Compute the first r; left singular vectors of %1(x1;71) and define B1: X1 X [r1] — R so that these singular vectors are
the columns of B (z1;a1).

else _
Compute the first ry left singular vectors of @ (Br—1,2k;vk) and define By : Br—1 X Xk X [rx] — R so that these singular
vectors are the columns of By (Br—1,Zk; k).

end if
end for _
Let By(Ba—1,%d) = ®a(Ba—1,Ta)-
return Bi,..., Bg.

First, let By = C, = [M] for k = 1,...,d — 1, where 71,...,74-1 < M. Then, we define Tp41: Xp41 X
o X XgxCr — R as

Tt 1 (Tha1:ds Vo) = Oy (Tht1)
which gives

O (21, %) = /p(xl:k,kaﬂ)%k (1) dTpqr.
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Algorithm 12 SYSTEMFORMING-C.

Require: Bi,...,Bg_1 from Algorithm 11.
Require: si,...,84—1 as given in Algorithm 9.
for k=1tod—1do
if k = 1 then
Compute Ay: By x [r1] — R:

A1(B1, 1) = /81(5171‘1)31(117041)(&1-

else
Compute Ay : B X [rp] — R:

Ap(Br, ax) = /.sk'(ﬂk'vxk,ﬁk—l)Bk(ﬁk—lazlmOék') dxrdBr—1-

end if
end for
return Ay, ..., Aq_1.
Ty+1 marginalizes out xy49,...,xq as in the discrete case and it replaces the variable x; with the index

i € [M] based on the fact that the marginal density can be approximated well by the fist M basis functions.
Similarly, define Sy: By x X7 — R such that By =

s1(B1,w1) = ¢, (1), Sk(Br, Ty Be—1) = dp, (Tr)6(Br—1 — 1),

where ¢ is the Dirac delta function. Then,

Sk(Brs T1:k) = g, (T)d1(xp—1) - -~ d1 (1) = o, (1),

thus
Pr(Br—1, Tk, Tk) = /51%1(31@71,561:1@71)‘1)1@(:61%71,561@7%)d331"'divszl
= /Ck72¢/3k,1(17k—1)p(561:k7$k+1)¢wk (Tht1) dzgyrdey - - - drgy
=2 / D811 (Tr—1)P(Tk—1, T, Thot1) Dy (Tt1) AT 1dp—1-
and
Q4(Ba—1,a) = /Sd—1(ﬂd—17 T1:4-1)P(T1:d—1,%q) dx1 - - - drg_y
_ d—2
c /éf)ﬁd,l(%—l)]?(ﬂ?d—l, Tq) drg_1.
In other words, Si_; marginalizes out variables x1,...,z;_2 as in the discrete case; furthermore, it replaces
the variable x;_; with the index ;_; by integration against basis functions.
Using the results ®4,..., P, from SKETCHING-C, we now explain how to implement TRIMMING-C via

functional SVD. The idea is to use basis expansion with respect to each node xj € Xj and then apply SVD.
For instance, consider ®4(x1,7;). For large enough M € N, we have

g

<I>1 T1,71) Z v1(Br,m)op (1),
B1=1
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where vy : [M] x [M] — R is given as

vi(B1,m) :/51(331771)%1(551)61331.

Now, we can apply SVD to a matrix v1(51;71); compute the first rj left singular vectors of v1(81;71) and
define By: [M] x [r1] — R so that these singular vectors are the columns of Bj(f1;@1). Then, we define
By: Xy x[r1] = R as

M
Bi(z1,01) = Y Bi(B1,01)p, (11).
B1=1

Then,

Ai(Br,0n) = /Bl($1,al)¢ﬁ1 (z1)dz) = Bi(f1, ).

Similarly, for kK =2,...,d — 1, we have
N M
Ok (Br1, 2 7%) & Y Vi (Be-1, Jk )b (1),

Je=1

where vy : [M] x [M] x [M] — R is given as
Vi (Br—1, 9k, Vi) :/a)k(ﬁkflvfka')/k)d)jk(mk)dxk'

We compute the first ry, left singular vectors of vg(8k—1, jr; vx) and define By [M] x [M] x [rr] — R so that
these singular vectors are the columns of By(Bi—1, jk; ak). Then, we define By: [M] x Xj X [ri] = R as

M
Bi(Br—1, x, o) = Z Ek(@k—l,jk,ak)%k (),

Jr=1

which yields Ay : [M] x [ri] — R as

M
A (Br, ag) == Z Sk (B Tk, Br—1) B (Br—1, Tk, o) dxg
Br-1=1

= /¢ﬁk (2g)Br(1, g, ) dzy

Mo
= Z Bk:(lvjk:ak>/Qbﬁk(xk)(bjk(xk)dxk

Je=1

= Ek‘(laﬂlﬂak)'
Lastly, we apply basis expansion to By as well. Define
Ba(Ba-1,ja) = /Bd(ﬁdq, xq)Pj,(xa) dzg

so that



28 Y. Hur et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101575

M
Ba(Bi-1,7a) = Y Ba(Ba-1,ja)ju(wa)-

ja=1
Now, one can easily verify that solving (32) for G, ..., G4 amounts to solving
g1 = él)
Thk—1 _
> Ak 1By 1) gk(@k—1, ks %) = Br(Br—1, Gk o) k=2,...,d—1,
ak—1=1 (33)
Td—1 "
Z Ag-1(Ba—1,2a-1)ga(@i-1,ja) = Ba(Ba-1,ja)
ag_1=1

for the variables g1 : [M]x[r1] = R, gg: [rk—1] X [M]x[r] > Rfork=2,...,d—1,and gq4: [rq_1]x[M] = R
and letting

M
Gi(wr,a1) = > g1(j1, 1)), (z1),
Jji=1
M
Gk(ak}—hxkvak) = Z gk(ak—lajk7ak)¢jk(xk) k= 2) o ad - 1)

Jr=1

M
Ga(aa—1,2a) = Y gal@a—1,Ja)$ja(xa)-

Ja=1

In this case, the resulting TT-format is

r Td—1

Z Z Gl(l'l,al)"'Gd(adflaxd)

ar=1 ag—1=1
M M 1 Td—1

= Z Z Z Z 91(J1, 1) -+ galoa—1, ja) | @5, (x1) -~ ¢j,(xa)-
Jji=1 Jja=1 \a1=1 @d—1=1

We summarize the case of specializing Algorithm 9 to the case of Markov density in Algorithm 13. We note
that one should be able to prove a result similar to Theorem 6 under mild assumptions.

Appendix D. Perturbation results

This section provides perturbation results of Algorithm 1. First, we prove that small perturbation on the
coefficients and the right-hand sides of (7) of Algorithm 1 leads to small perturbations of the cores. Using
this result we show that Algorithm 1 with sketches (14) and (16) is robust against small perturbations for
a discrete Markov density p. From this, we prove that Algorithm 1 with sketches (14) and (16) applied to
the empirical density p, which is constructed based on N i.i.d. samples from a discrete density p*, recovers
p* with high probability given N is large enough; a concrete sample complexity is then derived.

D.1. Preliminaries

In what follows, for a given vector x we let ||z|| and ||z|/c denote its Euclidean norm and its supremum
norm, respectively. For a matrix A, we denote its spectral norm, Frobenius norm, and the r-th singular



Y. Hur et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101575 29

Algorithm 13 Main algorithm for a continuous Markov density.

Require: p: [a,b]? — R and target ranks 71,...,74_1-

Require: Orthonormal functions ¢1,..., ¢ in L2([a, b)) with ¢1 =cand M > r1,...,7rq-1.
1: for k=1tod—1do

2: if k = 1 then

3: Define vy : [M] X [M] — R as
vi(B1,m) = //P(Zl’wz)@% (1)@, (z2) dz1d2.
4: Compute the first rq left singular vectors of v1(81;71) and define Bi: [M] X [r1] — R so that these singular vectors are
the columns of B1(B1;a1).
5: Define A;: [M] x [r1] — R so that

6: else if k£ < d then
7: Define vi: [M] x [M] X [M] — R as

vk (Be—1, Ji, i) = "2 /p(xk—lamky$k+1)¢5k,1($k—1)¢jk ()P, (Trg1) dog—1dxrdriss.

8: Compute the first rj left singular vectors of vi(Bk—1,jk; &) and define E’k : [M] x [M] x [rk] — R so that these singular
vectors are the columns of By (Bk—1, Jk; k).
9: Define Ay : [M] X [rx] — R so that

Ak (Br, ar) = Br(1, Br, ax).

10: else _
11: Define By: [M] X [M] — R as
Ba(Ba-1,ja) = c*7? / Dpyy (@a—1)p(Ta—1,xa)Pj, (xa) dra_1dz4.
12: end if
13: end for

14: Solve the following d matrix equations via least-squares for the variables g1 : [M] X [r1] = R, gr: [rk—1] X [M] X [rx] — R for
k=2,...,d—1,and gq: [ra—1] X [M] — R.

g1 = Bu,
Tk—1

> Ar1(Br-1iak-1)gk(ok_1;dk, k) = Be(Br—15dk, ) k=2,...,d—1,

ap_1=1 (34)
Td—1 _
> Ag1(Ba—1ica—1)ga(a—1;ja) = Ba(Ba—1; ja)-
ag1=1
15: return G1,...,Gq4 by letting
M
Gi(z1,a1) = Y g1(d1,01)85, (z1),
Jji=1
M
Grlok—1, @k, ar) = > grlon—1,dk, ar)ds (xr) k=2,...,d—1,
Jr=1
M

Ga(aa—1,2a) = Y galea—1,ja) s, (xa).

Jja=1




30 Y. Hur et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101575

value by ||All, ||AllF, and o,.(A), respectively. With some abuse of notation, we also let ||A]|s denote the
largest absolute value of the entries of A. Lastly, the orthogonal group in dimension r is denoted by O(r).
We also introduce the following norms for 3-tensors.

Definition 9. For any 3-tensor G € R *"2%"s or equivalently, G: [n;1] X [n2] x [n3] — R, we define the
norm

1G]] = mace G- ).

Eln

Here, G(-,i2,-) € R™*"2 denotes a matrix, and |G(:, iz, -)|| denotes its spectral norm. Also, we define |G/ o
by

1Glee = (i17’i27’i3)€ﬁ?])§<[n2]><[n3] G0, 2, )]
Remark 8. Such a norm ||-|| is useful for bounding the norm of a contraction of cores. Throughout the
section, we will analyze cores obtained by our algorithm: Gy: [n1] x [r1] = R, Gg: [rp—1] X [ng] X [rg] = R
for k =2,...,d — 1, and Gy: [rg—1] X [nq] — R. For ease of exposition, for the specific matrices G; and
Gq produced by the algorithm (and any perturbations of them), set [|G1[| = max,, e[, |G(71,-)|| and
|Gall = max,,ein,) IG(-; 2a)||. Then, one can easily verify that

[Gro---0Galleo < IG1ll---lIGall,

where ||Gy 0 -+ 0 G4l denotes the supremum norm of the function (Gyo---0Gq): [n1] X - -+ X [ng] = R.
In summary, the supremum norm of the contraction is easily bounded by the product of ||-||s.

We start with the following basic perturbation result on a linear system Ax = b.

Lemma 10 (Theorem 3.48 of [33]). For A € R™*™, suppose rank(A) = n < m. Let AA € R™*" be a
perturbation such that |At|||AA| < 1. Then, rank(A + AA) = n. Moreover, let x and x + Ax be least-
squares solutions to linear systems Az = b and (A + AA)x = b+ Ab, respectively. Then,

[Az]| IAJAT] [HAAH < |A$—b|> |Ab]| }
< 1+ k(A .
lzll = 1—[AT[[[[AA] [ Al (4) (| Al Al ||l

Using this we prove the following lemma which bounds the perturbation of solutions of the tensor equation
Ao X = B, where A is a matrix, and both X and B are three-tensors. The contraction here is performed
over the second index of A and the first index of X.

Lemma 11. For A € R™*"™ suppose rank(A) = n < m. Let AA € R™*"™ be a perturbation such that
|AT[|AA|l < 1. Then, rank(A + AA) = n. Let B € R™*u*lz qnd AB be its perturbation. Also, let
X € Rvhxlz gnd X+ AX be least-squares solutions to the tensor equations Ao X = B and (A+AA)o X =
B + AB, respectively. Suppose the column space of B € R™*U1 X2 s contained in that of A, then

V2miby | AT|

lax] <
1—JAT[[AaA]

(IAAJIX]+ TAB]oo) -

In particular, if || X || > x > 0 for some constant x, and AA satisfies | AT||||AA|| < 1/2, then

AX]|
(Rl

< VEmla | AT[| (|AA]l + [ ABllox ™) -
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Proof. For any i = (i1,i2) with 1 <43 <y and 1 < iy <y, we set z; = X (-,41,i2) and b; = B(-,41,2) to
be “columns” of X and B respectively. For each equation, since b; is contained in the column space of A,
the previous lemma implies that

A AT |AA] | Ab | AT
Az < llill + = (IIAA[ |2z ]| + [[Ab]) -
T [ATTAAT \ TA] [Al) = T=TATIAA]
—_——
=:C
Now, for each 1 <1y <y,
n Iy
IAX (yin, )l =D > [AX (G i)
j=1iy=1
la
= Z ||A$(11712)H2
io=1

l2
< CP(IAAN 2y i) | + 1 8By i) 1)

ig=1

l2
<Y 207 (AAP |2, i P+ 1ADG, i) 1)

ip=1
= 2C%([|AAIPIX (- in, ) IF + [ABC iy, )7
< 2C° (L AAIPX (v, )P + mlz | ABZ,).

Thus,

IAX]] = max | AX(., i1, )l

IN

max [AX (- i1, )| r
i1

IA

1/2
(2O2<z2||AA||2 max [ X (v, |12 + mzznABnio))
— (202 (LI AA|?| X |2 + mia | AB12))
< V2mlsC (|AA[| X + |AB|ls)

from which the rest of the result follows immediately. O

Lemma 12. Let Gy: [nq] x[r1] = R, Gi: [rp—1] X [ne] x[re]) = R fork=2,...,d—1, and Gg: [rg—1] X [ng] —
R. Denote their corresponding perturbations by AGy. Suppose that there exist &, > 0, k =1,...,d such that
IAGE| < 0k ||Gk|l| for allk =1,...,d. Set

A(Gro---0Gy) = (G1+AGy) o0 (Gqg+ AGy) — G100 Gy.

Then

d d
[A(G1 o 0Ga)lleo < 1G]l -~ [IGall (Z 5k> exp (Z 5k> -
k=1 k=1

The following corollary is an immediate consequence of the previous lemma.
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Corollary 13. Under the same assumptions as the previous lemma, let € € (0,1) be given. If § =
maxi<k<q 0k < €/(3d) then

[AG0-+0 Gl _
Gl TGl

Proof of Lemma 12. For ease of exposition, we set G}, = Gi + AGy, for k =1,...,d. Next, we observe that

A(Gro-+0Ga) =(Gf o 0Gj) — (GroGjo-0GY)
4 (GroGho-0G) — (GroGyoGho-0GY)
+ ...
+(Gro-0Gy_10GE) — (G1o---0Gy).

(35)

The first line on the right-hand side of the previous equation reduces to AG1 oG5 0...G}. As in Remark 8,

[AG1 0G0 0 Gl < [[AGLIIIGEI - IG]-

Furthermore, for £k =1,...,d,
IGE + AGK || < (Gl + IAGK]N < (1 + 0x) |Gl

and hence
d
IAG 0G0 0Gilloo <01 [T+ 60)IG]l -+ IGall.
k=2

The other lines on the right-hand side of (35) can be bounded similarly. Thus, summing over all the terms
on the right-hand side of (35), we find

d d
[A(G1o- -0 Ga)lloc < |Gl - [|Gall <Z 5k> exp (Z 5k> ;
k=1

k=1

where we have used the fact that 1 + 2 < exp(z). O

Remark 9. We note that in the previous lemma, the bounds we obtain are quite pessimistic, since they do
not account for possible cancellations in contractions of multiple G’s. The product of ||Gy||’s could instead
be replaced by the more cumbersome, but sharper, expression

G%0...0G% G GO ..oGor
max max | max [[GT0o- o G IGKI - [GRy 00 G

where GY = Gy, and G}, = Gj.
D.2. Perturbation results
We have seen from Theorem 3 that under certain mild assumptions Algorithm 1 produces a well-defined

set of matrix equations (7). The following result shows that small perturbations of the coefficients and the
right-hand sides of (7) result in small perturbations of the output of Algorithm 1.
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Lemma 14. Under the assumptions of Theorem 3, let G1,...,Gq be the solutions to (7). Given § € (0,1),
suppose that the coefficients and right-hand sides of (7) are perturbed such that

1\ L
HAALl, .- [|AAg—1]l; |AB1]|cos - - - » |ABg||oo < 68 =: 6 <\/87’ max(m,n)ca (1 + g)>

where the constants are defined as follows:

e T =maxi<ip<d—1Tk;

e M = maxXi<g<d—1 Mk,

e N =MmaXi<i<d Nk,

o cg = mini<p<q||Gill,

e cqa=1Vmaxi<p<d—1 ||AL||

Then, the perturbed version of (7) has Gy + AGy, as least-squares solutions such that

1A _
IGxI

Proof. First, we compute a perturbation bound for the solution of the first equation: notice that

\/8rmax(m,n)ca > /nr, which implies § < &, hence

IAG _ |AB| _ VAFIAB s _ VATFSS _ /AT co
_ < < 5=
A A AN

Next, we observe that

1
2] AL

1
|aAM <8 <5<

from which it follows that ||AAg]| HA;LH <1/2forallk =1,...,d—1, and therefore we may apply Lemma 11.
In particular,

IAG]|

ABy|so
ol < Bl (18 + 12 2)

G

< V8mrca (1 + ) 51
<4. O

Next, we analyze the effect of a perturbation Ap of the input p of Algorithm 1. Having established
Lemma 14, it suffices to quantify AAg and ABk in terms of Ap. First, the perturbation on ® from
SKETCHING is obvious; we may roughly say A<I>k ~ Sp_10ApoTyi1. Now that By is obtained as the left
singular vectors of <I)k in TRIMMING, we invoke Wedin’s theorem [32] to quantify ABj in terms of A<I>k To
this end, we first introduce the following distance comparing two 3-tensors up to rotation, which is common
in spectral analysis of linear algebra, see Chapter 2 of [5].

Definition 15. For any 3-tensors G, G € R™*"*"2 we define

dist(G, G) := min |G — Ry oG o Ry
Rleo(’l‘l),RQEO(Tz)
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Here, Ry o G o Ry denotes a 3-tensor formed by contracting the second index of R; and the first index of G
and contracting the first index of Ry and the third index of G.

Using this distance, we compare the G’l, ceey G’d, the which result from applying Algorithm 1 to p = p+Ap
as input, with Gy, ..., Gy, the results of Algorithm 1 with p as input. We will restrict our analysis to the
case where p is a Markov model and Algorithm 1 is implemented with sketches (14) and (16) as in Section 5.

Remark 10. As in Remark 8, we define dist(-,-) for the first and last cores as well. Accordingly, we set
diSt(Gl,Gl) = min H|Gl — GlRH|7
ReO(ry)

dist(Gq,Gq) = min )H|Gd — RG4||,

RGO(Td—l
where G1,G1: [n1] X [r1] = R and Gy, Gy [ra—1] X [ng] = R are the first and last cores produced by the

algorithm, respectively. Here ||-|| on the right-hand sides of the previous equations are the norms defined
for the first and last cores introduced in Remark 8.

Proposition 16. Under the assumptions of Theorem 6, let G1,...,Gq be the cores of p obtained as solutions
to (7). Suppose we apply Algorithm 1 to the perturbed input p = p + Ap with sketches (14) and (16) as in
Theorem 06; the results are denoted as él, e ,éd. Suppose further that for some fixed § € (0, 1),

[Ap(21; 22)|loos [[ADP(T1, T2523) |loos - - - 5 |AP(Ta—2, Ta—15 Ta) [|oo | AP(Td—1; Ta) | oo

cr (\/87'—TLCA <1 + i))l § =6 (30

D —
~ 2n2(1+cp) ca

where the constants are defined as follows:

* N = Maxi<k<d Nk,

o cp =0y (p(x1;22)) Aming—z. q—1 05, (P(Th—1, Tk; Tht1)),
¢ ¢ = min<p<al|Grll,

e ca=1Vmax;cp<q ||AL]l.

Then, fork=1,...,d,

diSt(ék, Gk) <.
Gkl

Proof. We apply Algorithm 1 to p and p with sketches (14) and (16) as in Theorem 6; the resulting coefficient
matrices and right-hand sides of (7) are

Al?"'7Ad_17B1)'"7Bd_17p(‘rd_17xd) and Al?"'7ﬁd_17B1)'")Bd_].?p\(xd_l’xd)’

respectively. Our goal is to quantify their differences.

Recall that By and By are the first rq left singular vectors of p(z1; x2) and p(z1; 22), respectively. We apply
Wedin’s theorem presented in Theorem 2.9 of [5]; if ||Ap(z1;x2)| < or, (p(21;22)), we can find Ry € O(r1)
such that

r1
Bi(z1;01) = Z Bi(z1;a1)Ri(ar; a1) + Ei(z1;00),

a1:1
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and

V2||Ap(z1;22) T By (w1501 |

Ei(z1;00)| < '
[ E1 (215 )| or, (p(@1;22)) — [|Ap(z1; 22|

In particular, if |Ap(z1;22)|| < (1 — 1/v/2)o,, (p(x1;22)), using ||Bi(x1;a1)|| = 1, we have

2||Ap(x1; )|

1By (215 1) < or (p(21522))

Similarly, for k = 2,...,d — 1, if |Ap(zr_1, 21 01)] < (1 — 1/v2)o,, (p(w_1, Tx; Tri1)), We can find
Ry € O(ry,) such that

Tk

By (g1, mp; o) = Z Bi(w—1, xp; ap) Ry (ag; ar) + Ex(xp—1, 2r; ar),

ap=1
and

2[|Ap(xk—1, Tp; Ty ||
Orp (P(Th—1, T3 Thg1))

| Ex(xr—1,zk; on)|| <

Accordingly, for k=2,...,d—1,

Tk Nk—1
Ar(arsan) = Y Ax(ar; ar)Relaws an) + Y Ex(zr-1, 2k ).
ap=1 Tp_1=1

Conceptually speaking, we see that the perturbation in the coefficients and right-hand sides of equations
(7) for Gy, ..., G4 consist of two parts: a rotation and an additive error. We will see that though the rotations
affect the individual G}’s, they do not change the final contraction G o - -- o G4, and hence do not directly
contribute to the pointwise error in the compressed representation of the density. To that end, we define
the rotated quantities ®7, A7, and B} as follows:

r1
Bi(w1,1) := Y Bi(w1,a1)Ra(ar, 1) = Aj(w1, ),

a1:1

Tk
Bi(wk—1, Tk, 00) = Y Bi(w-1, Tk, ax) Ri(ax, ax),

akzl
Nk—1 Tk

Ap(xp, o) = Z By (zp—1, 2k, ) = Z Ak, ar)Ri(ak, o).
Trp_1=1 ap=1

Now, consider the following equations:

Gi = By,
Tk—1
Z Ap 1 (@p—1,a1)Grlag—1, v, ap) = Bi(vp—1, 21,08) k=2,...,d—1
ap-—1=1 (37)
Td—1

> Ay (wa1,04-1)Gi(aa1, 2a) = (-1, Ta)-

ag—1=1
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These equations can be viewed as the rotated version of the original equations for Gy, ..., Gy. In fact, the
solutions are also simply rotated from the original solutions G1,...,Gq as follows':

GT = Z Gl(l’l,al)Rl(alaal)7
lll:l

Tk—1 Tk

Gr(ag—1,zk, 0) = Z Z Ri—1(ak—1,00-1)Gr(ag—1,xk, ax)Rp(ag, o) k=2,...,d—1,

ak,1:1 akzl

Td—1

Gilaa—1,2a) = Y Ra-1(ag—1,0a-1)Ga(da—1,24)-

ag—1=1

By definition, it is obvious that ||G|| = |Gyl for allk =1,...,d and G1o0---0Gg=Gjo--- oG}

We now address the effect of the additive error. As a result of the above discussion, running our algorithm
with input p amounts to a perturbed version of (37), where the coefficients and the right-hand sides are
perturbed as follows:

By =B; +AB}, A=A +AA; k=1,...,d—1,

D(xa—1;2a) = p(Ta—1;Ta) + Ap(z4—1;2q).

By construction, AB} = AA} = Ey,

Nkg—1
AB}, = Ey, AAj(zk;ar) = Z Er(axp_1,zra8) k=2,...,d—1.
.’Ek,1:1
We now look for suitable bounds on Gy, — Gy for k=1,...,d. In light of Lemma 14, it suffices to construct
suitable bounds for ||AAT|,...,[|AA5_ 1|, |1ABfllsc-- -, |ABY_{|lco, and ||Ap(z4—1;Za)|loc- In particular,
we claim
VB IAASN . JAAL B oos - - Bt lloos [ AP(a—1: 2a)l0 < 86, (38)

where f is as in Lemma 14, namely,

ca

B = (\/&“—RCA (1+1>)1.

Here, we use the fact that my = nj and maxi<x<q—1 7% < n. Essentially, we have

= 2n2(1+cp)
By definition of G} and Aj, it is obvious that cg = mini<k<ql|Gill = mini<p<q||Gil| and ca =
maxi<k<d—1 ||AL|| = maxi<p<a—1 [|[(4})T||. Hence, by Lemma 14, it suffices to check (38) to prove that
fork=1,...,d,
Gy - Gill
I <, (39)
Gz

! More simply, G; = G1R1, G = R]_, 0Gro Ry, fork=2,...,d—1,and G} = R]_,Ga.
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Let us verify (38). First,

[Ap(za-1;a)lloo < 70 < 6.
Moreover, as we showed above,

2[Ap(zisaz)||l o 2nl|Ap(z1; 7o)

Eilloe < B < <
1Erllee < 1Bl < e aa) = o (p(@rian)

< —75<ﬂ5

For k = 2,...,d — 1, we verify [|AAf| < n'/?||Ex(vr—1,2x; o). Note that AAL = PyEg(zr_1,Tr; ag);
here P, € R™>™nme-1 = [[} ... I], where I, € R™*" ig the identity matrix. Hence, ||AAj| <
| Pl B (g1, 2p; ) || < /2| Ep(zp_1, Tx; o) because ||Py| = /mr_1 < n'/2. Therefore,

IAAZIL N Brllos < 02| B (-1, was ) |

< 2711/2“Ap($k—17$k§l‘k+1)||
UTk(p(xk—17xk;‘Tk+1))

< 20| Ap(@k—1, k3 1)l
U7'k (p(xk—laxk};xk+l))

2n2y

IN

5 < 6.
cp

Hence, (38) is satisfied, thus (39) holds. By definition of dist(-,-) and ||-||, we have for k =1,...,d,

dist(Gr, Gr) < IGr = Gill _ G 10;\” <5 o
Gk G (leg

The following result on the error of the contraction follows immediately from the previous Proposition,
combined with Corollary 13.

Theorem 17. Under the assumptions of Theorem 0, let G1,...,Gq be the cores of p obtained as solutions
o (7). Suppose we apply Algorithm 1 to the perturbed input p = p + Ap with sketches (14) and (16) as in
Theorem 6; the results are denoted as G, . .., Ga. Suppose further that for some fized € € (0,1),

1Ap(z1; 22) oo, [|AP(21, 225 23) 00 - - s [|AP(Ta—2, Za—1; %a) | oo [ AP(Ta—15 2a) [0

-1
cp 1

<V 14+ —

= 6dn2(1+cp) ( 8rnca ( + CG)) ©

where the constants n,cp,ca,ca are as in Proposition 16. Then,

Hélo"'oé’d*Glo"'oGd”oo .
Gl I Gall B

D.3. Estimation error analysis

Lastly, we present a precise version of Theorem 7. Recall that our main interest is to apply Algorithm 1
to an emplrlcal density p constructed based on N i.i.d. samples from some underlymg denblty p*; letting
Gl, .. Gd be the results of Algorithm 1 applied to p, we hope to claim p* ~Gio---0Gy.

Ublng the previous perturbation result (Proposition 16), we will quantify a difference between Gy and
Gy, where G7,...,G% are the results of Algorithm 1 applied to p*. The only technicality here is that the
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perturbed input is not arbitrary, but given as an empirical density. Therefore, the perturbation p — p* can
be represented in terms of the sample size N. The following lemma derives a concrete bound on p — p* using
simple concentration inequalities.

Lemma 18. Let p*: [nq] X -+ X [ng] = R be a density. Suppose p is an empirical density based on N i.i.d.
samples from p*. Let Ap* = p—p* and n = maxi<g<q Nk, then for any n € (0,1), the following inequalities
hold with probability at least 1 — n:

* log(2n2d
1AP* (1 22) oo < ¥’
log(2n3d
1AP™ (-1, 2h3 Th1) [0 < % k=2,....d—1,
* log(2n2d
1AP* (@413 2a) o < %

Proof. Since Np is the sum of N independent Bernoulli random variables, concentration inequalities imply
that for any fixed z1 € [n1] and z3 € [ng] and ¢ > 0,

P(|Ap* (a1, z2)| > t) < 262N

Due to the union bound, ||Ap*(z1;22)||c < t holds with probability at least 1 — 2n2e—2Nt*, Equivalently,

« |log(2n2 /1)
: <

holds with probability at least 1 — 7. Similarly, for k =2,...,d — 1

9

log(2n3
AP (-1, Tp; Thg1) oo < %

holds with probability at least 1 —n. Due to the union bound,

log(2n2d
89 15 22)le < B2,
[log(2n3d/n)
<4/ =" 7 =2,....d—1
)HOO — 2N k Y 7d I
[log(2n2d
||Ap*($d—1§xd)||oo < g(T/n)

hold with probability at least 1 —n. O

||Ap*(l“k—1, Ty Th+1

Hence, we have proved that the perturbation p — p* is bounded above by O(1/ VN ). Now, by comparing
this bound with the right-hand sides of (36), we obtain a complexity. Again, we will restrict our analysis

to the case where p* is a Markov model and Algorithm 1 is implemented with sketches (14) and (16) as in
Section 5.

Theorem 19. Let p*: [n1] X -+ X [ng] = R be a Markov density satisfying Condition 1 such that the rank of
the k-th unfolding matriz of p* is v for each k =1,...,d—1. Let G7,...,G} be the cores of p* obtained
by applying Algorithm 1 to p* with sketches (14) and (16) as in Theorem 6; AY,..., A5 | are the resulting
coefficient matrices in (7).
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Now, let p be an empirical density based on N i.i.d. samples from p*. Let él, .. .,éd be the results of
applying Algorithm 1 to p with sketches (14) and (16) as in Theorem 6. Given § € (0,1) and n € (0,1),
suppose

112 1\ 2 n®rlog(2n3
N > 1664 <1+—) (1+—> M, (40)
Cqa cp

where

¢ N =maXi<ip<d Nk,

o cp =0y (p(z1;22)) Aming=s,  4—10r, (P*(Th—1,Tk; Ty1)),
* cg = min<p<al|GEl,

e ca=1Vmaxicp<a1 [[(A7)]-

Then,

M<5 Vk=1,....d
A o

with probability at least 1 — ).

Proof. Due to Proposition 16, it suffices to show that N satisfies

log(2n3d/n) cp 1 -t
< —
5N S 521 op) V8rnca | 1+ o 9,

which is equivalent to (40). O

In addition, using Proposition 17, we obtain the following sample complexity for bounding the error of
the contraction.

Theorem 20. Let p*: [n1] X -+ X [ng] = R be a Markov density satisfying Condition 1 such that the rank of
the k-th unfolding matriz of p* is ry for each k =1,...,d — 1. Let G7,...,G} be the cores of p* obtained
by applying Algorithm 1 to p* with sketches (14) and (16) as in Theorem 6; A%,..., A}, are the resulting
coefficient matrices in (7).

Now, let p be an empirical density based on N i.i.d. samples from p*. Let él, .. .,éd be the results of
applying Algorithm 1 to p with sketches (14) and (16) as in Theorem 6. Given € € (0,1) and n € (0,1),
suppose

2 2
N1 (14 L) (14 L) Enirlog(@n’d/n)
B 4 ¢l cp €2 )

where

e N = maxlgkgd ng,

o cp =0y (p(r1522)) Aming—z, . 4—1 0r, (P*(Th—1,Tk; Thy1)),
« cg =mini<r<d|GE s

o ca=1Vmaxicrea [|(AD)
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Then,

[Grio--0Gy—Gfo- 0GH <
NGHIl - - Gl -

with probability at least 1 — 7.

Remark 11. In Theorems 19 and 20, notice that the constants cp, cg,ca are independent of d; to see this,
observe that they are determined by the marginals of p*, namely, p*(z1;z2) and p*(xg—1, k; Tk+1), which
are independent of d under Condition 1. Therefore, we obtain Theorem 7 and Corollary 8, where the
upper bounds hide those constants under the “big-O” notation as they are independent of d. Meanwhile,
notice that Theorems 19 and 20 are valid for p* that may not satisfy Condition 1; in such a case, the
constants cp, cg, ca may depend on d in principle. Extensive numerical experiments, however, suggest that
the constants cp, cg, ca are often nearly independent of d for a broad class of Markov models that may not
satisfy Condition 1, such as the Ginzburg-Landau model used in Section 6.
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