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In this paper, we introduce a sketching algorithm for constructing a tensor train 
representation of a probability density from its samples. Our method deviates 
from the standard recursive SVD-based procedure for constructing a tensor train. 
Instead, we formulate and solve a sequence of small linear systems for the individual 
tensor train cores. This approach can avoid the curse of dimensionality that 
threatens both the algorithmic and sample complexities of the recovery problem. 
Specifically, for Markov models under natural conditions, we prove that the tensor 
cores can be recovered with a sample complexity that scales logarithmically in the 
dimensionality. Finally, we illustrate the performance of the method with several 
numerical experiments.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Given independent samples from a probability distribution, learning a generative model [24] that can 
produce additional samples is a task of fundamental importance in machine learning and data science. 
The generative modeling of high-dimensional probability distributions has seen significant recent progress, 
particularly due to the use of neural-network based parametrizations within both old and new paradigms 
such as generative adversarial networks (GANs) [11], variational autoencoders (VAE) [16], and normalizing 
flows [22,30]. Among these three major paradigms, only normalizing flows furnish an analytic formula for 
the probability density function, and in all cases the computation of downstream quantities of interest can 
only be achieved via Monte Carlo sampling-based approaches with a relatively low order of convergence.
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More precisely, suppose we are given N independent samples

(y(1)
1 , . . . , y(1)

d ), . . . , (y(N)
1 , . . . , y(N)

d ) ∼ p!

drawn from an underlying probability density p! : Rd → R, our goal is to estimate p! from the empirical 
distribution

p̂(x1, . . . , xd) = 1
N

N∑

i=1
δ(y(i)

1 ,...,y(i)
d )(x1, . . . , xd), (1)

where δ(y1,...,yd) is the δ-measure supported on (y1, . . . , yd) ∈ Rd. In this paper, assuming that the underlying 
density p! takes a low-rank tensor train (TT) [20] format (known as a matrix product state (MPS) in the 
physics literature [21,34]), we propose and analyze an algorithm that outputs a TT format of p̂ to estimate 
p!. Such a TT ansatz has found applications in generative modeling; for instance, [14] (and its extension [6]) 
utilizes it to learn the distribution of handwritten digit images. In particular, the TT ansatz offers several 
benefits. First, generating independent and identically distributed (i.i.d.) samples can be done efficiently 
by applying conditional distribution sampling [9] to the obtained TT format; it can also be used for other 
downstream tasks, such as direct (deterministic) computation of the moments. However, in order to exploit 
these benefits, we need to be able to determine the TT representation efficiently. Our algorithm, which 
we name Tensor Train via Recursive Sketching (TT-RS), provides computationally/statistically efficient 
estimation of p!, making the following contributions.

• By a sketching technique, we can estimate the tensor components of the TT via a sequence of linear 
systems, with a complexity that is linear in both the dimension d and the sample size N .

• In the setting of a Markovian density with dimension-independent transition kernels, we prove that the 
tensor cores can be estimated from a number of samples that scales as log(d).

1.1. Prior work

In the literature, generally two types of input data are considered for the recovery of low-rank TTs. In 
the first case, one assumes that one has the ability to evaluate a d-dimensional function p at arbitrary points 
and seeks to recover p in a TT format with a limited (in particular, polynomial in d) number of evaluations. 
In this context, various methods such as TT-cross [19], DMRG-cross [25], and TT completion [27] have been 
considered. Furthermore, generalizations such as [15,31] have been developed to treat densities which have 
a tensor ring structure. In the second case, which is the case of this paper, one only has access to a fixed 
collection of empirical samples from the density. Importantly, one does not have access to the value of the 
density at the given samples. In this case, the ideas of the TT methods that we mentioned earlier cannot 
be applied directly.

In order to understand how the proposed method differs from the previous methods, we first show that 
in generative modeling, the nature of the problem is different. More precisely, we are mainly dealing with 
an estimation problem rather than an approximation problem, where we want to estimate the underlying 
density p! that gives the empirical distribution p̂, in terms of a TT. In such a generative modeling setting, 
suppose one designs an algorithm A that takes any d-dimensional function p and gives A(p) as a TT, then 
one would like such A to minimize the following differences

p! −A(p̂) = p! −A(p!)︸ ︷︷ ︸
approximation error

+ A(p!) −A(p̂)︸ ︷︷ ︸
estimation error

.
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In generative modeling, p̂ suffers from sample variance, which leads to variance in A(p̂) and hence the 
estimation error. Our focus is to reduce such an error so that there is no curse of dimensionality in estimating 
p!. While our method is inspired by sketching ideas from randomized linear algebra [17,23], which have found 
applications in the tensor computation field [3,8,29], there are several notable differences with the current 
literature.

• In relation to TT-compression algorithms: Algorithms based on singular value decomposition (SVD) 
[20] and randomized linear algebra [19,25,26] aim to compress the input function p as a TT such that 
A(p) ≈ p. If such a compression is successful, the above approximation error can be made small, that is, 
p! −A(p!) ≈ 0, and we also have A(p̂) ≈ p̂; accordingly, the estimation error becomes A(p!) −A(p̂) ≈
p! − p̂. Such an estimation error, however, grows exponentially in d when having a fixed number of 
samples. In this paper, we focus on developing methods that reduce the estimation error due to sample 
variance such that there is no curse of dimensionality, and such a setting has not been considered in the 
previous TT-compression literature.
A recent work [26] determines a TT from values of a high-dimensional function in a computationally 
distributed fashion. In particular, [26] forms an independent set of equations with sketching techniques 
from randomized linear algebra to determine the tensor cores in a parallel way. While our method has 
similarities with [26], our goal, which is to estimate a TT based on empirical samples of a density, 
is different from [26]. Therefore, the purpose and means of sketching are fundamentally different. We 
apply sketching such that each equation in the independent system of equations has size that is constant 
with respect to the dimension of the problem (unlike the case in [26]), and hence we can estimate the 
coefficient matrices of the linear system in a statistically efficient way. Furthermore, our use of parallelism 
in setting up the system is mainly to prevent error accumulation in the estimation of tensor cores.

• In relation to optimization-based algorithms: A more principled approach for estimating the underlying 
density p! is to perform maximum likelihood estimation, i.e. minimizing the Kullback-Leibler (KL) di-
vergence between the TT ansatz and the empirical distribution [2,14,18]. Although maximum likelihood 
estimation is statistically efficient in terms of having a low-variance estimator, due to the non-convex 
nature of the minimization, these methods can suffer from local minima. Furthermore, these iterative 
procedures require multiple passes over N data points. In contrast, the method described in this paper 
recovers the cores with a single sweep across all tensor cores.

1.2. Organization

The paper is organized as follows. First, we briefly describe the main idea of our algorithm in Section 2. 
Details of the algorithm are presented in Section 3 and conditions for the algorithm to work are discussed 
in Section 4. In Section 5, we examine how the conditions in Section 4 lead to exact and stable recovery of 
tensor cores under a Markov model assumption of the density. In Section 6, we illustrate the performance 
of our algorithm with several numerical examples. We conclude in Section 7.

1.3. Notations

For an integer n ∈ N, we define [n] = {1, . . . , n}. Note that for m, n ∈ N, a function c : [m] × [n] → R
may also be viewed as a matrix of size m ×n. We alternate between these two viewpoints often throughout 
the paper. For any a, b ∈ R, we define a ∨ b := max(a, b) and a ∧ b := min(a, b). For a, b ∈ N where b ≥ a, 
we may use the “MATLAB notation” a : b to denote the set {a, a + 1 . . . , b}.

Our primary objective in this paper is to obtain a TT representation of a d-dimensional function. Through-
out the remainder of this paper, we fix a d-dimensional function p : X1×· · ·×Xd → R, where X1, . . . , Xd ⊂ R. 
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Fig. 1. Tensor diagram illustrating the TT representation of p (Definition 1). The variables xi’s correspond to the outward solid 
lines in both sides. The solid lines between two adjacent cores on the right-hand side depict the contraction. See [4] for a detailed 
introduction to tensor network diagram notation.

Unless stated otherwise, p may not be a density, that is, it can take negative values or its integral may not 
be 1. Whenever we are interested in a density, we will mention explicitly that p is a density or use p! instead.

Definition 1. We say that p admits a TT representation of rank (r1, . . . , rd−1) if there exist G1 : X1×[r1] → R, 
Gk : [rk−1] ×Xk × [rk] → R for k = 2, . . . , d − 1, and Gd : [rd−1] ×Xd → R such that

p(x1, . . . , xd) =
r1∑

α1=1
· · ·

rd−1∑

αd−1=1
G1(x1,α1)G2(α1, x2,α2) · · ·Gd−1(αd−2, xd−1,αd−1)Gd(αd−1, xd)

for all (x1, . . . , xd) ∈ X1 × · · ·×Xd. In this case, we call G1, . . . , Gd the cores of p. For notational simplicity, 
in the following we often replace the right-hand side of the above equation (and similar expressions involving 
contractions of several tensors) with G1 ◦ · · · ◦Gd, where ‘◦’ represents the contraction of the cores. We will 
also sometimes express the TT representation of p diagrammatically as shown in Fig. 1.

Remark 1. In Definition 1, the sets X1, . . . , Xd ⊂ R may be infinite; in such a case, the representation in 
Definition 1 is also called a functional TT representation [1,12].

Finally, when working with high-dimensional functions, it is often convenient to group the variables into 
two subsets and think of the resulting object as a matrix. We call these matrices unfolding matrices. In 
particular, for k = 1, . . . , d − 1, we define the k-th unfolding matrix by p(x1, . . . , xk; xk+1, . . . , xd); namely, 
group the first k and the last d − k variables to form rows and columns, respectively. In certain situations, 
for ease of exposition we write xS to denote the joint variable (xi1 , . . . , xik), where S = {i1, . . . , ik} and 
1 ≤ i1 ≤ · · · ≤ ik ≤ d. For example, we may write p(x1, . . . , xk; xk+1, . . . , xd) as p(x1:k; xk+1:d).

2. Main idea of the algorithm

In this section, we sketch the main idea of the TT-RS algorithm. We start with the following simple 
observation in the discrete case, i.e., the case where p : [n1] × · · ·× [nd] → R for n1, . . . , nd ∈ N. Supposing 
that p is representable in a TT format with rank (r, . . . , r), then the k-th unfolding matrix p(x1:k; xk+1:d)
is low-rank. Indeed, we can write

p(x1:k;xk+1:d) =
r∑

αk=1
Φk(x1:k;αk)Ψk(αk;xk+1:d)

for some Φk : [n1] × · · · × [nk] × [r] → R and Ψk : [r] × [nk+1] × · · · × [nd] → R. On the other hand, the 
TT-format assumption on p implies that there exist G1, . . . , Gd such that

Φk(x1:k,αk) :=
r∑

α1=1
· · ·

r∑

αk−1=1
G1(x1,α1) · · ·Gk(αk−1, xk,αk),
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Ψk(αk, xk+1:d) :=
r∑

αk+1=1
· · ·

r∑

αd−1=1
Gk+1(αk, xk+1,αk+1) · · ·Gd(αd−1, xd),

so that p = G1 ◦ · · · ◦Gd. In other words, contractions of the first k and the last d − k cores of G1, . . . , Gd

yield spanning vectors for the r-dimensional column and the row spaces, respectively, of the k-th unfolding 
matrix.

This observation motivates the following procedure to obtain the cores. Suppose that the rank of the 
k-th unfolding matrix of p is r. We consider Φk : [n1] × · · ·× [nk] × [r] → R such that the column space of 
Φk(x1:k; αk) is the same as that of the k-th unfolding matrix; for instance, a suitable Φk can be constructed 
by forming the SVD of the k-th unfolding matrix p(x1:k; xk+1:d) and setting Φk(x1:k; αk) to be the matrix 
of left-singular vectors. Next, we attempt to find cores G1, . . . , Gd−1 such that

Φk(x1:k,αk) =
r∑

α1=1
· · ·

r∑

αk−1=1
G1(x1,α1) · · ·Gk(αk−1, xk,αk) (2)

for k = 1, . . . , d −1. Equivalently, we let G1 = Φ1 and solve the following equations for the cores Gk : [rk−1] ×
[nk] × [rk] → R for k = 2, . . . , d − 1:

Φk(x1:k,αk) =
r∑

αk−1=1
Φk−1(x1:k−1,αk−1)Gk(αk−1, xk,αk). (3)

The above discussion has also been studied in [7,26]. For completeness, we formally state it as follows.

Proposition 2. For each k = 1, . . . , d − 1, suppose that the rank of the k-th unfolding matrix of p is rk and 
define Φk : [n1] × · · · × [nk] × [rk] → R so that the column space of Φk(x1:k; αk) is the same as that of the 
k-th unfolding matrix of p. Consider the following d matrix equations with unknowns G1 : [n1] × [r1] → R, 
Gk : [rk−1] × [nk] × [rk] → R for k = 2, . . . , d − 1, and Gd : [rd−1] × [nd] → R:

G1(x1;α1) = Φ1(x1;α1),
rk−1∑

αk−1=1
Φk−1(x1:k−1;αk−1)Gk(αk−1;xk,αk) = Φk(x1:k−1;xk,αk) k = 2, . . . , d− 1,

rd−1∑

αd−1=1
Φd−1(x1:d−1;αd−1)Gd(αd−1;xd) = p(x1:d−1;xd).

(4)

Then, each equation of (4) has a unique solution, and the solutions G1, . . . , Gd satisfy

p(x1, . . . , xd) =
r1∑

α1=1
· · ·

rd−1∑

αd−1=1
G1(x1,α1) · · ·Gd(αd−1, xd). (5)

Hence, by solving these equations we obtain a TT representation of p with cores G1, . . . , Gd. We call (4) the 
Core Determining Equations (CDEs) formed by Φ1, . . . , Φd−1.

Proposition 2, which we prove in Appendix A, implies that the cores Gk can be obtained by solving 
matrix equations. That said, it should be noted that the coefficient matrices of the CDEs, Φk(x1:k; αk) for 
k = 1, . . . , d − 1, are exponentially sized in the dimension d.

In what follows, we take an approach that is similar in spirit to the “sketching” techniques commonly 
employed in the randomized SVD literature [13], which are used to dramatically reduce the computational 
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cost of computing the SVD of several broad classes of matrices. In this paper, however, sketching plays 
a fundamentally different role. Here, sketching is crucial for the stability of the algorithm, though it also 
yields an improvement in computational complexity. For our problem, i.e., to determine a TT from samples, 
the most important function of sketching is to reduce the size of CDEs such that the reduced coefficient 
matrices can be estimated efficiently with a small sample size N . Furthermore, the choice of sketches cannot 
be arbitrary (e.g., Gaussian random matrices) but must be chosen carefully to reduce the variance of 
the coefficient matrices as much as possible. The features and requirements of this sketching strategy are 
particularly apparent in the case of their application to Markov models, which is treated in Section 5. More 
concretely, in order to reduce the size of the CDEs, for some function Sk−1 : [mk−1] × [n1] × · · · [nk−1] → R, 
contracting Sk−1 against (4) (i.e., multiplying both sides by Sk−1 and summing over x1, . . . , xk−1) we find:

rk−1∑

αk−1=1




n1∑

x1=1
· · ·

nk−1∑

xk−1=1
Sk−1(βk−1;x1:k−1)Φk−1(x1:k−1;αk−1)



Gk(αk−1;xk,αk)

=
n1∑

x1=1
· · ·

nk−1∑

xk−1=1
Sk−1(βk−1;x1:k−1)Φk(x1:k−1;xk,αk).

(6)

Note that the number of rows of the new coefficient matrix on the left-hand side of (6) is mk−1. Hence, 
sketching in this way reduces the number of equations to mk−1nkrk when determining each Gk. Of course, 
one must be careful to choose suitable sketch functions Sk−1, as mentioned previously. As we shall see, Φk’s 
are also obtained from some right sketching functions Tk : [nk+1] × · · · [nd] × [lk] → R to be contracted with 
p over the variables xk+1, . . . , xd.

In the next section, we present the details of the proposed algorithm, TT-RS, which gives a set of 
equations of the form (6).

Remark 2. We pause here to comment on why we solve (2) in the form of (3). To solve (2), one can in 
principle determine G1, . . . , Gd successively, i.e. after determining G1, . . . Gk−1, plug them into (2) to solve 
for Gk. In principle, this is the same as solving (3) where each G1, . . . , Gd is determined independently. 
But in practice, when Φk’s contain noise, determining G1, . . . , Gd successively via substitutions leads to 
noise accumulation. As we will see later, solving the independent set of equations (3) is more robust against 
perturbations on the coefficients Φk’s. We again remark that this independent set of equations is similar to 
the ones presented in a recent work [26]. However, as mentioned in Section 1.1, our main algorithm presented 
in the next section is designed to improve statistical estimation, where it is instrumental to reduce the size 
of the coefficients Φk’s via the sketching using Sk−1’s, whereas equations in [26] are exponentially large.

3. Description of the main algorithm: TT-RS

In this section, we present the algorithm TT-RS (Algorithm 1 below) for the case of determining a TT 
representation of any discrete d-dimensional function p, where we assume p : [n1] × · · ·× [nd] → R for some 
n1, . . . , nd ∈ N. The stages of Algorithm 1 are depicted in Fig. 2.

Algorithm 1 is divided into four parts: Sketching (Algorithm 2), Trimming (Algorithm 3), System-
Forming (Algorithm 4), and solving d matrix equations (7). As input, Algorithm 1 requires functions 
T2, . . . , Td and s1, . . . , sd−1; we call them right and left sketch functions, respectively. Sketching applies 
these sketch functions to p so that Φ̃k resembles the right-hand side of the reduced CDEs (6). In particular, 
if lk denotes the number of right sketches and we set lk = rk for each k where r1, . . . , rd−1 are the target 
ranks of the TT, then one could in principle replace the right-hand side of (6) with Φ̃k. In practice, we 
choose lk > rk, and use Trimming to generate suitable Bk’s, to be defined below, from the corresponding 
Φ̃k’s. These can in turn be used to form a right-hand side in the sense of (6). Lastly, based on B1, . . . , Bd−1,



Y. Hur et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101575 7

Algorithm 1 TT-RS for a discrete function p.
Require: p : [n1] × · · · × [nd] → R and target ranks r1, . . . , rd−1.
Require: Tk : [nk] × · · · × [nd] × [lk−1] → R with lk−1 ≥ rk−1 for k = 2, . . . , d.
Require: s1 : [m1] × [n1] → R and sk : [mk] × [nk] × [mk−1] → R for k = 2, . . . , d − 1.
1: Φ̃1, . . . , ̃Φd ← Sketching(p, T2, . . . , Td, s1, . . . , sd−1).
2: B1, . . . , Bd ← Trimming(Φ̃1, . . . , ̃Φd, r1, . . . , rd−1).
3: A1, . . . , Ad−1 ← SystemForming(B1, . . . , Bd−1, s1, . . . , sd−1).
4: Solve the following d matrix equations via least-squares for the variables G1 : [n1] × [r1] → R, Gk : [rk−1] × [nk] × [rk] → R

for k = 2, . . . , d − 1, and Gd : [rd−1] × [nd] → R:

G1 = B1,

rk−1∑

αk−1=1
Ak−1(βk−1;αk−1)Gk(αk−1; xk,αk) = Bk(βk−1; xk,αk) k = 2, . . . , d − 1,

rd−1∑

αd−1=1
Ad−1(βd−1;αd−1)Gd(αd−1; xd) = Bd(βd−1; xd).

(7)

5: return G1, . . . , Gd

Fig. 2. Tensor diagrams illustrating the four steps of the TT-RS algorithm (Algorithm 1), explicitly showing the case of step k = 3
for a d = 6 dimensional distribution. Sketching produces Φ̃k by applying sketch functions Sk−1 and Tk+1 to p. Trimming generates 
Bk from Φ̃k using the SVD. SystemForming outputs Ak based on Bk. Lastly, collecting the outputs Ak’s and Bk’s, we form (7)
and solve for Gk’s. See Section 3.1 for full details.

SystemForming outputs A1, . . . , Ad−1, which resemble the coefficient matrices on the left-hand side of (6). 
Detailed descriptions of each subroutine are given in the following subsection. In what follows, we constantly 
refer back to Section 2 to motivate the algorithm.

Remark 3. The choice of sketch functions is based on two criteria: (i) When p actually has an underlying TT 
representation, solving the equations (7) should produce suitable cores G1, . . . , Gd. A proof of such an exact 
recovery property is given in Section 4, where we also discuss the conditions that the sketch functions have 
to satisfy. (ii) Let Ĝ1, . . . , Ĝd be the results of TT-RS with p̂ as input, where p̂ is an empirical distribution 
constructed based on i.i.d. samples from some density p!. We would like to have p! ≈ Ĝ1 ◦ · · · ◦ Ĝd if p̂ is a 
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good approximation to p!. This requires A1, . . . , Ad−1, B1, . . . , Bd to have a small variance, and the variance 
of these objects depends on the choice of sketches. We discuss these considerations in Section 5 for Markov 
models.

Remark 4. The above algorithm is written only for the case where we consider densities p over a finite 
state space. However, if p is in L2(X1) × · · · × L2(Xd) then one can pass to a suitable tensor product of 
orthonormal bases in each dimension and work with truncated coefficient tensors instead. We summarize the 
necessary modifications required for continuous functions in Appendix C. We call this “continuous” version 
of the algorithm TT-RS-Continuous (TT-RS-C) (Algorithm 9). There will, of course, be a new source of 
error associated with the choice of how to truncate the coefficients. Standard estimates from approximation 
theory can be used to relate the smoothness of p to the decay of coefficients in each dimension.

3.1. Details of the subroutines

In this section, we provide details of the three main subroutines used in TT-RS. First, Sketching
(Algorithm 2) converts each unfolding matrix of p into a smaller matrix using sketch functions. For each 
k = 2, . . . , d −1, by contracting the k-th unfolding matrix of p with the right and left sketch functions, Tk+1
and Sk−1, we obtain Φ̃k, which can be thought of as a three-dimensional tensor of size Rmk−1×nk×lk as in 
Step 1 of Fig. 2. This “sketched” version of the k-th unfolding matrix of p is no longer exponentially large 
in d. In Sketching, each Φ̄k plays the role of Φk in the left-hand side of (2), which captures the range of 
the k-th unfolding matrix of p. The extra “bar” in the notation for Φ̄k is used to distinguish this object 
from Φk, as Φ̄k(x1:k; γk) has lk ≥ rk columns, while Φk(x1:k; αk) only has rk columns. Such “oversampling” 
[13] is standard in randomized linear algebra algorithms for capturing the range of a matrix effectively. 
Then, as in (6), left sketches Sk’s are applied to further reduce Φ̄k’s to Φ̃k’s. As mentioned previously, 
Φ̃k resembles the right-hand side of (6), though the Φ̃k’s need to be further processed by Trimming. 
An important remark here is that unlike the right sketch functions T2, . . . Td, the left sketch functions 
S2, . . . , Sd−1 are constructed sequentially, i.e., Sk is obtained by contracting a small block sk with Sk−1; 
hence, it is a sequential contraction of s1, . . . , sk. Such a design is necessary as is shown in SystemForming. 
Another remark is that Algorithm 2 is presented in a modular fashion for the sake of clarity. In fact, many 
computations in Algorithm 2 can be re-used by leveraging the fact that Sk is obtained from the contraction 
of Sk−1 and sk. Hence, Φ̃k can be obtained recursively from Φ̃k−1.

Trimming takes the outputs Φ̃1, . . . , Φ̃d−1 of Sketching and further process them to have the appro-
priate rank of the underlying TT using the SVD. This procedure is illustrated in Step 2 in Fig. 2. It should 
be noted that this procedure is not necessary if for any k, lk = rk. In this case, one should directly let 
Bk = Φ̃k for each k.

Finally, SystemForming forms the coefficient matrices to solve for G1, . . . , Gd from the output 
B1, . . . , Bd−1 of Trimming by contracting s1, . . . , sd−1 with them, which results in A1, . . . , Ad−1, respec-
tively, as in Step 3 of Fig. 2. The matrices A1, . . . , Ad−1 play the role of the coefficient matrices appearing 
on the left-hand side of (6). As we see in the algorithm, the fact that the sketch functions S1, · · · , Sd−1 are 
obtained by successive contractions of s1, . . . , sd−1 allows Ak to be constructed from Bk. We stress that 
this is not merely for the sake of efficient computation. In fact, it is important for the correctness of the 
algorithm, as illustrated in the proof of recovery for Markov models in Section 5 below.

3.2. Complexity

As noted earlier, we are practically interested in the case where p is an empirical distribution p̂ constructed 
from N i.i.d. samples from an underlying density p!. In such a case, p̂ is N -sparse. The high-dimensional 
integrals within TT-RS can be efficiently computed in this case. To see this, suppose that the input p
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Algorithm 2 Sketching.
Require: p, T2, . . . , Td, and s1, . . . , sd−1 as given in Algorithm 1.

for k = 1 to d − 1 do
Right sketching: define Φ̄k : [n1] × · · · × [nk] × [lk] → R as

Φ̄k(x1:k, γk) =
nk+1∑

xk+1=1
· · ·

nd∑

xd=1
p(x1:k, xk+1:d)Tk+1(xk+1:d, γk).

if k > 1 then
Left sketching: define Φ̃k : [mk−1] × [nk] × [lk] → R as

Φ̃k(βk−1, xk, γk) =
n1∑

x1=1
· · ·

nk−1∑

xk−1=1
Sk−1(βk−1, x1:k−1)Φ̄k(x1:k−1, xk, γk).

Compute sketch function Sk : [mk] × [n1] × · · · × [nk] → R for the next iteration:

Sk(βk, x1:k) =
mk−1∑

βk−1=1
sk(βk, xk,βk−1)Sk−1(βk−1, x1:k−1).

else
Define

Φ̃1(x1, γ1) = Φ̄1(x1, γ1).

Define sketch function

S1(β1, x1) = s1(β1, x1).

end if
end for
Left sketching: define Φ̃d : [md−1] × [nd] → R as

Φ̃d(βd−1, xd) =
n1∑

x1=1
· · ·

nd−1∑

xd−1=1
Sd−1(βd−1, x1:d−1)p(x1:d−1, xd).

return Φ̃1, . . . , ̃Φd.

Algorithm 3 Trimming.
Require: Φ̃1, . . . , ̃Φd from Algorithm 2.
Require: Target ranks r1, . . . , rd−1 as given in Algorithm 1.

for k = 1 to d − 1 do
if k = 1 then

Compute the first r1 left singular vectors of Φ̃1(x1; γ1) and define B1 : [n1] × [r1] → R so that these singular vectors are 
the columns of B1(x1; α1).

else
Compute the first rk left singular vectors of Φ̃k(βk−1, xk; γk) and define Bk : [mk−1] × [nk] × [rk] → R so that these 
singular vectors are the columns of Bk(βk−1, xk; αk).

end if
end for
Let Bd(βd−1, xd) = Φ̃d(βd−1, xd).
return B1, . . . , Bd.

of Algorithm 1 is N -sparse, and let n = max1≤k≤d nk, m = max1≤k≤d−1 mk, l = max1≤k≤d−1 lk, and 
r = max1≤k≤d−1 rk. Note that the complexity of Sketching is O(mlNd) since each Φ̃k can be computed 
in O(mlN) time. Trimming requires O(mnl2d) operations as each Bk is computed using SVD in O(mnl2)
times. Also, SystemForming is achieved in O(m2nrd) time. Lastly, the equations (7) can be solved in 
O(mnr3d) time. In summary, the total computational cost of TT-RS with N -sparse input is
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Algorithm 4 SystemForming.
Require: B1, . . . , Bd−1 from Algorithm 2.
Require: s1, . . . , sd−1 as given in Algorithm 1.

for k = 1 to d − 1 do
if k = 1 then

Compute A1 : [m1] × [r1] → R:

A1(β1,α1) =
n1∑

x1=1
s1(β1, x1)B1(x1,α1).

else
Compute Ak : [mk] × [rk] → R:

Ak(βk,αk) =
nk∑

xk=1

mk−1∑

βk−1=1
sk(βk, xk, βk−1)Bk(βk−1, xk,αk).

end if
end for
return A1, . . . , Ad−1.

O(mlNd) + O(mnl2d) + O(m2nrd) + O(mnr3d).

Note that this cost is linear in both n and the dimension d of the distribution.

Remark 5. The term “recursive sketching” in the name TT-RS is due to the sequential contraction of 
the left sketch functions s1, . . . , sd−1. We remark that it is possible to design an algorithm without such 
“recursiveness”, which we call TT-Sketch (TT-S); see Appendix B for the details.

4. Conditions for exact recovery for TT-RS

The main purpose of this section is to provide sufficient conditions for when TT-RS can recover an 
underlying TT if the input function p admits a representation by a tensor train. In particular, the following 
theorem provides a guideline for choosing the sketch functions in TT-RS.

Theorem 3. Assume the rank (in exact arithmetic) of the k-th unfolding matrix of p is rk for each k =
1, . . . , d − 1. Suppose T2, . . . , Td and s1, . . . , sd−1 of Algorithm 1 satisfy the following.

(i) Φ̄k(x1:k; γk) and p(x1:k; xk+1:d) have the same column space for k = 1, . . . , d − 1.
(ii) Φ̃k(βk−1, xk; γk) and Φ̄k(x1:k; γk) have the same row space for k = 2, . . . , d − 1.
(iii) Ak(βk; αk) is rank-rk for k = 1, . . . , d − 1.

Then, each equation of (7) has a unique solution, and the solutions G1, . . . , Gd are cores of p.

We first present a lemma showing that Sketching and Trimming give rise to the right-hand side of (6)
for determining the cores of p.

Lemma 4. Under the assumptions of Theorem 3, consider the results B1, . . . , Bd−1 produced by Algorithms 2
and 3. The column space of B1(x1; α1) is the same as that of the first unfolding matrix of p. Also, for each 
k = 2, . . . , d − 1, there exists a Φk : [n1] × · · ·× [nk] × [rk] → R such that the column space of Φk(x1:k; αk)
is the same as that of the k-th unfolding matrix and

Bk(βk−1, xk,αk) =
n1∑

x1=1
· · ·

nk−1∑

xk−1=1
Sk−1(βk−1, x1:k−1)Φk(x1:k−1, xk,αk). (8)
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Proof. (i) implies that Φ̃1(x1; γ1) = Φ̄1(x1; γ1) and p(x1; x2:d) have the same r1-dimensional column space, 
which is the same as the column space of B1(x1; α1) by the definition of B1.

For k = 2, . . . , d − 1, (i) and (ii) imply that Φ̃k(βk−1, xk; γk) is still rank-rk. Since the columns of 
Bk(βk−1, xk; αk) are the first rk left singular vectors of Φ̃k(βk−1, xk; γk), we may write

Bk(βk−1, xk;αk) =
lk∑

γk=1
Φ̃k(βk−1, xk; γk)qk+1(γk;αk)

for some qk+1 : [lk] × [rk] → R; here, the column space of qk+1(γk; αk) is the same as the row space of 
Φ̃k(βk−1, xk; γk). Now, we define Φk : [n1] × · · · [nk] × [rk] → R by

Φk(x1:k,αk) =
lk∑

γk=1
Φ̄k(x1:k, γk)qk+1(γk,αk). (9)

Next, we observe that (8) holds since

Bk(βk−1, xk,αk) =
lk∑

γk=1
Φ̃k(βk−1, xk, γk)qk+1(γk,αk)

=
lk∑

γk=1

n1∑

x1=1
· · ·

nk−1∑

xk−1=1
Sk−1(βk−1, x1:k−1)Φ̄k(x1:k−1, xk, γk)qk+1(γk,αk).

We claim that the column space of Φk(x1:k; αk) is the same as that of the k-th unfolding matrix. Indeed, 
due to (9), the column space of Φk(x1:k; αk) is contained in that of Φ̄k(x1:k; γk), which is the column space 
of the k-th unfolding matrix because of (i). Now, it suffices to prove that Φk(x1:k; αk) has full column rank. 
This is true because the column space of qk+1(γk; αk) is the same as the row space of Φ̃k(βk−1, xk; γk) by 
construction, which is equivalent to the row space of Φ̄k(x1:k; γk) due to (ii). !

In Lemma 4, we showed that Sketching and Trimming give the right-hand sides of (6) (i.e., Bk in (8)), 
without forming the exponentially-sized Φk explicitly. Lastly, by combining Sketching and Trimming with
SystemForming, we have a well-defined system of equations for determining G1, . . . , Gd, as in Algorithm 1. 
This is shown in the following proof for Theorem 3.

Proof of Theorem 3. Due to Lemma 4, there exists Φ2, . . . , Φd−1 such that (8) holds; also, letting Φ1 = B1, 
we have shown that Φk(x1:k; αk) and the k-th unfolding matrix have the same column space for k =
1, . . . , d − 1. Hence, we can consider CDEs (4) formed by Φ1, . . . , Φd−1. First, we verify that the equations 
in (7) are implied by (4), obtained by applying sketch functions to both sides of (4). The first equation 
G1 = Φ1 is the same in both (7) and (4). For k = 2, . . . , d − 1, if we apply Sk−1 to both sides of the k-th 
equation of (4), then

n1∑

x1=1
· · ·

nk−1∑

xk−1=1
Sk−1(βk−1, x1:k−1)

rk−1∑

αk−1=1
Φk−1(x1:k−1,αk−1)Gk(αk−1, xk,αk)

=
n1∑

x1=1
· · ·

nk−1∑

xk−1=1
Sk−1(βk−1, x1:k−1)Φk(x1:k,αk).

(10)

Note that the right-hand side of (10) is simply Bk(βk−1, xk, αk), which is the right-hand side of the k-
th equation of (7). We now want to show that the coefficient matrix on the left-hand side of (10) is the 
coefficient matrix Ak−1(βk−1, αk−1) of the k-th equation of (7), that is, we want to prove for k = 2, . . . , d −1,
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n1∑

x1=1
· · ·

nk−1∑

xk−1=1
Sk−1(βk−1, x1:k−1)Φk−1(x1:k−1,αk−1) = Ak−1(βk−1,αk−1), (11)

This is implied by Algorithm 4. To see this, for k = 2, note that (11) amounts to

n1∑

x1=1
s1(β1, x1)B1(x1,α1) = A1(β1,α1),

which follows immediately from Algorithm 4. For 2 < k ≤ d − 1, (11) holds because

n1∑

x1=1
· · ·

nk−1∑

xk−1=1
Sk−1(βk−1, x1:k−1)Φk−1(x1:k−1,αk−1)

=
n1∑

x1=1
· · ·

nk−1∑

xk−1=1

mk−2∑

βk−2=1
sk−1(βk−1, xk−1,βk−2)Sk−2(βk−2, x1:k−2)Φk−1(x1:k−1,αk−1)

=
nk−1∑

xk−1=1

mk−2∑

βk−2=1
sk−1(βk−1, xk−1,βk−2)Bk−1(βk−2, xk−1,αk−1)

= Ak−1(βk−1,αk−1),

where the first equality holds since Sk−1 is a contraction of sk−1 and Sk−2, the second equality holds because 
of (8), and the last equality is given in Algorithm 4. Hence, we have shown that for k = 2, . . . , d − 1, the 
k-th equation of (7) is indeed obtained by applying Sk−1 to both sides of the k-th equation of (4). Similarly, 
the last equation of (7) is obtained by applying Sd−1 to both sides of the last equation of (4). From this 
it is clear that solutions G1, . . . , Gd of (4) formed by Φ1, . . . , Φd−1 satisfy (7). Now, we use condition (iii) 
in Theorem 3; this means that the coefficient matrices A1, . . . , Ad−1 have full column rank, and thus each 
equation of (7) must have a unique solution. Therefore, a unique set of solutions G1, . . . , Gd of (4) formed 
by Φ1, . . . , Φd−1 discussed in Proposition 2 gives rise to a unique set of solutions of (7). Additionally, as in 
Proposition 2, G1, . . . , Gd give a TT representation of p. !

5. Application of TT-RS to Markov model

In this section, we demonstrate how model assumptions on p can guide the choice of sketch functions 
T2, . . . , Td and s1, . . . , sd−1 to guarantee that the conditions (i)-(iii) of Theorem 3 are satisfied. More pre-
cisely, we show that for Markov models, suitable sketch functions exist, and moreover, we give an explicit 
construction. In Section 5.2 we prove that the sketch functions we construct satisfy the requisite conditions. 
When working with an empirical distribution p̂ which is constructed based on i.i.d. samples from some 
underlying density p!, TT-RS requires obtaining B1, . . . , Bd, A1, . . . , Ad−1 by taking expectations over the 
empirical distribution. Though the variance can be large, in Section 5.3, we show that under certain natural 
conditions, our choice of sketch functions does not suffer from the “curse of dimensionality” when estimating 
the cores from the empirical distribution.

Throughout this section, we assume that the input p of TT-RS (Algorithm 1) is a Markov model, that 
is, p is a probability density function and satisfies

p(x1, . . . , xd) = p(x1)p(x2|x1) · · · p(xd|xd−1). (12)

Here, by abuse of notation, for any i < j, we denote the marginal density of (xi, . . . , xj) as p(xi, . . . , xj). 
Depending on the situation, we also use
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(MSp)(xS) := p(xS), S ⊂ [d] (13)

to denote the marginalization of p to the variables given by the index set S, which is a |S|-dimensional 
function. Also, p(xi, . . . , xj |xk) denotes the conditional density of (xi, . . . , xj) given xk. For a Markov model 
p, the conditional probabilities p(x2|x1), . . . , p(xd|xd−1) in (12) are referred to as the transition kernels.

5.1. Choice of sketch

We start with the following simple lemma that shows the low-dimensional nature of the column and row 
spaces of the unfolding matrices.

Lemma 5. Suppose p is a Markov model. For any i ≤ k < j,

(i) p(xi:k; xk+1:j) and p(xi:k; xk+1) have the same column spaces,
(ii) p(xi:k; xk+1:j) and p(xk; xk+1:j) have the same row spaces.

Proof. Since xi:k ⊥ xk+2:j | xk+1 (conditional independence), we have that

p(xi:k;xk+1:j) = p(xi:k|xk+1)p(xk+2:j |xk+1)p(xk+1),

which implies that the column space of p(xi:k; xk+1:j) is not affected by xk+2:j . For the same reason, 
xi:k−1 ⊥ xk+1:j | xk implies

p(xi:k;xk+1:j) = p(xi:k−1|xk)p(xk+1:j |xk)p(xk),

and hence the row space of p(xi:k; xk+1:j) is not affected by xi:k−1. !

An immediate consequence of Lemma 5 is that each unfolding matrix p(x1:k; xk+1:d) may be replaced by 
p(x1:k; xk+1) if our main focus is the column space. This motivates a specific choice of sketch functions for 
a Markov model. For each k = 1, . . . , d − 1, let lk = nk+1 and define

Tk+1(xk+1:d, γk) = Ik+1(xk+1; γk), (14)

where Ik+1 : [nk+1] × [nk+1] → R such that Ik+1(xk+1; γk) is the identity matrix. This choice of Tk+1 yields

Φ̄k(x1:k, γk) = (M1:k+1p)(x1:k, γk). (15)

In other words, contracting Tk+1 with the k-th unfolding matrix amounts to marginalizing out variables 
xk+2, . . . , xd.

Similarly, we let mk = nk for each k = 1, . . . , d − 1, and define

s1(β1, x1) = I1(β1;x1), sk(βk, xk,βk−1) = Ik(βk;xk), (16)

where I1 : [n1] ×[n1] → R is defined so that I1(β1; x1) is the identity matrix, which gives rise to Sk(βk, x1:k) =
Ik(βk, xk) and

Φ̃1 = M{1,2}p, Φ̃k = M{k−1,k,k+1}p, 2 ≤ k ≤ d− 1, Φ̃d = M{d−1,d}p. (17)

Again, this choice of left sketch functions leads to Sk−1 that marginalizes out variables x1, . . . , xk−2.
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In summary, with these sketch functions, Sketching outputs marginals of p. Now, it is obvious that 
Algorithm 3 and 4 can be done efficiently; it just performs an SVD on these small marginal matrices and 
computes both A1 = B1 and

Ak(xk,αk) =
nk−1∑

xk−1=1
Bk(xk−1, xk,αk)

for k ≥ 2.

Remark 6. For the situation where p is a function of continuous variables, in Appendix C.1 we discuss how 
to adapt TT-RS-C (Algorithm 9) to the Markov case.

5.2. Exact recovery for Markov models

In this subsection, we prove that if we use TT-RS (Algorithm 1) in conjunction with the sketches defined 
in (14) and (16), then the resulting algorithm enjoys the exact recovery property. Using Theorem 3, it suffices 
to check the choice of sketch functions mentioned in the previous subsection satisfies (i)-(iii) of Theorem 3.

Theorem 6. Let p be a discrete Markov model such that the rank (in exact arithmetic) of the k-th unfolding 
matrix of p is rk for each k = 1, . . . , d − 1. With right and left sketches in (14), (16), Algorithm 1 returns 
G1, . . . , Gd as cores of p.

Proof. It suffices to check that (i)-(iii) of Theorem 3 are satisfied. As noted earlier, for each k = 1, . . . , d −1, 
(15) holds. Hence, Φ̄k(x1:k; γk) and p(x1:k; xk+1:d) have the same column space by Lemma 5. Thus, (i) of 
Theorem 3 holds. Similarly, for each k = 2, . . . , d − 1, (17) holds, hence, Φ̃k(βk−1, xk; γk) and Φ̄k(x1:k; γk)
have the same row space. Thus, (ii) of Theorem 3 holds.

Lastly, we claim Ak(xk; αk) is rank-rk for all k = 1, . . . , d − 1 (condition (iii) of Theorem 3). Clearly, 
A1(x1; α1) = B1(x1; α1) is rank-r1 by definition. For k = 2, . . . , d − 1, by definition of Bk, we can find 
qk+1 : [nk+1] × [rk] → R such that the column space of qk+1(xk+1; αk) is the same as the row space of 
p(xk−1, xk; xk+1) and

Bk(xk−1, xk,αk) =
nk+1∑

xk+1=1
p(xk−1, xk, xk+1)qk+1(xk+1,αk).

Hence,

Ak(xk,αk) =
nk−1∑

xk−1=1
Bk(xk−1, xk,αk)

=
nk−1∑

xk−1=1

nk+1∑

xk+1=1
p(xk−1, xk, xk+1)qk+1(xk+1,αk).

=
nk+1∑

xk+1=1




nk−1∑

xk−1=1
p(xk−1, xk, xk+1)



 qk+1(xk+1,αk)

=
nk+1∑

xk+1=1
p(xk, xk+1)qk+1(xk+1,αk).
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By Lemma 5, p(xk−1, xk; xk+1) and p(xk; xk+1) have the same row space. Therefore, the column space of 
qk+1(xk+1; αk) is the same as the row space of p(xk; xk+1), where both are rank-rk. Thus, Ak(xk; αk) must 
be rank-rk by construction. !

5.3. Stable estimation for Markov models

In this section, we present an informal result regarding the stability of the TT-RS algorithm when an 
empirical distribution p̂ is provided as input instead of the true density p!. The precise statement of the 
theorem is deferred to Appendix D. If p̂ is taken as the input of Algorithm 1, the results Φ̃1, . . . , Φ̃d of
Sketching have certain variances that get propagated to the final output G1, . . . , Gd via the coefficient 
matrices A1, . . . , Ad−1, B1, . . . , Bd. The variances of Φ̃1, . . . , Φ̃d depend critically on the choice of sketch 
functions. In what follows, we show that the sketches (14) and (16) give a nearly dimension-independent 
error when estimating the tensor cores if p! is a Markov model satisfying the following natural condition.

Condition 1. The transition kernels p!(x2|x1), . . . , p!(xd|xd−1) are independent of d.

Theorem 7 (Informal statement of Theorem 19). Suppose p! is a discrete Markov model that satisfies Con-
dition 1 and admits a TT-representation with rank (r1, . . . , rd−1). Consider an empirical distribution p̂
constructed based on N i.i.d. samples from p!. Let Ĝ1, . . . , Ĝd and G!

1, . . . , G
!
d be the results of TT-RS with 

p̂ and p! as input, respectively. Then, with high probability,

dist(Ĝk, G!
k)

~G!
k~ ≤ O

(√
log(d)√
N

)
∀k = 1, . . . , d, (18)

where the hidden constant in the “big-O” notation does not depend on the dimensionality d, ~·~ is some 
appropriate norm, and dist(·, ·) is a suitable measure of distance between cores.

In Theorem 7, the errors in the cores show 
√

log(d)-dependence which grows very slowly in d; the term √
log(d) is a consequence of the union bound required to derive a probabilistic bound on d objects (the 

cores) simultaneously. We remark, however, that near dimension-independent errors in the pairs (G!
k, Ĝk)

do not necessarily imply such an error in approximating p! by Ĝ1 ◦ · · · ◦ Ĝd, the results of TT-RS with 
p̂ as input. Instead, we can derive an error that scales almost linearly in d, thereby avoiding the curse of 
dimensionality. The precise statement is deferred to Appendix D; here, we provide an informal statement 
summarizing this result.

Corollary 8 (Informal statement of Theorem 20). In the setting of Theorem 7, with high probability,

‖Ĝ1 ◦ · · · ◦ Ĝd −G!
1 ◦ · · · ◦G!

d‖∞
~G!

1~ . . .~G!
d~ ≤ O

(
d
√

log(d)√
N

)
,

where ‖ · ‖∞ denotes the largest absolute value of the entries of a tensor.

In Section 6, we verify from the experiments that such d
√

log(d)-dependence of the error indeed suggests 
near-linear dependence on the dimensionality d.

Remark 7. Extensive numerical experiments suggest that Theorem 7 and Corollary 20 are valid for a broad 
class of Markov models that may not necessarily satisfy Condition 1. See Remark 11 for details.
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5.4. Higher-order Markov models

We conclude this section with a brief discussion on higher-order Markov models. For m ∈ N, we call p
an order-m Markov model if it is a density and satisfies

p(x1, . . . , xd) = p(x1, . . . , xm)p(xm+1|x1, . . . , xm) · · · p(xd|xd−m, . . . , xd−1).

What we have presented so far, i.e., the case m = 1, can be generalized to any m ∈ N by a suitable 
replacement of the sketch functions T2, . . . , Td and s1, s2, . . . , sd−1. Recall that the sketch functions for 
the case where m = 1 are chosen based on Lemma 5, which can be properly generalized to any order-m
Markov model. For instance, we can say that p(xi:k; xk+1:k+j) and p(xi:k; xk+1:k+m) have the same column 
space for any j ≥ m. Based on this generalization, the choice of the sketch functions for general m ∈ N is 
straightforward: they are chosen such that

Φ̄k = M1:(k+m)∧dp,

Φ̃k = Mk−1:(k+m)∧dp.

In particular, using such Φ̃k’s as the input to Trimming and subsequently SystemForming, we obtain an 
algorithm for a discrete order-m Markov density.

6. Numerical experiments

In this section, we illustrate the performance of our algorithm with concrete examples. More specifically, 
given i.i.d. samples of some ground truth density p!, we construct an empirical density p̂ and apply TT-RS 
(or TT-RS-C) to it to obtain cores G1, . . . , Gd such that p! ≈ G1 ◦ · · · ◦Gd =: q.

6.1. Ginzburg-Landau distribution

We consider the following probability density defined on [a, b]d:

pGL(x1, . . . , xd) ∝ exp
(
−β

d∑

k=0

(
λ

2

(
xk − xk+1

h

)2
+ 1

4λ (x2
k − 1)2

))
,

where x0 = xd+1 = 0. This is the Boltzmann distribution of a Ginzburg-Landau potential, which is classically 
used to model phase transitions in physics and also more recently as a test case in generative modeling [10]. 
Throughout the section, we fix [a, b] = [−4, 4] and β = λ = h = 1.

First, we consider a discretized version of p. To discretize p, we choose n uniform grid points of [a, b], 
that is, Z =

{
a + i

n−1 (b− a)
}n−1

i=0
, and define a discretized density pD : [n]d → R as

pD := [pGL(x1, . . . , xd)](x1,...,xd)∈Zd .

Hence, pD is essentially a multi-dimensional array of size nd. Notice that pGL is a Markov model, hence so 
is pD. We obtain N i.i.d. samples from pD using a Gibbs sampler and construct an empirical density based 
on these samples, which form the empirical measure p̂D. We apply TT-RS with sketches (14) and (16) to 
p̂D and let qD := G1 ◦ · · · ◦Gd be the contraction of the cores obtained by the algorithm. We compute the 
following relative l2 error:

‖pD − qD‖2
‖pD‖2

,
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Fig. 3. Relative l2 errors for the discretized case. In (A), we fix d = 8 and change the sample size N ∈ {28, 29, . . . , 217}. In (B), 
we fix the sample size N = 50000 and change d ∈ {3, 6, . . . , 27, 30}. In both cases, we use the fixed number of grid points n = 9, 
and TT-RS (Algorithm 1) is applied with r1 = · · · = rd = 3. Each error bar is centered at the average of 20 realizations, with the 
standard deviation as its vertical length.

where ‖f‖2
2 :=

∑n
x1=1 · · ·

∑n
xd=1 f(x1, . . . , xd)2 for any f : [n]d → R. We see in Fig. 3(A) that the error 

decreases with rate O
(

1√
N

)
as sample size N increases when we fix d. Furthermore, when we fix N and let 

d grow, we see a linear growth in the error (Fig. 3(B)).
Next, we repeat the same procedure with a continuous density pGL. Now we obtain N i.i.d. samples from 

pGL using the Metropolis-Hastings algorithm and construct an empirical density p̂ based on them. Then, 
we apply Algorithm 13 to p̂, where we choose the basis functions φ1, . . . , φM as Fourier basis functions on 
[a, b]. Recall that contraction of the resulting cores gives a function q such that

q(x1, . . . , xd) =
M∑

j1=1
· · ·

M∑

jd=1




r1∑

α1=1
· · ·

rd−1∑

αd−1=1
g1(j1,α1) · · · gd(αd−1, jd)



φj1(x1) · · ·φjd(xd).

Then, we compute the relative L2 error:

errt = ‖pGL − q‖2
‖pGL‖2

,

where ‖f‖2
2 =

´
[a,b]d f(x1, . . . , xd)2 dx1 · · · dxd for any f defined on [a, b]d. Since q is an element of the 

function space ΠM := {φj1 ⊗ · · ·⊗ φjd : j1, . . . , jd ∈ [M ]}, we may decompose this L2 error as follows using 
the orthogonality:

err2t =
(
‖pGL − pA‖2

‖pGL‖2

)2

︸ ︷︷ ︸
=:err2a

+
(
‖pA − q‖2
‖pGL‖2

)2

︸ ︷︷ ︸
=:err2e

,

where

pA(x1, . . . , xd) =
M∑

j1=1
· · ·

M∑

jd=1
ν(j1, . . . , jd)φj1(x1) · · ·φjd(xd),

ν(j1, . . . , jd) =
ˆ

pA(x1, . . . , xd)φj1(x1) · · ·φjd(xd) dx1 · · · dxd.
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Table 1
L2 errors for Ginzburg-Landau Gibbs measure in the continuous case. Sample size N is fixed to 106, and Algorithm 13 is applied 
with r1 = · · · = rd = 3. Each erre is averaged over 20 realizations, and the number in the parentheses denotes the standard 
deviation.

d = 5 d = 10 d = 15
M erra erre errt erra erre errt erra erre errt
7 0.2693 0.0202 (0.0023) 0.2701 0.4144 0.0392 (0.0032) 0.4163 0.5104 0.0582 (0.0041) 0.5138
9 0.1617 0.0334 (0.0018) 0.1651 0.2511 0.0621 (0.0027) 0.2587 0.3142 0.0908 (0.0041) 0.3270
11 0.0867 0.0411 (0.0016) 0.0960 0.1365 0.0754 (0.0024) 0.1559 0.1722 0.1100 (0.0039) 0.2044
13 0.0400 0.0433 (0.0015) 0.0589 0.0655 0.0802 (0.0023) 0.1036 0.0837 0.1186 (0.0039) 0.1451
15 0.0201 0.0446 (0.0015) 0.0489 0.0330 0.0833 (0.0023) 0.0896 0.0421 0.1246 (0.0038) 0.1315

In other words, pA is the approximation of p within the space ΠM spanned by the product basis, thus 
erra represents an approximation error. Accordingly, we can think of erre as an estimation error, where the 
resulting g1, . . . , gd can be thought of as approximate cores of ν. All the integrals above are approximated 
using the Gauss-Legendre quadrature rule with 50 nodes.

The resulting L2 errors are shown in Table 1. As M increases, the approximation error erra decreases 
quickly to 0. On the other hand, larger M leads to a larger estimation error erre as one needs to estimate 
a larger size of coefficient tensor ν.

6.2. Ising-type model

For our next example we consider the following slight generalization of the one-dimensional Ising model. 
Define p : {±1}d → R by

pI(x1, . . . , xd) ∝ exp



−β
d∑

i,j=1
Jijxixj



 , (19)

where β > 0 and the interaction Jij is given by

Jij =
{
−(1 + |i− j|)−1 |i− j| ≤ 2
0 otherwise.

From this, we can easily see that pI is an order-2 Markov model. For such a model we can apply TT-RS 
with the sketch functions described in Section 5.4.

As in the previous section, we obtain N i.i.d. samples from pI using a Gibbs sampler and construct 
an empirical density based on them, p̂. Then, we apply Algorithm TT-RS, with the sketch functions in 
Section 5.1 and with the modifications outlined in Section 5.4, to obtain the contraction of the resulting 
cores q1 and q2, respectively. Then, we compare the two relative l2 errors:

err1 = ‖pI − q1‖2
‖pI‖2

and err2 = ‖pI − q2‖2
‖pI‖2

.

The errors are plotted in Fig. 4, in which the dashed curves denote the result err1 of TT-RS with sketches 
as in Section 5.1 and the solid curves correspond to err2 from TT-RS with the sketches as in Section 5.4. 
Clearly, as expected, the error is smaller when using the sketches from Section 5.4.

Lastly, we repeat the same procedure for pI where xk ∈ {−2, −1, 0, 1, 2} for k = 1, . . . , d in (19). The 
results are shown in Fig. 5, which demonstrates that TT-RS with appropriate sketching yields small error 
in the case of higher-order Markov distributions.
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Fig. 4. Relative l2 errors for the order-2 Ising model. In (A), we fix d = 8 and change the sample size N ∈ {28, 29, . . . , 217}. In (B), 
we fix the sample size N = 50000 and change d ∈ {3, 6, . . . , 27, 30}. In both cases, we use β = 0.4, and TT-RS (Algorithm 1) is 
applied with (r1, . . . , rd) = (2, 3, . . . , 3, 2). Errors are shown as shaded regions, where both solid and dashed curves connect the 
averages of errors from 20 realizations, with the standard deviation as the vertical width.

Fig. 5. Relative l2 errors for the order-2 Ising model on {−2, −1, 0, 1, 2}d. In (A), we fix d = 8 and change the sample size 
N ∈ {28, 29, . . . , 217}. In (B), we fix the sample size N = 50000 and change d ∈ {3, 6, . . . , 27, 30}. In both cases, we use β = 0.2, 
and TT-RS (Algorithm 1) is applied with (r1, . . . , rd) = (2, 3, . . . , 3, 2). Each error bar is centered at the average of 20 realizations, 
with the standard deviation as its vertical length.

7. Conclusion

We have described an algorithm TT-RS which obtains a tensor train representation of a probability 
density from a collection of its samples. This is done by formulating a sequence of equations, one for each 
core, which can be solved independently. Additionally, in order to reduce the variance in the coefficient 
matrices of these equations (which are constructed from the empirical distribution) sketching is required. 
For Markov (and higher-order Markov) models we give explicit constructions of suitable sketches and provide 
guarantees on the accuracy of the resulting algorithm.

Lastly, we briefly mention several possible extensions for future research. First, we can apply TT-RS to 
more complicated models such as hidden Markov models. The ideas that we discussed based on (higher-
order) Markov models can be generalized to various models by specifying concrete sketch functions for such 
models. More generally, future research could focus on adapting TT-RS to tree tensor networks, aiming at 
generalizing TT-RS to distributions with more general graphical structure. By designing sketch functions 
for a broader class of models, one can bring TT-RS closer to a wide range of applications and we leave this 
as future work.
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Appendix A. Validity of solving CDEs

In this section, we give the proof of Proposition 2.

Proof of Proposition 2. For k = 2, . . . , d − 1, consider the k-th equation in (4):

rk−1∑

αk−1=1
Φk−1(x1:k−1;αk−1)Gk(αk−1;xk,αk) = Φk(x1:k−1;xk,αk). (20)

By definition, Φk−1(x1:k−1; αk−1) is the left factor in an exact low-rank factorization of p, so Φk−1 has full 
column rank and the uniqueness of solutions is guaranteed. To prove a solution also exists, we need to show 
that columns of Φk(x1:k−1; xk, αk) are contained within the column space of Φk−1(x1:k−1; αk−1).

By the definition of Φk−1 and Φk, we know there exists Ψk : [rk−1] ×[nk] ×· · ·×[nd] → R and Ψk+1 : [rk] ×
[nk+1] × · · ·× [nd] → R such that

p(x1:k−1;xk:d) =
rk−1∑

αk−1=1
Φk−1(x1:k−1;αk−1)Ψk(αk−1;xk:d),

p(x1:k;xk+1:d) =
rk∑

αk=1
Φk(x1:k;αk)Ψk+1(αk;xk+1:d). (21)

Note that these are rank-rk−1 and rank-rk decomposition of the (k − 1)-th and k-th unfolding matrices, 
respectively. Defining tk+1 : [nk+1] × · · · × [nd] × [rk] → R so that tk+1(xk+1:d; αk) is the pseudoinverse of 
Ψk+1(αk; xk+1:d), we obtain

Φk(x1:k;αk) =
nk+1∑

xk+1=1
· · ·

nd∑

xd=1
p(x1:k;xk+1:d)tk+1(xk+1:d;αk).

Then, one can easily verify that the k-th equation (20) holds if we let

Gk(αk−1, xk,αk) =
nk+1∑

xk+1=1
· · ·

nd∑

xd=1
Ψk(αk−1, xk, xk+1:d)tk+1(xk+1:d,αk)

along with (21). Thus, we have not only proved the existence of solutions to the k-th equation, but also 
obtained the exact form of the solution in terms of Ψk and tk+1.

Similarly, we can show that the equation in (20) for Gd is well-defined. By construction, it then follows 
that (5) holds. !
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Appendix B. Non-recursive TT-RS: TT-Sketch (TT-S)

B.1. Role of recursive left sketches and possibility of non-recursive sketches

In this subsection, we discuss the importance of forming the recursive right sketches S1, . . . , Sd−1 from 
s1, . . . , sd, noting that for T2, . . . , Td there is no such need. The requirement of “recursiveness” in the 
construction of the Sk’s is a consequence of the Trimming step, which introduces an arbitrary projection 
matrix in the factorization of the k-th unfolding of p. To see this, consider first the case without Trimming, 
i.e., using sketches Tk+1 with lk = rk. Then one can use Φ̄k (defined in Algorithm 2) in the CDEs (4), i.e. 
solve

rk−1∑

αk−1=1
Φ̄k−1(x1:k−1;αk−1)Gk(αk−1;xk,αk) = Φ̄k(x1:k−1;xk,αk) (22)

if each Φ̄k has rank rk. To reduce the system size further one could simply apply arbitrary left sketches as

n1∑

x1=1
· · ·

nk−1∑

xk−1=1
Sk−1(βk−1;x1:k−1)

rk−1∑

αk−1=1
Φ̄k−1(x1:k−1;αk−1)Gk(αk−1;xk,αk)

=
n1∑

x1=1
· · ·

nk−1∑

xk−1=1
Sk−1(βk−1;x1:k−1)Φ̄k(x1:k−1;xk,αk)

(23)

so long as the reduced CDEs remain well-posed. In this case, one could set Bk = Sk−1Φ̄k and Ak−1 =
Sk−1Φ̄k−1.

Unfortunately, a complication arises when we use sketches Tk+1 with lk > rk. In this case we cannot 
simply solve (22) or (23) as it gives TT with excessively large rank. We then need to apply a suitable further 
projection qk ∈ Rlk−1×rk−1 , qk+1 ∈ Rlk×rk in (22) and (23)

Φ̄k−1 → Φ̄k−1qk, Φ̄k → Φ̄kqk+1 (24)

treating Φ̄k−1 and Φ̄k as matrices of size n1 · · ·nk−1 × lk−1 and n1 · · ·nk × lk, respectively. This is the idea 
behind Trimming. However, rather than explicitly applying the projection qk, Trimming performs the 
projections implicitly, i.e., it directly gives

Bk(βk−1, xk,αk) =
∑

x1,...,xk−1

Sk−1(βk−1, x1:k−1)
∑

γk

Φ̄k(x1:k−1, xk, γk)qk+1(γk,αk) (25)

via an SVD without obtaining the qk’s. This presents a complication: in order to solve (23), one needs to 
form

Ak−1(βk−1,αk−1) =
∑

x1,...,xk−1

Sk−1(βk−1, x1:k−1)
∑

γk−1

Φ̄k−1(x1:k−1, γk−1)qk(γk−1,αk−1), (26)

but all we have access to is Bk−1 which contains qk implicitly (note that Ak−1 is not Bk−1). It is unclear 
how to obtain Ak−1 without knowing qk explicitly.

There are two remedies for this. The first one is recursive left sketching, and the second one is to obtain 
projections (the qk’s) directly. The second remedy is more complicated than the first, though it does not 
require recursive sketching. In this paper, we have focused primarily on the recursive left sketching approach, 
which allows us to obtain Ak’s directly from Bk’s. In the next subsection, we provide details of the second 
remedy in the following subsection.
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B.2. Non-recursive sketches

Suppose now S1, . . . , Sd−1 in Algorithm 2 are arbitrary sketches that are non-recursive, meaning that 
they are not in the form of

Sk−1(βk−1, x1:k−1) =
∑

βk−2

sk−1(βk−1, xk−1,βk−2)Sk−2(βk−2, x1:k−2). (27)

Evidently, Trimming gives the following expression for Bk in terms of the sketched unfolding matrix (in 
Algorithm 3) and some “gauge” qk+1

Bk(βk−1, xk;αk) =
∑

γk

Φ̃k(βk−1, xk; γk)qk+1(γk,αk) (28)

where

qk+1 = VkΣ−1
k (29)

and

Φ̃k ≈ UkΣkV
+
k , Uk ∈ Rmk−1nk×rk , Σk ∈ Rrk×rk , Vk ∈ Rlk×rk (30)

being the best rank-rk approximation of Φ̃k ∈ Rmk−1nk×lk (defined in Algorithm 3) obtained via the SVD. 
Now, after obtaining the qk’s in this manner, we can use them to construct the Ak’s in (26). In this case, 
we do not need to use Bk’s to obtain Ak’s, as in the case when using recursive sketches.

In what follows, we summarize this approach in TT-S (Algorithm 5) which removes the necessity of 
recursive sketching. The main difference between TT-S and TT-RS is that TT-S keeps track of the projection 
matrices q2, . . . qd in (26) obtained via Algorithm 7 when performing Trimming-TT-S and uses them in 
Algorithm 8. In this way, one eliminates the need for obtaining the Ak’s via the Bk’s from recursive sketching.

Algorithm 5 TT-S for a discrete function p.
Require: p : [n1] × · · · × [nd] → R and target ranks r1, . . . , rd−1.
Require: Tk : [nk] × · · · × [nd] × [lk−1] → R with lk−1 ≥ rk−1 for k = 2, . . . , d.
Require: Sk : [mk] × [n1] × · · · × [nk] → R for k = 1, . . . , d − 1.
1: Φ̃1, . . . , ̃Φd, ̄Φ1, . . . , ̄Φd−1 ← Sketching-TT-S(p, T2, . . . , Td, S1, . . . , Sd−1).
2: B1, . . . , Bd, q2, . . . , qd ← Trimming-TT-S(Φ̃1, . . . , ̃Φd, r1, . . . , rd−1).
3: A1, . . . , Ad−1 ← SystemForming-TT-S(Φ̄1, . . . , ̄Φd−1, q2, . . . , qd, S1, . . . , Sd−1).
4: Solve the following d matrix equations via least-squares for the variables G1 : [n1] × [r1] → R, Gk : [rk−1] × [nk] × [rk] → R

for k = 2, . . . , d − 1, and Gd : [rd−1] × [nd] → R:

G1 = B1,

rk−1∑

αk−1=1
Ak−1(βk−1;αk−1)Gk(αk−1; xk,αk) = Bk(βk−1; xk,αk) k = 2, . . . , d − 1,

rd−1∑

αd−1=1
Ad−1(βd−1;αd−1)Gd(αd−1; xd) = Bd(βd−1; xd).

(31)

5: return G1, . . . , Gd.
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Algorithm 6 Sketching-TT-S.
Require: p, T2, . . . , Td, and S1, . . . , Sd−1 as given in Algorithm 5.

for k = 1 to d − 1 do
Right sketching: define Φ̄k : [n1] × · · · × [nk] × [lk] → R as

Φ̄k(x1:k, γk) =
nk+1∑

xk+1=1
· · ·

nd∑

xd=1
p(x1:k, xk+1:d)Tk+1(xk+1:d, γk).

if k > 1 then
Left sketching: define Φ̃k : [mk−1] × [nk] × [lk] → R as

Φ̃k(βk−1, xk, γk) =
n1∑

x1=1
· · ·

nk−1∑

xk−1=1
Sk−1(βk−1, x1:k−1)Φ̄k(x1:k−1, xk, γk).

else
Define

Φ̃1(x1, γ1) = Φ̄1(x1, γ1).

end if
end for
Left sketching: define Φ̃d : [md−1] × [nd] → R as

Φ̃d(βd−1, xd) =
n1∑

x1=1
· · ·

nd−1∑

xd−1=1
Sd−1(βd−1, x1:d−1)p(x1:d−1, xd).

return Φ̃1, . . . , ̃Φd, Φ̄1, . . . , ̄Φd−1.

Algorithm 7 Trimming-TT-S.
Require: Φ̃1, . . . , ̃Φd from Algorithm 6.
Require: Target ranks r1, . . . , rd−1 as given in Algorithm 5.

for k = 1 to d − 1 do
if k = 1 then

Let U1Σ1V
"
1 , where U1 ∈ Rn1×r1 , V1 ∈ Rl1×r1 , Σ1 ∈ Rr1×r1 , be the best rank-r1 approximation to the matrix Φ̃1(x1; α1)

via SVD. Define B1 : [n1] × [r1] → R where B1(x1; α1) = U1(x1; α1). Furthermore, let q2 = V1Σ−1
1 .

else
Let UkΣkV

"
k , where Uk ∈ Rmk−1nk×rk , Vk ∈ Rlk×rk , Σk ∈ Rrk×rk , be the best rank-rk approximation to the matrix 

Φ̃k(βk−1, xk; γk) via SVD. Define Bk : [mk−1] × [nk] × [rk] → R where Bk(βk−1, xk; αk) = Uk(βk−1, xk; αk). Furthermore, 
let qk+1 = VkΣ−1

k .
end if

end for
Let Bd(βd−1, xd) = Φ̃d(βd−1, xd).
return B1, . . . , Bd, q2, . . . , qd.

Algorithm 8 SystemForming-TT-S.
Require: Φ̄1, . . . , ̄Φd−1 from Algorithm 6
Require: q2 . . . , qd from Algorithm 7.
Require: S1, . . . , Sd−1 as given in Algorithm 5.

for k = 1 to d − 1 do
Compute Ak : [mk] × [rk] → R:

Ak(βk,αk) =
n1∑

x1=1
· · ·

nk∑

xk=1
Sk(βk, x1:k)

lk∑

γk=1
Φ̄k(x1:k, γk)qk+1(γk,αk).

end for
return A1, . . . , Ad−1.
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Appendix C. Continuous TT-RS

In this section, we consider a general function p : X1 × · · · × Xd → R, where X1, . . . , Xd ⊂ R. It turns 
out that everything presented in previous sections is still valid if we replace every discrete quantity with its 
continuous counterpart; concretely, we replace [nk], [mk], and [lk] with Xk, Bk, and Ck, respectively, where 
Bk and Ck are appropriate domains that can be chosen by model assumptions. Accordingly, we also replace 
all the summation over these sets with appropriate integration; for instance, replace 

∑nk

xk=1 and 
∑mk

βk=1
with 

´
Xk

dxk and 
´
Bk

dβk, respectively. As a result, we obtain Algorithms 9, 10, 11, and 12 as continuous 
counterparts of Algorithms 1, 2, 3, and 4.

Algorithm 9 TT-RS-C for a continuous function p.
Require: p : X1 × · · · × Xd → R and target ranks r1, . . . , rd−1.
Require: Tk : Xk × · · · × Xd × Ck−1 → R for k = 2, . . . , d.
Require: s1 : B1 × X1 → R and sk : Bk × Xk × Bk−1 → R for k = 2, . . . , d − 1.
1: Φ̃1, . . . , ̃Φd ← Sketching-c(p, T2, . . . , Td, s1, . . . , sd−1).
2: B1, . . . , Bd ← Trimming-c(Φ̃1, . . . , ̃Φd, r1, . . . , rd−1).
3: A1, . . . , Ad−1 ← SystemForming-c(B1, . . . , Bd−1, s1, . . . , sd−1).
4: Solve the following d matrix equations via least-squares for the variables G1 : X1 × [r1] → R, Gk : [rk−1] × Xk × [rk] → R for 

k = 2, . . . , d − 1, and Gd : [rd−1] × Xd → R.

G1 = B1,

rk−1∑

αk−1=1
Ak−1(βk−1;αk−1)Gk(αk−1; xk,αk) = Bk(βk−1; xk,αk) k = 2, . . . , d − 1,

rd−1∑

αd−1=1
Ad−1(βd−1;αd−1)Gd(αd−1; xd) = Bd(βd−1; xd).

(32)

5: return G1, . . . , Gd.

First, note that the main algorithm for the continuous case, TT-RS-C (Algorithm 9), has equations (32)
which are exactly the same as (7) of Algorithm 1. Now, (32) are infinite-dimensional matrix equations, that is, 
coefficients and cores are functions. Also, the sketching algorithm for a continuous density (Algorithm 10), 
which we call Sketching-c, is simply a modification of Sketching by replacing all the summations 
with integrals properly. We modify Trimming similarly to obtain its continuous counterpart Trimming-c. 
In this case, Trimming-c should be done by applying functional SVD [28,35] to Φ̃1, . . . , Φ̃d−1 to obtain 
B1, . . . , Bd−1, respectively. We demonstrate how such a functional SVD works in the next subsection with 
a concrete example.

C.1. Applying TT-RS-C to the Markov case

In this subsection, we assume p is a continuous Markov model, that is, p is a continuous density and 
satisfies (12). For simplicity, we assume X1 = · · · = Xd = [a, b] and (φn)n∈N be a countable orthonormal 
basis of L2([a, b]) such that φ1 is a constant function, say φ1(x) ≡ c. Due to orthogonality,

bˆ
a

φn(x) dx = 0

for all n ≥ 2. Suppose each marginal density of p is well approximated using the first M basis functions 
φ1, . . . , φM . Based on Lemma 5, we now show that we can choose concrete sketch functions T2, . . . , Td and 
s1, . . . , sd−1 so that Algorithm 9 exactly recovers the cores of p, when provided with p̂ = p.
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Algorithm 10 Sketching-C.
Require: p, T2, . . . , Td, and s1, . . . , sd−1 as given in Algorithm 9.

for k = 1 to d − 1 do
Right sketching: define Φ̄k : X1 × · · · × Xk × Ck → R as

Φ̄k(x1:k, γk) =
ˆ

p(x1:k, xk+1:d)Tk+1(xk+1:d, γk) dxk+1 · · · dxd.

if k > 1 then
Left sketching: define Φ̃k : Bk−1 × Xk × Ck → R as

Φ̃k(βk−1, xk, γk) =
ˆ

Sk−1(βk−1, x1:k−1)Φ̄k(x1:k−1, xk, γk) dx1 · · · dxk−1.

Compute Sk : Bk × X1 × · · · × Xk → R for the next iteration:

Sk(βk, x1:k) =
ˆ

sk(βk, xk, βk−1)Sk−1(βk−1, x1:k−1) dβk−1.

else
Define

Φ̃1(x1, γ1) = Φ̄1(x1, γ1).

Define sketch function

S1(β1, x1) = s1(β1, x1).

end if
end for
Left sketching: define Φ̃d : Bd−1 × Xd → R as

Φ̃d(βd−1, xd) =
ˆ

Sd−1(βd−1, x1:d−1)p(x1:d−1, xd) dx1 · · · dxd−1.

return Φ̃1, . . . , ̃Φd.

Algorithm 11 Trimming-C.
Require: Φ̃1, . . . , ̃Φd from Algorithm 10.
Require: Target ranks r1, . . . , rd−1 as given in Algorithm 9.

for k = 1 to d − 1 do
if k = 1 then

Compute the first r1 left singular vectors of Φ̃1(x1; γ1) and define B1 : X1 × [r1] → R so that these singular vectors are 
the columns of B1(x1; α1).

else
Compute the first rk left singular vectors of Φ̃k(βk−1, xk; γk) and define Bk : Bk−1 ×Xk × [rk] → R so that these singular 
vectors are the columns of Bk(βk−1, xk; αk).

end if
end for
Let Bd(βd−1, xd) = Φ̃d(βd−1, xd).
return B1, . . . , Bd.

First, let Bk = Ck = [M ] for k = 1, . . . , d − 1, where r1, . . . , rd−1 ≤ M . Then, we define Tk+1 : Xk+1 ×
· · ·×Xd × Ck → R as

Tk+1(xk+1:d, γk) = φγk(xk+1)

which gives

Φ̄k(x1:k, γk) =
ˆ

p(x1:k, xk+1)φγk(xk+1) dxk+1.
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Algorithm 12 SystemForming-C.
Require: B1, . . . , Bd−1 from Algorithm 11.
Require: s1, . . . , sd−1 as given in Algorithm 9.

for k = 1 to d − 1 do
if k = 1 then

Compute A1 : B1 × [r1] → R:

A1(β1,α1) =
ˆ

s1(β1, x1)B1(x1,α1) dx1.

else
Compute Ak : Bk × [rk] → R:

Ak(βk,αk) =
ˆ

sk(βk, xk, βk−1)Bk(βk−1, xk,αk) dxkdβk−1.

end if
end for
return A1, . . . , Ad−1.

Tk+1 marginalizes out xk+2, . . . , xd as in the discrete case and it replaces the variable xk+1 with the index 
γk ∈ [M ] based on the fact that the marginal density can be approximated well by the fist M basis functions.

Similarly, define S1 : B1 ×X1 → R such that B1 = X1

s1(β1, x1) = φβ1(x1), sk(βk, xk,βk−1) = φβk(xk)δ(βk−1 − 1),

where δ is the Dirac delta function. Then,

Sk(βk, x1:k) = φβk(xk)φ1(xk−1) · · ·φ1(x1) = ck−1φβk(xk),

thus

Φ̃k(βk−1, xk, γk) =
ˆ

Sk−1(βk−1, x1:k−1)Φ̄k(x1:k−1, xk, γk) dx1 · · · dxk−1

=
ˆ

ck−2φβk−1(xk−1)p(x1:k, xk+1)φγk(xk+1) dxk+1dx1 · · · dxk−1

= ck−2
ˆ

φβk−1(xk−1)p(xk−1, xk, xk+1)φγk(xk+1) dxk+1dxk−1.

and

Φ̃d(βd−1, xd) =
ˆ

Sd−1(βd−1, x1:d−1)p(x1:d−1, xd) dx1 · · · dxd−1

= cd−2
ˆ

φβd−1(xd−1)p(xd−1, xd) dxd−1.

In other words, Sk−1 marginalizes out variables x1, . . . , xk−2 as in the discrete case; furthermore, it replaces 
the variable xk−1 with the index βk−1 by integration against basis functions.

Using the results Φ̃1, . . . , Φ̃d from Sketching-C, we now explain how to implement Trimming-C via 
functional SVD. The idea is to use basis expansion with respect to each node xk ∈ Xk and then apply SVD. 
For instance, consider Φ̃1(x1, γ1). For large enough M ∈ N, we have

Φ̃1(x1, γ1) ≈
M∑

β1=1
ν1(β1, γ1)φβ1(x1),
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where ν1 : [M ] × [M ] → R is given as

ν1(β1, γ1) =
ˆ

Φ̃1(x1, γ1)φβ1(x1) dx1.

Now, we can apply SVD to a matrix ν1(β1; γ1); compute the first rk left singular vectors of ν1(β1; γ1) and 
define B̃1 : [M ] × [r1] → R so that these singular vectors are the columns of B̃1(β1; α1). Then, we define 
B1 : X1 × [r1] → R as

B1(x1,α1) :=
M∑

β1=1
B̃1(β1,α1)φβ1(x1).

Then,

A1(β1,α1) =
ˆ

B1(x1,α1)φβ1(x1)dx1 = B̃1(β1,α1).

Similarly, for k = 2, . . . , d − 1, we have

Φ̃k(βk−1, xk, γk) ≈
M∑

jk=1
νk(βk−1, jk, γk)φjk(xk),

where νk : [M ] × [M ] × [M ] → R is given as

νk(βk−1, jk, γk) =
ˆ

Φ̃k(βk−1, xk, γk)φjk(xk) dxk.

We compute the first rk left singular vectors of νk(βk−1, jk; γk) and define B̃k : [M ] × [M ] × [rk] → R so that 
these singular vectors are the columns of B̃k(βk−1, jk; αk). Then, we define Bk : [M ] ×Xk × [rk] → R as

Bk(βk−1, xk,αk) =
M∑

jk=1
B̃k(βk−1, jk,αk)φjk(xk),

which yields Ak : [M ] × [rk] → R as

Ak(βk,αk) :=
ˆ M∑

βk−1=1
sk(βk, xk,βk−1)Bk(βk−1, xk,αk) dxk

=
ˆ

φβk(xk)Bk(1, xk,αk) dxk

=
M∑

jk=1
B̃k(1, jk,αk)

ˆ
φβk(xk)φjk(xk) dxk

= B̃k(1,βk,αk).

Lastly, we apply basis expansion to Bd as well. Define

B̃d(βd−1, jd) =
ˆ

Bd(βd−1, xd)φjd(xd) dxd

so that
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Bd(βd−1, xd) ≈
M∑

jd=1
B̃d(βd−1, jd)φjd(xd).

Now, one can easily verify that solving (32) for G1, . . . , Gd amounts to solving

g1 = B̃1,

rk−1∑

αk−1=1
Ak−1(βk−1,αk−1)gk(αk−1, jk,αk) = B̃k(βk−1, jk,αk) k = 2, . . . , d− 1,

rd−1∑

αd−1=1
Ad−1(βd−1,αd−1)gd(αd−1, jd) = B̃d(βd−1, jd)

(33)

for the variables g1 : [M ] ×[r1] → R, gk : [rk−1] ×[M ] ×[rk] → R for k = 2, . . . , d −1, and gd : [rd−1] ×[M ] → R
and letting

G1(x1,α1) =
M∑

j1=1
g1(j1,α1)φj1(x1),

Gk(αk−1, xk,αk) =
M∑

jk=1
gk(αk−1, jk,αk)φjk(xk) k = 2, . . . , d− 1,

Gd(αd−1, xd) =
M∑

jd=1
gd(αd−1, jd)φjd(xd).

In this case, the resulting TT-format is

r1∑

α1=1
· · ·

rd−1∑

αd−1=1
G1(x1,α1) · · ·Gd(αd−1, xd)

=
M∑

j1=1
· · ·

M∑

jd=1




r1∑

α1=1
· · ·

rd−1∑

αd−1=1
g1(j1,α1) · · · gd(αd−1, jd)



φj1(x1) · · ·φjd(xd).

We summarize the case of specializing Algorithm 9 to the case of Markov density in Algorithm 13. We note 
that one should be able to prove a result similar to Theorem 6 under mild assumptions.

Appendix D. Perturbation results

This section provides perturbation results of Algorithm 1. First, we prove that small perturbation on the 
coefficients and the right-hand sides of (7) of Algorithm 1 leads to small perturbations of the cores. Using 
this result we show that Algorithm 1 with sketches (14) and (16) is robust against small perturbations for 
a discrete Markov density p. From this, we prove that Algorithm 1 with sketches (14) and (16) applied to 
the empirical density p̂, which is constructed based on N i.i.d. samples from a discrete density p!, recovers 
p! with high probability given N is large enough; a concrete sample complexity is then derived.

D.1. Preliminaries

In what follows, for a given vector x we let ‖x‖ and ‖x‖∞ denote its Euclidean norm and its supremum 
norm, respectively. For a matrix A, we denote its spectral norm, Frobenius norm, and the r-th singular 
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Algorithm 13 Main algorithm for a continuous Markov density.
Require: p : [a, b]d → R and target ranks r1, . . . , rd−1.
Require: Orthonormal functions φ1, . . . , φM in L2([a, b]) with φ1 ≡ c and M ≥ r1, . . . , rd−1.
1: for k = 1 to d − 1 do
2: if k = 1 then
3: Define ν1 : [M ] × [M ] → R as

ν1(β1, γ1) =
¨

p(x1, x2)φβ1 (x1)φγ1 (x2) dx1dx2.

4: Compute the first r1 left singular vectors of ν1(β1; γ1) and define B̃1 : [M ] × [r1] → R so that these singular vectors are 
the columns of B̃1(β1; α1).

5: Define A1 : [M ] × [r1] → R so that

A1 = B̃1.

6: else if k < d then
7: Define νk : [M ] × [M ] × [M ] → R as

νk(βk−1, jk, γk) = ck−2
ˆ

p(xk−1, xk, xk+1)φβk−1 (xk−1)φjk
(xk)φγk

(xk+1) dxk−1dxkdxk+1.

8: Compute the first rk left singular vectors of νk(βk−1, jk; γk) and define B̃k : [M ] × [M ] × [rk] → R so that these singular 
vectors are the columns of B̃k(βk−1, jk; αk).

9: Define Ak : [M ] × [rk] → R so that

Ak(βk,αk) = B̃k(1,βk,αk).

10: else
11: Define B̃d : [M ] × [M ] → R as

B̃d(βd−1, jd) = cd−2
ˆ

φβd−1 (xd−1)p(xd−1, xd)φjd
(xd) dxd−1dxd.

12: end if
13: end for
14: Solve the following d matrix equations via least-squares for the variables g1 : [M ] × [r1] → R, gk : [rk−1] × [M ] × [rk] → R for 

k = 2, . . . , d − 1, and gd : [rd−1] × [M ] → R.

g1 = B̃1,

rk−1∑

αk−1=1
Ak−1(βk−1;αk−1)gk(αk−1; jk,αk) = B̃k(βk−1; jk,αk) k = 2, . . . , d − 1,

rd−1∑

αd−1=1
Ad−1(βd−1;αd−1)gd(αd−1; jd) = B̃d(βd−1; jd).

(34)

15: return G1, . . . , Gd by letting

G1(x1,α1) =
M∑

j1=1
g1(j1,α1)φj1 (x1),

Gk(αk−1, xk,αk) =
M∑

jk=1
gk(αk−1, jk,αk)φjk

(xk) k = 2, . . . , d − 1,

Gd(αd−1, xd) =
M∑

jd=1
gd(αd−1, jd)φjd

(xd).
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value by ‖A‖, ‖A‖F , and σr(A), respectively. With some abuse of notation, we also let ‖A‖∞ denote the 
largest absolute value of the entries of A. Lastly, the orthogonal group in dimension r is denoted by O(r).

We also introduce the following norms for 3-tensors.

Definition 9. For any 3-tensor G ∈ Rn1×n2×n3 , or equivalently, G : [n1] × [n2] × [n3] → R, we define the 
norm

~G~ := max
i2∈[n2]

‖G(·, i2, ·)‖.

Here, G(·, i2, ·) ∈ Rn1×n2 denotes a matrix, and ‖G(·, i2, ·)‖ denotes its spectral norm. Also, we define ‖G‖∞
by

‖G‖∞ = max
(i1,i2,i3)∈[n1]×[n2]×[n3]

|G(i1, i2, i3)|.

Remark 8. Such a norm ~·~ is useful for bounding the norm of a contraction of cores. Throughout the 
section, we will analyze cores obtained by our algorithm: G1 : [n1] × [r1] → R, Gk : [rk−1] × [nk] × [rk] → R
for k = 2, . . . , d − 1, and Gd : [rd−1] × [nd] → R. For ease of exposition, for the specific matrices G1 and 
Gd produced by the algorithm (and any perturbations of them), set ~G1~ = maxx1∈[n1] ‖G(x1, ·)‖ and 
~Gd~ = maxxd∈[nd] ‖G(·, xd)‖. Then, one can easily verify that

‖G1 ◦ · · · ◦Gd‖∞ ≤ ~G1~ · · ·~Gd~,

where ‖G1 ◦ · · · ◦Gd‖∞ denotes the supremum norm of the function (G1 ◦ · · · ◦Gd) : [n1] × · · ·× [nd] → R. 
In summary, the supremum norm of the contraction is easily bounded by the product of ~·~’s.

We start with the following basic perturbation result on a linear system Ax = b.

Lemma 10 (Theorem 3.48 of [33]). For A ∈ Rm×n, suppose rank(A) = n ≤ m. Let ∆A ∈ Rm×n be a 
perturbation such that ‖A†‖‖∆A‖ < 1. Then, rank(A + ∆A) = n. Moreover, let x and x + ∆x be least-
squares solutions to linear systems Ax = b and (A + ∆A)x = b + ∆b, respectively. Then,

‖∆x‖
‖x‖ ≤ ‖A‖‖A†‖

1 − ‖A†‖‖∆A‖

[
‖∆A‖
‖A‖

(
1 + κ(A)‖Ax− b‖

‖A‖‖x‖

)
+ ‖∆b‖

‖A‖‖x‖

]
.

Using this we prove the following lemma which bounds the perturbation of solutions of the tensor equation 
A ◦X = B, where A is a matrix, and both X and B are three-tensors. The contraction here is performed 
over the second index of A and the first index of X.

Lemma 11. For A ∈ Rm×n suppose rank(A) = n ≤ m. Let ∆A ∈ Rm×n be a perturbation such that 
‖A†‖‖∆A‖ < 1. Then, rank(A + ∆A) = n. Let B ∈ Rm×l1×l2 and ∆B be its perturbation. Also, let 
X ∈ Rn×l1×l2 and X+∆X be least-squares solutions to the tensor equations A ◦X = B and (A +∆A) ◦X =
B + ∆B, respectively. Suppose the column space of B ∈ Rm×l1×l2 is contained in that of A, then

~∆X~ ≤
√

2ml2‖A†‖
1 − ‖A†‖‖∆A‖ (‖∆A‖~X~ + ‖∆B‖∞) .

In particular, if ~X~ ≥ χ > 0 for some constant χ, and ∆A satisfies ‖A†‖‖∆A‖ ≤ 1/2, then

~∆X~
~X~ ≤

√
8ml2‖A†‖

(
‖∆A‖ + ‖∆B‖∞χ−1) .
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Proof. For any i = (i1, i2) with 1 ≤ i1 ≤ l1 and 1 ≤ i2 ≤ l2, we set xi = X(·, i1, i2) and bi = B(·, i1, i2) to 
be “columns” of X and B respectively. For each equation, since bi is contained in the column space of A, 
the previous lemma implies that

‖∆xi‖ ≤ ‖A‖‖A†‖
1 − ‖A†‖‖∆A‖

(
‖∆A‖
‖A‖ ‖xi‖ + ‖∆bi‖

‖A‖

)
= ‖A†‖

1 − ‖A†‖‖∆A‖︸ ︷︷ ︸
=:C

(‖∆A‖‖xi‖ + ‖∆bi‖) .

Now, for each 1 ≤ i1 ≤ l1,

‖∆X(·, i1, ·)‖F =
n∑

j=1

l2∑

i2=1
|∆X(j, i1, i2)|2

=
l2∑

i2=1
‖∆x(i1,i2)‖

2

≤
l2∑

i2=1
C2(‖∆A‖ ‖x(i1,i2)‖ + ‖∆b(i1,i2)‖)2

≤
l2∑

i2=1
2C2(‖∆A‖2‖x(i1,i2)‖

2 + ‖∆b(i1,i2)‖
2)

= 2C2(‖∆A‖2‖X(·, i1, ·)‖2
F + ‖∆B(·, i1, ·)‖2

F )
≤ 2C2(l2‖∆A‖2‖X(·, i1, ·)‖2 + ml2‖∆B‖2

∞).

Thus,

~∆X~ = max
i1

‖∆X(·, i1, ·)‖

≤ max
i1

‖∆X(·, i1, ·)‖F

≤
(

2C2(l2‖∆A‖2 max
i1

‖X(·, i1, ·)‖2 + ml2‖∆B‖2
∞)

)1/2

=
(
2C2(l2‖∆A‖2~X~2 + ml2‖∆B‖2

∞)
)1/2

≤
√

2ml2C (‖∆A‖~X~ + ‖∆B‖∞) ,

from which the rest of the result follows immediately. !

Lemma 12. Let G1 : [n1] ×[r1] → R, Gk : [rk−1] ×[nk] ×[rk] → R for k = 2, . . . , d −1, and Gd : [rd−1] ×[nd] →
R. Denote their corresponding perturbations by ∆Gk. Suppose that there exist δk > 0, k = 1, . . . , d such that 
~∆Gk~ ≤ δk~Gk~ for all k = 1, . . . , d. Set

∆(G1 ◦ · · · ◦Gd) := (G1 + ∆G1) ◦ · · · ◦ (Gd + ∆Gd) −G1 ◦ · · · ◦Gd.

Then

‖∆(G1 ◦ · · · ◦Gd)‖∞ ≤ ~G1~ · · ·~Gd~
(

d∑

k=1
δk

)
exp

(
d∑

k=1
δk

)
.

The following corollary is an immediate consequence of the previous lemma.
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Corollary 13. Under the same assumptions as the previous lemma, let ε ∈ (0, 1) be given. If δ :=
max1≤k≤d δk ≤ ε/(3d) then

‖∆(G1 ◦ · · · ◦Gd)‖∞
~G1~ · · ·~Gd~ ≤ ε.

Proof of Lemma 12. For ease of exposition, we set G∗
k = Gk + ∆Gk for k = 1, . . . , d. Next, we observe that

∆(G1 ◦ · · · ◦Gd) =(G∗
1 ◦ · · · ◦G∗

d) − (G1 ◦G∗
2 ◦ · · · ◦G∗

d)
+ (G1 ◦G∗

2 ◦ · · · ◦G∗
d) − (G1 ◦G2 ◦G∗

3 ◦ · · · ◦G∗
d)

+ . . .

+ (G1 ◦ · · · ◦Gd−1 ◦G∗
d) − (G1 ◦ · · · ◦Gd).

(35)

The first line on the right-hand side of the previous equation reduces to ∆G1 ◦G∗
2 ◦ . . . G∗

d. As in Remark 8,

‖∆G1 ◦G∗
2 ◦ · · · ◦G∗

d‖∞ ≤ ~∆G1~~G∗
2~ · · ·~G∗

d~.

Furthermore, for k = 1, . . . , d,

~Gk + ∆Gk~ ≤ ~Gk~ + ~∆Gk~ ≤ (1 + δk)~Gk~,

and hence

‖∆G1 ◦G∗
2 ◦ · · · ◦G∗

d‖∞ ≤ δ1

d∏

k=2
(1 + δk)~G1~ · · ·~Gd~.

The other lines on the right-hand side of (35) can be bounded similarly. Thus, summing over all the terms 
on the right-hand side of (35), we find

‖∆(G1 ◦ · · · ◦Gd)‖∞ ≤ ~G1~ · · ·~Gd~
(

d∑

k=1
δk

)
exp

(
d∑

k=1
δk

)
,

where we have used the fact that 1 + x < exp(x). !

Remark 9. We note that in the previous lemma, the bounds we obtain are quite pessimistic, since they do 
not account for possible cancellations in contractions of multiple Gk’s. The product of ~Gk~’s could instead 
be replaced by the more cumbersome, but sharper, expression

max
k

max
σl,σr∈{0,1}

max
x1,...,xd

‖Gσl
1 ◦ · · · ◦Gσl

k−1‖ · ~Gk~ · ‖Gσr
k+1 ◦ · · · ◦G

σr
d ‖,

where G0
k = Gk and G1

k = G∗
k.

D.2. Perturbation results

We have seen from Theorem 3 that under certain mild assumptions Algorithm 1 produces a well-defined 
set of matrix equations (7). The following result shows that small perturbations of the coefficients and the 
right-hand sides of (7) result in small perturbations of the output of Algorithm 1.
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Lemma 14. Under the assumptions of Theorem 3, let G1, . . . , Gd be the solutions to (7). Given δ ∈ (0, 1), 
suppose that the coefficients and right-hand sides of (7) are perturbed such that

‖∆A1‖, . . . , ‖∆Ad−1‖, ‖∆B1‖∞, . . . , ‖∆Bd‖∞ ≤ δβ =: δ
(√

8rmax(m,n)cA
(

1 + 1
cG

))−1

where the constants are defined as follows:

• r = max1≤k≤d−1 rk,
• m = max1≤k≤d−1 mk,
• n = max1≤k≤d nk,
• cG = min1≤k≤d~Gk~,
• cA = 1 ∨ max1≤k≤d−1 ‖A†

k‖.

Then, the perturbed version of (7) has Gk + ∆Gk as least-squares solutions such that

~∆Gk~
~Gk~ ≤ δ.

Proof. First, we compute a perturbation bound for the solution of the first equation: notice that √
8rmax(m,n)cA ≥

√
nr, which implies β ≤ cG√

nr
, hence

~∆G1~
~G1~ = ~∆B1~

~G1~ ≤
√
nr‖∆B1‖∞

~G1~ ≤
√
nrβδ

cG
≤

√
nr

cG

cG√
nr

δ = δ.

Next, we observe that

‖∆Ak‖ ≤ β ≤ 1
2cA

≤ 1
2‖A†

k‖
,

from which it follows that ‖∆Ak‖ ‖A†
k‖ ≤ 1/2 for all k = 1, . . . , d −1, and therefore we may apply Lemma 11. 

In particular,

~∆Gk~
~Gk~ ≤

√
8mk−1rk‖A†

k−1‖
(
‖∆Ak−1‖ + ‖∆Bk‖∞

cG

)

≤
√

8mrcA

(
1 + 1

cG

)
βδ

≤ δ. !

Next, we analyze the effect of a perturbation ∆p of the input p of Algorithm 1. Having established 
Lemma 14, it suffices to quantify ∆Ak and ∆Bk in terms of ∆p. First, the perturbation on Φ̃k from
Sketching is obvious; we may roughly say ∆Φ̃k ≈ Sk−1 ◦ ∆p ◦ Tk+1. Now that Bk is obtained as the left 
singular vectors of Φ̃k in Trimming, we invoke Wedin’s theorem [32] to quantify ∆Bk in terms of ∆Φ̃k. To 
this end, we first introduce the following distance comparing two 3-tensors up to rotation, which is common 
in spectral analysis of linear algebra, see Chapter 2 of [5].

Definition 15. For any 3-tensors Ĝ, G ∈ Rr1×n×r2 , we define

dist(Ĝ,G) := min
R1∈O(r1),R2∈O(r2)

~Ĝ−R1 ◦G ◦R2~.
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Here, R1 ◦G ◦R2 denotes a 3-tensor formed by contracting the second index of R1 and the first index of G
and contracting the first index of R2 and the third index of G.

Using this distance, we compare the Ĝ1, . . . , Ĝd, the which result from applying Algorithm 1 to p̂ = p +∆p

as input, with G1, . . . , Gd, the results of Algorithm 1 with p as input. We will restrict our analysis to the 
case where p is a Markov model and Algorithm 1 is implemented with sketches (14) and (16) as in Section 5.

Remark 10. As in Remark 8, we define dist(·, ·) for the first and last cores as well. Accordingly, we set

dist(Ĝ1, G1) = min
R∈O(r1)

~Ĝ1 −G1R~,

dist(Ĝd, Gd) = min
R∈O(rd−1)

~Ĝd −RGd~,

where G1, Ĝ1 : [n1] × [r1] → R and Gd, Ĝd : [rd−1] × [nd] → R are the first and last cores produced by the 
algorithm, respectively. Here ~·~ on the right-hand sides of the previous equations are the norms defined 
for the first and last cores introduced in Remark 8.

Proposition 16. Under the assumptions of Theorem 6, let G1, . . . , Gd be the cores of p obtained as solutions 
to (7). Suppose we apply Algorithm 1 to the perturbed input p̂ = p + ∆p with sketches (14) and (16) as in 
Theorem 6; the results are denoted as Ĝ1, . . . , Ĝd. Suppose further that for some fixed δ ∈ (0, 1),

‖∆p(x1;x2)‖∞, ‖∆p(x1, x2;x3)‖∞, . . . , ‖∆p(xd−2, xd−1;xd)‖∞‖∆p(xd−1;xd)‖∞

≤ cP
2n2(1 + cP )

(√
8rncA

(
1 + 1

cG

))−1
δ =: γδ

(36)

where the constants are defined as follows:

• n = max1≤k≤d nk,
• cP = σr1(p(x1; x2)) ∧ mink=2,...,d−1 σrk(p(xk−1, xk; xk+1)),
• cG = min1≤k≤d~Gk~,
• cA = 1 ∨ max1≤k≤d−1 ‖A†

k‖.

Then, for k = 1, . . . , d,

dist(Ĝk, Gk)
~Gk~ ≤ δ.

Proof. We apply Algorithm 1 to p and p̂ with sketches (14) and (16) as in Theorem 6; the resulting coefficient 
matrices and right-hand sides of (7) are

A1, . . . , Ad−1, B1, . . . , Bd−1, p(xd−1, xd) and Â1, . . . , Âd−1, B̂1, . . . , B̂d−1, p̂(xd−1, xd),

respectively. Our goal is to quantify their differences.
Recall that B1 and B̂1 are the first r1 left singular vectors of p(x1; x2) and p̂(x1; x2), respectively. We apply 

Wedin’s theorem presented in Theorem 2.9 of [5]; if ‖∆p(x1; x2)‖ < σr1(p(x1; x2)), we can find R1 ∈ O(r1)
such that

B̂1(x1;α1) =
r1∑

a1=1
B1(x1; a1)R1(a1;α1) + E1(x1;α1),
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and

‖E1(x1;α1)‖ ≤
√

2‖∆p(x1;x2)+B1(x1; a1)‖
σr1(p(x1;x2)) − ‖∆p(x1;x2)‖

.

In particular, if ‖∆p(x1; x2)‖ ≤ (1 − 1/
√

2)σr1(p(x1; x2)), using ‖B1(x1; a1)‖ = 1, we have

‖E1(x1;α1)‖ ≤ 2‖∆p(x1;x2)‖
σr1(p(x1;x2))

.

Similarly, for k = 2, . . . , d − 1, if ‖∆p(xk−1, xk; αk)‖ ≤ (1 − 1/
√

2)σrk(p(xk−1, xk; xk+1)), we can find 
Rk ∈ O(rk) such that

B̂k(xk−1, xk;αk) =
rk∑

ak=1
Bk(xk−1, xk; ak)Rk(ak;αk) + Ek(xk−1, xk;αk),

and

‖Ek(xk−1, xk;αk)‖ ≤ 2‖∆p(xk−1, xk;xk+1)‖
σrk(p(xk−1, xk;xk+1))

.

Accordingly, for k = 2, . . . , d − 1,

Âk(xk;αk) =
rk∑

ak=1
Ak(xk; ak)Rk(ak;αk) +

nk−1∑

xk−1=1
Ek(xk−1, xk;αk).

Conceptually speaking, we see that the perturbation in the coefficients and right-hand sides of equations 
(7) for G1, . . . , Gd consist of two parts: a rotation and an additive error. We will see that though the rotations 
affect the individual Gk’s, they do not change the final contraction G1 ◦ · · · ◦Gd, and hence do not directly 
contribute to the pointwise error in the compressed representation of the density. To that end, we define 
the rotated quantities Φ∗

1, A∗
k, and B∗

k as follows:

B∗
1(x1,α1) :=

r1∑

a1=1
B1(x1, a1)R1(a1,α1) =: A∗

1(x1,α1),

B∗
k(xk−1, xk,αk) :=

rk∑

ak=1
Bk(xk−1, xk, ak)Rk(ak,αk),

A∗
k(xk,αk) :=

nk−1∑

xk−1=1
B∗

k(xk−1, xk,αk) =
rk∑

ak=1
Ak(xk, ak)Rk(ak,αk).

Now, consider the following equations:

G∗
1 = B∗

1 ,

rk−1∑

αk−1=1
A∗

k−1(xk−1,αk−1)G∗
k(αk−1, xk,αk) = B∗

k(xk−1, xk,αk) k = 2, . . . , d− 1

rd−1∑

αd−1=1
A∗

d−1(xd−1,αd−1)G∗
d(αd−1, xd) = p(xd−1, xd).

(37)
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These equations can be viewed as the rotated version of the original equations for G1, . . . , Gd. In fact, the 
solutions are also simply rotated from the original solutions G1, . . . , Gd as follows1:

G∗
1 =

r1∑

a1=1
G1(x1, a1)R1(a1,α1),

G∗
k(αk−1, xk,αk) =

rk−1∑

ak−1=1

rk∑

ak=1
Rk−1(ak−1,αk−1)Gk(ak−1, xk, ak)Rk(ak,αk) k = 2, . . . , d− 1,

G∗
d(αd−1, xd) =

rd−1∑

ad−1=1
Rd−1(ad−1,αd−1)Gd(ad−1, xd).

By definition, it is obvious that ~Gk~ = ~G∗
k~ for all k = 1, . . . , d and G1 ◦ · · · ◦Gd = G∗

1 ◦ · · · ◦G∗
d.

We now address the effect of the additive error. As a result of the above discussion, running our algorithm 
with input p̂ amounts to a perturbed version of (37), where the coefficients and the right-hand sides are 
perturbed as follows:

B̂k = B∗
k + ∆B∗

k , Âk = A∗
k + ∆A∗

k k = 1, . . . , d− 1,
p̂(xd−1;xd) = p(xd−1;xd) + ∆p(xd−1;xd).

By construction, ∆B∗
1 = ∆A∗

1 = E1,

∆B∗
k = Ek, ∆A∗

k(xk;αk) =
nk−1∑

xk−1=1
Ek(xk−1, xk;αk) k = 2, . . . , d− 1.

We now look for suitable bounds on Ĝk −G∗
k for k = 1, . . . , d. In light of Lemma 14, it suffices to construct 

suitable bounds for ‖∆A∗
1‖, . . . , ‖∆A∗

d−1‖, ‖∆B∗
1‖∞, . . . , ‖∆B∗

d−1‖∞, and ‖∆p(xd−1; xd)‖∞. In particular, 
we claim

‖E1‖, ‖∆A∗
2‖ . . . , ‖∆A∗

d−1‖, ‖E1‖∞, . . . ‖Ed−1‖∞, ‖∆p(xd−1;xd)‖∞ ≤ βδ, (38)

where β is as in Lemma 14, namely,

β =
(√

8rncA
(

1 + 1
cG

))−1
.

Here, we use the fact that mk = nk and max1≤k≤d−1 rk ≤ n. Essentially, we have

γ = cP
2n2(1 + cP )β.

By definition of G∗
k and A∗

k, it is obvious that cG = min1≤k≤d~Gk~ = min1≤k≤d~G∗
k~ and cA =

max1≤k≤d−1 ‖A†
k‖ = max1≤k≤d−1 ‖(A∗

k)†‖. Hence, by Lemma 14, it suffices to check (38) to prove that 
for k = 1, . . . , d,

~Ĝk −G∗
k~

~G∗
k~ ≤ δ. (39)

1 More simply, G∗
1 = G1R1, G∗

k = R"
k−1 ◦ Gk ◦ Rk for k = 2, . . . , d − 1, and G∗

d = R"
d−1Gd.
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Let us verify (38). First,

‖∆p(xd−1;xd)‖∞ ≤ γδ ≤ βδ.

Moreover, as we showed above,

‖E1‖∞ ≤ ‖E1‖ ≤ 2‖∆p(x1;x2)‖
σr1(p(x1;x2))

≤ 2n‖∆p(x1;x2)‖∞
σr1(p(x1;x2))

≤ 2n
cP

γδ ≤ βδ.

For k = 2, . . . , d − 1, we verify ‖∆A∗
k‖ ≤ n1/2‖Ek(xk−1, xk; αk)‖. Note that ∆A∗

k = PkEk(xk−1, xk; αk); 
here Pk ∈ Rnk×nknk−1 = [Ik, . . . , Ik], where Ik ∈ Rnk×nk is the identity matrix. Hence, ‖∆A∗

k‖ ≤
‖Pk‖‖Ek(xk−1, xk; αk)‖ ≤ n1/2‖Ek(xk−1, xk; αk)‖ because ‖Pk‖ = √

nk−1 ≤ n1/2. Therefore,

‖∆A∗
k‖, ‖Ek‖∞ ≤ n1/2‖Ek(xk−1, xk;αk)‖

≤ 2n1/2‖∆p(xk−1, xk;xk+1)‖
σrk(p(xk−1, xk;xk+1))

≤ 2n2‖∆p(xk−1, xk;xk+1)‖∞
σrk(p(xk−1, xk;xk+1))

≤ 2n2γ

cP
δ ≤ βδ.

Hence, (38) is satisfied, thus (39) holds. By definition of dist(·, ·) and ~·~, we have for k = 1, . . . , d,

dist(Ĝk, Gk)
~Gk~ ≤ ~Ĝk −G∗

k~
~Gk~ = ~Ĝk −G∗

k~
~G∗

k~ ≤ δ. !

The following result on the error of the contraction follows immediately from the previous Proposition, 
combined with Corollary 13.

Theorem 17. Under the assumptions of Theorem 6, let G1, . . . , Gd be the cores of p obtained as solutions 
to (7). Suppose we apply Algorithm 1 to the perturbed input p̂ = p + ∆p with sketches (14) and (16) as in 
Theorem 6; the results are denoted as Ĝ1, . . . , Ĝd. Suppose further that for some fixed ε ∈ (0, 1),

‖∆p(x1;x2)‖∞, ‖∆p(x1, x2;x3)‖∞, . . . , ‖∆p(xd−2, xd−1;xd)‖∞‖∆p(xd−1;xd)‖∞

≤ cP
6dn2(1 + cP )

(√
8rncA

(
1 + 1

cG

))−1
ε,

where the constants n, cP , cG, cA are as in Proposition 16. Then,

‖Ĝ1 ◦ · · · ◦ Ĝd −G1 ◦ · · · ◦Gd‖∞
~G1~ . . .~Gd~ ≤ ε.

D.3. Estimation error analysis

Lastly, we present a precise version of Theorem 7. Recall that our main interest is to apply Algorithm 1
to an empirical density p̂ constructed based on N i.i.d. samples from some underlying density p!; letting 
Ĝ1, . . . , Ĝd be the results of Algorithm 1 applied to p̂, we hope to claim p! ≈ Ĝ1 ◦ · · · ◦ Ĝd.

Using the previous perturbation result (Proposition 16), we will quantify a difference between Ĝk and 
G!

k, where G!
1, . . . , G

!
d are the results of Algorithm 1 applied to p!. The only technicality here is that the 
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perturbed input is not arbitrary, but given as an empirical density. Therefore, the perturbation p̂− p! can 
be represented in terms of the sample size N . The following lemma derives a concrete bound on p̂−p! using 
simple concentration inequalities.

Lemma 18. Let p! : [n1] × · · · × [nd] → R be a density. Suppose p̂ is an empirical density based on N i.i.d. 
samples from p!. Let ∆p! = p̂− p! and n = max1≤k≤d nk, then for any η ∈ (0, 1), the following inequalities 
hold with probability at least 1 − η:

‖∆p!(x1;x2)‖∞ ≤
√

log(2n2d/η)
2N ,

‖∆p!(xk−1, xk;xk+1)‖∞ ≤
√

log(2n3d/η)
2N k = 2, . . . , d− 1,

‖∆p!(xd−1;xd)‖∞ ≤
√

log(2n2d/η)
2N .

Proof. Since Np̂ is the sum of N independent Bernoulli random variables, concentration inequalities imply 
that for any fixed x1 ∈ [n1] and x2 ∈ [n2] and t ≥ 0,

P (|∆p!(x1, x2)| > t) ≤ 2e−2Nt2 .

Due to the union bound, ‖∆p!(x1; x2)‖∞ ≤ t holds with probability at least 1 − 2n2e−2Nt2 . Equivalently,

‖∆p!(x1;x2)‖∞ ≤
√

log(2n2/η)
2N

holds with probability at least 1 − η. Similarly, for k = 2, . . . , d − 1,

‖∆p!(xk−1, xk;xk+1)‖∞ ≤
√

log(2n3/η)
2N

holds with probability at least 1 − η. Due to the union bound,

‖∆p!(x1;x2)‖∞ ≤
√

log(2n2d/η)
2N ,

‖∆p!(xk−1, xk;xk+1)‖∞ ≤
√

log(2n3d/η)
2N k = 2, . . . , d− 1,

‖∆p!(xd−1;xd)‖∞ ≤
√

log(2n2d/η)
2N

hold with probability at least 1 − η. !

Hence, we have proved that the perturbation p̂− p! is bounded above by O(1/
√
N). Now, by comparing 

this bound with the right-hand sides of (36), we obtain a complexity. Again, we will restrict our analysis 
to the case where p! is a Markov model and Algorithm 1 is implemented with sketches (14) and (16) as in 
Section 5.

Theorem 19. Let p! : [n1] × · · ·× [nd] → R be a Markov density satisfying Condition 1 such that the rank of 
the k-th unfolding matrix of p! is rk for each k = 1, . . . , d − 1. Let G!

1, . . . , G
!
d be the cores of p! obtained 

by applying Algorithm 1 to p! with sketches (14) and (16) as in Theorem 6; A!
1, . . . , A

!
d−1 are the resulting 

coefficient matrices in (7).
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Now, let p̂ be an empirical density based on N i.i.d. samples from p!. Let Ĝ1, . . . , Ĝd be the results of 
applying Algorithm 1 to p̂ with sketches (14) and (16) as in Theorem 6. Given δ ∈ (0, 1) and η ∈ (0, 1), 
suppose

N ≥ 16c2A
(

1 + 1
cG

)2 (
1 + 1

cP

)2 n5r log(2n3d/η)
δ2 , (40)

where

• n = max1≤k≤d nk,
• cP = σr1(p!(x1; x2)) ∧ mink=2,...,d−1 σrk(p!(xk−1, xk; xk+1)),
• cG = min1≤k≤d~G!

k~,
• cA = 1 ∨ max1≤k≤d−1 ‖(A!

k)†‖.

Then,

dist(Ĝk, G!
k)

~G!
k~ ≤ δ ∀k = 1, . . . , d

with probability at least 1 − η.

Proof. Due to Proposition 16, it suffices to show that N satisfies

√
log(2n3d/η)

2N ≤ cP
2n2(1 + cP )

(√
8rncA

(
1 + 1

cG

))−1
δ,

which is equivalent to (40). !

In addition, using Proposition 17, we obtain the following sample complexity for bounding the error of 
the contraction.

Theorem 20. Let p! : [n1] × · · ·× [nd] → R be a Markov density satisfying Condition 1 such that the rank of 
the k-th unfolding matrix of p! is rk for each k = 1, . . . , d − 1. Let G!

1, . . . , G
!
d be the cores of p! obtained 

by applying Algorithm 1 to p! with sketches (14) and (16) as in Theorem 6; A!
1, . . . , A

!
d−1 are the resulting 

coefficient matrices in (7).
Now, let p̂ be an empirical density based on N i.i.d. samples from p!. Let Ĝ1, . . . , Ĝd be the results of 

applying Algorithm 1 to p̂ with sketches (14) and (16) as in Theorem 6. Given ε ∈ (0, 1) and η ∈ (0, 1), 
suppose

N ≥ 144c2A
(

1 + 1
cG

)2 (
1 + 1

cP

)2 d2n5r log(2n3d/η)
ε2

,

where

• n = max1≤k≤d nk,
• cP = σr1(p!(x1; x2)) ∧ mink=2,...,d−1 σrk(p!(xk−1, xk; xk+1)),
• cG = min1≤k≤d~G!

k~,
• cA = 1 ∨ max1≤k≤d−1 ‖(A!

k)†‖.
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Then,

‖Ĝ1 ◦ · · · ◦ Ĝd −G!
1 ◦ · · · ◦G!

d‖∞
~G!

1~ . . .~G!
d~ ≤ ε

with probability at least 1 − η.

Remark 11. In Theorems 19 and 20, notice that the constants cP , cG, cA are independent of d; to see this, 
observe that they are determined by the marginals of p!, namely, p!(x1; x2) and p!(xk−1, xk; xk+1), which 
are independent of d under Condition 1. Therefore, we obtain Theorem 7 and Corollary 8, where the 
upper bounds hide those constants under the “big-O” notation as they are independent of d. Meanwhile, 
notice that Theorems 19 and 20 are valid for p! that may not satisfy Condition 1; in such a case, the 
constants cP , cG, cA may depend on d in principle. Extensive numerical experiments, however, suggest that 
the constants cP , cG, cA are often nearly independent of d for a broad class of Markov models that may not 
satisfy Condition 1, such as the Ginzburg-Landau model used in Section 6.
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