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Abstract: The Antarctic photopsychrophile, Chlamydomonas priscui UWO241, is adapted to extreme
environmental conditions, including permanent low temperatures, high salt, and shade. During long-
term exposure to this extreme habitat, UIWO241 appears to have lost several short-term mechanisms in
favor of constitutive protection against environmental stress. This study investigated the physiological
and growth responses of UWO241 to high-light conditions, evaluating the impacts of long-term
acclimation to high light, low temperature, and high salinity on its ability to manage short-term
photoinhibition. We found that UWO241 significantly increased its growth rate and photosynthetic
activity at growth irradiances far exceeding native light conditions. Furthermore, UWO241 exhibited
robust protection against short-term photoinhibition, particularly in photosystem I. Lastly, pre-
acclimation to high light or low temperatures, but not high salinity, enhanced photoinhibition
tolerance. These findings extend our understanding of stress tolerance in extremophilic algae. In
the past 2 decades, climate change-related increasing glacial stream flow has perturbed long-term
stable conditions, which has been associated with lake level rise, the thinning of ice covers, and
the expansion of ice-free perimeters, leading to perturbations in light and salinity conditions. Our
findings have implications for phytoplankton survival and the response to change scenarios in the
light-limited environment of Antarctic ice-covered lakes.

Keywords: photoinhibition; photo-acclimation; extremophile; cyclic electron flow; environmental
change

1. Introduction

Most photosynthetic organisms encounter marked light fluctuations, ranging from
insufficient to excessive, occurring over broad timescales. Short-term fluctuations (e.g.,
min to h) in irradiance can result in variations by up to one thousand times the daily
average irradiance, representing an acute stressor [1]. Under optimal light intensities,
photosynthetic organisms balance photosynthetic energy production with metabolic needs;
however, light levels that exceed energy consumption rates by downstream metabolism
can cause photooxidative damage to components of the photosynthetic electron-transport
chain [2,3]. Moreover, light requirements for photosynthesis are significantly altered in
the presence of environmental stressors, such as heat, chilling, nutrient deprivation, and
salinity [4].

Photooxidative stress generates reactive oxygen molecules (ROS) that can damage
various proteins of the photosynthetic electron transport chain, with photosystem II (PSII)
being the primary target, leading to a reduction in electron flux capacity [5,6]. Specifically,
D1 and D2 reaction center proteins have several amino acid targets that are modified by the
ROS hydroxyl radicals (HO) and superoxide anions (O, ™) [7,8]. Accordingly, plants and
algae have evolved an efficient repair system to rapidly replace damaged PSII centers [9].
A vast body of knowledge has been generated on PSII photodamage and repair. On
the other hand, photosystem I (PSI) is generally considered to be more stable compared
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to PSII; however, PSI appears to be very sensitive to oxidative damage under specific
environmental conditions (e.g., low temperature, fluctuating light, and drought) [6,10-13].
Thus, PSI damage can contribute to losses in photosynthetic efficiency photochemistry,
particularly under stress conditions [14]. For example, several chilling-sensitive crop
species exhibit irreversible PSI damage under low temperatures/mediate light, a typical
condition during winter and spring. PSI damage is also fundamentally different from that
of PSII: it involves the destruction of the iron-sulfur centers, followed by the destruction of
other electron acceptors [15]. Therefore, there is not an efficient PSI repair cycle, and PSI
photoinhibition results in slower recovery and higher energy costs [16].

Efficient photosynthesis requires photostasis, or a balance between light absorption
and turnover of ATP and NADPH via metabolic processes. Plants and algae have evolved
numerous strategies to mediate potential imbalances in light absorption and utilization
during exposure to high light intensities, fluctuating light, or additional environmental
stress conditions that influence light utilization. These mechanisms include reduced light
harvesting, state transitions, non-photochemical quenching (NPQ), and PSI cyclic electron
flow (CEF) [2,11,17,18]. Collectively known as photoprotective mechanisms, these strate-
gies may be induced across different timescales to mediate damage or rebalance energy
production to energy needs.

While excess light is a stressor for all photosynthetic organisms, the intensity of light
that induces stress is highly variable between organisms and is largely dependent on the
native light environment [19]. Additionally, pre-acclimation to certain environmental con-
ditions can impact an organism'’s tolerance and response to photoinhibition [6,20-23]. For
example, the combination of low temperatures and high-light stress can cause enhanced
photoinhibition of PSII and PSI; however, pre-acclimation to low temperatures prior to
short-term high-light exposure confers increased resistance to high-light stress [6,21]. This
resistance to photoinhibition can be further enhanced by acclimation to low temperature
and high light [22]. On the other hand, the acclimation to some stressors appears to exacer-
bate high light sensitivity: high salt stress can increase photoinhibition by impairing the
D1 repair cycle [20,23]. While extensive research has been conducted on model organisms
to understand the impact of light stress, there is growing interest in how organisms with
high tolerance to permanent environmental stressors mediate their stress response [24].
Exploring the physiological diversity of a larger range of photosynthetic organisms may
uncover novel approaches for improving stress resistance in crop species. Thus, work
characterizing these “non-model organisms” and their response to photoinhibition could
provide greater insights into how robust photosynthesis can be maintained in suboptimal
or even extreme conditions.

Chlamydomonas priscui (formerly Chlamydomonas sp. UWO241; hereafter UWO0241) is
an extremophilic alga isolated from Lake Bonney in the McMurdo Dry Valleys, Antarctica.
Lake Bonney has a permanent ice cover (3-5 m thick) that results in a perennially stratified
water column characterized by steep gradients in nutrient and ion chemistry, temperature,
and light [25]. Within this unique habitat, UW(O241 has been isolated under permanent low
temperatures, high salt, and extreme shade [4]. Both low temperatures and high salt stress
induce oxidative stress; conversely, low light is associated with lower oxidative stress but
also limits photosynthetic activity [26]. Moreover, Lake Bonney is experiencing climate-
related change, driven by summer glacial melt, which could lead to complex changes in the
light, nutrients, and salinity environment experienced by the phytoplankton communities.

For over three decades, UW(241 has been the subject of intensive research interest
due to its unique structural and functional features within its photochemical apparatus,
which enables its survival in such an extreme environment [4,27,28]. Specifically, UW(0241
exhibits constitutively high rates of CEF, which is supported by the formation of a PSI-Cyt
bef supercomplex and can support increased ATP production under salt stress [29,30].
UWQO241 also lacks the capacity for the short-term mechanism of state transitions despite
the presence of Stt7 and Stll kinases [31,32]. Recently, Stahl-Rommel et al. reported
that NPQ, CEF, and the ascorbate glutathione cycle contribute to the ability of UW0241
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to grow under low temperatures, high salt, and high light [33]. These findings are also
supported by previous reports that UW0O241 employs CEF and NPQ as long-term protective
strategies [4,30,34]. The reliance on CEF for long-term stress acclimation is distinct from
other model algae and higher plants, which typically activate these mechanisms in response
to short-term high-light stress [35,36]. Overall, research so far suggests that UWO241 has
forgone a broader range of photoprotective mechanisms in favor of the increased capacity
of a few key mechanisms. While photoprotective mechanisms that are constitutively “on”
are a benefit under a climate regime favoring extreme, stable conditions of Lake Bonney,
reduced physiological flexibility could limit the organism’s ability to respond to future
scenarios of environmental variation.

UWO241 represents a key phytoplankton taxon in the dry valley lake food web,
as well as a resource for understanding stress-adapted photosynthesis. The majority of
previous literature on UWQO241 has focused on the implications of its tolerance for low
temperatures [32,34,37,38] or high salinity [30,39]. Climate change-associated thinning ice
covers and an increasing ice-free lake perimeter will shift the light environment to higher
and more variable summer irradiance regimes [40]. Moreover, these changes in the light
environment will be associated with variability in other conditions, including temperature
and salinity, as a result of increased water column mixing. In recent years, green algae
have been shown to be increasing in abundance in Lake Bonney, suggesting they may
play an increasingly important role in this ecosystem as the effects of climate change
continue [41]. Here, we evaluated the implications of long-term high light acclimation on
the growth and photochemical function of UW0241, as well as the impact of adaptation
and acclimation to low temperatures, high salt, or high light on the short-term high-light
stress response. Notably, we found that UWO241 shows an increased growth rate and
concomitant increased O, evolution under high-light conditions. We also showed that not
only does UWO241 retain the ability to mediate short-term high-light stress, but it is highly
resistant to PSI photoinhibition. Additionally, acclimation to high-growth light and low
temperatures confer increased resistance to PSII photoinhibition during short-term high-
light stress, whereas high salt increases photoinhibition. Thus, the adaptation of UW0241
to extreme conditions has implications on its ability to tolerate short-term photoinhibition
as well as survival under climate-driven variability in temperature and salinity.

2. Results
2.1. Growth Patterns under High-Light Conditions

To determine how increased light availability would impact the growth kinetics
of UWO241, we monitored its growth under control (50 pmol m~2 s~1) and high-light
conditions (250 umol m~2 s~1). These light conditions were chosen to represent typical
native light conditions under the ice versus light levels in the ice-free, open-water perimeter
moats that form at the perimeters of the Antarctic lakes during the late summer, respectively
(Figure S1) [42]. When compared with low-light growth conditions, UWO241 grown under
high-light conditions exhibited a lag phase of one day shorter and a 1.2-fold increase in
growth rate (Figure 1A, Table 1). While the high-light-grown cultures also had a lower
total chlorophyll concentration (Table 1, p < 0.0005), there was no significant change in the
chlorophyll a/b ratio (chl a:b) between high-light vs. control cultures (Table 1, p = 0.25).
The maximum photochemical efficiency (Fy /Fy) was reduced by 1.40-fold in the high-light
versus control cultures.

Photosynthetic activity was probed with oxygen evolution and photosynthetic irra-
diance curves. Under high light, there was a 4.5-fold increase in the maximum rate of
oxygen evolution relative to that of the control (Figure 1B, p < 0.0005). A similar trend was
seen in the respiration rate, with a 6.0-fold increase in rates seen in the response to the
higher-growth light (Figure 1B, p < 0.0005).
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While the results of Figure 4 show that UWO241 has a robust response to short-term
high light at the level of both PSII and PSI capacity, other PSII parameters exhibited high
sensitivity to high-light stress (Figure 5). The PSII redox state (qL) and quantum yield of
PSII (®PSII) exhibited significant reductions after only 30 min of exposure to 300 pmol m-2
s (Figure 5). Loss in ®PSII was accompanied by an increase in ®NPQ. Moreover, full
recovery of Fv/Fwm after exposure to short-term high light (Figure 4A) and no relaxation of
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3. Discussion

Early literature often referred to C. priscui UWO241 as an extremophilic alga adapted
to “extreme shade” [43,44]. There was also evidence of a lack of physiological plasticity
in the alga, including a requirement for low temperatures, an inability to grow in red
light [45], and loss of a classic short-term acclimation mechanism, state transitions [31].
Our findings support earlier reports that UWO241 can grow at light levels far greater
than native conditions under permanent ice [4]. In addition, our study agrees with that of
Pocock et al., whereby UWQO241 possesses some capacity for tolerating short-term excessive
light levels [45]; however, the response to photoinhibition of PSII is nuanced.

UWOQO241 exhibited a modest increase in growth rate under high (250 pmol m2s71)
relative to control (50 umol m~2 s~ 1) irradiance conditions. On the other hand, the rates of
O; evolution increased substantially on a per-chl basis (400%) in high-light-grown cultures.
Normalizing to cell counts results in a similar rate of O, evolution between high-light
and control cultures (Figure S2), indicating that the high-light cultures are more efficient
photosynthetically, achieving a higher rate of O, evolution per unit of chl. It is also likely
that other processes contributed to the high O, production, such as the water-water cycle
or chlororespiration. Stahl-Rommel et al. reported that UWO241 has a highly active
ascorbate cycle [33]. In addition, HL-grown cultures showed evidence of downregulation
of PSII: Fy/Fy was lower, and Y(II) declined faster in the rapid light curves (Table 1;
Figure 2). UWO241 shows no change in chl a:b ratio in response to high-growth light
but rather decreases total chlorophyll levels, ultimately decreasing the number of reaction
centers rather than adjusting antennae size to regulate the light-harvesting capacity. This is
supported by Western blot analysis of PsbA and PsaA, which showed lower concentrations
of all proteins in the high-light-acclimated cultures relative to control conditions (Figure 3).
Typically, adjusting the light-harvesting capacity via antennae size regulation is seen as a
hallmark component of long-term, high-light acclimation [46]. However, our results agree
with previous studies that UWO241 maintains a consistently low chl a:b ratio under various
stressors, including differing light quality, high salinity, and low temperature [33,47].

UWO241 relies mainly on constitutive protection strategies during short-term high-
light stress. PSII photoinhibition of the control-grown cultures showed comparable rates of
photoinhibition and recovery of Fy /Fy to C. reinhardtii. On the other hand, Y(II) remained
low during the recovery period after photoinhibition (Figure 5). This suggests that while
primary PSII photochemistry may have recovered, there is a nuanced response to photoin-
hibition within the photosynthetic electron transport chain. Persistent NPQ suggests that
UWO241 maintained a long-term energy-dissipation capacity in the absence of high-light
stress. This is supported by the inability of qL to relax, suggesting ongoing issues with the
electron transport chain or downstream metabolism. It is also notable that CEF rates did
not relax during the recovery phase in any of the treatments (Figure 6). Together, these
results indicate that while UW(O241 may have the capacity to protect PSII photochemistry,
the photosynthetic electron transport chain is very slow to recover from short-term high
light. This has implications for future ice-free scenarios in the Antarctic lakes.

Pre-acclimated UWO241 to some stressors conferred additional photoprotection under
short-term high-light stress. Growth under low temperature or high light resulted in full
protection of PSII photochemistry (i.e., Fy/Fy) to photoinhibition. These data suggest
that, similar to other model species, long-term acclimation enhances high-light tolerance in
UWO241. In contrast, cells pre-acclimated to high salt exhibited higher sensitivity to pho-
toinhibition and incomplete recovery of Fy /Fy;. Our high-salt condition matches the native
salt levels within the deep photic zone of Lake Bonney, where light levels are extremely low.
Pocock suggested that a rapid D1 repair cycle is critical to the photoinhibition response
of UWQO241 [48]. In this study, we also observed the rapid recovery of PSII capacity apart
from the high-salt condition. High salt stress has been shown to impair the D1-repair
cycle [20]. This suggests that elevated PSII photoinhibition seen in high-salt-acclimated
cultures could be due to a lack of repair rather than increased rates of PSII photodamage.
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Thus, a combined high-light/high-salt condition within its native habitat represents an
additional stressful environment that UWO0241 is not well equipped to deal with.

PSI function appears to be especially robust in UWO241. First, HL-grown UW0O241
exhibited an increased capacity for avoiding donor- or acceptor-side limitation (Figure 2).
In addition, unlike C. reinhardtii, UNO241 exhibited little to no PSI photoinhibition despite
the combined low-temperature and high-light conditions. While PSII is the primary target
of photoinhibition, combined low-temperature and high-light stress have been shown to
induce PSI photoinhibition in cold-sensitive and tolerant plants [6,21]. However, acclima-
tion to high excitation pressure, such as the low temperatures that UW(241 experiences in
its native environment, can prime against PSI photoinhibition [21]. The pre-acclimation of
UWO241 to low temperatures, high light, or salt did not impact PSI activity in response
to the short-term light stress. A robust PSI would be an asset in its native habitat, where
environmental conditions such as low temperatures and high salinity would put PSI at a
high risk of oxidative damage.

UWO241 exhibits two potential strategies in its photoinhibition response that could
contribute to PSI photoprotection: both involve tight regulation of ROS production and/or
detoxification. While C. reinhardtii showed a rise in HO, during exposure to short-term
light stress, under all conditions, UW0O241 maintained very low H,O, in response to the
stress. HyO; is produced in the thylakoid membrane via disproportionation of O, at
PSI [49,50]. This H,O, can then be reduced to H,O via the ascorbate glutathione cycle.
Accordingly, UW0O241 has been shown to exhibit a highly active ascorbate glutathione
cycle [33], which likely facilitates this ROS control.

CEF may also play a role in its resistance to PSI photoinhibition by alleviating
both donor- and acceptor-side limitation, and preventing ROS production. UW0241
exhibits constitutively high rates of CEF under low temperatures, high salt, and high light
(Figure 4; [4,30,33]). In contrast with C. reinhardtii, CEF was not stimulated in response to
short-term high-light stress in UW(241, with the exception of cultures acclimated to low
temperatures. Under stress, CEF can help to alleviate PSI acceptor-side limitations while
also contributing to proton motive force to drive NPQ or increase ATP production [51-53].
Recent studies in plants have shown that under both low-temperature and high-light stress,
CEF tends to support photoprotection rather than energy generation [54,55]. Alternatively,
UWQO241 utilizes high CEF for ATP production under high-salt stress [30]. This differential
functioning of CEF could also contribute to the opposing influences of preacclimation to
low temperature and high light versus high salt.

Our study extends the understanding of the advantages and tradeoffs of adaptation
to permanent, extreme stress experienced by the photopsychrophile UW0O241. UW0O241
exhibits tolerance to both short- and long-term light levels that far exceed its native habitat
light environment. These results suggest that the organism has some ability to respond
to and survive climate-related changes to its light environment, including thinning ice
and even ice-free conditions. While there is evidence of photoprotection of PSII and
PSI photochemistry, high light also has a significant impact on additional photosynthetic
electron-transport processes, the implications of which are not yet fully understood. Fur-
thermore, other stressors, such as high salt, are modulators of this organism’s capacity for
light tolerance.

4. Materials and Methods
4.1. Growth and Stress Conditions

Chlamydomonas priscui (CCMP1619; formerly called Chlamydomonas sp. UW0241) and
Chlamydomonas reinhardtii (UTEX89) cultures were grown in Bold’s Basal Media (BBM) in
250 mL glass Pyrex tubes, which were suspended in temperature-controlled aquaria, with
filtered air bubbled into the tubes by aquarium pumps with a 24 h light cycle [56]. The
light, temperature, and salt regimes are outlined in Table 2. The high light represents the
maximum light intensity experienced in the Lake Bonney water column (Figure S1) and
the maximum irradiance under which UWO241 can grow [4]. Three biological replicates of
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each condition were grown for all experiments conducted. Culture density was measured
at a wavelength of 750 nm (ODys5p) using a spectrophotometer (UV-1700 PharmaSpec,
Shimadzu, Kyoto, JP), and cell counts were monitored using an automated cell counter
(Countess 3 FL, ThermoFisher, Waltham, MA, USA).

Table 2. Growth conditions of C. reinhardtii and UWO241.

Light Intensity Salt Concentration

Strain/Condition (umol m—2 s-1) Temperature (°C) (mM NaCl)
C. reinhardtii (CR) 50 20 0.43
UWO241 Control (CT) 50 8 0.43
UWOQO241 Low Temperature (LT) 50 2 0.43
UWO241 High Salt (HS) 50 8 700
UWO241 High Light (HL) 250 8 0.43

For the short-term stress experiments, cultures were grown to mid-log phase determined
by an ODys5 between 0.7 and 1. The tubes were then transferred to a tank with temperature-
controlled aquaria with a temperature/light treatment of 8 °C/1000 pmol m~2 s~ for 120 min
to induce light stress. Light was supplied by full spectrum LED lights. After treatment, cultures
were returned to growth conditions to recover for 90 min.

To monitor the recovery of PSII photochemistry, mid-log phase cultures of UW(0241
were exposed to short-term stress (300 pmol m—2 s’l) for 60 min, then allowed to recover
from the stress for 2 h. PSII redox state (qL) and energy partitioning (®PSII, PNPQ, and
®PNO) were measured at regular time intervals using Chl a fluorescence.

4.2. Oxygen Evolution

Oxygen evolution was measured using the Clark-type oxygen electrode (Hansatech
Instruments Ltd., Kings Lynn, UK). Then, 2 mL of culture was dark-adapted on ice for
5 min on ice with 10 mM of NaHCOj3. Oxygen evolution was monitored for 2-3 min under
saturating light conditions. The light was then turned off to measure respiration rates. All
measurements were performed at 8 °C. The rate of oxygen evolution and respiration were
calculated using a linear fit of 1 min of activity and standardized to chlorophyll content.

4.3. Chlorophyll Determination

Chlorophyll was extracted in 90% v/v acetone. Cells were broken via beadbeating
(Biospec Inc., Bartlesville, OK, USA) with zirconia/silica beads (0.1 mm) in two 45 s cycles.
Absorbance was measured at 647 nm and 664 nm. Total chlorophyll and chlorophyll a and
b concentrations were calculated as described in [57].

4.4. Western Blotting

Mid-log cultures were collected and spun down at 3200x g for 10 min. Thylakoids
were isolated as described in [56]. All buffers contained 1 mM of benzamidine and 1 mM
of caproic acid, which was added immediately prior to use. Isolated thylakoids were
flash-frozen and stored at —80 °C until use.

SDS-PAGE was performed using the Bio-Rad Mini-Protean system. Samples were
loaded on an equal 6 pg protein basis and run on a 12% (w/v) stacking gel containing 6 M of
urea and 5% (w/v) stacking gel as described in [31]. The SDS_PAGE gels were transferred
electrophoretically to nitrocellulose membranes on ice for 2 h at 80 V. Membranes were
blocked overnight at 5 °C in 20 mM of Tris buffer containing 15 mM of NaCl, 10% (w/v)
powdered milk, and 0.05% (v/v) Tween 20. The membranes were then probed with PsbA,
PsaA, or Lhcbmb antibodies (Agrisera) followed by an anti-rabbit antibody conjugated to
horseradish peroxidase enzyme. A chemiluminescent ECL-HRP system was used, and
blots were scanned using a Chemidoc imager (ChemiDoc MP, Biorad, Hercules, CA, USA).
Densitometry was performed using Image]J (v 1.53K) software.
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4.5. Room Temperature Fluorescence

All fluorescence measurements were performed using a Dual-PAM-100 (Heinz Walz
GmbH, Effeltrich, Germany). For PSII fluorescence measurements, 2 mL of liquid culture
was dark-adapted for 2 min under far-red light and supplemented with 10 mM of NaHCOs3.
Samples for PSI fluorescence were dark-adapted for 10 min before being filtered onto a
25 mm GF/C filter (Whatman) and placed in the leaf attachment.

Photosynthetic Light Curves measuring PSI and PSII quenching parameters in control or
high-light-grown cultures were monitored at increments of PAR from 0 to 830 umol m 2 s~ 1.

PSII capacity was measured as Fy/Fy and monitored using the induction curve
setting as described in [34]. All measurements were performed under temperature and
light conditions equivalent to growth conditions. Fy/Fy; measurements were taken at
time 0 and every 10 min for the first 30 min of light stress and then every 30 min for the
remainder of the treatment. The same process and time points were repeated throughout
the recovery period.

4.6. P700 Measurements

P700 absorbance measurements were taken using the leaf attachment of the PAM-
fluorometer to determine PSI activity and CEF rate. A total of 10 mL of culture was treated
with 10 uM of DCMU to inhibit PSII activity and dark-adapted for 10 min. A volume
equivalent to 5 ODy5 was filtered onto a 25 mm GF/C filter (Whatman). Actinic red light
was used to measure absorbance changes at 820 nm, as outlined in [31]. AAgyy was used as
a measure of PSI activity. CEF rate was calculated as the re-reduction half time (t1/2) of
P700 using Microcal Origin Software 2024 v10.10 (Microcal Software), as described in [21].
PSI measurements were taken every 30 min throughout the treatment and recovery periods.

4.7. ROS Determination

Relative H,O, concentrations were measured following the method described in [33].
Pelleted cells were resuspended in 10 mM of TRIS-HCI pH = 7.3, broken via beadbeating,
and stored at —80 °C. Thawed samples were normalized to 90 ug of protein and incubated
with the fluorescent dye HyDCFDA for 30 min at 30 °C. Samples were excited at 485 nm,
and fluorescence emission was measured at 535 nm using a plate reader (SpectraMax iD5,
Molecular Devices, San Jose, CA, USA).

Sensitivity to exogenously supplied chemical oxidants that produce various ROS was
determined using an agar plate assay according to [58]. Cultures were grown to mid-
log phase and were serially diluted to achieve a range of total cells (105, 106, 107, and
108) and spotted onto BBM plates containing variable concentrations of the pro-oxidants
Rose Bengal, Methyl Viologen, or hydrogen peroxide. A range of concentrations of Rose
Bengal (0.005 pM, 0.1 uM, 0.25 uM, and 2.5 uM) was used to induce singlet oxygen,
while Methyl Viologen (0.01 pM, 0.02 uM, 0.05 pM, and 0.5 uM) was used to induce
superoxide. Hydrogen peroxide exposure was 0.01 mM, 0.02 mM, 0.05 mM, and 0.5
mM. Plates were incubated for 7 days under control growth conditions. Colony growth
was visually inspected daily to obtain a qualitative estimate of sensitivity to each of the
chemical oxidants.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/plants13162254/s1, Figure S1: Photosynthetically active radiation
(PAR) in the Lake Bonney water column; Figure S2: Oxygen evolution per cell of control vs. high
light grown UWO241.
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