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A B S T R A C T   

Highly adapted and often endemic microbial taxa inhabit soils and rocks of extremely cold and dry Antarctic 
deserts. However, the source populations of these organisms have not yet been clarified. Local hotspots, rather 
than worldwide wind dispersion, have been described as the primary sources of microbial diversity. In particular, 
the endolithic niche offers a buffered environment, where layered microbial communities have been described, 
whose dispersion due to rock fragmentation may influence the diversity and nutrient availability of the sur
rounding soils. On the other hand, microorganisms thriving in soils could be transported to rock surfaces and 
colonise them. However, the bacterial taxa that are differentially selected and those exchanged between these 
two substrata have never been defined before. Additionally, the microorganisms detected in these substrata using 
DNA-based approaches may not be alive but may correspond to fragments of extracellular DNA originated from 
dead cells. To identify the taxa that are shared between the two substrata, the selective filters that drive their 
distributions, and the effects of relic DNA on subsequent interpretations of community structure, colonized rock 
samples were collected from sandstone outcrops in three localities, as well as soil samples at increasing distances 
from the outcrops. Homogeneous samples were divided into aliquots, and one of each aliquot was treated for 
extracellular DNA depletion. Both native and treated samples were screened for their bacterial composition 
through 16S rRNA gene metabarcoding. The results provide the first demonstration of the strong selection of 
bacterial communities in rocks and soils, reporting some taxa potentially exchanged between the two substrates. 
Specifically, genera differentially selected between the two habitats were identified, likely due to their different 
microenvironmental conditions, such as differences in their thermal regimes. Additionally, extracellular DNA 
depletion had few effects at the taxonomic level and on the identification of differentially selected genera be
tween the two substrata, but it increased the number of significant correlations of physicochemical variables with 
the diversity and composition of the soil microbial communities. These findings lead us to the conclusion that, 
despite the strong selection of the two substrates, there is microbial propagule interchange between soils and 
rocks in this environment. Extracellular DNA should be carefully considered since it has a significant impact on 
microbial diversity estimations.   

1. Introduction 

Microorganisms inhabiting the cold mineral soils of Antarctic deserts 
are constantly exposed to extreme conditions, including very limited 
organic nutrients, extremely low moisture, low temperatures, frequent 
freeze–thaw and wet-dry cycles, fluctuating UV radiation regimes, 
strong desiccating winds, and locally high salinity (Cowan and Tow, 
2004). Despite these environmental constraints, cultivation- 

independent techniques have highlighted greater prokaryotic diversity 
within Antarctic soils than previously predicted (Chong et al., 2012; Lee 
et al., 2012). While the phylum-level composition of these communities 
does not significantly differ from lower-latitude soils (Bottos et al., 
2014), they are highly specialized, with relatively low numbers of 
dominant species and a high taxonomic and functional diversity of low- 
abundance taxa (Chong et al., 2015; Delgado-Baquerizo et al., 2018; 
Fierer et al., 2012). Additionally, due to their geographic isolation, 
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harsh physical environments, and relatively simplified trophic re
lationships, these pristine ecosystems are excellent models for disen
tangling hypotheses regarding the distribution ecology and evolutionary 
drivers of microbial life (Barrett et al., 2006; Hogg et al., 2006; Convey 
et al., 2014; Thompson et al., 2020). Previous studies concluded that 
abiotic variables strongly influence diversity and community composi
tion in such environments (Feng et al., 2010; Van Goethem et al., 2016; 
Lee et al., 2019; Severgnini et al., 2021). Furthermore, in many different 
soil environments, not only Cyanobacteria support primary production, 
but some lineages within the Proteobacteria, Actinobacteria, WPS-2, and 
AD3 phyla can fix carbon via the Calvin-Benson-Bassham cycle, scav
enging atmospheric traces of H2 and CO (Bay et al., 2021), which has 
also been documented in ice-free areas of Antarctica (Ji et al., 2017; 
Ortiz et al., 2021). 

Some studies tried to define the possible contribution of airborne 
dispersal to Antarctic soil diversity. Recent work revealed strong 
dispersal limitations and identified stochastic, rather than deterministic 
processes, as the primary spatiotemporal drivers of soil ecosystem as
sembly (Lemoine et al., 2023). However, there appears to be a lack of 
correlation between airborne microorganisms at continental scales and 
those found in Antarctic soils (Archer et al., 2019). Geographically 
isolated areas of refugia that were relatively stable throughout glacial 
advances and retreats can have highly similar community structures 
(Jackson et al., 2022). In this light, it has been hypothesized that local 
refugia, such as microbial mats surrounding lakes and ponds or the 
endolithic communities, could serve as source populations for the di
versity observed in the region (Hopkins et al., 2009; Pointing et al., 
2009; Cowan et al., 2014). 

Cryptoendolithic communities have been described as the predomi
nant life forms in these environments due to the buffered conditions 
offered by rock porosities (Friedmann, 1982; Zucconi et al., 2016), and 
their taxonomic diversity, composition, and functionality are gradually 
becoming clearer (Coleine et al., 2019; Mezzasoma et al., 2022). How
ever, the possible exchange of microbial propagules between the cryp
toendolithic communities and the surrounding soils, as well as the 
possible differential selective pressure of these two substrata, have never 
been systematically investigated in Antarctica. Indeed, Antarctic soils 
are formed from rock weathering caused by both physico-chemical 
processes and biological colonization (Campbell and Claridge, 1987). 
It has been suggested that the sub-surface growth of cryptoendolithic 
lichens induces rock surface exfoliation, leading to rock fragments that 
could serve as vegetative propagules, many of which fall into the soil 
(Friedmann, 1982). On the other hand, soils can be a source of rock- 
dwelling microorganisms that can colonize the surrounding rocks. 
Thus, it is evident that these two substrata experience different micro
climatic conditions that can select for different microbial communities, 
even within adjacent areas. 

Additionally, few studies have tried to determine if life forms found 
through DNA-based methods are metabolically active or present as 
inactive, dormant, or dead cells in these environments. Studies using 
different methodological approaches, such as stable-isotope probing 
(Schwartz et al., 2014), metatranscriptomics (Buelow et al., 2016), and 
16S rRNA gene amplicon sequencing (Feeser et al., 2018), yield 
congruent patterns, with Proteobacteria and Deinococcus-Thermus 
generally being active and adapted to Antarctic environmental condi
tions, while Acidobacteria and Bacteroidetes appear to be mainly inactive. 
Furthermore, various studies have shown that extracellular DNA can 
persist in soils across all biomes in very high proportions, potentially 
distorting the diversity metric estimations obtained with molecular 
DNA-based approaches. This effect can be even more pronounced in 
Antarctic soils, where the limited microbial activity and the combination 
of dry, cold, and saline conditions can have a long-term stabilizing effect 
on DNA (Carini et al., 2016). 

In this work, we implemented DNA metabarcoding analyses to pro
vide new insights into the prokaryotic diversity and the mechanisms of 
distribution, ecology, and survival in extremely oligotrophic Antarctic 

niches. Specifically, our approach was designed to (i) evaluate the 
possible exchange of microbial propagules between cryptoendolithic 
communities and the surrounding soils, (ii) elucidate selective pressures 
on the communities inhabiting these two substrates (in terms of the 
presence of generalist and specialist taxa for the two substrata), and (iii) 
evaluate how the extracellular DNA influences the diversity metrics and 
ecological trends described in this geographic region through DNA- 
based approaches. 

2. Materials and methods 

2.1. Sampling 

Samples were collected during the XXXV Italian Antarctic expedition 
in three different localities of inner Victoria Land: Battleship Promon
tory (November 27th, 2019), Trio Nunatak (December 2nd, 2019), and 
Richard Nunatak (December 2nd, 2019) (table S1), where stations 
continuously recording data on air, rock, and soil temperature, humid
ity, solar radiation, and PAR were installed (Fig. 1). Soil samples were 
collected in triplicate as close as possible to a sandstone outcrop (within 
0–1 m) exhibiting conspicuous cryptoendolithic colonization, and at 
increasing distances of 50 and 100 m. The gradient was oriented in the 
direction of the major winds dominating the area, which flow from the 
polar plateau toward the coast. Rock samples from the colonized sand
stone outcrop were also collected in triplicate. Samples were collected 
using aseptic techniques and sterile collection materials, placed in sterile 
bags, and stored at −20 ◦C until processing. 

2.2. Soil physico-chemical analyses 

Soil samples (about 500 g each) were air-dried and < 2 mm sieved. 
An aliquot of 10 g before drying was used for measuring the moisture at 
105 ◦C. Physico-chemical properties were analyzed according to stan
dard methods of SISS (Società Italiana della Scienza del Suolo) (Colombo 
and Miano, 2015). Total soil organic carbon (C) and nitrogen (N) were 
measured by combustion with an elemental analyzer NA 1500 CHNS 
(Carlo Erba, Milan, Italy); cation exchange capacity (CEC) was deter
mined by barium chloride (BaCl2) extracts method; soil exchangeable 
bases (Na+, Ca2+, K+, and Mg2+) were analyzed by flame atomic ab
sorption spectrometry (AAS 1100B, PerkinElmer, Waltham, MA, USA); 
pH was measured in a 1:2.5 soil:water suspension; soil available P was 
determined by Olsen method and total P by colorimetric method after 
acid digestion; particle size distribution was obtained by pipette 
method, particles were sized as sand (0.5–2 mm), coarse silt (0.02–0.05 
mm), fine silt (0.002–0.02 mm) and clay (<0.002 mm). 

2.3. PMA treatment and DNA extraction 

Before the analyses, each rock sample was ground to a fine powder 
and homogenized under sterile conditions. For both rock and soil sam
ples, one uniform aliquot of 1 g was treated with Propidium MonoAzide 
(PMA; Biotium, Inc., Fremont, CA, USA), which binds to extracellular 
DNA or DNA of cells with damaged membranes upon light exposure and 
inhibits PCR amplification, modifying the method described in Carini 
et al. (2016). Samples were resuspended in 3.0 ml sterile phosphate- 
buffered saline solution (PBS) (pH 7.4) in transparent plastic tubes. 
PMA was added at a final concentration of 40 μM in a dark room. 
Samples were gently vortexed and incubated in the dark for 30 min 
under continuous agitation. Samples were then exposed to a 650 W 
halogen lamp placed 20 cm from the sample tubes, in the ice, for five 
consecutive 2-minute cycles each followed by vortexing. Then, samples 
were centrifuged for 30 min at 16,100 xg at 4 ◦C. The supernatant was 
removed, and samples were preserved at −20 ◦C until DNA extraction. 
DNA was extracted from 1 g of both native samples and those treated 
with PMA using the DNeasy PowerSoil Kit (QIAGEN, Hilden, Germany), 
according to the manufacturer’s protocol. 
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Fig. 1. Sampling sites, temperature and solar radiation measurements. Map of the sampling sites (a); sandstone rock outcrops and adjacent soil at Battleship 
Promontory (b) and Trio Nunatak (c); details of soil samples at Battleship Promontory (d) and Richard Nunatak (f); detail of weathered colonized sandstone surface at 
Trio Nunatak (e); temperature trends of rock, soil, air, and solar radiation, monitored by the climatic stations at Battleship Promontory (g), Trio Nunatak (h) and 
Richard Nunatak (i) (data are relative to the sampling time). 
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2.4. DNA amplification and sequencing 

The V4 hypervariable region of the 16S rRNA gene was amplified 
using 515F (Parada et al., 2016) and 806R (Apprill et al., 2015) primers. 
The amplification assay consisted of 2 ng DNA, 5x reaction buffer, 1 mM 
dNTP mix, 500 nM of each primer, and Herculase II fusion DNA poly
merase (Agilent Technologies, Santa Clara, CA). The amplification 
protocol was as follows: 3 min at 95 ◦C, 25 cycles of 30 s at 95 ◦C, 30 s at 
55 ◦C and 30 s at 72 ◦C, followed by a 5-minute final extension at 72 ◦C. 
Libraries were prepared following the protocol of Minich et al. (Minich 
et al., 2018). It was not possible to obtain amplicons and/or good- 
quality libraries to be processed for all available samples (the list of 
samples for which the amplification or library construction failed is 
reported in Table S1). The equimolar pool of uniquely barcoded 
amplicons was paired-end sequenced (2 × 250 bp) on an Illumina MiSeq 
platform at Macrogen, Inc. (Seoul, South Korea). 

2.5. Bioinformatic analyses 

Bcl files were converted to Fastq files and demultiplexed using 
bcl2fastq (v 2.20). Demultiplexed sequences were processed with the 
Amplicon ToolKit (AMPtk) for NGS data (formally UFITS) v.1.3.0 
(Palmer et al., 2018). Starting reads were quality trimmed and PhiX 
screened, using USEARCH v. 11.0.667 (Edgar, 2010) with default pa
rameters. Reads with less than 100 bp were removed, the others trim
med to the length of 250 bp, and paired-end reads were merged in one 
step. Obtained reads were clustered in Amplicon Sequence Variants 
(ASVs), using DADA2 v1.20.0 (Callahan et al., 2016), which includes 
phiX reads removal and chimera detection. Singleton ASVs were 
removed from the dataset. Taxonomy was assigned to ASVs with a 
hybrid approach that calculates the local common ancestor on the re
sults of a Global Alignment (USEARCH/VSEARCH), UTAX, and SINTAX 
(Edgar, 2010). Alignment was performed on the RDP11 database (Cole 
et al., 2014). ASVs with no match in the database and those identified as 
Chloroplasts were removed. Before diversity analyses, the number of 
reads per sample was rarefied to the lowest library size (72,012 reads) 
using the rrarefy function in the vegan package v. 2.6–4 (Oksanen et al., 
2022) in R v. 4.2.1 (R Core Team, 2018). 

2.6. Statistical analyses 

All statistical analyses were carried out in R v. 4.2.1 (R Core Team, 
2018). 

The total richness, relative richness, and abundance of dominant 
bacterial phyla and orders were compared among the different types of 
samples (rocks and soils), the soils collected at increasing distances from 
the rocks (0, 50, and 100 m), and the different treatments (both native 
and PMA treated samples) with a Kruskal-Wallis test (McKight and 
Najab, 2010) followed by Dunn multiple comparisons (Dunn, 1964), 
with p-values adjusted with the Benjamini-Hochberg method. Non- 
metric Multidimensional Scaling (NMDS) analyses of the weighted 
Bray-Curtis distances of Hellinger transformed matrix of the bacterial 
community were performed with the following parameters: dimensions 
= 2, initial configurations = 100, model = global, maximum number of 
iterations = 200, and convergence ratio for stress = 0.999999. Homo
geneity in community variance (Anderson, 2006) was analysed with the 
betadisper function. The significance of the differences in community 
composition was tested with a permutational multivariate analysis of 
variance (PERMANOVA) (Anderson, 2001) performed with the adonis2 
function on Hellinger-transformed Bray-Curtis distance matrices. A 
CLAM (Multinomial Species Classification Method) statistical approach 
was used for classifying generalist and specialist ASVs in the two distinct 
habitats (rock and soil) as described in Chazdon et al. (2011), with the 
function clamtest. Genera differentially associated with rock and soil 
were obtained with a Linear Discriminant Analysis (LDA) effect size 
(LEfSe), based on LDA scores of > 2 and p-values of < 0.05 (Segata et al., 

2011). The correlations between the richness of the total community and 
the relative richness and abundance of the dominant phyla and the 
physico-chemical parameters measured for soil samples were tested 
with Spearman’s rank correlation coefficient and were represented with 
the corrplot package (Wei and Simko, 2021). The effect of soil physico- 
chemical parameters on community composition was represented via 
a distance-based Redundancy Analysis (dbRDA) (Legendre and Ander
son, 1999), on the Bray-Curtis distances of Hellinger-transformed matrix 
of bacterial community performed with the dbrda function. The effect of 
soil parameters on the observed variance was determined via PERMA
NOVA (Anderson, 2001), performed with the adonis2 function on 
Hellinger-transformed Bray-Curtis distance matrices. Significant vari
ables were then considered in an additional model, where they were 
added starting from the most significative one in the previous analysis, 
to determine the combined effect of soil parameters on the variance of 
the community. 

3. Results 

3.1. Dataset 

Of the 7,411,303 starting reads, a total of 7,275,324 quality-filtered 
reads were clustered in 19,090 ASVs. Subsequently, 10,457 chimeras 
were removed, leaving 8,633 valid ASVs (accounting for 6,636,356 
reads mapped to ASVs, 91 % of the total). After singleton removal, 8,631 
ASVs were retained. Two samples were excluded because they resulted 
in a too-low number of total reads (105 and 35 reads respectively; table 
S1), losing 5 ASVs. 65 ASVs without matches in the database and 47 
ASVs identified as chloroplasts were removed. After the rarefaction, the 
final dataset consisted of a total of 8,375 ASVs obtained from 29 native 
samples and 27 treated with PMA (see table S1). 

1,312 ASVs (15,7 % of the total) were present only in samples not 
treated with PMA, 1,116 (13,3% of the total) were unique in samples 
treated with PMA, and 5,947 (71 % of the total) were shared between 
them. Similar percentages were observed considering rock and soil 
samples independently (table S2). ASVs unique to samples not treated 
with PMA often showed high relative abundance for both rock and soil 
samples. Instead, ASV unique in PMA-treated samples were generally 
low-abundant (table S2). This effect was particularly evident for samples 
collected at Richard Nunatak (table S2). 

Regarding the distribution in the two substrata, 543 ASVs were 
unique in rock samples, 5,776 were unique in soil samples, and 940 were 
shared by both rock and soil for samples not treated with PMA (table 
S3). For samples treated with PMA, 594 ASVs were unique in rock 
samples, 5,816 were unique in soil samples and 653 were shared by both 
(table S3). The proportion of ASVs in common between rocks and soils 
was highly variable among the different localities and within the 
different samples in the same locality (table S3). At the taxonomic level, 
Actinobacteria, Proteobacteria, Acidobacteria, and Firmicutes were the 
phyla mainly represented in ASVs shared by rocks and soils (table S3). 

Any difference in the number of ASV shared with rocks was recorded 
for soil samples collected at increasing distances from the rock outcrops 
(0, 50, and 100 m). This was also confirmed when considering the 
different localities independently and both for untreated and PMA- 
treated samples (data not shown). 

3.2. Richness and abundance patterns 

Soil ASV richness was significantly higher than rock richness both in 
native and PMA-treated samples (Fig. 2a). Treatment with PMA did not 
significantly change the whole richness of both rock and soil samples 
(Fig. 2a). 

Regarding the taxonomic composition, 29 different phyla were 
identified in the dataset and 1,902 ASVs were only assigned at the 
kingdom level and could not be assigned to a phylum. PMA treatment 
did not significantly change the richness of any major phylum except for 
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Firmicutes and Proteobacteria, which had a slightly higher richness in 
PMA-treated soil samples (Fig. 2g, j). Acidobacteria, Gemmatimonadetes, 
Planctomycetes, and Verrucomicrobia, had a higher relative richness in 
soils than in rocks (Fig. 2b, h, i, k), while Chloroflexi, Firmicutes, and 
Proteobacteria showed the opposite trend (Fig. 2e, g, j). Finally, the type 
of substrate and the treatment with PMA had no effect on the relative 
richness of Actinobacteria and Bacteroidetes (Fig. 2c, d). Similar trends 
were observed for the relative abundance of the dominant phyla 
(Fig. S1). No statistically significant differences were recorded among 
soil samples collected at increasing distances from the rock outcrops in 
terms of richness and abundance, both in native and PMA-treated 
samples (figs S2 and S3). Significant differences in the abundance of 
taxonomic groups between rock and soil samples were identified for 
several major bacterial orders identified in the communities (Fig. S4), 
with no statistical differences among soil samples collected at increasing 
distances from rocks (Fig. S5). 

3.3. Differences in community composition 

The dispersion of taxa between rock and soil samples and between 
the samples collected in different localities was not statistically different 
(p > 0.05). NMDS ordinations for native and PMA-treated samples 
(Fig. 3a, b) resulted in two-dimensional final solutions with stress values 
of 0.075 and 0.087, respectively. The differences in community 
composition between rock and soil samples were strongly significant in a 
Permanova analysis both for native (R2 = 0.248, p = 0.001; Fig. 3a) and 
PMA-treated samples (R2 = 0.243, p = 0.001; Fig. 3b). However, 
excluding rock samples, neither native (R2 = 0.126, p = 0.178; Fig. 3c) 
nor PMA-treated samples (R2 = 0.134, p = 0.128; Fig. 3d) showed any 
statistically significant difference in the composition of soil communities 

at increasing distances from rock outcrops. Additionally, while rock 
samples of the three different localities were well differentiated among 
each other in both native (R2 = 0.587, p = 0.005) and PMA-treated 
samples (R2 = 0.576, p = 0.003), a weaker differentiation in commu
nity composition was observed for soils of the three different localities, 
for both native (R2 = 0.189, p = 0.004) and PMA-treated samples (R2 =

0.213, p = 0.001) (Fig. 3a,b). 
Differences in community composition were also confirmed by the 

distribution of generalist and specialist ASVs in the two distinct habitats 
from a CLAM test. Generalist ASVs for the two substrata, in native 
samples, were 172 (2.4 % of the total), mainly assigned to Actinobacteria 
(112 ASVs), while 439 and 2,541 were specialists for rocks and soils, 
respectively (Fig. 4a). The proportion of generalist ASVs was maintained 
in PMA-treated samples, with 148 generalist ASVs (2.1 % of the total), 
and 419 and 2,391 specialists for rocks and soils, respectively (Fig. 4b). 

The genera that had significantly higher relative abundance in the 
two substrata were identified with a lefse analysis, that revealed a higher 
number of genera enriched in soil than in rock samples. Most of the 
genera enriched in the two substrata were confirmed also after extra
cellular DNA depletion. Genera dominant in rocks were Rhodococcus, 
Rosemonas, Ehrlichia, and Granulicella, while genera enriched in soils 
were Solirubrobacter, Blastocatella, Sphingomonas, Rubrobacter, Gaiella, 
Modestobacter, and Marmoricola (Fig. 4c, d). 

3.4. Correlation of soil parameters with bacterial richness, abundance, 
and composition 

All soil samples were coarse textured with more than 90 % sand in 21 
of 27 samples. Soils were extremely dry, with water content lower than 
4 % in all samples and less than 1 % in more than half of them. Carbon 
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and nitrogen contents were very low, with the highest values of 0.247 % 
for carbon and 0.066 % for nitrogen, respectively (table S4). 

Few of the correlations tested between physico-chemical parameters 
and the richness of the total communities and the relative richness of the 
most representative phyla were significant in native samples, with Mg 
and Ca being the most significant parameters (Fig. 5a). Instead, when 
PMA-treated samples were considered, a much higher number of sig
nificant correlations was recorded. Among the phyla, Acidobacteria, 
Bacteroidetes, Planctomycetes, and Verrucomicrobia showed the highest 
number of correlations (Fig. 5b). The most significant parameters were 
nitrogen, moisture, and exchangeable cations (Na+, K+, Mg2+, and 
Ca2+), with nitrogen and moisture being always negatively correlated 
with the relative richness of phyla and the cations being only positively 
correlated with the relative richness of Actinobacteria (Fig. 5b). 

Similar results were obtained when correlating soil parameters with 
the relative abundances of dominant phyla, with PMA-treated samples 

once again showing a higher number of significant correlations. The 
observed trends in significant correlations were consistent with those 
observed for relative richness (Fig. S6). 

The effect of environmental variables on soil community composi
tion variance was represented in a dbRDA (Fig. 3e, f). None of the pa
rameters tested was significant in explaining the variance of the 
bacterial communities in samples not treated with PMA via Permanova 
analysis (Table 1). Instead, many parameters tested were significant in 
explaining the observed variance of PMA-treated samples when 
considered independently (Table 1; Fig. 3f). However, when significant 
parameters were considered in combination, only soil moisture, carbon, 
and Ca contents were significant, with moisture being the most signifi
cant parameter (Table 1). For the variance in the composition of ASVs 
belonging to the five most representative phyla (Acidobacteria, Actino
bacteria, Bacteroidetes, Proteobacteria, and Verrucomicrobia) in PMA- 
treated samples, moisture, and exchangeable cation contents were 
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among the most significant parameters explaining the observed variance 
in these groups (Tables S5 and S6). 

4. Discussion 

Molecular studies have advanced our understanding of microbial 
diversity in Antarctica, but questions remain about dispersal mecha
nisms and the influence of biological hotspots. In particular, we inves
tigated the potential exchange of bacterial propagules between the 
lichen-dominated cryptoendolithic communities, which are prevalent 
in this environment in terms of biomass, and the surrounding soils in 
three different localities within Victoria Land. Our results show that a 
large proportion of prokaryotic sequences obtained from the analysis 
were in common between the rock communities and the adjacent soils, 
but only a small proportion of ASVs were inferred to be statistically 
significant generalists of both substrates and are more likely to be 
exchanged between the two. The proportion of shared ASVs observed in 
this study (36.6 % and 47.6 % for untreated and PMA-treated samples, 
respectively) was lower than the 85 % reported by Van Goethem et al. 
(2016) for endolithic and soil samples from Victoria Valley. However, 
there was strong variability in this proportion and the mean relative 
abundance of shared ASVs across the different study sites. 

We found abundant ASVs identified as taxa of oligotrophic Actino
bacteria in both substrata, which were also the most represented group 
among the generalist ASVs detected, with orders Actinomycetales and 
Solirubrobacterales, previously described as dominant in both endolithic 
and soil niches in Antarctic environments (Lee et al., 2012; Chong et al., 

2015; Wei et al., 2016). Strains belonging to these taxa have been 
characterized as belonging to clades distinct from genomes found 
outside Antarctica, with locally adapted populations that thrive in 
Antarctic environments (Ortiz et al., 2021). Additionally, certain species 
of Actinobacteria have been reported as the main players in chemo
lithoautotrophic carbon fixation (Ji et al., 2017; Bay et al., 2018). Due to 
their ability to obtain energy sources from atmospheric gases, these 
species may remain metabolically active in both substrates even in the 
absence of photosynthetic organisms, such as lichens, which are 
extremely abundant in endolithic communities but scarce in soils 
(Canini et al., 2023). Members of Acidobacteria, encompassing many 
oligotrophic species and described as very frequent in Antarctic niches 
(Ji et al., 2017; Van Goethem et al., 2018), including many endemic 
species (Ortiz et al., 2021), were shared between rocks and soils. How
ever, many studies suggest that members of this phylum might be mainly 
metabolically inactive in Antarctic soil environments (Schwartz et al., 
2014; Feeser et al., 2018), surviving in different dormant forms 
(Schwartz et al., 2014; Buelow et al., 2016) and only becoming active for 
short periods due to their ability to tolerate large fluctuations in soil 
water content (Ward et al., 2009). Despite its broad ecological ampli
tude, we found this taxon to be more abundant and diverse in soils 
compared to rocks, even after the depletion of extracellular DNA by PMA 
treatment. Instead, Proteobacteria were found highly abundant in rock 
samples. This observation is consistent with several studies conducted 
on Antarctic endolithic communities (Mezzasoma et al., 2022, Coleine 
et al., 2020). ASVs assigned to this phylum, in particular those belonging 
to the orders Rhodospirillales and Sphingomonadales, were among the 
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main shared taxa between rocks and soils. 
Instead, some genera showed significantly different abundance be

tween the two substrata. Interestingly, the specifically selected genera 
were more numerous for soils. We found that the four genera dominant 
in rocks were already reported as widely abundant in Antarctic lichen- 
dominated cryptoendolithic communities (Mezzasoma et al., 2022). 
Among them, Rhodococcus and Ehrlichia were also found in Antarctic 
soils (Sun et al., 2023; Pearce et al., 2012) and Granulicella in soils from 
cold environments (Männistö et al., 2012). Additionally, Rhodococcus 
was also found in hydrocarbon-polluted Antarctic soils with strong 
bioremediation potential (Bej et al., 2000). As for the rocks, genera re
ported as dominant in soils have been documented in many different 
Antarctic soil studies and only marginally in rock samples (Wang et al., 
2015; Huang et al., 2017; Lambrechts et al., 2019), with only Blastoca
tella and Rubrobacter having been documented as widely diffused in 
endolithic communities (de la Torre et al., 2003; Mezzasoma et al., 
2022). Additionally, Rubrobacter and Modestobacter, reported from Dry 
Valleys water tracks (Niederberger et al., 2015; George et al., 2021), 

both are known for their resistance to environmental constraints, with 
Rubrobacter having astonishing resistance to desiccation and ionizing 
radiation (Ferreira et al., 1999) and Modestobacter producing melanized 
cell walls and having been reported from many different desert envi
ronments (Mevs et al., 2000; Reddy et al., 2007; Golinska et al., 2020). 
This confirms that these genera are representative of the groups that are 
differentially selected between rocks and soils. 

Although the endolithic environment hosts the highest standing 
biomass in this area (Cowan and Tow, 2004; Cary et al., 2010; Cowan 
et al., 2010; Archer et al., 2017), comparisons with soils collected from 
the same areas demonstrated astonishingly higher diversity in the soil 
environment, as also highlighted by other similar studies (Van Goethem 
et al., 2016; Rego et al., 2019). This makes it clear that, despite the 
release of biomass from rocks and a potential exchange between soils 
and rocks, there are still undetermined sources of microbial propagules 
playing that may be transported through winds blowing in the area, such 
as microbial mats surrounding lakes and ponds, which may play a 
crucial role in the soil composition of this region. Additionally, the 
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biomass released from rocks could be an important source of organic 
matter for life within soils. The temperatures recorded for rocks and soils 
in the three stations were always higher than ambient air temperatures, 
with soils providing a niche characterized by lower mean temperatures 
and less daily variation compared to rocks (Fig. 1), which could be one 
of the reasons for the higher diversity observed in soils, however, it is 
evident that also other factors could play a significant role in the dif
ferentiation of the communities between the two substrates. 

The absence of diversity and composition gradients in soils at 
increasing distances from the rocks, despite accounting for the pre
dominant wind direction, may be attributed to a general homogeniza
tion caused by the wind patterns in this region (Doran et al., 2002). 
Consequently, these winds likely affect the transport of abiotic materials 
and the dispersal of microbial propagules throughout the entire area 
considered (Šabacká et al., 2012). Aeolian transport could potentially 
mitigate the deterministic effects of rock dispersal in contributing to the 
edaphic microbial communities (Lemoine et al., 2023). 

In terms of the effect of extracellular DNA or DNA from damaged 
cells on the observed diversity, a significant proportion of ASVs were 
found to be absent after PMA treatment. At the taxonomic level, PMA 
treatment resulted in a significant increase in the relative richness and 
abundance of the phyla Firmicutes and Proteobacteria, particularly the 
order Cytophagales. Similar studies also showed increased representation 
of specific taxa after PMA treatment. For instance, Carini et al. (2016) 
found a significant increase in the abundance of Actinobacteria and 
Alphaproteobacteria and a decrease in Verrucomicrobia after relic DNA 
removal. In a comparison of DNA extraction methods that include or 
exclude extracellular DNA removal in Antarctic soil samples, Tahon 
et al. (2018) reported an increase in the relative abundance of Acid
obacteria and a decrease in Actinobacteria, Cyanobacteria, Chloroflexi, and 
Bacteroidetes. This indicates that the effect of extracellular DNA at the 
taxonomic level may be strongly variable and needs to be assessed in 
each study to accurately estimate the diversity of microorganisms 
potentially present in a viable state within the examined communities. 
However, despite this variability, the impact of extracellular DNA was 
less pronounced when examining shared or differentially selected ASVs 
and taxa between rocks and soils. 

When using DNA-based approaches to infer taxonomic abundance 
and diversity, the assessment of relic DNA becomes pivotal in under
standing the key drivers of soil diversity and functionality. In our study, 
the importance of evaluating extracellular DNA was particularly evident 
when considering the effect of physico-chemical parameters on bacterial 
richness and variance, which was mostly hidden in samples not treated 
with PMA. Indeed, the strong effect of local environmental filtering on 

Antarctic soil microbial communities is well documented (Cary et al., 
2010; Tytgat et al., 2016; Lee et al., 2019). In our case, the limited effect 
of soil physico-chemical variables, as described for samples not treated 
with PMA, was not consistent with the abovementioned works. 
Conversely, the depletion of extracellular DNA allowed us to highlight a 
strong effect of several abiotic variables, in particular soil texture and 
exchangeable cations, which have already been described as main pre
dictors of microbial diversity in similar Antarctic environments (Canini 
et al., 2021; Severgnini et al., 2021). 

5. Conclusions 

The simplified structure of terrestrial Antarctic communities 
permitted us to identify the patterns of microbial colonization in the two 
substrata, rock and soil, in a straightforward way. Although the two 
substrata shared numerous ASVs, their different selective pressures 
influenced the distribution of several taxa, resulting in the uniqueness of 
each substratum. This effect was also highlighted after extracellular 
DNA depletion. This leads us to speculate that several microbial prop
agules may be actively thriving in both substrata, especially since the 
shared taxa between them are known for their astonishing metabolic 
adaptations to this environment. These findings provide new important 
information into microbial propagule sources and survival mechanisms 
within extreme environments. Nevertheless, the greater diversity found 
in soils indicates that other sources contribute to the overall diversity of 
this environment. Our results also indicate that the presence of extra
cellular DNA can inflate estimates of microbial community abundance 
and composition, even if the full extent of relic DNA influence on current 
Antarctic soil surveys has yet to be fully evaluated. To the best of our 
knowledge, while some authors have already reported significant effects 
of soil extracellular DNA on describing spatial and temporal variability 
in communities (Fierer et al., 2017), this study represents the first 
demonstration of how it can limit our ability to detect the extent to 
which environmental parameters structure soil communities. Finally, 
this study provides a baseline characterization of microbial diversity in 
rock and soil in relation to soil physico-chemical characteristics in sites 
where a long-term monitoring system has been established to measure 
biologically relevant environmental parameters in order to track the 
response to climate change. 
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Table 1 
Effect of environmental parameters on communities composition. Proportion of variation in community composition explained by soil physicochemical parameters 
considered independently for both native and PMA-treated samples, and considered in a combined model for PMA-treated samples, depending on their independent 
influence in the variance  

Independent parameters Combined parameters PMA samples  
Native samples PMA samples 

Variable Variance p-value Variance p-value Variable Variance p-value 

Carbon 8,17 0.073 11,73 0.039 Moisture 13,16 0.0070 
Nitrogen 7,89 0.111 11,31 0.029 Carbon 8,24 0.0437 
C/N ratio 8,32 0.159 10,09 0.076 Clay 4,14 0.5440 
Total P 5,76 0.326 7,79 0.099 Sand 7,86 0.0508 
Assimilable P 5,99 0.243 7,52 0.156 Nitrogen 6,18 0.1659 
Moisture 6,70 0.201 13,16 0.008 Ca 9,55 0.0093 
pH 6,96 0.188 6,94 0.181 Mg 2,22 0.9557 
CEC 6,91 0.179 9,99 0.039 Fine silt 4,27 0.5082 
Na 4,50 0.514 9,60 0.045 CEC 5,56 0.2182 
K 4,97 0.511 9,30 0.070 Na 3,22 0.7922 
Mg 8,50 0.063 10,32 0.040 Residual 35,60  
Ca 8,18 0.099 10,68 0.023    
Sand 5,82 0.280 11,41 0.034    
Coarse silt 3,98 0.751 12,80 0.060    
Fine silt 5,92 0.278 9,89 0.036    
Clay 5,26 0.398 11,71 0.040     
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