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ABSTRACT ARTICLE HISTORY
Topological data analysis (TDA) allows us to explore the topological Received 15 June 2021
features of a dataset. Among topological features, lower dimensional Accepted 20 September 2023

ones have recently drawn the attention of practitioners in mathe- KEYWORDS

matics and statistics due to their potential to aid the discovery of Topological data analysis;
low dimensional structure in a data set. However, lower dimensional covering construction;
features are usually challenging to detect based on finite samples zero-density regions
and using TDA methods that ignore the probabilistic mechanism

that generates the data. In this paper, lower dimensional topologi-

cal features occurring as zero-density regions of density functions are

introduced and thoroughly investigated. Specifically, we consider

sequences of coverings for the support of a density function in which

the coverings are comprised of balls with shrinking radii. We show

that, when these coverings satisfy certain sufficient conditions as the

sample size goes to infinity, we can detect lower dimensional, zero-

density regions with increasingly higher probability while guarding

against false detection. We supplement the theoretical develop-

ments with the discussion of simulated experiments that elucidate

the behaviour of the methodology for different choices of the tuning

parameters that govern the construction of the covering sequences

and characterize the asymptotic results.

1. Introduction

We consider the problem of identifying certain lower-dimensional, geometric features of
(the support of) a density that generates a stream of observed data. What makes this iden-
tification at once interesting and challenging is that the features we are concerned with
cannot be detected using any finite amount of data. Typical topological data analysis (TDA)
techniques would be unsuitable in this context because they rely on the relative arrange-
ment of points in finite data sets to understand the structure of the (sub)-space where the
data occur (see for example, [1-3] for introductory treatments). We can make progress
in the detection process because we rely on knowledge of relevant distributional prop-
erties of the data generating mechanism that we acquire as more and more data accrue.
This is in contrast to a standard use of TDA methods that would not explicitly account for
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these distributional properties. We study the asymptotics of the data generating mechanism
directly and show that they can be linked to certain topological characteristics.

In this paper, we first discuss situations where independent and identically distributed
(i.i.d.) data points are drawn from a distribution having a continuous density function f
(with respect to Lebesgue measure on R?) on its support supp(f) = M C R¥. Our results
are first formally stated for supp(f) = M = [0,1]%,d € N, and then extended to more gen-
eral situations. We work with a well-behaved version of the density f for which the notion of
a zero-density region Sy C supp(f) C M (to be formally defined later) is meaningful. Such
a zero-density region Sy is difficult to identify with traditional constructions of simplices
or density estimators.

Example 1.1: Let o = {%} x [0.25,0.75] and define d(x, So) = infyeg, d(x, y), where d
denotes the L? metric. Consider the density f(x) o d(x, So)* o 1) ;)2 shown in Figure 1,
for which Sy is a zero density region of lower dimension. Sy does not contain any probabil-
ity mass and, being a segment, is a ‘lower dimensional object’ (a concept to be made more
precise later).

The volume of S as a subset of the support of the density, [0, 112, is zero and the density
assigns positive probability to every neighbourhood of every point in Sy. Sampled points
‘on either side’” of Sy can be arbitrarily close to one another. Hence, it might seem to be
impossible to identify the topological structure of Sy with accuracy. However, consideration
of an asymptotic argument that relies on the rate at which points accumulate in the vicinity
of Sy as the sample size grows allows us to identify the structure of Sg. We note that the
situation would be different if the density were zero on a region of positive volume, such
as a disk, and nonzero elsewhere. The disk could then be identified with a large enough
sample as a ‘hole’ not containing any points.

05

Figure 1. A lower dimensional region Sq = {%} x [0.25,0.75] (red segment) for the density function
f(x) o< d(x,50)* o 1jg172(x), where d(x, So) = infyes, d(x, ) and d denotes Euclidean distance. The
density f evaluates to 0 over So, but nowhere else over [0, 112
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Our upcoming results consider samples of increasing size. The main result allows us to
detect the lower dimensional object Sy with probability one as the sample size n goes to
infinity, while at the same time helping us avoid detection of false holes.

Our approach to detecting zero-density regions is to conduct an analysis as we vary the
radius of a collection of covering balls of supp(f). By choosing the shared radius of the
covering balls appropriately relative to increasing sample size n, we wish that Sy be covered
only by balls having no observations inside. For each point in the non-zero density region
we wish for the point to eventually be covered by a ball with at least one observation inside.
If our wishes come true, then we can simply collect the empty covering balls and recover an
approximation to the region Sg. In Theorem 3.11, we present a set of sufficient conditions
for our detection method to work asymptotically.

This notion of varying the radius of the covering balls can be related to the construction
of complexes in TDA. For the Cech complex, balls are centred at the observed points. Balls
of a fixed radius r lead to a Cech complex C(X, ). Varying the radius r, the Cech filtration,
a collection of Cech complexes, is produced. For a small radius r, the balls will not overlap
and no holes will be discovered. For a large radius r, lower dimensional zero-density regions
will be covered and these holes will not be found.

The rest of the paper is organized as follows. We first illustrate our observations above
with a simple example in Section 2. Then, in Section 3, we discuss our approach for
the construction of coverings of a compact support along with a set of sufficient condi-
tions that ensure asymptotic consistency of the procedure for the detection of zero-density
regions. Generalizations of the results to the case of a non-compact support are provided
in Section 4. We present some experimental results and connections to other areas in
Section 5 and end with a brief discussion of our findings in Section 6.

2. Anillustrative example

The central problem we investigate in this paper is the detection of a lower dimensional
zero-density region. Before formally addressing the problem, we present an illustrative
example to show how dimensionality plays an important role.

We consider three different densities on the interval M = [—1, 1], dim M = 1, and the
problem of detecting interesting topological features by partitioning M into the union of
disjoint, equally sized bins. The feature (or lack thereof) for two of the densities is easily
found. The density g(x) = %(1[_1’_1/4] (%) + 1{1/4,1)(x)) has a genuine hole, (—1/4,1/4),
consisting of an interval of dimension one. This hole is apparent, as there will never be
any observations in it, nor in bins contained in it. As the sample size n goes to infinity, one
need only consider bins whose widths decrease at a rate no faster than n=1*¢, & > 0, to
ensure that the bins away from the hole are eventually filled. When Sy = ¢, as is the case
for the density h(x) = %1[_1,1] (x) - (x* 4+ 1), and the width of the bins decreases at a rate
no faster than n~17¢, all of the bins will eventually be filled and it will be evident that there
is no topological feature.

The interesting case has Sy # ¥ and dim Sy < dim M = 1, as is the case for f(x) =
%le[—m](x)- Here, Sp = {0}, and the question is whether we can detect this topolog-
ical feature of dimension zero with positive probability. The hole is difficult to detect
because samples will accumulate in every neighbourhood of Sy = {0}. If the bins shrink
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Figure 2. Binned histogram and binary heatmaps based on random samples of size n = 100 and
n = 10, 000 from three distributions with densities f, g, and h. All graphical summaries are constructed
using 100 equal-width bins over the interval [—1,1] C R.

too slowly, the sequence of bins that contain {0} will be filled as the sample size n goes
to infinity.

In Figure 2, the binary heatmaps show the denseness of the non-empty bins. The first
column represents histograms and heatmaps for the density f with a zero-dimensional hole
{0}. The second column represents histograms and heatmaps for the density g with a one-
dimensional hole (—1/4,1/4). The third column represents histograms and heatmaps for
the density 4 with no holes. The top row is for a small sample size; the bottom row for a
larger sample size.

The figure shows the ease with which binning identifies densities bounded away from 0.
See the filled bins under the red lines in the second and third columns. The figure also
shows the ease with which a hole of full dimension is found. See the empty bins in the centre
of the plots in column two. The difficult case appears in the first column. Here, we see a
lower-dimensional hole in the density. The figure suggests that, as the sample size n goes to
infinity, we should be able to detect this hole by using binary heatmaps with an appropriate
scaling scheme. This is perhaps surprising, because the density f in the first column has
full support. Formally, our Theorem 3.11 shows that, if we shrink the common width of
the bins (which corresponds to the radius of the covering balls in higher dimensions) at
an appropriate rate as a function of sample size n, the lower dimensional holes will be
characterized in terms of empty bins with probability tending to one. This result can be
extended to more general situations.

The objective of this article is to show that, without appropriate scaling, authentic
topological holes of strictly lower dimension cannot be detected, while, with appropriate
scaling, they can. The sufficient conditions that we will impose on the scaling schemes to
attain these results depend on the dimension of the zero-density region Sy and also on the
local smoothness of the density that generates the data.
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3. Main result for compact support

Consider a random vector X having density f with respect to Lebesgue measure on R¢. For
any Borel set A € RY, let P(X € A) = [, f(x) dx.

Definition 3.1 (Support): The support of X is defined to be

supp(X) := Ny closed in R¥ | P(XeRx)=1}RX- (1)

With an abuse of notation, we write supp(f) to represent the support of X.

In most applications where TDA is employed, a compact support M can be reasonably
assumed. For technical convenience, we will also assume the existence of a continuous
version of the density f on its support M. The latter is a mild condition satisfied for most
theoretical questions and applied scenarios. In the following discussion, as will be stated
in Assumption 1 on page 18, we consider the case of M = [0,1]? ¢ R%,d > 0. With this
particular M in mind, we turn to a special region called the zero-density region assumed
to lie in its interior.

Definition 3.2 (Zero-density region): For the continuous version of a density f on M, we
call the inverse image of {0}, i.e., f ~1({0}), the zero-density region of f and denote it by So.

In a first result (Theorem 3.11), we suppose that Sy consists of a single, connected com-
ponent (as in Assumption 2) for simplicity. We then extend the initial result to the case
where Sy consists of a finite number of connected components in Corollary 3.12.

The local behaviour of the density f around the zero-density region Sy C M is a crucial
aspect of our investigation. The following concepts will help us to describe the behaviour
of f near Sy. We consider the L? metric and the associated norm, || - ||, in the following
discussion, but remark that our methods can be generalized to other metrics and norms.

A ball of radius r centred at x in R is the open set

B, (x) := {y eRY|[x—y| < r} :

An e-neighbourhood (e > 0) of Sy is the open set

B (Sp) := {x c R4

inf |[x—y| <€¢.
y€So

(Note that the definition of an an e-neighbourhood makes sense for an arbitrary set, not
just a zero-density region. In particular, the e-neighbourhood of a point y, B¢ (y), is just
the open ball of radius € centred at y.)

Definition 3.3 (Upper and lower e-order of smoothness): We consider densities f for
which the following quantities, called the upper and lower e-order of smoothness, respec-
tively, exist and are well-defined for every 0 < € < I:

ff(e)::inf{oe>0‘0< f(—x)}’

mn
x€B:(So)\So d(x, So)¥
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Figure 3. Lower dimensional region Sg = {%} x [0.25,0.75] of a density function f (x) with K # Kr.The
density f evaluates to 0 over Sy but nowhere else over [0, 112

and

00 > sup f(—x)}

Ke(e) :=supqa >0
= xeBe (So)\sp 4% S0)*

Because our result concerns the limiting case as € goes to zero, we give the following
definition.

Definition 3.4 (Upper and lower order of smoothness): The upper and lower order of
smoothness of the density f w.r.t. Sp, are

Ky = lim Kf(¢) and ﬁzel_i,rngIﬁ(E)’

e—0t

respectively, provided they exist. And if they exist, Ky > K by this definition.

It can be shown that ff and Ky will exist if ff(e) and Ky (¢) exist for some € and that there

are densities for which ff(e) and Ky (€) are undefined for all €. The limits ff and Ky > 0,
if they exist, need not coincide. If they do exist and coincide, we will use the notation
Ky = Ky = K. Similar but more specific variants of this concept of order of smoothness
are studied both in TDA [4] as growth dimensions and in the density estimation literature
as local smoothness [5]. The generality of this kind of description makes our assump-
tions A.1-A.6 for the main theorem (especially A.3-A.4) relevant to research from both
communities.

The following example, depicted in Figure 3, shows that the upper and lower orders of
smoothness Ky and K¢ need not coincide.
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Example 3.5: Forx = (x,y) € R?, define h(x) as

d(x, So)?, x € [0.5,1] x [0.25,0.75],
d(x,S0)?, x € [0,0.5) x [0.25,0.75],
d(x,S0) 7%, x e [0,1] x (0.75,1],
d(x, S04 7%, x€[0,1] x [0,0.25),

hix) =

where d is the L? metric, #; = arctan{(y — 0.75)/(x — 0.5)}, and 6, = arctan{(y —
0.25)/(x — 0.5)}. Consider the density function f satistying the relationship f (x) oc g(x) x
1j912(x). For x € M with d(x,S¢) =6, § > 0, sup, f(x) = 8% and inf, f(x) = 8*. Thus
Kf(e) = 4 and K¢(€) = 2.

3.1. Covering balls and dimension of Sg

We cover the support M of the density f with a collection of balls of equal radius and, letting
the radius shrink to zero at an appropriate rate, we attempt to detect the zero-density region
So with a certain limiting probability guarantee. In what follows we will make use of the
following piece of notation.

Notation. (Covering) Let E be a given subset of R?. We denote by B%(E) a collection of d-
dimensional balls of radius  whose union contains E. Note that a covering 3¢ (E) may also
depend on the sample size n through the radius r = r(n) in subsequent developments. We
also use |Bf (E)| to denote the cardinality of B‘r’l (E) and write Bﬁl (E) = B when the meaning
is unambiguous.

We distinguish between three types of covering balls based on how far they are from the
zero-density region S.

Definition 3.6 (Types of covering balls): Consider a density f with respect to Lebesgue
measure on R¥ that is continuous on M and zero on R%\ M. Let Sy be a zero-density region
for f. Denote by BB a covering of M with balls of radius  and let B,(x) € BB. We classify B, (x)
into one of these three types:

(1) an e-outside ball: a ball B,(x) such that x ¢ B¢ (Sp);
(2) an e-neighbouring ball: a ball B,(x) such that x € B.(Sp) and B.(x) N Sy = ¥;
(3) an €-inside ball: a ball B, (x) such that x € B.(Sp) and B,(x) N Sy # 0.

The main result will rely on the condition r < €/2 to ensure that every e-inside ball is
contained in B¢ (Sp). The various types of covering balls are illustrated in Figure 4.

Definition 3.7 (Big O notation [6]): Given two positive real sequences f (n) and g(n), we
write f ~ O(g) and say that f is big O of g if there exist constants L; and L, € (0, c0) and
an ny € N, such that

Ly-gn) <f(n) <L, -g(n), foralln> ng.

This condition means that the asymptotic behaviours of f and g are comparable.



8 (&) H.LUOETAL

T T T T T T
10
08k ‘0
L L]
L}
L]
1 )
r L]
08} '
r L}
> :
L L]
0.4 p ]
L L]
L}
1]
L}
1 .
02} .
Al
R \
0.0k B_(S4
1 L L L L AA
0.0 0.2 0.4 0.6 0.8 1.0

Figure 4. lllustration of the types of balls with the density in Figure 1. The blue region is an epsilon
neighbourhood surrounding the zero-density region So. The red ball is an e-inside ball, the orange balls
are e-neighbouring balls and the green balls are e-outside balls.

Next, we introduce the notion of Minkowski dimension which we will later use to
characterize the dimension of Sy.

Definition 3.8 (Minkowski dimension, or box-counting dimension. Definition 3.1 in
[7]): The upper and lower Minkowski dimensions of a bounded subset E C M of R4, are
defined respectively as

S 1 E
dimps(E) := lim sup M
A—0 log A

1 E
dim,, (E) := lim inf log Na (B)
A—0 —log A

>

where Na (E) is the A-covering number of E C R%

NA(E) := min {k eNJ|EC UfZIBA(xi) for some x; € Rd} ,
i.e,, the smallest number of balls of radius A > 0 needed to cover E. We call this covering
of minimal cardinality a minimal A-covering for E. When dimy,(E) = dim,,(E) = du, we

define the Minkowski dimension (or box-counting dimension) dimps(E) of E to be djy.

By Proposition 3.4 in [7], in the case of M = [0, 114, we always have dimpr(M) = d,
matching the usual definition of dimension.
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We now state the formal assumptions A.1-A.6 which we will use to prove our
main results. These assumptions can be put into three groups, as explained after their
statements.

(i) Global assumptions on f, M, and Sy
A.1. (Compact support) The support of f is supp(f) = M = [0,1]%, d > 0 and we
consider the version of the density f that is zero on R¥\M and continuous on M.
A.2. (Single component) The zero-density region Sy is contained in the interior of
M and has one connected component.
(ii) Local assumptions on f and S
A.3. (Order of smoothness) There exists an €y > 0 such that both quantities
ff(eo) > 0 and Ky (&) > 0 exist. As remarked on page 12, the existence of €p > 0

implies that the limiting values ff > 0 and Ky > 0 also exist.
A.4. Let ¢y > 0 be as described in A.3. There exist two positive constants Ly

and Uy such that, for all € with 0 < € < min(1, €), Ly - d(x, So)ff(e) <f(x) < Us-

d(x, So)ﬁ(e) for all x € B-(Sp) N M.
(iii) Assumptions on coverings

A.5. (Regular covering) There is an n > 0 such that the elements of the sequence
of coverings B‘j(n) (M) are comprised of balls whose centres lie in M and whose
radii satisfy r(n) ~ O(n~"). The sequence of coverings is regular, i.e., the cardinal-
ities |Bf(n) (M)] of the coverings in the sequence satisfy the condition |Bf(n) (M)| ~
O(nm).

A.6. (Restriction of covering to Sp) Let Bf(n) (M) be the covering considered in
A.5. If dy is the Minkowski dimension of Sy and dy < d, then the number of balls in
Bf(n) (M) intersecting Sy is bounded from above by H,(n) ~ O(n%11+8)Y for each
¢ > 0. Hy(n) is a function of sample size n that depends on the parameter ¢.

Assumptions A.1 and A.2 can be regarded as restrictions on the topological properties
of the support of the density function and we will see later that both assumptions can be
relaxed under suitable conditions.

Assumptions A.3 and A.4 describe the local behaviour of f in the vicinity of Sg. These
two assumptions are quite general. Similar notions appear in both the TDA [4] and density
estimation literatures [5].

Assumptions A.5 and A.6 are tied to the Minkowski dimension of Sy and the covering
scheme we devise for detection of Sy. These two assumptions allow us to describe exactly
what we mean by low dimensionality’ of Sy.

Next we prove that under Assumptions A.1 and A.2 there exists one covering that
satisfies Assumptions A.5 and A.6 for Sy of Minkowski dimension dj.

Lemma 3.9: Suppose that A.1 and A.2 hold and that Sy is a lower dimensional zero-density
region of Minkowski dimension dy < d. Then there exists a sequence of coverings Bf( ny (M)
that satisfies A.5 and A.6.

Proof: The construction in this lemma is as follows. We first pick a minimal covering of
So to ensure that the cardinality assumption A.5 is satisfied. Then, we pick a grid-based
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covering of the support M, which ensures that the cardinality assumption A.6 holds. This
grid-based covering may introduce more covering balls which intersect with Sy. Therefore,
we prune our covering, removing the additional covering balls over Sy, so that the assump-
tion A.5 still holds. This construction requires that Sy be covered by its minimal covering,
but covers the rest of the support with grid-based covering balls.

Step 1. We prove first that A.6 can be satisfied.

Let r(n) = cn™", ¢ >0, and let Bf(n) (So) be a minimal r(n) covering of Sy of cardinality

|Bf(n) (So)|. Since we assume that dimy;(Sg) = do,

1 S 1 S 1 S

1imr(n)—>0 Og-N’r(n)( 0) = lim n—>oo—0gM(n)( ) =do = lim,- OgM(ﬂ)( Od) =
—logr(n) log 1/r(n) log (1/r(n))%
(2)

Thus, for each ¢ > 0, there exists an N, (&) such that, for all n > N, (¢)

log Ny (S

m <1+4e logNm(So) < (1+e)-log(1/r(n)®,

log (1/r(n))® 3)

I+e
Mm(&»s( ) = DA = 1, (n).

1
r(n)%
This establishes that each term in the tail of the sequence {184 ") (So)|} is bounded by H, (n)
as in A.6, provided that all of the covering balls from the minimal covering are in the final
covering constructed in Step 2 below.

Step 2. Now we turn to the proof of A.5.

First, we take » sufficiently large so that there exists a hyper cube C(n) of dimension
d and side length r(n) such that Bs,(,)(C(n)) C int M\Bs,;)(So). For such a fixed n and
the r(n)-covering Bf( n (So) we derived above, we now construct such a covering Bf(’;) (M)

where the centres of covering balls in Bf(’;) (M) are on the grid set

G(n):=Mﬂ{x=(x1,...,xd)eRd x;i e N. %VZ—O d}.

For this grid, the maximal distance from an arbitrary point in M to a point in G(n) is at
most ,/d - (r(”))2 r(f_) < r(n) for d > 1. This maximal distance is attained by a pair of

points with coordinates in the form (x1,...,xy), (x1 + L0 S X4 + %’)) € G(n). So an
arbitrary point in M is contained in some ball of radius r(n) with its centre in G(n). The
cardinality of this covering is the same as the cardinality of the set G(n) of centres, which
is of order O((1/2%2)%) ~ O(n"?).

Second, we delete all covering balls in B% rn )(M) that intersect Sy. That is, we obtain

another covering Bd ”) (M) ={B e B )(M) | BN Sy = @}, which ensures that there are
no additional covering balls mtersectlng So and A.6 is still guaranteed by the covering

r(n) (So) we choose in Step 1 because no additional covering balls are touching Sy. This
operation only deletes those covering balls that are completely contained in 53 r(n) (50 80

no covering ball intersecting C(n) will be deleted. As argued in the first step, Bf(’fj) (M) is
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also a covering of C(n) of Minkowski dimension d so it must contain covering balls of
cardinality O(n").
Third, we recognize that after deletion and obtaining the covering Bf(’,’;) (M), the union

U B may not cover all points of M. In the previous deletion operation, we

BeBYh (M)UBY,, \(S0)

r(n

delete every covering ball such that its centre p satisfies d(p, So) < r(n). Therefore any point
q in M\(U B) will satisty d(q,So) < 2r(n). Now we add finitely many

translated copies of B T (So) to Bf(’f,f) (M) U Bf(  (So) to obtain our final covering. Denote

d,i
BB (MUBY,, (So)

r(n

by Bf(n) (So) + v the covering obtained by translating each covering ball in Bf(n) (So) by
vector v. We let the translation vector v vary in following set of vectors

r(n)

Gl(n):z{v=(v1,...,vd)eRd vV, €K - 7 — k =0,%£1,. i4d,‘v’i=0,...,d}

which is a set consisting of (4d x 2 + l)d (8d + l)d vectors. This construction forms

a (irregular) grid G;(n) by translating the centres of balls in Br(n) (So). This grid covers
all points in Byy(»)(So) since it translates 4r(n) in each coordinate direction. The maxi-
mal distance from an arbitrary point in By,(,)(So) to a point in G;(n) is no more than

/d. (@)2 — % < r(n) for d > 1. Therefore

B4 .~ (B e B

r(n) "

y(So) +v|v e Gi(m}

r(n

will cover the area By, () (So). This will add at most (84 + 4. IBr(n) (So)| ~ O(IBr(n) (So)|)
additional covering balls that intersect Sy. This addition will not affect the order of mag-

nitude of the cardinality of Bf(z) (M) U Bf(n) (So) satisfying A.5. We simply add finitely

many (84 + 1)¢ translated copies of Bf(n) (So) to cover the ‘gaps’ created by deletion in
the previous step.

The covering Br(n) = Bd Z) (M) U Br(n) (So) U Bf(”; satisfies both A.5 and A.6 by con-

struction as we saw above. [ |

The constructive proof of the previous lemma makes explicit use of minimal coverings
of So. There are many situations in which sequences of coverings satisfying A.5 and A.6
can be produced without resorting to the use of a minimal covering of Sp. The following
proposition gives an explicit example of such a situation.

Proposition 3.10: For the example in Figure 1, for a fixed n > 0, there exists a sequence of
coverings Bf(n) (M) satisfying A.5 and A.6.

Proof: We consider the covering where the centres of the balls in Bf( (M) are exactly the
grid set

r(n)
G(”)=Mﬂ{ = (1)) € R |y,yr e N- - } (4)
(See Figure 5 for an illustration.) The cardinality of this covering is the same as the cardinal-
ity of the grid set G(n). As n increases, we have a sequence of coverings whose cardinalities
are of order O(W)2 ~ O(n?") as required in A.5.
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Figure 5. lllustration of the construction in Proposition 3.10 with the density in Figure 1. With r = 0.1,
the grid centres in G(n) are displayed. The range of Gy(n) is displayed in red; the ranges of G;(n) and
Gy (n) are displayed in green and blue, respectively.

Next, we prove that the covering balls of Bf( n (M) intersecting Sy also have cardinali-
ties that satisfy A.6. Let n be large enough that r(n) < 1/10 and the r(n)-neighbourhood
of So, Br(n)(So) C int M. Consider the set of grids Go(n) :={y = (y1,¥2) € G(n) |0 <
d(y,So) < r(n)}. A covering ball in Bf( (M) intersects S if and only if its centre is in
Go(n). We construct the rectangular grids defined below to bound the cardinality of Gy (n).

1 1 1
3~ 2r(n) <y1 < 2 + 2r(n), 1 2r(n)

Gmoz{y:@mmeGm)

3
<y < Z+2r(n)},

Go(n) = p )EG()l r(n)< <1+r(n)1+r(n)
A== s P T T SN =TT
3 r(n)
< -
<) = 1 ) }
It is clear from their definitions that G, (n) C Go(n) C Gi(n).

In the grid set G2(n), there are at least r(r:; 5= 2 grid points with the same value of

rm/2 < 7 Lr(n)
at least 2 - Lﬁ — 2] grid points in Gy(n). Similarly, in the grid set G;(n) there are at

;&()’72 + 1 =9 grid points with the same value of y,; and at most I'I/rz(j;—;%") +171=

fr%n) + 97 points with the same value of y;. Thus there are at most 9 - (ﬁ + 9] grid points
in Ga(n).

¥2; and at least |

2| points with the same value of y;. Thus there are

most
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Since Gy(n) C Go(n) C Gi(n), the number of balls intersecting Sy has cardinality
|Go(n)| bounded by the inequality

1 1
2-| == —2| =2 1Gm)| = |G| = |Gi(M[ =9 | —+9|. (5)
r(n) r(n)
Both sides of (5) have order of magnitude O(r%n)) ~ O(n) and this verifies A.6. [

Although we have shown by example that our Assumption A.1-A.6 can be verified for
many densities, we point out that in general it might not be easy to verify these assumptions
when Sy or M possesses a complicated topological structure.

3.2. Main result

Our main result connects coverings to data points. An ‘empty’ ball centred at x is one for
which {X1,...,X,} N By (x) = 0.

Theorem 3.11: Suppose we have a set of i.i.d. data X, ..., X, drawn from a continuous
density f (x) w.r.t. the d-dimensional Lebesgue measure v® defined on a compact subset M =
[0,1]¢ of R¥ and assume that Assumptions A.1-A.6 hold. Assume also that the radius r and
the separation distance € satisfy the following growth rates:

1
r(n) ~O(m™"), 0<n< 'L

en) ~omn™V), 0<y<n,
2r(n) <e(n) < 1.
Finally, assume the validity of the following bounding condition for the density f outside the
e-neighbourhood of So:
1—2nd

m(f,n) == we]\?{}iBr:(So)f(W) € (0,00) ~ O(n_é), 0<é& < T

Then:

(A) Ifn and  satisfy
1 —2nd — 2Ky > 0,
we have lim,,_, o P(there are no empty € (n)-outside balls) = 1.
(B) Ifn satisfies
1+ don — Ky —dn < 0,

we have lim,,_, o, P(all € (n)-inside balls are empty) = 1.

The proof is given in Appendix.
Similarly, we have a result dealing with the situation where Sy has more than one (but a
finite number) connected component.

Corollary 3.12: Under the same assumptions as in Theorem 3.11, suppose that the zero-
density region can be decomposed into K disjoint connected components, Sg = LK_ Sox. For n
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large enough (so that € is small enough), an e-neighbourhood of So will also be comprised of
K disjoint connected components, the € -neighbourhoods of each component Sy.
Assume that the following bounding conditions for the density f outside the e-
neighbourhood of each component Soy. hold:
1 —2nd

1) = i 0,00) ~O(n~ %), 0 .
my(f, n) WGM{E:E)(SOk)f(W)E( 00) (n>) <& < 5

Assume also that the orders of smoothness of f w.r.t. Sor are Kf i and Ky x> 0 and that, for

Sox of dimension do, the cardinality of the set of covering balls intersecting Soy, is of order
O(nndok)'
Then:

(A) Ifnand satisfy

min 1—2nd — 2@1& > 0,
k=1,...K

we have lim,,_, o P(there are no empty € (n)-outside balls) = 1 for all k.
(B) If n satisfies

max 1+ dyn — Krgn —dn <0,
k=1,...,.K —_

we have lim,,_, o P(all € (n)-inside balls are empty) = 1 for all k.

4. Non-compact support

The main result of the previous section relies on the assumption of a compact support for
the density f. However, in practice, many distributions have unbounded supports. In this
section we consider the case of a density function f with a non-compact support contained
in R? and, assuming that the tails of the density decay at certain rates, we derive results
similar to those of the previous section.

Our strategy restricts our consideration to a region within the support that contains
most of the probability mass of the density f. The original motivation for these ideas comes
from the concentration inequalities that describe the fact that observations usually ‘con-
centrate’ around the ‘center’ of a probability density with high probability (for example,
[8]).

Suppose that the support of the probability density function f is a non-compact set
M’ c R, We consider a truncation of the non-compact support M’ to a compact subset
that contains most of the probability mass of f and whose interior contains (all components
of) Sp. This allows us to examine the topological features of M’ over a compact truncated
region that contains the bulk of the data and to establish our results using arguments sim-
ilar to those used to prove Theorem 3.11. For ease of exposition, we focus parts of our
discussion on the situation where M’ = R, although most of our results can be extended
to more general situations. We will state the restrictions on the tail behaviour of the density
functions in Proposition 4.9.

Definition 4.1 ((1 — §)-support containing Sg): A (1 — §)-support containing Sy for
some 0 < § < 1, denoted by S}_a C R4, is a subset of the form S}—(S :=[—B, B]d c R4

for some B € (0, 00), such that Sy C int S}_‘S = (=B,B)?and P{X € S}_‘S} =1-34.
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The hypercube [—B, B]? containing 1 — § of the probability expands as 8 shrinks.
If Sp is compact then S}_‘S exists for a small enough &y € (0,1); if S is non-compact,

then it is unbounded and S~ does not exist for any 6 € (0,1). For our subsequent
results, we assume that the (1 — §)-support is completely contained in the interior of the
support M’

Passing from M’ to S}_‘S allows us to work with a compact cubical subset and removes
the technical difficulties associated with densities whose tails decay to zero. We replicate
the results of Section 3 with modifications to Assumptions A.1-A.6. The modifications
stem from replacing the compact support [0, 1]¢ with a compact set S}_B that covers Sp
and contains 1 — § mass of the probability measure.

We first consider the case where § > 0 and S}_S are both fixed and state Assump-
tions A.1’-A.6’ for the non-compact support case.

(i) Global assumptions on f, M, and Sy

A.T’. (Non-compact support) The support of f is supp(f) = M’ C R, d> 0 and
we consider the version of the density f that is zero on R4\ M’ and continuous on M’

A.2’. (Single component) The zero-density region Sy is contained in the interior
of M’ and has one connected component.

(ii) Local assumptions on f and Sp

A.3’. (Order of smoothness) There exists an €y > 0 such that both quantities
Kf(eo) > 0 and Kr(€p) > 0 exist.

A.4. Let €y > 0 be as described in A.3’. There exist two positive constants Lf
and Uy such that, for all € with 0 < € < min(1, €), Ly - d(x, S)Xr© <fx =< Us-
d(x, $0)"” for all x € Be(So) M S},

(iii) Assumptions on coverings

A.5’. (Regular covering) There is an 7 > 0 such that the elements of the sequence

of coverings Bf(n) (S}_‘S) are comprised of balls whose centres lie in int S}_‘Sred

and whose radii satisfy r(n) ~ O(n™"). The sequence of coverings is regular, i.e.,

the cardinalities |Bf( " (S}_a)l of the coverings in the sequence satisfy the condition

B4, (S}~ ~ O(n™).

A.6’. (Restriction of covering to Sp) Let Bf( ) (S}_‘S) be the covering considered in
A.5. If dy is the Minkowski dimension of Sy and dy < d, then the number of balls
in Bf( n) (S}_‘S) intersecting Sy is bounded from above by H, (n) ~ O(n@n(1+8)y for
eache > 0.

As for the compact case on page 18, these assumptions can be divided into three groups.
A.1’ and A.2’ are restrictions on the topology on the support; A.3’ and A.4’ are descriptions
of the local behaviour of the density function; and A.5" and A.6’ stipulate the existence of
a sequence of coverings with good properties.

Theorem 4.2: Consider a sequence of i.i.d. data X1, X, - - - drawn from a distribution having
a continuous density f (x) w.r.t. the d-dimensional Lebesgue measure v? on R, Assume that
A.1-A.6’ hold and that S}_(S C int M'. Assume also that the radius r and the separation
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distance € satisfy the following growth rates:

1
r(n)~0m™"), 0<n< -

e(m~om™"), 0<y <,

2r(n) <e(n) < 1.
Finally, assume that the density f outside the e-neighbourhood of Sy satisfies:
1—2nd

m(f,n):= min  f(w) € (0,00) ~O(n~*), 0<é&<
weS; " \Be (So)

Then:

(A) Ifnand y satisfy
1 —2nd — 2Ky > 0,
we have lim,,_, o P(there are no empty € (n)-outside balls) = 1.
(B) Ifn and y satisfy
1+ don — Ken —dn < 0,

we have lim,,_, o, P(all € (n)-inside balls are empty) = 1.

Proof: The idea of the proof is that the number of samples falling inside S}_‘S is close to
the total number of samples, 1, by the definition of (1 — §)-support and the law of large
numbers. By assumption, we know that S}_‘S is the hyper-cube [—B, B]? contained in int M’
and that A.1’-A.6  hold. The number ng of observations that fall in S}_‘S has a Binom(n,1 —

8) distribution. Using the two-sided Hoeftding inequality, (A6) of the appendix, with y =
%,p =1 — &, we have:

(i) o (oza(o- )
(- 2)ozn (-2
SR

Conditioning on the event that that ns > n(1 — %) merely adds a nonzero multiplicative
factor to the probabilities of the events appearing in cases (A) and (B) of the statement of the
theorem. With this adjustment the proof of this theorem parallels that of Theorem 3.11.
The conditional probabilities of the events in (A) and (B) tend to 1 as n — 0o. We also
know that, as n — 00, the probability of the conditioning event tends to 1, completing the
proof. |

The result above is stated for a fixed (1 — §)-support S}_‘S. As the sample size n tends

to infinity, we do not want to constrain ourselves to a fixed S}_(S, since this will prevent
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n)

us from exploring the entire support of f. Consider a sequence of regions SE0M wyith a

decreasing sequence of § = §(n), expanding the region under consideration as the sample
accumulates. To retain the conclusions of the theorem, we must take care to expand the

region slowly enough to control the decay of the density near the edges of S}_a(").

In what follows, we denote by Bf( n) @ covering of S}_'S(") and assume that A.5 and A.6’

hold for this sequence of coverings. (Note that, here, Bf( ny denotes a covering of the (1 — §)

support, not of R, and that we dropped the explicit dependence on S}_a(n) that appears

in A.5" and A.6’ to simplify notation.)
Theorem 4.2 considers a fixed §. The upcoming Theorems 4.3 and 4.4 allow § to shrink
toward 0.

Theorem 4.3: Under the assumptions of Theorem 4.2 (except for §(n)) , consider a positive
decreasing sequence §(n) satisfying lim,_, » §(n) = 0 and the associated sequence of (1 —

8)-supports S}_B("). For each (1 — 8)-support S}_(S(”) we consider its corresponding covering
Bf(n) consisting of open balls of radius r(n).
Assume that
M(f) :== sup f(w) € (0,00),
welRd
1—2nd
m(f,n) := min f(w) € (0,00) ~ O(n_s), 0<é&< 5 7 ,

weS; ™" \Be () (S0)

and that the cardinality |Bf(n)| ~ o), Q> n>0.

Then, if n and \ satisfy
1—2nd — 2Ky - >0,

we have lim,,_, o, P(there are no empty € (n)-outside balls) = 1.

Proof: We denote the number of total samples by n and the number of samples falling
inside S}_s(") by Nsn). To start, let us consider a sufficiently large n > Nj such that the
decreasing sequence satisfies §(n) < 0.1 so that 1 — §(n) > 0.9. Then, let us decompose
the event C, = {there are no empty €(n)-outside balls} using the event D, = {0.95n <
Ns(m < n}and its complement. The law of total probability yields:

P(Cy) = P(Cy | Dp) - P(Dn) + P(Cy | Dy) - P(Dy)
= P(Cn |Dn) : P(Dn)- (6)

The event D,, involves a binomial random variable /\/5(,@ , therefore P(D,;) can be bounded
by the Hoeftding inequality, (A6) of the appendix. Since 1 — §(n) > 0.9,

0.12
P(Dy) = P(0.95n < N3y <n) >1—2exp (—7 n) . (7)
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The other term, P(C, | D,), can also be bounded by the following argument. (Note that
r(n) and € (n) only depend on the total sample size n, not on /\/5(”).)

P(Cnan):l_P(Clen)

>1— Z P(B empty | D)
Be{e(n)-outside balls}

>1— B4 |- (1= inf P(Bnotempty|D,) | . 8
- l r(n)' ( Be{e(n)—éutsideballs} ( P Y| n)) ( )

By the bound in (A8) in the proof of Theorem 3.11 in the appendix and the assumption
that |B‘j(n)| ~ 0(n*?) we have

B = inf P(B not empty | D ~
| r(n)l ( Be{e(n)-outside balls} ( PY| n))

o(n®) - 0 <exp (_nmin(l—an—fo-w,1—2nd—2§))) )

which is monotonically decreasing since min(1 — 2nd — 2Ky - ) > 0 and § < 1_22 nd by

the assumptions of the theorem. Using the definition of big/small O notation, we can find
a constant L € (0, 00) such that

P(Cy|Dp) > 1—L-n - exp <_n1—2'7d_2Ff"/’> for sufficiently large . 9)
The bounds (7) and (9) can be substituted back into (6) to obtain

P(Cy) = P(Cy | Dy) - P(Dy)

>(1—L-n% exp(—n'" —2K;- 1 —2exp —;zn . (10)
>< ( 1-2nd—2K w))( ( 021 ))

Aslongas 1 — 2nd — 2Ky - ¢ > 0, this lower bound tends to 1 as n goes to infinity. W

It is important to notice that it is the decay rates of m(f,n) and |Bf( n)l ~ o(n®) that
determine the sufficient conditions of Theorem 4.3, not the rate at which the volume of

1-46 .
S (m) increases.

The following theorem deals with the € (n)-inside balls.

Theorem 4.4: Under the assumptions of Theorem 4.2 (except for §(n)), consider a positive
decreasing sequence §(n) satisfying lim,_, », §(n) = 0 and the associated sequence of (1 —

Sl—é(n)

3)-supports S}_a(”). For each (1 — 8)-support % we consider its corresponding covering

Bfl(n) consisting of open balls of radius r(n).
Assume that
1—2nd

m(f,n) == min f(w) € (0,00) ~O(n™%), 0<é&< :
WGS}_S(W) \Be(n) (So) 2
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Then, if n and  satisfy
1+don —Kyn —dn <0,
we have lim,,_, o P(all € (n)-inside balls are empty) = 1.

Proof: This result can be established by following exactly the same proof as that for
case (B) in Theorem 4.2. Since Sy C int M" we can choose N; sufficiently large so that

Be(n)(So) C int S}_g(”), for n > Nj. The probability of the event that an individual € (n)-

inside ball is empty does not depend on the varying sequence of regions SF°™ For an
appropriate N, and every n > Nj, our assumption A.6’ restricts the number of e-inside
balls and this cardinality does not depend on the varying (1 — §(n))-supports. The rest of
the proof parallels that of Theorem 4.2 (B), considering n > max(Ny, N,) + 1. [ |

The existence of a sequence of § (n) values satisfying the above conditions can be verified
for densities exhibiting specific tail behaviours on their supports. Two examples of such
densities are given in the two examples following Definitions 4.5 and 4.7 and are depicted
in Figure 6.

Definition 4.5 (Polynomial tail): We say that a continuous density f supported on R has
a polynomial tail if it has the form

_ fl(d(x) SO)) =C;- d(x) SO)V) d(x’ SO) < €0,

= 11
fZ(d(x) SO)) =C- d(x’ SO)X) d(x’ SO) = €0, ( )

f(®)

for some C1, C; € (0,00), y > 0,and x < —d. Note that the continuity assumption on the
density f requires C; - €} = C; - €.

Example 4.6: Consider a continuous density f of the form (11) withd = 1,85y = {0}, €9 =
L,y = %, and x = —2, leading to the density

2
; : |x|1/3> |x| <1,
feo=13
;-le , x> 1,
05
04}

-3 -2 -1 0 1 2 3

Figure 6. Density functions with polynomial tails (blue) and exponential tails (orange).



20 (&) H.LUOETAL.

This density ylelds £ f x| dx = 3 . We can take n sufficiently large so that §(n) < ‘71.
From the definition of (1 — §(n))- support wehave B(n) > ¢y = 1foréd(n) < ‘71. The defin-
ing equation of B(n) is f__oli(n) flo)dx+ Boa)f (x)dx =2, Bo(i) f(x) dx = 8(n). Therefore
B(n) = 7= ~ 03 (n) 7).

The maximum of this density function is attained at x = £1 and equals M(f) =

. Let £ and ¢ be as defined in Theorem 4.2. Then, if we choose sequences (1) ~
O(nE/X) ~ O0m¢/2) and €(n) ~ O(n=Y) ~ O(n=%/7) ~ O(n=%), we will ensure that
the minimal value m(f, n) :== min ESI_(S(H)\BG(n)(So) f(w) =min(C; - e(n)¥,Cy - B(m)X) =
mll‘l(zé(}’l)l/3, 2B(n)~2). We have 6(n)1/3 ~ O(n=%) and 2B(n) “2 ~ 0(n7%), so that
m(f, n) O(n~%). Furthermore, S(n) O(n~%/2) — 0. The assumptions on the density
function in Theorem 4.2 are therefore satisfied.

Definition 4.7 (Exponential tail): We say that a continuous density f supported on R¥
has an exponential tail if it has the form

fl (d(x) So)) =Cy - d(x: SO)y> d(xa So) < €o,
f2(d(x,50)) = C; - exp(Bd(x,80)), d(x,S0) > €o,

for some Cj,C; € (0,00), 0 < y and B < 0. Note that the continuity assumption on the
density f requires C; - eg = C, - exp(—pfé€p).

fx) = (12)

Example 4.8: Consider a continuous density f of the form (12) withd = 1, So = {0}, €9 =
L,y = %, and B = —2, leading to the density

x|, x| <1,

flx) =

et e x> 1,

U‘IINU‘IIN

This density yields f 1 x|V3dx = § . We can take n sufficiently large so that §(n) < —.
From the definition of (1 — §(n))- support we have B(n) > ¢y = 1foré(n) < g. The deﬁn-
ing equation of B(n) is f__oi(n)f(x) dx + fBo(i)f(X) dx =2 fBﬁ)f(x) dx = §(n). Therefore
Bn)=1-1 > log(1 + 53(1’1)) ~ O(—logd(n)).

The maximum of this density function is attained at x = +1 and equals M(f) = =. Let
£ and v be as defined in Theorem 4.2. Then if we choose sequences §(1) ~ O(n® 75 By ~
O(n¢/?) and e(n) ~ O(n~¥) ~ O(n=¢/Y) ~ O(n=3), we will ensure that the minimal
value

m(f,n) = Smin f(w) = min(C; - €(n)?, C; - exp(BB(n)))
WGS}_ D\ Be () (S0)

2 1/3 2
= min (—e(n) exp( 2B(n)))
5 5
We have e(n)l/3 ~ O(n~ 5)a1nd262 exp(—2B(n)) ~ O(n~ £, so thatm(f, n) ~ O(n~%).

Furthermore, 8(n) ~ O(n~/?) — 0. The assumptions on the density function in
Theorem 4.2 are therefore satisfied.
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The essence of the examples above is embodied in the following general result whose
proof follows along the path suggested by the examples.

Proposition 4.9: Assume that a continuous density supported on R? is of the form (11)
or (12) with a compact zero-density region So. For fixed 0 < n < é, 0<£&< 1—2271d’ we
can find a sequence e(n) ~ O(n~V), 0 < ¥ < n, and a decreasing sequence of 8(n), with

lim,_, 5 8(n) = 0, such that

M(f) := sup f(w) € (0,00),

weRd

1 —2nd
m(f,n):=  min (W) € (0,00) ~ O(n™), 0<&<— 1%
weS; " \Be) (So) 2

Proof: That M(f) := sup,,crd f(w) € (0,00) is a direct consequence of the assumptions
about the form of (11) or (12).
We want to show that we can construct a decreasing sequence §(n), with lim,_, o

§(n) = 0, such that the corresponding 1 — §(n) supports S}_‘S(”) := [=B(n), B(n)]¢ have

minimal values m(f, n) ~ O(n™%). First, we choose the sequences B(n) and €(n), which
jointly determine the desired decay rate of m(f, n). Then, if B(n) is an increasing sequence,
by the definition of S}_a(n) as a cube, §(n) is automatically a decreasing sequence.

To determine B(n), we use a sandwich argument on the minimal value m(f, n) attained
on S}_‘S(”). We will consider two sequences of balls, one where each ball is contained in

S}_S(”), called the sequence of inner tangential balls B, (n), and the other where each ball

contains S}_S(”) , called the sequence of outer inclusive balls B*(n):
B.(n) := Bp((0) = {x € R | d(x,0) < B(n)}, (13)
B*(n) := B, /g5, (0) = {x € R? | d(x,0) < 4/dB(n)}. (14)
Consider the following minimal values of f on B (1)\Be () (So) and B* (1) \Be(n) (So),
my(f,n) = inf w),
QC ) webB, (”)\Be(n) (SO)f( )
m*(f,n) = inf (w).

weB*(n)\Be(n) (So)

Since By (n) C S}_S(n) C B*(n) by the above construction, we have m.(f, n) > m(f,n) >
m*(f,n). When f is of the form (11) or (12), we can choose the sequence €(n) = (CL1 .
n~5)1/v wherey; > y > Osuch that0 < % < n. We use this choice of € (1) to ensure that
_£

e(n) ~0Om V)~ Om 7),and0 < ¢ < nhold. Note that €(n) is a decreasing sequence
by definition.

(Polynomial tail) When f is of the form (11), we use the €(n) above and choose another
sequence B(n) = (Cl2 - nf)~1/X and take n sufficiently large so that e (n) < A—IIB(n) and ¢y <
B(n). Then the minimal values for B, (n) satisfy

my(f,n) < min (C; - €(n)?, C, - (B(n) — €(n)*, C; - B(n)*)
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~ O (min (Cy - €(m)?, C, - B(m)*))
~0 (min (Cl . n_;/_lg,}’l_s>> .

Since y/y1 < 1 for n> 1 large enough, we have that this asymptotic order of magnitude
is determined by the behaviour of the second term and m, (f, n) ~ O(n~%). Similarly, the
minimal values for B*(n) satisty

m*(f,n) > min (C1 -e(n)”,Cy - (4VdB(n) + e(n))X)
~ O (min (C; - €(n)”, C; - B(n)*))
~O(n™).
(Exponential tail) When f is of the form (12), we use the €(n) above and choose another

sequence B(n) = %log(ci2 -n~¢) and take n sufficiently large so that e(n) < }IB(n) and
€0 < B(n). Then the minimal values for B, (n) satisfy

m.(f,n) < min (Cy - €(n)”, C; - exp(B(B(n) — €(n))))
~ O (min (C; - €(n)”, C; - exp(BB(n))))

~ 0 (min (C1 . n_;/_lg,n_5>) )

Since y/y1 < 1 for n> 1 large enough, we have that this asymptotic order of magnitude
is determined by the behaviour of the second term and m,(f, n) ~ O(n~%). Similarly, the
minimal values for B*(n) satisfy

m*(f,n) > min (c1 ce(n), Cs - exp(B(4/dB(n) + e(n))))

~ O (min (C; - €(n)", C; - exp (BB(n))))
~ 0(n~%).

By a sandwich argument with B, (n) C S}_S(n) C B*(n) and my(f,n) > m(f,n) >

m*(f, n), we know that we can find some L. (Cl2 -n¥)~VXx < Bn) < (Ci2 1)V for

4/d
a density of the form (11) or some ﬁ . %log(cl2 -n~%) < B(n) < %log(ci2 -n~%) fora
density of the form (12). This choice of an increasing sequence of B(n) proves our claim
that we can find a sequence of §(n), with lim,_,~ 8(n) = 0, such that M(f) € (0, 00) and
m(f,n) ~ O(n~%). [ |

Corollary 4.10: Consider a continuous density supported on R of the form (11) or (12).

We can find a sequence e(n) ~ O(n~¥), 0 < ¢ <1, and a decreasing sequence of §(n) val-

ues, withlim,_, oo 8 (1) = 0, such that the associated sequence of (1 — §(n))-supports S}_S(")

have corresponding coverings Bf(n) satisfying A.5" and A.6’. Then
(A) Ifnand  satisfy
1—2nd — 2Ky - ¥ > 0,

we have lim,,_, o P(there are no empty € (n)-outside balls) = 1.
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(B) Ifnand y satisfy
1+ don — Kpn —dn < 0,
we have lim,,_, o P(all € (n)-inside balls are empty) = 1.

Proof: By the result in Proposition 4.9, it suffices to consider the grid construction in

Lemma 3.9. The cardinality of the resulting coverings Bf( n Of S}_S(”) can be guaranteed to
d
be O(%). So, for case (11) we can have |Bf(n)| ~ O((Cl2 -n§)4/x . y) and for case (12)

we can have |Bf<n)| ~ O(# log‘jl(cl2 -n~ ) . n"?). In either case, |Bf(n)| is obviously o(n*?)
for some sufficiently large 2 > 0. Therefore all assumptions in Theorems 4.3 and 4.4

are met. [ |

5. Simulations and connections to other areas
5.1. Simulation studies for the choice of r, €

Our theoretical results establish the rate of decay for the radius r(n) and the neighbourhood
width € (n). That is, for any positive constants M, and M,

r(n) =M, - O(n™ "),
e(n) = M, - O(n™ V).

(with 1 and ¢ following the same notation used in Theorem 3.11) the asymptotic guar-
antees of filled and empty balls hold. These guarantees allow one to identify lower dimen-
sional zero-density regions in the limit. However, for a fixed sample size, the actual values
of r(n) and €(n) matter. This subsection reports simulations investigating choice of the
constants M, and M,.

We consider the density f(x) o d(x, Sp)* o 19172 The zero-density region Sy = {%} X
[0.25,0.75] is of strictly lower dimension. For this example, m(f, n) decays as a polynomial
with £ =4 - ¢ and M(f) < 2. The conditions of Theorem 3.11, parts (A) and (B), hold
with, for example, n = 0.21 and ¥ = 0.01 (therefore 0 < £ < l_zﬂ).

In the simulation, random samples of various sizes are generated from the density. A
grid of balls with centres on a lattice is used to cover the unit square. The centres of the
balls depend on M, and n and follow the rule we described in Proposition 3.10. We note
that the fraction of filled balls of a particular kind serves as an empirical estimate of the
mean probability that a particular kind of ball is non-empty.

Figure 7 presents the results of the simulation. The colour scheme is the same as in
Figure 4. Proceeding down a column, the sample size changes from 100 to 10,000. Tracking
the red lines, we see that the percentage of filled e-inside balls tends to 0 as # increases. The
orange lines represent the e-neighbouring balls. The percentage of these that are filled does
not always tend to 0. The green lines represent the €-outside balls. Here, the fraction filled
increases toward the eventual limit of 1.

As we step across rows of the figure, the value of M, increases from 0.05 to 0.40. Within a
plot, the value of M, increases from 0.05 to 0.40. As r(n) increases, the balls are larger and a
greater fraction are filled, as evidenced by the lines within each plot. As M, increases, balls
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Figure 7. The percentage of various types of non-empty covering balls under different multipliers M,
and M, for ball radius r(n) of the covering and neighbourhood width of Sy, €(n), for various sample
sizes n.

in the covering are moved from e-outside to e-neighbouring to e-inside. The changing
values of €(n) and r(n) shuftle the group membership of the balls and change the result-
ing fractions. In general, the larger values of M, that we have investigated lead to greater
separation of the red and green lines-hence greater differentiation between e-inside and
e-outside balls. Larger values of M, have a similar, though weaker effect.

The simulation also provides a caution. The plots toward the bottom of the figure show
much greater separation between the red and green lines. This separation (near 0, near 1) is
needed in order to reliably detect a zero-density region. For this density, the larger sample
sizes prove much more effective than do the smaller sample sizes.

The simulation results suggest an interesting possibility—the use of multiple coverings
with balls of different sizes. Doing so could allow one to examine the set of M,, M, pairs
that suggest the presence of a zero-density region. In practice, when 7 is finite, the choice
of multipliers M, and M, impacts the results.

5.2. Connections to existing research

Our object of interest in this paper is the inverse image of {0} under the continuous density
function f, when it is of lower dimension than the support of f.
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The lower dimensional zero-density region is of interest to the topological data analysis
(TDA) research community. Topological data analysis methods have been developed to
explore and understand the topological structure of the space where the data arise (for
example, the support of a probability distribution) using a finite amount of observed data,
as introduced in [1,3].

Having the data in hand, it is quite natural to consider them as a random sample from
some probability distribution. Interest then focuses on the limiting behaviour of geomet-
ric complexes based on a point set of growing size. In this regard, Kahle [9] and Kahle
and Meckes [10] have developed results about the limiting behaviour of Betti numbers of
complexes, based on the probabilistic results for random geometric graphs given by [11].
Subsequent work in this direction characterizes other types of topological features [12-14].
These results provide a picture of how the probability mechanism informs us about the
underlying topology. Bobrowski and Kahle [15] provide a comprehensive review of the
results along this line. This body of literature suggests that asymptotic regimes provide a
convenient framework for analysing the topology of data, as we do in the current paper.

Another line of relevant literature is on the set estimation, Cuevas [16], Rigollet and Vert
[17], and Singh et al. [18] study the related concept of the A-level set for density f. That is, the
set S, = {x € R4 |f(x) > 1}, A > 0. The special case where A = 0 is studied in [19]. The
difference between the regions is that S is the inverse image of an open set that contains
positive mass if non-empty while Sy := {x € R¥ | f(x) = 0} is the inverse image of a closed
set and contains no mass. To the best of our knowledge, regions like Sp have not previously
been studied.

In the level set estimation literature, there are two major approaches to the problem
of estimating level sets. Suppose we are interested in estimating the level sets of density f
(correspondmg to a probablhty measure F). One approach is to construct plug-in esti-
mators S, := {x € RY| f (x) > A} for a level set, based on a kernel density estimator f
computed from the data and appropriate choices of the bandwidth parameters for the ker-
nel [17,20,21]. This approach connects to the topology of the density when the level, 4, is
varied [22,23]. Asymptotically, a consistent estimator of the density may reveal persistent
features.

The other approach is based on the empirical excess-mass functional. The (empirical)
excess-mass functional E(X) := F(S;) — X Leb(S;) measures how the ‘excess probabil-
ity mass’ of the probability measure F distributes over the region S, when compared to
Lebesgue measure [24]. If we substitute the set S, with a set estimator SAA for the A-level set
S5, we can similarly con51der the functional H(A) := F (§ ) — A Leb(SAA) which can be used
to evaluates the estimator S; 1. The functional H is maximized over a class of sets to obtain
the level set estimator S)\ [25,26], to obtain level set estimators Sk The consistency and
asymptotic behaviour of both approaches has been derived under regularity assumptions.

In this paper, we study the lower dimensional object that arises as the inverse image
of the density function f of a single point set. When we restrict our concern to the
manifold supp(f) and the inverse of the density function f~! is sufficiently smooth,
f~t{a}), f71({b}) encode the boundary of the manifold defined by the inverse image
f_l((a, b)), as a sub-manifold of supp(f). When a = A and b = oo, this inverse image
defines A-level sets. The object So = f~!({0}) is the boundary of such a particular example
where a = 0 and b = oco. Unlike the topological features associated with the level sets, the
feature we study does not necessarily generate equivalent classes in (persistent) homology.
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However, in applications like image segmentation, the boundaries are features of major
interest [27].

Our method detects this specific kind of lower dimensional topological feature that
could arise as a manifold boundary. We construct a sequence of covering families to detect
So and we derive a set of sufficient conditions that ensure consistent detection in an asymp-
totic sense. As is to be expected, when more sample points are available, our covering
scheme locates the zero-density region Sp more accurately. In applied scenarios where the
boundaries arise as zero-density regions of certain density functions, our method could
help in detection [27].

We do not provide an estimator of Sy in this paper. A referee suggested that the union
of empty balls in a covering could constitute an estimator of Sy. Additionally, if M were
not known, the same referee suggested that our method could be applied to a preliminary
estimate of M. This is an interesting direction, but it is too difficult to develop fully in this
article. For one thing, the performance of the method would depend on the accuracy of the
preliminary estimator. In addition, the theoretical properties of the method would become
more intricate, owing to the dependence between the preliminary estimation of M and the
covering procedure.

The main results in this paper also exhibit the relation between topological features that
arise as Sy, and its dimensionality. In [28,29], the authors observe that higher dimensional
topological features are generally smaller in scale. As shown by the sufficient conditions in
Theorems 3.11 and 4.2, when the dimension dy of Sy is higher, we need to specify a faster
decay rate for radii r(n) of the covering sequence in order to meet the sufficient conditions.
This interplay between the dimension of the support, the dimension of the zero-density
region Sy and the sufficient growth rates supports [28]’s observation from a different angle.

6. Conclusions

In this paper, we consider the question of detection of Sy = f~1({0}) lying in the support
M of a continuous density f when Sp has Minkowski dimension strictly lower than the
dimension of the data, d. This type of topological feature is difficult to identify and has not
been studied before. The main contribution in this paper is to provide a novel approach,
based on a sequence of coverings tied to growing sample sizes, to study a specific kind
of lower dimensional object Sy in the support of a density function. This approach works
under both compact and non-compact support and its construction has geometric intu-
ition. Being of lower dimension, Sy is a delicate object. It is in the closure of M\Sy and, in
a sense, disappears when one looks at it at too coarse a resolution.

Our strategy is to construct a sequence of covering balls (e.g., Lemma 3.9) and shrink
their radius as the sample size n goes to infinity. We derive a set of sufficient conditions,
using the local behaviour of f, captured by Ky and Ky, that ensure that a particular covering
scheme leads to probability one consistency results in Theorem 3.11 (compact support)
and Theorem 4.2 (non-compact support). This set of theorems in Sections 3 and 4 can be
generalized to the case where Sy has multiple disconnected components. As the sample size
n tends to 0o, a shrinking e-neighbourhood of Sy can be identified by empty covering balls
asymptotically with probability one while the rest of M will be covered by non-empty balls.

Our result provides a range of asymptotic schemes for the radius of covering balls under
which the lower dimensional topological feature can be detected. We provide experimental
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evidence to support our claim in Section 5. Our approach supports the insight that different
dimensional topological features occur at different scales. The novelty of our result is the
role of the ambient dimension of the data in addition to the local behaviour of f near Sy.

Our approach and results focus on the connection between i.i.d. samples and the near-
topological features of the support of the density from which they are drawn. As future
work, it is of great interest to generalize the results to dependent draws from the density,
with the eventual goal of understanding how probabilistic dependence in the sample can
be useful in the construction of complexes based on sub-samples (e.g., witness complexes)
used in TDA [30,31].

Acknowledgments

We thank the anonymous referee, whose comments greatly improve the article. We thank the AE for
helpful comments and handling.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This material is based upon work supported by the National Science Foundation [grants numbers
DMS-1613110, DMS-2015552, and SES-1921523].

ORCID
Hengrui Luo @ http://orcid.org/0000-0002-9254-8342

References

[1] Carlsson G. Topology and data. Bull Amer Math Soc. 2009;46(2):255-308. doi: 10.1090/50273-
0979-09-01249-X
[2] Carlsson G, Vejdemo-Johansson M. Topological data analysis with applications. Cambridge:
Cambridge University Press; 2021.
[3] Edelsbrunner H, Harer ]J. Computational topology: an introduction. American Mathematical
Society; 2010.
[4] Guibas L, Morozov D, Mérigot Q. Witnessed k-distance. Discrete Comput Geometry.
2013;49:22-45. doi: 10.1007/s00454-012-9465-x
[5] Mammen E, Polonik W. Confidence regions for level sets. ] Multivariate Anal. 2013;122:
202-214. doi: 10.1016/j.jmva.2013.07.017
[6] Biirgisser P, Cucker F. Condition: the geometry of numerical algorithms. Berlin: Springer; 2013.
[7] Falconer K. Fractal geometry: mathematical foundations and applications. New York: John
Wiley & Sons; 2004.
[8] Talagrand M. Upper and lower bounds for stochastic processes: modern methods and classical
problems. Heidelberg: Springer; 2014.
[9] Kahle M. Topology of random clique complexes. Discrete Math. 2009;309(6):1658-1671. doi:
10.1016/j.disc.2008.02.037
[10] Kahle M, Meckes E. Limit the theorems for betti numbers of random simplicial complexes.
Homology, Homotopy Appl. 2013;15(1):343-374. doi: 10.4310/HHA.2013.v15.n1.a17
[11] Penrose M. Random geometric graphs. Oxford: Oxford University Press; 2003.
[12] Bauer U, Pausinger E Persistent betti numbers of random cech complexes; 2018. p. 1-11.
Available from: arXiv:1801.08376



28 (&) H.LUOETAL

[13] Duy TK, Hiraoka Y, Shirai T. Limit theorems for persistence diagrams; 2016. p. 1-41. Available
from: arXiv:1612.08371

[14] Kalisnik S, Lehn C, Limic V. Geometric and probabilistic limit theorems in topological data
analysis; 2019. p. 1-30. Available from: arXiv:1903.00470

[15] Bobrowski O, Kahle M. Topology of random geometric complexes: a survey; 2017. p. 1-42.
Available from: arXiv:1409.4734

[16] Cuevas A. Set estimation: another bridge between statistics and geometry. Boletin de Estadis-
tica e Investigacion Operativa (BEIO). 2009;25(2):71-85.

[17] Rigollet P, Vert R. Optimal rates for plug-in estimators of density level sets. Bernoulli.
2009;15(4):1154-1178. doi: 10.3150/09-BE] 184

[18] Singh A, Scott C, Nowak R. Adaptive hausdorfl estimation of density level sets. Ann Statist.
2009;37(5):2760-2782.

[19] Devroye L, Wise GL. Detection of abnormal behavior via nonparametric estimation of the
support. SIAM ] Appl Math. 1980;38(3):480-488. doi: 10.1137/0138038

[20] Mason DM, Polonik W. Asymptotic normality of plug-in level set estimates. Ann Appl Probab.
2009;19(3):1108-1142. doi: 10.1214/08-AAP569

[21] Rinaldo A, Wasserman L. Generalized density clustering. Ann Statist. 2010;38(5):2678-2722.
doi: 10.1214/10-A0S797

[22] Chazal E Guibas L], Oudot SY, et al. Persistence-based clustering in riemannian manifolds.
J ACM (JACM). 2013;60:1-38. doi: 10.1145/2535927

[23] Fasy BT, Lecci E Rinaldo A, et al. Confidence sets for persistence diagrams. Ann Statist.
2014;42(6):2301-2339. doi: 10.1214/14-A0S1252

[24] Hartigan JA. Estimation of a convex density contour in two dimensions. ] Amer Statist Assoc.
1987;82(397):267-270. doi: 10.1080/01621459.1987.10478428

[25] Polonik W. Measuring mass concentrations and estimating density contour clusters — an excess
mass approach. Ann Statist. 1995;23:855-881. doi: 10.1214/a0s/1176324626

[26] Walther G. Granulometric smoothing. Ann Statist. 1997;25(6):2273-2299. doi: 10.1214/a0s/
1030741072

[27] Luo H, Strait JD. Combining geometric and topological information for boundary estimation.
In: 2021 IEEE International Conference on Big Data (Big Data). 2021. p. 3841-3852.

[28] Adler R], Bobrowski O, Weinberger S. Crackle: the persistent homology of noise; 2013. p. 1-25.
Available from: arXiv:1301.1466

[29] Owada T, Adler R]. Limit theorems for point processes under geometric constraints (and
topological crackle). Ann Probab. 2017;45(3):2004-2055. doi: 10.1214/16-AOP1106

[30] Luo H, Kim J, Patania A, et al. Topological learning for motion data via mixed coordinates. In:
2021 IEEE International Conference on Big Data (Big Data). IEEE; 2021. p. 3853-3859.

[31] Luo H, Patania A, Kim ], et al. Generalized penalty for circular coordinate representation.
Found Data Sci. 2020;3:729-767. doi: 10.3934/fods.2021024

Appendix 1. Proof of main theorem

Theorem 3.11 is established by providing a bound on the probability mass of a covering ball B, (x),
counting the number of each type of covering ball under consideration and taking a limit as the
sample size n — 00. A sequence of upper bounds is needed for e-inside balls and a sequence of
lower bounds is needed for e-outside balls.

In the statement of the theorem, we assume that the sequence

_ 1
r(n) ~0(n™ ™M, 0<n< -
e(n) ~ O(n_‘p), Y <n,
and 2r(n) <e(n) < 1.

To establish a bound on the probability mass P(B,(x)) = f B (%) f(w) dw of a ball B,(x), it suffices to
consider the volume of the ball and a bound on the density function over the ball. The volume for a
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d-dimensional ball of radius r is

Nl

Va(r) = —— 4, (A1)
r (‘21 + 1)

which for our sequence of radii r(n) is V4(r(n)) ~ O(n~). Recall from the definitions of e-inside
and e-outside covering balls:

€-inside balls are those balls B, (x) such that x € B<(Sp) and B,(x) N Sy # ©.

€-outside balls are those balls B, (x) such that x ¢ B.(S).

Outside Be () (So) the density is bounded below by m(f, n) ~ O(n~%). Inside Be(n) (So) the density
is bounded below by the inequality in the Assumption A.4:

(A2)
e Upper bound for an € (n)-inside covering ball.
Since the €(n)-inside ball intersects Sy, i.e., Br(n)(x) N So # ¥, we know that any point y €
B, (n) (x) will be at most 2r(n) < e(n) away from the zero-density region Sy. The probability mass
contained in an € (n)-inside covering ball B,()(x) is bounded from above by

P(By(y (%)) < Uy - Va(r(n)) - 2r(m)) L™ (A3)

There are two types of €(n)-outside balls: those that are entirely contained in M = [0, 1]¢ and
those that are only partially contained in M. Probability mass P(B,,)(x)) = jbrw @ f(w)dw is

bounded from below by the volume of the ball times the minimum of the density f (x) in the ball.
e Lower bound for an € (n)-outside covering ball that lies within M.
From the assumption on density f,
1—2nd

m(f, n) = WGA%?(SO) f(w) € (0,00) ~O(n~%), 0<E£< —

The probability mass contained in the € (n)-outside covering ball is bounded from below by

P(Byy () = Va(r(m) - min [ Ly - (e(n) = rm) 5, m(f,m)]. (A4)

o Lower bound for an € (n)-outside covering ball that does not lie entirely within M.
Assumption A.5 states that the centre of the covering ball B, () (x) is in M. We know that the

volume of such an € (n)-outside ball B,(,,)(x) will be at least (%)d times the volume V;(r(n)) of a
full d-dimensional ball. With the same m(f, n) > 0 we have

d —
P(Byn () = (%) Va(rw) - min [ Ly - () = r) T mfm| - (49)

This lower bound also holds for € (#n)-outside balls that are entirely contained in M.

In the following discussion, we use the notation pg,, (x) := P(Br() (%)) to emphasize that we use
it as a parameter.

A.1. Part (A) (Outside balls)

Consider regular families of covering balls Bf( n Of supp(f) and a sequence of € (n)-neighbourhoods
of the zero-density region Sy where dim Sy < d. The Hoeftding concentration inequality for X ~
Binom(n, p) can be written for arbitrary y > 0,

P{(p—y)n <X < (p+y)n} > 1—2exp(—2y’n). (A6)
The inequality ensures that the number of observations falling into a single ball B, (x) will be close

to its expectation. In a single ball, the number Np,, (x) of observations falling in the d-dimensional
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ball of radius r(n), is distributed as a binomial distribution Binom(n, g, x))- Also,
P(B;(n)(x) not empty) = P (NB,(,,) x = 1) .

By assumption on the range of 5, the lower bounds (A4), (A5) under the different situations are
determined by the factor r(n)d. But note that r(n)4 ~ O(n~9") with —dn > —1 as assumed. We
can choose N(x) € Nlarge enough such that N(x) - DB, (x) = l,ensuringn - pg (v > 1 whenn >
N(x). We take N(x) = PBr(;(x) and observe that N(x) ~ O(n?") withdy < 1, rendering such a choice
of n > N(x) possible. Assume in the arguments below that n > N(x).

For an e(n)-outside ball B, (x), we can rewrite the probability using (A6) with X =

PB, () ()
NBr(n) (x)’p = pBr(n) (%) and Y = 2 >

PBriy ()
P(Br(n)(x) not empty) > P <|NBr(n)(X) — anr(n)(x)| <n- —<2) >

1
> [1 —2exp (_Epérm)(’c) . n>:| ) (A7)

From the discussion of the probability mass contained in each type of covering ball above, if B, () (x)
is an € (n)-outside covering ball, then from formulas (A4) and (A5) we have

P(B(y(x) not empty)
! e 2
> |:1 — 2exp <—§ [Vd(r(n)) .- min [Lf (e(n) — r(n))Kf(e(”)),m(f, n)]] _ n)] (A8)
Ifmln[Lf ' (6(1’1) - r(n))ff(é(n)), m(f’ i’l)] = m(f’ I’l) then
P(Br(n) (%) not empty) = [1 —2exp (—% [Va(r(m) - m(f,m)]* - n)i|
If min[Ly - (e(n) — ()X € m(f,m)] = L - (e(n) — 1 ()T then

P(Broy (%) notempty) = [1 —2exp (—% [ Vartn) - Ly - (e n) - r(n))fﬂe(n»]z . n)}

Consider the right hand side of (A8), taking n — oo. If it holds that
1-2nd—25 >0 and 1—2nd—2K;-¢ >0 (A9)
then the limitlim,,_, o P(B;(n) (x) not empty) is 1. For the first inequality, it is simply £ < 1_22 nd < %
(the second equality holds iff d = 0) as we assumed in the statement of the theorem so it suffices to
consider the second inequality.
We want tolet n > —L— forall x € M\B(Sp). But — 5 reaches its maximum when pg, , (x)

PBr( @) PBy Gy x
~ O(n"t8). As

1
long as nd + & < 1, which is guaranteed by (A9), we can ensure that # is greater than the maximum

. . .. . . 1
= <
attains its minimum m(n, f) := minyepn s, (so) f (W), i.e., Pr ~ VIGG) )

value maxyenm\ B, (So) m. Therefore, such an 7 is greater than all such quantities m, x €
M\Be(n)(So) and so 11 - pp,, (x) > 1 holds simultaneously for all x € M\Be () (So)-
P(there are no empty € (n)-outside balls) = P(Npe{e(n)-outside balls} {B not empty})
= 1 — P(UBc{e(n)-outside balls} { B empty})
>1— Z P(B empty)
Be{e(n)-outside balls)
>1— Bl sup P(Bempty) (A10)

Be{e(n)-outside balls}
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By Equation (A7) and the subsequent bound (A8) we obtain that
P(there are no empty € (n)-outside balls)

1184 1. (1= inf P(B not empt
= I r(n)l ( Be{e(n)-outside balls} ¢ P Y)>
>1— (L -n?)- (Lz $exXp <_”1_2nd_2§w>) A

for sufficiently large n. The constants Ly, L, € (0, 00) exist by the definition of the big O notation for
sufficiently large #n. The last expression follows from |Bf(n)| ~ O(n™) and (A8). It is dominated by

the second term in the product. Therefore, if 1 — 2nd — fo - > 0 then

lim P(there are no empty €(n)-outside balls) = 1.
n—o0

A.2. Part (B) (Inside balls)

We observe that the event ‘all B¢, (So)-inside balls are empty’ can be regarded as all observations
falling into the other two types of covering balls. Note that, as stated in the theorem, we only ensure
that € (n)-inside covering balls are empty but not every € (n)-outside ball contains at least one obser-
vations under the assumptions in part (B). We investigate the upper bound on the probability mass
in each of these covering balls.

Since the observations are i.i.d. we have, using the notation that

puBe{e(n)-inside balls}B = P(UBE{G(n)-inSide balls}B)a
P(all €(n)-inside balls are empty) = (1 — PUbe(e(ny-inside balls) B)"

since covering balls may overlap,
n
> 11— > B (A12)
Be{e(n)-inside balls}
from the upper bound above.
Assumption 3 asserts that the limit Ky = lim._, o+ Ky(€) exists and that we can choose a bound

Ky > lim,_, ¢+ K¢ (€) uniformly. By the bounds (A2) for €(n)-inside covering balls, there is a pos-

T2 oKu s U, At . Krelm)

itive constant Dy 4 := Uy - T = Uy rd+1)
d

depending only on density f and

the dimension d. The factor . 2 j comes from the multiplier of the volume of a d-dimensional

2

ball (A1). We denote by Bf(on) the sub-collection of covering balls from Bfl(n) that intersect So.

P(all €(n)-inside balls are empty)

> <1 _ |Bf(0n)| . [Uf - Va(r(n)) - (2r(n))ﬁ(6(n))]>n

ﬁ(e(n))-i—d])”

> (1= He(n) - [Dra - (rOn) (A13)

Due to the Assumption A.6, the collection of covering balls Bf(on) that intersect S satisfy IBffn)l <
H, (n) ~ O(n®on+e)y for any ¢ > 0. On one hand, by the assumption for part (B), we have
1+don— Kfnp—dn <0 (A14)
and so we can find 1 > ¢ > 0 small enough such that,
1+don(l+e)—Km—dn <0 (A15)

We need a simple but nontrivial lemma known as the Bernoulli inequality to proceed.
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Lemma A.1 (Bernoulli inequality): If I 4+x> 0, then (1 4+ x)" > 1 + nx for Vn € N.

Proof: Let us prove the lemma by induction. For n = 0, 1 this trivially holds as an equality. Assume
that the inequality (1 4+ x)” > 1 4 nx holds for every n < k € N and proceed by induction for
n=k+1

I+0"=1+x -1+0"'=0+x-1+0F
since n — 1 = k < k by the inductive hypothesis,
> (14+x) - (1+kx)
due to the fact that (1 + x) > 0 does not flip the inequality,
=14+hkx+x+kx? =1+ (k+1)-x+ kx?
>1+(k+1)-x

since kx? > 0,which completes the induction. |

ﬁ(e(n))—i—d ﬁ(s(n))-i—d

Let x = He(n) - [Dfq - (r(n)) ] ~ O(n4on1+e)y . Dy 4 - (r(n)) ], which is of

don(14+¢)—K¢-n—d . . . o . .
order O(n on(i+e)=Kym ") asn — 0o. We emphasize again thate > 0 is an auxiliary quantity which
we first define in Assumption 5. The € = e€(n) is the quantity in Theorem 3.11 that defines the
neighbourhood size of Sy. These two are different quantities. Under the assumption

1+don(1+¢)—Km—dn <0<% don(l+¢)—Ken—dn < -1, (Al6)

we can take 7 sufficiently large, say n > Ny, to ensure don(1 + &) — Kyn — dn < —1 and therefore

14 x> 0. Then we can apply the Bernoulli inequality to the right hand side of (A13) and we have
the following lines, with H, (1) ~ O(n“70+9)y and (A13), as n — oc:

P(all € (n)-inside balls are empty) > (1 — (Ly - non(+e)y [Df,d . (r(n))ﬁer])n

. (1 Cn (L pfn(e)y [Df,d . (r(n))ﬁw])

(A17)

> (1 _ Lf,d ) (nl-i-dorl(l—i-e)—ﬁn—dn))

for sufficiently large n. The constant L3 € (0, 00) exists by the definition of the big O notation for
sufficiently large n. If we take the limit n > Ny, n — oo on both sides of the inequality we know
that the quantity (1 — Ls - (n1+d°"(1+5)_ﬁn_dn
Kyn — dn < 0 then

)) converges to 1 from (A15). thereforeif 1 + don —

lim P(all €(n)-inside balls are empty) = 1.
n—oo



