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Abstract—Camera navigation in minimally invasive surgery
changed significantly since the introduction of robotic assis-
tance. Robotic surgeons are subjected to a cognitive workload
increase due to the asynchronous control over tools and camera,
which also leads to interruptions in the workflow. Camera mo-
tion automation has been addressed as a possible solution, but
still lacks situation awareness. We propose an online surgical
Gesture Recognition for Autonomous Camera-motion Enhance-
ment (GRACE) system to introduce situation awareness in
autonomous camera navigation. A recurrent neural network is
used in combination with a tool tracking system to offer gesture-
specific camera motion during a robotic-assisted suturing task.
GRACE was integrated with a research version of the da Vinci
surgical system and a user study (involving 10 participants)
was performed to evaluate the benefits introduced by situation
awareness in camera motion, both with respect to a state of the
art autonomous system (S) and current clinical approach (P).
Results show GRACE improving completion time by a median
reduction of 18.9s (8.1%) with respect to S and 65.1s (21.1%)
with respect to P. Also, workload reduction was confirmed by
statistical difference in the NASA Task Load Index with respect
to S (p< 0.05). Reduction of motion sickness, a common issue
related to continuous camera motion of autonomous systems,
was assessed by a post-experiment survey (p< 0.01).

I. INTRODUCTION

A. The evolution of vision in surgery
Clinical practice has found in the last two decades a

trustworthy ally in surgical robots, especially in minimally
invasive surgery (MIS), where surgeons particularly benefit
from enhancement of instrumentation, along with improved
visual perception, dexterity and ergonomics compared to
conventional laparoscopic surgery [1]. Many different cat-
egories of medical robots are available on the market, such
as the well established da Vinci surgical system, dVSS,
(Intuitive Surgical, Sunnyvale, CA, USA) which belongs to
the surgeon extender category [2].
Surgical techniques and control modalities have changed

due to the deployment of robotic assistance. Visualization
modalities have been particularly affected by this aspect:
one of the main differences is the loss of direct access to
the surgical environment and control over tools and camera.
During robot-assisted MIS (RAMIS), access to the patient’s
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body is gained through small incisions for camera and tools,
similar to laparoscopic surgery. In the latter, an assistant
is often needed to facilitate an eased workflow, alleviating
the surgeon from the burden of camera motion. With the
introduction of a surgical robot in between the surgeon and
the patient, the presence of an assistant to manipulate the
camera is no longer required. In this situation, the surgeon
is expected to control both the camera and operating tools.
Specific consoles have been designed to provide the user

with direct control over multiple robotic arms. To allow tele-
operation of both instruments and camera, devices such as the
dVSS were specifically designed with a tailored foot pedal
tray. This allows to quickly switch between tools and camera
control, by handling a couple of manipulators. A drawback
resulting from these interfaces is the impossibility for a single
surgeon to control both camera and tools simultaneously. Due
to the high workload, surgeons may settle for a sub-optimal
field of view (FOV) [3]. Surgeons might also allow the tools
to be temporarily out of view, due to the effort required
to reposition the camera, which can lead to injuries to soft
tissues or error in the execution of a surgical procedure [3].

B. Automation in camera navigation

To mitigate the above mentioned disadvantages and rely-
ing on robotics control, the autonomous navigation of the
camera has been explored in the past. The proposed ap-
proaches to autonomous camera navigation can be clustered
into reactive, proactive or combined control strategies [3]. A
reactive control architecture is defined as a system in which
data streams such as eye gaze [4], [5] or tools tracking [6],
[7] are used to move the camera in direct response to changes
in these inputs. With a proactive approach, the system incor-
porates knowledge of the surgery and thanks to prediction-
based techniques proposes specific camera viewpoints [8],
[9]. With the combination of reactive and proactive systems,
a combined camera control modality is obtained [10].
However, the proposed works either require semantically

rich instructions from the surgeon or do not rely on proce-
dural knowledge to constantly be aware of the procedure in
progress and adapt to camera navigation requirements. This
latter condition also results in a continuous - often undesired
- motion of the camera, which may lead to discomfort and
nausea for the operator [6], better known as motion sickness.

C. Situation awareness in surgery

Extracting procedural knowledge from surgical tasks’ ob-
jective data is a robust research trend. Also, a robotic system
can serve as an enabling factor to achieve this goal, since it is



intrinsically capable to collect meaningful data. Such systems
in fact capture diverse data streams (e.g., kinematics, video
or data from integrated sensors) simultaneously. These data
can be used to design artificial intelligent solutions to assist
clinicians over multiple tasks, as camera navigation. As sug-
gested in [11], contextual assistance is crucial and should be
guided by the user’s intent prediction. A robot should learn
certain strategies based on examples or even measurements
of the movements of a human operator. This kind of notion
regarding procedural knowledge can be defined as situation
awareness.
Situation awareness can intra-operatively support the

physicians by reducing the workload while enhancing safety,
detecting hazardous surgical events [12], or even performing
surgical gesture recognition. Indeed, awareness in surgical
tasks has been approached by the segmentation of procedures
into pre-determined actions. Based on the desired granularity,
actions have been divided into dexemes, surgemes, activities,
phases, procedures and states, from finest to coarsest [13].
Artificial intelligence (AI) is more and more used to achieve
gesture recognition during surgical procedures and it is able
to provide targeted feedback regarding the ongoing process
[14], [15] as well as automating surgical tasks or sub-
tasks [16]. Nevertheless, the combination of both situation
awareness and the automation of camera navigation is still
an open challenge in surgical robotics.
Gesture recognition methods can be classified based on

the data type that is used as input, hence kinematic data,
video streams or a combination of both. Hidden Markov
Models (HMM) were first employed to classify motion
segments using kinematic data [17], [18], lately outper-
formed by Linear Dynamical Systems (LDS) [19]. The first
approach to gesture recognition using both kinematic and
video data was proposed with Conditional Random Fields
(CRF) [20], but it was only with Deep Neural Networks
(DNN) that the research community found a powerful in-
strument capable of fine-grained surgeme recognition. Tem-
poral Convolutional Networks (TCN) were introduced to
capture long-range temporal dependencies [21], thanks to
pooling operations, but experienced imprecise identification
of surgemes’ boundaries. Later on, 3D CNNs [22] or Spatial
Temporal Graph Convolutional Networks (ST-GCN) [23]
were proposed to efficiently process also higher-dimensional
signals, achieving better performance with respect to spatial
and spatio-temporal models. Due to their ability to compute
predictions sequentially in time, Recurrent Neural Networks
(RNN) have been used to capture long-term dynamics in
surgical kinematic data. Thanks to their sequential nature,
RNNs can handle signals of different lengths in real time,
allowing online gesture recognition. To alleviate gradient
descent issues and hyperparameter sensitivity, Long Short-
Term Memory (LSTM) and Gated Recurrent Unit (GRU)
have been widely used, achieving the best classification
performance [24]. In addition to that, a multi-task learning
approach has been proposed in [25] to both identify surgemes
and progress of the surgical task. Furthermore, works based
on unsupervised or semi-supervised learning approaches

were presented, which tackled large data necessity issues, 
since labels are required only for testing, obtaining promising 
results, as described in [13].

Nevertheless, to the best of our knowledge, no solution 
has been proposed that takes advantage of online gesture 
recognition to enhance camera navigation with situation 
awareness.

D. Research hypothesis
We designed an online Gesture Recognition system for

Autonomous Camera-motion Enhancement (GRACE) during
RAMIS to introduce situation awareness in autonomous cam-
era navigation. Given the performance shown by RNNs in the
literature [24], [25] the system comprises two LSTM models
working in parallel to perform online gesture recognition.
We designed and tested GRACE during a suturing task.

This type of surgical process segmentation is well-suited to
low-level analysis. As described in [26], different suturing
sub-tasks require specific camera adjustments, and specific
human gaze patterns can be defined when performing sutur-
ing tasks [27], depicting salient regions inside the FOV.
The aim of this work is to test the advantages introduced

by situation awareness in autonomous camera navigation dur-
ing a suturing task, by analysing completion time, workload
and motion sickness reduction.
We initially implemented a proof-of-concept of the pro-

posed approach in virtual reality [28]. This work preliminar-
ily validated our research hypothesis, showing the benefits
introduced by surgical procedure knowledge on camera au-
tomation. Thus, it paved the way to design and integrate
GRACE on a real robotic surgical system, while also in-
troducing online gesture recognition with recurrent neural
networks. Specifically, the da Vinci Research Kit (dVRK)
[29] shown in Fig. 1a, an open research platform derived
from the first generation dVSS, was deployed to complete
the study.
To validate the benefits introduced by GRACE, we per-

formed a user study comparing GRACE both with the current
foot pedal camera control modality and a state of the art
System for Camera Autonomous Navigation (SCAN) [7].

II. METHODS

In this section, we introduce the GRACE system, first
addressing Situation Aware Camera Motion Automation and
then the System Validation. The first subsection describes
the segmentation of the suturing task into four surgemes, the
LSTM based gesture recognition model and the autonomous
camera control architecture. The second subsection presents
the experimental setup, the acquisition protocol, the valida-
tion of the classifying model and the evaluation metrics.

A. Situation Aware Camera Motion Automation
1) Suturing Task: the proposed work focuses on the su-

turing task, decomposing it into surgemes. Different suturing
surgemes require adjustments of the FOV [26] and are asso-
ciated to specific human gaze patterns [27]. As done by [26],
we identify the suturing sub-task as a repetition of: finding
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Fig. 1. dVRK setup & GRACE architecture: main components of dVRK system are shown in (a), along with the suturing pad inserted inside a mannequin.
The user handles a pair of manipulators to teleoperate two Patient Side Manipulators (PSM) and an Endoscopic Camera Manipulator (ECM). Kinematic
data coming from both PSMs is then fed into two parallel recurrent neural networks (b), each composed by two LSTM layers, two Dropout and Batch
Normalization layers, followed by a fully connected layer (FC), with a final softmax activation function for gesture classification. Based on the recognized
gesture, the camera is moved over the suturing pad, shown in (c).

a suitable position for needle insertion (Needle Positioning -
NP), push (Tissue Bite - TB) and pull (Suture Throw - ST)
of needle and thread through the tissue. Reaching for the
Needle - RN - has been added to label cases in which the
needle is not handled by the grippers. Note that this refers
only to the action of placing the stitching material through
the tissue, therefore the knot tying phase is not considered.
2) Online Gesture Recognition: to allow camera mo-

tion with situation awareness, we devised a deep learning
model capable of performing online gesture recognition.
This system is based on two LSTM models working in
parallel, designed specifically for each arm. They have been
trained separately to recognize respectively RN or ST for
the left arm, RN, NP or TB for the right arm. The final
classification corresponds to the gesture recognized with the
highest confidence score from the two models. Given the
necessity to work in real-time, we did not include video as
input data, due to its higher computational cost and time.
We selected the needle grippers’ end effector pose (6),

opening angle (1), linear velocity (3), angular velocity (3),
joint state (3) and relative distance (1), resulting in a 17
dimensional feature. The time window length is equal to 5
timestamps, resulting in overlapping windows with a data
input shape of 5⇥17 acquired at 30 Hz.
The model architecture is shown in Fig. 1b: a two-layer

LSTM model with respectively 128 and 64 hidden units,
with kernel regularizer l1= 0.001, two Dropout layers with
dropoutrate= 0.2 and 0.3, two Batch Normalization layers
with momentum = 0.99, followed by a dense layer, with a
final softmax activation function for gesture classification.
We used the Adam optimizer with a starting learning rate
lr = 0.001, and at each training iteration we computed the
classification loss using the categorical cross-entropy. We
selected early stopping as the criterion to stop model training,
monitoring the loss with a patience of 200 epochs. When
learning was stuck for more than 40 epochs, learning rate
reduction was applied by halving lr until a minimum of 10�5.
Given the fact that every gesture can be repeated in

different positions in space, in order to remove the positional
dependency we preprocess the input matrix by subtracting
the tool’s initial position from each subsequent position. As

a result, every classified gesture will have the (X ,Y,Z) origin
fixed at (0,0,0) for the first timestamp.
3) Situation Aware Camera Motion: the autonomous cam-

era motion modality is shown in Fig. 1b and 1c. According
to the output of the online gesture recognition, the camera
motion system sets the scene center (SC) by relying on the
kinematics tracking of the tools’ 3D position. Hence, no
image segmentation is needed. The camera motion system
has been developed on the da Vinci Research Kit, which
allows for open access to the robot’s kinematics. The laws
for camera motion during each gesture were derived from
[27], which reports that specific human gaze patterns can be
defined when performing a suturing task. Specifically, the
camera motion was implemented based on the recognized
gesture, as follows:

• Reaching for the Needle: the camera holds a steady
position, waiting for the task to start or to hold the
needle again after having lost its grip.

• Needle positioning: the camera tracks the weighted SC,
as in Fig. 2a. SC is weighted in between the projected
tools’ midpoint (P) and the patient side manipulator
(PSM1) tip, with the aim of minimizing the incidence of
motion sickness. The user defines the preferential line
for midpoint projection at the task’s outset, if necessary,
and can modify it during task execution. Pressing a
pedal on the foot pedal tray, the user is able to draw
a line point-by-point in 3D space using the tip of the
surgical tools. Users may proceed without defining a
line: in this case P coincides with M, and SC is weighted
accordingly.

• Tissue bite: the camera acquires a steady zoomed-in
position, as in Fig. 2b, to promote a sharp and fixed
FOV over the stitch.

• Suture throw: to conclude the suture, needle and thread
must be pulled through the stitch, as in Fig. 2c. For
this gesture, the camera follows the same behaviour
implemented for needle positioning on PSM2.

To allow tools to remain within the FOV, we proposed an
adjustable zoom based on the tools’ tip distance. Camera’s
Tip (CT) started at 9cm - value set to match the task
workspace - from the tracked scene center, and the position
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Fig. 2. Gestures & Situation Aware Camera Motion: the suturing environment is shown, with stitches’ entry and exit points (red circles) on the suturing
pad. (a) Needle Positioning: PSMs tips are tracked and their midpoint (M) is projected (P) on the preferential line, defined by the user at the start of the
task. Given the linear shape of the suturing path, the preferential line is straight and ideally aligned with the red path displayed in the figure. Scene Center
(SC) is then obtained weighting P and PSM1 position: the higher the weight, the closer SC will be to P. (b) Tissue Bite. (c) Suture Throw: equivalent
tracking criteria are used to define SC with respect to PSM2.

was adjusted as follows:

CT = SC� (0.09+ z ·d) R
|R| (1)

where SC is the Scene Center in Cartesian space, R is the
vector connecting SC to CT, z = 0.35 is a weighting value
for zooming range and d represents the distance between the
tools’ tips. As a result, tools moving apart from each other
result in the camera zooming out, allowing for a continuous
view of the instrumentation, even when larger FOVs are
required. This solution has been introduced to accommodate
both narrow views, necessary for TB when tools are in close
proximity, and wide views, preferable for both ST and NP.

B. System Validation
1) Experimental Setup: the setup used for our user study

is shown in Fig. 1a. The master console of a dVRK is
the surgeon’s side of the robot. It is equipped with a foot-
pedal tray, two Master Tool Manipulators (MTMs) and a
stereo viewer for visualization of the surgical environment.
On the patient’s side of the robot, there are two Patient Side
Manipulators (PSMs), holding the surgical tools, and an En-
doscopic Camera Manipulator (ECM), holding the camera.
A plastic mannequin contains a magnetic pad holding in
position a latex non-tear film, as a substitute for soft tissues,
with the stitches’ entry and exit points as in Fig. 2. The
pad can be positioned as desired on the red ferromagnetic
surface inside the mannequin, as in Fig. 1a, thanks to two
magnets placed under it which allow a steady hold. The last
element composing the experimental setup is the surgical
needle with thread, used to suture the pad with the help of
needle grippers, or Large Needle Drivers, attached to the
PSMs.
2) Acquisition Protocol: we performed a user study with

10 non-medical users (20 to 27 years, 9 males, 1 female,
all right handed). Each user completed the suturing task in
3 modalities: camera navigation with foot pedal control (P),
as in clinical dVSS systems, continuous tools’ tips midpoint
tracking (S), as in [7], and the GRACE system (A).
To complete the suturing task, participants had to pick

up the needle and perform a total of 11 stitches, as in Fig.
2. Each camera motion modality was tested 2 times, for a

total of 6 repetitions per subject. The FOV proposed at the
beginning of every task repetition was such as to not allow
a complete view of all the stitches.
The vast majority of previous works relied on the JIG-

SAWS dataset [17] to train and test their models. However,
due to its lack of camera motion, we collected synchro-
nized kinematic and video data during the suturing task
performed with the camera foot pedal control modality
to build a new dataset, comprehensive of camera adjust-
ments. We later performed offline manual labeling: the
resulting dataset, with a dimensionality of more than 150k
labelled features windows, was used to train the LSTM
based model that we designed to perform situation aware
autonomous camera motion (A). The dataset is available at
(https://github.com/paso04/Autonomous-Camera-Motion).
As a consequence, all the experiments started with 2 rep-

etitions with the P modality. To allow the process described
in the previous paragraph (i.e., labeling and model training),
the other 4 repetitions were performed after 2 weeks. This
also allowed to minimize any learning effect from the P
repetitions. For a direct comparison, the S and A repetitions
were performed during the same day. Again, to minimize
the influence of any learning effect on the results, permuted
block randomization was used to define the order of the 4
repetitions with the S and A modalities for each user.
Before starting the task, each participant was given an

introductory speech, in which the main components of the
Master Console were described, and 5 minutes of training,
during which they could familiarize themselves with the
robotic platform. The suturing environment was displayed
on the stereo viewer inside the Master Console, in which the
users placed their head.
The experiments were carried out after Institutional

Review Board (IRB) approval (protocol number:
HIRB00000701) with oral consent from participants.
The official NASA Task Load Index (TLX) iOS App has
been used for measuring the subjective workload.
3) Online LOUO Validation: we performed the Leave

One User Out (LOUO) approach to validate our model.
Validation has been performed online during suturing task
completion, for every user. To be able to do so, we trained



Fig. 3. Objective & subjective metrics: both objective (completion time, foot pedals, covered distance) and subjective (NASA TLX) metrics are shown.
Groups are labeled based on camera motion modality, as follows: camera foot pedal (P), SCAN (S) [7], GRACE (A). Statistically significant differences
are presented by pairs, identified by the extremes of the black horizontal lines. In the boxplots, the median is identified by a white-edged black dot, the
first and the third quartiles are depicted as bold line edges, the whiskers are represented by thin line edges, while outliers are identified as rings.

both LSTM models 10 times, each time leaving out the
labeled data coming from one user, obtaining 10 different
versions. Every model was then used to perform online
gesture recognition only for that specific user whose data was
not used for training. Doing so, the gestures to be recognized
given as input to the model always came from a never seen
before user. Once the acquisition process was completed,
the gestures’ ground truth was obtained by offline manual
labeling, and later on compared with the gesture recognition
model output for validation. The same approach was later
used for the user study, employing 10 user-specific models
to perform online gesture recognition.
4) Models Performance: the evaluation of the LSTM

models has been conducted through the comparison of the
ground truth against the online classified gestures. Results
were analysed based on macro-averaged F1 score and cat-
egorical accuracy. Macro-averaging allows for extension to
multi-class classification - treating all classes equally - from
a binary situation in which metrics are computed as follows:

Accuracy=
TP+TN

TP+TN+FP+FN
(2)

F1=
2⇤Precision⇤Recall
Precision+Recall

=
2⇤TP

2⇤TP+FP+FN
(3)

with True Positive (TP), True Negative (TN), False Pos-
itive (FP), and False Negative (FN). Accuracy is limited in
evaluating precision and recall information; consequently, the
macro F1 score is employed.
5) Comparative Metrics: both objective and subjective

metrics were defined to analyze the user study outcomes.
To evaluate users’ performance from an objective point of

view, we selected 6 quantifiable metrics: completion time,
number of foot pedals presses (clutch and camera) and total
covered distance for PSM1, PSM2 and ECM. The clutch
pedal addresses how many times users had to readjust their
masters’ position due to a bad positioning of the surgical
tools: whenever the clutch pedal is pressed, masters can be
moved freely without causing any motion of the PSMs.

After completion of the study, every user was asked to
complete a NASA Task Load Index (TLX) [30] for every
camera control modality. The NASA TLX addresses the
subjective workload, as an overall score based on a weighted
average of rating on six sub-scales (mental demand, physical
demand, temporal demand, performance, effort, frustration).
Additionally, each user filled out a post experiment question-
naire to primarily inquire about motion sickness.
Given the relatively small sample size, we applied the

Wilcoxon signed rank test to perform non-parametric sta-
tistical significance tests using the signrank() command in
MATLAB. We considered repetitions with different camera
control modalities to build two populations with paired
observations of a certain metric, and statistically significant
results were assessed at different values of p as follows: * for
p < 0.05, ** for p < 0.01, *** for p < 0.001. The results
of statistical tests are reported as pM�N

met , where met is the
observed metric and M, N are two camera control modalities.

III. RESULTS AND DISCUSSION

Every user who took part in the study completed the
suturing task 2 times for each camera motion modality. The
final aim of the study is to determine whether a situation
aware autonomous camera control modality benefits the user
during a suturing task, compared to both the current foot
pedal control and a state of the art autonomous camera
motion system. Results of gesture recognition coming from
the user-specific models are shown in the confusion matrix
in Fig. 4, and categorical accuracy and F1 score are reported.
Both objective and subjective results are shown in Fig. 3.

A. Models Performance

Results in Fig. 4 are obtained by calculating the confu-
sion matrix of all 20 repetitions of modality A performed
with user-specific models. With a similar approach, macro-
averaged F1 score and categorical accuracy are 0.84. Errors
in kinematics may affect the performance of the models
as well as the tracking precision of the tool tips. In this
context, it is noteworthy to report that the first generation of



the da Vinci robot may present position inaccuracies up to
the order of a millimeter [31]. Nevertheless, automation of
camera motion does not require sub-millimeter accuracy, in
contrast to automation of surgical tasks involving grasping
[31]. Therefore, we consider performance results sufficient
for our application. Also, the vast majority of misclassified
gestures fall at the boundaries of consecutive gestures. Such
a result can be explained by two main factors: manual
annotation, which may present inaccuracy, and latency. With
the latter, we refer to the computational time required by the
models to recognize the performed gesture and subsequently
decide whether or not to move the camera. In fact, it
took approximately 30ms to perform a single online gesture
classification. This led to the system’s working frequency
reduction from 30Hz to 7Hz; as a result, gesture progress at
the boundary may be recognized with variable delay.
Consecutive gestures TB and NP show the higher mis-

classification values, as a result of their similarity in the
execution, especially at the borders. Stronger results can
be achieved by fusing multiple data streams. Incorporating
video as input data would allow for estimation of needle pose
and distance to tissue. Specifically, distance to tissue can be
key in classifying NP and TB at the borders [32], where the
LSTM model encounters challenges. NP and TB gestures
get mixed in most cases due to their similarity during the
transition from a fine position adjustment to find the correct
stitch’s insertion point (NP) to the start of the actual biting
process (TB). This step witnesses minimal motion of the
instruments, making the sole discriminative kinematic feature
the orientation of the tools. Ultimately, incorrect detection of
surgical gestures produces a sub-optimal FOV selection and
camera instability, which result in mitigation of the beneficial
effects introduced by situation awareness.

B. Comparative Metrics
The results demonstrate statistical differences in comple-

tion time, foot pedal tray usage and camera covered distance.
As expected, the introduction of an autonomous control for
camera motion reduced significantly the completion time,
with respect to pedal camera control, for both SCAN (pS�P

time <
0.05) and GRACE (pA�P

time < 0.01). GRACE improved com-
pletion time by a median reduction of 18.9s (8.1%) with
respect to S and 65.1s (21.1%) with respect to P.
Regarding clutch pedal and camera pedal total presses,

the same statistical difference is shown for both au-
tonomous modalities, respectively pA�P

clutch, p
S�P
clutch < 0.01 and

pA�P
camera, pS�P

camera < 0.001. This illustrates the fact that during
camera motion performed with the current traditional ap-
proach, hands are prone to fall into uncomfortable positions,
which require the use of the clutch pedal for repositioning.
In addition, the results can be explained by the autonomous
nature of both SCAN and GRACE systems, which do not
require any human input to directly control the camera, hence
no camera pedal usage.
No reduction in the PSMs covered distance can be noted,

but remarkable differences are shown for the ECMs covered
distance. Even though for both autonomous navigation sys-
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Fig. 4. Models Performance: gesture recognition results - obtained by
user-specific models - are shown in the normalized confusion matrix, along
with macro-averaged categorical accuracy and F1 score.

tems the covered distance is higher than the current camera
control, we can notice a noteworthy statistical difference,
with pA�S

ECMdistance < 0.001, between GRACE (A) and SCAN
(S). This result is given by two main factors: introduction
of situation awareness and projection of camera center over
the preferential line designated by the user at the beginning
of every task. Indeed, online gesture recognition enhances
camera motion by instructing the autonomous tracking sys-
tem when to move the camera, while the projection of the
point to be tracked over the line in 3D space further reduces
unnecessary ECM movements, with the potential to reduce
the incidence of motion sickness.
This suggests that automation in camera motion may

not be sufficient to enhance the surgical outcome. In fact,
a continuous motion of the camera, in particular when
performing fine gestures such as biting the tissue, may be
undesired, leading to motion sickness. The introduction of
situation awareness with GRACE is able to drastically reduce
unnecessary camera movements.
In order to complete the suturing task, the evaluated

camera motion modalities required different levels of effort
from the users. Such a result is confirmed by the NASA TLX
subjective evaluation. A statistically significant difference
between A and S demonstrates that GRACE is able to
reduce the user’s overall workload with respect to SCAN.
However, no significant difference in terms of workload
was found between A and S with respect to P. This result
can be explained by the users’ feedback in post experiment
questionnaires. Indeed, results show that, while completing
the task with modality P, users generally completed stitches
even with sub-optimal camera FOV (P= 3.5±0.85 on a 0 -
optimal - to 5 - suboptimal - scale). This suggests a decreased
workload due to the fact that they partially skipped the effort
to reposition the camera.
Furthermore, users reported a reduction of motion sickness



(sickReduction) using GRACE (A) compared to SCAN (S)
(A = 0.8± 1.0, S = 3± 1.6 on a 0 - minimum - to 5 -
maximum - motion sickness scale, with pA�S

sickReduction < 0.01),
confirming that situation awareness reduced the incidence of 
discomfort related to a continuous motion of the camera, 
typical of modality S.

IV. CONCLUSIONS AND FUTURE WORKS

This paper presents an architecture to enhance camera 
navigation during a suturing task performed in robot-assisted 
surgery, thanks to the deployment of a system for on-
line surgical Gesture Recognition for Autonomous Camera-
motion Enhancement (GRACE). The system is based on two 
processes working together: online gesture recognition and 
kinematics-based tool tracking.
The system was integrated with the da Vinci Research Kit 

[29] and a user study was carried out to test its effectiveness 
with respect to state-of-the-art camera navigation. 10 subjects 
completed a suturing task in 3 camera motion modalities 
(manual, continuous tool tracking and GRACE). Results 
show that the proposed architecture is capable of reducing the 
burden associated to camera motion with respect to both the 
current control and state of the art autonomous tracking sys-
tems. Every user completed a post experiment questionnaire 
and results corroborate the hypothesis of motion sickness 
reduction thanks to the introduction of situation awareness, 
with respect to the state-of-the-art continuous non-aware 
tracking system, called SCAN [7]. Furthermore, reduction 
in overall workload with respect to SCAN demonstrates that 
situation awareness is a key factor in exploiting the beneficial 
effects brought by autonomous navigation. The fusion of an 
autonomous tracking system with an online model for gesture 
recognition further improved the overall surgical flow, not 
only relieving the surgeon from controlling the camera but 
also reducing its motion. Situation awareness allows for an 
intelligent motion of the camera by removing unnecessary 
movements that could cause motion sickness.
To improve the significance of the results, a larger pop-

ulation, including medical experts, should be involved in 
future studies. To further validate the method’s generaliz-
ability and better transfer results from a dry lab to a real 
surgical scenario, uncertainties in the form of noise must be 
added, repeating also the experiments with P = M, when no 
preferential line is defined. In addition, further qualitative 
assessments of the surgical task should be performed. Also, 
the extension of gesture recognition to multiple surgical 
tasks is key towards of the general applicability of the 
proposed method. The fusion of both kinematic and video 
input data may result in higher performances for real-time 
gesture recognition. In particular, the extraction of mean-
ingful features such as the distance of the needle from soft 
tissues, unattainable from kinematics alone, would reduce 
the uncertainty of the system in classifying gestures at the 
borders. To evaluate the model’s ability to generalize, an 
evaluation of GRACE with models trained on single users’ 
dataset should be carried out and compared to the presented 
results.
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Lin, L. Tao, L. Zappella, B. Béjar, D. D. Yuh, et al. Jhu-Isi Gesture and
Skill Assessment Working set (JIGSAWS): A surgical activity dataset
for human motion modeling. In MICCAI workshop: M2cai, volume 3,
2014.

[15] S. S. Vedula, A. O. Malpani, L. Tao, G. Chen, Y. Gao, P. Poddar,
N. Ahmidi, C. Paxton, R. Vidal, S. Khudanpur, et al. Analysis of the
structure of surgical activity for a suturing and knot-tying task. PloS
One, 11(3):e0149174, 2016.

[16] T. D. Nagy and T. Haidegger. A dVRK-based framework for surgical
subtask automation. Acta Polytechnica Hungarica, pages 61–78, 2019.

[17] N. Ahmidi, L. Tao, S. Sefati, Y. Gao, C. Lea, B. B. Haro, L. Zappella,
S. Khudanpur, R. Vidal, and G. D. Hager. A dataset and benchmarks
for segmentation and recognition of gestures in robotic surgery. IEEE
Transactions on Biomedical Engineering, 64(9):2025–2041, 2017.

[18] L. Tao, E. Elhamifar, S. Khudanpur, G. D. Hager, and R. Vidal. Sparse
Hidden Markov Models for surgical gesture classification and skill
evaluation. In International Conference on Information Processing in
Computer-Assisted Interventions, pages 167–177. Springer, 2012.

[19] B. Varadarajan. Learning and inference algorithms for dynamical
system models of dextrous motion. PhD dissertation, The Johns
Hopkins University, 2011.

[20] L. Tao, L. Zappella, G. D. Hager, and R. Vidal. Surgical gesture
segmentation and recognition. In International Conference on Medical



Image Computing and Computer-Assisted Intervention (MICCAI),
pages 339–346. Springer, 2013.

[21] C. Lea, R. Vidal, A. Reiter, and G. D. Hager. Temporal convolutional
networks: A unified approach to action segmentation. In European
Conference on Computer Vision, pages 47–54. Springer, 2016.

[22] I. Funke, S. Bodenstedt, F. Oehme, F. v. Bechtolsheim, J. Weitz,
and S. Speidel. Using 3d convolutional neural networks to learn
spatiotemporal features for automatic surgical gesture recognition in
video. In International Conference on Medical Image Computing and
Computer-Assisted Intervention (MICCAI), pages 467–475. Springer,
2019.

[23] D. Sarikaya and P. Jannin. Towards generalizable surgical activity
recognition using spatial temporal graph convolutional networks. arXiv
preprint arXiv:2001.03728, 2020.

[24] R. DiPietro, N. Ahmidi, A. Malpani, M. Waldram, G. I. Lee, M. R.
Lee, S. S. Vedula, and G. D. Hager. Segmenting and classifying
activities in robot-assisted surgery with recurrent neural networks.
International Journal of Computer Assisted Radiology and Surgery,
14(11):2005–2020, 2019.

[25] B. van Amsterdam, M. J. Clarkson, and D. Stoyanov. Multi-task
recurrent neural network for surgical gesture recognition and progress
prediction. In IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 1380–1386. IEEE, 2020.

[26] R. D. Ellis, A. J. Munaco, L. A. Reisner, M. D. Klein, A. M.
Composto, A. K. Pandya, and B. W. King. Task analysis of laparo-
scopic camera control schemes. The International Journal of Medical
Robotics and Computer Assisted Surgery, 12(4):576–584, 2016.

[27] A. A. Awale and D. Sarikaya. Using human gaze for surgical activity
recognition. In 2022 30th Signal Processing and Communications
Applications Conference (SIU), pages 1–4. IEEE, 2022.

[28] N. Pasini, A. Mariani, A. Munawar, E. De Momi, and P. Kazanzides.
A virtual suturing task: proof of concept for awareness in autonomous
camera motion. In 2022 Sixth IEEE International Conference on
Robotic Computing (IRC), pages 376–382. IEEE, 2022.

[29] P. Kazanzides, Z. Chen, A. Deguet, G. S. Fischer, R. H. Taylor,
and S. P. DiMaio. An open-source research kit for the da Vinci®
Surgical System. In IEEE International Conference on Robotics and
Automation (ICRA), pages 6434–6439. IEEE, 2014.

[30] S. G. Hart and L. E. Staveland. Development of NASA-TLX (task
load index): Results of empirical and theoretical research. In Advances
in Psychology, volume 52, pages 139–183. Elsevier, 1988.

[31] Z. Cui, J. Cartucho, S. Giannarou, and F. Rodriguez y Baena. Caveats
on the first-generation da Vinci Research Kit: latent technical con-
straints and essential calibrations. arXiv e-prints, pages arXiv–2210,
2022.

[32] C. Lea, G. D. Hager, and R. Vidal. An improved model for
segmentation and recognition of fine-grained activities with application
to surgical training tasks. In 2015 IEEE Winter Conference on
Applications of Computer Vision, pages 1123–1129. IEEE, 2015.




