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Quantum spherical codes

Shubham P. Jain    1, Joseph T. Iosue    1,2, Alexander Barg    3 & 
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As with classical computers, quantum computers require error-correction 

schemes to reliably perform useful large-scale calculations. The nature 

and frequency of errors depends on the quantum computing platform, 

and although there is a large literature on qubit-based coding, these are 

often not directly applicable to devices that store information in bosonic 

systems such as photonic resonators. Here, we introduce a framework 

for constructing quantum codes defined on spheres by recasting such 

codes as quantum analogues of the classical spherical codes. We apply this 

framework to bosonic coding, and we obtain multimode extensions of the 

cat codes that can outperform previous constructions but require a similar 

type of overhead. Our polytope-based cat codes consist of sets of points 

with large separation that, at the same time, form averaging sets known 

as spherical designs. We also recast concatenations of Calderbank–Shor–

Steane codes with cat codes as quantum spherical codes, which establishes a 

method to autonomously protect against dephasing noise.

Bosonic (also known as oscillator) codes offer alternative qubit blue-

prints that are compatible with continuous-variable quantum plat-

forms1–10 and that can reduce overhead by offering an extra layer of 

protection11–25. Qubits defined on a few bosonic modes or more exotic 

spaces26 are likely to prove useful as the control of quantum systems 

improves, but the field remains relatively unexplored27,28, in part, 

because structures and intuition from qubit-based coding theory 

need not apply.

We develop a framework that yields generalizations of a class of 

bosonic codes called the cat codes29,30 and unifies such codes with 

several others. Our key observation is that all such codes are particular 

instances of quantum versions of spherical codes31,32, which is a family 

well known in classical coding theory. We overview the framework and 

demonstrate its utility with several new multimode cat codes. A rigor-

ous study of general features is left to a companion follow-up work.

General codes on the sphere
Codewords of qubit codes are quantum superpositions of bit-strings. 

By analogy, we start with a spherical code, which is a set, or constella-

tion, of points on the unit sphere. To construct a quantum spherical 

code (QSC), we take a collection {𝒞𝒞
k

}

K−1

k=0

 of logical constellations, each 

of which gives rise to a codeword of the QSC obtained by taking a  

quantum superposition of all points x ∈ 𝒞𝒞

k

 (see Fig. 1). We consider 

uniform superpositions here, leaving more general codes to future 

work. Taken together, the logical constellations yield the code constel-

lation, 𝒞𝒞 𝒞 ⋃

K−1

k=0

𝒞𝒞

k

.

In the electromagnetic setting, spherical codes protect classical 

information against signal fluctuations during transmission, which 

correspond to small shifts acting on points in the constellation. A 

code’s ability to protect against such errors can be quantified by the 

minimum (squared) Euclidean distance dE between any pair of distinct 

points. QSCs naturally inherit dE as a figure of merit for protecting 

against such ‘bit-flip’ noise.

Because QSCs store quantum information, they also suffer from 

‘phase’ noise, which comes from, for example, fibre attenuation. Such 

noise can be expressed in terms of ‘potential-energy’ functions on the 

sphere whose evaluation can be used to distinguish logical constella-

tions (compare ref. 26, Sec. VI.B and ref. 33). If the average of a function 

over points in a constellation 𝒞𝒞
k

 depends on k, then the function’s 

underlying physical process causes an undetectable ‘phase’ error.

An (n, K, dE) spherical code contains K points on the n-dimensional 

unit sphere such that the squared Euclidean distance between any two 
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The above ‘quantum corrections’ for two coherent states of a code are 

suppressed exponentially with the energy ̄

N and the minimum distance 

between two points in the code’s constellation 𝒞𝒞 𝒞 ⋃

k

𝒞𝒞

k

,

d

E

𝒞 min

α≠β∈𝒞𝒞

∥ α − β∥

2

. (3)

Because dE sets the scale of resolution of the constellation points, we 

refer to it as the resolution from now on.

Coherent states are subject to two essentially different types of 

distortion: angular dephasing due to fluctuations in the frequency of 

a mode and changes in the mode’s excitations (ref. 42, Sec. II.A). These 

induce ‘bit’ and ‘phase’ noise on QSCs, respectively. The corresponding 

relevant noise operators are passive linear-optical transformations 

and products of modal ladder operators {a
j

,a

†

j

}

n

j=1

, whose commutator 

is [a
j

,a

†

ℓ

] 𝒞 δ

jℓ

. Products of transformations and ladder operators can 

be used to express any physical noise channel (ref.43, equation (39)).

Transformations on n modes are parametrized by the unitary 

group U(n) (ref. 35, Sec. 5.1.2). A transformation UR corresponding to 

the n-dimensional unitary matrix R rotates a coherent state |α⟩ into 

|

Rα⟩. If a generic (ref. 26, Sec. IV.B.) rotation satisfies ∥Rα − α∥2 < dE, the 

transformation is detectable in the ̄

N →∞ limit. Codes with larger 

resolution protect against larger sets of transformations.

A general ladder error,

L

p,q

(a

†

,a) 𝒞

n

∏

j=1

a

†p

j

j

a

q

j

j

, (4)

is a monomial in the operators (a1, a2, …, an) = a and their adjoints. 

It is parametrized by non-negative integer vectors p = (p1, p2, …, pn) 

and q = (q1, q2, …, qn) quantifying how many energy carriers (for 

example, photons or phonons) are gained and lost in each mode, 

respectively.

Lowering operators aj are ‘diagonal’ in the coherent-state  

basis, satisfying a
j

|

α⟩ 𝒞 α

j

|

α⟩

, where αj is the jth component of α.  

This ‘diagonality’ relationship and its adjoint imply that the  

expectation value of a ladder error over the kth codeword in equation 

(1) reduces to the average of the operator’s corresponding monomial 

over 𝒞𝒞
k

,

⟨𝒞𝒞

k

|L

p,q

(a

†

,a)|𝒞𝒞

k

⟩ ≈

̄

N

|p+q|/2

|𝒞𝒞

k

|

∑

α∈𝒞𝒞

k

L

p,q

(α

⋆

,α), (5)

where the one-norm ∣p + q∣ is the degree of Lp,q(α⋆, α). A ladder error can 

be detected whenever the above average is independent of k (ref. 44).

Polytope QSCs
We have found numerous QSCs whose constellations form vertices of 

real45 or complex46,47 polytopes. Polytope vertices are both sufficiently 

well-separated and uniform, providing protection against both types 

of noise. Code and polytope tables for the two cases can be found in 

the Supplementary Information.

We characterize ladder-error protection of polytope QSCs with 

three ‘distances’: d↓, t↓, and d↕. The first is the number of detectable 

losses (plus one), signifying that any pure-loss ladder error Lp=0,q with 

∣q∣ < d↓ is detectable. Similarly, t↓ is the number of correctable losses 

(plus one), signifying that any ladder error with ∣p∣, ∣q∣ < t↓ is detectable. 

The degree distance, d↕, signifies that the code detects ladder errors 

with degree ∣p + q∣ < d↕. These three parameters satisfy

⌊(d

↕

+ 1)/2⌋ ≤ t

↓

≤ d

↕

≤ d

↓

(6)

and can vary quite significantly.

points is at least dE. An ((n, K, dE, … )) QSC is a K-dimensional subspace of 

a quantum system’s vector space whose states are labelled by points on 

an n-dimensional (real or complex) unit sphere, and whose protection 

against rotations is quantified by dE. Protection against ‘phase’ noise is 

designated by the proxy ‘… ’ because the notion of a ‘phase-flip’ distance 

depends on the physical system embedding the QSC.

In principle, the above framework applies to any quantum state 

space parametrized by points on a sphere. Continuous-variable 

systems34,35 admit several such spaces, and there exist examples of 

QSCs expressed using ordinary29,30,36, squeezed37–39 and pair-coherent 

states40. Collective atomic systems described by spin-coherent states as 

well as rotational state spaces of diatomic molecules also admit QSCs, 

namely, various large-spin codes41 and diatomic molecular codes (ref. 

26, Sec. VI), respectively. We focus on coherent-state QSCs because 

such codes naturally generalize the cat codes, and error-correction 

procedures for these new multimode cat codes require a similar type of 

overhead as what has already been realized1–5. We note that the discus-

sion below can be modified to apply to other manifestations of QSCs.

Coherent-state formalism
A single-mode coherent state is a quantum representation of a stand-

ing wave of a fixed-frequency signal. An n-mode coherent state |α⟩ is 

parametrized by a complex n-dimensional point α. The point’s norm 

∥α∥2 corresponds to the state’s energy, and points of all states with a 

fixed energy ̄

N  form a complex n-sphere, Ω
n

𝒞 {α ∈ ℂ

n

, ∥ α∥

2

𝒞

̄

N}.

Coherent-state QSCs consist of disjoint logical constellations 𝒞𝒞
k

 

of |𝒞𝒞
k

| points picked from the n-sphere and superposed to form logical 

codewords,

|

𝒞𝒞

k

⟩ ≈

1

√|𝒞𝒞

k

|

∑

α∈𝒞𝒞

k

|

|

√

̄

Nα⟩ , (1)

where we restrict logical constellations to lie on the unit n-sphere and 

delegate the overall scaling of the sphere’s radius to ̄

N . An example to 

keep in mind is the four-component cat code defined by 𝒞𝒞
0

𝒞 {(1), (−1)} 

and 𝒞𝒞
1

𝒞 {(i), (−i)} 𝒞 i𝒞𝒞

0

.

The normalization in equation (1) is only valid asymptotically as 
̄

N →∞ because coherent states are not quite orthogonal due to the 

uncertainty principle,

|⟨α|β⟩|

2

𝒞 exp (− ∥ α − β∥

2

) ≤ exp (−

̄

Nd

E

) . (2)

a

b

c

Fig. 1 | Quantum spherical codewords are quantum superpositions of 

constellations on a sphere. a–c, Logical constellations can form the vertices 

of a polytope and unite to form a code polytope compound. Projections of 

polytope compounds are shown for the cat (a), Möbius–Kantor (b) and Hessian 

(c) quantum spherical codes, with logical constellation points coloured either 

green, red or purple.
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Our notation for an n-mode polytope QSC with K logical code-

words is ((n, K, dE, d↕)) or, more generally, ((n, K, dE, 〈t↓, d↕, d↓〉)). The 

four-component cat code is a ((1, 2, 2.0, 〈2, 2, 2〉)) QSC, detecting 

d↓ − 1 = 1 loss error and sporting the relatively high resolution of 2.0. 

Since it can detect one gain simultaneously with one loss, this code 

also corrects t↓ − 1 = 1 loss error.

Each logical constellation of the four-component cat code forms 

a line segment, and the code constellation forms the vertices of a 

square. More generally, logical constellations of the 2p-component 

((1, 2,4sin

2 π

2p

, ⟨p,p,p⟩)) cat code are two p-gons whose vertices inter-

leave for maximal resolution. There is a trade-off between loss protec-

tion and resolution, with the latter of order O(1/p2) for a large number 

p − 1 of correctable losses. Utilizing higher dimensions, we pick other 

complex polytopes that maintain the same resolution while offering 

increased loss protection over the cat codes.

A simple code straddling the p = 2, 3 cat codes in terms of perfor-

mance is the ((2, 2, 1.5, 〈2, 3, 3〉)) simplex code,

𝒞𝒞

0

𝒞 {

1

√

2

(ω

μ

,ω

2μ

) |μ ∈ ℤ

5

} 𝒞 −𝒞𝒞

1

, (7)

where ω 𝒞 e

i

2π

5 . This code admits a lower resolution than the p = 2 cat 

code, but detects one more loss in any of the two modes. Equivalently, 

it admits a higher resolution than the p = 3 cat code’s resolution of 

unity, but corrects one fewer loss. Simplices exist in any dimension, 

yielding the infinite ((n, 2, 2 − 1/n, 3)) QSC family that approaches the 

resolution of the p = 2 cat code with increasing n while detecting one 

more loss in any mode.

The Möbius–Kantor ((2, 3, 1.0, 〈3, 4, 4〉)) code maintains the 

resolution of the p = 3 cat code but adds one more logical state and 

detects one more loss. Each of its three logical constellations form 

the eight vertices of a Möbius–Kantor polygon (3{3}3 in Coxeter 

notation; see Supplementary Information), and such polygons com-

bine to form the 24 vertices of a 3{4}3 polygon. This code corrects 

one more loss than the 2T-qutrit36, which is a ((2, 3, 1.0, 〈2, 4, 4〉)) 

QSC whose logical constellations each make up the eight vertices 

of a complex octagon 2{4}4. These two codes differ despite the fact 

that both code constellations map to the vertices of the same real 

four-dimensional polytope by means of the mapping (x + iy, z + iw) → (x, 

y, z, w), which demonstrates subtleties in using real polytopes to define  

complex QSCs.

Logical constellations of the powerful ((3, 2, 1.0, 〈4, 5, 9〉)) Hessian 

code consist of the 27 vertices of a Hessian polytope,

𝒞𝒞

0

𝒞 {

1

√

2

(η

μ

, −η

ν

,0) ∪ perms. |μ, ν ∈ ℤ

3

} 𝒞 −𝒞𝒞

1

, (8)

where η 𝒞 e

i

2π

3 , and ‘perms.’ is shorthand for the two cyclic permuta-

tions of the vector to the left for each μ, ν. This code corrects as many 

losses as the p = 4 cat code, but has the resolution of the p = 3 cat code. 

Moreover, it can detect up to eight losses, which is a feature available 

only to the p ≥ 9 cat codes.

There is a ((2, 2, 2 −√

2, ⟨5,6, 12⟩))  code that maintains the same 

resolution as the p = 4 cat code, but corrects one more and detects eight 

more losses. Its logical constellations each form the 24 vertices of a 

4{3}4 polygon, combining into a 48-vertex 2{6}4 polygon.

An overachieving cousin of the above code is the ((4,2,2− 
√

2,〈 6,8,12〉)) Witting code, which consists of two Witting polytopes 

with 240 vertices each. This code corrects as many losses as a p = 6 cat 

code, has the resolution of a p = 4 cat code and detects up to 11 losses. 

It is the first member of the infinite ((2r, 2, 2 −√

2,8)) family of codes 

that are based on orbits of the real Clifford group48–51.

A lower bound on d↕ for Clifford, simplex or other QSCs can  

be obtained whenever their logical constellations form designs52.  

A constellation 𝒞𝒞
k

 is a complex spherical design53,54 of strength τ  

if averages of monomials Lp,q of total degree ∣p + q∣ ≤ τ over 𝒞𝒞
k

  

(equation (1)) are equal to those over the entire unit n-sphere,

1

|𝒞𝒞

k

|

∑

α∈𝒞𝒞

k

L

p,q

(α

⋆

,α) 𝒞 ∫

Ω
n

dαL

p,q

(α

⋆

,α). (9)

Design strength is preserved under unitary rotations R, so logical con-

stellations 𝒞𝒞
k

𝒞 R

k

𝒞𝒞

0

 consisting of rotated versions of a complex 

spherical τ-design 𝒞𝒞
0

 yield a QSC whose degree distance is at least τ + 1. 

In this way, construction of good QSCs can be accomplished by finding 

well-separated spherical designs 𝒞𝒞
0

 of high strength coupled with a 

choice of rotations {R
k

}

K−1

k=0

 (where R0 is the identity) that permits  

control of the resolution dE of the code constellation ⋃
k

R

k

𝒞𝒞

0

 while 

achieving high logical dimension K.

Corroborating our parameter-based analysis, we numerically 

compare the performance of multimode and single-mode codes using 

the channel fidelity55–59. We observe that, for quKit encodings (for 

K > 2), even simple multimode constellations, such as the simplex in 

equation (7), are able to utilize the extra dimensions efficiently and 

outperform single-mode constellations over a range of loss rates.  

A non-trivial K = 6 encoding, whose logical constellations each form 

Möbius–Kantor polytopes, consistently outperforms various combi-

nations of cat codes for a wide range of energies and noise parameters 

(Supplementary Information).

CSS-based QSCs
Concatenations of CSS codes60–62 with the two-component cat  

code29, 𝒞𝒞
0

𝒞 {(+1)} 𝒞 −𝒞𝒞

1

, can also be interpreted as QSCs, albeit with 

a weight-based notion of ladder-error protection. Such codes are 

actively studied11–25, but have so far been interpreted in the framework 

of the outer qubit code and not in terms of underlying modal degrees 

of freedom. Our interpretation parallels a standard way to construct 

(classical) spherical codes by mapping binary codes to the (real) sphere  

(ref. 31, Sec. 2.5 and ref. 32, Sec. 1.2).

A ((n, k, (dX, dZ))) qubit CSS code is constructed from two binary 

linear codes with distances dX and dZ, guaranteeing detection of 

Pauli X-type and Z-type errors with weights less than the distances, 

respectively. Its codewords are equal superpositions of multiqu-

bit states labelled by binary strings. Concatenation is equivalent to  

mapping each binary string into a point on the n-sphere by means of 

the coordinate-wise antipodal mapping 0 → + 1 and 1 → − 1. This yields  

an ((n, 2k, dE = 4dX/n, w↕ = dZ)) QSC that detects all errors Lp,q with  

Hamming weight Δ(p + q) < w↕ (see Supplementary Information). 

Asymptotically good qubit CSS codes thus yield QSCs whose distances 

dE, w↕ are both separated from 0 as n → ∞.

X-type gates and stabilizers
Rotations on the n-sphere provide groups of X-type logical gates  

and stabilizers for QSCs. Elements of a logical group G permute  

logical constellations. Elements of a stabilizer subgroup H ⊂ G  

permute points within each constellation, thereby leaving code-

words invariant. Rotations are realized by passive linear-optical  

transformations using ref. 35, equation (3.24). Rotation-based  

gates are noise-bias preserving63 in that they do not convert rotations 

into losses.

For cat codes with 2p components, 𝒞𝒞
0

𝒞 {(ζ

2j

) | j ∈ ℤ

p

} 𝒞 ζ𝒞𝒞

1

 with 

ζ 𝒞 e

i

π

p , the one-dimensional rotation ζ permutes the two constella-

tions, whereas powers of ζ2 leave each constellation invariant.  
These rotations generate H 𝒞 ℤ

p

⊂ G 𝒞 ℤ

2p

 and are realized by  

transformations ζa
†

a and ζ2a
†

a.

Simplex constellations (equation (7)) can be permuted with  

the 
−(

1 0

0 1

)

 rotation and are invariant under powers of 
ω(

1 0

0 ω

)

,  

corresponding to the groups ℤ
5

⊂ ℤ

5

× ℤ

2

, respectively. The latter 

http://www.nature.com/naturephysics


Nature Physics

Article https://doi.org/10.1038/s41567-024-02496-y

group is generated by the two-mode transformations (−1)
a

†

1

a

1

+a

†

2

a

2 and 

ω

a

†

1

a

1

+2a

†

2

a

2.

A stabilizer group for the Hessian code (equation (8)) is  

He

3

𝒞

⟨η,X,Z ⟩

, the 27-element qutrit Pauli, also known as the Heisen-

berg group consisting of powers of η and the X, Z qutrit Pauli matrices. 

Appending by the logical-X rotation − I, where I is the 3-by-3 identity, 

yields the logical group He

3

× ℤ

2

. These groups are realized by 

phase-shifters and SWAP gates. Larger H ⊂ G can be picked using the 

fact that all constellations form polytopes. The largest such groups are 

the 648-element and 1,296-element symmetry groups of the corre-

sponding Hessian and double-Hessian polytopes, respectively. These 

offer other ways to implement the logical-X Pauli gate, but do not yield 

other gates.

Qudit QSCs offer larger logical-gate groups. The two groups are 

ℤ

2

⊂ 2I  for the 24-cell ((2, 5, 0.382, 〈4, 6, 8〉)) real polytope code, with 

the former generated by the 5-by-5 matrix −I, and the latter the binary 

icosahedral group 2I. Since the stabilizer group acts trivially, the logical 

group acts on the five codewords as a five-dimensional permutation 

representation of the icosahedral group I 𝒞 2I/ℤ

2

.

CSS-based QSCs inherit logical-X stabilizers (gates) by mapping 

each X-type stabilizer (logical Pauli) to a transversal linear-optical 

transformation by means of the component-wise mapping σ
x

→ (−1)

a

†

a

. 

For example, the σ⊗4

x

 stabilizer of the [[4, 2, 2]] code is mapped to  

the joint parity ⨂
4

j=1

(−1)

a

j

†

a

j.

Z-type gates and stabilizers
The Z-type ‘stabilizer’ for 2p-component cat codes is F(a) 𝒞 a

2p

−

̄

N

p

, 

which annihilates each point in the dilated code constellation √ ̄

N𝒞𝒞. 
The corresponding polynomial F(α) can be thought of as a  
potential on the sphere that is minimized only at the code-constellation  
points64.

Polytope QSCs can require several polynomials to be stabilized. 

Simplex codes (equation (7)) are stabilized by F
1

𝒞 a

2

1

a

4

2

−

̄

N

3

 and 

F

2

𝒞 a

3

1

a

2

−

̄

N

2

. Hessian codewords (equation (8)) are stabilized  

by the F
1

𝒞 a

1

a

2

a

3

, F

2

𝒞 a

3

1

+ a

3

2

+ a

3

3

 and F
3

𝒞 a

6

1

+ a

6

2

+ a

6

3

−

̄

N

3

/4 .  

The degree of F1,2 is lower than the code’s degree distance (d↕ = 5)  

and detectable-loss distance (d↓ = 9), unlike for the cat codes. This 

property makes this code similar to degenerate stabilizer codes, that 

is, codes whose check-operator weight is smaller than their distance.

Stabilizer polynomials commute with logical transformations 

UR for any R in the logical group and can be obtained by averaging 

ladder operators (equation (4)) over the symmetry group of the code 

constellation’s polytope.

Other polynomials act as logical gates on QSCs, evaluating  

to the same value for all points in 𝒞𝒞
k

 in a way that depends on k.  

For the cat codes, G = ap evaluates to ± ̄

N

p/2

 on the two codewords, 

respectively, yielding a logical-Z gate. The monomial G 𝒞 a

1

a

2

2

  

projects to a logical-Z gate within the simplex codespace. The smallest 

loss-only Z gate of the Hessian code is G
1

𝒞 a

3

1

a

6

2

 or its two cyclic  

permutations, and only a permutation-symmetric combination of all 

three operators commutes with the stabilizer group. A lower-degree 

monomial G
2

𝒞 a

†

1

a

1

a

3

2

 realizes another Z gate with the help of gain 

operators. Combinations G
j

+ G

†

j

 generate logical-Z rotations within 

the F-annihilated subspace64, and have been realized for p = 2 cat 

codes4.

CSS-based QSCs inherit gates and stabilizers by mapping  

each Z-type gate or stabilizer to a monomial by means of the 

component-wise mapping σz → a. For example, the σz ⊗ σz ⊗ I ⊗ I gate 

of the ((4, 2, 2)) code is mapped to a1a2. These codes also require  
stabilizers a2

j

−

̄

N/n  on each mode j in order to stabilize the inner 

cat-code constellation.

Correcting errors
Protection against rotation-based noise for 2p-component  

cat codes is done passively using a Lindbladian whose jump operator  

is the Z-type stabilizer F (ref. 64) and/or a Hamiltonian F†F  

(refs. 65,66). Both techniques have been realized for p = 2 (refs. 3,5). 

General QSCs admit the same type of passive protection but require 

several Fj.

Microwave cavities coupled to superconducting circuits67 provide 

a fertile ground for realizing such passive protection, and we outline 

how an existing superconducting circuit element called an ‘ATS’ (ref. 68)  

can be tuned to realize the more complicated jump operators of  

several QSCs (Supplementary Information). In particular, we show 

that a recent surface-cat concatenated-code proposal17 can be readily 

modified with a Z-type surface-code stabilization scheme, thereby 

utilizing the full power of the code against Z-type noise in exclusively 

passive fashion.

Ladder errors in equation (4) map the kth codeword in equation 

(1) into error states in span {|α⟩ ,α ∈ 𝒞𝒞

k

}. The stabilizer group H splits 

up into several irreducible representations (irreps) acting on this span. 

Ladder-error protection is done by measuring syndromes associated 

with irreps and mapping back into the codespace. Correction of mul-

tiple error spaces simultaneously may be required, depending on the 

group’s ability to resolve all error spaces associated with a given  

error set.

The four-component cat-code stabilizer is the parity (−1)
a

†

a

.  

Its eigenvalues correspond to the two irreps of H 𝒞 Z

2

, distinguishing 

between no error and a single loss a. This technique1 led to the  

first demonstration of break-even quantum error correction using 

p = 2 cat codes2. Similar multimode parities detect X-errors for 

CSS-based QSCs.

For the simplex code, equation (7), eigenvalues of the  

two-mode stabilizer ωa

†

1

a

1

+2a

†

2

a

2  label the five irreps of Z
5

. They allow 

correction of {a
1

,a

2

,a

1

a

2

,a

2

2

} , but fall short of correcting all  

two-mode losses owing to a2

1

 not being simultaneously correctable 

with a2.

For the Hessian code, equation (8), the transformations realizing 

He

3

 can be measured to resolve the group’s 11 irreps. The general  

procedure for this and other non-Abelian codes resembles that of 

molecular codes (ref. 26, Sec. V.D).

Conclusion
We introduce a framework for constructing quantum analogues of  

the classical spherical codes, encapsulating several physically relevant 

quantum coding schemes for bosonic, spin and molecular systems. We 

apply our framework to obtain multimode coherent-state codes based 

on polytopes, CSS codes and classical codes. These QSCs outperform 

previous cat-code constructions29,30,36 both in terms of code parameters 

and a numerical performance comparison of qudit encodings. We 

show how passive protection of several instances of these QSCs can 

be realized in microwave cavities.

There are many other ways of constructing spherical codes, for 

example, as group-orbit codes69–71, as spherical embeddings of associa-

tion schemes32, through computer searches72,73 and many others31,32,74,75, 

as well as ways of constructing spherical designs76–78. As such, we antici-

pate that this work will pave the way for many new, well-protected and 

experimentally feasible logical qubits.
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1

logical constellation code constellation 𝑛 𝐾 ⟨𝑡↓, 𝑑↕, 𝑑↓⟩ 𝑑𝐸 related code

line segment 2𝐾-gon 1 𝐾 ⟨2, 2, 2⟩ 4 sin2 𝜋

2𝐾
two-component cat qu𝐾it

icosahedron 2 6 2 1.106
dodecahedron 2 10 2 0.509

24-cell 2 12 2 1.000 Z2 ⊂ 2T group-GKP
288-cell 2 24 2 0.586 Z2 ⊂ 2O group-GKP

hyper-icosahedron 2 60 2 0.382 Z2 ⊂ 2I group-GKP
hyper-dodecahedron 2 300 2 0.073

𝐷-orthoplex ⌈𝐷/2⌉ 𝐷 ⟨1, 2, 2⟩ 2.000 𝐷 = 4: Z2 ⊂ Q group-GKP
𝐷-cube ⌈𝐷/2⌉ 2𝐷−1 2 4/𝐷

𝑝-gon 𝐾𝑝-gon 1 𝐾 ⟨𝑝, 𝑝, 𝑝⟩ 4 sin2 𝜋

𝐾𝑝
𝑝-component cat qu𝐾it

tetrahedron dodecahedron 2 5 3 0.509

octahedron 5-octahedron 2 5 4 0.382

icosahedron 2-icosahedron 2 2 ⟨4, 6, 6⟩ 0.211

hyper-tetrahedron hyper-dodecahedron 2 120 3 0.073

hyper-octahedron 24-cell 2 3 ⟨2, 4, 4⟩ 1.000 Q ⊂ 2T group-GKP, 2T-qutrit
288-cell 2 6 ⟨2, 4, 4⟩ 0.586 Q ⊂ 2O group-GKP

hyper-icosahedron 2 15 4 0.382 Q ⊂ 2I group-GKP
hyper-dodecahedron 2 75 4 0.073

hyper-cube, -octahedron 24-cell 2 2 ⟨2, 4, 4⟩ 1.000

24-cell 288-cell 2 2 ⟨5, 6, 12⟩ 0.586 2T ⊂ 2O group-GKP
hyper-icosahedron 2 5 ⟨4, 6, 8⟩ 0.382 2T ⊂ 2I group-GKP

hyper-dodecahedron 2 25 6 0.073

hyper-icosahedron hyper-dodecahedron 2 5 12 0.073

𝐷-simplex 𝐷-bisimplex ⌈𝐷/2⌉ 2 ⟨2, 3, 3⟩ 2− 2/𝐷

(2𝑟 − 1)-simplex (2𝑟 − 1)-cube 2𝑟−1 22
𝑟−𝑟−1 3 4/(2𝑟 − 1) shortened Hadamard

𝐷-demicube 𝐷-cube ⌈𝐷/2⌉ 2 min(4, 𝐷) 4/𝐷 single parity-check

2𝑟-orthoplex 2𝑟-cube 2𝑟−1 22
𝑟−𝑟−1 4 22−𝑟 augmented Hadamard

TABLE A.1: QSCs whose logical and code constellations both make up the vertices of a real polytope; 𝐷 ≥ 2
corresponds to spatial dimension, and the parameter 𝑟 ≥ 2.

Appendix A: Real-polytope QSCs

Logical constellations 𝒞𝑘 of a real polytope QSC form the vertices of a real polytope. The őgure that results from the
union of all logical polytopes is called a polytope compound, and its vertices form the code constellation 𝒞. Polytope
QSCs can thus be constructed from established polytope compounds.

Regular real polytope compounds have been classiőed in three [1] and four [2, 3] dimensions. We collect all QSCs
whose logical and code constellations each form a single regular real polytope in Table A.1. We leave to future work
QSCs made up of polytope compounds whose code constellation forms vertices of multiple regular polytopes [1][2,
Table VII][3, Sec. 10] as well as recently discovered variations of compounds with the same parameters [3, Sec. 10].
We include a few QSCs constructed from notable non-regular polytopes. All polytopes used in our constructions are
listed in Table A.2.

The őrst column of the table lists the polytope whose vertices make up the logical constellations 𝒞𝑘. All 𝒞𝑘 make
up the same polytope for every code, with the exception being the łhyper-cube, -octahedronž code, in which 𝒞0 (𝒞1)
makes up the vertices of a hyper-cube (hyper-octahedron).

Since the 𝑛-sphere is complex while the polytopes are real, we have to embed the polytopes into the sphere. For
even dimension 𝐷, the standard method of doing this is via the mapping

R
𝐷 ∋ (𝑥1, 𝑥2, · · · , 𝑥𝐷) → (𝑥1 + i𝑥2, 𝑥3 + i𝑥4, · · · , 𝑥𝐷−1 + i𝑥𝐷) ∈ C

𝐷/2 . (A1)

Other mappings can be obtained by permuting the real coordinates. For odd 𝐷, one has to embed the polytope into
𝐷+1 dimensions and then apply a mapping like the one above. Convenient coordinates exist for polytopes embedded
in higher dimensions, e.g., vertices of a 𝐷-simplex have coordinates (1, 1, · · · 1,−𝐷) ∈ R

𝐷+1 and permutations thereof



2

polytope dim Schlaŕi/Coxeter vertices design 𝑑𝐸 𝑑𝐸 (numerical) reference

line segment 1 { } 2 1 4 4.000

triangle 2 {3} 3 2 3 3.000
square 2 {4} 4 3 2 2.000

pentagon 2 {5} 5 4
√
5(1− 𝜙) 1.382

...
...

...
...

...
...

...
𝑝-gon 2 {𝑝} 𝑝 𝑝− 1 4 sin2 𝜋

𝑝

tetrahedron 3 {3, 3} 4 2 8/3 2.667
octahedron 3 {3, 4} 6 3 2 2.000

cube 3 {4, 3} 8 3 4/3 1.333
icosahedron 3 {3, 5} 12 5 4/(1 + 𝜙2) 1.106

dodecahedron 3 {5, 3} 20 5 2− 2
√
5/3 0.509

2-icosahedron 3 𝛽{3 , 4} 24 5 2(1− 𝜙)2/(1 + 𝜙2) 0.2111 [1]
5-octahedron 3 [5{3 , 4}]2{3 , 5} 30 5 (1− 𝜙)2 0.382 [1]

hyper-tetrahedron 4 {3, 3, 3} 5 2 5/2 2.500 [7]
hyper-octahedron 4 {3, 3, 4} 8 3 2 2.000 [7]

hyper-cube 4 {4, 3, 3} 16 3 1 1.000 [7]
24-cell 4 {3, 4, 3} 24 5 1 1.000 [7]

288-cell 4 o3m4m3o 48 7 2−
√
2 0.586 [8, 9]

hyper-icosahedron 4 {3, 3, 5} 120 11 (1− 𝜙)2 0.382 [7]

hyper-dodecahedron 4 {5, 3, 3} 600 11 (7− 3
√
5)/4 0.073 [7]

𝐷-simplex 𝐷 {3𝐷−1} 𝐷 + 1 2 2 + 2/𝐷 [2, 4]
𝐷-bisimplex 𝐷 [2{3D−1}] 2(𝐷 + 1) 2 2− 2/𝐷 [9]
𝐷-orthoplex 𝐷 {3𝐷−2, 4} 2𝐷 3 2 2.000 [2]
𝐷-demicube 𝐷 {3 1 ,D−3 ,1} 2𝐷−1 min(3, 𝐷 − 1) 8/𝐷 [9]

𝐷-cube 𝐷 {4, 3𝐷−2} 2𝐷 3 4/𝐷 [2]

TABLE A.2: Polytope data used to construct QSCs in Table A.1. Non-italicised polytopes make up the convex

regular polytopes in real dimension 𝐷. 𝜙 = 1+
√
5

2 is the golden ratio.

[4, Sec. 1.5]. Mappings into higher-dimensional spaces can also be used, e.g., the 2𝑝-component cat-code constellation
can be mapped into 𝒞 = {𝜁𝑗𝛼, 𝑗 ∈ Z2p} for any 𝑛-dimensional unit vector 𝛼. If one prefers to use real-valued vertices,
then R

𝐷 can be directly embedded into C
𝐷.

The parameters 𝑡↓, 𝑑↓ can depend on which of the above mappings one uses; we calculate them numerically by
evaluating Eq. (5) from the main text. A mapping-independent lower bound on the degree distance 𝑑↕ can be
obtained from the strength of the design formed by the logical polytopes. Real polytope vertices can form (real)
spherical designs [5], which are convertible into complex spherical designs via [6, Lemma 3.3]. The design strengths
𝜏 of 𝐷-dimensional polytope vertices are listed in Table A.2, column 5, yielding 𝑑↕ ≥ 𝜏 + 1 for a code consisting of
such polytopes. This bound appears to be tight for real polytopes and holds as long as the polytope formed by 𝒞 is
the same dimension as those formed by each 𝒞𝑘. Otherwise, the logical polytopes will not share a common sphere on
which their vertices form designs. An exception to this restriction is for 𝒞𝑘 that are 1D line segments and is due to
the fact that any pair of segments shares a common circle. The degree distance of a QSC consisting of segments is
thus at least two.

Points on the real 4D sphere are in one-to-one correspondence with quaternions, which in turn parameterize the
group SU(2) [10]. Vertices of the hyper-octahedron, 24-cell, (disphenoidal) 288-cell, and hyper-icosahedron correspond
to quaternions forming the quaternion Q, binary tetrahedral 2T, binary octahedral 2O, and binary icosahedral 2I
subgroups, respectively. Polytope QSCs consisting of such polytopes thus are related to SU(2) group-GKP codes
[11]. The 2T-qutrit code [12] is similarly related to the Q ⊂ 2T ⊂ SU(2) group-GKP code, but the idea of using
groups this way is limited to two modes because spheres in higher dimensions no longer correspond to groups.

An [𝑛, 𝑘] binary linear code 𝐶 can be converted into a QSC by taking logical constellations to be cosets of 𝐶
in F

𝑛
2 under the antipodal mapping. The table lists QSCs arising this way from the Hadamard and single parity-

check codes. These codes all have non-trivial 𝑑↕ because the cosets correspond to known polytope compounds
when embedded into the sphere [13, pg. 287].
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logical const-n code const-n 𝑛 𝐾 ⟨𝑡↓, 𝑑↕, 𝑑↓⟩ 𝑑𝐸 related code

Möbius-Kantor 2{6}3 2 2 ⟨3, 4, 6⟩ 0.845
3{4}3 2 3 ⟨3, 4, 4⟩ 1.000 Q ⊂ 2T group-GKP
2{8}3 2 6 ⟨3, 4, 4⟩ 0.367

(2, 4)-orthoplex 4{3}4 2 3 ⟨2, 4, 4⟩ 1.000 Q ⊂ 2T group-GKP, 2T-qutrit

3{6}2 [2 3{6}2] 2 2 ⟨4, 4, 4⟩ 0.211

4{3}4 2{6}4 2 2 ⟨5, 6, 12⟩ 0.586 2T ⊂ 2O group-GKP

3{4}3 2{8}3 2 2 ⟨3, 6, 12⟩ 0.367

2{6}4 [2 2{6}4] 2 2 ⟨4, 8, 8⟩ 0.367

3{5}3 2{10}3 2 2 ⟨9, 12, 30⟩ 0.132

5{3}5 2{6}5 2 2 ⟨11, 12, 30⟩ 0.098
3{4}5 2 3 ⟨11, 12, 20⟩ 0.044

(3, 3)-orthoplex rectiőed Hessian 3 8 ⟨2, 3, 3⟩ 1.000

(3, 6)-orthoplex rectiőed Hessian 3 4 ⟨2, 4, 6⟩ 1.000

Hessian double Hessian 3 2 ⟨4, 5, 9⟩ 1.000

Witting double Witting 4 2 ⟨6, 8, 12⟩ 0.586 Clifford group-orbit

(1,𝑚)-cube (𝑛,𝑚)-cube 𝑛 𝑚𝑛−1 ⟨1, 2,𝑚⟩ 4

𝑛
sin2 𝜋

𝑚

(1,𝑚)-orthoplex (𝑛,𝑚)-orthoplex 𝑛 𝑛 ⟨1, 2,𝑚⟩ min(2, 4 sin2 𝜋

𝑚
)

TABLE B.1: QSCs whose logical and code constellations both make up the vertices of a non-real complex polytope;
𝑛 ≥ 1 corresponds to complex dimension. 𝑑↓ = 𝑚 for the (𝑛,𝑚)-cube/orthoplex codes are conjectured based on

numerical results.

Appendix B: Complex-polytope QSCs

Complex polytopes are polytopes whose vertices are complex. As with real polytopes, there are a myriad polygons
in the two complex dimensions, a handful of special polytopes in a few of the higher dimensions, and only two inőnite
families of non-real complex polytopes present in any dimension.

The two families are straightforward complex generalizations of the cube and orthoplex, respectively. A simple
set of vertices of a real 𝐷-dimensional cube consists of 2𝐷 vectors with coordinates ±1. The vertices of the complex
(𝑛,𝑚)-cube (a.k.a. 𝛾𝑚

𝑛 ) consist of 𝑚𝑛 complex vectors of dimension 𝑛 with 𝑚th roots of unity at each coordinate.
A similar generalization holds for the (𝑛,𝑚)-orthoplex (a.k.a. 𝛽𝑚

𝑛 ), whose 𝑚𝑛 coordinates are 𝑛-dimensional vectors
whose single nonzero entry is an 𝑚th root of unity.

A union of complex polytopes sharing a common center forms a complex polytope compound. Complex compounds
yield complex QSCs whose code constellations are formed by the vertices of the compound and whose logical constel-
lations are formed by the vertices of the participating polytopes. Complex compounds have not been as thoroughly
studied as their real counterparts, and most of our codes come from the handful of constructions from Refs. [8, 13, 14].
In Table B.1, we collect the complex polytope QSCs that are the most interesting for a comparative study with the
real polytope codes. All the polytopes used in our constructions are listed in Table B.2.

Complex polygons yield several interesting QSCs not available in the real case. We mentioned already in the main
text that multiple complex polytopes can reduce to the same real polytope when mapped into the reals. As another
example, compounds consisting of 5{3}5 polygonal code constellations have exceptional loss detection capabilities,
with 𝑑↓ as high as 30, but suffer from low resolution. There are many more polygons, and we leave a more extensive
list of complex polytope QSCs to a follow-up work.

Complex polytopes also offer interesting many-mode alternatives to cat codes. The tensor product of 𝑛 single-mode
4-component cat codes is an ((𝑛, 2𝑛, 2/𝑛, ⟨2, 2, 2⟩)) QSC whose code constellation can be thought of as an (𝑛, 4)-cube,
constructed as a Kronecker product of 𝑛 (1, 4)-cubes. The resolution of this code decreases as order 𝑂(1/𝑛), meaning
that a constant energy per mode (usually picked to be n̄/𝑛 ≈ 2 [15, 16]) is required in order to be able to resolve
codewords without substantial intrinsic memory error. On the other hand, the (𝑛, 4)-orthoplex ((𝑛, 𝑛, 2.0, ⟨1, 2, 4⟩))
QSC, whose logical constellations are (1, 4)-orthoplexes, maintains constant resolution and has extra loss detection at
the expense of a linear increase in the codespace dimension and no loss correction. It is an interesting open problem
to őnd a QSC with 𝐾 = 𝑂(𝑛) that can correct one or more losses.
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polytope dim Schlaŕi/Coxeter vertices design 𝑑𝐸 𝑑𝐸 (numerical) reference

Möbius-Kantor 2 3{3}3 8 3 2 2.000 [14, 17]

2 2{6}3 16 3 2− 2/
√
3 0.845 [14, 17]

2 3{4}3 24 5 1 1.000 [14, 17]
2 4{3}4 24 5 1 1.000 [14, 17]

2 3{6}2 24 3 (3−
√
3)/2 0.634 [14, 17]

2 2{6}4 48 7 2−
√
2 0.586 [14, 17]

2 2{8}3 48 5 2− 2
√︀

2/3 0.367 [14, 17]
2 [2 3{6}2 ] 48 3 2(1− 𝜙)2/(1 + 𝜙2) 0.211 [14, 17]

2 [2 2{6}4 ] 96 7 2− 2
√︀

2/3 0.367 [14, 17]
2 3{5}3 120 11 (1− 𝜙)2 0.382 [14, 17]
2 5{3}5 120 11 (1− 𝜙)2 0.382 [14, 17]

2 2{10}3 240 11 2−
√︁

2(3 +
√
5)/3 0.132 [14, 17]

2 2{6}5 240 11 2−
√︁

𝜙
√
5 0.098 [14, 17]

2 3{4}5 360 11 4 sin2(𝜋/30) 0.044 [14, 17]

Hessian 3 3{3}3{3}3 27 4 3/2 1.500 [13, 17]
double Hessian 3 2{4}3{3}3 54 4 1 1.000 [8]
rectiőed Hessian 3 3{3}3{4}2 72 5 1 1.000 [13]

Witting 4 3{3}3{3}3{3}3 240 7 1 1.000 [17]

double Witting 4 [2 3{3}3{3}3{3}3] 480 7 2−
√
2 0.586 [8]

(𝑛,𝑚)-cube 𝑛 𝑚{4}2{3} · · · 2{3}2 𝑚𝑛 min(3,𝑚− 1) 4

𝑛
sin2 𝜋

𝑚
[17]

(𝑛,𝑚)-orthoplex 𝑛 2{3}2{3} · · · 2{4}𝑚 𝑛𝑚 min(3,𝑚− 1) min(2, 4 sin2 𝜋

𝑚
) [17]

TABLE B.2: Non-real polytope data used to construct QSCs in Table B.1. Italicised polytopes are not regular.

𝜙 = 1+
√
5

2 is the golden ratio. Polytope coordinates of [2 3{6}2 ] are the union of those of 3{6}2 together with their
versions where each coordinate (𝑎, 𝑏) is mapped to (𝑎,−𝑏). Polytope coordinates of [2 2{6}4 ] are the union of those

of 2{6}4 together with their versions where each coordinate (𝑎, 𝑏) is mapped to (𝜁𝑎, 𝜁5𝑏) for 𝜁 = exp(𝑖𝜋/12).

Appendix C: CSS-based QSCs

The antipodal mapping converts binary strings 𝑏 = (𝑏1, 𝑏2, · · · , 𝑏𝑛) labeling 𝑛-qubit states into 𝑛-mode coherent
states normalized to an energy of unity,

𝛼𝑏 =
(︀

(−1)𝑏1 , (−1)𝑏2 , · · · , (−1)𝑏𝑛
)︀

/
√
𝑛 . (C1)

Using [18, Thm. 7.3], there exists a basis of codewords for an [[𝑛, 𝑘, (𝑑𝑋 , 𝑑𝑍)]] CSS code that is labeled by length-𝑘
binary strings ℓ and that is expressed in terms of C⊥

Z , the dual of one of the underlying binary linear codes. Applying
the antipodal mapping to the ℓth element of such a basis yields a codeword for the corresponding QSC,

|ℓ⟩ ∼ 1
√︁

|C⊥
Z |

∑︁

𝑐∈C⊥

Z

|
√

n̄ 𝛼ℓ+𝑐⟩ . (C2)

Phase-flip errors Using Eq. (5) from the main text, the projection of a general ladder error acting a subset of
modes S into the QSC codespace is equivalent to a 𝑍-type error,

𝐿(S)
𝑝,𝑞 =

∏︁

𝑗∈S

𝑎
†𝑝𝑗

𝑗 𝑎
𝑞𝑗
𝑗 →

(︂

n̄

𝑛

)︂|𝑝+𝑞|/2
∏︁

𝑗∈S

𝑍
𝑝𝑗+𝑞𝑗
𝑗 , (C3)

where we deőne 𝑍𝑗 |
√

n̄𝛼𝑏⟩ = (−1)𝑏𝑗 |
√

n̄𝛼𝑏⟩. As long as the support size of the region S is less than 𝑑𝑍 , the distance
of CZ, the properties of CSS codes can be used to show that the above error is detectable. This means that any ladder
error with Hamming weight ∆(𝑝+ 𝑞) < 𝑑𝑍 is detectable.

Bit-flip errors The squared Euclidean distance between two code constellation elements 𝛼𝑏 and 𝛼𝑐 can be
expressed in terms of the Hamming distance ∆(𝑏, 𝑐) between their corresponding binary strings,

‖𝛼𝑏 −𝛼𝑐‖2 = 2− 2𝛼𝑏 ·𝛼𝑐 (C4a)
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= 2− 2

𝑛

𝑛
∑︁

𝑗=1

(−1)𝑏𝑗+𝑐𝑗 (C4b)

= 2− 2

𝑛

𝑛
∑︁

𝑗=1

+[𝑛−∆(𝑏, 𝑐)]− [∆(𝑏, 𝑐)] (C4c)

= 4∆(𝑏, 𝑐)/𝑛 . (C4d)

This quantity is bounded by 4𝑑𝑋/𝑛, where 𝑑𝑋 is the distance of the other underlying binary linear code CX.

Appendix D: Performance of quKit QSCs

cat simplex

𝐾 𝑑𝐸 n̄ = n̄/𝑛 𝐹max 𝑑𝐸 n̄ n̄/𝑛 𝐹max

2 2 1.6920 0.9822 1.5 3.0776 1.5388 0.9841
3 1 2.6768 0.9603 0.8820 5.3919 2.6960 0.9604
4 0.5858 3.6403 0.9318 0.8820 5.3442 2.6721 0.9552
5 0.3820 4.5993 0.8992 0.6909 5.1868 2.5934 0.9532
6 0.2680 5.5608 0.8642 0.4173 5.5496 2.7748 0.9412

(a) Sweet spot data and other code parameters are
listed where 𝐾 is logical dimension, 𝑛 is the number of
modes, n̄ the total energy required and 𝐹max the ődelity

achieved at the code’s sweet spot.
(b) Channel ődelity 𝐹ℰ is plotted at each code’s

respective sweet spot energies.

FIG. D.1: Comparing cat (1-mode) and simplex (2-mode) quKit codes for varying values of 𝐾, it is observed that
the simplex family provides more pronounced advantages in code parameters and performance with growing logical

dimension. The sweet-spot energy was calculated at the loss rate 𝛾 = 0.095.

Here, we present results of a numerical comparison of several new intrinsically multi-mode polytope constellations
to single-mode and multi-mode instantiations of cat-code (i.e., polygon-based) constellations. We observe that multi-
mode QSCs efficiently utilize the extra dimensions to store more logical information, all while consuming a comparable
(in most cases, lower) energy per mode.

Our performance metric, as guided by [19ś22], is the channel fidelity

𝐹ℰ ≡ ⟨Ψ|𝜌ℰ |Ψ⟩ (D1)

where, for a qubit state, |Ψ⟩ = (|0𝐴0𝐵⟩ + |1𝐴1𝐵⟩)/
√
2 is the maximally entangled state between the source qubit

𝐴 and the ancilla qubit 𝐵. The outgoing density matrix, 𝜌ℰ ≡ ℰ𝐴 ⊗ ℐ𝐵(|Ψ⟩⟨Ψ|), is obtained by the action of the
combined encoding-noise-recovery channel ℰ on the source qubit and identity ℐ on the ancilla. The channel ődelity
𝐹ℰ is an intrinsic property of the channel which measures how well the entanglement between the information qubit
and an ancillary system in preserved upon application of the channel ℰ . For more motivation behind our choice of
metric, we refer the interested reader to [23, Appx. A].

The channel ℰ is considered to be the composition of the encoding, noise and recovery channels. We assume that
noise occurs only via the pure-loss channel, described by Kraus operators [24]

𝐸ℓ ≡
(︂

𝛾

1− 𝛾

)︂ℓ/2
𝑎̂ℓ√
ℓ!
(1− 𝛾)𝑛̂/2 , (D2)

where ℓ ≥ 0 quantiőes the amount of photons lost, and where 𝛾 is the loss rate. For a selected encoding and this
error channel, we optimize the recovery to obtain the maximum 𝐹ℰ . This optimization problem can be formulated as
a semideőnite program [21], which we solve using the Python library CVXPY [25, 26].
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The above technique can be adapted to bosonic codes by setting a maximum Fock-space cutoff (in order to make the
underlying space őnite-dimensional) [23]. We avoid such truncation by working in the coherent-state basis. In such a
basis, the action of the pure loss channel can be expressed using a different set of Kraus operators whose cardinality
and matrix dimension are equal to the size of the code constellation [12, Appx. A]. That way, we are constrained more
by the size of the code constellation than the number of modes.

A 𝐾-dimensional code is constructed by replicating a łbasež logical constellation 𝐾 times while maintaining good
resolution 𝑑𝐸 . Cat codes use 𝑛-gons as the base constellations, while simplex codes employ 𝒞0 from Eq. (7) from the
main text.

The 𝑘th logical constellation of a 2-gon qu𝐾it code with 0 ≤ 𝑘 < 𝐾 is generated by multiplying the base line segment
{1,−1} with 𝑒i𝜋𝑘/𝐾 . The 𝑘th logical constellation 𝑅𝑘𝒞0 for the qu𝐾it simplex codes with 0 ≤ 𝑘 < 𝐾 ∈ {2, 3, 4} is
obtained by letting {𝑅0,𝑅1,𝑅2,𝑅3} = {𝐼,−𝐼, 𝑍,−𝑍}, where 𝐼 is the two-dimensional identity and 𝑍 is the Pauli-
𝑍 matrix. The 𝐾 = 5 (𝐾 = 6) simplex constellations are generated using the unitary rotations {𝜔𝑘𝐼 | 𝑘 ∈ Z5}
({𝑒2𝑘𝜋𝑖/6𝐼 | 𝑘 ∈ Z6}).

Sweet-spot comparison Given a loss rate 𝛾, one can tune the energy of a given code to obtain the sweet spot
energy value Ð the n̄ that gives the highest ődelity 𝐹max. For cat codes, it has been observed [23, 27, 28] that this
sweet spot value is őnite, and that it does not drastically change with small changes in the loss rate 𝛾. We observe
similar behavior in all the QSCs we examine.

We evaluate the performance of each code at its respective sweet spot in order to compare the highest possible
performance of each code under a given loss rate. Figure D.1a lists the code parameters of the simplex and 2-gon based
cat quKit codes. The advantage of using simplex codes over the cat becomes pronounced for larger memories. As we
scan the table in the őgure, we see that the ődelity 𝐹max of simplex codes decreases slower with growing dimension
𝐾 compared to that of cat codes, meaning that simplex codes utilize the available phase space more effectively when
packing more quantum information. This is corroborated by the simplex qu𝐾its maintaining higher resolution 𝑑𝐸 for
large 𝐾.

The energy required per mode (n̄/𝑛) for optimal simplex performance also increases at a slower rate than that of cat
codes. Notably, for 𝐾 = 6, even the total energy (n̄) needed by simplex codes is lower than that of the corresponding
cat code. This trend is consistent in code performance, quantiőed by the channel ődelity, as shown in Fig. D.1b.

logical const-n code const-n 𝑡↓ 𝑑𝐸 n̄ n̄/𝑛 𝐹max

2-gon 12-gon 1 0.268 5.5608 5.5608 0.8642
3-gon 18-gon 2 0.121 8.9584 8.9584 0.8882

3-gon ⊗ 3-gon 9-gon ⊗ 6-gon 2 0.234 9.1801 4.5901 0.9585
Möbius-Kantor 2{8}3 2 0.367 5.7992 2.8996 0.9901

TABLE D.1: Sweet spot data and other code parameters for quKit codes with 𝐾 = 6 are listed where 𝑛 is the
number of modes, n̄ the total energy required and 𝐹max the ődelity achieved at the code’s ‘sweet spot’.

Overall advantage of a qudit encoding We also compare overall performance of a multi-mode QSC to various
cat-like codes by sweeping both energy and loss rate. We őx 𝐾 = 6 and construct codes out of various logical
constellations: the 2-gon, 3-gon ({1, 𝑒2𝜋𝑖/3, 𝑒4𝜋𝑖/3}), 3-gon ⊗ 3-gon({(𝑒2𝜋𝑖𝑚1/3, 𝑒2𝜋𝑖𝑚2/3) | 0 ≤ 𝑚1,𝑚2 ≤ 2}) and the
Möbius-Kantor polygon. The őrst two are single-mode cat codes, the third distributes logical information over two
modes using tensor products of single-mode cat codes, while the last is an intrinsically two-mode code.

Results from a numerical comparison in Fig. D.2a show a universal advantage across the swept energy-and-loss-rate
parameter space. Similar trends are observed for various other 𝛾 values (not shown here). Notably, the Möbius-Kantor
surpasses other codes even at their optimal values, as exempliőed in Fig. D.2b, where we choose the n̄ corresponding
to the 3-gon ⊂ 18-gon code’s sweet spot.

We append sweet-spot data for this set of codes in Tab. D.1, which corroborates the simplex-cat-code data in
Fig. D.1a. We observe that the Möbius-Kantor code provides robust protection against up to 2 losses, boasts higher
resolution (𝑑𝐸), requires lower energy per mode, and consistently outperforms all the mentioned polygon based codes
in the sweet-spot comparison.

When encoding a greater number of logical dimensions, multimodal QSCs prove signiőcantly more resource efficient
and clearly outperform cat codes.

Appendix E: Lindbladian stabilization

The 𝑍-type (i.e., dephasing or rotation error) correction for cat codes is done autonomously by engineering Lind-
bladians with a desired łcorrectingž jump operator 𝐹 = 𝜅(𝑎2𝑝 − n̄

𝑝) and correction rate 𝜅. Engineering such terms is
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(a) Channel ődelity 𝐹ℰ is plotted at őxed loss rate
𝛾 = 0.095. (b) Channel ődelity 𝐹ℰ is plotted at őxed total energy

n̄ = 8.9584.

FIG. D.2: As shown in (a), the Möbius-Kantor code demonstrates a universal improvement over polygon based
codes and outperforms them over a range of energies and loss rates, as exempliőed in (b) by choosing n̄

corresponding to the sweet spot energy (at 𝛾 = 0.095) of the 3-gon ⊂ 18-gon code.

possible in microwave cavities coupled to superconducting circuits [29]. The typical scheme proceeds by coupling the
physical system to an ancillary or buffer mode 𝑏 via the Hamiltonian coupling 𝐹𝑏† +H.c., setting the ancillary mode
to have a high loss rate, and then showing that the effective Lindbladian acting on the physical 𝑎-mode system has
jump operator 𝐹 (see, e.g., Ref. [30]).

Multi-mode coherent-state QSCs require more jump operators, and each jump operator can now consist of multiple
monomials in the lowering operators 𝑎𝑗 . However, due to the ŕexibility provided by a recently developed circuit
element called an asymmetrically threaded SQUID, or ATS [31], the above scheme can be extended to realize the more
complex jumps required for QSCs. We sketch out a general scheme below and apply it to a CSS and a polytope QSC.

The cost of our basic scheme Ð one ancillary mode per jump Ð is only an upper bound. While more advanced
schemes are outside the scope of this work, we note that a single ATS can be used to simulataneously realize multiple
jumps using as little as one ancillary mode [15, Appx. B.2].

a. General scheme

A desired jump operator is a sum of monomials of some maximum degree and a potential constant term that is the
𝑃 th power of n̄,

𝐹 =
∑︁

monomial(𝑎𝑗) − constant · n̄𝑃 . (E1)

Leveraging previous schemes [31, supplement][15, Appx. B.2], we describe a slightly more general scheme to implement
a dissipator with this jump operator, which generates time evolution according to the equation of motion (E4).

Let the harmonic component of the 𝑗th physical mode have frequency 𝜔𝑗 , while the ancilla 𝑏-mode evolves at 𝜔𝑏.
In the rotating frame w.r.t. these components, the multi-mode density matrix 𝜌𝑎𝑏 describing a set of modes coupled
via an ATS evolves according to

𝜌̇𝑎𝑏 = −𝑖[𝐻drive +𝐻ATS, 𝜌] + 𝜅𝑏𝒟[𝑏](𝜌) . (E2)

We describe each term and its purpose:

1. The drive term, 𝐻drive = −n̄
𝑃 𝑏 + H.c., will yield the constant part of the jump operator 𝐹 (E1) once the

effective equation of motion on the physical modes is derived. This term can be set to zero if no constant term
is necessary.
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2. All of the magic comes from the ATS term [15, Eq. (B11)][32],

𝐻ATS = 𝜖(𝑡) sin
(︁

𝜙+ 𝜑𝑏𝑏𝑒
−𝑖𝜔𝑏𝑡 +

∑︁

𝑗
𝜑𝑗𝑎𝑗𝑒

−𝑖𝜔𝑗𝑡 + H.c.
)︁

with pump tones 𝜖(𝑡) =
∑︁

𝑝
𝜉𝑝𝑒

𝑖Ω𝑝𝑡 + H.c. , (E3)

which depends on static real parameters {𝜑𝑏, 𝜑𝑗 , 𝜙} and tunable real parameters {𝜔𝑏, 𝜔𝑗 , 𝜉𝑝,Ω𝑝}. The static
ŕux 𝜙 ∈ {0, 𝜋/2} [31, Eq. (S3)] allows us to interpolate between a sine and cosine ATS term. One pump
tone, with amplitude 𝜉𝑝 and frequency Ω𝑝, is necessary for each monomial in the jump operator (E1). Tuning
the frequency allows us to select the speciőc desired monomial, while tuning the drive allows us to tune the
monomial’s coefficient.

3. The dissipative part, 𝜅𝑏𝒟[𝑏] for sufficiently large 𝜅𝑏 > 0, ensures that the ancilla is sufficiently lossy. The steady-
state space of this evolution is spanned by any state of the 𝑎𝑗 modes, tensored with the vacuum Fock state |0⟩ on
the 𝑏 mode. Assuming the Hamiltonian terms to be perturbations to this strong Lindbladian evolution, one can
then derive an effective equation of motion within this steady-state space using either second-order perturbation
theory or what is colloquially known as ładiabatic eliminationž [33ś35].

Expanding the ATS term yields an inőnite series, with combinatorially many monomials consisting of products of
drive-tone terms {𝜉𝑝𝑒𝑖Ω𝑝𝑡}, physical mode operators {𝑎𝑗𝑒−𝑖𝜔𝑗𝑡}, the ancillary mode term 𝑏𝑒−𝑖𝜔𝑏𝑡, and the ŕux bias 𝜙.
The expansion is approximated by truncating to an order such that the highest-degree term is one higher than the
degree of the highest-order monomial in the desired jump operator (E1). The phase term 𝜙 ∈ {0, 𝜋/2} ensures that
the expansion contains the monomial of correct (even or odd) degree.

The pump-tone frequencies {Ω𝑝} are then tuned to particular linear combinations of {𝜔𝑗 , 𝜔𝑏} so that any of the
monomials that are also present in the desired jump operator become time-independent. That way, all other terms
can be treated as higher-order łfast-rotatingž corrections in what is known as the łrotating-wave approximationž.
Combining with the drive term, the Hamiltonian terms in Eq. (E3) are then approximated by 𝐹𝑏† + H.c.. Verifying
that the many remaining terms in the expansion are all time-dependent can be done using the algebraic manipulation
plugin sneg [36, 37] in Mathematica.

The desired equation of the density matrix 𝜌 = trmode 𝑏(𝜌𝑎𝑏) on the physical modes upon adiabatically eliminating
the ancilla is then

𝜌̇ = 𝜅𝒟[𝐹 ](𝜌) + · · · , (E4)

for a to-be-determined correction rate 𝜅, and up to higher-order corrections ł · · · ž stemming from corrections to the
approximations.

b. CSS QSCs

Our 𝑍-type stabilization for CSS-type concatenated encodings provides an autonomous alternative to the discrete
measurement of 𝑍-type error syndromes. Such jump operators can be readily łplugged inž to any concatenated
cat-CSS code, including a recent concatenated surface-cat code proposal [15].

Our jump operator for the surface-cat code example consists of a product of lowering operators acting on sides one
through four of each plaquette, 𝐹 = 𝑎1𝑎2𝑎3𝑎4 − n̄

2, of a square lattice. This is a special case of the general form (E1)
with one degree-four monomial and constant term with 𝑃 = 2. The sole monomial requires only one pump tone, with
amplitude 𝜉1 ≡ 𝜉 and frequency Ω1 ≡ Ω, and zero ŕux bias, 𝜙 = 0. The ATS sine term is expanded to őfth order.
The condition selecting the desired monomial is

Ω1 = 𝜔1 + 𝜔2 + 𝜔3 + 𝜔4 − 𝜔𝑏 , yielding the monomial 𝑎1𝑎2𝑎3𝑎4𝑏
† + H.c. . (E5)

This monomial is multiplied by a product of accompanying constants, 𝜑1𝜑2𝜑3𝜑4𝜑𝑏𝜉, to yield an effective correction
rate 𝜅 ∝ (𝜑1𝜑2𝜑3𝜑4𝜑𝑏𝜉)

2/𝜅𝑏, after adiabatic elimination.

The above scheme is done for each plaquette of the surface-code architecture. The additional 𝑎2𝑗 − n̄ dissipators Ð
required for restricting each mode 𝑗 to antipodal coherent states Ð are realized in said architecture using a single
ATS [15, Appx. B.2]. Together, these provide autonomous protection against all 𝑍-type errors, utilizing the full
error-correcting power of the (outer) surface code for such noise. Extension to other QLDPC codes is straightforward,
barring any issues with long-range physical connectivity.
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c. Hessian QSC

The Hessian code requires three jump operators, two of which consist of three monomials. Each jump operator
can be realized using the general scheme above, providing a non-trivial QSC example that should be realizable with
state-of-the-art ATS technology.

1. The jump 𝐹 = 𝑎1𝑎2𝑎3 has no constant term, so no drive term is necessary. Only one pump tone, with amplitude
𝜉1 ≡ 𝜉 and frequency Ω1 ≡ Ω, is required, and 𝜙 = 𝜋/2 to obtain a cosine ATS. The ATS term is expanded to
second order. The conditions selecting the desired monomial are

Ω = 𝜔1 + 𝜔2 + 𝜔3 − 𝜔𝑏 yielding the monomial 𝑎1𝑎2𝑎3𝑏
† + H.c. . (E6)

This monomial corresponds to an effective correction rate 𝜅 ∝ (𝜑1𝜑2𝜑3𝜑𝑏𝜉)
2/𝜅𝑏 after adiabatic elimination.

2. The jump 𝐹 = 𝑎31+𝑎32+𝑎33 also has no constant term. The three terms require three drive tones, with parameters
{𝜉𝑝,Ω𝑝} for 𝑝 ∈ {1, 2, 3}. The phase 𝜙 = 𝜋/2 so that the ATS term becomes a cosine. The ATS cosine term is
expanded to second order. The conditions selecting the desired monomials are

𝜉𝑝 = 1/𝜑3
𝑗=𝑝

Ω𝑝 = 3𝜔𝑗=𝑝 − 𝜔𝑏

, yielding the monomials 𝑎3𝑗=𝑝𝑏
† + H.c. . (E7)

Each of these monomials is multiplied by a product of respective accompanying constants, 𝜑3
𝑗=𝑝𝜑𝑏𝜉𝑝 = 𝜑𝑏, where

we have used the drive-tone amplitudes to cancel the non-tunable coupling strengths 𝜑𝑗 . This yields an effective
correction rate 𝜅 ∝ 𝜑2

𝑏/𝜅𝑏, after adiabatic elimination.

3. The jump 𝐹 = 𝑎61 + 𝑎62 + 𝑎63 − n̄
3/4 has three monomials and a constant term with power 𝑃 = 3 and coefficient

1/4. The three monomials require three drive tones, with parameters {𝜉𝑝,Ω𝑝} for 𝑝 ∈ {1, 2, 3}. The phase 𝜙 = 0
so that the ATS term remains a sine. This term is then expanded to fourth order. The conditions selecting the
desired monomials are

𝜉𝑝 = 1/𝜑6
𝑗=𝑝

Ω𝑝 = 6𝜔𝑗=𝑝 − 𝜔𝑏

, yielding the monomials 𝑎6𝑗=𝑝𝑏
† + H.c. . (E8)

Each of these monomials is multiplied by 𝜑𝑏. The ŕuxes 𝑔𝑗 are required to be equal for all three 𝑗 in order to
realize the jump. This yields an effective correction rate 𝜅 ∝ 𝜑2

𝑏/𝜅𝑏, after adiabatic elimination.
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