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As with classical computers, quantum computers require error-correction
schemes to reliably perform useful large-scale calculations. The nature

and frequency of errors depends on the quantum computing platform,
and although thereis alarge literature on qubit-based coding, these are
oftennot directly applicable to devices that store information in bosonic
systems such as photonic resonators. Here, we introduce aframework

for constructing quantum codes defined on spheres by recasting such
codes as quantum analogues of the classical spherical codes. We apply this
framework to bosonic coding, and we obtain multimode extensions of the
cat codes that can outperform previous constructions but require a similar
type of overhead. Our polytope-based cat codes consist of sets of points
with large separation that, at the same time, form averaging sets known

as spherical designs. We also recast concatenations of Calderbank-Shor-
Steane codes with cat codes as quantum spherical codes, which establishes a
method to autonomously protect against dephasing noise.

Bosonic (also known as oscillator) codes offer alternative qubit blue-
prints that are compatible with continuous-variable quantum plat-
forms''° and that can reduce overhead by offering an extra layer of
protection'"?. Qubits defined on a few bosonic modes or more exotic
spaces® are likely to prove useful as the control of quantum systems
improves, but the field remains relatively unexplored®”*, in part,
because structures and intuition from qubit-based coding theory
need not apply.

We develop a framework that yields generalizations of a class of
bosonic codes called the cat codes?*° and unifies such codes with
several others. Our key observationis that all such codes are particular
instances of quantum versions of spherical codes®-**, whichis a family
wellknownin classical coding theory. We overview the framework and
demonstrateits utility with several new multimode cat codes. A rigor-
ous study of general features is left to a companion follow-up work.

General codes on the sphere

Codewords of qubit codes are quantum superpositions of bit-strings.
By analogy, we start with a spherical code, which s a set, or constella-
tion, of points on the unit sphere. To construct a quantum spherical
code (QSC), wetakeacollection {C’k}f;(l) oflogical constellations, each

of which gives rise to a codeword of the QSC obtained by taking a
quantum superposition of all points x € ¢, (see Fig. 1). We consider
uniform superpositions here, leaving more general codes to future
work. Taken t(l)(g;ether,the logical constellationsyield the code constel-
lation, € = {J,_, G-

In the electromagnetic setting, spherical codes protect classical
information against signal fluctuations during transmission, which
correspond to small shifts acting on points in the constellation. A
code’s ability to protect against such errors can be quantified by the
minimum (squared) Euclidean distance d; between any pair of distinct
points. QSCs naturally inherit d; as a figure of merit for protecting
against such ‘bit-flip’ noise.

Because QSCs store quantum information, they also suffer from
‘phase’ noise, which comes from, for example, fibre attenuation. Such
noise canbe expressed in terms of ‘potential-energy’ functions on the
sphere whose evaluation can be used to distinguish logical constella-
tions (compareref. 26, Sec. VI.Bandref.33).If the average of afunction
over points in a constellation ¢, depends on k, then the function’s
underlying physical process causes an undetectable ‘phase’error.

An(n, K, d;) spherical code contains K points on the n-dimensional
unitsphere such that the squared Euclidean distance between any two
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Fig.1| Quantum spherical codewords are quantum superpositions of
constellations on asphere. a-c, Logical constellations can form the vertices
ofapolytope and unite to forma code polytope compound. Projections of
polytope compounds are shown for the cat (a), Mobius-Kantor (b) and Hessian
(c) quantum spherical codes, with logical constellation points coloured either
green, red or purple.

pointsisatleastd.. An((n, K, d;, ... )) QSCis aK-dimensional subspace of
aquantum system’s vector space whose states are labelled by points on
ann-dimensional (real or complex) unit sphere, and whose protection
againstrotationsis quantified by d;. Protection against ‘phase’ noiseis
designated by the proxy“.. because the notion of a ‘phase-flip” distance
depends on the physical system embedding the QSC.

In principle, the above framework applies to any quantum state
space parametrized by points on a sphere. Continuous-variable
systems>**> admit several such spaces, and there exist examples of
QSCsexpressed using ordinary®>***¢, squeezed® * and pair-coherent
states*’. Collective atomic systems described by spin-coherent states as
well asrotational state spaces of diatomic molecules also admit QSCs,
namely, various large-spin codes* and diatomic molecular codes (ref.
26, Sec. VI), respectively. We focus on coherent-state QSCs because
such codes naturally generalize the cat codes, and error-correction
procedures for these new multimode cat codes require asimilar type of
overhead as what has already beenrealized' . We note that the discus-
sion below can be modified to apply to other manifestations of QSCs.

Coherent-state formalism
Asingle-mode coherent state is a quantum representation of a stand-
ing wave of a fixed-frequency signal. An n-mode coherent state |a) is
parametrized by a complex n-dimensional point a. The point’s norm
|la||* corresponds to the state’s energy, and points of all states with a
fixed energy N form a complex n-sphere, 2, = {a € C", || 0(||2 =N}
Coherent-state QSCs consist of disjoint logical constellations ¢,
of |¢|points picked from the n-sphere and superposed to formlogical
codewords,

|Ck) ~

37 [VAa), M
Vied aee,
where werestrict logical constellations to lie on the unit n-sphere and
delegate the overall scaling of the sphere’s radius to N. An example to
keepinmindis the four-component cat code defined by ¢, = {(1), (-1)}
and ¢, = {(i), ()} = i€,.

The normalization in equation (1) is only valid asymptotically as
N — oo because coherent states are not quite orthogonal due to the
uncertainty principle,

(@B = exp (- Il a = BII*) < exp (-Nd). 2

The above ‘quantum corrections’ for two coherent states of acode are
suppressed exponentially with the energy Nand the minimum distance
between two points in the code’s constellation € = | J, €,

_ . _ 2
dg = mnin, Il a—BI" (3)

Because d; sets the scale of resolution of the constellation points, we
refer toit as the resolution from now on.

Coherent states are subject to two essentially different types of
distortion: angular dephasing due to fluctuations in the frequency of
amodeand changesinthe mode’s excitations (ref.42,Sec.l.A). These
induce ‘bit’and ‘phase’ noise on QSCs, respectively. The corresponding
relevant noise operators are passive linear-optical transformations

n
and products of modal ladder operators {g;, a;'}_ v whose commutator
J:

is[aj, az] = &;,. Products of transformations and ladder operators can
be used to express any physical noise channel (ref.43, equation (39)).
Transformations on n modes are parametrized by the unitary
group U(n) (ref. 35, Sec. 5.1.2). A transformation U, corresponding to
the n-dimensional unitary matrix R rotates a coherent state |&) into
|Ra).Ifageneric (ref. 26, Sec.1V.B.) rotation satisfies || Ra — a||> < d;, the
transformation is detectable in the N — o limit. Codes with larger
resolution protect against larger sets of transformations.
Ageneralladdererror,

n
T " .
Lpqla', ) =[] a™a, “)
j=1

isamonomialinthe operators (a,, a,, ..., a,) = aand their adjoints.
Itis parametrized by non-negative integer vectors p = (py, ps, ..., Pn)
and q =(q,, q,, ..., q,) quantifying how many energy carriers (for
example, photons or phonons) are gained and lost in each mode,
respectively.

Lowering operators a; are ‘diagonal’ in the coherent-state
basis, satisfying q; |a) = a; |a), where q; is the jth component of a.
This ‘diagonality’ relationship and its adjoint imply that the
expectation value of aladder error over the kthcodeword in equation
(1) reduces to the average of the operator’s corresponding monomial
over Gy,

olp+ql/2
(CxlLpqa’, ey ~ > Lpq(a*,a), (5)

aeCy

|Cxl

where the one-norm|p + q|isthe degree of L, .(a*, @). Aladder error can
be detected whenever the above average isindependent of k (ref. 44).

Polytope QSCs

We have found numerous QSCs whose constellations form vertices of
real® or complex*** polytopes. Polytope vertices are both sufficiently
well-separated and uniform, providing protection against both types
of noise. Code and polytope tables for the two cases can be found in
the Supplementary Information.

We characterize ladder-error protection of polytope QSCs with
three ‘distances’: d,, t,, and d,. The first is the number of detectable
losses (plus one), signifying that any pure-loss ladder error L ,_, , with
|ql <d, is detectable. Similarly, ¢, is the number of correctable losses
(plusone), signifying thatany ladder error with |p|, |q| < ¢, is detectable.
The degree distance, d,, signifies that the code detects ladder errors
with degree |p + q| < d,. These three parameters satisfy

l(d; +1)/2] <t <d; <d, (6)

and can vary quite significantly.

Nature Physics


http://www.nature.com/naturephysics

Article

https://doi.org/10.1038/s41567-024-02496-y

Our notation for an n-mode polytope QSC with K logical code-
words is ((n, K, d, d,)) or, more generally, ((n, K, d;, {t,,d,,d.,))). The
four-component cat code is a ((1, 2, 2.0, (2, 2, 2))) QSC, detecting
d,-1=1loss error and sporting the relatively high resolution of 2.0.
Since it can detect one gain simultaneously with one loss, this code
alsocorrectst, —1=1loss error.

Eachlogical constellation of the four-component cat code forms
a line segment, and the code constellation forms the vertices of a
square. More generally, logical constellations of the 2p-component
(1,2, 4sin’ 21 {p, p, p))) cat code are two p-gons whose vertices inter-
leave for maximal resolution. Thereis atrade-off between loss protec-
tionand resolution, with the latter of order O(1/p?) for alarge number
p—1of correctable losses. Utilizing higher dimensions, we pick other
complex polytopes that maintain the same resolution while offering
increased loss protection over the cat codes.

Asimple code straddling the p =2, 3 cat codes in terms of perfor-
manceisthe ((2,2,1.5,(2,3,3))) simplex code,

Co = i(w”,wz’lﬂll €Zsp =—Cy, (7)
V2

where @ = €' Z?H This code admits a lower resolution than the p =2 cat
code, but detects one morelossin any of the two modes. Equivalently,
it admits a higher resolution than the p = 3 cat code’s resolution of
unity, but corrects one fewer loss. Simplices exist in any dimension,
yielding the infinite ((n, 2,2 - 1/n, 3)) QSC family that approaches the
resolution of the p = 2 cat code with increasing n while detecting one
more loss in any mode.

The Moébius-Kantor ((2, 3, 1.0, (3, 4, 4))) code maintains the
resolution of the p =3 cat code but adds one more logical state and
detects one more loss. Each of its three logical constellations form
the eight vertices of a Mobius-Kantor polygon (3{3}3 in Coxeter
notation; see Supplementary Information), and such polygons com-
bine to form the 24 vertices of a 3{4}3 polygon. This code corrects
one more loss than the 2T-qutrit*®, whichis a ((2, 3,1.0, (2,4, 4)))
QSC whose logical constellations each make up the eight vertices
of a complex octagon 2{4}4. These two codes differ despite the fact
that both code constellations map to the vertices of the same real
four-dimensional polytope by means of the mapping (x + iy, z + iw) ~> (x,
¥, z, w), which demonstrates subtleties in using real polytopes to define
complex QSCs.

Logical constellations of the powerful ((3, 2, 1.0, (4, 5,9))) Hessian
code consist of the 27 vertices of a Hessian polytope,

Co = i(r]“,—rzv, O)u perms. |u,v e Z;; = —Cy, (8)
V2

where n = e'z?", and ‘perms.’ is shorthand for the two cyclic permuta-
tions of the vector to the left for each g, v. This code corrects as many
losses asthe p =4 cat code, but has the resolution ofthe p =3 cat code.
Moreover, it can detect up to eight losses, which is a feature available
onlytothe p >9 cat codes.

Thereisa ((2,2,2 — V2, (5, 6,12))) code that maintains the same
resolutionasthe p =4 catcode, but corrects one more and detects eight
more losses. Its logical constellations each form the 24 vertices of a
4{3}4 polygon, combining into a 48-vertex 2{6}4 polygon.

An overachieving cousin of the above code is the ((4,2,2-
\/5,( 6,8,12))) Witting code, which consists of two Witting polytopes
with 240 vertices each. This code corrects asmanylossesasap = 6 cat
code, has theresolution of ap =4 cat code and detects up to11losses.
It is the first member of the infinite ((27,2,2 — V2, 8)) family of codes
that are based on orbits of the real Clifford group**™".

A lower bound on d, for Clifford, simplex or other QSCs can
be obtained whenever their logical constellations form designs’>.
A constellation ¢, is a complex spherical design®** of strength 7

if averages of monomials L, , of total degree |p + q| < T over G
(equation (1)) are equal to those over the entire unit n-sphere,
1
&l D Lyq(a*,a) = f 3 daL, q(a*, a). )

a€Cy

Designstrengthis preserved under unitary rotations R, so logical con-
stellations ¢, = R, G, consisting of rotated versions of a complex
spherical r-design Gy yield aQSC whose degree distanceisatleast 7+ 1.
In this way, construction of good QSCs canbe accomplished by finding
well-separated spherical designs Gy of high strength coupled with a
choice of rotations {Rk}’k:é (where R, is the identity) that permits
control of the resolution d; of the code constellation | J, R G, while
achieving high logical dimension K.

Corroborating our parameter-based analysis, we numerically
compare the performance of multimode and single-mode codes using
the channel fidelity®°. We observe that, for quKit encodings (for
K> 2), even simple multimode constellations, such as the simplex in
equation (7), are able to utilize the extra dimensions efficiently and
outperform single-mode constellations over a range of loss rates.
A non-trivial K= 6 encoding, whose logical constellations each form
Mobius-Kantor polytopes, consistently outperforms various combi-
nations of cat codes for awide range of energies and noise parameters
(Supplementary Information).

CSS-based QSCs

Concatenations of CSS codes®*? with the two-component cat
code”, @, = {(+1)} = —€;, canalso be interpreted as QSCs, albeit with
a weight-based notion of ladder-error protection. Such codes are
actively studied" >, but have so far beeninterpreted in the framework
of'the outer qubit code and not in terms of underlying modal degrees
of freedom. Our interpretation parallels a standard way to construct
(classical) spherical codes by mapping binary codesto the (real) sphere
(ref.31,Sec. 2.5and ref. 32, Sec.1.2).

A ((n, k, (dy, d;))) qubit CSS code is constructed from two binary
linear codes with distances dy and d,, guaranteeing detection of
Pauli X-type and Z-type errors with weights less than the distances,
respectively. Its codewords are equal superpositions of multiqu-
bit states labelled by binary strings. Concatenation is equivalent to
mapping each binary string into a point on the n-sphere by means of
the coordinate-wise antipodal mapping 0 > +1and 1~ - 1. This yields
an ((n, 2%, dy = 4dy/n, w, = d;)) QSC that detects all errors L, , with
Hamming weight A(p + q) <w, (see Supplementary Information).
Asymptotically good qubit CSS codes thus yield QSCs whose distances
d;, w, areboth separated fromQasn > .

X-type gates and stabilizers
Rotations on the n-sphere provide groups of X-type logical gates
and stabilizers for QSCs. Elements of a logical group G permute
logical constellations. Elements of a stabilizer subgroup Hc G
permute points within each constellation, thereby leaving code-
words invariant. Rotations are realized by passive linear-optical
transformations using ref. 35, equation (3.24). Rotation-based
gates are noise-bias preserving® in that they do not convert rotations
into losses.

For cat codes with 2p components, o = {({¥) |/ € Z,} = {€; with

{ = e'p, the one-dimensional rotation {permutes the two constella-
tions, whereas powers of {? leave each constellation invariant.
These rotations generate H =7, C G = Z,, and are realized by

transformations & 2and 4@,
Simplex constellations (equation (7)) can be permuted with

the — 10 rotation and are invariant under powers of 4 10 ,
01 0w

corresponding to the groups Zs C Z5 x Z,, respectively. The latter
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groupis generated by the two-mode transformations (-1) and

T +
wal al+Zazaz‘

A stabilizer group for the Hessian code (equation (8)) is
He; =(n, X, Z ), the 27-element qutrit Pauli, also known as the Heisen-
berggroup consisting of powers of pand the X, Zqutrit Pauli matrices.
Appending by the logical-X rotation — /, where / is the 3-by-3 identity,
yields the logical group He; x Z,. These groups are realized by
phase-shifters and SWAP gates. Larger H c G can be picked using the
factthatall constellations form polytopes. The largest such groups are
the 648-element and 1,296-element symmetry groups of the corre-
sponding Hessian and double-Hessian polytopes, respectively. These
offer other ways toimplement the logical-XPauli gate, but do not yield
other gates.

Qudit QSCs offer larger logical-gate groups. The two groups are
Z, c 2/ forthe 24-cell ((2,5,0.382, (4, 6, 8))) real polytope code, with
the former generated by the 5-by-5matrix —/, and the latter the binary
icosahedral group 2/. Since the stabilizer group acts trivially, the logical
group acts on the five codewords as a five-dimensional permutation
representation of theicosahedral group / = 2//7,.

CSS-based QSCs inherit logical-X stabilizers (gates) by mapping
each X-type stabilizer (logical Pauli) to a transversal linear-optical

transformation by means of the component-wise mapping o, — (—l)a?a.
For example, the 0®* stabilizer of the [[4, 2, 2]] code is mapped to
thejoint parity ®f:1(—1)aj“j.

Z-type gates and stabilizers

The Z-type ‘stabilizer’ for 2p-component cat codesis F(a) = a®® — N,
which annihilates each point in the dilated code constellation Vie.
The corresponding polynomial F(a) can be thought of as a
potential onthe sphere thatis minimized only at the code-constellation
points®.

Polytope QSCs can require several polynomials to be stabilized.
Simplex codes (equation (7)) are stabilized by F; = ala} - N and
F, = afaz — N". Hessian codewords (equation (8)) are stabilized
by the F; = a1a4,a5,F, = a; +a; + a3 and F; = a® + a$ + af _N/a.
The degree of F, is lower than the code’s degree distance (d; = 5)

and detectable-loss distance (d, =9), unlike for the cat codes. This
property makes this code similar to degenerate stabilizer codes, that
is, codes whose check-operator weight is smaller than their distance.

Stabilizer polynomials commute with logical transformations
Ui for any R in the logical group and can be obtained by averaging
ladder operators (equation (4)) over the symmetry group of the code
constellation’s polytope.

Other polynomials act as logical gates on QSCs, evaluating
to the same value for all points in ¢ in a way that depends on k.
For the cat codes, G = a® evaluates to in/Z on the two codewords,
respectively, yielding a logical-Z gate. The monomial G = alag
projectstoalogical-Zgate within the simplex codespace. The smallest
loss-only Z gate of the Hessian code is G; = afag or its two cyclic
permutations, and only a permutation-symmetric combination of all
three operators commutes with the stabilizer group. A lower-degree
monomial G, = aIalag realizes another Z gate with the help of gain
operators. Combinations G; + GJT generate logical-Z rotations within
the F-annihilated subspace®, and have been realized for p =2 cat
codes®.

CSS-based QSCs inherit gates and stabilizers by mapping
each Z-type gate or stabilizer to a monomial by means of the
component-wise mapping o, > a. For example, the g, ® 0, ® | ® I gate
of the ((4, 2, 2)) code is mapped to a,a,. These codes also require
stabilizers aj2 — N/n on each mode}j in order to stabilize the inner
cat-code constellation.

Correcting errors

Protection against rotation-based noise for 2p-component
cat codes is done passively using a Lindbladian whose jump operator
is the Z-type stabilizer F (ref. 64) and/or a Hamiltonian F'F
(refs. 65,66). Both techniques have been realized for p =2 (refs. 3,5).
General QSCs admit the same type of passive protection but require
several F,.

Microwave cavities coupled to superconducting circuits® provide
afertile ground for realizing such passive protection, and we outline
howanexisting superconductingcircuitelement called an‘ATS’ (ref. 68)
can be tuned to realize the more complicated jump operators of
several QSCs (Supplementary Information). In particular, we show
that arecent surface-cat concatenated-code proposal” canbe readily
modified with a Z-type surface-code stabilization scheme, thereby
utilizing the full power of the code against Z-type noise in exclusively
passive fashion.

Ladder errors in equation (4) map the kth codeword in equation
(1) into error states in span{|a),a € C,}. The stabilizer group H splits
upintoseveralirreducible representations (irreps) acting on this span.
Ladder-error protection is done by measuring syndromes associated
with irreps and mapping back into the codespace. Correction of mul-
tiple error spaces simultaneously may be required, depending on the
group’s ability to resolve all error spaces associated with a given
error set.

The four-component cat-code stabilizer is the parity (—l)aTa.
Its eigenvalues correspond to the twoirreps of H = Z,, distinguishing
between no error and a single loss a. This technique’ led to the
first demonstration of break-even quantum error correction using
p =2 cat codes®. Similar multimode parities detect X-errors for
CSS-based QSCs.

For the simplex code, equation (7), eigenvalues of the

two-mode stabilizer % “+2% abel the five irreps of Z,. They allow
correction of {a;,a,, alaz,ag} , but fall short of correcting all
two-mode losses owing to af not being simultaneously correctable
with a,.

Forthe Hessian code, equation (8), the transformationsrealizing
He, can be measured to resolve the group’s 11 irreps. The general

procedure for this and other non-Abelian codes resembles that of
molecular codes (ref. 26, Sec. V.D).

Conclusion

We introduce a framework for constructing quantum analogues of
the classical spherical codes, encapsulating several physically relevant
quantum coding schemes for bosonic, spinand molecular systems. We
apply our framework to obtain multimode coherent-state codes based
on polytopes, CSS codes and classical codes. These QSCs outperform
previous cat-code constructions?**** bothin terms of code parameters
and a numerical performance comparison of qudit encodings. We
show how passive protection of several instances of these QSCs can
berealized in microwave cavities.

There are many other ways of constructing spherical codes, for
example, as group-orbit codes®”, as spherical embeddings of associa-
tion schemes™, through computer searches’>”* and many others**>7*7,
aswellas ways of constructing spherical designs’ "%, As such, we antici-
pate that this work will pave the way for many new, well-protected and
experimentally feasible logical qubits.
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Data availability

Coordinates of the polytopes used for our codes constitute the
minimum dataset necessary to verify the results in this article. Unless
otherwise noted, coordinates for each code were obtained from the
references linked in the corresponding row of our code tables in the
Supplementary Information. Otherwise, we provide the coordinates
explicitly in the main text or the Supplementary Information. Explicit
coordinates for any particular code are available upon request.

Code availability

MATHEMATICA notebooks generated during the current study
are available from the corresponding author on request. Further
details and references about spherical codes described in this
manuscript are available at the Error-correction Zoo website at
http://errorcorrectionzoo.org and via Github at http://github.com/
errorcorrectionzoo.
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logical constellation code constellation n K (ty,dg,dy) dg related code
line segment 2K-gon 1 K (2,2,2)  4sin® Pird two-component cat quKit
icosahedron 2 6 2 1.106
dodecahedron 2 10 2 0.509
24-cell 2 12 2 1.000 Zo C 2T group-GKP
288-cell 2 24 2 0.586 Zy C 20 group-GKP
hyper-icosahedron 2 60 2 0.382 Zy C 21 group-GKP
hyper-dodecahedron 2 300 2 0.073
D-orthoplex [D/2] D (1,2,2) 2.000 D = 4: Z, C Q group-GKP
D-cube [D/2] 2Pt 2 4/D
p-gon Kp-gon 1 K (p,p,p) 4sin? % p-component cat qukit
tetrahedron dodecahedron 2 5 3 0.509
octahedron 5-octahedron 2 5 4 0.382
icosahedron 2-icosahedron 2 2 (4,6,6) 0.211
hyper-tetrahedron hyper-dodecahedron 2 120 3 0.073
hyper-octahedron 24-cell 2 3 (2,4,4) 1.000 Q C 2T group-GKP, 2T-qutrit
288-cell 2 6 (2,4,4) 0.586 Q C 20 group-GKP
hyper-icosahedron 2 15 4 0.382 Q C 2l group-GKP
hyper-dodecahedron 2 75 4 0.073
hyper-cube, -octahedron 24-cell 2 2 (2,4,4) 1.000
24-cell 288-cell 2 2 (5,6,12) 0.586 2T C 20 group-GKP
hyper-icosahedron 2 5 (4,6, 8) 0.382 2T C 21 group-GKP
hyper-dodecahedron 2 25 6 0.073
hyper-icosahedron hyper-dodecahedron 2 5 12 0.073
D-simplex D-bisimplex [D/2] 2 (2,3,3) 2-2/D
(2" — 1)-simplex (2" — 1)-cube gr—l 9 -r-t 3 4/(2" - 1) shortened Hadamard
D-demicube D-cube [D/2] 2 min(4, D) 4/D single parity-check
2"-orthoplex 2"-cube or—1t 92 -r-t 4 227" augmented Hadamard

TABLE A.1: QSCs whose logical and code constellations both make up the vertices of a real polytope; D > 2
corresponds to spatial dimension, and the parameter r > 2.

Appendix A: Real-polytope QSCs

Logical constellations Cy, of a real polytope QSC form the vertices of a real polytope. The figure that results from the
union of all logical polytopes is called a polytope compound, and its vertices form the code constellation C. Polytope
QSCs can thus be constructed from established polytope compounds.

Regular real polytope compounds have been classified in three [1] and four [2, 3] dimensions. We collect all QSCs
whose logical and code constellations each form a single regular real polytope in Table A.1. We leave to future work
QSCs made up of polytope compounds whose code constellation forms vertices of multiple regular polytopes [1][2,
Table VII][3, Sec. 10] as well as recently discovered variations of compounds with the same parameters [3, Sec. 10].
We include a few QSCs constructed from notable non-regular polytopes. All polytopes used in our constructions are
listed in Table A.2.

The first column of the table lists the polytope whose vertices make up the logical constellations C. All Cx make
up the same polytope for every code, with the exception being the “hyper-cube, -octahedron” code, in which Cy (C1)
makes up the vertices of a hyper-cube (hyper-octahedron).

Since the n-sphere is complex while the polytopes are real, we have to embed the polytopes into the sphere. For
even dimension D, the standard method of doing this is via the mapping

RP 5 (21,29, ,xp) = (x1 +izre,z3 +iry,--- ,xp_1 +izp) € ch/? . (A1)

Other mappings can be obtained by permuting the real coordinates. For odd D, one has to embed the polytope into
D +1 dimensions and then apply a mapping like the one above. Convenient coordinates exist for polytopes embedded
in higher dimensions, e.g., vertices of a D-simplex have coordinates (1,1,---1,—D) € RP*! and permutations thereof



polytope dim Schlafli/Coxeter vertices design dg dg (numerical) reference
line segment 1 {1} 2 1 4 4.000
triangle 2 {3} 3 2 3 3.000
square 2 {4} 4 3 2 2.000
pentagon 2 {5} 5 4 V5(1 =) 1.382
p-gon 2 {p} P p—1 4sin® %
tetrahedron 3 {3,3} 4 2 8/3 2.667
octahedron 3 {3,4} 6 3 2 2.000
cube 3 {4,3} 8 3 4/3 1.333
icosahedron 3 {3,5} 12 5 4/(1+ %) 1.106
dodecahedron 3 {5,3} 20 5 2 —2v/5/3 0.509
2-icosahedron 3 B{3,4} 24 5 2(1 — )% /(14 ¢?) 0.2111 [1]
5-octahedron 3 [5{3,4}2{3,5} 30 5 (1—)? 0.382 [1]
hyper-tetrahedron 4 {3,3,3} 5 2 5/2 2.500 [7]
hyper-octahedron 4 {3,3,4} 8 3 2 2.000 [7]
hyper-cube 4 {4,3,3} 16 3 1 1.000 [7]
24-cell 4 {3,4,3} 24 5 1 1.000 % [7]
288-cell 4 o3m4ma3o 48 7 2 -2 0.586 % [8, 9]
hyper-icosahedron 4 {3,3,5} 120 11 (1—)? 0.382 % 7]
hyper-dodecahedron 4 {5,3,3} 600 11 (7-3V5)/4 0.073 % 7]
D-simplex D {3P~1} D+1 2 2+2/D % [2, 4]
D-bisimplex D [2{3°7'}] 2(D+1) 2 2-2/D [9]
D-orthoplex D {3P2 4} 2D 3 2 2.000 % 2]
D-demicube D {34P=%1) 2=t min(3,D - 1) 8/D [9]
D-cube D {4,372} 2P 3 4/D [2]

TABLE A.2: Polytope data used to construct QSCs in Table A.1. Non-italicised polytopes make up the convex

1+v5
2

regular polytopes in real dimension D. ¢ = is the golden ratio.

[4, Sec. 1.5]. Mappings into higher-dimensional spaces can also be used, e.g., the 2p-component cat-code constellation
can be mapped into C = {{? v, j € Zyp,} for any n-dimensional unit vector a. If one prefers to use real-valued vertices,
then RP can be directly embedded into CP.

The parameters t,d; can depend on which of the above mappings one uses; we calculate them numerically by
evaluating Eq. (5) from the main text. A mapping-independent lower bound on the degree distance d; can be
obtained from the strength of the design formed by the logical polytopes. Real polytope vertices can form (real)
spherical designs [5], which are convertible into complex spherical designs via [6, Lemma 3.3]. The design strengths
7 of D-dimensional polytope vertices are listed in Table A.2, column 5, yielding dy > 7+ 1 for a code consisting of
such polytopes. This bound appears to be tight for real polytopes and holds as long as the polytope formed by C is
the same dimension as those formed by each C. Otherwise, the logical polytopes will not share a common sphere on
which their vertices form designs. An exception to this restriction is for Cj that are 1D line segments and is due to
the fact that any pair of segments shares a common circle. The degree distance of a QSC consisting of segments is
thus at least two.

Points on the real 4D sphere are in one-to-one correspondence with quaternions, which in turn parameterize the
group SU(2) [10]. Vertices of the hyper-octahedron, 24-cell, (disphenoidal) 288-cell, and hyper-icosahedron correspond
to quaternions forming the quaternion Q, binary tetrahedral 2T, binary octahedral 20, and binary icosahedral 2I
subgroups, respectively. Polytope QSCs consisting of such polytopes thus are related to SU(2) group-GKP codes %
[11]. The 2T-qutrit code [12] is similarly related to the Q C 2T C SU(2) group-GKP code, but the idea of using
groups this way is limited to two modes because spheres in higher dimensions no longer correspond to groups.

An [n, k] binary linear % code C can be converted into a QSC by taking logical constellations to be cosets of C
in F% under the antipodal mapping. The table lists QSCs arising this way from the Hadamard % and single parity-
check % codes. These codes all have non-trivial d; because the cosets correspond to known polytope compounds
when embedded into the sphere [13, pg. 287].



logical const-n ~ code const-n n K (ty,ds,dy) dg related code
Mobius-Kantor 2{6}3 2 2 (3,4, 6) 0.845
3{4}3 2 3 (3,4,4) 1.000 Q C 2T group-GKP
2{813 2 6 (3,4 4> 0.367
(2, 4)-orthoplex 4{3}4 2 3 (2,4,4) 1.000 Q C 2T group-GKP, 2T-qutrit
3{6}2 [23{612] 2 2 <4 4,4) 0.211
4{3}4 2{6}4 2 2 (56,12 0.586 2T C 20 group-GKP
3{4)3 2{8)3 2 2 (3,6,12) 0.367
2{6}4 22{6}4 2 2  (4,8,8) 0.367
3{5}3 2(10}3 2 2 (9,12,30) 0.132
5{3}5 2{615 2 2 (11,12,30) 0.098
3{4}5 2 3 (11,12,20) 0.044
(3,3)-orthoplex rectified Hessian 3 8 (2,3,3) 1.000
(3,6)-orthoplex rectified Hessian 3 4 (2,4, 6) 1.000
Hessian double Hessian 3 2 (4,5,9) 1.000
Witting double Witting 4 2 (6,8,12) 0.586 Clifford group-orbit
(1, m)-cube (n,m)-cube n m" ' (1,2,m) 4 sin*
(1, m)-orthoplex (n,m)-orthoplex n n (1,2,m) min(2,4sin® )

TABLE B.1: QSCs whose logical and code constellations both make up the vertices of a non-real complex polytope;
n > 1 corresponds to complex dimension. d; = m for the (n, m)-cube/orthoplex codes are conjectured based on
numerical results.

Appendix B: Complex-polytope QSCs

Complex polytopes are polytopes whose vertices are complex. As with real polytopes, there are a myriad polygons
in the two complex dimensions, a handful of special polytopes in a few of the higher dimensions, and only two infinite
families of non-real complex polytopes present in any dimension.

The two families are straightforward complex generalizations of the cube and orthoplex, respectively. A simple
set of vertices of a real D-dimensional cube consists of 2P vectors with coordinates 1. The vertices of the complex
(n,m)-cube (a.k.a. 4/™") consist of m™ complex vectors of dimension n with mth roots of unity at each coordinate.
A similar generalization holds for the (n,m)-orthoplex (a.k.a. 87), whose mn coordinates are n-dimensional vectors
whose single nonzero entry is an mth root of unity.

A union of complex polytopes sharing a common center forms a complex polytope compound. Complex compounds
yield complex QSCs whose code constellations are formed by the vertices of the compound and whose logical constel-
lations are formed by the vertices of the participating polytopes. Complex compounds have not been as thoroughly
studied as their real counterparts, and most of our codes come from the handful of constructions from Refs. [8, 13, 14].
In Table B.1, we collect the complex polytope QSCs that are the most interesting for a comparative study with the
real polytope codes. All the polytopes used in our constructions are listed in Table B.2.

Complex polygons yield several interesting QSCs not available in the real case. We mentioned already in the main
text that multiple complex polytopes can reduce to the same real polytope when mapped into the reals. As another
example, compounds consisting of 5{3}5 polygonal code constellations have exceptional loss detection capabilities,
with d; as high as 30, but suffer from low resolution. There are many more polygons, and we leave a more extensive
list of complex polytope QSCs to a follow-up work.

Complex polytopes also offer interesting many-mode alternatives to cat codes. The tensor product of n single-mode
4-component cat codes is an (n,2",2/n, (2,2,2))) QSC whose code constellation can be thought of as an (n, 4)-cube,
constructed as a Kronecker product of n (1,4)-cubes. The resolution of this code decreases as order O(1/n), meaning
that a constant energy per mode (usually picked to be N/n ~ 2 [15, 16]) is required in order to be able to resolve
codewords without substantial intrinsic memory error. On the other hand, the (n,4)-orthoplex ((n,n,2.0,(1,2,4))
QSC, whose logical constellations are (1, 4)-orthoplexes, maintains constant resolution and has extra loss detection at
the expense of a linear increase in the codespace dimension and no loss correction. It is an interesting open problem
to find a QSC with K = O(n) that can correct one or more losses.



polytope dim Schlafli/Coxeter vertices design dg dg (numerical) reference

Mobius-Kantor 2 3{3}3 8 3 2 2.000 [14, 17]

2 2{613 16 3 2-2/V3 0.845 14, 17]

2 3{4}3 24 5 1 1.000 14, 17]

2 4{3}4 24 5 1 1.000 [14, 17]

2 3{6}2 24 3 (3—+/3)/2 0.634 14, 17]

2 2{6}4 48 7 2—4/2 0.586 [14, 17]

2 2{8}3 48 5 2-2,/2/3 0.367 [14, 17]

2 [2 3{6}2] 48 3 2(1—¢)?/(1+ %) 0.211 [14, 17]

2 (2 2{6}4] 96 7 2—-2,/2/3 0.367 [14, 17]

2 3{5}3 120 11 (1—¢)? 0.382 14, 17]

2 5{315 120 11 (1—¢)? 0.382 14, 17]

2 2{10}3 240 11 2-1/2(3+5)/3 0.132 14, 17]

2 2{6}5 240 11 2—/oV5 0.098 14, 17]

2 3{4}5 360 11 4sin2(/30) 0.044 14, 17]

Hessian 3 3{3}3{3}3 27 4 3/2 1.500 % [13, 17]

double Hessian 3 2{4}3{3}3 54 4 1 1.000 8]

rectified Hessian 3 3{3}3{4}2 72 5 1 1.000 % [13]

Witting 4 3{3}3{3}3{3}3 240 7 1 1.000 % [17]
double Witting 4 [2 3{3}3{8}3{3}3] 480 7 2—+/2 0.586 8]
(n, m)-cube n m{4}2{3}---2{3})2 m" min(3,m—1) 4 sin* T [17]
(n,m)-orthoplex n 2{3}2{3}---2{d}m nm min(3,m —1) min(2,4sin® =) [17]

TABLE B.2: Non-real polytope data used to construct QSCs in Table B.1. Italicised polytopes are not regular.

w= 1+T\/g is the golden ratio. Polytope coordinates of [2 8{6}2] are the union of those of 3{6}2 together with their
versions where each coordinate (a,b) is mapped to (a, —b). Polytope coordinates of [2 2{6}4] are the union of those
of 2{6}4 together with their versions where each coordinate (a, b) is mapped to ((a,(b) for ¢ = exp(im/12).

Appendix C: CSS-based QSCs

The antipodal mapping converts binary strings b = (by,be, - ,b,) labeling n-qubit states into n-mode coherent
states normalized to an energy of unity,
Op = ((_1)b17(_1)b21"' 7(_1)bn) /\/ﬁ . (Cl)

Using [18, Thm. 7.3|, there exists a basis of codewords for an [[n, k, (dx,dz)]] CSS code that is labeled by length-k
binary strings £ and that is expressed in terms of C, the dual of one of the underlying binary linear codes. Applying
the antipodal mapping to the £th element of such a basis yields a codeword for the corresponding QSC,

O~ 3 VN arre) - (C2)

\/ |C%| ceCy

Phase-flip errors Using Eq. (5) from the main text, the projection of a general ladder error acting a subset of
modes S into the QSC codespace is equivalent to a Z-type error,

_\ |lp+al/2
LB) = Ha“}jaq" — <N>p W HZPFWJ (C3)
P9 J n J ’
JjES jES

where we define Z;|v/Nap) = (—1)%|v/Na). As long as the support size of the region S is less than dz, the distance
of Cz, the properties of CSS codes can be used to show that the above error is detectable. This means that any ladder
error with Hamming weight A(p + q) < dz is detectable.

Bit-flip errors The squared Euclidean distance between two code constellation elements ap and a. can be
expressed in terms of the Hamming distance A(b, ¢) between their corresponding binary strings,

low, — cre]|* =2 — 20 - cxe (C4a)



_o_2 Z(_l)bri‘cj (C4b)

n e
—oo % Y= A®.e) - [Ab,o) (Cdo)
=4A(b,c)/n . (C4d)

This quantity is bounded by 4dx /n, where dx is the distance of the other underlying binary linear code Cx.

Appendix D: Performance of quKit QSCs
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FIG. D.1: Comparing cat (1-mode) and simplex (2-mode) quKit codes for varying values of K, it is observed that
the simplex family provides more pronounced advantages in code parameters and performance with growing logical
dimension. The sweet-spot energy was calculated at the loss rate v = 0.095.

Here, we present results of a numerical comparison of several new intrinsically multi-mode polytope constellations
to single-mode and multi-mode instantiations of cat-code (i.e., polygon-based) constellations. We observe that multi-
mode QSCs efficiently utilize the extra dimensions to store more logical information, all while consuming a comparable
(in most cases, lower) energy per mode.

Our performance metric, as guided by [19-22], is the channel fidelity

Fe = (P]pe|¥) (D1)

where, for a qubit state, |¥) = (|0405) + [141p))/v/2 is the maximally entangled state between the source qubit
A and the ancilla qubit B. The outgoing density matrix, pe = €4 ® Zp(|¥)(¥]), is obtained by the action of the
combined encoding-noise-recovery channel £ on the source qubit and identity Z on the ancilla. The channel fidelity
F¢ is an intrinsic property of the channel which measures how well the entanglement between the information qubit
and an ancillary system in preserved upon application of the channel £. For more motivation behind our choice of
metric, we refer the interested reader to [23, Appx. A].

The channel £ is considered to be the composition of the encoding, noise and recovery channels. We assume that
noise occurs only via the pure-loss channel, described by Kraus operators [24]

_ Y oz a n/2
Ez—(M) o CETLS (D2)

where ¢ > 0 quantifies the amount of photons lost, and where ~ is the loss rate. For a selected encoding and this
error channel, we optimize the recovery to obtain the maximum Fg¢. This optimization problem can be formulated as
a semidefinite program [21], which we solve using the Python library CVXPY [25, 26].



The above technique can be adapted to bosonic codes by setting a maximum Fock-space cutoff (in order to make the
underlying space finite-dimensional) [23]. We avoid such truncation by working in the coherent-state basis. In such a
basis, the action of the pure loss channel can be expressed using a different set of Kraus operators whose cardinality
and matrix dimension are equal to the size of the code constellation [12, Appx. A]. That way, we are constrained more
by the size of the code constellation than the number of modes.

A K-dimensional code is constructed by replicating a “base” logical constellation K times while maintaining good
resolution dg. Cat codes use n-gons as the base constellations, while simplex codes employ Cy from Eq. (7) from the
main text.

The kth logical constellation of a 2-gon quKit code with 0 < k < K is generated by multiplying the base line segment
{1, -1} with €™/K_ The kth logical constellation RyCo for the qukit simplex codes with 0 < k < K € {2,3,4} is
obtained by letting {Ro, Ry, Ro, R3} = {I,—1I,Z,—Z}, where I is the two-dimensional identity and Z is the Pauli-
Z matrix. The K = 5 (K = 6) simplex constellations are generated using the unitary rotations {w*I |k € Zs}
({e2*™/ST |k € Zg}).

Sweet-spot comparison Given a loss rate -y, one can tune the energy of a given code to obtain the sweet spot
energy value — the N that gives the highest fidelity Finax. For cat codes, it has been observed [23, 27, 28] that this
sweet spot value is finite, and that it does not drastically change with small changes in the loss rate v. We observe
similar behavior in all the QSCs we examine.

We evaluate the performance of each code at its respective sweet spot in order to compare the highest possible
performance of each code under a given loss rate. Figure D.1a lists the code parameters of the simplex and 2-gon based
cat quKit codes. The advantage of using simplex codes over the cat becomes pronounced for larger memories. As we
scan the table in the figure, we see that the fidelity Fi,.x of simplex codes decreases slower with growing dimension
K compared to that of cat codes, meaning that simplex codes utilize the available phase space more effectively when
packing more quantum information. This is corroborated by the simplex quiits maintaining higher resolution dg for
large K.

The energy required per mode (N/n) for optimal simplex performance also increases at a slower rate than that of cat
codes. Notably, for K = 6, even the total energy (N) needed by simplex codes is lower than that of the corresponding
cat code. This trend is consistent in code performance, quantified by the channel fidelity, as shown in Fig. D.1b.

logical const-n code const-n ¢, dg N N/n Fmax
2-gon 12-gon 1 0.268 5.5608 5.5608 0.8642
3-gon 18-gon 2 0.121 8.9584 8.9584 (0.8882

3-gon ® 3-gon 9-gon ® 6-gon 2 0.234 9.1801 4.5901 0.9585
Mébius-Kantor  2{8}3 2 0.367 5.7992 2.8996 0.9901

TABLE D.1: Sweet spot data and other code parameters for quKit codes with K = 6 are listed where n is the
number of modes, N the total energy required and Fi,.x the fidelity achieved at the code’s ‘sweet spot’.

Overall advantage of a qudit encoding We also compare overall performance of a multi-mode QSC to various
cat-like codes by sweeping both energy and loss rate. We fix K = 6 and construct codes out of various logical
constellations: the 2-gon, 3-gon ({1,e?™/3 e*™/3}) 3-gon ® 3-gon({(e?™™1/3 2™m2/3) |0 < my,my < 2}) and the
Mobius-Kantor polygon. The first two are single-mode cat codes, the third distributes logical information over two
modes using tensor products of single-mode cat codes, while the last is an intrinsically two-mode code.

Results from a numerical comparison in Fig. D.2a show a universal advantage across the swept energy-and-loss-rate
parameter space. Similar trends are observed for various other v values (not shown here). Notably, the Mébius-Kantor
surpasses other codes even at their optimal values, as exemplified in Fig. D.2b, where we choose the N corresponding
to the 3-gon C 18-gon code’s sweet spot.

We append sweet-spot data for this set of codes in Tab. D.1, which corroborates the simplex-cat-code data in
Fig. D.1a. We observe that the Mobius-Kantor code provides robust protection against up to 2 losses, boasts higher
resolution (dg), requires lower energy per mode, and consistently outperforms all the mentioned polygon based codes
in the sweet-spot comparison.

When encoding a greater number of logical dimensions, multimodal QSCs prove significantly more resource efficient
and clearly outperform cat codes.

Appendix E: Lindbladian stabilization

The Z-type (i.e., dephasing or rotation error) correction for cat codes is done autonomously by engineering Lind-
bladians with a desired “correcting” jump operator F' = x(a?? — NP) and correction rate k. Engineering such terms is
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FIG. D.2: As shown in (a), the Mobius-Kantor code demonstrates a universal improvement over polygon based
codes and outperforms them over a range of energies and loss rates, as exemplified in (b) by choosing N
corresponding to the sweet spot energy (at v = 0.095) of the 3-gon C 18-gon code.

possible in microwave cavities coupled to superconducting circuits [29]. The typical scheme proceeds by coupling the
physical system to an ancillary or buffer mode b via the Hamiltonian coupling Fb" + H.c., setting the ancillary mode
to have a high loss rate, and then showing that the effective Lindbladian acting on the physical a-mode system has
jump operator F' (see, e.g., Ref. [30]).

Multi-mode coherent-state QSCs require more jump operators, and each jump operator can now consist of multiple
monomials in the lowering operators a;. However, due to the flexibility provided by a recently developed circuit
element called an asymmetrically threaded SQUID, or ATS [31], the above scheme can be extended to realize the more
complex jumps required for QSCs. We sketch out a general scheme below and apply it to a CSS and a polytope QSC.

The cost of our basic scheme — one ancillary mode per jump — is only an upper bound. While more advanced
schemes are outside the scope of this work, we note that a single ATS can be used to simulataneously realize multiple
jumps using as little as one ancillary mode [15, Appx. B.2].

a. General scheme

A desired jump operator is a sum of monomials of some maximum degree and a potential constant term that is the
Pth power of N,

F = Z monomial(a;) — constant - N* . (E1)

Leveraging previous schemes [31, supplement][15, Appx. B.2], we describe a slightly more general scheme to implement
a dissipator with this jump operator, which generates time evolution according to the equation of motion (E4).

Let the harmonic component of the jth physical mode have frequency wj, while the ancilla b-mode evolves at wy.
In the rotating frame w.r.t. these components, the multi-mode density matrix p,; describing a set of modes coupled
via an ATS evolves according to

pab = *i[Hdrivc + HATSa P] + HbD[b](p) . (EQ)
We describe each term and its purpose:

1. The drive term, Hgpve = —NTb + H.c., will yield the constant part of the jump operator F (E1) once the
effective equation of motion on the physical modes is derived. This term can be set to zero if no constant term
is necessary.



2. All of the magic comes from the ATS term [15, Eq. (B11)][32],
Hars = €(t) sin (s@ + gpbe Pt 4 Zj@-aje_i“’ft + H.C.) with pump tones ¢(t) = prpempt +He.,, (E3)

which depends on static real parameters {¢,,¢;, ¢} and tunable real parameters {wp,w;,&p,Qp}. The static
flux ¢ € {0,7/2} [31, Eq. (S3)] allows us to interpolate between a sine and cosine ATS term. One pump
tone, with amplitude £, and frequency €, is necessary for each monomial in the jump operator (E1). Tuning
the frequency allows us to select the specific desired monomial, while tuning the drive allows us to tune the
monomial’s coefficient.

3. The dissipative part, k;D[b] for sufficiently large x; > 0, ensures that the ancilla is sufficiently lossy. The steady-
state space of this evolution is spanned by any state of the a; modes, tensored with the vacuum Fock state |0) on
the b mode. Assuming the Hamiltonian terms to be perturbations to this strong Lindbladian evolution, one can
then derive an effective equation of motion within this steady-state space using either second-order perturbation
theory or what is colloquially known as “adiabatic elimination” [33-35].

Expanding the ATS term yields an infinite series, with combinatorially many monomials consisting of products of
drive-tone terms {£,e¢**'}, physical mode operators {a;e~"i'}, the ancillary mode term be~***, and the flux bias (.
The expansion is approximated by truncating to an order such that the highest-degree term is one higher than the
degree of the highest-order monomial in the desired jump operator (E1). The phase term ¢ € {0,7/2} ensures that
the expansion contains the monomial of correct (even or odd) degree.

The pump-tone frequencies {€2,} are then tuned to particular linear combinations of {w;,w;} so that any of the
monomials that are also present in the desired jump operator become time-independent. That way, all other terms
can be treated as higher-order “fast-rotating” corrections in what is known as the ‘“rotating-wave approximation”.
Combining with the drive term, the Hamiltonian terms in Eq. (E3) are then approximated by Fbf + H.c.. Verifying
that the many remaining terms in the expansion are all time-dependent can be done using the algebraic manipulation
plugin SNEG [36, 37] in MATHEMATICA.

The desired equation of the density matrix p = trmode 5(Pab) on the physical modes upon adiabatically eliminating
the ancilla is then

b= KDIFI(p) + - . (E4)
for a to-be-determined correction rate k, and up to higher-order corrections “---” stemming from corrections to the
approximations.

b. CSS QSCs

Our Z-type stabilization for CSS-type concatenated encodings provides an autonomous alternative to the discrete
measurement of Z-type error syndromes. Such jump operators can be readily “plugged in” to any concatenated
cat-CSS code, including a recent concatenated surface-cat code proposal [15].

Our jump operator for the surface-cat code example consists of a product of lowering operators acting on sides one
through four of each plaquette, F' = ajazazas — N2, of a square lattice. This is a special case of the general form (E1)
with one degree-four monomial and constant term with P = 2. The sole monomial requires only one pump tone, with
amplitude & = £ and frequency 7 = Q, and zero flux bias, ¢ = 0. The ATS sine term is expanded to fifth order.
The condition selecting the desired monomial is

N =wi +wo + w3 +ws —wp, yielding the monomial ajasazasd’ + Hee. . (E5)

This monomial is multiplied by a product of accompanying constants, ¢1¢203¢404¢, to yield an effective correction
rate K o< (1dap3pa0pE)? /Ky, after adiabatic elimination.

The above scheme is done for each plaquette of the surface-code architecture. The additional af — N dissipators —
required for restricting each mode j to antipodal coherent states — are realized in said architecture using a single
ATS [15, Appx. B.2]. Together, these provide autonomous protection against all Z-type errors, utilizing the full
error-correcting power of the (outer) surface code for such noise. Extension to other QLDPC codes is straightforward,
barring any issues with long-range physical connectivity.



c. Hessian QSC

The Hessian code requires three jump operators, two of which consist of three monomials. Each jump operator
can be realized using the general scheme above, providing a non-trivial QSC example that should be realizable with
state-of-the-art ATS technology.

1. The jump F' = ajasas has no constant term, so no drive term is necessary. Only one pump tone, with amplitude
&1 = € and frequency € = €, is required, and ¢ = 7/2 to obtain a cosine ATS. The ATS term is expanded to
second order. The conditions selecting the desired monomial are

O =w; +ws + w3 — wp yielding the monomial ajasazh’ + Hee.. (E6)
This monomial corresponds to an effective correction rate x o (¢1dap3dp€)? /Ky after adiabatic elimination.

2. The jump F = a3 +a3+a3 also has no constant term. The three terms require three drive tones, with parameters
{&, Q) for p € {1,2,3}. The phase ¢ = 7/2 so that the ATS term becomes a cosine. The ATS cosine term is
expanded to second order. The conditions selecting the desired monomials are

=1/¢3_
S =1/ , yielding the monomials a:;:pr +H.ec.. (ET)
Qp = 3wj—p — wp
Each of these monomials is multiplied by a product of respective accompanying constants, ¢§?=p¢b£p = ¢p, Where
we have used the drive-tone amplitudes to cancel the non-tunable coupling strengths ¢;. This yields an effective
correction rate Kk o gb% /Kb, after adiabatic elimination.

3. The jump F = a$ + a$ + a$ — K3/4 has three monomials and a constant term with power P = 3 and coefficient
1/4. The three monomials require three drive tones, with parameters {¢,,Q,} for p € {1,2,3}. The phase ¢ =0
so that the ATS term remains a sine. This term is then expanded to fourth order. The conditions selecting the
desired monomials are

gp = 1/¢?:p

, yielding the monomials a?:pr + H.c.. (E8)
Qp = 60Jj:p — Wy

Each of these monomials is multiplied by ¢,. The fluxes g; are required to be equal for all three j in order to
realize the jump. This yields an effective correction rate r o ¢7/ky, after adiabatic elimination.
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