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ABSTRACT Image segmentation is a crucial task in computer vision. In this study, we propose a method
based on inverse quantum Fourier transform (IQFT) and develop a robust IQFT-inspired algorithm for
unsupervised image segmentation. The proposed method leverages the underlying mathematical mechanism
of the IQFT to cluster the input image pixels automatically and efficiently into different segments.
Specifically, by considering the correlation between the within-cluster mean sum of squared error (MSSE)
and the probability of quantum measurements, the proposed robust algorithm significantly improves the
segmentation performance. It is an unsupervised method with characteristics similar to k-means, i.e., the
proposed method does not require training. Extensive evaluation of the proposed method has been carried
out, showing that it outperforms the classical k-means on the PASCAL VOC 2012 segmentation benchmark
by as much as 4.21%, the Flowers dataset by as much as 4.4%, and the xVIEW2 challenge dataset by as
much as 11.1% in terms of Intersection-Over-Union (IoU). It is also demonstrated that the proposed method
has comparable or mixed performance compared to recent more complex approaches. However, compared
to approaches such as GrabCut, which require a measure of the user interaction, and deep learning-based
methods, which require generative models and deep feature extraction algorithms, the proposed method does
not require training or user involvement. This makes it a promising choice for applications that do not have
access to data before deployment or have very limited training data.

INDEX TERMS Computer vision, image segmentation, inverse quantum Fourier transform, unsupervised
learning, k-means.

I. INTRODUCTION
Image segmentation is a key approach in the field of
computer vision and image analysis that helps us understand
an image’s visual contents more deeply. Fundamentally,
image segmentation can be formulated as the problem of
simplifying the complexity of an image by separating it
into unique sections or segments, each associated with a
significant object, texture, or area of interest. At the pixel
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level, image segmentation allows for the exact delineation of
object boundaries and the separation of distinct entities inside
the image, in contrast to classification, which assigns a single
label to an entire image. Image segmentation is important
because it givesmachines the ability to comprehend the visual
environment in a way similar to humans. By segmenting an
image into significant parts, computers can precisely detect
and extract particular objects or regions, irrespective of their
shape, size, or context. This technology has applications
in various industrial processes, including industrial automa-
tion, autonomous vehicles, video surveillance, content-based
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image retrieval image object recognition and object detection,
and medical diagnostic imaging.

The development of deep learning and artificial intelli-
gence has considerably accelerated the evolution of image
segmentation algorithms [1], [2]. Convolutional neural
networks (CNNs) [3] and other cutting-edge architectures
have replaced the traditional techniques in many critical
and challenging tasks, particularly in applications where
correctly labeled training datasets are readily available. The
segmentations produced by these state-of-the-art approaches
are surprisingly accurate because they make use of enormous
volumes of manually labeled data to discover complex
patterns and relationships inside images. However, in appli-
cations involving large, diversified datasets where labeled
data are not available, unsupervised approaches are exploited.
These alternative techniques utilize the image’s statistical,
geometrical, or texture-based qualities to automatically reveal
subtle regions of interest and solve image segmentation
problems without the need for any previous knowledge.
Unsupervised techniques find application in image decom-
position into more general regions such as ‘‘Foreground’’ and
‘‘background’’.

Unsupervised image segmentation is pivotal in fields
where labeled data is sparse or inaccessible, yet accurate
image comprehension is essential. Unlike supervised learn-
ing, which necessitates costly and time-intensive annotation
efforts, unsupervised methods capitalize on inherent data
patterns to autonomously segment images. This adaptabil-
ity is particularly advantageous in environments lacking
annotated datasets or requiring continual adaptation to new
conditions [4]. For example, in space missions [5], where
obtaining labeled data for image analysis is impractical,
unsupervised segmentation facilitates the categorization of
celestial body features captured by rovers or satellites, aiding
in geological exploration and potential life detection. Simi-
larly, in medical imaging, such as pathology and radiology,
unsupervised segmentation supports the identification of
anomalies in scans where annotated data is scarce, enhancing
diagnostic accuracy and treatment planning [6]. Moreover,
in environmental sciences, unsupervised techniques enable
automated feature extraction from remote sensing data,
crucial for monitoring deforestation or wildlife habitats in
regions where ground truth data collection is challenging
or impractical. Driven by applications in space explo-
ration, medical imaging, and environmental monitoring, this
research focuses on advancing unsupervised segmentation
techniques to eliminate the reliance on labeled training data.

It is pertinent to note that the literature encompasses
different types of image segmentation methodologies, includ-
ing binary segmentation, and semantic segmentation, among
others. However, this study primarily concentrates on binary
segmentation, a fundamental approach wherein an image
is partitioned into two distinct regions: foreground and
background. Each pixel within the image is rigorously cat-
egorized as either a part of the object of interest (foreground)

or not (background). Unlike semantic segmentation, which
assigns specific class labels to pixels, our focus on binary
segmentation underscores a generalized partitioning devoid
of explicit reference to particular objects [7].

In this work, we focus on the problem of automatically
dividing an image into prominent or significant regions
without prior information. By using the pixel’s RGB color
features, we aim to cluster an image into regions of interest.
Because the overall segmentation output from these color
features depends on the colors defining the region of interest,
there is a need to adequately describe this region in terms of
color and texture [8]. This study extends our previous work
in [9].

Our previous work provides insights into the appli-
cability of the inverse quantum Fourier transform(IQFT)
for unsupervised image segmentation. The segmentation
output observed using the previously proposed algorithm
is dependent on three heuristically determined angular
parameters which do not offer enough flexibility required to
tune the segmentation mask obtained to an optimal output.
This current work represents a substantial advancement over
our previous research, with significant enhancements in
robustness, theoretical analysis, experimental validation, and
experimentation efforts.

Robustness is a major concern of machine learning
algorithms, including image segmentation. It is paramount
for ensuring the effectiveness and reliability of algorithms
across various real-world scenarios. Robustness is the ability
of an algorithm to maintain high performance and stability
even when faced with unforeseen or challenging condi-
tions, such as noisy data, outliers, changes in distribution,
or adversarial attacks. For a machine learning algorithm,
robustness enhances its trustworthiness, instilling confidence
in its reliability and performance, even in challenging condi-
tions [10], [11]. This is especially important in safety-critical
applications such as healthcare, autonomous vehicles, and
finance. For this reason, this work considers the robustness
of the IQFT method for image segmentation which was not
mentioned in our previous work.

Additionally, in our previous algorithm, pixel classification
relied solely on the state with the maximum probability.
However, in this current work, we refine this approach by
considering the probability distribution of the other states as
well. This enhancement aims to ensure the region of interest
is achieved with a good degree of certainty. Specifically,
we introduce a probability threshold delineating a boundary
of certainty. Pixels falling below this threshold undergo
further analysis using similarity measures such as cosine
similarity or Euclidean distance. This process contributes
to more precise segmentation results. Unlike our previous
work, where the probability value was determined by
random guessing until satisfactory results were obtained, this
study introduces a heuristic approach involving probability
search using the average sum of squared error (SSE) to
achieve optimal or near-optimal results. This eliminates
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user involvement and ensures consistency in segmentation
outcomes.

Furthermore, we expand the scope of evaluation by
validating the proposed method on four benchmark datasets,
including Flowers [12] and Caltech-UCSD Birds-200-2011
(CUB-200-2011) [13], which were not considered in our
previous work. This broader evaluation provides a more
comprehensive assessment of the algorithm’s performance
across diverse datasets and scenarios. Moreover, we have
enriched the analysis of our method by comparing it with
additional state-of-the-art techniques, such as ReDo [14],
GrabCut [15], Inpainting Error Maximization (IEM) [16],
and other complex algorithms utilizing deep learning net-
works. These comparisons offer valuable insights into the
strengths and weaknesses of our approach relative to existing
methods.

The contributions of this paper are:

1) A robust, IQFT-inspired algorithm is proposed for
unsupervised image segmentation.

2) The proposed approach has much less computational
cost when compared to many deep learning-based
image segmentation methods and is thus suitable for
real-time applications because it does not require
training.

3) We demonstrate the potential of the robust, IQFT-
inspired method in solving image segmentation prob-
lems, and compare its effectiveness with k-means,
which is a de facto standard method matching our
approach in terms of the structural simplicity of the
algorithm involved.

The remainder of this paper is structured as follows:
Related works are reviewed in Section II. Section III
introduces the quantum Fourier transform and its inverse.
Section IV provides the details of the proposed approach. The
experimental results, including observations and insights, are
given in Section V. Section VI concludes the paper.

II. RELATED WORKS
A. IMAGE SEGMENTATION IN CLASSICAL COMPUTING
As a key process in image processing and analysis, image
segmentation has been well-studied in the classical comput-
ing domain. Many methods for solving image segmentation
problems have emerged over the years. These methods
vary widely depending on the specific application since
a single method is not sufficient for different images
with varying characteristics in terms of sharpness, texture,
noise presence, and the degree of overlapping objects [18].
Traditional techniques used for image segmentation are
categorized as thresholding-based technique [19], region-
based technique [20], edge-based technique [21], clustering-
based technique [22], and watershed technique [23]. These
methods vary widely depending on the specific application
since they all have their limitations based on the underlying
principles. For instance, employing an unsupervised method
like the k-means for image segmentation has a major

drawback which is the requirement for the optimal number of
clusters to be specified before the algorithm is applied [24].
The segmentation error decreases as the number of clusters
increases and there is no theoretical means of obtaining
the optimal number of clusters to be used. Similarly,
Otsu’s thresholding technique does not consider the spatial
information of the image, and this makes it sensitive to the
unevenness and noise in a grayscale image [25].
Although the advent of deep learning has brought about

new classes of image segmentation techniques that have
become widely available [26], and usually have very high
computational complexity due to the required training
and retraining. Traditional deep CNN-based segmentation
methods depend heavily on large datasets, which limits their
effectiveness in various scenarios. Few-shot segmentation
addresses this limitation by learning to generalize from only
a few labeled examples [27]. This is often achieved through
techniques like prototype learning and advanced network
architectures to enhance accuracy and robustness [28].
Despite its potential, current methods can suffer from
overfitting and imprecise boundaries. Ongoing research aims
to address these issues by introducing innovative solutions,
such as Holistic Prototype Activation (HPA) and other
variants [29], [30], [31], to improve performance in low-
data regimes. These techniques are supervised methods that
require training, however small. On the contrary, the proposed
method does not require training and has low computational
cost compared to the deep learning-based methods, thus
making it suitable for real-time applications. In our analysis,
we will compare the performance of our proposed technique
with k-means Clustering [32], which has similar advantages
in computational efficiency.

An emerging unsupervised clustering algorithm gaining
attention in recent years is mean-shift clustering. Its dis-
tinct advantages over traditional methods like k-means lie
in its non-parametric approach, leveraging kernel density
estimates within its algorithm. Unlike k-means, mean-shift
can effectively model intricate clusters with non-convex
shapes, requiring users to set only one parameter: the
bandwidth. This bandwidth parameter dictates the scale
of the clusters, autonomously determining the number of
clusters based on data distribution. In contrast to k-means,
where users explicitly specify the number of clusters,
the outcome from using mean-shift’s clustering is solely
determined by the bandwidth, eliminating the need for
multiple runs with different initialization values. However,
in certain applications such as foreground-background sepa-
ration or medical image segmentation, users may necessitate
a predefined number of clusters. Regrettably, mean-shift
lacks direct control over the cluster count. Achieving a
specific number of clusters entails an exhaustive search
over bandwidth values, incurring significant computational
overhead [33]. Due to this computational complexity in
achieving a predetermined number of clusters, mean-shift
segmentation is not directly comparable to our proposed
approach.
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B. IMAGE SEGMENTATION IN QUANTUM COMPUTING
In recent years, some image segmentation algorithms have
emerged in the quantum domain [34] to exploit the properties
of quantum computing to improve the performance of
classical techniques and, subsequently, their applications.
Caraiman et al. [35] proposed an algorithm based on his-
togram to achieve a significant speedup by using the
performance of the quantum Fourier transform and quantum
amplitude amplification. However, this algorithm uses a
Grover operator that requires a quantum oracle, which was
not explicitly specified. This makes it difficult to simulate
the algorithm. In the subsequent year, Caraiman et al. [36]
proposed another single threshold-based algorithm for image
segmentation. This time, the oracle circuit was specified
and implementable with about fifty qubits, which made it
difficult to simulate in the present quantum computer. In [37],
Li et al. proposed an algorithm for image segmentation using
a quantum search algorithm. The specific oracle operator
employed for amplitude amplificationwas, however, missing.
Again, this made simulation impossible. In general, most of
these proposedmethods involved the implementation of some
oracle operators which are either fully theoretical or hard
to simulate due to the number of qubits required or some
missing information about their implementation. In [34],
Yuan et al. proposed the dual-threshold quantum image
segmentation algorithm and showed the effectiveness of their
algorithm with an 8 × 8 grayscale image. The actual time
consumption for the segmentation process was not reported
concerning the theoretical time complexity of their algorithm.

In conclusion, it can be established from the literature that
• Many image segmentation methods have been proposed
in the classical domain.

• A universally accepted method that satisfies all image
requirements does not exist because all the proposed
methods have their own challenges.

• Quantum application in image segmentation is still
being developed and not many works have been done
effectively in this quantum domain.

It is against this backdrop that this work seeks to propose
a novel segmentation technique that, by benefiting from both
classical and quantum computing, will be a promisingmethod
to solve an image segmentation problem.

III. QUANTUM FOURIER TRANSFORM (QFT) AND
INVERSE QUANTUM FOURIER TRANSFORM (IQFT)
Quantum Fourier Transform (QFT) transforms a computa-
tional basis state |x⟩ as shown in equation (1) [38], where
N = 2n, and n is the number of qubits.

QFT (|x⟩n) =
1
√
N
⊗
n
k=1

(
|0⟩ + ei

2πx
2k |1⟩

)
(1)

For example, when three qubits are considered, n = 3
equation (1) becomes:

QFT (|x⟩3) =
1
√
8

(
|0⟩ + ei

2πx
2 |1⟩

)
⊗

(
|0⟩ + ei

2πx
4 |1⟩

)

FIGURE 1. IQFT quantum circuit.

FIGURE 2. Framework of the IQFT method for RGB image segmentation.

⊗

(
|0⟩ + ei

2πx
8 |1⟩

)
(2)

Considering this mathematical formulation of the QFT
for a system of three qubits, it becomes obvious that a
superposition of states, with some phase information, can
be transformed into a single state representation through
the instrumentality of the inverse quantum Fourier trans-
form (IQFT) as shown in equation (3).

IQFT
[

1
√
8

(
|0⟩ + eiα|1⟩

)
⊗

(
|0⟩ + eiβ |1⟩

)
⊗

(
|0⟩ + eiγ |1⟩

) ]
= |k⟩3 (3)

where α, β and γ are the relative phases.
In this study, three qubits are considered to match the three

channels of the RGB color space. Hence, a three-qubit IQFT
circuit [39] employed is shown in Figure 1. It is worth stating
here that the IQFT method is not limited by the number of
qubits since the desired number of qubits can be chosen based
on the available number of inputs. However, using a high
number of qubits will increase the computational complexity,
and hence, the runtime of the algorithm.

IV. PROPOSED ALGORITHMS FOR RGB IMAGE
SEGMENTATION
A. IQFT METHOD FOR RGB IMAGE SEGMENTATION IN
THE QUANTUM DOMAIN
According to equation (4), where n is the number of qubits,
with three qubits, it is possible to partition an image into
a maximum of eight segments which is sufficient for most
practical applications.

Number of segments ≤ 2n (4)

The IQFT framework in Figure 2 consists of five stages.
The linear transformation stage involves mapping from RGB
intensity values to a corresponding set of relative phases
(α, β, γ ) according to equation (5), where Irange = Imax−Imin
is the range of the intensity values in channel, I ∈ {R,G,B},
and {θ1, θ2, θ3} is a set of angle parameters to be chosen based
on the application.

99032 VOLUME 12, 2024



T. A. Akinola et al.: Robust IQFT Inspired Algorithm for Unsupervised Image Segmentation

FIGURE 3. State preparation circuit. All qubits are initialized to state |0⟩.

FIGURE 4. Complete quantum circuit for RGB image segmentation.

(
R− Rmin
Rrange

)
× θ1 −→ α;

(
G− Gmin
Grange

)
× θ2 −→ β;(

B− Bmin
Brange

)
× θ3 −→ γ (5)

At the state preparation stage, the quantum circuit in
Figure 3 converts the phase angles (α, β, γ ) to a three-
qubit state 1

√
8

(
|0⟩ + eiα|1⟩

)
⊗

(
|0⟩ + eiβ |1⟩

)
⊗

(
|0⟩ + eiγ |1⟩

)
,

which is the input of the IQFT circuit in Figure 1. The
Hadamard gates produce superposition of states |0⟩ and |1⟩
while the Rz gates perform single-qubit rotations around the
z-axis [40] to establish the required relative phase values.
Figure 4 presents a complete quantum circuit for the IQFT
method for RGB image segmentation in the quantum domain.

The output segmentation label is realized as explained in
the following example. Consider a set of random relative
phases {α, β, γ } = {0.2464, 2.464, 3.080} from a linear
transformation of a pixel’s RGB values. When the circuit in
Figure 4 was simulated in IBM Qiskit [42] using ‘‘qasm’’
simulator backend set to 2000 shots, the output probability
distribution in Figure 5 was realized. Since the most probable
state is ‘‘001’’, the pixel is labeled 1. This process is repeated
for all the pixels in a given image data for a complete label.

B. IQFT-INSPIRED ALGORITHM FOR RGB IMAGE
SEGMENTATION IN CLASSICAL DOMAIN
The requirement of three qubits makes the quantum method
suitable in this noisy intermediate-scale quantum (NISQ) era.
However, the major drawback, like other practical quantum
methods, is the high computation cost for transforming
the classical image intensities into the quantum states.
To eliminate the computation cost for classical-to-quantum
data transformation, without loss of performance, an IQFT-
Inspired algorithm for RGB Image segmentation is proposed.

FIGURE 5. Probability distribution for a set of random relative
phases{α, β, γ }.

Expanding the left-hand side (LHS) of equation (3) results
in equation (6). Further simplification of equation (6) yields
equation (7).

RHS =
1
√
8
× [IQFT |000⟩ + eiγ IQFT |001⟩

+ eiβ IQFT |010⟩ + ei(β+γ )IQFT |011⟩

+ eiαIQFT |100⟩ + ei(α+γ )IQFT |101⟩

+ ei(α+β)IQFT |110⟩ + ei(α+β+γ )IQFT |111⟩]

(6)

where IQFT (|abc⟩) = 1
√
8

∑7
x=0 ω−x(d)|x2⟩ is the IQFT of a

three-qubit basis state, |abc⟩. d and x2 are base-10 equivalents
of abc2 and x, respectively.

RHS = P|000⟩ + Q|001⟩ + R|010⟩ + S|011⟩ + T |100⟩

+ U |101⟩ + V |110⟩ +W |111⟩ (7)

where probability amplitudes P through W are given by the
matrix representation in equation (8).[

P Q R S T U V W
]T
≡

1
8
×M × N (8)

where

M =



1 1 1 1 1 1 1 1
1 ω−1 ω−2 ω−3 ω−4 ω−5 ω−6 ω−7

1 ω−2 ω−4 ω−6 1 ω−2 ω−4 ω−6

1 ω−3 ω−6 ω−1 ω−4 ω−7 ω−2 ω−5

1 ω−4 1 ω−4 1 ω−4 1 ω−4

1 ω−5 ω−2 ω−7 ω−4 ω−1 ω−6 ω−3

1 ω−6 ω−4 ω−2 1 ω−6 ω−4 ω−2

1 ω−7 ω−6 ω−5 ω−4 ω−3 ω−2 ω−1


N =

[
1, eiγ , eiβ , ei(β+γ ), eiα, ei(α+γ ), ei(α+β), ei(α+β+γ )

]T
The matrix formulation of equation (8) enables a straight-

forward implementation of the proposed IQFT method
in a classical computation domain such as Python. This
completely classical, IQFT-inspired algorithm is presented in
Algorithm 1. The input Pm is a 3D vector of RGB intensities
of the mth pixel, T is the total number of pixels, M is a
complex 8 by 8 matrix in equation (8), θ1, θ2, and θ3 are angle
parameters for mapping pixel intensities into phase values,
and the output is the required pixel label lm∈{0, 1, 2, . . . , 7}.
The segmentation algorithm involves a linear transformation
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in Line 1 using equation (5), dimensional transformation
from 3D to 8D vector in Line 2, following equation (8), and
probability measure in Line 3. Finally, a pixel is classified
according to the basis vector with the highest probability
in line 4. The overall computational complexity of this
algorithm isO(N .2n), where N is the number of pixels in the
given image, and n, is the number of qubits.

Algorithm 1 : IQFT-Inspired Algorithm for RGB Image
Segmentation

Input:
Pm ∈ R3, m = [1,T ]
θ1, θ2, θ3 ∈ R
M ∈ C8×8

Output: L D {lm ∈ Z}
for m=1to T do

1. {γm, βm, αm} ←−
{
Im−Imin
Irange

× θ
}

, I ∈ {R,G,B}

2. {Nm} =



1
eiγ

eiβ

ei(β+γ )

eiα

ei(α+γ )

ei(α+β)

ei(α+β+γ )


←−


γm
βm
αm



3. {Sm} ←− [abs (Dot Product (Nm,M) /8)]2

4. {lm} ←− {argmax{Sm} }

In addition, the rows of M matrix in equation (8) represent
eight state basis vectors shown in Figure 6, where each
vector is visualized as a set of points on a unit circle.
With this insight, the labeling of a pixel using the proposed
IQFT-inspired algorithm involves a transformation from a 3D
RGB vector to a set of 8 points on a unit circle using the N
column vector in equation (8) and choosing a label based on
the most similar basis vector. For example, the representation
of a random case of α = 0.246, β = 0.025, γ = 0.250 using
equation (8) is shown in Figure 7. By visual inspection, the
corresponding pixel is labeled 0 since the plots on the unit
circle tend to a single point like state |000⟩.

C. ROBUST, IQFT-INSPIRED ALGORITHM FOR RGB IMAGE
SEGMENTATION IN THE CLASSICAL DOMAIN
Figure 8 shows two sets of arbitrary probability distributions
corresponding to two random pixels. Using the proposed
IQFT algorithm, the distribution in Figure 8(A) will result
in label 0 which stands out with a large probability margin.
However, a label of 0 for the distribution in Figure 8(B)
might be a wrong prediction because of the small probability
margin between states 000, 001, and 100. This slight
difference could be due to the random nature of the quantum
measurements or noise in the image data set. To add a level of
confidence by setting a probability margin, a new probability
parameter (p) is introduced for consistent and reliable

FIGURE 6. Visualization of the state basis vectors for three qubits: each
vector is represented by a set of 8 points on a unit circle.

FIGURE 7. Representation of phase angles α = 0.246, β = 0.025,
γ = 0.250 on a unit circle using equation (8).

FIGURE 8. Probability distributions from two random pixels. Using the
IQFT-inspired algorithm, pixel A is labeled 0 with a high degree of
confidence. A label of 0 for pixel B is not reliable because of the small
probability difference shown by states |000⟩ and |001⟩.

label predictions. With this adjustment, the IQFT-inspired
algorithm will be used to automatically cluster the image
data into significant regions with a specified probability
threshold, and the remaining pixels for which the maximum
probability falls below the specified value are then classified
into the established segments by using a similarity measure
like cosine similarity and Euclidean distance. Also, to ensure
that our algorithm does not require the user’s effort, we define
the initial probability threshold p ∈ {0, 1} as the closest value
of p that gives the average sum of squared-error (Avg. SSE)
given by equation (9). The robust, IQFT-inspired algorithm is
presented in Algorithm 2.

Avg.SSE =
1
N

K∑
k=1

∑
∀xi∈Ck

∥xi − µ∥2 (9)

where Ck is the set of pixels in segment k , K is the total
number of segments, µk is the mean vector of segment k
calculated using µ = 1

|Ck |

∑
∀xi∈Ck xi.
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Algorithm 2 Robust IQFT-Inspired Algorithm for RGB
Image Segmentation

Input:
Pm ∈ R3, m = [1,T ]
θ1, θ2, θ3 p ∈ R // input parameters
M ∈ C8×8 // equation (8)
Output: L D {lm ∈ Z} // Final label

for m = 1 to T do:

1. {γm, βm, αm} ←−
{
Im−Imin
Irange

× θ
}

, I ∈ {R,G,B}

2. {Nm} =



1
eiγ

eiβ

ei(β+γ )

eiα

ei(α+γ )

ei(α+β)

ei(α+β+γ )


←−


γm
βm
αm



3. {Sm} ←− [abs (Dot Product (Nm,M) /8)]2

for p = 0 to 1, step = 0.1 do::
4. if max{Sm} ≥ p :
5. {lm} ←− {argmax{Sm} }
6. if max{Sm} < p :
7. {lm = 9} // Temporary mask:arbitrary label, say, 9.

8. {0, 1, . . . , 7}
similarity
←−−−−− {L == 9} // update the label

9. Calculate SSE
10. Calculate Avg.SSE
11. Select the optimal p value and the corresponding label

V. RESULTS AND ANALYSIS
A. DATASET
We used the following publicly available benchmark datasets
to demonstrate the performance of our proposed technique,
and, whenever possible, we compare our results with other
methods in the domain of unsupervised techniques for image
segmentation, especially k-means which matches our method
in terms of algorithmic simplicity.

1) Flowers dataset [12] comprises 8,189 images of
102 different classes of flowers. For a fair comparison,
we followed the data split adopted in ReDO [14]
and IEM [16] and used only 1020 test images. Since
our method does not require training, we did not
use the validation and training images. Also, out
of the 1020 test images, 32 images were not used
because they have empty ground truth masks which can
negatively affect the values of the performance metrics.
Specifically, our method was tested on 988 images.

2) Caltech-UCSD Birds-200-2011 (CUB-200-2011)
dataset [13] consists of 11,788 images of a collection

FIGURE 9. Samples from benchmark datasets: Flowers, CUB-200-2011,
PASCAL VOC 2012 and xVIEW2 challenge datasets.

of 200 bird species. Again, 1000 test images were used
in alignment with ReDO [14] and IEM [16].

3) PASCAL VOC 2012 segmentation benchmark [8]
consists of 2913 labeled dataset, focusing only on the
segmentation category which contains 2913 labeled set
of some well-known objects like ‘birds’, ‘dog’, ‘car’,
etc. The test data without annotation is ignored.

4) The xVIEW2 challenge dataset [41] is a large-scale
collection of satellite imagery containing a mixture
of pre- and post-disaster RGB satellite images for
assessment of building damage. For this study, the
pre-disaster images for the ‘‘Joplin-tornado’ disaster
are used due to the availability of ground-truth masks.
It contains 148 RGB satellite images (with tiny objects)
and the corresponding ground-truth masks, each of size
1024×1024 pixels.

Figure 9 shows samples of these datasets and their ground-
truth masks.

B. EXPERIMENTAL SETUP
All images are RGB for all experiments. To evaluate the
performance of our proposed method, we compared our
results with those of the existing methods such as k-means
clustering [32], ReDO [14], IEM [16], PerturbGAN [17],
and BigBiGAN [44]. Flowers and CUB-200-2011 datasets
are resized and center-cropped to 128 × 128 pixels while
the dimensions of the PASCAL VOC 2012 and xVIEW2
datasets are kept. For repeatability, the k-means algorithm
is developed using Scikit-learn library [45] with default
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settings. All the algorithms used in this study were coded
using Python on a MacBook Pro with 8-Core Intel Core i9
running at 2.3 GHz. All quantum circuits were evaluated on
the IBM Qiskit. Here, Aer simulator using qasm simulator
backend was used.

C. EVALUATION METRIC
An extensive literature review reveals that the Intersection
over Union (IoU) metric, often synonymous with Jaccard’s
Index, holds significant importance in evaluating segmenta-
tion tasks. IoU quantifies the segmentation model’s ability
to delineate objects from their backgrounds within an image,
making it a widely adopted evaluation metric for comparing
image segmentation techniques [43].

In line with standard practices and to ensure a robust
comparison of our proposed method with prior approaches,
we utilized the standard average IoU metric. Given that the
state-of-the-art techniques referenced in this study report
results in IoU, this metric serves as a common benchmark
for evaluation. Additionally, we furnish results in terms of
the DICE score and per-pixel accuracy for comprehensive
analysis. It’s essential to note that for all these metrics, higher
values indicate superior performance.
• For ease of comparing our work with previous work,
the intersection over union (IoU) score was computed
as the IoU of the foreground according to equation (10)
or as the mean-IoU (mIoU ) of both the foreground and
the background, according to equation (11). To apply
equation (10) to an image, two IoU values are calculated
for each of the predicted segments using the given
ground-truth foreground. In line with [8], the higher
of the two values is taken as the IoU of the image.
For N images, the average IoU of the foreground is
(
∑N

1 IoU (foreground))/N .
• DICE score is defined in equation (12), all symbols
remain as defined in equation (10). The mean-DICE
score of the foreground was calculated following a
similar procedure for mean-IoU .

• Accuracy is defined as the proportion of labels that
have been correctly assigned to the foreground and
background.

IoU (foreground) =
|FGT ∩ FP|
|FGT ∪ FP|

(10)

where FGT and FP are the groundtruth foreground and
predicted foreground labels, |ϵ| is equal to the number of
elements in ϵ.

mIoU =
IoU (foreground)+ IoU (background)

2
(11)

DICE(foreground)

= 2×
|FGT ∩ FP|
|FGT | + |FP|

(12)

In all cases of the labels, the foreground and background
regions are defined by binary 1 and binary 0, respectively. All
ground-truth masks are binarized using OpenCV library. The

FIGURE 10. Effect of the threshold value on a binarized mask: wrong
value can result in loss of the ground-truth foreground region, and,
hence, performance evaluation error. For this ground-truth, a threshold
value of 0.1 appears better than 0.5.

binarization threshold is set according to the dataset as 0.1 for
Flowers, PASCAL VOC 2012 and xVIEW2 dataset, and
0.5 for CUB-200-2011. These threshold values are carefully
chosen so that the resulting binarized mask is visually
identical to the given ground-truth masks. Figure 10 shows
that chosen a threshold of 0.1 is better than 0.5 which visibly
results in loss of ground-truth foreground region and, hence,
errors in performance evaluation. For ease of reproducibility,
all the metrics used are coded using the Scikit-learn library.
In the case of PASCAL VOC 2012 dataset [46], pixels
around the border of an object that are marked ‘void’ in the
ground-truth are not used in the assessment of our method.

D. EXPERIMENTAL RESULTS
To demonstrate the effectiveness of the proposed methods
for image segmentation and evaluate the effects of design
choices on performance, several experiments were conducted
on benchmark datasets, and the results obtained are presented
in this section.

1) IMAGE SEGMENTATION USING THE IQFT METHOD IN
THE QUANTUM DOMAIN
Figure 11 presents a piece of visual evidence for the clustering
capability of the IQFT method in the quantum domain.
By visual inspection, even at 200 shots, the three dogs are
automatically segmented out by the IQFT algorithm, without
previously specifying the number of segments. For the upper
bird image, θ1 = θ2 = θ3 = π and the number of segments
is 7. Setting θ1 = θ2 = θ3 = 3π/2 for the lower dog image
resulted in 6 segments.

A visual comparison of the outputs with those from
k-means, reveals that the IQFT quantum algorithm can
spontaneously split an image into some significant segments.
However, as revealed in Figure 11, the segments appear
‘‘noisy’’ below 500 shots for the dog and bird cases because
a good number of shots is necessary for the simulator
in Qiskit to build a probability distribution which is the
backbone of the IQFT method. Figure 12 shows that
the IQFT in the quantum domain and the IQFT-inspired
algorithm have similar segmentation results. This conclusion
is supported by the quantitative results in Table 1 for a
333× 500 input image, where the values of the performance
metrics are approximately equal for both techniques, except
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FIGURE 11. A visual evidence for the clustering capability of the IQFT
method in the quantum domain. Different segments are displayed in
different colors.

FIGURE 12. Comparing the performance of IQFT (quantum domain) with
IQFT-inspired algorithm.

TABLE 1. Comparing the IQFT method in the quantum domain and
IQFT-inspired algorithm in terms of IoU, DICE score and accuracy.

for the large runtime associated with the quantum domain
implementation. The results from using k-means method are
also provided for completeness. Because implementating of
the IQFT method in Qiskit is computationally expensive, all
subsequent experiments were carried out using the IQFT-
inspired algorithm.

2) IMAGE SEGMENTATION USING ROBUST, IQFT-INSPIRED
ALGORITHM IN THE CLASSICAL DOMAIN
Figure 13 shows an unsupervised image segmentation into
foreground and background using the robust, IQFT-inspired
method with θ1 = π, θ2 = π/4 and θ3 = π/4.

FIGURE 13. Behavior of our robust, IQFT-inspired algorithm on image
dataset.

A temporary mask resulting from specifying a probability
range of p ≥ 0.8 is also shown. The white and black colors
in the temporary mask identify the pixels that are labeled as
foreground and background, respectively, with a probability
of at least 80%. The gray color highlights approximately 39%
of the total pixels which cannot be reliably determined by the
IQFT method due to the specified probability threshold. The
updated mask is adjusted by grouping the ‘‘gray’’ into either
foreground or background based on their similarity score.
In this work, cosine similarity is used because it has generally
shown better performance in this application when compared
to other similarity measures like Euclidean distance. The
mask produced by the k-means algorithm is also provided for
comparison.

E. EFFECTS OF DESIGN CHOICES ON THE PERFORMANCE
OF THE PROPOSED METHODS
1) EFFECTS OF ANGLE PARAMETERS (θ1, θ2, θ3) ON THE
PEFORMANCE OF THE PROPOSED METHOD
To study the effects of the angle parameters on the proposed
method, we generated 100, 000×3 random numbers between
0 and 1 as normalized RGB values. We determined the
maximum number of segments using different sets of
(θ1, θ2, θ3). The results in Table 2 reveal that number
of segments varies with (θ1, θ2, θ3). This variation occurs
due to the modification of the input pattern, discussed in
Section IV-B, as the angle parameters are varied. The last four
rows in Table 2 show the combinations that usually output
two segments. These are especially useful for cases like
foreground-background segmentation, where two segments
are required. Figure 14 illustrates the practical effect of the
angle parameters on a real image. The performance of the
IQFT method depends on the angle parameters and, in this
example, (π, π/4, π/4) achieves the highest IoU value of
81.6% for the foreground-background segmentation. Also,
Figure 15 demonstrates that multiple segments are possible
by setting the values of (θ1, θ2, θ3) for such outputs.
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TABLE 2. Angle parameters (θ1, θ2, θ3) and the possible number of
segments.

FIGURE 14. Different two-segment outputs for different combinations of
(θ1, θ2, θ3).

FIGURE 15. Examples of segmentation outputs with multiple segments.

2) EFFECTS OF THE PROBABILITY PARAMETER (P) ON THE
PERFORMANCE OF THE IQFT METHOD
To investigate how the choice of p value affects the quality
of segmentation, we applied our algorithm to some random
images and recorded the IoU scores as the probability value
p ∈ [0, 1] was varied while keeping the angle parameters
constant. We observed that different segmentation qualities
can be achieved by varying the probability value. A visual
reference of this observation is given in Figure 16, showing
the plot of IoU as a function of probability for the given
image and the predicted segmentation masks at different
probability values. For this image, the optimal result is given

FIGURE 16. Variation of the segmentation quality with probability:
probabilty of p = 0.8 yields an optimum segmentation quality.

at p = 0.8 for [θ1, θ2, θ3] = [π, π/4, π/4]. Similar results
for a different image are shown in Figure 17. In this case,
(θ1, θ2, θ3) = (π/4, π/2, π) yields an optimal result at
p = 0.9, and reveals that the inclusion of the probability
parameter in the robust, IQFT inspired algorithm can indeed
significantly improve the segmentation quality of the IQFT
algorithm. The performance of the k-means algorithm is also
depicted for comparison.

3) EFFECTS OF THE PROBABILITY PARAMETER (P) ON THE
SUM OF SQUARED ERROR (SSE) OF THE SEGMENTS
The SSE is a widely used criterion measure for intra-cluster
homogeneity which determines the compactness of a cluster.
Specifically, in minimum variance partitioning algorithms,
clusters are determined byminimizing the within-cluster SSE
criterion. To eliminate the user’s effort in our algorithm,
we employed SSE, as stated in Section IV-C, to automatically
determine the value of p for an optimum or near optimum
result. Figure 18 shows the graph of SSE for 10 different
values of p. The avg. SSE in equation (9) was found to be
0.084. Since this value is closest to 0.082, the probability
value for the required optimum value was set to p = 0.7. The
optimum segmentation mask is also displayed in Figure 18.

F. OVERALL PERFORMANCE COMPARISON
The effectiveness of the robust, IQFT-inspired algo-
rithm was validated by performing foreground-background
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FIGURE 17. Variation of the segmentation quality with probability. In this
case, optimum quality is achieved at probabilty of p = 0.7.

FIGURE 18. Effects of probability p on the SSE of the segments.

segmentation on the benchmark datasets in Section V-A and
comparing the quantitative results to prior studies in terms of
the IoU score, DICE score and accuracy.

Table 3 captures our foreground-background segmenta-
tion results on Flowers dataset and results from existing
unsupervised segmentation methods: k-means, ReDO [14],
GrabCut [15] and BigBiGAN [44] algorithms. Here, we set
the parameters as θ1 = π, θ2 = π/4 and θ3 = π/4. Our
improved, IQFT-inspired algorithm achieved the best average

TABLE 3. Comparing the unsupervised segmentation results on the
Flowers dataset in terms of average IoU score, DICE score, and Accuracy.

FIGURE 19. Performance of the robust, IQFT-inspired algorithm on
Flowers dataset.

IoU score, DICE score and accuracy. Figure 19 shows that
the algorithm is successful for many flower segmentation,
especially when there are clear color differences between the
background (leaves, ground, and others) and the foreground
(flower). The robust method gives IoU ≥ 0.5 for about 85%
of the entire images used in this experiment. Considering the
segmentation results on the Flowers dataset in Figure 20, the
robust, IQFT-inspired algorithm outperforms both k-means
and the IQFT-inspired algorithm in [9].

In Table 4 comparative results are presented for the unsu-
pervised image segmentation on PASCAL VOC 2012 bench-
mark dataset. For these results, the parameters were set as
θ1 = π/4, θ2 = π/2, θ3 = π which are known in
Section V-E1 to give two segments. The distribution of the
IoU values for all the 2913 images in the segmentation
category are shown in Figure 21, which reveals that about
21.5% of all the images have foreground IoU≥ 0.5. The DFC
technique shows a better performance. While our method
depends completely on the RGB values of the input image,
the DFC technique utilizes a convolutional neural network
(CNN) to extract deep features that contribute to its observed
performance.

The graph of the average IoU score against probability in
Figure 22 shows about 3.4% increase in the average IoU score
for probability change from 0 to 0.9. This observation, again,
underscores the significance of the probability parameter.
Figure 21 shows some examples of foreground-background
image segmentation results on PASCAL VOC 2012.

Table 5 shows comparative segmentation results on
Caltech-UCSD Birds-200-2011 and Figure 23 displays the
corresponding performance of the robust, IQFT algorithm
on each image data. These figures reveal that our method,
in general, shows good performance with IoU ≥ 0.5 for
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FIGURE 20. Some examples of segmentation results using robust,
IQFT-inspired algorithm on Flowers dataset.

TABLE 4. Comparing the unsupervised segmentation results on PASCAL
VOC 2012 dataset in terms of average IoU score, DICE score and accuracy.

FIGURE 21. Performance of the robust, IQFT-inspired algorithm on
PASCAL VOC 2012 dataset.

about 14% of 1000 test images from the CUB-200-2011
dataset. This low percentage is as a result of using only RGB
color features which are not very effective for separating the
foreground from the background formost images in the CUB-
200-2011 dataset. PerturbGAN [17] and BigBiGAN [44]
methods show better results because they benefited from

FIGURE 22. Performance of the robust, IQFT-inspired algorithm on
PASCAL VOC 2012 dataset.

TABLE 5. Comparing the unsupervised segmentation results on
CUB-200-2011 dataset in terms of average IOU score, DICE score, and
accuracy.

FIGURE 23. Performance of the robust, IQFT-inspired algorithm on
CUB-200-2011 dataset.

the pre-trained generative model in their architecture. Also,
IEM [16] outperforms our method because of the extra
features gained from the CNN network.

The low resolution of the images in xVIEW2 dataset
makes its segmentation amore challenging task. Nonetheless,
we perform foreground-background segmentation on it to fur-
ther evaluate the performance of our unsupervised methods,
and Table 6 compares our method with k-means. Our method
shows superior performance than k-means according to the
mean-IoU of both the foreground and background, mean-
DICE score, and mean-accuracy. From Figure 24, displaying
the mean-IoU values of individual images, our method shows
significant mIoU ≥ 0.5 in about 42% of the entire images.
Examples of foreground-background segmentation of the
pre-disaster images for the ‘‘Joplin-tornado’ disaster are
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TABLE 6. Comparing the unsupervised segmentation results on the
xVIEW2 challenge dataset in terms of mIoU score, mDICE score, and
accuracy.

FIGURE 24. Performance of the improved, IQFT-inspired algorithm on
xVIEW2 challenge dataset.

presented in Figure 25, where our method exhibits superior
performance as shown by the mIoU values. For the robust
IQFT-inspired algorithm, the measured average running time
for the 1024×1020 is 284secwhich is about 14 times greater
than the running time for k-means.

G. COMPUTATIONAL PERFORMANCE EVALUATION
To comprehensively evaluate the efficiency of the proposed
algorithm, we conducted a computational performance
assessment focusing on key metrics: parameter count, mem-
ory usage, and inference time. The results of this evaluation
are presented in Table 7, alongside a comparative analysis
with the k-means clustering algorithm.

1) Parameter count: The fundamental parameter count
for the k-means algorithm is kd [45], where k is the
number of segments (clusters) and d is the number of
dimensions in the data. For the proposed method, the
parameter count is d+1. Focusing on two segments and
the RGB color space(with 3 dimensions) considered
in this work, the parameter count for the k-means
algorithm becomes 6 while for the proposed method it
becomes 4: three angle parameters (θ1,θ2,θ3) and one
probability parameter discussed in Section IV.

2) Memory usage: To evaluate the feasibility of deploying
the proposed algorithm on different hardware, we uti-
lized tracemalloc, a standard Python library, to track
memory allocation and capture memory usage patterns
during the execution of both the k-means algorithm and
the proposed algorithm. The peak memory allocation
during the measurement period is reported in Table 7.

3) Inference Time: In Table 7, we present the average
inference time of the proposed algorithm for a single

FIGURE 25. Examples of foreground-background segmentation of the
pre-disaster images for ‘‘ Joplin-tornado’’ disaster.

TABLE 7. Computational performance metrics of the proposed algorithm
vs. k-means Clustering, where k and d represent the number of segments
and dimensionality of the input data, respectively.

128 × 128 image input, offering insights into its
real-time application capability. Additionally, we com-
pare this with the processing time of the k-means
algorithm

H. ADVANTAGES AND LIMITATIONS OF THE PROPOSED
METHOD
Overall, the proposed method outperforms the classical k-
means and some state-of-the-art algorithms considered in
this work by enhancing the number of features for each
pixel from three to eight. These additional features provide
a richer source of information, potentially enhancing the
discriminative power and improving the clustering process.
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FIGURE 26. Instances highlighting the limitations of the proposed
method. Since the proposed method relies only on the color features,
it under-performs in cases where foreground colors significantly overlap
with those of the background.

Unlike k-means, which relies solely on RGB features, the
proposed method leverages these additional features to
achieve superior performance, particularly in discerning
complex patterns and structures within the image data.
The conclusion gains further support from the significant
improvement in segmentation performance achieved by
applying the k-means method to the datasets after transform-
ing them from 3D to 8D, as detailed in Section IV.
Section V shows the dependency of the proposed method’s

performance on the values of angle parameters θ1, θ2, θ3, and
the probability parameter (p), impacting both the number of
segments and segmentation quality. Table 2 presents diverse
combinations of angle parameters yielding two segments.
However, segmentation quality remains dependent on the
dataset, defining a limitation of our approach. Similarly,
selecting an appropriate probability parameter value can yield
over 60% performance improvement. This study employs
the average sum of squared error to automate the algorithm
and eliminate user involvement. Nonetheless, this heuristic
doesn’t always ensure optimal results, as evidenced by IoU
values for the Flower dataset differing between the optimum
probability value of 0.7 (IoU = 78.1%) and the average SSE
value (IoU = 74.2%), showcasing another limitation.

It is noteworthy that our method relies solely on the
RGB color features of the input image to distinguish the
foreground from the background. As evidenced by the overall
performance results shown in Figures 19, 21 and 23 for
images in the Flowers, PASCAL VOC 2012, and CUB-200-
2011 datasets, respectively, our method may significantly fall
short of optimal performance, particularly in scenarios where
the foreground color distribution significantly overlaps with
that of the background. An illustration of this challenge is pre-
sented in Figure 26. In such cases, incorporating additional

features may be required to enhance the performance of our
method.

VI. CONCLUSION
In this work, we extended our previous work [9] and proposed
a robust, IQFT-inspired algorithm for unsupervised image
segmentation. Particularly, in addition to the angle parameters
in [9], a probability parameter is introduced in robust, IQFT-
inspired algorithm to fine-tune an output segmentation mask
to realize a better result. The average sum of squared error
(SSE) is also included to automatically determine the value
of the probability parameter so that it is fully automatic and
does not require the user’s efforts.

Through experimental results from four benchmark
datasets, it is observed that the inclusion of the probability
parameter in the robust, IQFT-inspired algorithm achieved
a better performance over the method in [9] and some
recent computationally complex methods, especially when
the RGB color features are sufficient to differentiate the
foreground from the background like in the Flowers dataset.
A thorough evaluation of the proposed method across four
diverse datasets demonstrates its superiority over classical
k-means. Specifically, our method exhibits significant per-
formance improvements on various benchmarks: surpassing
classical k-means by up to 4.21% on the PASCAL VOC
2012 segmentation benchmark, up to 4.4% on the Flowers
dataset, and up to 11.1% on the xVIEW2 challenge dataset in
terms of IoU.

It is worth mentioning that the proposed robust
IQFT-inspired algorithm has a low computational cost when
compared to the GAN-based methods and does not require
training or pre-trained model. Furthermore, experimental
results obtained for image samples from Flowers, xVIEW2,
and PASCAL VOC 2012 datasets demonstrated that the
proposed method outperforms k-means in all cases and by
a big margin when the task becomes more challenging such
as for the xVIEW2 dataset. This makes the proposed method
a promising choice for mission-critical applications.

While our proposed method demonstrates promising
results, there are avenues for further improvement and
refinement. In particular, addressing the limitations identified
in this study will be a focus of future research endeavors.

1) Exploring Alternative Heuristics: One avenue for
future research entails exploring alternative heuristic
approaches to achieve optimal segmentation results.
Although the sum of squared error (SSE) has been
employed in our methodology due to its computational
efficiency, it may not consistently yield the best seg-
mentation outcomes. Investigating alternative heuristic
methods or optimization techniques could potentially
enhance segmentation accuracy and robustness

2) Optimizing Angle Parameter Selection: Another
promising avenue for future investigation involves
identifying the optimal combination of angle parame-
ters (θ1, θ2, θ3) to achieve optimal segmentation results.
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Our future work will focus on developing automated
strategies to determine the best angle parameter
combination based on dataset properties. By doing so,
we aim to enhance the performance and applicability of
our segmentationmethodology, enablingmore accurate
and robust image segmentation techniques across a
wide range of real-world applications.
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