

Enhancing Selective Ammonium Transport in Membrane Electrochemical Systems

Kai Yang, Mohan Qin*

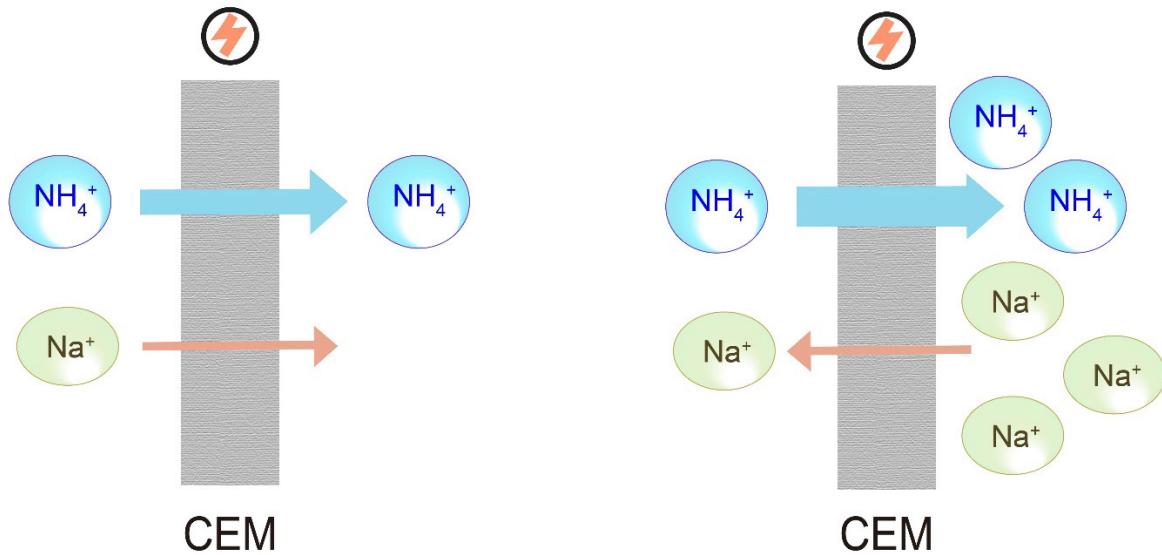
*Department of Civil and Environmental Engineering, University of Wisconsin–Madison, Madison,
WI 53706, United States*

* Corresponding author. E-mail: mohan.qin@wisc.edu; Tel: +1 (608) 265-9733

ABSTRACT

1 Recovering ammonia nitrogen from wastewater is a sustainable strategy that simultaneously
2 addresses both nitrogen removal and fertilizer production. Membrane electrochemical system
3 (MES), which utilizes electrochemical redox reactions to transport ammonium ions through cation
4 exchange membranes, has been considered as an effective technology for ammonia recovery from
5 wastewater. In this study, we develop a mathematical model to systematically investigate the
6 impact of co-existing ions on the transport of ammonium (NH_4^+) ions in MES. Our analysis
7 elucidates the importance of pH values on both the NH_4^+ transport and inert ion (Na^+) transport.
8 We further comprehensively assess the system performance by varying the concentration of Na^+
9 in the system. We find that while the inert cation in the initial anode compartment competes with
10 NH_4^+ transport, NH_4^+ dominates the cation transport in most cases. The transport number of Na^+
11 surpasses NH_4^+ only if the fraction of Na^+ to total cation is extremely high (>88.5%). Importantly,
12 introducing Na^+ ions into the cathode compartment significantly enhances the ammonia transport
13 due to the Donnan dialysis. The analysis of selective ion transport provides valuable insights into
14 optimizing both selectivity and efficiency in ammonia recovery from wastewater.

15


16 KEYWORDS

17 Selective ammonia recovery, membrane electrochemical system, ion transport, Donnan dialysis,
18 transport number, selectivity.

19

20

21 **TOC ART**

22

23

1. INTRODUCTION

24 The production of nitrogen fertilizer enabled by the Haber-Bosch process has boosted the rapid
25 growth of the world population since a century ago, with half of the nitrogen atoms in humans
26 today originating from it (Chen et al., 2018; Dawson and Hilton, 2011). While this process is
27 considered the most impactful invention of the 20th century, it consumes more than 1% of global
28 energy and accounts for 1.6% of global greenhouse gas emissions (Capdevila-Cortada, 2019; Ertl,
29 1990; Jacobsen et al., 2001). About 30% of the ammonia (NH₃) produced from the Haber-Bosch
30 process ends up in wastewater, mainly in the form of ammonium ions (NH₄⁺) (Galloway et al.,
31 2004a). An excess amount of ammonium ions in wastewater might contaminate the environment
32 and therefore requires further treatment in wastewater treatment plants (WWTPs) to satisfy the
33 discharge requirements (Galloway et al., 2004b; Van der Hoek et al., 2018). Instead of consuming
34 energy to convert ammonium ions back to nitrogen gas using the nitrification-denitrification
35 process in WWTPs, direct recovery is considered a more sustainable approach to simultaneously
36 remove ammonia from wastewater and utilize ammonia for fertilizer production (Burns and Qin,
37 2023; Yang et al., 2023; Zamora et al., 2017).

38 In recent years, electrochemical approaches, such as bioelectrochemcial system (BES),
39 electrochemical stripping (ECS), electrosorption, and electrodialysis (ED), have been
40 demonstrated to effectively recover ammonia from various types of wastewater by utilizing current

41 to transport ammonium ions (Fang et al., 2018; Kuntke et al., 2017; Lee et al., 2020; Qin and He,
42 2014; Qin et al., 2016; Tarpeh et al., 2018; Yang and Qin, 2021; Ye et al., 2019; Zou et al., 2017).
43 Among these processes, both BES and ECS are electro-driven processes, with the catalyst for BES
44 anode being microorganisms and the reaction in ECS anode being abiotic (Rodríguez Arredondo
45 et al., 2015). Here, they are collectively referred to as membrane electrochemical systems (MES)
46 to represent the technology platform that relies on redox reactions for current generation and
47 ammonia recovery. MES utilizes the electron transfer to transport NH_4^+ across cation exchange
48 membranes (CEMs) to the cathode for charge balance. In MES, the pH gradient created by the
49 electrochemically generated H^+ and OH^- at the anode and the cathode, respectively, establishes a
50 concentration gradient for NH_4^+ across the CEM which facilitates the transport of ammonium ions
51 (Liu et al., 2016). The ammonia in the catholyte can be recovered by stripping, acid adsorption,
52 forward osmosis, and transmembrane chemisorption and the produced fertilizer can be used to
53 improve crop growth (Kuntke et al., 2012; Ledezma et al., 2015; Liu et al., 2020; Rodrigues et al.,
54 2022a; Rodrigues et al., 2020; Rodríguez Arredondo et al., 2015; Tarpeh et al., 2018; Zhang and
55 Angelidaki, 2015a).

56 Cation exchange membrane (CEM) plays a critical role in MES for ammonia recovery. In the
57 CEM, the fixed negatively charged groups (e.g., sulfonate groups) within the crosslinked polymer
58 matrix enable cation permeation and inhibit anion transport (Luo et al., 2018; Strathmann, 2010).

59 NH₄⁺ ion, which has a relatively small hydrated ionic size (0.331 nm) and fast diffusivity in CEM,
60 can be easily transported across the membrane and serve as excellent charge carriers in BES and
61 regular electrochemical system (Epsztein et al., 2019; Liu et al., 2016). Since NH₄⁺ is not used as
62 a substrate in the redox reactions, its transport in MES is a physicochemical process (Kim et al.,
63 2008). Therefore, MES shares the same mechanisms (i.e., diffusion and migration) for the transport
64 of NH₄⁺ and other cations.

65 To improve the performance of MES for ammonia recovery, researchers have focused on the
66 improvement of reactor configuration and adjustment of operation parameters (e.g., loading ratio,
67 current density, etc.), aiming at improved ammonia recovery rate and efficiency as well as reduced
68 energy consumption (Cord-Ruwisch et al., 2011; Kuntke et al., 2012; Lee et al., 2020; Zhang and
69 Angelidaki, 2015b; Zou et al., 2017). However, the selectivity of NH₄⁺ ions compared to other
70 cations across the CEM, which distinguishes the transport of NH₄⁺ ions from other cations, has not
71 yet been systematically evaluated. In the MES for ammonia recovery, the anode is fed with
72 wastewater, in which other cations, such as Na⁺, K⁺, and Ca²⁺, are ubiquitous besides NH₄⁺ ions,
73 with Na⁺ ion being the most dominant competing cation species (Park et al., 2006; Tarpeh et al.,
74 2018). While the transport of these cations does not directly interact with the transport of NH₄⁺
75 ions, it is also driven by the potential gradient and would potentially impact the ammonium
76 transport. In addition, the competing cations in the cathode compartment could lead to Donnan

77 Dialysis, a concentration-gradient driven process for ion exchange across the CEM, which may
78 theoretically facilitate the transport of ammonium ions (Chen et al., 2020; Chen et al., 2021; Davis,
79 2000b).

80 In this study, we developed a dynamic mathematical model to systematically investigate the ion
81 transport behaviors in MES. Specifically, we analyzed the pH variation along with the NH_4^+
82 concentration profile and the inert ion (Na^+) concentration profile in MES. We further adjusted the
83 concentration of Na^+ in the system and evaluated its effect on both transmembrane transport of
84 ions and ammonia recovery performance. The impact of anolyte Na^+ concentration, anolyte Na^+
85 fraction, and catholyte Na^+ concentration was investigated. Moreover, the selectivity of NH_4^+ to
86 the inert ion (Na^+) was also studied to characterize the selective ammonia recovery by the
87 electrochemical system.

2. MES PROCESS MODEL

88 2.1. MES Process and Operation

89 The model performed in this study is based on a 24 h batch experiment in an membrane
90 electrochemical system (MES) reactor (Figure 1). The reactor is composed of two compartments,
91 an anode compartment and a cathode compartment, divided by a cation exchange membrane. Two
92 electrodes, one carbon brush electrode and one carbon cloth electrode, are installed in anode and
93 cathode compartments, respectively, connected by an external resistor. The anode and cathode

94 compartments are initially filled with synthetic wastewater and deionized water, respectively. A
95 detailed recipe for synthetic wastewater is listed in Table S1. In the anode, acetate is oxidized by
96 exoelectrogens with electrons being captured in the anode electrode and transferred to the external
97 circuit. At the cathode, oxygen serves as the electron acceptor. The NH_4^+ in the anolytes moves
98 towards the catholyte, driven by both the potential gradient and concentration gradient. The high
99 pH at catholytes converts NH_4^+ into NH_3 , which can be stripped out of the cathode compartment
100 by aeration and recovered using acid adsorption.

101 **2.2. Mathematical Model for MES**

102 An MES model is employed to describe the electrochemical reactions and transport of various
103 species across the CEM in MES. Several assumptions are made to simplify the model. We assume
104 that the acid-base reactions are infinitely fast so that the acid-base equilibria can be directly used
105 in ionic mass balance. The CEM is considered as an ideal membrane with negligible water
106 transport across the membrane and the charge density remains constant. Besides, the reactor
107 compartment is assumed to be well mixed. The temperature is constant spatially and temporally.
108 The specific values used for membrane properties and reactor geometry are summarized in Table
109 S2. In the model, the transport of Na^+ , NH_4^+ , H^+ , Ac^- (acetate ion), Cl^- , HCO_3^- , CO_3^{2-} , OH^- , NH_3 ,
110 H_2CO_3 , and HAc is considered. Their chemical reactions and the redox reactions at electrodes are
111 modeled as generation/consumption terms in mass balances. The gas-solution equilibria for both

112 CO₂ and NH₃ are present by applying Henry's Law to derive the gas flux. The equilibrium
113 constants and Henry's Law constants are listed in Table S3.

114 This model has been developed and validated in our previous studies (Liu et al., 2016). It relies
115 on the Poisson-Nernst-Planck equation for describing ion transport in both the electrolyte and
116 CEM, while Donnan equilibrium is enforced at the CEM-anolyte/catholyte interface. The
117 boundary layer thickness is fixed at 0.2 mm in this model. In a recent study, the boundary layer is
118 associated with the current and affects the ion transport selectivity (Rodrigues et al., 2022b). The
119 key governing equations and all the acid-base reactions used in the model are described in
120 the Supplementary Information.

121 **2.3 Key Performance Parameters**

122 To characterize the performance of ammonia recovery, we investigate the selectivity of NH₄⁺
123 over Na⁺, which is defined as (He et al., 2018):

$$\rho \left(\frac{\text{NH}_4^+}{\text{Na}^+} \right) = \frac{\Delta c_{\text{NH}_4^+}/c_{\text{NH}_4^+,0}}{\Delta c_{\text{Na}^+}/c_{\text{Na}^+,0}} \quad (1)$$

124 where $\rho \left(\frac{\text{NH}_4^+}{\text{Na}^+} \right)$ is the selectivity of NH₄⁺ over Na⁺, $\Delta c_{\text{NH}_4^+}$ and Δc_{Na^+} are the concentration loss of
125 NH₄⁺ and Na⁺ at anode compartment, respectively, $c_{\text{NH}_4^+,0}$ and $c_{\text{Na}^+,0}$ are the initial concentration
126 of NH₄⁺ and Na⁺ in the anode compartment, respectively. The concentration losses of NH₄⁺ and
127 Na⁺ are defined as:

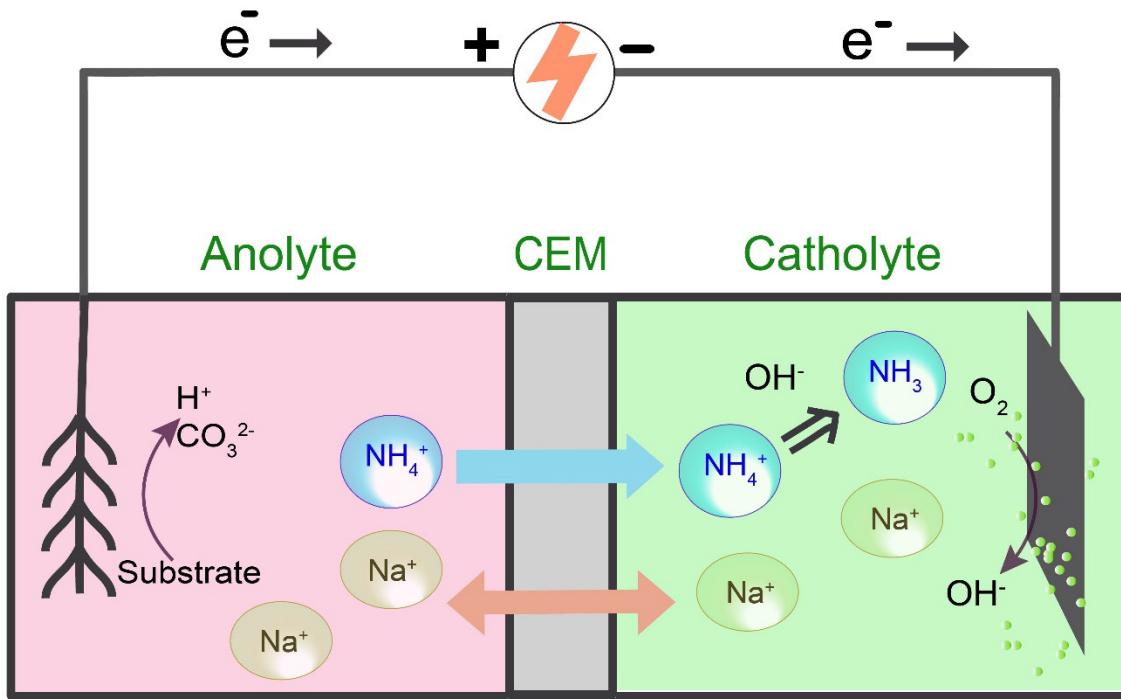
$$\Delta c_{\text{NH}_4^+} = c_{\text{NH}_4^+,t} - c_{\text{NH}_4^+,0} \quad (2)$$

$$\Delta c_{\text{Na}^+} = c_{\text{Na}^+,t} - c_{\text{Na}^+,0} \quad (3)$$

128 where $c_{\text{NH}_4^+,t}$ and $c_{\text{Na}^+,t}$ are the concentration of NH_4^+ and Na^+ at time of t in the anode
129 compartment, respectively.

130 The transport number of ionic species i is denoted as t_i , the ratio of charge flux carried by ion i
131 to the total charge flux of all ions, which equals to the charge carried by the electrons through the
132 external circuit. The calculation of transport number t_i is described as:

$$t_i = \frac{z_i J_i}{\sum z_i J_i} = VF z_i \frac{c_{i,0} - c_{i,t}}{\int_0^t I_{\text{tot}} dt} \quad (4)$$


133 where z_i and J_i are the charges and the flux of the species i , respectively, and $c_{i,0}$ and $c_{i,t}$ are the
134 concentrations of species i at the time of 0 and t , respectively, V is the volume of the compartment,
135 F is the Faraday constant, I_{tot} is the current in the external wire, and $\int_0^t I_{\text{tot}} dt$ is the total charge
136 transferred through the external wire from time 0 to t .

137 The ammonia recovery amount Q_{NH_3} is the total ammonia nitrogen concentration change, and
138 the ammonia recovery efficiency η_{NH_3} is the ratio of ammonia recovery amount to the initial total
139 ammonia nitrogen concentration.

$$Q_{\text{NH}_3} = c_{\text{NH}_4^+,0} + c_{\text{NH}_3,0} - c_{\text{NH}_4^+,t} - c_{\text{NH}_3,t} \quad (5)$$

$$\eta_{\text{NH}_3} = \frac{Q_{\text{NH}_3}}{c_{\text{NH}_4^+,0} + c_{\text{NH}_3,0}} \quad (6)$$

140 where $c_{\text{NH}_3,0}$ and $c_{\text{NH}_3,t}$ are the concentration of ammonia concentration at time of 0 and t .

141

142 **Figure 1.** Schematic of the membrane electrochemical system (MES) for ammonia recovery.

3. RESULTS AND DISCUSSION

143 3.1 Ion Concentration and pH Profiles

144 To understand the transport behavior of various ions including Na^+ , acetate (Ac^-), NH_4^+ , HCO_3^- ,
 145 and CO_3^{2-} , the spatial and temporal concentration of these ions is investigated, based on a 24-hour
 146 batch cycle with the current density linearly decreasing from 2 to 0.5 A m^{-2} in MES. The initial
 147 concentrations of Na^+ and NH_4^+ ions in the anode compartment are 45 and 55 mmol L^{-1} ,

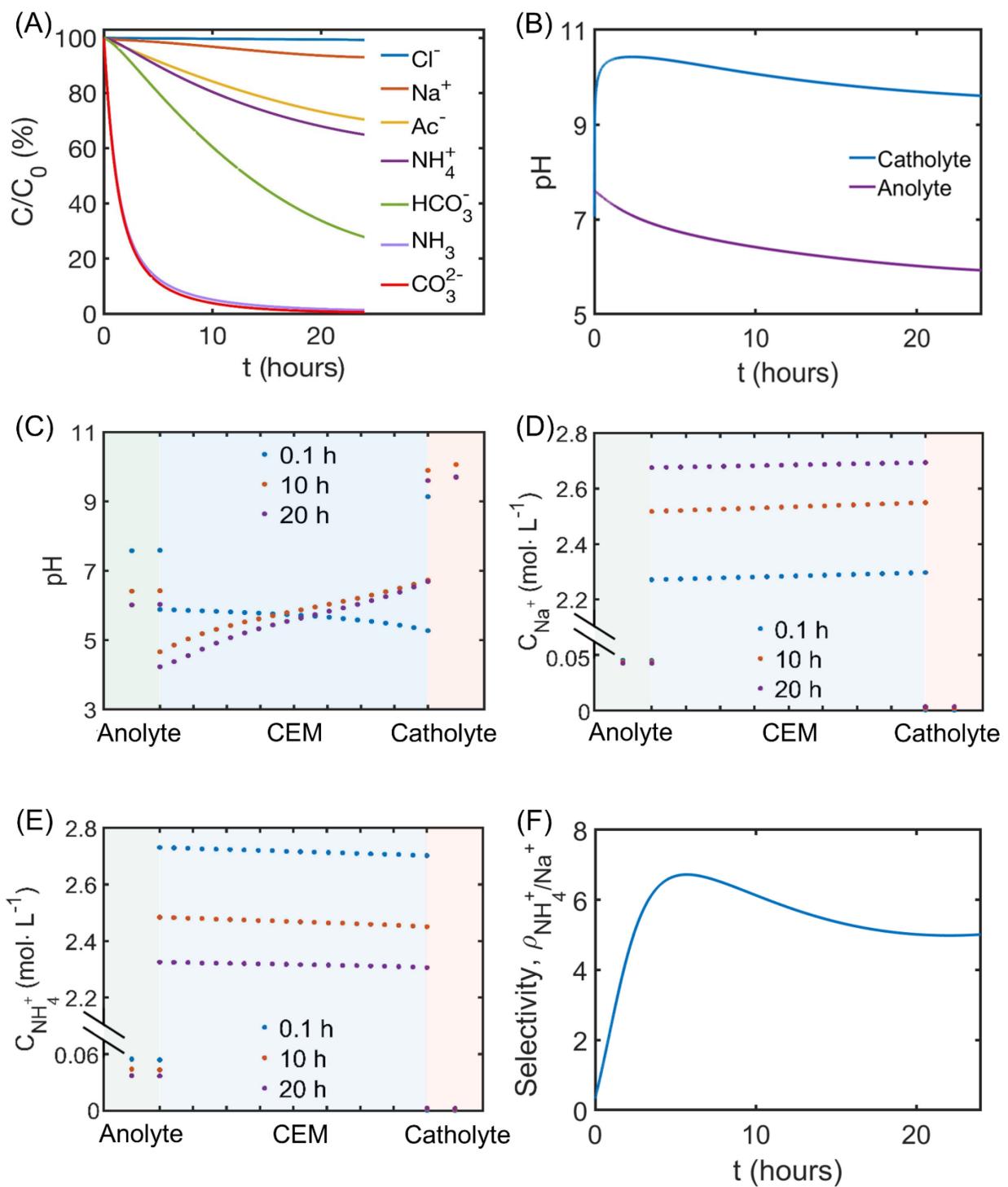
148 respectively, to simulate the anaerobic digestate of livestock waste, while the cathode compartment
149 is filled with deionized water (Liu et al., 2016).

150 The normalized ion concentrations in the anode compartment are shown as a function of time
151 in Fig. 2A, and the pH profiles in anolyte and catholyte are illustrated in Fig. 2B. For all cations,
152 the concentration gradually decreased during the 24-hour batch cycle as a result of movement
153 towards the cathode compartment, which is caused by electrical force and concentration gradient.

154 Although the electrical potential gradient is identical for both monovalent cations, the differences
155 in concentration and variations in diffusion coefficient result in distinct effects on their transport
156 behaviors. Compared to Na^+ ions which serve as the competing ions, more NH_4^+ ions are
157 transported across the membrane. At the end of the simulation, Na^+ normalized concentration
158 reaches the value of 0.93, while NH_4^+ reaches 0.65. NH_4^+ ion has a larger initial concentration and
159 diffusion coefficient compared to Na^+ , thus its concentration variation with time is also more than
160 that of Na^+ . Additionally, normalized anode Ac^- concentration reached a value of 0.70, which can
161 be attributed to the oxidation by the microbial community. The consumption of acetate ions leads
162 to the formation of carbonic acid in the anode, creating an acidic environment in the anode and
163 shifting the $\text{NH}_4^+/\text{NH}_3$ equilibrium. As shown in Fig. 2B, the anolyte undergoes continuously
164 acidification, with its pH value decreasing from 7.61 to 5.92 during one batch cycle. Moreover,
165 the excess H^+ in the acidic environment would convert CO_3^{2-} and HCO_3^- into H_2CO_3 , decreasing

166 their concentrations in the anode compartment. In the catholyte, the pH value increases rapidly at
167 the beginning of the batch, reaching a maximum value of 10.43 at 2.3 hour, and then steadily
168 decreases to 9.61 at the end of the batch cycle.

169 To comprehensively investigate the transport of cations across the cation exchange membrane
170 (CEM), the pH profiles (Fig. 2C), NH_4^+ concentration profiles (Fig. 2E), and Na^+ concentration
171 profiles (Fig. 2D) at three reaction times are demonstrated. The reaction times of 0.1, 10, and 20
172 hours are selected to represent the starting stage, the middle stage, and the final stage of the
173 simulation, respectively. The whole reactor is divided into three parts, anolyte, CEM, and catholyte,
174 with two membrane solution interfaces (MSI). At the MSI, the pH and ion concentrations are
175 different at each side of the interface due to the Donnan equilibrium.


176 The pH inside the CEM is always lower than that in the solutions while NH_4^+ and Na^+
177 concentrations are higher in solutions than in the CEM. This is attributed to the presence of fixed
178 negatively charged sulfonate groups within the crosslinked polymer chains of CEM, which results
179 in a significantly lower number of mobile anions in CEM than that of cations. The pH is critical in
180 ammonia recovery as it influences the equilibrium between NH_3 and NH_4^+ . The pH at the anode
181 consistently decreases. For example, the pH values in the anolyte are 7.58, 6.41, and 6.02 at 0.1 h,
182 10 h, and 20 h, respectively. However, the pH at the cathode initially increases and then decreases.
183 The highest pH value in the catholyte is 10.43 after 2.31 hours. The pH values in the catholyte are

184 9.71, 10.06, and 9.69 at 0.1 h, 10 h, and 20 h, respectively. The pH variation in the catholyte is
185 affected by the current density. Initially, a high current density leads to the rapid oxygen reduction
186 reaction, generating a large number of OH⁻ ions and leading to a high pH level. At this stage, the
187 transport of NH₄⁺ is slow and the conversion from NH₃ to NH₄⁺ is insufficient to lower the pH at
188 catholyte. As the current decreases, the production of OH⁻ ions is slower than the formation of NH₃
189 molecule which consumes OH⁻ ions, causing a slight pH decrease. The distinct pH changes in the
190 anolyte and catholyte lead to different trend in the pH profile across the membrane. At 0.1 h, the
191 pH value inside the membrane showed a decrease from 5.88 at the anolyte MSI to 5.27 at the
192 catholyte MSI. However, at 10 h and 20 h, the trends are reversed. For example, at 20 h, the pH
193 value increased from 4.23 at the anolyte MSI to 6.69 at the catholyte MSI.

194 The NH₄⁺ and Na⁺ concentrations at the anode decrease as a function of time. It can be observed
195 that more NH₄⁺ ions are transported across the CEM than Na⁺ ions. For example, the NH₄⁺
196 concentration in the anolyte decreases from 54.8 mM at 0.1 h to 37.3 mM at 20 h (Fig. 2E). In
197 contrast, the Na⁺ concentration varies slightly, changing from 45.1 mM at 0.1 h to 42.3 mM at 20
198 h (Fig. 2D). The increase of NH₄⁺ concentration in the catholyte is significantly less than the
199 decrease of NH₄⁺ concentration in the anolyte. For example, the NH₄⁺ concentration in the
200 catholyte increases from 0.03 mM at 0.1 h to 2.37 mM at 20 h (Fig. 2E). This is because a portion
201 of NH₄⁺ ions are converted to NH₃ in the cathode compartment. We note that the Na⁺ concentration

202 only shows a slight variation, changing from 0.16 mM at 0.1 h to 3.31 mM at 20 h (Fig. 2D). Inside
203 the membrane, the NH_4^+ concentration only exhibits minor variation across the membrane. For
204 example, at 10 h, the NH_4^+ concentrations are 2.48 mM and 2.45 mM at anolyte MSI and catholyte
205 MSI, respectively. We note that NH_4^+ concentration inside the membrane decreases along the
206 operating time, which is attributed to the equilibrium with the decreasing NH_4^+ concentration in
207 the anolyte. The NH_4^+ concentrations are 2.73 mM, 2.48 mM, and 2.32 mM at 0.1 h, 10 h, and 20h,
208 respectively, in the membrane at the anolyte MSI. Given that the charge density of functional group
209 in the membrane is fixed, Na^+ concentration inside the membrane increases as a function of time.
210 At the anolyte MSI, the Na^+ concentrations increase from 2.27 mM at 0.1 h to 2.68 mM at 20 h.

211 The selectivity of $\text{NH}_4^+/\text{Na}^+$ across the membrane-solution interface changes with time (Fig.
212 2F). At the early stage of the batch cycle, the selectivity increases from 0.52 at 0.1 h to the
213 maximum value of 6.72 at 5.67 h, followed by a decrease to a plateau of ~ 5.0 until the end of the
214 batch. The rapid selectivity increase at the early stage is attributed to the fast ammonium transport
215 driven by the high current density and concentration gradient. At the later stage of the batch cycle,
216 the decrease in current generation leads to a relatively stable transport ratio between NH_4^+ and Na^+ .

218 **Figure 2.** Concentration and pH profiles in the membrane electrochemical system. Current linearly
219 decreases from 2.0 to 0.5 A m⁻² during a 24-hour batch cycle. The wastewater fed into the anode
220 compartment contains 55 mmol·L⁻¹ ammonium ions (NH₄⁺) and 45 mmol·L⁻¹ sodium ions (Na⁺),
221 whereas the cathode compartment is filled with deionized water. (A) Normalized ion concentration
222 C/C₀ of the major ions in the anode compartment as a function of time. C is the ion concentration
223 in the anode at time t, and C₀ is the initial ion concentration. (B) Anolyte and catholyte pH values
224 as a function of time. (C) pH profile at 0.1 h, 10 h, and 20 h. (D) Na⁺ concentration at 0.1 h, 10 h,
225 and 20 h. (E) NH₄⁺ concentration at 0.1 h, 10 h, and 20 h. For C, D, and E, green zones at the left
226 represent anolyte, and the orange zones at the right represent catholyte, with CEM membrane in
227 the middle (blue zones). (F) The selectivity of NH₄⁺/ Na⁺ across the membrane-solution interface
228 changes with time. At the membrane-solution interface, the pH and concentrations of cations are
229 different at each side of the interface because of the Donnan equilibrium.

230

231 *3.2 Effect of Na⁺ concentration in the anode*

232 Wastewater may contain multiple kinds of ions with varying concentrations, making the
233 selective transport of NH₄⁺ critical. The impact of the inert cation concentrations on the ammonium
234 transport is investigated by evaluating the key system metrics such as removal efficiencies,
235 transport numbers, selectivity, and ammonia recovery amounts and efficiencies for both Na⁺ and

236 NH₄⁺ ions. Here, we change the initial anode Na⁺ concentration from 1 mmol·L⁻¹ to 200 mmol·L⁻

237 ¹ while the initial concentration of NH₄⁺ in the anode compartment is maintained at 55 mmol·L⁻¹.

238 As shown in Fig. 3A, the concentration of NH₄⁺ expressed as normalized concentration is

239 consistently lower than that of Na⁺, indicating a higher transfer efficiency of NH₄⁺ ions per unit of

240 initial concentration than Na⁺ ions regardless of the concentration of Na⁺ in the anode compartment.

241 Specifically, the normalized Na⁺ concentration is constantly above 90.8% while the normalized

242 NH₄⁺ concentration is below 69.1%. This phenomenon can be attributed to the fact that NH₄⁺ ions

243 are more favorable to be transferred across CEM than Na⁺ ions as illustrated in Section 3.1, and

244 such preference is independent of the Na⁺ concentration changes in the anolyte.

245 To compare the ion transfer efficiency, the transport numbers of both NH₄⁺ and Na⁺ ions are

246 calculated and illustrated in Fig. 3B. The transport number is defined as the fraction of the total

247 electric current carried by a particular ionic species transported across the membrane. As shown in

248 Fig. 3B, the transport number of NH₄⁺ is always higher than that of Na⁺, indicating that the

249 transport of NH₄⁺ dominates the charge transfer. The transport number of NH₄⁺ is close to unity

250 and the Na⁺ transport is minimal with the anode Na⁺ concentration below 8 mmol·L⁻¹. However,

251 as the anode Na⁺ concentration increases from 8 mmol·L⁻¹ to 120 mmol·L⁻¹, the transport number

252 of NH₄⁺ decreases from 0.95 to 0.79 while the transport number of Na⁺ increases from 0.03 to 0.27.

253 The decrease in the transport number of NH₄⁺ confirms the presence of ion competition between

254 NH₄⁺ and Na⁺. To better characterize the ion competition, we calculated the selectivity of NH₄⁺/

255 Na⁺ in Fig. 3C. The lowest NH₄⁺/ Na⁺ selectivity is 4.2 when the anode Na⁺ concentration is 8

256 mmol·L⁻¹. When the anode Na⁺ concentration decreases from 8 mmol·L⁻¹ to 1 mmol·L⁻¹, the

257 selectivity constantly increases from 4.2 to 12.0. This is attributed to the decreased $\Delta c_{\text{Na}^+}/c_{\text{Na}^+,0}$

258 as the decrease of anode Na⁺ concentration inside this concentration range. The normalized

259 concentration of NH₄⁺ is relatively stable (60.2% - 61.3%) when the anode Na⁺ concentration

260 varies from 1 mmol·L⁻¹ to 8 mmol·L⁻¹, leading to a stable $\Delta c_{\text{NH}_4^+}/c_{\text{NH}_4^+,0}$ when calculating

261 selectivity. Interestingly, when the anode Na⁺ concentration is higher than 8 mmol·L⁻¹, increasing

262 the anode Na⁺ concentration also increases the selectivity. For example, when the anode Na⁺

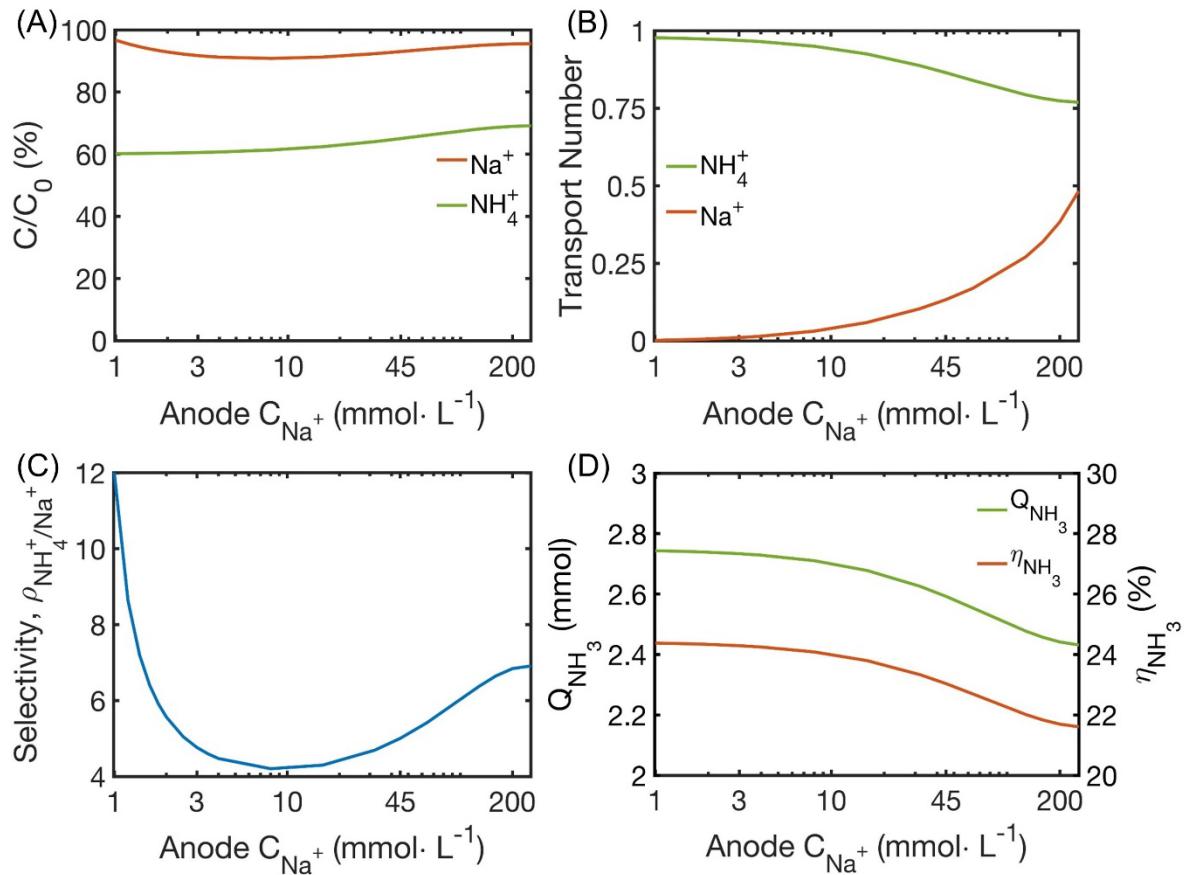
263 concentration is 120 mmol·L⁻¹, the selectivity is 6.4, which is 51.6% higher than the selectivity at

264 8 mmol·L⁻¹. The increase in selectivity can be explained by the increasing $c_{\text{Na}^+,0}$ and relatively

265 stable numbers of both $\Delta c_{\text{NH}_4^+}/c_{\text{NH}_4^+,0}$ and Δc_{Na^+} .

266 As anode Na⁺ concentration increases, we observe a decline in both the ammonia recovery

267 amount Q_{NH_3} and ammonia recovery efficiency η_{NH_3} , which is unsurprising as the amount of


268 transported Na⁺ increases. Notably, the decrease in both parameters becomes more significant

269 when the anode Na⁺ concentration exceeds 8 mmol·L⁻¹. For example, when the anode Na⁺

270 concentration is 2 mmol·L⁻¹, Q_{NH_3} and η_{NH_3} are 2.74 mmol and 24.33 %, respectively. Q_{NH_3} is

271 reduced by 1.0% and 12.2% when the anode Na⁺ concentrations are 10 mmol·L⁻¹ and 200

272 mmol·L⁻¹, respectively. Same trend is observed for η_{NH_3} . This phenomenon also confirms that ion
 273 competition significantly affects the system performance when the anode Na^+ concentration is
 274 higher than 8 mmol·L⁻¹.

275

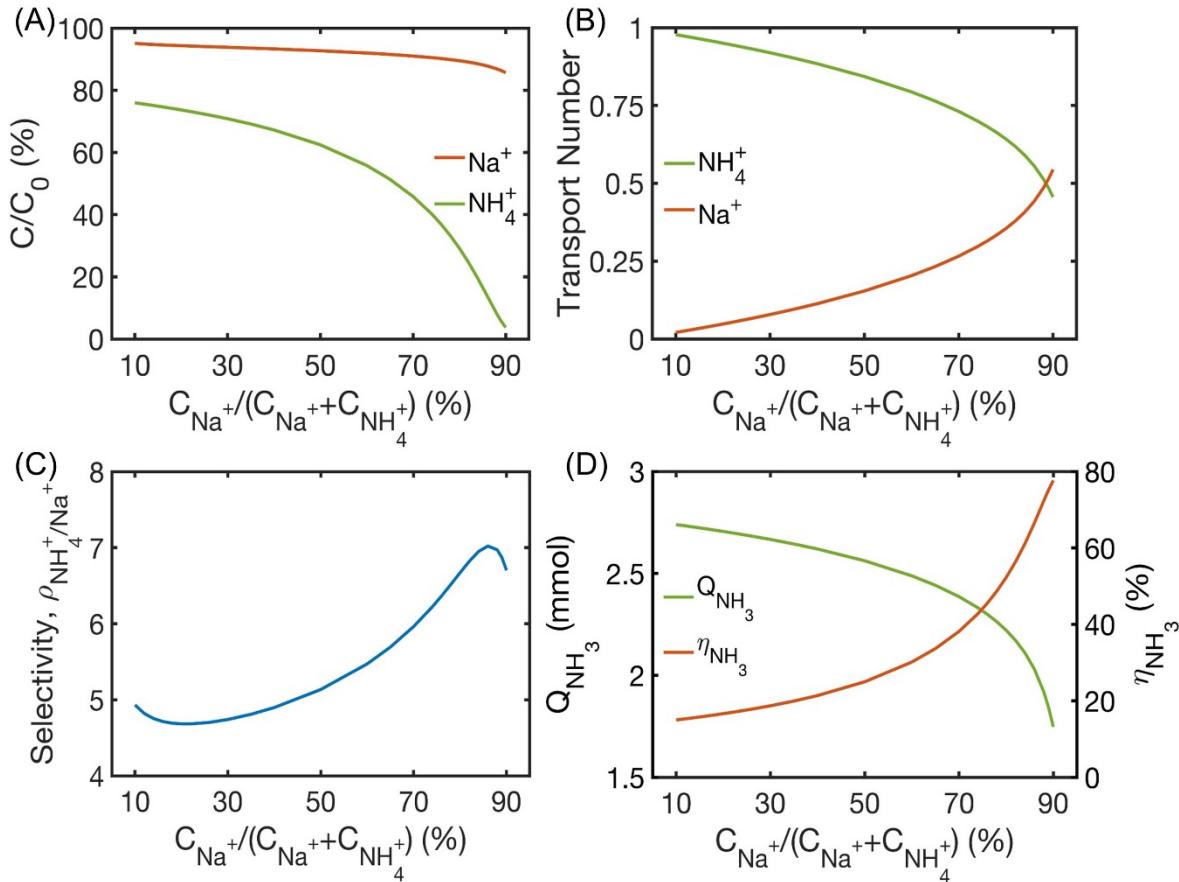
276 **Figure 3.** Selective ammonia recovery for varying initial anode Na^+ concentration. The initial
 277 concentrations of NH_4^+ in the anode is 55 mmol·L⁻¹. (A) Normalized final concentrations of Na^+
 278 (orange line) and NH_4^+ (green line) ions in the anode. C is the ion concentration at the end of each
 279 cycle, while C_0 is the initial ion concentration in the anode. (B) Transport number of Na^+ (orange

280 line) and NH_4^+ (green line) ions. (C) Selectivity of $\text{NH}_4^+/\text{Na}^+$ across the membrane-solution
281 interface. (D) Ammonia recovery amount and efficiency. Green line is recovery amount and
282 orange line is recovery efficiency.

283 **3.3 Effect of Na^+ fraction in the anode**

284 In addition, we vary the initial Na^+ concentration fraction in anolyte from 10% to 90% while
285 maintaining the total cation ($\text{Na}^+ + \text{NH}_4^+$) concentration at $100 \text{ mmol}\cdot\text{L}^{-1}$. Compared to varying the
286 initial Na^+ concentrations from $1 \text{ mmol}\cdot\text{L}^{-1}$ to $200 \text{ mmol}\cdot\text{L}^{-1}$ in anolyte, varying the initial Na^+
287 concentration fraction in anolyte leads to a more significant decrease for the normalized
288 concentration of NH_4^+ in anolyte as the increasing Na^+ concentrations (Fig. 4A). For example,
289 varying the initial Na^+ concentration fraction in anolyte from 10% to 90% results in the normalized
290 NH_4^+ concentration changing from 75.7% to 3.97%, which is a more notable depletion compared
291 to that of changing the initial Na^+ concentrations in anolyte from 1 to $200 \text{ mmol}\cdot\text{L}^{-1}$ (normalized
292 NH_4^+ concentration from 60.2% to 69.1%). However, the normalized Na^+ concentration is
293 relatively stable. It changes from 95.1% to 85.7% when the Na^+ concentration fraction changes
294 from 10% to 90%.

295 The transport number profiles in Fig. 4B reveal more explicit NH_4^+ and Na^+ ion transfer
296 behaviors. At the initial Na^+ fraction of 10%, the transport numbers of NH_4^+ and Na^+ ions are 0.979


297 and 0.021, respectively. As the initial Na^+ fraction increases, there is a continuous decrease in the
298 transport number of NH_4^+ while the transport number of Na^+ correspondingly increases. The NH_4^+
299 transport number is always higher than the transport number of Na^+ ion when the initial Na^+
300 fraction ranges from 10% to 88.5%. For example, at the initial Na^+ fraction of 50%, where both
301 NH_4^+ and Na^+ concentrations are $50 \text{ mmol}\cdot\text{L}^{-1}$, the transport numbers of NH_4^+ and Na^+ ion are 0.843
302 and 0.157, respectively. Such difference indicates the NH_4^+ ion transport is more preferred than the
303 Na^+ ion, which is consistent with the conclusion from section 3.2.

304 As shown in Fig. 4C, the $\text{NH}_4^+/\text{Na}^+$ selectivity value consistently exceeds 4.68 across the range
305 of initial Na^+ fraction changes, indicating that the NH_4^+ ion is easier to be transferred to the cathode
306 compartment compared to the Na^+ ion. The lowest and highest selectivity is 4.68 and 7.02,
307 respectively, when the initial Na^+ fraction is 20% and 86%. Within this Na^+ fraction range, we
308 observe a continuous increase in the selectivity. Such a trend is attributed to the steadily decreasing
309 NH_4^+ concentration in anolyte, which increases $\Delta c_{\text{NH}_4^+}/c_{\text{NH}_4^+,0}$ and keeps $\Delta c_{\text{Na}^+}/c_{\text{Na}^+,0}$ at a
310 relatively stable value. However, we note that at the initial Na^+ fraction from 10% to 20% and from
311 86% to 90%, the $\text{NH}_4^+/\text{Na}^+$ selectivity shows the reverse trend, potentially due to the extremely
312 small value of $c_{\text{NH}_4^+,0}$ and $c_{\text{Na}^+,0}$, respectively.

313 As demonstrated in Fig. 4D, the increase of initial Na^+ fraction leads to a decrease in the initial
314 NH_4^+ concentration and thereby a decreasing ammonia recovery amount (Q_{NH_3}). For example,

315 Q_{NH_3} changes from 2.74 mmol to 1.75 mmol as the initial Na^+ fraction varies from 10% to 90%.
 316 However, the ammonia recovery efficiency (η_{NH_3}) exhibits an opposite trend: it continuously
 317 increases from 15.0% to 77.6% as the initial Na^+ fraction varies from 10% to 90%. This trend is
 318 attributed to the decrease of the initial ammonia concentration $c_{\text{NH}_4^+,0}$.

319

320

321 **Figure 4.** Selective ammonia recovery for varying anode Na^+ and NH_4^+ fractions in the anode.
322 The total concentrations of NH_4^+ and Na^+ in the anode is $100 \text{ mmol}\cdot\text{L}^{-1}$. All other initial ion
323 concentrations remain unchanged. The current density in every single simulation linearly
324 decreases from $2 \text{ A}\cdot\text{m}^{-2}$ to $0.5 \text{ A}\cdot\text{m}^{-2}$. (A) Normalized final concentrations of Na^+ (orange line) and
325 NH_4^+ (green line) ions in the anode. C is the ion concentration at the end of each cycle, while C_0
326 is the initial ion concentration in the anode. (B) Transport number of Na^+ (orange line) and NH_4^+
327 (green line) ions. (C) Selectivity of $\text{NH}_4^+/\text{Na}^+$ across the membrane-solution interface. (D)
328 Ammonia recovery amount and efficiency. The green line is the recovery amount and the orange
329 line is recovery efficiency.

330

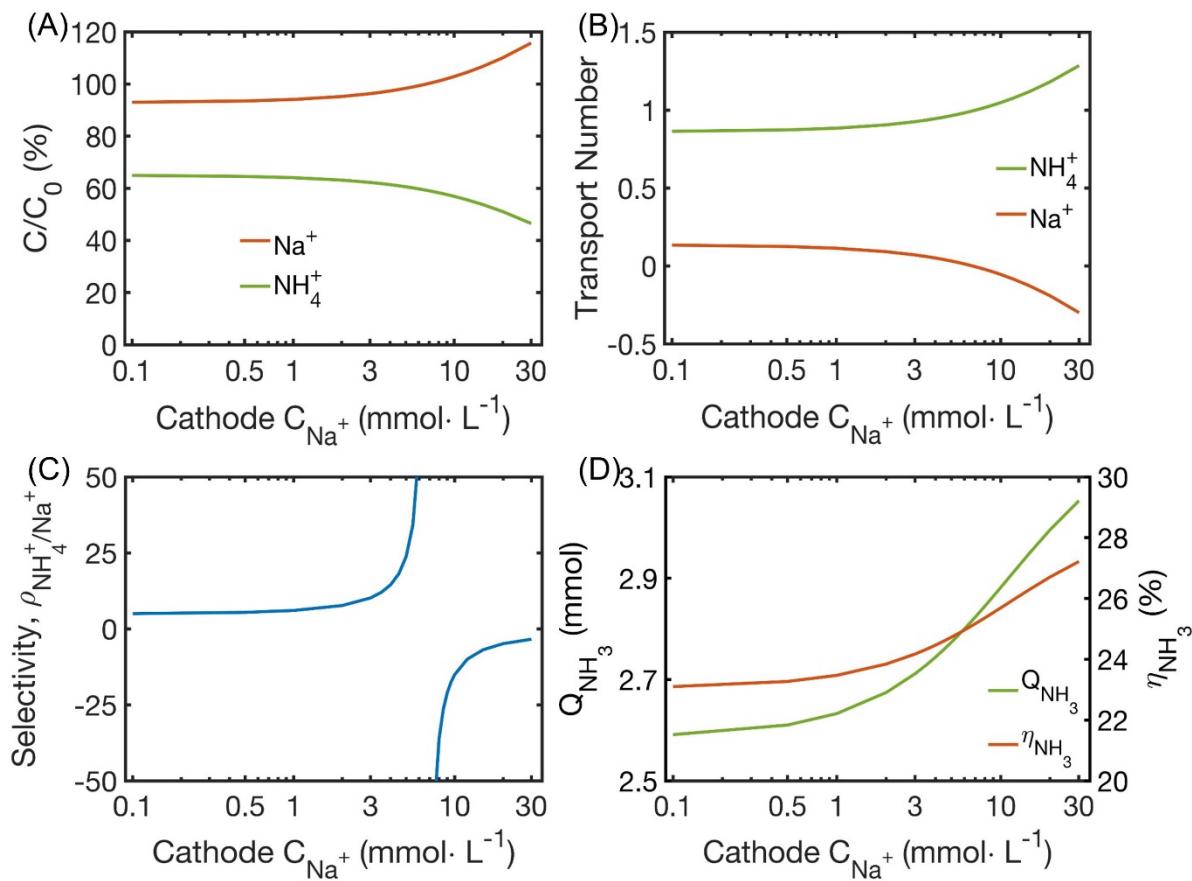
331 **3.4 Na^+ in the cathode enhances NH_4^+ transport**

332 In the previous sections, we explore the effects of initial Na^+ concentration and fraction on the
333 transport of both NH_4^+ and Na^+ ions. While the transport of NH_4^+ dominantly governs ion transport
334 across the membrane, the transport of Na^+ from anolyte to catholyte cannot be eliminated. To
335 minimize Na^+ transport, we utilize Donnan Dialysis and add additional Na^+ ions in the cathode
336 solution. Donnan Dialysis is an ion exchange phenomenon driven by the difference in ion
337 concentrations on both sides of the ion exchange membrane (Davis, 2000a; Sata, 2007). Although

338 Donnan Dialysis has been applied for metal recovery or ammonia recovery from wastewater,
339 usually it is not integrated into an electrochemical process (Agarwal et al., 2016; Rodrigues et al.,
340 2020). Therefore, we increase the initial Na^+ concentration at catholyte from $0.1 \text{ mmol} \cdot \text{L}^{-1}$ to 30
341 $\text{mmol} \cdot \text{L}^{-1}$, while maintaining all other initial cation concentrations unchanged.

342 The normalized concentration of NH_4^+ and Na^+ shows opposite trends as a function of the initial
343 cathode Na^+ concentration (Fig. 5A). As the initial cathode Na^+ concentration increases from 0.1
344 $\text{mmol} \cdot \text{L}^{-1}$ to $30 \text{ mmol} \cdot \text{L}^{-1}$, the normalized NH_4^+ concentration decreases from 64.9% to 46.5%
345 whereas the normalized Na^+ concentration increases from 93.0% to 115.7% . This value exceeds
346 100% and indicates that Na^+ ions are transported from the cathode compartment to the anode
347 compartment. Furthermore, the normalized concentration of NH_4^+ remains consistently smaller
348 than that of Na^+ regardless of the initial cathode Na^+ concentration, indicating that a larger portion
349 of Na^+ ions remain in the anode compartment compared to NH_4^+ ions.

350 As depicted in Fig. 5B, the transport number of NH_4^+ exceeds that of Na^+ regardless of initial
351 cathode Na^+ concentration, indicating that NH_4^+ transport dominates the charge transfer. The
352 addition of Na^+ ions in the cathode compartment facilitates NH_4^+ transport since the transport
353 number of NH_4^+ increases from 0.863 to 1.285 as the initial cathode Na^+ concentration increases
354 from $0.1 \text{ mmol} \cdot \text{L}^{-1}$ to $30 \text{ mmol} \cdot \text{L}^{-1}$. The increased NH_4^+ transport number highlights the
355 importance of Na^+ ions in the cathode compartment. When the initial cathode Na^+ concentration


356 is small and close to 0 $\text{mmol} \cdot \text{L}^{-1}$, its impact on both NH_4^+ and Na^+ ion transport is minimal.
357 Increasing the initial cathode Na^+ concentration from 0.1 $\text{mmol} \cdot \text{L}^{-1}$ to 1 $\text{mmol} \cdot \text{L}^{-1}$ only leads to
358 an increase of 2.3% (from 0.863 to 0.884) for the transport number of NH_4^+ . As a comparison, the
359 transport number of Na^+ drops 15.1% (from 0.133 to 0.113). In this situation, the Na^+ ion still
360 transport from the anode compartment to the cathode compartment. The selectivity of $\text{NH}_4^+/\text{Na}^+$
361 for this cathode Na^+ concentration range is quite stable, as shown in Fig. 5C. When the initial
362 cathode Na^+ concentration increases from 0.1 $\text{mmol} \cdot \text{L}^{-1}$ to 1 $\text{mmol} \cdot \text{L}^{-1}$, the selectivity of $\text{NH}_4^+/\text{Na}^+$
363 increases by 20.7% (from 5.01 to 6.05) due to a consistent decrease in Δc_{Na^+} and an increase
364 in $\Delta c_{\text{NH}_4^+}$.

365 When the initial cathode Na^+ concentration reaches a critical value, 6.8 $\text{mmol} \cdot \text{L}^{-1}$, the transport
366 number of NH_4^+ equals to 1 while the transport number of Na^+ is 0. In this scenario, there is no
367 overall Na^+ transport and all the electrons transfer through external circuit is exclusively used for
368 the transport of NH_4^+ . Hence, the selectivity of $\text{NH}_4^+/\text{Na}^+$ does not possess a reasonable value
369 since Δc_{Na^+} is zero. As the initial cathode Na^+ concentration exceeds 6.8 $\text{mmol} \cdot \text{L}^{-1}$, the transport
370 number of NH_4^+ is greater than 1 while the transport number of Na^+ has a negative value,
371 confirming that a reverse Na^+ flux from catholyte to anolyte exists. As a result, the amount of NH_4^+
372 transport surpasses the charge transfer and the selectivity of $\text{NH}_4^+/\text{Na}^+$ is negative due to a negative

373 value of Δc_{Na^+} . Based on the results, we conclude that Donnan Dialysis could enhance the
374 transport of NH_4^+ ions in electrochemical systems.

375 We note that a high concentration of Na^+ ions in the cathode compartment is beneficial to
376 ammonia recovery in electrochemical cells. Both the ammonia recovery amount Q_{NH_3} and
377 ammonia recovery efficiency η_{NH_3} increase with the increasing initial cathode Na^+ concentration
378 due to the elevating NH_4^+ transport. As the initial cathode Na^+ concentration rises from 0.1 $\text{mmol}\cdot$
379 L^{-1} to 30 $\text{mmol}\cdot \text{L}^{-1}$, the Q_{NH_3} increases from 2.59 mmol to 3.05 mmol while the η_{NH_3} increases
380 from 23.1% to 27.2%.

381

382

383 **Figure 5.** Selective ammonia recovery for varying initial cathode Na^+ concentration. The initial
 384 cathode Na^+ concentration varies from 0.1 mmol·L⁻¹ to 30 mmol·L⁻¹. All other initial ion
 385 concentrations remain unchanged. The current density in every single simulation linearly
 386 decreases from 2 A/m² to 0.5 A/m². (A) Normalized final concentrations of Na^+ (orange line) and
 387 NH_4^+ (green line) ions in the anode. C is the ion concentration at the end of each cycle, while C_0
 388 is the initial ion concentration in the anode. (B) Transport number of Na^+ (orange line) and NH_4^+
 389 (green line) ions. (C) Selectivity of $\text{NH}_4^+/\text{Na}^+$ across the membrane-solution interface. (D)

390 Ammonia recovery amount and efficiency. Green line is recovery amount and orange line is
391 recovery efficiency.

392

393 ***3.5 Discussion and Perspective***

394 Membrane electrochemical systems serve as a versatile platform for various applications,
395 including wastewater treatment, resource recovery, power generation, and sensing platforms for
396 contamination detection. In this study, we simulated the ion concentration profiles and variations,
397 transport numbers, ammonia recovery rates, and recovery efficiencies to predict the NH_4^+ transport
398 with the presence of other ions in MES. Specifically, we focused on the NH_4^+ transport with the
399 presence of Na^+ ions to gain insights into ammonia recovery from wastewater. We found that the
400 imbalanced Na^+ ion concentration across the membrane is associated with the Donnan equilibrium
401 to facilitate the Na^+ transport, which is consequently impacted by the Na^+ ion concentration
402 distribution in the MES. According to the simulation results, Na^+ ions in anolyte act as competing
403 cations since they are prevalent in wastewater in a stable form. While in catholyte, Na^+ ions
404 facilitate the NH_4^+ transport and recovery.

405 The mathematical model was constructed based on a bioanode MES reactor in batch mode. As
406 the organic matters are consumed by the microorganisms at the bioanode, the current generation
407 decreases, affecting the ion transport, pH gradients across cation exchange membrane, and Donnan

408 equilibrium. The simulation captured those changes within a batch cycle, showing how the
409 parameters affect one another. We note that a continuous mode would be preferred when scaling
410 up the MES for real-world applications. Additionally, scaling up the MES necessitates additional
411 investigation due to the complexities of ion movement in the bulk anolyte or catholyte, instead of
412 assuming well-mixed in the small volume of this lab-scale MES reactor. To investigate the ion
413 movement in scaled up system, a series of experiments need to be conducted to explore the effect
414 of membrane area, anolyte compartment thickness and volume on the ion movement. However,
415 this lab-scale simulation can still provide insight into the selective ion transport toward ammonia
416 recovery.

417 In this study, microorganisms were inoculated in the MES anode to degrade organic matters
418 while oxygen was used as the electron acceptor. This setup allowed MES to function through
419 spontaneous bioelectrochemical reactions without external energy input. Therefore, energy
420 efficiency, which is typically analyzed in electrochemical cells, was not calculated and discussed
421 here since the primary aim was to improve the ammonium transport and recovery efficiency in the
422 self-sustained MES. We believe that using MES to achieve ammonia recovery is a sustainable
423 approach since this spontaneous process separates ammonium ions from wastewater and collects
424 them as valuable fertilizer products, mitigating the contamination to the environment and
425 preserving the energy from the Haber-Bosch process.

426 **4. CONCLUSION**

427 In this study, we utilize a mathematical model to reveal the selective NH_4^+ transport across a
428 cation exchange membrane in the presence of Na^+ , an inert cation that commonly co-exists with
429 ammonium in wastewater. Specifically, we analyzed the concentration profile of both NH_4^+ and
430 Na^+ in the bulk solution and the membrane. Through comprehensive evaluation of Na^+
431 concentrations in the system, we derived several performance matrices of this membrane
432 electrochemical system, such as normalized concentration variation with time, transport number,
433 selectivity, and ammonia recovery amount and efficiency. The presence of Na^+ as an inert cation
434 in the anode compartment impacts the ammonia recovery since the Na^+ transport competes with
435 the NH_4^+ transport. However, in most cases, the NH_4^+ transport dominates the total cation transport
436 unless the NH_4^+ concentration fraction in the anode compartment is extremely low (~11.5%). More
437 significantly, the presence of Na^+ in the cathode compartment facilitates the ammonia transport
438 because of Donnan Dialysis. The analyses offer important insights into the practical application of
439 ammonia recovery via membrane electrochemical system by incorporating the addition of inert
440 cations to enhance ammonia recovery selectivity and efficiency.

441

AUTHOR AGREEMENT

442 All authors are aware of and accept responsibility for the manuscript. This manuscript has not
443 been previously published, in whole or in part, and it is not under consideration by any other
444 journal.

AUTHOR CONTRIBUTION

445 Kai Yang: Investigation, Methodology, Formal analysis, Validation, Visualization, Writing -
446 original draft. Mohan Qin: Conceptualization, Methodology, Writing - review & editing, Funding
447 acquisition.

AUTHOR CONTRIBUTION

448 The authors would like to thank the support from National Science Foundation CBET 2219089.
449 In addition, the authors would like to thank the startup fund from the Department of Civil and
450 Environmental Engineering, College of Engineering, the Office of the Vice-Chancellor for
451 Research and Graduate Education (OVCRGE) at the University of Wisconsin-Madison, and the
452 Wisconsin Alumni Research Foundation (WARF) for the support of this study.

453

454

455 **REFERENCES**

456 Agarwal, C., Cattrall, R.W. and Kolev, S.D. 2016. Donnan dialysis based separation of gold(III)
457 from electronic waste solutions using an anion exchange pore-filled membrane. *J.*
458 *Membr. Sci.* 514, 210-216.

459 Burns, M. and Qin, M. 2023. Ammonia recovery from organic nitrogen in synthetic dairy
460 manure with a microbial fuel cell. *Chemosphere* 325, 138388.

461 Capdevila-Cortada, M. 2019. Electrifying the Haber–Bosch. *Nat. Catal.* 2(12), 1055-1055.

462 Chen, C., Dong, T., Han, M.Y., Yao, J.M. and Han, L. 2020. Ammonium recovery from
463 wastewater by Donnan Dialysis: A feasibility study. *J. Clean. Prod.* 265.

464 Chen, C., Han, M., Yao, J., Zhi, Y., Liu, Y., Zhang, C. and Han, L. 2021. Donnan Dialysis-
465 Osmotic Distillation (DD-OD) Hybrid Process for Selective Ammonium Recovery
466 Driven by Waste Alkali. *Environ Sci Technol* 55(10), 7015-7024.

467 Chen, J.G., Crooks, R.M., Seefeldt, L.C., Bren, K.L., Bullock, R.M., Daresbourg, M.Y.,
468 Holland, P.L., Hoffman, B., Janik, M.J., Jones, A.K., Kanatzidis, M.G., King, P.,
469 Lancaster, K.M., Lymar, S.V., Pfromm, P., Schneider, W.F. and Schrock, R.R. 2018.
470 Beyond fossil fuel-driven nitrogen transformations. *Science* 360(6391).

471 Cord-Ruwisch, R., Law, Y. and Cheng, K.Y. 2011. Ammonium as a sustainable proton shuttle in
472 bioelectrochemical systems. *Bioresour. Technol.* 102(20), 9691-9696.

473 Davis, T. 2000a. Donnan dialysis. *Encyclopedia of separation science* 4, 1701-1707.

474 Davis, T. 2000b. Donnan dialysis. *Membrane Separations* 2, 1701-1707.

475 Dawson, C.J. and Hilton, J. 2011. Fertiliser availability in a resource-limited world: Production
476 and recycling of nitrogen and phosphorus. *Food Policy* 36, S14-S22.

477 Epsztein, R., Shaulsky, E., Qin, M. and Elimelech, M. 2019. Activation behavior for ion
478 permeation in ion-exchange membranes: Role of ion dehydration in selective transport. *J.*
479 *Membr. Sci.* 580, 316-326.

480 Ertl, G. 1990. Elementary Steps in Heterogeneous Catalysis. *Angew. Chem., Int. Ed. Engl.*
481 29(11), 1219-1227.

482 Fang, K., Gong, H., He, W.Y., Peng, F., He, C.H. and Wang, K.J. 2018. Recovering ammonia
483 from municipal wastewater by flow-electrode capacitive deionization. *J. Chem. Eng.* 348,
484 301-309.

485 Galloway, J.N., Dentener, F.J., Capone, D.G., Boyer, E.W., Howarth, R.W., Seitzinger, S.P.,
486 Asner, G.P., Cleveland, C.C., Green, P. and Holland, E.A. 2004a. Nitrogen cycles: past,
487 present, and future. *Biogeochemistry* 70(2), 153-226.

488 Galloway, J.N., Dentener, F.J., Capone, D.G., Boyer, E.W., Howarth, R.W., Seitzinger, S.P.,
489 Asner, G.P., Cleveland, C.C., Green, P.A., Holland, E.A., Karl, D.M., Michaels, A.F.,

490 Porter, J.H., Townsend, A.R. and Vöosmarty, C.J. 2004b. Nitrogen Cycles: Past, Present,
491 and Future. *Biogeochemistry* 70(2), 153-226.

492 He, C., Ma, J., Zhang, C., Song, J. and Waite, T.D. 2018. Short-Circuited Closed-Cycle
493 Operation of Flow-Electrode CDI for Brackish Water Softening. *Environ Sci Technol*
494 52(16), 9350-9360.

495 Jacobsen, C.J.H., Dahl, S., Clausen, B.S., Bahn, S., Logadottir, A. and Nørskov, J.K. 2001.
496 Catalyst Design by Interpolation in the Periodic Table: Bimetallic Ammonia Synthesis
497 Catalysts. *J. Am. Chem. Soc.* 123(34), 8404-8405.

498 Kim, J.R., Zuo, Y., Regan, J.M. and Logan, B.E. 2008. Analysis of ammonia loss mechanisms
499 in microbial fuel cells treating animal wastewater. *Biotechnol. Bioeng.* 99(5), 1120-1127.

500 Kuntke, P., Rodriguez Arredondo, M., Widyakristi, L., Ter Heijne, A., Sleutels, T.H., Hamelers,
501 H.V. and Buisman, C.J. 2017. Hydrogen Gas Recycling for Energy Efficient Ammonia
502 Recovery in Electrochemical Systems. *Environ Sci Technol* 51(5), 3110-3116.

503 Kuntke, P., Smiech, K.M., Bruning, H., Zeeman, G., Saakes, M., Sleutels, T.H., Hamelers, H.V.
504 and Buisman, C.J. 2012. Ammonium recovery and energy production from urine by a
505 microbial fuel cell. *Water Res.* 46(8), 2627-2636.

506 Ledezma, P., Kuntke, P., Buisman, C.J.N., Keller, J. and Freguia, S. 2015. Source-separated
507 urine opens golden opportunities for microbial electrochemical technologies. *Trends
508 Biotechnol.* 33(4), 214-220.

509 Lee, G., Kim, K., Chung, J. and Han, J.I. 2020. Electrochemical ammonia accumulation and
510 recovery from ammonia-rich livestock wastewater. *Chemosphere*, 128631.

511 Liu, M.J., Neo, B.S. and Tarpeh, W.A. 2020. Building an operational framework for selective
512 nitrogen recovery via electrochemical stripping. *Water Res.* 169, 115226.

513 Liu, Y., Qin, M., Luo, S., He, Z. and Qiao, R. 2016. Understanding Ammonium Transport in
514 Bioelectrochemical Systems towards its Recovery. *Sci. Rep.* 6, 22547.

515 Luo, T., Abdu, S. and Wessling, M. 2018. Selectivity of ion exchange membranes: A review. *J.
516 Membr. Sci.* 555, 429-454.

517 Park, C., Muller, C.D., Abu-Orf, M.M. and Novak, J.T. 2006. The effect of wastewater cations
518 on activated sludge characteristics: effects of aluminum and iron in floc. *Water Environ
519 Res* 78(1), 31-40.

520 Qin, M. and He, Z. 2014. Self-Supplied Ammonium Bicarbonate Draw Solute for Achieving
521 Wastewater Treatment and Recovery in a Microbial Electrolysis Cell-Forward Osmosis-
522 Coupled System. *Environ. Sci. Technol. Lett.* 1(10), 437-441.

523 Qin, M., Molitor, H., Brazil, B., Novak, J.T. and He, Z. 2016. Recovery of nitrogen and water
524 from landfill leachate by a microbial electrolysis cell-forward osmosis system. *Bioresour.
525 Technol.* 200, 485-492.

526 Rodrigues, M., Lund, R.J., ter Heijne, A., Sleutels, T., Buisman, C.J.N. and Kuntke, P. 2022a.
527 Application of ammonium fertilizers recovered by an Electrochemical System. *Resour.*
528 *Conserv. Recycl.* 181, 106225.

529 Rodrigues, M., Sleutels, T., Kuntke, P., Buisman, C.J.N. and Hamelers, H.V.M. 2022b. Effects
530 of Current on the Membrane and Boundary Layer Selectivity in Electrochemical Systems
531 Designed for Nutrient Recovery. *ACS Sustain. Chem. Eng.* 10(29), 9411-9418.

532 Rodrigues, M., Sleutels, T., Kuntke, P., Hoekstra, D., ter Heijne, A., Buisman, C.J.N. and
533 Hamelers, H.V.M. 2020. Exploiting Donnan Dialysis to enhance ammonia recovery in
534 an electrochemical system. *J. Chem. Eng.* 395.

535 Rodríguez Arredondo, M., Kuntke, P., Jeremiassse, A.W., Sleutels, T.H.J.A., Buisman, C.J.N. and
536 ter Heijne, A. 2015. Bioelectrochemical systems for nitrogen removal and recovery from
537 wastewater. *Environ. Sci.: Water Res. Technol.* 1(1), 22-33.

538 Sata, T. (2007) Ion exchange membranes: preparation, characterization, modification and
539 application, Royal Society of Chemistry.

540 Strathmann, H. 2010. Electrodialysis, a mature technology with a multitude of new
541 applications. *Desalination* 264(3), 268-288.

542 Tarpeh, W.A., Barazesh, J.M., Cath, T.Y. and Nelson, K.L. 2018. Electrochemical Stripping to
543 Recover Nitrogen from Source-Separated Urine. *Environ. Sci. Technol.* 52(3), 1453-
544 1460.

545 Van der Hoek, J., Duijff, R. and Reinstra, O. 2018. Nitrogen Recovery from Wastewater:
546 Possibilities, Competition with Other Resources, and Adaptation Pathways. *Sustainability*
547 10(12).

548 Yang, K., Du, H.A. and Qin, M.H. 2023. Solar enhanced membrane distillation for ammonia
549 recovery. *J. Membr. Sci. Lett.* 3(1), 100043.

550 Yang, K. and Qin, M. 2021. The Application of Cation Exchange Membranes in
551 Electrochemical Systems for Ammonia Recovery from Wastewater. *Membranes* 11(7),
552 494.

553 Ye, Z.L., Ghyselbrecht, K., Monballiu, A., Pinoy, L. and Meesschaert, B. 2019. Fractionating
554 various nutrient ions for resource recovery from swine wastewater using simultaneous
555 anionic and cationic selective-electrodialysis. *Water Res.* 160, 424-434.

556 Zamora, P., Georgieva, T., Ter Heijne, A., Sleutels, T.H.J.A., Jeremiassse, A.W., Saakes, M.,
557 Buisman, C.J.N. and Kuntke, P. 2017. Ammonia recovery from urine in a scaled-up
558 Microbial Electrolysis Cell. *J. Power Sources* 356, 491-499.

559 Zhang, Y. and Angelidaki, I. 2015a. Recovery of ammonia and sulfate from waste streams and
560 bioenergy production via bipolar bioelectrodialysis. *Water Res.* 85, 177-184.

561 Zhang, Y. and Angelidaki, I. 2015b. Submersible microbial desalination cell for simultaneous
562 ammonia recovery and electricity production from anaerobic reactors containing high
563 levels of ammonia. *Bioresour. Technol.* 177, 233-239.

564 Zou, S., Qin, M., Moreau, Y. and He, Z. 2017. Nutrient-energy-water recovery from synthetic
565 sidestream centrate using a microbial electrolysis cell - forward osmosis hybrid system. *J.*
566 *Clean. Prod.* 154, 16-25.

567