

Electrochemical ammonia recovery and co-production of chemicals from manure wastewater

Rui Wang¹, Kai Yang², Cindy Wong³, Horacio Aguirre-Villegas⁴, Rebecca Larson⁴, Fikile Brushett³, Mohan Qin^{2*}, Song Jin^{1*}

⁵ ¹ Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison,
⁶ Wisconsin 53706, USA.

⁷ ² Department of Civil and Environmental Engineering, University of Wisconsin-Madison,
⁸ Madison, Wisconsin 53706, USA.

⁹ ³ Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts
¹⁰ Avenue, Cambridge, Massachusetts 02139, USA.

11 ⁴ Department of Biological Systems Engineering, University of Wisconsin-Madison, 460 Henry
12 Mall, Madison, Wisconsin 53706, USA.

13 *E-mail: mohan.qin@wisc.edu; jin@chem.wisc.edu

14 Abstract

15 Livestock manure wastewater, containing high level of ammonia, is a major source of water
16 contamination, posing serious threats to aquatic ecosystems. Because ammonia is an important
17 nitrogen fertilizer, efficiently recovering ammonia from manure wastewater would have multiple
18 sustainability gains from both the pollution control and the resource recovery perspectives. Here,
19 we develop an electrochemical strategy to achieve this goal by using an ion-selective potassium
20 nickel hexacyanoferrate (KNiHCF) electrode as a mediator. The KNiHCF electrode spontaneously
21 oxidizes organic matter and uptakes ammonium ions (NH_4^+) and potassium ions (K^+) in manure
22 wastewater with a nutrient selectivity of ~100%. Subsequently, nitrogen- and potassium-rich
23 fertilizers are produced alongside the electrosynthesis of H_2 (green fuel) or H_2O_2 (disinfectant)
24 while regenerating the KNiHCF electrode. The preliminary techno-economic analysis indicates
25 that the proposed strategy has notable economic potential and environmental benefits. This work
26 provides a powerful strategy for efficient nutrient (NH_4^+ and K^+) recovery and decentralized
27 fertilizer and chemical production from manure wastewater, paving the way to sustainable
28 agriculture.

29 **Introduction**

30 Livestock systems provide humans with protein-rich foods, but they are increasingly under
31 pressure to become environmentally sustainable¹. Many environmental issues² stem from
32 managing livestock manure wastewater, a mixture of animal feces, urine, and other system by-
33 products (e.g., waste feed, wash waters). In 2017, 296 billion pounds of livestock manure were
34 generated in the U.S., equivalent in weight to the municipal wastewater produced by two-thirds of
35 the U.S. population³. In the current manure management process, manure is simply stored and
36 spread to nearby cropland as a fertilizer to reuse the nutrients. However, manure constituents⁴,
37 including nutrients, pathogens, and organic matter, can be lost to the environment during such
38 manure treatment process, therefore it causes nuisance odors, degrades both surface and
39 groundwater quality⁵, contributes to climate change^{6, 7}, thus creating many environmental and
40 human health issues⁸. To address these issues, manure processing systems capable of recovering
41 embedded nutrients in a more manageable form with an increased nutrient density and value need
42 to be developed^{9, 10}. Although manure separation systems¹¹ and microbiological processes¹² are
43 increasingly used for manure treatment, these systems are usually cost- and energy-intensive and
44 have poor separation selectivity for the desired nutrients¹³. In comparison, electrochemical
45 processes¹⁴ driven by renewable electricity could be promising for distributed small-scale nutrient
46 recovery and, especially, selective recovery of ammonia from manure wastewater.

47 Electrochemical ammonia recovery from wastewater has been focused on membrane-
48 based processes using ion-exchange membranes^{15, 16}, such as bioelectrochemical systems^{17, 18},
49 electrochemical stripping¹⁹, and electrodialysis²⁰. The separation of ammonia is usually achieved
50 by the diffusion and migration of ammonium (NH_4^+) ions across the cation-exchange membrane,
51 and subsequently, the transported NH_4^+ ions can be further concentrated and recovered as valuable
52 products²¹. All of these ammonia recovery processes must take place in complete electrochemical
53 reaction cycles. However, the cathodic and anodic half-reactions in these electrochemical
54 processes are not directly involved in the ammonia recovery processes. Instead, they are usually
55 “sacrificial” reactions that decompose the electrolytes or microbial oxidation of the organic matter
56 to provide the electric potential gradient to drive the migration of NH_4^+ ions and maintain the
57 charge and ion balance²². Furthermore, the use of ion-exchange membranes increases the cost and
58 complexity of the electrochemical devices. Recently, battery electrodes based on intercalation
59 chemistry have been used for selective ion recovery from domestic wastewater that contains other

60 cations in membrane processes²³⁻²⁷. If the currently paired half-reactions in such electrochemical
61 ammonium or other nutrient ion recovery processes could be replaced with the production of
62 value-added chemicals, the process efficiency and sustainability would improve. Therefore,
63 integrating nutrient ion recovery from manure wastewater and electrochemical synthesis in a
64 membrane-free fashion is attractive.

65 Here, we present a new approach for simultaneous ammonium recovery from manure
66 wastewater and electrochemical synthesis of H₂ or H₂O₂ using an ion-selective redox material as
67 a mediator. We identify potassium nickel hexacyanoferrate (KNiHCF) with high NH₄⁺ (and K⁺)
68 selectivity, suitable redox potential, and excellent stability for spontaneous NH₄⁺ (and K⁺) uptake
69 in manure wastewater, which can be conveniently driven by the oxidation of organic matter in
70 manure wastewater. The electrochemical NH₄⁺ release is paired with the electrosynthesis of H₂ or
71 H₂O₂ with high Faradic efficiency without ion-exchange membranes. Such rational design enables
72 the demonstration of integrated nutrient ion recovery and electrosynthesis system and co-
73 production of fertilizers and value-added chemicals from manure wastewater using the KNiHCF
74 electrode, air, electricity.

75 **Results**

76 **Design of the ammonium recovery and electrosynthesis system**

77 The integrated system for ammonia recovery and electrosynthesis includes the NH₄⁺ (K⁺)
78 uptake, fertilizer production, electrosynthesis, and wastewater treatment processes (Fig. 1). The
79 key is using solid-state redox materials that can selectively transport NH₄⁺ ions and enable the
80 electrochemical co-production of value-added chemicals in the other half-reactions without using
81 membranes yet with no product crossover. We call these materials redox reservoirs (RRs)²⁸
82 because RRs allow temporary storage of electrons and ions and redirect them for different
83 electrochemical half-reactions. Such RR strategy have been utilized for decoupled water
84 splitting²⁹⁻³¹ and co-production of chemicals that are incompatible in the membrane processes,
85 such as hydrogen peroxide (H₂O₂) and sodium persulfate²⁸ or hypochlorite³². In addition, proton-
86 selective RR can selectively transport protons to achieve sustained electrochemical productions³³.
87 Exploring redox materials with high NH₄⁺ selectivity may not only selectively recover NH₄⁺ (K⁺)
88 nutrients from manure wastewater but also enable the simultaneous co-production of chemicals in
89 a membrane-free fashion.

90 As illustrated in Fig. 1, the spontaneous oxidation of organic matter present in manure
91 wastewater by the oxidized RR (RR^{ox}) drives the NH_4^+ (K^+) uptake process concurrent with the
92 reduction of RR to the reduced RR (RR^{red}). Then, the RR electrode is transferred to different
93 electrochemical cells to pair with cathodic H_2 or H_2O_2 production, while the oxidation of RR
94 releases NH_4^+ (K^+). The NH_4^+ -selective RR can reversibly uptake and release NH_4^+ (K^+) during
95 redox cycles and maintains the charge balance in different cells, thus achieving effective NH_4^+
96 recovery. Drying the recovered solutions yields NH_4^+ -rich fertilizers. Moreover, since relatively
97 concentrated K_2SO_4 solution is used as the supporting electrolyte for H_2O_2 production, manure
98 wastewater disinfected by the produced H_2O_2 can be concentrated/dried to recycle K^+ -rich salts as
99 electrolytes or fertilizers (potash).

100 The manure wastewater prepared from cow feces and urine is a weakly alkaline suspension
101 ($\text{pH} \sim 9$) and contains different inorganic ions (NH_4^+ , Na^+ , K^+ , etc.), organic species, and solid
102 particles (Supplementary Figs, 1-6, and Table 1). Given its complicated chemical compositions,
103 the challenges of NH_4^+ recovery lie in the competing uptake of other cations present in manure
104 wastewater, such as Na^+ , and the stability of the RR material. Therefore, the ideal RR material
105 should meet several criteria: high NH_4^+ selectivity, suitable redox potential, excellent
106 (electro)chemical stability in manure wastewater, fast redox kinetics, and high capacity.

107 **Electrochemical behaviors of NH_4^+ -selective redox materials**

108 Because the Stokes radius and desolvation energy barrier of NH_4^+ are smaller than those
109 of common metal ions (e.g., Na^+ , K^+ , Ca^{2+} , Mg^{2+})^{34, 35}, the (de)intercalation of NH_4^+ should be
110 intrinsically faster than other cations. Redox materials with large ionic channels³⁶ that can form
111 non-ionic H-bonding with charge carriers^{37, 38} may selectively accelerate the NH_4^+ migration over
112 other cations. Following such general guidelines, we choose Ni and Cu-based Prussian Blue
113 analogs (PBAs) with open-framework structures (Fig. 2a) because they are known as stable
114 aqueous battery materials^{39, 40} and show promise for NH_4^+ intercalation from aqueous solutions^{23,}
115²⁴.

116 We used co-precipitation methods to synthesize PBAs with different morphologies (see
117 Methods), including KNiHCF nanoparticles (Fig. 2b), sodium nickel hexacyanoferrate microcubes
118 (NaNiHCF, Supplementary Fig. 7a), and copper hexacyanoferrate nanoparticles (CuHCF,
119 Supplementary Fig. 7b). Powder X-ray diffraction (PXRD) patterns of the KNiHCF and CuHCF

120 samples (Supplementary Fig. 8) display the characteristic (200), (220), and (400) diffraction peaks
121 that match well with the standard pattern of the cubic PBA phase (JCPDS No. 52-1907). In
122 comparison, the NaNiHCF sample has the rhombohedral structure (Supplementary Fig. 8).
123 Thermogravimetry analyses (TGA, Supplementary Fig. 9) and inductively coupled plasma optical
124 emission spectroscopy (ICP-OES, Supplementary Table 2) revealed the water content and element
125 compositions in these samples, respectively, to determine the exact chemical formulas of the
126 KNiHCF, NaNiHCF, and CuHCF samples to be $K_{0.1}Ni_{1.5}[Fe(CN)_6] \cdot 6.7 H_2O$,
127 $Na_{2.1}Ni[Fe(CN)_6] \cdot 2.1 H_2O$, and $K_{0.06}Cu_{1.5}[Fe(CN)_6] \cdot 5.5 H_2O$, respectively.

128 We first evaluated the cycling stability of these PBA electrodes in manure wastewater. The
129 CuHCF electrode showed near zero capacity from cyclic voltammograms (CV) and galvanostatic
130 charge-discharge (GCD) tests and possible dissolution from PXRD (Supplementary Fig. 10). We
131 further measured the NaNiHCF and KNiHCF electrodes since they were reported to be more pH-
132 tolerant than the CuHCF electrode⁴¹. The NaNiHCF electrode with pre-intercalated Na^+ showed
133 obvious capacity decay at 2 C rate in weakly alkaline solutions (Supplementary Fig. 11). Here, 1
134 C rate is 65 mA g⁻¹ based on the theoretical capacity. The observed capacity decay of the redox
135 materials is likely caused by two primary factors: structure collapse related to pH and
136 incompatibility with the components in manure wastewater (Supplementary Fig. 11). The GCD
137 tests of the KNiHCF electrode at 2 C rate confirmed its long-term cycling stability in various
138 solutions and even manure wastewater (Fig. 2c, Supplementary Fig. 12, and Table 3).

139 Based on these results, we chose KNiHCF as the model RR material and studied its cation
140 intercalation properties. CV profiles of the KNiHCF electrode in 1 M NaCl, KCl, and NH₄Cl
141 solutions at 1 mV s⁻¹ (Fig. 2d) showed reversible redox chemistry with intercalation potentials of
142 NH₄⁺, K⁺, and Na⁺ at ~0.686 V, ~0.678 V, and ~0.566 V versus standard hydrogen electrode (SHE),
143 respectively. Based on the Nernst equation, such differences in thermodynamic driving forces
144 (~0.120 V for NH₄⁺/ Na⁺ and ~0.08 V for NH₄⁺/ K⁺) mean that NH₄⁺ intercalation is theoretically
145 preferred when the molar ratio of NH₄⁺/ Na⁺ (or K⁺) is greater than 9×10^{-3} (or 0.7) (Supplementary
146 Note 1)⁴². Therefore, the KNiHCF electrode should selectively intercalate NH₄⁺ in manure and
147 common municipal wastewater given their compositions (Fig. 2e and Supplementary Table 4).
148 The KNiHCF electrode showed similar CV profiles and rate capabilities in synthetic wastewater
149 (sww, 0.50 M NH₄Cl + 0.183 M KHCO₃ + 0.146 M NaHCO₃), manure wastewater, and 1 M

150 NH₄Cl solution (Supplementary Figs. 13-15), suggesting possibly dominated NH₄⁺
151 (de)intercalation in these solutions. Moreover, the KNiHCF electrode with 100 % state-of-charge
152 (SOC) was spontaneously reduced to ~0 % SOC after 24 hours, likely by the organic matter present
153 in manure wastewater (Fig. 2f). In comparison, the KNiHCF electrode retained 70.5 % SOC after
154 48-hour self-reduction in synthetic wastewater (Fig. 2f and Supplementary Fig. 16). Since the
155 reduction of RR requires cation intercalation to balance the charge, these results suggest that the
156 KNiHCF RR can spontaneously and selectively uptake NH₄⁺ ions from manure wastewater.

157 **NH₄⁺ recovery from synthetic manure wastewater**

158 We first studied the NH₄⁺ recovery in synthetic wastewater using an integrated
159 electrochemical system that includes an anodic cell (Cell_{anodic}) for NH₄⁺ uptake from synthetic
160 wastewater, a cathodic cell (Cell_{cathodic}) for NH₄⁺ release in 0.1 M Li₂SO₄ solution (pH~1.3), and
161 a KNiHCF RR electrode with a specific capacity (charge) of 186 C g⁻¹ (Fig. 3a). Here, Cell_{anodic} or
162 Cell_{cathodic} is named based on electrocatalytic half-reactions, not the oxidation/reduction of the RR.
163 In Cell_{anodic}, the reduction of RR accompanied with the NH₄⁺ uptake was paired with OER at the
164 Pt anode (Fig. 3b, red region). In Cell_{cathodic}, the oxidation of RR released NH₄⁺ to complete one
165 recovery cycle, which was paired with HER at the Pt cathode (Fig. 3b, blue region). The ion or
166 nutrient (NH₄⁺ and K⁺) selectivity and the Faradaic efficiency (FE) of the cations were calculated
167 based on the concentrations of cations that were analyzed by ion chromatography (Methods).

168 To investigate the relationship between nutrient selectivity and NH₄⁺ removal, we
169 conducted a five-cycle recovery process, where the full recovery process cycle (Fig. 3a) was
170 applied to the same batch of synthetic wastewater five times and the recovered ions were released
171 in a new 0.1 M Li₂SO₄ solution for each cycle (Methods, Supplementary Figs. 17 and 18). During
172 cycles 1 to 3, the NH₄⁺ removal increased nearly linearly from 0 to 81 % and the Na⁺ concentration
173 ([Na⁺]) in synthetic wastewater showed no apparent changes (Fig. 3c, top panel). The nutrient
174 selectivity of ~97 % indicated that the KNiHCF electrode preferred the intercalation of NH₄⁺ and
175 K⁺ over Na⁺ (Fig. 3c, bottom panel). During cycles 4 and 5, the NH₄⁺ removal approached ~100 %,
176 but the nutrient selectivity decreased to 54 % because limited concentrations of nutrient ions
177 remained in synthetic wastewater (Fig. 3c, top panel). Over five cycles, the FE of three cations
178 decreased from 111 ± 5 % to 66 ± 6 % (Supplementary Fig. 19a), which might result from the
179 competing proton intercalation due to decreasing pH from OER. The NH₄⁺ / Na⁺ selectivity of

180 6~14 and $\text{NH}_4^+ / \text{K}^+$ selectivity of 1.4 (Supplementary Fig. 19b) confirmed the thermodynamically
181 favorable NH_4^+ recovery. The KNiHCF electrode recovered 64 % of NH_4^+ ions originally in
182 synthetic wastewater, 18 % of NH_4^+ ions were transfer loss because of the inevitable residual
183 solution on the electrode during electrode transfer, and NH_4^+ loss was 18 % (Fig. 3d). This NH_4^+
184 loss could result from the possible redox reactions between active chlorine and NH_4^+ during the
185 NH_4^+ uptake process (Supplementary Fig. 20). We also conducted a three-cycle recovery process
186 in synthetic wastewater to confirm the ion selectivity and cycling stability of RR (Supplementary
187 Figs. 21-24). Since current electrochemical oxidation reactions may cause NH_4^+ loss, developing
188 a mild oxidation process to pair with the reduction of RR will help to maintain the NH_4^+ balance
189 and achieve a more efficient recovery.

190 **NH_4^+ recovery from manure wastewater**

191 We further investigated NH_4^+ recovery from manure wastewater using a two-step recovery
192 process (Fig. 4a) that includes spontaneous NH_4^+ uptake in manure wastewater and
193 electrochemical NH_4^+ recovery in 0.1 M Li_2SO_4 solution (pH~2). When NH_4^+ were intercalated
194 into the KNiHCF RR electrode, the electrode was reduced spontaneously by the oxidation of
195 organic matter in manure wastewater (Fig. 4b, red region). Then NH_4^+ was released during the RR
196 oxidation, which is paired with HER at the Pt electrode to finish one recovery cycle (Fig. 4b, blue
197 region).

198 We studied how NH_4^+ recovery in manure wastewater was influenced by the capacity of
199 the RR electrode (Supplementary Fig. 25) and then conducted three parallel recovery processes,
200 noted as run 1, 2, and 3, using a KNiHCF electrode with a capacity twice the minimal charges to
201 recover NH_4^+ ions from manure wastewater. Each run was one recovery cycle that included
202 spontaneous NH_4^+ uptake and electrochemical NH_4^+ recovery. For a typical recovery run, the
203 $[\text{NH}_4^+]$, $[\text{K}^+]$, and $[\text{Na}^+]$ in manure wastewater were reduced by ~344, 69, and 35 mM, respectively
204 (Fig. 4c, top panel). The NH_4^+ removal in manure wastewater was 66~68 % for each run (Fig. 4c,
205 top panel). The nutrient selectivity was 93~98 % in the recovered solutions (Fig. 4c, bottom panel).
206 The $\text{NH}_4^+ / \text{Na}^+$ selectivity of 6~7 and $\text{NH}_4^+ / \text{K}^+$ selectivity of ~1.3 (Supplementary Fig. 26) were
207 similar to those achieved in synthetic wastewater. Unlike the case of NH_4^+ recovery in synthetic
208 wastewater (Fig. 3d), there was nearly zero NH_4^+ loss in manure wastewater because the
209 electrochemical oxidation process was replaced with the spontaneous oxidation of organic matter.

210 On average, 68 % NH_4^+ ions were recovered and 32 % NH_4^+ were left in manure wastewater after
211 this one cycle (Fig. 4d and Supplementary Fig. 27), where the latter could be used as the feedstock
212 for the next-cycle recovery process.

213 Chemical oxygen demand (COD), the amount of oxygen needed to oxidize the organic
214 matter to carbon dioxide, was measured to quantify the amount of organic matter in manure
215 wastewater. The COD decreased from $24.04 \pm 0.4 \text{ g L}^{-1}$ to $15.5 \sim 16.6 \pm 0.4 \text{ g L}^{-1}$ (a COD removal
216 of 31 %~35 %) during each run (Fig. 4e), confirming the spontaneous oxidation of organic matter
217 in manure wastewater by the RR. Cyclic voltammograms of different electrodes in synthetic and
218 manure wastewater (Supplementary Figs. 28 and 29) and the self-reduction behaviors of the
219 KNiHCF electrode in synthetic wastewater with model organic molecules (Supplementary Fig.
220 29c) showed that the oxidized KNiHCF electrode with a high potential enabled the oxidation of
221 organic matter driven by their potential difference. Moreover, Coulombic efficiency (CE), defined
222 as the ratio of the charges passing through the RR (C_{RR}) to the charges needed for COD removal
223 (C_{COD}), is used to evaluate the efficiency of organic-to-electricity over the recovery processes
224 (Supplementary Note 2). The CE of ~30 % for each run (Supplementary Figs. 30 and 31) might
225 result from the complicated bio-related processes in manure wastewater. Also, since more organic
226 matter is available for oxidation than the ammonium ions available to recover in manure
227 wastewater (Supplementary Fig. 25 and Note 2), we could achieve ~93% COD removal using the
228 KNiHCF electrode in a 4-cycle NH_4^+ uptake from the same manure wastewater by adding
229 $(\text{NH}_4)_2\text{SO}_4$ salt to maintain the NH_4^+ concentration (Supplementary Fig. 32). Furthermore, the
230 KNiHCF electrode showed long-term stability and retained 90.1% of its original NH_4^+ -uptake
231 capacity after 50 runs (Fig. 4f, Supplementary Fig. 33 and Table 5). The surface uptake and release
232 rates using the KNiHCF electrode were $0.0071 \text{ mmol cm}^{-2} \text{ h}^{-1}$ and $0.093 \text{ mmol cm}^{-2} \text{ h}^{-1}$
233 (Supplementary Fig. 34), comparable to the values reported for membrane-based
234 (bio)electrochemical systems^{19, 43}. These results indicate the KNiHCF electrode's excellent
235 performance in recovering NH_4^+ from manure wastewater.

236 **Simultaneous NH_4^+ recovery and electrochemical synthesis**

237 The NH_4^+ recovery could be paired with the electrochemical H_2 production (Supplementary
238 Fig. 35 and Note 3) or two-electron oxygen reduction reaction ($2\text{e}^- \text{ ORR}$) to produce H_2O_2 (Fig.
239 5a), a common oxidant and disinfectant that can be used for wastewater treatment^{44, 45}. We chose

240 Fe-decorated carbon nanotube (Fe-CNT) as the electrocatalyst for H₂O₂ production because of its
241 good electrochemical activity and stability in neutral and alkaline solutions⁴⁶. Given the high
242 reactivity and intrinsic instability of H₂O₂, we optimized the supporting electrolytes and
243 electrochemical configurations for H₂O₂ production (Supplementary Figs. 37-39 and Table 7).
244 Because many crops (such as tomatoes and potatoes) are chloride-sensitive⁴⁷, we chose K₂SO₄
245 (sulfate of potash) as the supporting electrolyte. The Fe-CNT electrode in O₂-saturated 0.5 M
246 K₂SO₄ solution delivered a high current density of 49 mA cm⁻² at -0.10 V versus reversible
247 hydrogen electrode (RHE), with the FE above 90 % in the potential range of 0.00 to 0.20 V versus
248 RHE (Fig. 5b). With such optimizations, we achieved the accumulation of H₂O₂ up to 3.3 g L⁻¹
249 with a FE of 82 % (Fig. 5c and Supplementary Fig. 40). Because KNiHCF could decompose H₂O₂
250 (Supplementary Figs. 41 and 42), a divided electrochemical cell needs to be used to co-produce
251 H₂O₂ and fertilizer.

252 We demonstrated simultaneous NH₄⁺ (K⁺) recovery and electrochemical H₂O₂ production
253 in a two-compartment H-cell separated by a microporous glass frit (Fig. 5a) that allows the
254 transport of major ions (e.g., K⁺ and SO₄²⁻ in K₂SO₄ solution) to maintain the charge balance. After
255 the spontaneous NH₄⁺ uptake from manure wastewater, three parallel one-cycle processes of NH₄⁺
256 recovery and H₂O₂ production using a KNiHCF electrode were conducted, as Run 1, 2, and 3.
257 Over the three runs, COD removal was between 28 % to 30 % (Supplementary Fig. 43a), and the
258 corresponding CE (C_{RR}/C_{COD}) was about ~30 %, consistent with the results above (Supplementary
259 Figs. 43b). After this one-cycle recovery process, 52 ± 6 % NH₄⁺ were recovered from and 41 ±
260 4 % NH₄⁺ were left in manure wastewater (Fig. 5d) with a total NH₄⁺ balance of 93 ± 10 %. No
261 NH₄⁺ and Na⁺ were detected in the H₂O₂ chamber throughout the recovery processes, but [K⁺]
262 increased in the H₂O₂ chamber and decreased in the RR chamber (Supplementary Fig. 44),
263 indicating that K⁺ was the major cation crossing the glass frit. These runs produced H₂O₂ up to
264 2772 ppm with a FE of 91 % and released NH₄⁺ up to 3187 ppm (177 mM) with a NH₄⁺ removal
265 of 59 % (Fig. 5e and Supplementary Fig. 45). The PXRD pattern of the salts recovered from the
266 electrolyte in the RR chamber (Fig. 5f) matched with those of (NH₄)₃H(SO₄)₂, (NH₄)_{0.1}K_{1.896}SO₄,
267 and K₂SO₄ (JCPDS No. 72-0354) well, confirming the production of K⁺ and NH₄⁺ fertilizers. We
268 also conducted two consecutive cycles of NH₄⁺ recovery and H₂O₂ production to achieve a more
269 complete NH₄⁺ recovery of 84 % and COD removal of 56 % (Fig. 5e and Supplementary Fig. 46).
270 The KNiHCF electrode retained 96 % of the capacity after the above recovery processes

271 (Supplementary Fig. 47), showing good stability in these complex solutions. Furthermore, we can
272 use the H₂O₂ solution co-produced during the NH₄⁺ recovery processes to disinfect the manure
273 wastewater and then recycle K⁺-rich salts from such treated wastewater, which can be used as
274 electrolytes or fertilizers.

275 **NH₃ emissions and preliminary techno-economic analysis**

276 One of the main advantages of the ammonia recovery process in terms of environmental
277 sustainability is the reduction of NH₃ emissions from manure management, especially considering
278 that livestock operations are the main source of NH₃ emissions globally^{1, 2, 13}. We used process-
279 based models (Supplementary Note 4 and Tables 7 and 8) to estimate NH₃ emissions from manure
280 in a 1,000-lactating cow dairy farm (with and without anaerobic digestion), collecting, storing, and
281 land-applying manure and the reduction in NH₃ emissions using the ammonia recovery process
282 developed herein. Our proposed process could reduce NH₃ emissions by up to 70% compared to
283 the business-as-usual scenarios (Fig. 6a, Supplementary Fig. 48, and Table 9). Moreover, we
284 performed a preliminary economic analysis to quantify the economic benefits of using this
285 technology in a modeled 1,000-cow dairy farm (Supplementary Notes. 5 and 6). When only
286 considering the values of the produced chemicals and the major material and electricity costs in
287 both their high and low price limits, the proposed process shows a potential to be profitable up to
288 about US \$ 200k per year for this modeled farm (Fig. 6b, Tables 10 to 16). The largest revenue
289 and cost come from the produced KOH based on NH₄⁺ and K⁺-salt recovery and K₂SO₄ salt used
290 as the electrolyte, respectively. The annual revenues from the produced (NH₄)₂SO₄, H₂O₂ and
291 KOH (K⁺ from manure) are ~\$ 260k in the high case, high enough to cover the cost of RR materials
292 and electricity. Fluctuating electricity costs from location-dependent varying market prices
293 dominate the annual costs difference when comparing the low and high cases (Supplementary
294 Table 15 and Fig. 51). The breakdown of various revenues in Fig. 6b also shows that the
295 simultaneous production of valuable H₂O₂ and the recovery of both ammonia and potassium from
296 the manure wastewater substantially contribute to the overall profitability. Note that this
297 preliminary economic analysis did not consider the environmental and health benefits due to the
298 reduction of ammonia emission.

299 **Discussion**

300 Efficient manure management and nutrient recovery are crucial to developing a more
301 sustainable livestock system. Using an ion-selective redox material, we developed an
302 electrochemical process for simultaneous ammonia recovery and electrochemical synthesis by
303 integrating spontaneous NH_4^+ (K^+) uptake from manure wastewater, fertilizer production, and co-
304 production of H_2 or H_2O_2 . The new conceptual strategy can open new opportunities for
305 electrochemical nutrient recovery from a variety of wastewater sources (including municipal
306 wastewater and sewage sludge) and on-demand distributed electrochemical manufacturing with
307 high recovery efficiency and low energy cost.

308 Recovering ammonia from manure wastewater has multiple sustainability gains from
309 pollution control and resource recovery perspectives. Our results and preliminary analyses show
310 that the new integrated strategy could improve the sustainability of livestock systems by upgrading
311 the manure processing systems to reduce environmental impacts while improving the economic
312 profitability of agricultural systems. Recovering ammonia from livestock manure can not only
313 directly mitigates ammonia emissions compared to the direct application of manure in cropland,
314 but also improve nitrogen use efficiency and minimize ammonia loss during fertilizer storage after
315 recovery. Furthermore, the new integrated strategy could achieve distributed co-production of
316 locally useful valuable chemicals, such as H_2O_2 disinfectant, that improves the economics of rural
317 communities.

318 Although in the current lab-scale proof-of-concept experiments solution dilution
319 sometimes occurs, further scale-up, device engineering, and optimization of operation conditions
320 to minimize the volume of the recovered solution can achieve the concentration of nutrients and
321 further reduce the energy cost for potential separation. Developing NH_4^+ -selective redox materials
322 with higher capacity, better stability, and lower cost, and reducing the electricity cost by
323 participating in dynamic electricity markets with lower prices would further reduce the cost and
324 increase the revenues of this process. Understanding the spontaneous oxidation process of organic
325 matter in manure wastewater by the redox materials and optimizing the system design are crucial
326 steps to improve the system's performance further. Since livestock manure wastewater can vary
327 significantly depending on locations, animal type, diet, seasonal variations, farm size, etc., refined
328 process design based on the compositions and characteristics of livestock manure could be
329 important for further improving the system efficiency.

330 **Methods**

331 **Chemicals.** All chemicals were used as purchased without further purification. Sodium citrate dihydrate
332 (ACS reagent grade) was purchased from ICN Biomedicals Inc. Carbon black (Super P Conductive,
333 99.0+ %) and carbon black (acetylene, 99.9+ %) were purchased from Alfa Aesar. TUBALL BATT NMP
334 0.4 % (a mixture of single-wall carbon nanotubes, 0.4 wt %; polyvinylidene fluoride, 2 wt %; N-methyl-2-
335 pyrrolidone, > 96.7 wt %) was purchased from OCSiAl. Other chemicals were purchased from Sigma
336 Aldrich. Titanium mesh (150 mesh, with a thickness of ~ 230 μm) was purchased from HeBei ChaoChuang
337 Metal Mesh Co., Ltd (available through Alibaba.com). Deionized nanopure water (18.2 $\text{M}\Omega\cdot\text{cm}$) from
338 ThermoScientific Barnstead water purification systems was used for all experiments.

339 **Synthesis of KNiHCF.** Potassium nickel hexacyanoferrate (KNiHCF) was synthesized using a modified
340 co-precipitation method³⁹. Typically, 80 mL of 40 mM $\text{Ni}(\text{NO}_3)_2$ solution and 80 mL of 20 mM $\text{K}_3\text{Fe}(\text{CN})_6$
341 solution were added dropwise into 40 mL H_2O under vigorous stirring. The solution was stirred for 6 h at
342 70 °C to yield a dark-orange precipitate. Then the precipitate was centrifuged, rinsed with deionized water
343 multiple times, and dried in a vacuum oven at 60 °C overnight.

344 **Synthesis of NaNiHCF.** Sodium nickel hexacyanoferrate (NaNiHCF) was synthesized using a co-
345 precipitation method²⁸. Typically, 100 mL of 0.1 M NiCl_2 and 1 M sodium citrate dihydrate solution and
346 100 mL of 0.1 M $\text{Na}_4\text{Fe}(\text{CN})_6$ solution were added dropwise to 100 mL H_2O under vigorous stirring. The
347 molar ratio between Ni^{2+} and citrate was 1:10. The solution was then stirred for 24 h at 80 °C to yield a
348 light-green precipitate. This precipitate was centrifuged, rinsed with deionized water multiple times, and
349 dried in a vacuum oven at 60 °C overnight.

350 **Synthesis of CuHCF.** Copper hexacyanoferrate (CuHCF) was synthesized using a modified co-
351 precipitation method⁴⁸. Typically, 40 mL of 0.2 M CuSO_4 solution was added dropwise into 40 mL of 0.1
352 M $\text{K}_3\text{Fe}(\text{CN})_6$ solution under vigorous stirring at room temperature. After 6 h of reaction, the olive-green
353 precipitate was centrifuged, rinsed with deionized water multiple times, and dried in a vacuum oven at 60
354 °C overnight.

355 **Synthesis of Fe-CNT catalyst.** The synthesis of Fe-CNT catalyst followed a reported impregnation and
356 reduction method³². In a typical synthesis, a 7.5 mM iron nitrate solution was first prepared by dissolving
357 30.3 mg $\text{Fe}(\text{NO}_3)_3 \cdot 9\text{H}_2\text{O}$ into 10 mL nanopure water. Next, the carbon nanotube (CNT) suspension was
358 prepared by mixing 50 mg MWCNT (724769, > 95 % carbon from Sigma Aldrich) with 20 mL of ethanol
359 via sonication for 1 h until a well-dispersed suspension was achieved. Then 200 μL of 7.5 mM Fe^{3+} solution
360 was added dropwise into the CNT suspension under sonication for 30 min. Then the solvent was removed
361 using a rotary evaporator, and the as-prepared material was dried in a vacuum oven at 60 °C for 20 min to

362 evaporate the residual solvent further. Finally, the dried $\text{Fe}(\text{NO}_3)_3/\text{CNT}$ powder was heated in a tube furnace
363 to 600 °C within 20 min under a gas flow of 100 sccm Ar (UHP, Airgas) and a pressure of 1 Torr and kept
364 at the same temperature for another 40 min before cooling down to room temperature.

365 **Materials characterizations.** Powder X-ray diffraction (PXRD) patterns of the KNiHCF, NaNiHCF, and
366 CuHCF samples were collected using a Bruker D8 Advance X-ray diffractometer equipped with Cu-K α
367 radiation. The size and morphology of the samples were characterized using a scanning electron microscope
368 (SEM, Zeiss SUPRA 55VP) equipped with an energy-dispersive X-ray spectroscopy (EDS) detector. An
369 inductively coupled plasma-optical emission spectrometer (ICP-OES, Agilent 5110) was utilized to
370 determine the compositions of K, Na, Cu, Ni, and Fe elements. Thermogravimetric analysis (TGA, TA
371 Q500) was used to determine the water content in various samples.

372 **Fabrication and electrochemical tests of the RR electrodes.** The RR electrodes were prepared via a
373 conventional slurry-casting method using TUBALL BATT NMP 0.4% (0.4 wt % SWCNT, 2 wt %
374 polyvinylidene fluoride, > 96.7 wt % N-Methyl-2-pyrrolidone), super P conductive carbon, and the active
375 materials. Typically, 70 wt % active materials and 18 wt % Super P carbon black were grounded for 30 min
376 using a high-energy ball mill (Mixer/Mill 8000M, Horiba). Then the mixtures were added into TUBALL
377 BATT NMP 0.4% that provided 2 wt % SWCNT and 10 wt % polyvinylidene fluoride for the electrode
378 slurry (SWCNT and PVDF both from TUBALL BATT NMP 0.4%). The slurry was stirred at 700 r.p.m.
379 overnight at room temperature and then cast onto titanium mesh current collectors (150 mesh, with a
380 thickness of ~ 230 μm). The titanium mesh was held in place by two PTFE (polytetrafluoroethylene) plates
381 on both sides of the mesh and a clamp to secure the plates. The slurry was cast onto one side of the Ti mesh
382 and subsequently onto the other side using stainless steel spatulas. The prepared electrodes were dried in a
383 vacuum oven at 60 °C for 12 h to remove the residual solvent. The areal mass loading ranged from 5 to 24
384 mg cm^{-2} .

385 The electrochemical performance of the RR electrode was characterized in a three-electrode cell,
386 with a Pt wire counter electrode and a saturated calomel electrode (SCE) as the reference electrode in
387 various solutions (1 M NH_4Cl , 1 M KCl , 1 M NaCl , synthetic wastewater, and manure wastewater).
388 Synthetic wastewater (0.50 M NH_4Cl + 0.183 M KHCO_3 + 0.146 M NaHCO_3) was prepared based on the
389 chemical compositions of manure wastewater (Supplementary Fig. 2 and Table 1). Maure wastewater with
390 a pH of ~7 was prepared by acidifying manure wastewater (pH~9) using 3 M H_2SO_4 . Cyclic voltammetry
391 (CV) and galvanostatic charge-discharge (GCD) tests of the RR electrodes were recorded on a Bio-Logic
392 VMP-3 multichannel potentiostat. The galvanostatic cycling was performed at 2 C rate for stability
393 characterization and the rates of 1 C to 1000 C for the kinetics characterization, where 1 C is defined as 65
394 mA g^{-1} based on the theoretical capacity of as-synthesized materials. For studying the self-reduction

395 behaviors, two KNiHCF RR electrodes with similar mass loading (~80 mg) were oxidized to 0.9 V vs. SCE
396 in synthetic wastewater and transferred to two beaker-type cells containing 80 mL of either manure or
397 synthetic wastewater. The potentials of the RR electrodes were monitored using a Bio-Logic SP-200
398 potentiostat.

399 **Preparation of manure wastewater.** Cow feces and urine were collected from the campus dairy cattle
400 center at UW-Madison and stored in the cold room at 4 °C before use. To prepare manure wastewater, the
401 feces and urine were mixed with a mass ratio of 1:9 with trace carbon black under stirring (e.g., 20 g feces,
402 180 g urine, and ~10 mg carbon black for a typical preparation). Since this solid-liquid mixture could not
403 pass the filter membrane with a pore size smaller than 10 µm even when a vacuum system was used,
404 centrifugation would be the proper method to separate the solids with large particle sizes. Here, trace carbon
405 black was added to the mixture of cow urine and feces to achieve solid-liquid separation because it could
406 work as the coagulation reagent and be easily separated from manure wastewater after centrifugation. After
407 centrifugation at 8694 g (9000 r.p.m) for 15 min at 4 °C (50 g of the mixture in each centrifuge tube), the
408 brownish supernatant with some suspended particles was used as manure wastewater without further
409 filtration throughout this study. The precipitate with a brownish-yellow color was formed gradually during
410 the storage of manure wastewater (as shown in Supplementary Fig. 1), but the precipitate was not used in
411 the study.

412 **Chemical characterization of manure wastewater.** Manure wastewater was used without further
413 treatment, and its pH value was determined to be 9.0-9.2 using the Orion 810 BNUWP ROSS Ultra pH
414 meter. The concentrations of various cations ($[\text{NH}_4^+]$, $[\text{K}^+]$, and $[\text{Na}^+]$) and anions in the manure wastewater
415 and recovered samples were analyzed using ICS-1100 (cations) and Dionex ICS-2100 (anions) ion
416 chromatography (IC) systems equipped with conductivity detectors, respectively. Typically, cation analysis
417 was performed using a Dionex™ IonPac™ CS12A IC column with 7.5 mM methanesulfonic acid (MSA)
418 solution as the mobile phase at 1.5 mL min⁻¹. The current of the suppressor was 33 mA. Anion analysis was
419 performed using a Dionex™ IonPac™ AG/AS-14 column with 3.5 mM Na_2CO_3 and 1.0 mM NaHCO_3
420 solution as the mobile phase at 1.2 mL min⁻¹. The current of the suppressor was 24 mA. The standard cation
421 solutions were prepared by dissolving NaCl , LiCl , KCl , and NH_4Cl in nanopure water. The standard anion
422 solutions were prepared by dissolving NaF , NaBr , NaCl , NaNO_2 , NaNO_3 , NaH_2PO_4 , and Na_2SO_4 . The
423 standard acetate solution was prepared by dissolving only sodium acetate without other salts in nanopure
424 water because of F^- and acetate coelution. All samples were diluted and filtrated using 0.45 µm syringe
425 filters before analysis.

426 Total nitrogen (TN) in manure wastewater was analyzed using the total nitrogen reagent set from
427 Hach (Total Nitrogen Reagent Set, HR, TNT, product# 2714100). Total phosphate in manure wastewater

428 was analyzed using the total phosphate reagent set from Hach (High Range Total Phosphate Reagent Set,
429 product# 2767245). Total carbon, organic carbon, and inorganic carbon in manure wastewater were
430 analyzed using a Sievers M5310C total organic carbon analyzer after proper dilution and filtration.
431 Chemical oxygen demand (COD) of manure wastewater was analyzed using the COD reagent set from
432 Hach [TNTplus Vial Test, HR (20-1,500 mg/L COD), product# 2415925].

433 **NH₄⁺ recovery from synthetic wastewater.** Two electrochemical cells, the NH₄⁺-uptake cell (Cell_{anodic})
434 containing 25 mL synthetic wastewater and the NH₄⁺-release cell (Cell_{cathodic}) with 25 mL 0.1 M Li₂SO₄
435 solution (pH ~1.3), were used to recover NH₄⁺ from synthetic wastewater. The KNiHCF RR electrodes
436 with the size of 4 × 4 cm² and a total capacity of 294 C (a total active material loading of ~1.600 g) were
437 prepared as described above and used as the working electrode in both cells. In Cell_{anodic}, a Pt wire electrode
438 and a SCE were used as the counter electrode and reference electrode. In addition, about 1 g CaCO₃ was
439 added to the electrochemical cell to stabilize the pH. The NH₄⁺-uptake process was conducted under a
440 current of 45 mA. In Cell_{cathodic}, a Pt wire electrode and a SCE were used as the counter electrode and
441 reference electrode. The NH₄⁺-release process using KNiHCF RR electrodes was measured under a constant
442 current of 30 mA.

443 Typically, one NH₄⁺ recovery cycle included the NH₄⁺ uptake from wastewater and the NH₄⁺
444 release in Li₂SO₄ solution. For the five-cycle recovery process, the cations in the same 25 mL synthetic
445 wastewater were recovered five times, and the recovered ions were collected in a new 0.1 M Li₂SO₄ solution
446 for each cycle. The RR electrodes were oxidized to 0.9 V vs. SCE (RR^{ox}) in synthetic wastewater to de-
447 intercalate cations before the NH₄⁺ recovery processes. In Cell_{anodic}, the reduction of RR^{ox} to RR^{red} is
448 accompanied by cation intercalation, which was paired with OER at the Pt anode. After the NH₄⁺ uptake,
449 the RR electrode was washed with nanopure water and 0.1 M Li₂SO₄ solution to remove the residual
450 electrolyte, then moved to Cell_{cathodic}. In Cell_{cathodic}, the oxidation of RR released intercalated cations until
451 0.9 V vs. SCE, which was paired with HER at the Pt cathode. During these recovery processes, the capacity
452 of the RR electrode was controlled by the potential and capacity restrictions to ensure the RR electrode was
453 operated within the desired potential windows. For the three-cycle NH₄⁺ recovery process, Cell_{anodic}
454 contained 16 mL synthetic wastewater and Cell_{cathodic} contained 18 mL 0.1 M Li₂SO₄ solution (pH ~1.3).
455 Other electrochemical configurations and operations were the same as those for the five-cycle recovery
456 process.

457 The concentrations of cations in synthetic wastewater and recovered solutions after each recovery
458 cycle were measured by IC following the above procedures. Based on the concentrations of cations, the ion
459 selectivity between different cations, nutrient (NH₄⁺ + K⁺) selectivity, and Faradaic efficiency (FE) were
460 calculated according to the following equations:

461

$$\text{Ion selectivity (M/N)} = \frac{[\text{M}]_{\text{recovered}} / [\text{N}]_{\text{recovered}}}{[\text{M}]_{\text{initial}} / [\text{N}]_{\text{initial}}} \quad (1)$$

462

$$\text{Nutrient (NH}_4^+ + \text{K}^+ \text{) selectivity} = \frac{[\text{NH}_4^+]_{\text{recovered}} + [\text{K}^+]_{\text{recovered}}}{[\text{NH}_4^+]_{\text{recovered}} + [\text{K}^+]_{\text{recovered}} + [\text{Na}^+]_{\text{recovered}}} \quad (2)$$

463

$$\text{FE (\%)} = \frac{Q \text{ based on recovered cations}}{Q_{\text{RR}}} \times 100 \quad (3)$$

464 where the $[\text{M}]_{\text{recovered}}$ and $[\text{N}]_{\text{recovered}}$ were the concentrations of M and N cations in the recovered solutions,
 465 the $[\text{M}]_{\text{initial}}$ and $[\text{N}]_{\text{initial}}$ were the concentrations of M and N cations in synthetic wastewater,
 466 $[\text{NH}_4^+]_{\text{recovered}} + [\text{K}^+]_{\text{recovered}} + [\text{Na}^+]_{\text{recovered}}$ were the concentrations of NH_4^+ , K^+ , and Na^+ in the recovered
 467 solutions, and Q_{RR} was the charge passing through the RR electrode in the recovery processes.

468 **NH_4^+ recovery from manure wastewater using RR electrodes.** The NH_4^+ -uptake cell ($\text{Cell}_{\text{N-uptake}}$)
 469 containing 2 mL manure wastewater and the NH_4^+ -release cell ($\text{Cell}_{\text{N-release}}$) with 10 mL 0.1 M Li_2SO_4
 470 solution ($\text{pH} \sim 2$) were used to recover NH_4^+ from manure wastewater. The KNiHCF RR electrodes with a
 471 size of $2 \times 2 \text{ cm}^2$ and a total capacity of 216 C (a total active material loading of $\sim 1200 \text{ mg}$) were used in
 472 both cells. In $\text{Cell}_{\text{N-uptake}}$, a SCE electrode was used as the reference electrode to monitor the potential of the
 473 RR electrode. In $\text{Cell}_{\text{N-release}}$, a Pt wire electrode and a SCE were used as the counter electrode and reference
 474 electrode. The NH_4^+ -release process using KNiHCF RR electrodes was measured under a constant current
 475 of 10 mA. COD removal was calculated according to the following equation to describe the consumption
 476 of organic matter over the NH_4^+ recovery process:

477

$$\text{COD removal (\%)} = \frac{[\text{COD}]_{\text{initial}} - [\text{COD}]_{\text{final}}}{[\text{COD}]_{\text{initial}}} \times 100 \% \quad (4)$$

478 where $[\text{COD}]_{\text{initial}}$ and $[\text{COD}]_{\text{final}}$ are the amounts of COD in manure wastewater before and after recovery.

479 Three parallel recovery experiments were conducted, denoted as Run 1, Run 2, and Run 3.
 480 Typically, one NH_4^+ recovery run included the NH_4^+ uptake from manure wastewater and NH_4^+ release in
 481 Li_2SO_4 solution. Cations in 2 mL manure wastewater were recovered only once, and the recovered ions
 482 were collected in 0.1 M Li_2SO_4 solution for each run. The RR electrodes were oxidized to 0.9 V vs. SCE
 483 before use. For each run, in $\text{Cell}_{\text{N-uptake}}$, the reduction of RR and NH_4^+ uptake occurred spontaneously. After
 484 a 24-h reduction process, the RR electrodes were washed with nanopure water and 0.1 M Li_2SO_4 solution
 485 to remove the residual electrolyte, then moved to $\text{Cell}_{\text{N-release}}$. In $\text{Cell}_{\text{N-release}}$, the oxidation of RR released
 486 intercalated cations until 0.9 V vs. SCE, which was paired with HER at the Pt cathode. During these
 487 recovery processes, the capacity of the RR electrode was controlled by the potential and capacity

488 restrictions to ensure the RR electrode was operated within the desired potential windows. The
489 concentrations of cations in manure wastewater and recovered solutions were measured by IC and the ion
490 selectivity, nutrient selectivity, and FE were calculated based on the above equations. For the 50 recovery
491 runs, each run included a 10-hour NH_4^+ uptake in manure wastewater and nearly 2-hour electrochemical
492 NH_4^+ release. The COD removal and nutrient selectivity were analyzed every 5 runs.

493 **NH_4^+ recovery from manure wastewater and H_2 production.** NH_4^+ recovery and H_2 production were
494 demonstrated in two cells, the NH_4^+ -uptake cell ($\text{Cell}_{\text{N-uptake}}$) containing 10 mL manure wastewater and the
495 H_2 cell (Cell_{H_2}) with 25 mL 0.1 M $(\text{NH}_4)_2\text{SO}_4$ solution ($\text{pH} \sim 1.3$). The KNiHCF RR electrodes with a size
496 of $4 \times 4 \text{ cm}^2$ and a total capacity of 892 C (a total active material loading of $\sim 4.800 \text{ g}$) were used in both
497 cells. The NH_4^+ -release process using KNiHCF RR electrodes was measured under a constant current of 45
498 mA. The electrochemical configurations and operations were the same as those in “ NH_4^+ recovery from
499 manure wastewater”, except using $(\text{NH}_4)_2\text{SO}_4$ solution rather than Li_2SO_4 solution. The concentrations of
500 cations in manure wastewater and recovered solutions were measured by IC and the ion selectivity, nutrient
501 selectivity, and FE were also calculated based on the above equations. Finally, the recovered solution was
502 dried to acquire solid product powder, and the PXRD pattern of the sample was collected.

503 **NH_4^+ recovery from manure wastewater and H_2O_2 production.** NH_4^+ recovery and H_2O_2 production
504 using the NH_4^+ -selective RR electrodes were demonstrated in two cells, the NH_4^+ -uptake cell ($\text{Cell}_{\text{N-uptake}}$)
505 containing 10 mL manure wastewater and the H-cell ($\text{Cell}_{\text{H}_2\text{O}_2}$) with a glass frit (89057-758, ACE glass
506 Incorporated, USA). In each chamber of the H-cell, 14 mL 0.5 M K_2SO_4 solution ($\text{pH} \sim 7$) was used. The
507 KNiHCF RR electrodes with a size of $4 \times 4 \text{ cm}^2$ and a total capacity of 892 C (a total active material loading
508 of $\sim 4.800 \text{ g}$) were used in both cells. In $\text{Cell}_{\text{H}_2\text{O}_2}$, two Fe-CNT electrodes (mass loading of each electrode
509 around 1 mg) were used back-to-back as the working electrodes with a SCE reference electrode and the RR
510 electrode as the counter electrode in the other chamber. The electrolyte solution was continuously bubbled
511 with O_2 gas to ensure the O_2 saturation. The H_2O_2 production process using KNiHCF RR electrodes was
512 measured under a constant current of 45 mA. Preparation of the Fe-CNT electrodes and electrochemical
513 characterization of the H_2O_2 production are in Supplementary Methods.

514 The operations were the same as those in “ NH_4^+ recovery from manure wastewater”, except the
515 H_2O_2 production occurred on the Fe-CNT electrode in this configuration. For the 2-cycle recovery process
516 with H_2O_2 production, cations in 10 mL manure wastewater were recovered twice, and the recovered ions
517 were collected in a new 14 mL 0.5 M K_2SO_4 solution for each cycle. The same KNiHCF RR electrodes in
518 these 1-cycle recovery processes were used. The concentrations of cations in manure wastewater and
519 recovered solutions, ion selectivity, nutrient selectivity, and FE were analyzed and calculated based on the

520 above procedure and equations. The recovered solution in the RR chamber was dried to get solid product
521 powder, and the PXRD pattern of the sample was collected.

522 The concentration of the produced H₂O₂ was measured following the procedures described above.
523 Based on the product concentrations, the Faradaic efficiencies were calculated according to the following
524 equations:

525

$$FE(\%)_{H_2O_2} = \frac{Q \text{ for } H_2O_2 \text{ production}}{Q_{\text{passing, RR}}} \times 100 = \frac{[H_2O_2] \times V \times 2 \times 96485}{Q_{\text{passing, RR}}} \times 100 \quad (5)$$

526 where V, [H₂O₂], and the Q_{passing, RR} are the volume of the solution, the concentration of produced H₂O₂,
527 and the charge passing through the RR electrode, respectively.

528 **Data availability**

529 The data that support the findings of this study are available from
530 https://datadryad.org/stash/share/cFZs-SiOoCr9vc0Bket78q_6o33JBEuo9Qb_IOT3f30.

531 **Correspondence**

532 Correspondence and requests for materials should be addressed to M. Q. (mohan.qin@wisc.edu)
533 or S. J. (jin@chem.wisc.edu).

534 **Acknowledgements**

535 This research is supported by the National Science Foundation (NSF, CBET- 2219089). The
536 authors acknowledge the facilities and instrumentation at the UW-Madison Wisconsin Centers for
537 Nanoscale Technology (wcnt.wisc.edu), partially supported by the NSF through the University of
538 Wisconsin Materials Research Science and Engineering Center (no. DMR-1720415). We thank J.
539 Lazarcik for help with the access to the IC and ICP–OES instruments supported by the Water
540 Science and Engineering Laboratory at UW-Madison. We thank Xin Zou for help with the graphic
541 design of Figure 1.

542 **Author contributions**

543 R.W. and S.J. designed the experiments. R.W. carried out materials synthesis, materials
544 characterization, electrochemical measurements, ammonium recovery and electrochemical
545 production measurements, and analysis of manure wastewater with the help of K. Y.. K.Y. and
546 M.Q. prepared manure wastewater. C. W. and F. B. conducted the techno-economic analysis. H.

547 A.V. and R. L. modeled the ammonia emission reductions. M.Q. and S.J. supervised the project.
548 R.W., M. Q. and S.J. wrote the manuscript, and all the authors commented on it.

549 **Additional information**

550 Supplementary information is available for this paper in the online version of the paper.

551 **Ethics declarations**

552 Competing interests

553 A provisional patent based on this work has been filed by R. W. and S. J.. The remaining authors
554 declare no competing interests.

555 **Figure Legends/Captions**

556 **Fig. 1 | Schematic illustration of the simultaneous ammonia recovery and electrochemical**
557 **synthesis system using ammonium ion-selective redox reservoir (RR).** The system includes the
558 NH_4^+ (K^+) uptake, fertilizer production, electrochemical synthesis, and wastewater treatment
559 processes. The NH_4^+ (K^+) uptake process and the RR reduction occur spontaneously, driven by the
560 oxidation of organic matter in manure wastewater (brown cell). Then, the RR electrodes are
561 transferred into electrochemical cells to release recovered NH_4^+ (K^+) and produce NH_4^+ - and K^+ -
562 rich fertilizer when the RR is oxidized (blue cells). The oxidation of the RR electrode is paired
563 with cathodic reactions, such as hydrogen evolution reaction (HER) and two-electron oxygen
564 reduction reaction (2 e^- ORR), to produce H_2 or H_2O_2 . The produced H_2O_2 solution that contains
565 relatively concentrated K^+ could be used for wastewater disinfection. After NH_4^+ recovery and
566 H_2O_2 disinfection, drying treated manure wastewater could recycle K^+ -rich salts as electrolytes or
567 fertilizers.

568 **Fig. 2 | Structural and electrochemical characterizations of the KNiHCF material.** **a**, Crystal
569 structure of the KNiHCF, which has similar structure to CuHCF but different transition metal
570 elements or intercalated cations. **b**, SEM image of the as-synthesized KNiHCF nanoparticle. **c**,
571 Cycling stability of the KNiHCF electrode in various solutions at 2 C rate (130 mA g^{-1}): 1 M NaCl,
572 1 M KCl, 1 M NH₄Cl, synthetic manure wastewater (sww, 0.50 M NH₄Cl + 0.183 M KHCO₃ +
573 0.146 M NaHCO₃), and manure wastewater with a pH of ~7 or ~9. **d**, Cyclic voltammograms of
574 the KNiHCF electrode in 1 M NaCl, 1 M KCl, and 1 M NH₄Cl solutions at 1 mV s^{-1} . **e**, Calculated

575 intercalation potential difference between NH_4^+ and Na^+ (blue line) or K^+ (red line) at different
576 molar ratios of $\text{NH}_4^+ / \text{Na}^+$ or K^+ . The red dots show the actual molar ratios of $\text{NH}_4^+ / \text{Na}^+$ or K^+ in
577 the manure wastewater studied herein. The red ellipse shows the representative molar ratios of
578 $\text{NH}_4^+ / \text{Na}^+$ or K^+ in common municipal wastewater (details in Supplementary Table 4). **f**, Self-
579 reduction behaviors of the KNiHCF electrode in synthetic and natural manure wastewater. The
580 potential of the KNiHCF electrode was monitored when resting the electrode with 100 % state-of-
581 charge (SOC) in these solutions.

582 **Fig. 3 | NH_4^+ recovery from synthetic wastewater.** **a**, Schematic illustration of the NH_4^+ recovery
583 processes using the KNiHCF electrode from synthetic wastewater. Each recovery cycle includes
584 two steps. In the first step, the NH_4^+ uptake into RR electrode is paired with OER at the Pt anode
585 in synthetic wastewater (left cell). In the second step, the NH_4^+ release from RR electrode is paired
586 with HER at the Pt cathode in 0.1 M Li_2SO_4 solution (pH \sim 1.3) (right cell). **b**, Chronopotentiometry
587 profiles of the KNiHCF and Pt electrodes in the NH_4^+ uptake and release steps. **c**, Concentration
588 changes and ion balance of NH_4^+ , Na^+ , and K^+ over the five-cycle recovery process from synthetic
589 wastewater. Nearly 100 % NH_4^+ removal was achieved after the five-cycle recovery process. The
590 nutrient ($\text{NH}_4^+ + \text{K}^+$) selectivity was \sim 100 % in the initial three cycles when the concentrations of
591 nutrient ions were not too low compared to that of Na^+ . **d**, NH_4^+ balance after the five-cycle
592 recovery process. The corresponding data points in **c** and **d** are overlayed as dot plots. Data are
593 presented as mean values +/- standard deviation with a n number of 3.

594 **Fig. 4 | NH_4^+ recovery from manure wastewater.** **a**, Schematic illustration of the NH_4^+ recovery
595 process using the KNiHCF RR electrode from manure wastewater. Three parallel recovery
596 experiment cycles were conducted on three manure wastewater samples (runs 1, 2, and 3). Each
597 recovery run includes two steps: the NH_4^+ uptake and reduction of RR driven by the oxidation of
598 organic matter in manure wastewater (left cell) and NH_4^+ release and oxidation of the RR paired
599 with HER in 0.1 M Li_2SO_4 solution (pH \sim 2) (right cell). **b**, Potential of the KNiHCF RR electrode
600 in the NH_4^+ uptake and release steps. **c**, Concentration changes and ion balance of NH_4^+ , Na^+ , and
601 K^+ over the three recovery runs from manure wastewater. The nutrient selectivity is \sim 100 % over
602 the three runs. **d**, NH_4^+ balance over the three runs. **e**, Initial COD and COD removal over the three
603 NH_4^+ recovery runs. **f**, Capacity retention of RR, NH_4^+ removal, COD removal, and nutrient
604 selectivity throughout 50 recovery runs from manure wastewater (the values are measured and

605 presented every 5 runs). The corresponding data points in **c** are overlayed as dot plots. Data in **c**,
606 **e**, and **f** are presented as mean values +/- standard deviation with a n number of 3.

607 **Fig. 5 | Simultaneous NH₄⁺ recovery and H₂O₂ production enabled by the KNiHCF RR. a,**
608 Schematic illustration of the electrochemical configuration for NH₄⁺ release and H₂O₂ production
609 in a two-compartment H-cell separated by a glass frit. **b**, Cyclic voltammograms of the Fe-CNT
610 electrode in O₂-saturated 0.5 M K₂SO₄ solution at 10 mV s⁻¹ and the corresponding potential-
611 dependent Faradaic efficiency for H₂O₂ production. **c**, The accumulation of H₂O₂ in O₂-saturated
612 0.5 M K₂SO₄ solution in the H-cell at 45 mA during the process of NH₄⁺ release. **d**, NH₄⁺ balance
613 over the one-cycle and two-cycle NH₄⁺ recovery processes from manure wastewater. **e**,
614 Concentrations of recovered NH₄⁺ and produced H₂O₂, the Faradaic efficiency of H₂O₂ production
615 and NH₄⁺ removal over the one-cycle and two-cycle recovery processes. The current H₂O₂
616 production was 45 mA during all processes. **f**, PXRD pattern of the recovered salts dried from 5
617 mL recovered solution in the RR chamber (14 mL in total), in comparison with standard PXRDs
618 of various compounds. Inset is the photograph of the recovered salts with a mass of 0.658 g in a
619 20 mL vial. Data in **d** are presented as mean values +/- standard deviation with a n number of 3.

620 **Fig 6. | Reduction of daily ammonia (NH₃) emissions from manure with NH₄⁺ recovery and**
621 **the preliminary economic analysis at a modeled 1000-lactating cow dairy farm. a**, Daily NH₃
622 emissions from manure at a modeled 1000-lactating cow dairy farm with and without NH₄⁺
623 recovery. NH₃ emissions (kg/day for the farm) based on variations in manure land application
624 methods (surface and injection), manure processing (no processing and anaerobic digestion (AD))
625 and solid-liquid separation (SLS), and efficiency of NH₃ recovery using the NH₄⁺-selective redox
626 material. **b**, Annual revenues and costs from the preliminary economic analysis of a 1000-cow
627 dairy farm. Calculated revenues and costs with high or low chemical and electricity prices for
628 ammonia recovery from a 1000-cow dairy farm.

629 **References**

- 630 1. Johnson BJ, Fuerniss L. 114 What Is the Impact of Dairy Influence Cattle on the Traditional
631 Beef Industry Structure? *J Anim Sci* **99**, 38-39 (2021).
- 632 2. Lemaire G, Franzluebbers A, Carvalho PCdF, Dedieu B. Integrated crop–livestock systems:
633 Strategies to achieve synergy between agricultural production and environmental quality.
Agric Ecosyst Environ **190**, 4-8 (2014).
- 634 3. Factory Farm Nation: 2020 Edition. [https://www.foodandwaterwatch.org/insight/factory-
635 farm-nation-2020-edition](https://www.foodandwaterwatch.org/insight/factory-farm-nation-2020-edition) (2020) Accessed by Oct 22nd, 2023.

637 4. Horn HHV, Wilkie AC, Powers WJ, Nordstedt RA. Components of Dairy Manure
638 Management Systems1. *J Dairy Sci* **77**, 2008-2030 (1994).

639 5. EPA U. Guidelines for Water Reuse, US Environmental Protection Agency. (2004).

640 6. Bernstein L, Bosch P, Canziani O, Chen Z, Christ R, Riahi K. IPCC, 2007: climate change
641 2007: synthesis report.). IPCC (2008).

642 7. Mosier A, Kroeze C, Nevison C, Oenema O, Seitzinger S, Van Cleemput O. Closing the
643 global N₂O budget: nitrous oxide emissions through the agricultural nitrogen cycle. *Nutr
644 Cycl Agroecosystems* **52**, 225-248 (1998).

645 8. Böhlke J, Wanty R, Tuttle M, Delin G, Landon M. Denitrification in the recharge area and
646 discharge area of a transient agricultural nitrate plume in a glacial outwash sand aquifer,
647 Minnesota. *Water Resour Res* **38**, 10-11-10-26 (2002).

648 9. Burton CH, Turner C. *Manure management: Treatment strategies for sustainable
649 agriculture*. Editions Quae (2003).

650 10. Oenema O, Oudendag D, Velthof GL. Nutrient losses from manure management in the
651 European Union. *Livest Sci* **112**, 261-272 (2007).

652 11. Aguirre-Villegas HA, Larson RA. Evaluating greenhouse gas emissions from dairy manure
653 management practices using survey data and lifecycle tools. *J Clean Prod* **143**, 169-179
654 (2017).

655 12. Fang C, Huang R, Dykstra CM, Jiang R, Pavlostathis SG, Tang Y. Energy and nutrient
656 recovery from sewage sludge and manure via anaerobic digestion with hydrothermal
657 pretreatment. *Environ Sci Technol* **54**, 1147-1156 (2019).

658 13. Pandey B, Chen L. Technologies to recover nitrogen from livestock manure - A review.
659 *Sci Total Environ* **784**, 147098 (2021).

660 14. Tarpeh WA, Chen X. Making wastewater obsolete: selective separations to enable circular
661 water treatment. *Environmental Science and Ecotechnology* **5**, 100078 (2021).

662 15. Sun M, *et al.* Electrochemical-Osmotic Process for Simultaneous Recovery of Electric
663 Energy, Water, and Metals from Wastewater. *Environ Sci Technol* **54**, 8430-8442 (2020).

664 16. Qin M, He Z. Self-Supplied Ammonium Bicarbonate Draw Solute for Achieving
665 Wastewater Treatment and Recovery in a Microbial Electrolysis Cell-Forward Osmosis-
666 Coupled System. *Environ Sci Tech Let* **1**, 437-441 (2014).

667 17. Kuntke P, *et al.* Ammonium recovery and energy production from urine by a microbial
668 fuel cell. *Water Res* **46**, 2627-2636 (2012).

669 18. Qin M, Molitor H, Brazil B, Novak JT, He Z. Recovery of nitrogen and water from landfill
670 leachate by a microbial electrolysis cell-forward osmosis system. *Bioresource Technol* **200**,
671 485-492 (2016).

672 19. Tarpeh WA, Barazesh JM, Cath TY, Nelson KL. Electrochemical Stripping to Recover
673 Nitrogen from Source-Separated Urine. *Environ Sci Technol* **52**, 1453-1460 (2018).

674 20. Li Y, Wang R, Shi S, Cao H, Yip NY, Lin S. Bipolar Membrane Electrodialysis for
675 Ammonia Recovery from Synthetic Urine: Experiments, Modeling, and Performance
676 Analysis. *Environ Sci Technol* **55**, 14886-14896 (2021).

677 21. Yang K, Qin M. The Application of Cation Exchange Membranes in Electrochemical
678 Systems for Ammonia Recovery from Wastewater. *Membranes* **11**, 494 (2021).

679 22. Kuntke P, *et al.* Hydrogen Gas Recycling for Energy Efficient Ammonia Recovery in
680 Electrochemical Systems. *Environ Sci Technol* **51**, 3110-3116 (2017).

681 23. Gao R, Bonin L, Arroyo JMC, Logan BE, Rabaey K. Separation and recovery of
682 ammonium from industrial wastewater containing methanol using copper hexacyanoferrate
683 (CuHCF) electrodes. *Water Res* **188**, 116532 (2021).

684 24. Kim T, Gorski CA, Logan BE. Ammonium Removal from Domestic Wastewater Using
685 Selective Battery Electrodes. *Environ Sci Tech Let* **5**, 578-583 (2018).

686 25. Son M, *et al.* Stepwise ammonium enrichment using selective battery electrodes. *Environ*
687 *Sci Water Res Technology* **6**, 1649-1657 (2020).

688 26. Jang Y, Hou C-H, Kwon K, Kang JS, Chung E. Selective recovery of lithium and
689 ammonium from spent lithium-ion batteries using intercalation electrodes. *Chemosphere*
690 **317**, 137865 (2023).

691 27. Porada S, Shrivastava A, Bukowska P, Biesheuvel PM, Smith KC. Nickel
692 Hexacyanoferrate Electrodes for Continuous Cation Intercalation Desalination of Brackish
693 Water. *Electrochimica Acta* **255**, 369-378 (2017).

694 28. Wang F, *et al.* Modular Electrochemical Synthesis Using a Redox Reservoir Paired with
695 Independent Half-Reactions. *Joule* **5**, 149-165 (2021).

696 29. Chen L, Dong X, Wang Y, Xia Y. Separating hydrogen and oxygen evolution in alkaline
697 water electrolysis using nickel hydroxide. *Nat Commun* **7**, 11741 (2016).

698 30. Landman A, *et al.* Photoelectrochemical water splitting in separate oxygen and hydrogen
699 cells. *Nat Mater* **16**, 646-651 (2017).

700 31. Symes MD, Cronin L. Decoupling hydrogen and oxygen evolution during electrolytic
701 water splitting using an electron-coupled-proton buffer. *Nat Chem* **5**, 403-409 (2013).

702 32. Wang R, Sheng H, Wang F, Li W, Roberts DS, Jin S. Sustainable Coproduction of Two
703 Disinfectants via Hydroxide-Balanced Modular Electrochemical Synthesis Using a Redox
704 Reservoir. *ACS Cent Sci* **7**, 2083-2091 (2021).

705 33. Michael KH, *et al.* Pairing of Aqueous and Nonaqueous Electrosynthetic Reactions
706 Enabled by a Redox Reservoir Electrode. *J Am Chem Soc* **144**, 22641-22650 (2022).

707 34. Liang G, Mo F, Ji X, Zhi C. Non-metallic charge carriers for aqueous batteries. *Nat Rev*
708 *Mater*, 1-15 (2020).

709 35. Chao D, *et al.* Roadmap for advanced aqueous batteries: From design of materials to
710 applications. *Sci Adv* **6**, eaba4098 (2020).

711 36. Rassat SD, Sukamto JH, Orth RJ, Lilga MA, Hallen RT. Development of an electrically
712 switched ion exchange process for selective ion separations. *Sep Purif Technol* **15**, 207-
713 222 (1999).

714 37. Dong S, *et al.* Ultra-fast NH₄⁺ Storage: Strong H Bonding between NH₄⁺ and Bi-layered
715 V₂O₅. *Chem* **5**, 1537-1551 (2019).

716 38. Liang G, *et al.* Initiating Hexagonal MoO₃ for Superb-Stable and Fast NH₄⁺ Storage
717 Based on Hydrogen Bond Chemistry. *Adv Mater* **32**, 1907802 (2020).

718 39. Wessells CD, Peddada SV, Huggins RA, Cui Y. Nickel Hexacyanoferrate Nanoparticle
719 Electrodes For Aqueous Sodium and Potassium Ion Batteries. *Nano Lett* **11**, 5421-5425
720 (2011).

721 40. Wu X, Qi Y, Hong JJ, Li Z, Hernandez AS, Ji X. Rocking-Chair Ammonium-Ion Battery:
722 A Highly Reversible Aqueous Energy Storage System. *Angewandte Chemie Int Ed* **56**,
723 13026-13030 (2017).

724 41. Shi L, *et al.* Metal-Ion Depletion Impacts the Stability and Performance of Battery
725 Electrode Deionization over Multiple Cycles. *Environ Sci Technol* **55**, 5412-5421 (2021).

726 42. Liu C, *et al.* Lithium Extraction from Seawater through Pulsed Electrochemical
727 Intercalation. *Joule* **4**, 1459-1469 (2020).

728 43. Qin M, Liu Y, Luo S, Qiao R, He Z. Integrated experimental and modeling evaluation of
729 energy consumption for ammonia recovery in bioelectrochemical systems. *Chem Eng J*
730 **327**, 924-931 (2017).

731 44. Sheng H, Ross RD, Schmidt JR, Jin S. Metal-Compound-Based Electrocatalysts for
732 Hydrogen Peroxide Electrosynthesis and the Electro-Fenton Process. *Acs Energy Lett*, 196-
733 212 (2022).

734 45. Yang S, *et al.* Toward the Decentralized Electrochemical Production of H₂O₂: A Focus on
735 the Catalysis. *Acs Catal* **8**, 4064-4081 (2018).

736 46. Jiang K, *et al.* Highly selective oxygen reduction to hydrogen peroxide on transition metal
737 single atom coordination. *Nat Commun* **10**, 3997 (2019).

738 47. Raven JA. Chloride: essential micronutrient and multifunctional beneficial ion. *J Exp Bot*
739 **68**, 359-367 (2017).

740 48. Wu X, *et al.* Diffusion-free Grotthuss topochemistry for high-rate and long-life proton
741 batteries. *Nat Energy* **4**, 123-130 (2019).

742