2024 1EEE International Parallel and Distributed Processing Symposium (IPDPS) | 979-8-3503-8711-7/24/$31.00 ©2024 IEEE | DOI: 10.1109/IPDPS57955.2024.00052

2024 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

NVMe-oPF: Designing Efficient Priority Schemes
for NVMe-over-Fabrics with Multi-Tenancy Support

Darren Ngf, Andrew Lin{, Arjun Kashyap', Guanpeng Li*, and Xiaoyi Luf*
TUniversity of California, Merced, Merced, CA, USA
{dng350, alin85, akashyap3, xiaoyi.lu} @ucmerced.edu
University of Towa, Iowa City, IA, USA
guanpeng-li@uiowa.edu

Abstract—Resource disaggregation is prevalent in datacenters
since it provides high resource utilization when compared to servers
dedicated to either compute, memory, or storage. NVMe-over-Fabrics
(NVMe-oF) is the standardized protocol for accessing disaggregated
network storage. Currently, the NVMe-oF specification lacks semantics
to prioritize I/O requests based on different application needs. Since
applications have varying goals — latency-sensitive or throughput-
critical I/O — we need to design efficient schemes to allow applications
to specify the type of performance they wish to achieve. To this end,
we propose a new NVMe-over-Priority-Fabrics (NVMe-oPF) protocol
with multi-tenancy support that allows applications to specify whether
to optimize for latency or throughput. NVMe-oPF proposes coalescing
request completions, lock-free optimization, zero-copy queues, out-
of-order request completion handling, and window size optimization
for the specific I/O patterns, queue depths, and I/O sizes that yield the
best performance. Our NVMe-oPF-10 Gbps can achieve up to 2.94X
improvement in throughput and reduces tail latency by up to 32.1%
for highly concurrent multi-tenant read workloads when compared
to the state-of-the-art userspace NVMe-oF runtime design in Intel
Storage Performance Development Kit (SPDK). For write workloads
with 100 Gbps, NVMe-oPF achieves a 32.6% increase in throughput
while maintaining low latency compared to SPDK. We also bring
performance benefits to the application level with HDFS by increasing
write workload throughput by 25.2% in larger-scale experiments.

Index Terms—Disaggregated Storage, Multi-Tenancy, NVMe-over-
Fabric (NVMe-oF), Priority Scheme

I. INTRODUCTION

Traditional High-Performance Computing (HPC) and cloud
applications have been running on servers that house all resources,
e.g., compute, memory, and storage, within a single server box.
However, the paradigm has shifted with the advent of resource
disaggregation [1]-[10]. HPC and cloud providers are now
witnessing heightened resource utilization, a trend that translates
to reduced infrastructure costs. Disaggregating resources from a
physical server offers two pivotal advantages. Firstly, providers
can pool and scale compute, memory, and storage independently
without being limited by the capacity of a single physical server [2],
[3], [7], [11]. Secondly, and notably, the focus of this paper, is
the facilitation of multi-tenancy, where multiple diverse user
applications can seamlessly share underlying hardware in an
application-agnostic manner [11]-{13].

* is the corresponding author.

A. Motivation

Despite being a highly sought-after feature in data center and
HPC environments, implementing multi-tenancy presents notable
challenges due to the diverse performance requirements of different
applications. Existing storage infrastructures, underpinned by
underlying disaggregated storage runtimes like NVMe-oF [14],
face a substantial predicament. While these runtimes permit
requests from various applications, they lack the capability to
tailor performance to each application’s unique demands. Figure 1
visually depicts this challenge on how applications with distinct
priorities interact with a storage service, exposing NVMe SSDs
across different networks using NVMe-oF.

On the other hand, as per its design standard, the NVMe-oF proto-
col permits multiple concurrent tenants to access the storage device.
However, the NVMe-oF runtime does not distinguish the specific
requirements of each application. This uniform treatment results
in significant overheads for each tenant connected to the NVMe
SSD. To address this issue, our approach defines multi-tenancy in
a disaggregated environment as follows: each application attains a
specified performance optimization strategy that is independent of
other concurrent applications. However, achieving this multi-tenant-
aware disaggregated storage runtime presents several challenges.
Firstly, it necessitates the provision of a throughput-optimized flow
tailored for applications with specified throughput requirements.
Secondly, it resorts to bypassing throughput-intensive computation
queues for applications dependent on low latency. Lastly, it demands
efficient maintenance and management of interconnected commu-
nication between all tenants and the target storage. This scenario
prompts a fundamental question: What aspects within the current
NVMe-oF specification lack support for multi-tenancy?

B. Challenges

Upon examination, we identified three major factors that need
addressing in the current NVMe-oF runtime: computation order,
semantic data passing, and priority/multi-tenant management.
We subsequently formulate specific research questions for each
factor, paving the way for further exploration and innovation within
multi-tenant-aware storage runtimes.

Computation Order: How should NVMe-oF runtimes handle the
computation orderings to support diverse optimization methods?

1530-2075/24/$31.00 ©2024 IEEE 519
DOI 10.1109/IPDPS57955.2024.00052
Authorized licensed use limited to: Univ of Calif Merced. Downloaded on August 23,2024 at 00:59:20 UTC from IEEE Xplore. Restrictions apply.

Multi-Tenant
Applications

Storage Service /

Burst Buffer

10/25/100/200
-Gbps Ethernet /-
InfiniBand

Throughput-Critical ~~~7 Latency-Sensitive ¢
(TC) Applications ~ *---* (LS) Applications

"y Either TC/LS
4 Applications

Fig. 1: Multi-Tenancy Requirements of NVMe-oF Architecture on
Priority Schemes.

Disaggregated storage typically processes requests in a first-in-first-
out (FIFO) manner. Consequently, an application prioritizing low
latency might find itself delayed by a backlog of requests from a
high-throughput application, not satisfying the multi-tenancy require-
ment. Moreover, latency-sensitive requests could disrupt throughput-
critical requests, forcing the target to switch between processing
different types of requests within a single batch. This situation
adversely affects the throughput-critical requests of high-throughput
applications, thus failing to meet multi-tenancy requirements.

Semantic Data Passing: What type of data must be included
within requests to inform the NVMe-oF runtime about both priority
and tenant structure across the network? Current disaggregated
storage protocols, such as NVMe-oF, lack support for priority
schemes enabling the storage system to differentiate I/O requests.
Consequently, remote storage runtimes cannot interpret or manage
varied requests to optimize specific performance goals as desired
by the applications. This capability hinges on embedding semantic
data within each request, indicating the application’s optimization
strategy. In addition, the NVMe-oF runtime also needs awareness
of the number of connected tenants and which ones require what
optimizations to align with multi-tenancy objectives. Towards this,
semantic data passing becomes imperative.

Multi-Tenant Management: Where do multi-tenant aware systems
reside in a disaggregated setting, and how can they manage
high-congestion request flow? In multi-tenant scenarios, where
congestion can significantly escalate, each host must be multi-tenant
aware to facilitate the efficient handling of semantic data and
computation orders. This means that the disaggregated storage
runtime must recognize which request was sent by which client and
subsequently handle each client’s request according to their specific
optimization needs. As a result, multi-tenant-aware libraries cannot
be confined to a single machine.

C. Contributions

In response to these questions, this paper introduces the NVMe-
over-Priority-Fabrics (NVMe-oPF) protocol, which empowers
applications to specify whether they prioritize latency or throughput.
Our priority schemes enhance the NVMe-oF target to enable
multi-tenant awareness. We implement one Priority Manager (PM)
per NVMe-oPF runtime (distinct PMs for NVMe-oPF initiator
and target), enabling effective computation order and semantic
data passing for seamless multi-tenant communication. Our focus

520

on userspace NVMe-oF runtime is deliberate, as it sidesteps
context-switching overhead and ensures low-latency access to the
underlying storage device.

NVMe-oPF aims to demonstrate the performance enhancements
achieved by conveying semantic information from workloads. For
instance, it discerns whether I/O requests are latency-sensitive or
throughput-critical, enabling the NVMe-oF runtime to optimize
accordingly. To enhance the performance of throughput-critical
I/O requests, we employ a coalescing strategy that consolidates
multiple request completion notifications into one. Concurrently,
for applications that do not prioritize throughput, NVMe-oPF
allows them to designate specific I/O requests over fabric as
latency-sensitive. This tagging mechanism ensures the prioritization
of latency-sensitive requests with concurrent throughput-critical
requests. Through these innovations, the proposed NVMe-oPF
runtime can adeptly handle diverse application objectives from
multiple concurrent applications, providing robust multi-tenancy
support in disaggregated storage environments.

To implement NVMe-oPF, we have chosen to enhance Intel
SPDK with priority schemes and multi-tenant support owing to its
established reputation as a userspace storage library in HPC systems.
For instance, Intel Distributed Asynchronous Object Storage
(DAOS), a widely acclaimed exascale storage stack [15]-[17],
relies on SPDK [18] internally. However, traditional NVMe-oF
storage runtimes struggle to interpret or manage varied requests,
hindering the optimization of specific performance goals desired by
applications. To bridge this gap, we introduce priority schemes into
the SPDK-based NVMe-oF runtime with multi-tenancy support.

Throughout our meticulous experiments, several significant
observations emerged when comparing SPDK to NVMe-oPF: 1)
We observed a 2.94X increase in throughput and a 32.6% reduction
in tail-latency for read workloads at 10 Gbps with 5 tenants per
NVMe SSD. 2) In the case of mixed read/write workloads at
100 Gbps, we achieved a 61.8% reduction in tail-latency with
5 tenants per SSD. 3) Scaling up to 25 tenants on 5 SSDs, we
achieved throughput improvements of 70% and 74.8% for write
and 50:50 read/write workloads, respectively, on 100 Gbps. 4)
Across all workloads and experiments at 100 Gbps, we achieved
a 39.3% increase in throughput while concurrently reducing latency
by 17.3%. 5) We observed linear scaling across all workloads at
100 Gbps. 6) In application-level scaling experiments, NVMe-oPF
demonstrated 25.2% increase in throughput for HDF5 [19] write
workloads when scaling to 40 tenants on 4 NVMe SSDs.

In summary, this paper makes the following contributions:

@ We address the challenges associated with coalescing methods
for NVMe-oF request completions, successfully implementing
efficient priority schemes along with multi-tenant support.

@ We methodically design and assess NVMe-oPF request comple-
tion coalescing for the TCP/IP channel across 10, 25, and 100 Gbps
fabrics, providing comprehensive insights into its performance.

© We introduce a user-friendly approach enabling applications in
the userspace to utilize semantic data passing via flags, simplifying
the implementation of advanced functionalities.

@ We demonstrate the scalability achieved through multi-tenancy,
showcasing the system’s robust performance even with an
increasing number of initiators.

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on August 23,2024 at 00:59:20 UTC from IEEE Xplore. Restrictions apply.

e ‘We exhibit application-level scalability, specifically with HDF5,
emphasizing our proposed solution’s practical applicability and
versatility.

To the best of our knowledge, NVMe-oPF is the first work to
present a userspace NVMe-oF protocol that supports multiple
tenants accessing single or many NVMe SSDs.

II. BACKGROUND AND RELATED WORK
A. Background

NVMe-over-Fabrics NVMe-over-Fabrics [14] (NVMe-oF)
specification allows applications to use block storage protocol for
accessing SSDs over networked fabrics such as Ethernet, Remote
Direct Memory Access (RDMA), and Fibre Channel. NVMe-oF
provides lower latency and higher throughput when compared to
iSCSI [20], [21] for disaggregated storage within a data center.
NVMe-oF defines the node that exposes NVMe-SSD over the
network as the NVMe-oF target and the node that submits an I/O
request to the NVMe-oF target as the NVMe-oF initiator. Since
the underlying storage runtime is not multi-tenant aware, it treats
all the I/O requests with the same priority.

Intel SPDK Intel’s Storage Performance Development Kit [22]
(SPDK) is a userspace library for developing high-performance
storage applications. SPDK avoids costly system calls by moving
the relevant drivers to userspace, uses polling to detect request
completion, and eschews any locks in the I/O path. SPDK’s NVMe
driver allows the userspace application to issue concurrent I/O
requests to the NVMe-SSD over the PCle interface. It also consists
of a userspace NVMe-oF target application that presents block
devices over fabrics such as Ethernet, InfiniBand, and/or Fibre
Channel and supports RDMA and TCP transports [23].

B. Related Work

Both cloud [24]-[28] and HPC [29]-[33] communities have
studied the benefits of sharing resources in the past. Burst
Buffers (BBs) [29], [30], [34]-[36] are heavily being used in
supercomputing environments to improve underlying storage
system performance as perceived by end applications. Cao et
al. [30] discuss the tradeoffs of employing local vs shared burst
buffers and show the performance benefit shared burst buffer
organizations bring to real HPC workloads.

A lot of work has been done to improve the submission rate
of I/O requests to the NVMe device. Conway et al. [37] enhance
key-value store performance on NVMe SSDs by providing more
I/O concurrency using a new compaction policy and memtable
design. Flashshare [38] aims to reduce interference from co-running
workloads by propagating aspects of workload through the entire
storage stack.

Other literature aims to improve remote storage performance
where NVMe SSDs are connected to the client/application over the
networked fabric. Klimovic et al. design ReFlex [39], a remote Flash
storage system over Ethernet that combines networking and storage
to provide low I/O latency and high throughput. Hwang et al. [40]
draw inspiration from the networking domain to devise a kernel
storage stack, blk-switch, for applications with varying needs. Tai et
al. [41] showed the gains achieved by marking 1/O requests as either
latency-sensitive or throughput-critical and coalescing interrupts

521

from local NVMe devices based on the request type. Gimbal [13]
brings multi-tenancy to disaggregated NVMe devices using
SmartNICs as a network switch to choose different NVMe devices
depending on device condition. Peng et al. [42] introduces UMap
to bring user-page management optimizations that are specific to
application and storage characteristic needs using application hints.
Gugnani et al. [43] introduce a QoS-aware NVMe-emulator that
uses priority classes to provide SLA guarantees. An early case study
observes performance improvements of multi-tenancy support
which sheds light on the comprehensive design [12].

Our proposed designs differ from the existing studies in
three ways. First, we propose priority schemes in the popular
NVMe-oF specification to support various requirements from
multi-tenants. Second, we analyze the benefits of the coalescing
strategy in disaggregated storage settings with NVMe-oF for
request completions rather than device interrupts. Third, we propose
multiple enhancements in the popular SPDK library to achieve
efficient priority schemes.

III. DESIGNING NVME-OPF

This section presents our proposed designs for achieving efficient
priority schemes in NVMe-oPF.

A. Design Overview of NVMe-oPF

Supporting multi-tenancy for NVMe-oF requires a set of goals
we aim to achieve — Goal I) Reduced congestion communication
between NVMe-oF initiators and targets; Goal 2) NVMe-oF
target awareness for each initiator connected and respective
optimization; and Goal 3) Simple I/O optimization specification
for user applications.

In this paper, we propose a new userspace NVMe-over-Priority-
Fabrics (NVMe-oPF) runtime with respect to these goals. We
fulfill those objectives with our multi-tenancy support which
provides applications the ability to specify whether to optimize
for latency or throughput. Our NVMe-oPF introduces three major
concepts—request flags, priority managers, and throughput request
queues. The request flags enable applications to tag I/O requests
based on their performance goal. The NVMe-oF target creates
specific queues for throughput-critical requests to avoid interference
with different requests. The NVMe-oPF priority managers control
request completion times and completion notification packets with
respect to application optimization objectives. All three concepts
make NVMe-oF multi-tenant aware.

The design is based on a coalescing strategy (explained in Sec-
tion ITI-C), which is achieved by enhancing the Storage Performance
Development Kit (SPDK) [44] on the NVMe-oF layer. Being in the
userspace allows user applications easy access to specify between
latency or throughput optimizations when sending I/O requests. We
modify the NVMe-oF initiator and target TCP controllers to handle
the additional priority flags and tenant information required for multi-
tenant coalescing. The flags work alongside queues created for the
NVMe-oPF initiator and target. The design of these queues allows
the NVMe-oPF initiators and targets to solve issues present in stan-
dard NVMe-oF designs and more details are presented in Section I'V.

Figure 2 shows the architecture of NVMe-oPF. We create efficient
multi-tenancy by allowing multiple NVMe-oPF initiators to commu-
nicate to one target or to multiple targets while respecting individual

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on August 23,2024 at 00:59:20 UTC from IEEE Xplore. Restrictions apply.

Application 1

NVMe-oPF (B Priority I]
Manager J

Initiator

NVMe-oPF Initiator [+++]

Application 2
NVMe-oPF (8 Priority
Manager

Initiator

NVMe-oPF Initiator [===])

: Lock Free Notif. Coalescing

TCP

: Priority
Manager ;

Application n Zero-Copy Queues

NVMe-oPF Hiority 1] Efficient Multi-Tenancy
E anager —
() mitiatorpm

Initiator g
iNVMe—oPF Initiator (e} Target PM

: D Throughput-Crit. i

NVMe-oPF Initiator [=+2] . Draining

Fig. 2: Overview of NVMe-oPF architecture.

i Latency-Sen.

initiator optimizations. NVMe-oPF supports a range of different
throughput-critical to latency-sensitive initiator ratios per target. In
other words, regardless of the variety in traffic to one NVMe-oPF
target, each initiator will be able to receive their respective desired
performance optimization. The flow of these throughput-critical and
latency-sensitive requests are handled by the Priority Manager (PM).
In this way, we can effectively satisfy design Goal 1.

B. Priority-aware Data Flow

For the NVMe-oF initiator and target to efficiently communicate
to support multi-tenancy, both must contain logic that supports
priority requests and coalescing. Figure 3 illustrates the data packet
transfers between an initiator and target over four requests (both
read and write have similar flow) for SPDK and NVMe-oPF.
SPDK sends one completion notification per request regardless
of the desired optimization. When an SPDK latency-sensitive
initiator attempts to send a request concurrently with an SPDK
throughput-critical initiator, the latency-sensitive request must wait
for other requests to finish first.

Furthermore, the SPDK throughput-critical initiator will require
processing time for completion notifications per request. The
baseline lacks multi-tenancy support as each initiator will not
receive their respective performance specifications. When an
NVMe-oPF latency-sensitive initiator sends a request, it bypasses
the queue on the target, and a completion notification is sent. The
NVMe-oPF throughput-critical initiator marks the last request in
a batch as drain and the target correspondingly executes all pending
requests. Instead of sending four completion requests, only one will
be sent to denote the completion of all preceding requests. Thus
the NVMe-oPF throughput-critical initiator can reduce the time to
process completion notifications.

In Figure 4(a), the diagram shows each request that is sent from
the NVMe-oPF initiator application. Firstly the application sends

each request to the NVMe-oPF target (along with a priority flag).

The NVMe-oPF initiator will send a certain number (i.e., window

522

Initiator
TC

Tnitiator

Initiator]
TC

[Tnitiator]
LS

[Target] LS

TC Reqs

2 L8

] Perf.
Gain
SPDK

4 Latency-Sen. (LS)

TC Completion|
Notifs.

NVMe-oPF
C Latency-Sen. Processing
AThroughput-Crit. (TC) (Throughput-Crit. Processing

Fig. 3: Communication messages between NVMe-oF initiator
and target for requests with a window size of four over TCP/IP.
Arrows denote communication and brackets denote execution
time respective to latency-sensitive (LS) or throughput-critical
(TC) requests. The red brackets denote respective performance
improvements for both LS and TC requests with NVMe-oPE.

NVMe-oPF Initiator | Send] NVMe-oPF Target
Queue Queue
Application i") @ g @
— o — SSD
{ \l H T \l
SPDK i<— @
VT VT
SPDK
(T T
Ethernet
(a) Send flow of NVMe-oPF.
NVMe-oPF Initiator NVMe-oPF Target
Queue Queue
Application @ @ SSD
(T
-”T 3 P> SPDK
:‘T 1
Ethernet

(b) Completion flow of NVMe-oPF

Fig. 4: Send and completion flows of NVMe-oPF on a window size
of 4 where throughput-critical (T) and drain (D) requests are sent.

size) of throughput-critical requests before sending one with a
draining flag. For every sent request, both the NVMe-oPF initiator
and target maintain a queue of all pending requests. Completion
requests on the NVMe-oPF target will only be processed upon
receiving a draining flag from the NVMe-oPF initiator.

In Figure 4(b), we can observe the return flow after the
completion of all the requests in the queue. Sequentially, only
one completion notification returns to the NVMe-oPF initiator per
drain flag. In this way, we reduce the request completion network
packet rate with respect to the set window size. In response to the
NVMe-oPF target, the NVMe-oPF initiator acknowledges that
the notification indicates the completion of all pending requests
in the queue. Since the NVMe-oPF initiator has previously stored
each request ID in its local queue, it can properly complete each
preceding request without corresponding completion notifications.

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on August 23,2024 at 00:59:20 UTC from IEEE Xplore. Restrictions apply.

Unlike throughput-critical, latency-sensitive requests do not
have an additional queue. Latency-sensitive requests will process
immediately upon arrival at the NVMe-oPF target regardless
of the number of throughput-critical requests currently queued.
Subsequently, a completion response from the NVMe-oPF target
will be sent for the respective latency-sensitive request. In this way,
our priority flow achieves a latency-optimized I/O specification.

Figure 5(Alg:1) shows how the NVMe initiator creates and
marks flags for throughput-critical and draining. We write the flags
directly into the NVMe-oF Protocol Data Units (PDU). If the request
is throughput-critical, we add it to the NVMe-oPF initiator queue.

When a response comes back from the NVMe-oPF target,
Figure 5 (Alg:2) handles it. We loop through the queue of pending
requests until the ID of the request matches with the received
response. For each request in the queue, we mark them as complete.
This way, all requests previously sent out from the NVMe-oPF
initiator receive completion.

Figure 5 (Alg:3) shows when the NVMe-oPF target is ready to ex-
ecute a request. Similar to Algorithm 1, we store throughput-critical
requests in a queue, but on the NVMe-oPF target side. If the request
is latency-sensitive, we will promptly transition the request to the
execution state. If we are ready to drain the pending requests in the
queue, we transition all requests in the queue into the execution state.

Once the requests have been sent to begin execution,
Figure 5 (Alg:4) will begin. If the request sent is latency-sensitive,
the request is completed immediately, a response is sent back to the
NVMe-oPF initiator and we enter Algorithm 2. When the request is
throughput-critical, completion logic is run. A response will only be
sent to the NVMe-oPF initiator when the received request contains
a draining flag.

Finally, our priority-aware data flow requires one more piece
of information to allow NVMe-oPF priority managers to handle
multi-tenancy. Each request will pass along a unique identifier per
NVMe-oPF initiator connected to a target. This identifier informs
NVMe-oPF target managers of the number of initiators and will
properly handle priority data flow to service each initiator according
to optimization desires. Thus, with all three types of semantic data,
NVMe-oPF design can satisfy Goal 2.

C. Coalescing Strategy

The coalescing strategy for increasing throughput involves
completing the throughput-critical requests in batches rather than
individually. The window size defines the number of requests
that the initiator will send to the target before flushing out the
queue of requests. In this way, we effectively reduce the amount
of completions sent to the initiator.

To enable priority requests, we enrich each request with flags

that denote the scheme with which to handle the request. These
flags include the latency-sensitive flag, the throughput-critical flag,
and the draining flag. These flags are embedded into the bits of
each request and are read by the receivers.
Latency-Sensitive: To maintain low latency with our modifications,
a request sent to the NVMe-oPF target can be flagged as latency-
sensitive. This flag denotes that the request is to be completed and
a response sent back immediately by bypassing throughput-critical
queues.

523

Throughput-Critical: In optimizing throughput, it is necessary to
coalesce multiple notification completions. The throughput-critical
flag denotes that the request needs not be completed immediately
to prioritize high-throughput. Requests with this flag are placed
in a pending queue. Compared to latency-sensitive requests, the
initiator may wait a certain period of time (dependent on I/O
size and window size) before receiving a response back from the
throughput-critical request at the tail of the queue.

Draining: The draining flag annotates a request to inform the target
that all pending throughput-critical requests must be completed.
Subsequently, after all requests are completed, the target replies to
the initiator with a single completion notification response to denote
the completion of all requests.

NVMe-oPF conveniently provides simple-to-use I/O flags
for user applications. By easily passing a request with either
latency-sensitive or throughput-critical flags, user applications can
observe respective performance optimizations. For instance, if an
application necessitates exchanging metadata or control information
during a particular phase of the application, users can set requests
as latency-sensitive. Conversely, during a high workload phase,
users may prioritize throughput-critical requests. Our designs can
be easily extended to support more I/O flags, which could represent
other user application requirements. For the draining flag, the
NVMe-oPF initiator sends it automatically according to the desired
window size. With this, NVMe-oPF honors design Goal 3.

IV. IMPLEMENTATION AND OPTIMIZATION

This section presents our software-level modifications and
enhancements in Intel’s open-source SPDK runtime library for
NVMe-oPE.

The SPDK library is complex and can be difficult to locate points
at which one should modify for coalescing. In our implementation,
we effectively modify all areas of code to support NVMe
initiator-target communication for NVMe-oPF. We modestly add
three new flags (i.e., throughput-critical, latency-sensitive, and
draining) into the spec files for the NVMe-oF initiator and target.
Our queues and logic are built into SPDK and work hand-in-hand
with SPDK’s built-in functions and buffers.

A. Lock-Free Optimization

The key optimizations for our lock-free implementation are
independent queues for each throughput-critical NVMe-oPF initiator.
For example, if there are two NVMe-oPF initiators, the NVMe-
oPF target will contain two queues for throughput-critical requests.
Thus, a single throughput-critical queue will not be shared between
multiple NVMe-oPF initiators. Doing so would cause NVMe-oPF
targets to respond to draining earlier than expected and flush back
requests that may not be completed. Furthermore, if the window size
of multiple initiators sums up to be larger than the queue depth of
throughput-critical requests, request completions may never return
and the NVMe-oPF initiator will lock. With isolated throughput-
critical queues, we are lock-free and allow scaling. NVMe-oPF
implements this by assigning multiple NVMe-oPF initiators with
ID numbers. We write these ID numbers to the reserved bits in the
request PDU so that on receipt, the NVMe-oPF target can differen-
tiate requests. NVMe-over-TCP dictates network storage devices to

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on August 23,2024 at 00:59:20 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: NVMe initiator algorithm: Before send Algorithm 3: NVMe target algorithm: Ready to exe- Algorithm 4: NVMe target algorithm: Ready to com-

if request is throughput-critical cute request plete request
PDU < flag |= THRPUT_CRIT_MASK; if request is throughput-critical if request is throughput-critical
queueltail] < req.cid; ‘ queuelhead] < req.cid; if request is in queue
tail < tail +1; reqsQueued < reqsQueued + 1; while req /= null && req.state == transfer
if request is draining else if request = draining
‘ PDU <« flag |= DRAINING_MASK; ‘ send to execution state ‘ send response to NVMe initiator
if (num requests queued > window size) || draining else
Algorithm 2: NVMe initiator algorithm: On response for all regs queued do complete request but don’t send
from NVMe target | send to execution state response
if request is throughput-critical reqsQueued < 0; incomplete < incomplete + 1;
for int i = head; queueli] != cid; i++ do else
req «— req.cid; complete request immediately

Mark request as complete
head < head + 1;
head <+ head + 1;

Fig. 5: Algorithms for NVMe-oPF multi-tenancy support.

communicate via PDU, thus there is no additional overhead as there- ~ the NVMe-oPF initiator still contains the requests in its local queue
served bits are transmitted regardless of their usage. We modestly use (i.e., in their original order), it can mark their completions in the same
two reserved bits in the PDUs to pass latency-sensitive, throughput- order. This is because the NVMe-oPF initiator will match each com-
critical, and draining flags. For initiator IDs, we use eight reserved pleted request received from the target with those which is within the
bits in the PDU. As the size of the PDUs remains unchanged with pending queue. Thus, completion times for each request will follow
our priority flags and initiator IDs, the parsing/processing time of in the order they were queued. This allows us to handle out-of-order
PDUs on the target also remains almost the same. request completions while reducing completion notification packets.

D. Optimized Window Size

Throughout our experiments, we found that window size cannot
be static to achieve the highest throughput. We implement an
optimized window size selection that will choose the correct
window size based on certain parameters (i.e., workload type,
initiator concurrency, TC/LS ratio). We optimize the window size
to maximize throughput rather than reduce latency. This is because
although window size does have a slight effect on latency, it is
not significant in comparison to the improvement in throughput.
If the user desires more adjustability, the window size can be
dynamically changed during runtime after a draining request
completion notification is received on the initiator. Thus, the user
can quickly find the most optimal window size for their application.
On the target, all pending requests before the draining request will
be flushed, accommodating the initiator’s dynamic window size.

B. Zero-Copy Queues

Using a large number of queues that store requests can quickly
burden both the NVMe-oPF initiator and target. Also, as multi-
tenancy increases, the space complexity of the queues can become
very large. Although we require queues for our design, we still main-
tain SPDK’’s zero-copy transport and low space complexity. This
is because NVMe-oPF queues do not store requests but rather only
each throughput-critical request’s unique command identifier (CID)
number. This allows NVMe-oPF queue space complexity to not in-
crease drastically with increasing I/O request size, and/or number of
tenants. It is to note, however, that the NVMe protocol will split sin-
gle large 1/0 requests into multiple requests to be transferred in multi-
ple packets over the network. Since NVMe-oPF reduces the number
of completion notification packets, it will only further increase the
point at which the interconnect becomes saturated compared to
SPDK. Thus our implementation is zero-copy and scales well. V. EVALUATION

. . This section presents our evaluation results and analyzes the
C. Handling Out of Order Request Completions benefits of NVMe-oPE.

Standard NVMe devices consist of two circular buffers to store Experimental Setup: Our test environment uses two different
requests that are sent to them [11]. Firstly, requests sent to the hardware platforms. We use Chameleon Cloud’s [45] storage_nvme
NVMe device are placed in one of the circular buffers called the nodes and Cloud Lab’s [46] 16525 nodes (up to 10 nodes) to provide
Submission Queue (SQ). From the SQ, the NVMe controller places 10/25 Gbps and 100 Gbps Ethernet experiments, respectively. Note
completed requests in the Completion Queue (CQ). However, the that according to the Top500 [47] list in Nov. 2023, 10/25/100 Gbps
requests can be executed by the NVMe controller in any order Ethernet networks are still among the most popular interconnect
which causes completions to be placed out of order. This can cause technologies (34.2%) being used in high-end machines and
issues for reading completions from the CQ as it becomes difficult ~ motivates our selection. Table I lists specifications for both
to track which request came first. Chameleon Cloud and Cloud Lab machines. All NVMe-oF

NVMe-oPF handles out-of-order completions with the same initiators and targets use SPDK v20.07. We use SPDK’s perf
throughput-critical queues as previously mentioned. As shown in (SPDK’s main benchmark), sending 4K sequential I/O requests
Figure 4, NVMe-oPF builds two throughput-critical queues on both for read, write, and mixed. Each experiment is run 5 times for
the initiator and target. Thus for each NVMe initiator, each request 10 seconds and averaged. We also show application-level scaling
sent to the NVMe-oPF target will be stored in its local queue. Since performance with HDF5 with 4K read and write requests.

524

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on August 23,2024 at 00:59:20 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Experiment configuration. Hardware for Chameleon
Cloud (CC) and CloudLab (CL) are shown.

CcC CL
Processor | AMD EPYC 7352 2.3GHz | AMD EPYC 7543 2.8GHz
Cores 24 32
RAM 256GB 256GB
NIC 10/25 Gbps 100 Gbps
SSD 3.2 TB NVMe-SSD 1.6 TB NVMe-SSD

A. Performance Analysis

For each test case, we observe multi-tenancy using different
combinations of initiators. One or more initiators send requests
with the latency-sensitive flag, and the other sends requests with the
throughput-critical flag (we will refer to them as latency-sensitive
and throughput-critical initiators). We observe the latency-sensitive
initiator for latency performance, and for throughput performance,
we observe the throughput-critical initiators. Our experiments show
results when changing the ratio of latency-sensitive to throughput-
critical initiators and how it may affect respective performance.
Each throughput-critical and latency-sensitive initiator’s queue
depth is set to 128 and 1, respectively (including baseline SPDK).

We observed that three factors are needed to achieve performance
improvement: 1) proper window size selection, 2) network speed,
and 3) completion notification reduction, which is discussed in the
following subsections.

1) Window Size Selection: Figure 6(a) shows the throughput and
latency of NVMe-oPF over increasing window sizes. In this experi-
ment, we observe performance results with multi-tenancy using one
throughput-critical initiator and one latency-sensitive initiator, each
running on individual nodes and communicating to an NVMe-oF
target node. For NVMe-oPF, we can observe that as we increase the
window size, we can more efficiently saturate the NVMe-oF target.
NVMe-oPF achieves a peak throughput at a window size of 32 over
25/100 Gbps and performs 23.1% better than SPDK. Furthermore,
NVMe-oPF maintains low latency with a slight increase in latency
by 5.4% across all window sizes and network speeds. Generally, a
large window size (e.g., 64) may not always be optimal, and a small
window size (e.g., < 32) will not maximize throughput.

2) Network Performance Impact: Reducing the network
bottleneck allows more requests and completion packets to be
transmitted. Figure 6(b) shows the performance of one throughput-
critical initiator communicating with one NVMe-oF target node with
varying window sizes on 10/25/100 Gbps. Noticeably, both SPDK
and NVMe-oPF are hindered in performance when using 10 Gbps
speeds. NVMe-oPF’s throughput gain does not increase with the
window size. In this case, the network is the bottleneck as it is already
saturated. For a window size of 64 at 10 Gbps, the completion
notification packets begin to observe more delay before being
received by the initiator, exacerbated by the network bottleneck and
negatively impacting performance. If we observe with 25/100 Gbps,
we can see an increase in throughput as window size increases. At a
window size of 32 with 100 Gbps, NVMe-oPF increases throughput
by 21.29%. Since this experiment only considers one initiator, we
are limited by lack of multi-tenancy. By increasing concurrency
on a large window size, we can further increase throughput gain.
These experiments are shown in subsection V-D.

525

3) Completion Notification Reduction: Next, we analyze one
of the root causes that impedes NVMe-oF throughput performance.
‘We count the number of NVMe-oF request completions generated
by the NVMe-oF target. The NVMe-oF target device is responsible
for delivering a request completion notification per request. These
large numbers of request completion notifications consume CPU
processing at both the NVMe-oF target and initiator and generate
a large number of network packets.

Figure 6(c) shows the number of read and write request comple-
tion notifications comparing baseline SPDK with NVMe-oPE. With
a window size of 16 and a queue depth of 128, NVMe-oPF can re-
duce the number of outgoing request notifications significantly com-
pared to SPDK at a queue depth of 128. With a window size of 32
and 64 at a queue depth of 128, NVMe-oPF reduces request comple-
tion notifications even past SPDK at a queue size of 1. Thus, NVMe-
oPF can transmit fewer notification packets (i.e., while optimizing
for throughput) than SPDK (i.e., while optimizing for latency).
Previous experiments show that NVMe-oPF increases throughput
while significantly reducing packet exchange over fabrics.

Observation 1: With an optimized window size, NVMe-oPF
with 100 Gbps increases throughput by 22.8% by reducing
congestion of the interconnect and processing time of
completions.

B. Throughput and Latency Concurrency

In a multi-tenancy scenario, there are at least two NVMe-oF ini-
tiators sending concurrent requests of distinct desired optimizations.
Therefore, in the case of the baseline SPDK, requests are executed in
a FIFO manner. With NVMe-oPF, requests are executed according
to their denoted priority. To observe performance with multi-tenancy,
we set up an experiment that scales to 5 NVMe-oF initiators with
7 different latency-throughput ratios (i.e., 1:1, 1:2, 2:2, 3:2, 1:3,
2:3, and 1:4) with the first number denoting the number of latency-
sensitive initiators, and the second the number of throughput-critical
initiators. These 7 ratios were selected to illustrate how NVMe-oPF
handles introducing different priority ratios in terms of performance.
The first ratio is a similar baseline of two total initiators as
in previous experiments. Ratios 1:2, 2:2, and 3:2 maintain a
constant number of throughput-critical initiators while increasing
latency-sensitive initiators. In these ratios, we do not anticipate
increasing aggregate throughput and we instead observe the effect
on tail latency. Ratios 1:3, 2:3, and 1:4 are targeted at observing
throughput scaling when adding more throughput-critical initiators.

Figure 7(a) shows the performance of sequential read requests
with varying latency-throughput ratios. While increasing throughput,
NVMe-oPF also provides lower tail-latency for latency-sensitive
requests. For the priority ratio 1:1, we have one latency-sensitive and
one throughput-critical initiator for two initiators sending requests to
one target. We can observe slight benefits in throughput and latency
for each respective NVMe-oPF initiator. As we increase the number
of latency-sensitive initiators (1:2, 2:2, and 3:2), we can observe
no effect on the throughput of NVMe-oF initiators, although we
increased the number of tenants. We can observe an increase in
throughput for NVMe-oPF initiators for every throughput-critical
initiator added. NVMe-oPF at 10 Gbps shows a much larger increase

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on August 23,2024 at 00:59:20 UTC from IEEE Xplore. Restrictions apply.

le5 le2

—_ 1.8 —_ led
& w77 Thr-25G 04 Lat-25G ’ & 45"
8 3-5| 0 Thr-100G 000 Lat-100G 1.6 3 %

o ~)

3 > 3

o, 14 © 230

= 3.0 g =

=) 9 =)

=4 1.2 © =

o o

! S B

E 25 1.0 =) AN

SPDK PF-4 PF-8 PF-16 PF-32 PF-64
Window size

(a) Performance for 25/100 Gbps

SPD.

PF-4

Window size

(b) Performance for 10/25/100 Gbps

le6

2.5 read write
w0
: H2.0) AN
1 ° P
; Z 05
: *
|
/§’ : 0.0 771%%\\\//&\771‘
PF-8 PF-16 PF-32 PF-64 : S-128 S-1 PF-16 PF-32 PF-64

Queue depth/Window size

(c) Number of completion notifs.

Fig. 6: Analysis of the initial benefit of NVMe-oPF (PF) compared to SPDK (S). (a) shows throughput/latency performance across various
window sizes with two initiators. (b) shows throughput performance impact of network speed across window sizes. (c) sums number

of completion notifications generated.

SPDK-10G 777 PF-10G WWs SPDK-25G @#@## PF-25G

le4

- [=2] =]
=3 o =

Throughput(IOPs)
N
o

SPDK-100G 777J PF-100G

led

N N e RSN

Priority Ratio

(a) read throughput (b) 50:50 read/write throughput

le3

oo@a SPDK-10G eoo PF-10G l1I3l SPDK-25G eee PF-25G mm@ SPDK-1
e

(c) write throughput

00G oo0o PF-100G

le3
1.0

@ o
S 6 m s
g>>1.5 . 0.8 - 8 o
8 4 B /\ g = 8 o a
o o o [s}] o
1.0 o o o o~ # 0.6
= g8 g o O 2|-0.79 ’
= g
4
1:1 1:2 2.2 3:2 1:3 2:3 14 1:1 1:2 2:2 3:2 1:3 2:3 1:4 0 1:1 1:2 2.2 3:2 1:3 2:3 14

Priority Ratio

(d) read tail-latency

(e) 50:50 read/write tail-latency

(f) write tail-latency

Fig. 7: Performance on baseline SPDK and NVMe-oPF on 10/25/100 Gbps. Aggregate throughput and 99.99% tail latency are shown.
The x-axis shows different latency-sensitive to throughput-critical initiators (LS:TC). Read, mixed 50:50 read/write, and write workloads
are shown. Throughput performance is the aggregate of all throughput-critical initiators and tail-latency performance is respective to

latency-sensitive initiators within each ratio.

in throughput than SPDK at 10 Gbps. SPDK at 10 Gbps shows
a very similar throughput throughout all initiator ratios regardless
of increasing throughput-critical initiators, whereas NVMe-oPF
continues to increase in performance as we scale throughput-critical
initiators. At a ratio of 1:4, NVMe-oPF has a peak performance
improvement from SPDK of 194.5%. Although 10 Gbps is the
slowest interconnect in our study, the combination of fast read
requests and network congestion reduction allows NVMe-oPF to
significantly optimize throughput. For NVMe-oPF with 25 Gbps,
there is a significant throughput improvement in which NVMe-oPF
achieves 91.3% higher throughput than SPDK at a ratio of 1:4. As
with 10 and 25 Gbps, NVMe-oPF with 100 Gbps scales with high
throughput at 49.5% increase from SPDK. Over 10/25/100 Gbps, we
can observe that with 10 Gbps, NVMe-oPF has already saturated the
target device with comparable performance to 25/100 Gbps. Thus,

526

NVMe-oPF is a suitable solution to achieve performance similar to
100 Gbps with just 10 Gbps during highly concurrent multi-tenancy.

Figure 7(b) shows the performance of sequential 50:50 read/write
requests with varying latency-throughput ratios. NVMe-oPF per-
forms worse than in Figure 7(a). As we mix read/write workloads
within window sizes, completion times of a batch of requests will
begin to vary depending on the ratio of read/write requests. However,
this is only an issue with fewer throughput-critical initiators. Since
latency-sensitive requests can take longer than expected with write
requests. We also still have comparable performance between
10/25/100 Gbps at a ratio of 1:4, which is similar to the peak
achieved by NVMe-oPF write. This illustrates how NVMe-oPF
reduces network congestion and allows high multi-tenancy scenarios
to run with similar performance regardless of interconnect speed for
read and mixed read/write workloads. Similar to the observations

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on August 23,2024 at 00:59:20 UTC from IEEE Xplore. Restrictions apply.

in Figure 7(b), the NVMe device on the target is quickly saturated
with NVMe-oPF maintaining slightly higher performance.

Figure 7(c) shows the performance of sequential write requests
with varying latency-throughput ratios. For throughput, NVMe-oPF
at 10 Gbps lacks performance benefit as the network becomes the
bottleneck for write workloads compared to read. Read requests
complete faster than write [28] and thus, NVMe-oPF with 10 Gbps
lacks performance gain since processing write requests may
bottleneck the interconnect. This is illustrated on 25 Gbps, as
NVMe-oPF observes throughput performance improvement when
increasing throughput-critical initiators to two. NVMe-oPF reduces
completion notification processing time and can saturate at a higher
throughput. Saturation is visible when observing ratios 1:2, 2:2, and
3:2 since, as we increase the number of latency-sensitive initiators,
we can notice a gradual decrease in throughput performance.
Although this decrease in performance is present; we can observe
that NVMe-oPF with 25 Gbps maintains comparable performance
(i.e., better with more tenants) to SPDK with 100 Gbps. Finally,
NVMe-oPF with 100Gbps at four throughput-critical initiators
shows 32.6% throughput improvement from SPDK with 100 Gbps.

Observation 2: For read and mixed read/write, NVMe-oPF
reduces network congestion allowing 10/25/100 Gbps to all
achieve similar high-throughput performance. Read work-
loads on 10 Gbps increases throughput by 2.94X compared
to SPDK. For write workloads on 100 Gbps, NVMe-oPF
improves throughput by 32.6% compared to SPDK.

C. Tail-Latency Studies

Due to the large queue sizes of the throughput critical initiators,
latency-sensitive requests may be required to wait in multiple queues
of over a size of 128 (i.e., queue depth) in default SPDK. This queue
is further multiplied by the number of initiators in a multi-tenant
environment. For this reason, increasing SPDK throughput-
optimized initiators will only increase the queue size in front of a
latency-sensitive request. Other factors, such as the conventional
Ethernet interconnect, may cause variation in tail latency throughout
the results. Figure 7(d) shows the tail latency of different latency-
throughput ratios for read requests. Since read requests complete
quickly, tail-latency is more consistent than in write workloads.
However, any request by SPDK is subject to significant tail-latency
increases due to back-of-the-line waiting. Each latency-sensitive
initiator will suffer if any throughput-critical request incurs extra
overhead to complete. Although this issue appears less often due
to the completion rate of read requests, the improvement with
NVMe-oPF in tail-latency is 38.8% at a ratio of 1:3 across all
interconnects. Furthermore, as we increase multi-tenancy and
interconnect speed, NVMe-oPF latency-sensitive initiators continue
to achieve lower tail latency. Overall, NVMe-oPF tail latency is
reduced compared to the baseline by an average of 29.1% across
all seven latency-throughput ratios and interconnect speeds. More
importantly, NVMe-oPF achieves a tail latency that does not
increase significantly with varying latency-throughput ratio changes.
This low tail latency is attributed to NVMe-oPF latency-sensitive
requests that can quickly bypass the NVMe-oPF throughput-critical
queue regardless of how large the queue becomes.

527

Figure 7(e) shows tail latency for a mixed 50:50 read/write
workload. Now that write requests are introduced into the workload,
further spikes in SPDK’s tail-latency are visible. This trend appears
specifically when the number of throughput-critical initiators is
increased. There is observable variation in SPDK’s tail-latency
which is due to the 50:50 workload. Regardless, NVMe-oPF
decreases tail-latency and its variation throughout all latency-
throughput ratios. SPDK has large tail-latency peaks for each
addition of throughput initiator which NVMe-oPF prevents. NVMe-
oPF with 10 Gbps remains consistent throughout priority ratios and
has a tail-latency performance improvement of 44.8% across all
priority ratios. Over all ratios and interconnects, NVMe-oPF shows
a 23.8% improvement in tail latency compared to SPDK.

Figure 7(f) shows tail latency for a write workload. At one
throughput-critical initiator, SPDK with 10 Gbps performs the best
with the lowest tail latency. This can be attributed to low interconnect
usage and, consequently, low throughput, as shown in Figure 7(c).
Once two throughput-critical initiators are added, the throughput for
SPDK and NVMe-oPF no longer scales, and tail latency increases.
This is because we have saturated the interconnect and can no
longer benefit from scaling up. Compared to mixed read/write
and read workloads, NVMe-oPF does not improve tail latency
performance significantly. Since write requests require longer
completion times, a single throughput-critical request can cause
delays for an incoming latency-sensitive request. In this case, we can
observe variation in the results. Ultimately, the scale presented in
Figure 7(f) is an order of magnitude smaller than Figure 7(d,e), and
thus this variation is minuscule. Across all ratios and interconnects,
NVMe-oPF decreases tail-latency performance by only 2.6% from
SPDK while achieving significant improvement in throughput. For
all tail-latency studies, the 100 Gbps appears slower than slower
interconnects. This can be attributed to the differences in NVMe
devices across systems where the writes may perform slightly
slower on the 100 Gbps as compared to the 10 and 25 Gbps.

Observation 3: NVMe-oPF attains low tail-latency with
numerous tenants and enhances performance in terms of
tail latency by 25.6% across all tenant-priority ratios and
interconnect speeds. NVMe-oPF achieves a peak tail-latency
reduction of 81.1%.

D. Scale-Out Studies

We observe the performance benefits of scaling the number of
nodes. We include two experimental setups - 1) a total of 10 nodes
(5 initiator-nodes and 5 target-nodes) with an increasing number
of initiators per initiator-node (scaling pattern 1), and 2) the same
10 nodes as setup 1, but we instead fix the number of initiators
per initiator-node and increase the number of initiator-nodes
(scaling pattern 2). For setup 1, each initiator-node is connected
to a single target-node. Between the two nodes, the initiator-node
communicates up to 5 initiators to 1 target on the target-node.
Setup 2 communicates 4 initiators to 1 target (LS:TC ratio is
0:4) between the initiator-node and target-node. We observe the
performance benefits during multi-tenancy and scale-out with
these two experiment setups. In setup 1, we observe the number of
initiators at which a single target node becomes saturated. In setup

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on August 23,2024 at 00:59:20 UTC from IEEE Xplore. Restrictions apply.

2, we use the optimal number of initiators per target and scale up
nodes. For both setups, each node runs at 100 Gbps speeds.

We show scaling experiments with three workloads: read, mixed
read/write, and write. Figure 8(a) shows a read workload for
scaling the number of initiators per node with 100 Gbps. We can
observe that SPDK quickly plateaus in throughput performance
at 15 initiators and begins slowly degrading in performance. For
NVMe-oPF, the throughput performance continues to increase
past 15 total initiators. Informing us that SPDK can not saturate
the target when increasing initiators to 25. Across all numbers of
initiators, NVMe-oPF gives performance improvements of 27.2%
and 12.8% for throughput and latency, respectively.

Figure 8(b) shows a mixed 50:50 read/write workload for
scaling the number of initiators per node with 100 Gbps. At 10
initiators, NVMe-oPF does not perform better than SPDK. As
observed in Figure 7(b), mixed workloads will require more
tenants to achieve performance benefits fully. Thus, as we scale the
number of initiators, the performance gap between NVMe-oPF and
SPDK becomes greater with 74.8% and 68.8% improvement in
throughput and latency performance for NVMe-oPF. Figure 8(c)
shows a write workload for scaling the number of initiators per
node with 100 Gbps. At 15 initiators, both SPDK and NVMe-oPF
can no longer improve scaling performance. As average latency
continuously increases with scaling, the interconnect has likely
saturated. However, NVMe-oPF increases the throughput at the
point of saturation and peaks at 25 initiators. NVMe-oPF increases
throughput performance by 64.3% when over 10 initiators while
maintaining low latency with a gain of only 2.2% overall.

For scaling pattern 2, we use the same experiment workload
types. Figure 8(d) shows a read workload for scaling the number of
nodes with 100 Gbps. Both SPDK and NVMe-oPF scale well when
increasing the number of nodes. NVMe-oPF has a slight improve-
ment in throughput 19.6% across all numbers of initiators compared
to SPDK. Figure 8(e) shows a mixed 50:50 workload for scaling the
number of nodes with 100 Gbps. SPDK scaling performance suffers
as completion rate has been slowed down due to the addition of write
requests. NVMe-oPF scales well compared to SPDK performance,
as NVMe-oPF performance continues to increase. Across all
number of initiators, NVMe-oPF improves performance by 61.3%
compared to SPDK. Figure 8(f) shows a write workload for scaling
the number of nodes with 100 Gbps. Observing SPDK throughput
performance at 16 initiators and up illustrates over saturation of the
interconnect and decreases throughput per initiator. Since NVMe-
oPF reduces network utilization, NVMe-oPF can scale well past the
point where SPDK plateaued in throughput performance. Across all
number of initiators, NVMe-oPF throughput increased by 95.2%.

Observation 4: Due to the performance difference between
read and write, SPDK cannot scale well past 16 initiators,
whereas NVMe-oPF continues to scale throughput
performance. Across all number of initiators, NVMe-oPF
throughput is increased by 95.2% for write workloads.

E. Application-Level Scalability Evaluation with HDF5

1) h5bench: HDFS5 [19] is a hierarchical data format
specification with library implementation for fast parallel I/O and

528

threading. HDFS is widely used for scientific applications within
HPC environments. It is the most used library for performing
parallel I/O at the National Energy Research Scientific Computing
Center (NERSC) and is among the top at several US Department
of Energy (DOE) supercomputing facilities [48]. Considering
HDFS5’s parallel I/O and multi-process support, we observe how
NVMe-oPF’s multi-tenancy scheme can further benefit HDF5. We
co-design a popular benchmark representing HDF5 1/O kernels
(hSbench) with NVMe-oPF. This is achieved with the HDF5
Virtual Object Layer (VOL) to intercept HDF5 APIs and utilize
NVMe-oPF priority managers. Our results in HDF5 enable users to
use NVMe-oPF in any real-world dataset they would run on HDFS5.

‘We run h5bench’s read and write I/O kernels from multiple clients.
Our benchmark configuration writes 8*1024*1024 (8M) particles
for one 1D array stored as one HDFS5 dataset. Our hSbench reads are
configured similarly. We mimic SPDK’s perf benchmark, with each
1/O access at a read/write size of 4K. For scaling tests, we replicate
our previous scaling experiments (i.e., scaling patterns 1 and 2)
as shown in Figure 8 and we use 8 total nodes (4 initiator-nodes
and 4 target-nodes). We use Open MPI to parallelize multiple ranks
with each rank in HDF5 hosting an initiator (we refer to initiators
interchangeably with ranks). For scaling pattern 1, we increase the
number of initiators per initiator-node up to 10 initiators. For scaling
pattern 2, we set the number of initiators at 10 while increasing
the number of initiator-nodes. In both scenarios, we effectively
show scaling performance for up to 40 initiators on 4 targets. Each
initiator-node will have one latency-sensitive initiator and the rest as
throughput-critical initiators to evaluate both latency and throughput.

Figure 9(a) depicts how NVMe-oPF bandwidth improvement
from SPDK continues to increase as more initiator-nodes are
increased for a write workload. We can observe that NVMe-oPF
improves performance by 25.2% while maintaining low latency with
SPDK at 40 tenants. This illustrates that reducing completion notifi-
cations will reduce the number of network packets transmitted over
fabrics for HDFS5 applications. Figure 9(b) shows read performance
on the same experiment. The performance improvement brought
by NVMe-oPF over SPDK for read workload is low compared to
write workload. We attribute this result to an internal data loading
pattern within h5bench. We still observe the average latency of read
requests is lower than write, which further illustrates the overhead
resulting from dataset loading in hSbench. However, NVMe-oPF
performance improvement from SPDK is similar to writing in
which improvement increases with increasing initiator-nodes.
Figure 9(c) illustrates the performance of an increasing number of
initiators per initiator-node on a write workload. We can observe
that 7 initiators per initiator-node (28 total initiators) can saturate
the target-nodes. Although performance begins to drop; we can still
obtain performance improvement from NVMe-oPF.

Figure 9(d) shows the same saturation point at 28 total initiators.
Since read requests are completed quicker than write requests,
we maintain performance after over-saturating our target. After
saturation, NVMe-oPF shows better performance than SPDK.

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on August 23,2024 at 00:59:20 UTC from IEEE Xplore. Restrictions apply.

(a) Read with Scale Pattern 1

™ le5 le2 25 le5 le2
% 20 \‘ wz7) SPDK Thr mma SPDK Lat

= S N 20 ¥ PF Thr ooo PF Lat § 10
-é . V//§§ > 77 \§ 10 §

g \ %\\ 7 s " N W§ °
© 10[i 10| smBs R N

ﬁ 10 15 20 25 10 15 20 25

Initiators
(b) 50:50 R/W with Scale Pattern 1

Initiators

n le5 le5
I~ N
520 AN A 20 \ § §
2 N N, A A
< 10 N 10 \
N\ N
. AR ~ARD
ﬁ 0 4 20 24 0 4 8 12 16 20 24

(d) Read with Scale Pattern 2

(e) 50:50 R/W with Scale Pattern 2

(f) Write with Scale Pattern 2

Fig. 8: Scale-out performance on baseline SPDK and NVMe-oPF on 100 Gbps. A total of 10 nodes are run where 5 act as initiator nodes
and the rest as target nodes. (a, b, ¢) shows results for 5 initiators per initiator-node and (d, e,) shows results for 4 initiators per node.

Initiators

(a) Write with Scale Pattern 2

led

Initiators

1e3

2 led 1e3 s
= g SPDK-The \ 400 31 SpDR Lat 4007
= |\ PF-Thr 8§y 2\ 2l o909 PF-Lats >
E 2 & or{;&\///\\ 200 V\\f % 200 %
A || S £
. 10 20 30 40 10 20 30 40

(b) Read with Scale Pattern 2

g S 400 3 §4oo§
24 N \ NANN| =
£ P\ 2\ oo 2 NN | &
: %\\fX,/\\,\\zoo /(/A&%@NO&E
&2700 28 36 40 1720 28 36 40 o~

Initiators # Initiators

(c) Write with Scale Pattern 1 (d) Read with Scale Pattern 1

Fig. 9: Performance of hSbench I/O kernels when scaling-out
NVMe-oF initiators on SPDK and NVMe-oPF with 25 Gbps on
read and write workloads.

Observation 5: HDF5 with NVMe-oPF increases write
throughput by up to 25.2% when scaling to 40 tenants over
4 NVMe SSDs on 100 Gbps

Discussion on hSbench overhead As explained in prior experiment
results, hSbench’s dataset loading for read requests increases overall
runtime. Unlike write, hSbench read must perform dataset loading
overheads between read requests (hSbench timesteps). For this
reason, the overall bandwidth is much lower than write in our
results. While our results still represent the performance of SPDK
and NVMe-oPF on HDF5, we will work further with the HDF5
community to improve these results.

VI. CONCLUSION AND FUTURE WORK

NVMe-oPF provides the ability for workloads to specify their I/O
optimization strategies—Ilatency-sensitive or throughput-critical—

529

and makes the NVMe-oF runtime multi-tenant aware. NVMe-oPF
creates a priority scheme for numerous tenants with differentiable
optimization strategies by honoring three goals—1) efficient commu-
nication by all tenants and targets; 2) tenant priority optimization
awareness across all tenants; and 3) easy specification of I/O
optimization for applications. We augment userspace NVMe-oF
runtime with zero-copy queues and priority managers to be aware of
application needs. We also introduce three new request flags in the
NVMe-oF specification and enable support for multi-tenancy in the
NVMe-oF target. Our experiments indicate that NVMe-oPF with
10 Gbps increases the throughput of remote read I/O requests by
2.94X and reduces tail-latency by 32.6% with 5 tenants. For remote
write I/O requests, NVMe-oPF with 100 Gbps improves throughput
by 32.6% while maintaining low latency compared to SPDK.
When scaling to 25 tenants, NVMe-oPF with 100 Gbps increases
throughput by 70% and 74.8% on write and mixed read/write
workloads respectively. For application-level experiments, NVMe-
oPF increases the throughput of HDFS5 by 25.2% for write workloads
when scaling to 40 tenants over 4 NVMe SSDs on 100 Gbps.

In the future, we will co-design more HPC and datacenter
applications with the proposed NVMe-oPF schemes to demonstrate
the benefits. We hope to further collaborate with the HDF5
community to bring further benefit with NVMe-oPF.

ACKNOWLEDGMENTS

We are grateful to our anonymous reviewers for their invaluable
feedback on the paper. We would like to thank our lab mates,
with special appreciation to Weicong Chen and Yuke Li for their
valuable input. We gratefully acknowledge the computing resources
provided on Chameleon Cloud and CloudLab which provide us
with our testbed for all our experiments. This work was supported
in part by NSF research grants OAC #2321123 and #2340982 and
a DOE research grant DE-SC0024207.

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on August 23,2024 at 00:59:20 UTC from IEEE Xplore. Restrictions apply.

(11

[2]

[3]

[4

=

[5

=

[6

=

[7

—

8

[t

9

—

[10]

[11]
[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

REFERENCES

X. Lu and A. Kashyap, “Towards Offloadable and Migratable Microservices
on Disaggregated Architectures: Vision, Challenges, and Research Roadmap,”
in The Second Workshop On Resource Disaggregation and Serverless
(WORDS’21), co-located with ASPLOS 2021, WORDS 21, ACM, 2021.
Vision Paper.

P. X. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han, R. Agarwal,
S. Ratnasamy, and S. Shenker, “Network Requirements for Resource
Disaggregation,” in 12th USENIX symposium on operating systems design
and implementation (OSDI 16), pp. 249-264, 2016.

Y. Shan, Y. Huang, Y. Chen, and Y. Zhang, “{LegoOS}: A Disseminated,
Distributed {OS} for Hardware Resource Disaggregation,” in 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 18),
pp. 69-87,2018.

S. Han, N. Egi, A. Panda, S. Ratnasamy, G. Shi, and S. Shenker, “Network Sup-
port for Resource Disaggregation in Next-Generation Datacenters,” in Proceed-
ings of the Twelfth ACM Workshop on Hot Topics in Networks, pp. 1-7, 2013.
Q. Zhang, Y. Cai, X. Chen, S. Angel, A. Chen, V. Liu, and B. T. Loo, “Under-
standing The Effect of Data Center Resource Disaggregation on Production
DBMSSs,” Proceedings of the VLDB Endowment, vol. 13, no. 9, 2020.

G. Michelogiannakis, B. Klenk, B. Cook, M. Y. Teh, M. Glick, L. Dennison,
K. Bergman, and J. Shalf, “A Case for Intra-Rack Resource Disaggregation
in HPC,” ACM Transactions on Architecture and Code Optimization (TACO),
vol. 19, no. 2, pp. 1-26, 2022.

A. Kashyap, S. Gugnani, and X. Lu, “Impact of Commodity Networks on
Storage Disaggregation with NVMe-oF,” in Proceedings of International
Symposium on Benchmarking, Measuring, and Optimizing (W. Gao, J. Zhan,
and E Wolf, eds.), Bench ’20, (Cham), Springer International Publishing, 2020.
C. Guo, X. Wang, G. Shen, S. Bose, J. Xu, and M. Zukerman, “Exploring the
Benefits of Resource Disaggregation for Service Reliability in Data Centers,”
IEEE Transactions on Cloud Computing, 2022.

S. Angel, M. Nanavati, and S. Sen, “Disaggregation and the Application,” in
12th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 20),
2020.

D. Gouk, S. Lee, M. Kwon, and M. Jung, “Direct Access,{High-Performance}
Memory Disaggregation with {DirectCXL},” in 2022 USENIX Annual
Technical Conference (USENIX ATC 22), pp. 287-294, 2022.

“NVM ExpressTM over Fabrics Revision 1.1,” 2019.

D. Ng, C. Parkinson, A. Lin, A. Kashyap, and X. Lu, “An Early Case Study
with Multi-Tenancy Support in SPDK’s NVMe-over-Fabric Designs,” in
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC *23, (New York, NY, USA), Association
for Computing Machinery, Nov. 2023. Research Poster Paper.

J. Min, M. Liu, T. Chugh, C. Zhao, A. Wei, I. H. Doh, and A. Krishnamurthy,
“Gimbal: Enabling Multi-Tenant Storage Disaggregation on SmartNIC JBOFs,”
in Proceedings of the 2021 ACM SIGCOMM 2021 Conference, pp. 106-122,
2021.

“NVMe-over-Fabrics Specification,” 2023.

J. Liu, Q. Koziol, G. E. Butler, N. Fortner, M. Chaarawi, H. Tang, S. Byna,
G. K. Lockwood, R. Cheema, K. A. Kallback-Rose, D. Hazen, and M. Prabhat,
“Evaluation of HPC Application I/O on Object Storage Systems,” in 2018
IEEE/ACM 3rd International Workshop on Parallel Data Storage Data
Intensive Scalable Computing Systems (PDSW-DISCS), pp. 24-34,2018.

J. Soumagne, J. Henderson, M. Chaarawi, N. Fortner, S. Breitenfeld, S. Lu,
D. Robinson, E. Pourmal, and J. Lombardi, “Accelerating HDF5 /O for
Exascale Using DAOS,” IEEE Transactions on Parallel and Distributed
Systems, vol. 33, no. 4, pp. 903-914, 2022.

M. S. Breitenfeld, N. Fortner, J. Henderson, J. Soumagne, M. Chaarawi,
J. Lombardi, and Q. Koziol, “DAOS for Extreme-scale Systems in Scientific
Applications,” 2017.

Intel, “DAOS: Revolutionizing High-Performance
https://www.intel.com/content/www/us/en/high-performance-
computing/daos-high-performance-storage-brief.html, 2023.
The HDF Group, “Hierarchical Data Format, version 5. 1997-NNNN.
https://www.hdfgroup.org/HDF5/.

H. M. Khosravi, Abhijeet Joglekar, and Ravi Iyer, “Performance
Characterization of iSCSI Processing in a Server Platform,” in PCCC
2005. 24th IEEE International Performance, Computing, and Communications
Conference, 2005., pp. 99-107, 2005.

A. Joglekar, M. E. Kounavis, and F. L. Berry, “A Scalable and High
Performance Software iSCSI Implementation,” in Proceedings of the 4th
Conference on USENIX Conference on File and Storage Technologies - Volume
4, FAST 05, (USA), p. 20, USENIX Association, 2005.

>

Storage.

530

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Z. Yang, J. R. Harris, B. Walker, D. Verkamp, C. Liu, C. Chang, G. Cao,
J. Stern, V. Verma, and L. E. Paul, “SPDK: A Development Kit to Build High
Performance Storage Applications,” in 2017 IEEE International Conference on
Cloud Computing Technology and Science (CloudCom), pp. 154-161, 2017.
“SPDK: NVMe over Fabrics Target,” 2023.

H. AlJahdali, A. Albatli, P. Garraghan, P. Townend, L. Lau, and J. Xu,
“Multi-tenancy in Cloud Computing,” in 2014 IEEE 8th International
Symposium on Service Oriented System Engineering, pp. 344-351, 2014.

M. Factor, D. Hadas, A. Harnama, N. Har’el, E. K. Kolodner, A. Kurmus,
A. Shulman-Peleg, and A. Sorniotti, “Secure Logical Isolation for Multi-
tenancy in Cloud Storage,” in 2013 IEEE 29th Symposium on Mass Storage
Systems and Technologies (MSST), pp. 1-5, 2013.

D. Banks, J. Erickson, M. Rhodes, and J. Erickson, “Multi-Tenancy in
Cloud-Based Collaboration Services,” Information Systems Journal, 2009.

J. M. A. Calero, N. Edwards, J. Kirschnick, L. Wilcock, and M. Wray, “Toward
a Multi-Tenancy Authorization System for Cloud Services,” IEEE Security
Privacy, vol. 8, no. 6, pp. 48-55, 2010.

A. Kashyap and X. Lu, “NVMe-0AF: Towards Adaptive NVMe-oF
for 10-Intensive Workloads on HPC Cloud,” in Proceedings of the 31st
International Symposium on High-Performance Parallel and Distributed
Computing (HPDC), pp. 56-70, 2022.

H. Khetawat, C. Zimmer, F. Mueller, S. Atchley, S. S. Vazhkudai, and
M. Mubarak, “Evaluating Burst Buffer Placement in HPC Systems,” in 2019
IEEE International Conference on Cluster Computing (CLUSTER), pp. 1-11,
2019.

L. Cao, B. W. Settlemyer, and J. Bent, “To Share or Not to Share: Comparing
Burst Buffer Architectures,” in Proceedings of the 25th High Performance
Computing Symposium, HPC 17, (San Diego, CA, USA), Society for
Computer Simulation International, 2017.

T. Al-Jody, H. Aagela, and V. Holmes, “Inspiring the Next Generation of HPC
Engineers with Reconfigurable, Multi-Tenant Resources for Teaching and
Research,” Sustainability, vol. 13, no. 21, 2021.

F. Zahid, E. G. Gran, B. Bogdanski, B. D. Johnsen, and T. Skeie, “Efficient
Network Isolation and Load Balancing in Multi-Tenant HPC Clusters,” Future
Generation Computer Systems, vol. 72, pp. 145-162, 2017.

S. Gugnani, T. Li, and X. Lu, “NVMe-CR: A Scalable Ephemeral Storage
Runtime for Checkpoint/Restart with NVMe-over-Fabrics,” in 2021 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
pp. 172-181, IEEE, 2021.

D. Kimpe, K. Mohror, A. Moody, B. Van Essen, M. Gokhale, R. Ross, and
B. R. de Supinski, “Integrated In-System Storage Architecture for High
Performance Computing,” in Proceedings of the 2nd International Workshop
on Runtime and Operating Systems for Supercomputers, ROSS *12, (New
York, NY, USA), Association for Computing Machinery, 2012.

T. Wang, S. Oral, M. Pritchard, B. Wang, and W. Yu, “TRIO: Burst Buffer
Based I/0 Orchestration,” in 2015 IEEE International Conference on Cluster
Computing, pp. 194-203, 2015.

D. Shankar, X. Lu, and D. K. Panda, “Boldio: A Hybrid and Resilient
Burst-Buffer over Lustre for Accelerating Big Data I/0.,” in Proceedings
of IEEE International Conference on Big Data (J. Joshi, G. Karypis, L. Liu,
X. Hu, R. Ak, Y. Xia, W. Xu, A.-H. Sato, S. Rachuri, L. H. Ungar, P. S. Yu,
R. Govindaraju, and T. Suzumura, eds.), BigData 16, pp. 404409, IEEE
Computer Society, 2016. Short Paper.

A. Conway, A. Gupta, V. Chidambaran, M. Farach-Colton, R. Spillane,
A. Tai, and R. Johnson, “SplinterDB: Closing the Bandwidth Gap for NVMe
Key-Value Stores,” in Proceedings of the 2020 USENIX Conference on
Usenix Annual Technical Conference, USENIX ATC’20, (USA), USENIX
Association, 2020.

J. Zhang, M. Kwon, D. Gouk, S. Koh, C. Lee, M. Alian, M. Chun, M. T.
Kandemir, N. S. Kim, J. Kim, and M. Jung, “Flashshare: Punching through
Server Storage Stack from Kernel to Firmware for Ultra-Low Latency SSDs,” in
Proceedings of the 13th USENIX Conference on Operating Systems Design and
Implementation, OSDI’ 18, (USA), p. 477-492, USENIX Association, 2018.
A. Klimovic, H. Litz, and C. Kozyrakis, “ReFlex: Remote Flash Local
Flash,” in Proceedings of the Twenty-Second International Conference on
Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’17, (New York, NY, USA), p. 345-359, Association for Computing
Machinery, 2017.

J. Hwang, M. Vuppalapati, S. Peter, and R. Agarwal, “Rearchitecting Linux
Storage Stack for ps Latency and High Throughput,” in 15th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 21),
pp. 113128, 2021.

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on August 23,2024 at 00:59:20 UTC from IEEE Xplore. Restrictions apply.

[41] A. Tai, I. Smolyar, M. Wei, and D. Tsafrir, “Optimizing Storage Performance
with Calibrated Interrupts,” ACM Transactions on Storage (TOS), vol. 18,
no. 1, pp. 1-32, 2022.

[42] 1. Peng, M. McFadden, E. Green, K. Iwabuchi, K. Wu, D. Li, R. Pearce,
and M. Gokhale, “UMap: Enabling Application-Driven Optimizations for
Page Management,” in 2019 IEEE/ACM Workshop on Memory Centric High
Performance Computing (MCHPC), pp. 71-78, IEEE, 2019.

[43] S. Gugnani, X. Lu, and D. K. Panda, “Analyzing, Modeling, and Provisioning
QoS for NVMe SSDs,” in 2018 IEEE/ACM 11th International Conference
on Utility and Cloud Computing (UCC), pp. 247-256, IEEE, 2018.

[44] Z.Yang, J.R. Harris, B. Walker, D. Verkamp, C. Liu, C. Chang, G. Cao, J. Stern,
V. Verma, and L. E. Paul, “SPDK: A Development Kit to Build High Perfor-
mance Storage Applications,” in 2017 IEEE International Conference on Cloud
Computing Technology and Science (CloudCom), pp. 154-161, IEEE, 2017.

[45] Chameleon Cloud, “Chameleon Cloud.” https://www.chameleoncloud.org/,
2023.

[46] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide, L. Stoller,
M. Hibler, D. Johnson, K. Webb, A. Akella, K. Wang, G. Ricart, L. Landweber,
C. Elliott, M. Zink, E. Cecchet, S. Kar, and P. Mishra, “The Design and
Operation of CloudLab,” in Proceedings of the USENIX Annual Technical
Conference (ATC), pp. 1-14, July 2019.

[47] Top500, “Top500.” https://www.topS00.org/statistics/list/, 2023.

[48] S. Byna, M. S. Breitenfeld, B. Dong, Q. Koziol, E. Pourmal, D. Robinson,
J. Soumagne, H. Tang, V. Vishwanath, and R. Warren, “ExaHDF5: Delivering
Efficient Parallel I/O on Exascale Computing Systems,” Journal of Computer
Science and Technology, vol. 35, pp. 145-160, 2020.

531

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on August 23,2024 at 00:59:20 UTC from IEEE Xplore. Restrictions apply.

