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Large language models (LLMs) like Generative Pre-trained Transformer, Bidirectional
Encoder Representations from Transformers, and T5 are pivotal in natural language
processing. Their distributed training is influenced by high-speed interconnects. This
article characterizes their training performance across various interconnects and
communication protocols: TCP/IP, Internet Protocol over InfiniBand, (IPoIB), and Remote
Direct Memory Access (RDMA), using data andmodel parallelism. RDMA-100 Gbps
outperforms IPoIB-100 Gbps and TCP/IP-10 Gbps, with average gains of 2.5x and 4.8x in
data parallelism, while in model parallelism, the gains were 1.1x and 1.2x. RDMA achieves
the highest interconnect utilization (up to 60 Gbps), compared to IPoIB with up to 20
Gbps and TCP/IP with up to 9 Gbps. Larger models demand increased communication
bandwidth, with AllReduce in data parallelism consuming up to 91% of training time, and
forward receive and back-embedding AllReduce in model parallelism taking up to 90%.
The larger-scale experiment confirms that communication predominates iterations. Our
findings underscore the significance of communication in distributed LLM training and
present opportunities for optimization.

Recently, transformer-based models, like those
in Devlin et al.1 and the GPT-4 Technical
Report,2 have excelled in natural language proc-

essing (NLP) tasks. However, their vast parameter size
makes them complex and challenging. Training large
language models (LLMs) demands significant com-
putational resources due to their large number of
weights, leading to the adoption of distributed training
across GPUs and high-speed interconnects to expedite
the process.3 Distributed training of LLMs necessitates
efficient communication among nodes and GPUs, where
high-speed interconnects like InfiniBand and RoCEv2, as
shown in Figure 1, are crucial for optimizing data transfer,
synchronization, and overall system performance.

The sheer volume of training data and the need
for distributed GPU-enabled training of LLMs further
intensify the demand for high-performance intercon-
nects, without which the communication overheads
can quickly threshold the scalability and efficiency of
LLM training. The past decades have witnessed the

computing capability of modern high-performance com-
puting systems scaling at more than twice the pace of
interconnect bandwidth across generations. This trend
raises myriad potential research problems for achiev-
ing efficient and scalable LLM training, some of which
include the following:

Will interconnects become the bottleneck for
communication, and what proportion of the
training process is occupied by communication
for various types and configurations of LLMs?
Are the current high-performance interconnects
utilized well during different distributed training
scenarios?
What kind of quantitative performance impact
will different networking technologies and proto-
cols [such as Remote Direct Memory Access
(RDMA), Internet Protocol over InfiniBand (IPoIB),
and TCP/IP] have on various LLMs’ training?
What is the varying impact that different strate-
gies or techniques, such as data parallelism
and pipeline parallelism, have on networking
technologies and protocols within distributed
training environments?
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To answer these questions, this article examines
the role of high-performance interconnects in distrib-
uted LLM training by employing the Megatron-LM,3 a
state-of-the-art framework that trains large-scale lan-
guage models. The goal is to provide insights into the
impact of various technologies and protocols on training
efficiency. To achieve this goal, ourmethodology focuses
on four pivotal dimensions: workload, interconnect/
protocol, scalability, and parallelization strategies.

With our performance characterization, this article
makes the following key contributions:

We extend the breadth and depth of our experi-
ments from our previous work4 by applying
model parallelism in experiments using up to
four nodes with a total of eight A100 GPUs
across all evaluated LLMs and interconnect
technologies. Furthermore, in our intensified
data parallelism research, we double our previ-
ous scale by involving up to four nodes with a
total of 16 A100 GPUs and advanced NVLink.
These expanded experiments offer deeper insights
into high-speed data communication in LLMs.
Based on our extended experiments, we evaluate
key metrics, including communication latency,
network bandwidth utilization, and training scal-
ability, to assess the advantages and drawbacks
of each interconnect/protocol choice for LLMs
using high-speed interconnects.
We systematically assess LLM training perfor-
mance on interconnects. Our results show that
high-performance protocols such as (GPUDir-
ect) RDMA outperform others such as IPoIB
and TCP/IP by 2.5! and 4.8! in data parallelism
and 1.1! and 1.2! in model parallelism. Back-
ward parameter sync can take up to 92% of the
training time in data parallelism. Concurrently,
forward receive and backward parameter sync

in model parallelism can take up to 90%, imply-
ing that communication is a major bottleneck
for distributed LLM training.
By examining our methodology, we highlight
the importance of communication in LLM train-
ing and the role of high-speed interconnects.
This article offers the community detailed insight
into the impact of high-performance intercon-
nects on LLM tasks.

CHARACTERIZATION
METHODOLOGY
Methodology Overview
In this section, we present an overview of the methodol-
ogy used to characterize the impact of high-performance
interconnects on LLMs. As mentioned earlier, our char-
acterization focuses on four pivotal dimensions: work-
load, parallelization strategies, interconnect/protocol,
and scalability, as shown in Figure 2(a). By systemati-
cally examining these dimensions, we gain insights into
the performance and efficiency of LLM training under
different parallelization strategies and different inter-
connect settings. The next sections provide a brief
explanation of each dimension.

Workloads
In our characterization methodology, the selection of
LLMs and datasets is pivotal. We focus on popular
open source LLMs such as GPT-2-Medium,5 GPT-2-
Large, Bidirectional Encoder Representations from
Transformers (BERT)-Large,1 and T5-Large,6 which span
various model sizes, architectures, and application
domains. OpenAI’s GPT-2, the transformer-based
decoder model depicted in Figure 2(b), excels in tasks
like summarization and text generation. BERT, boasting
up to 340 million parameters, leverages a bidirectional
encoder [Figure 2(c)] to set benchmarks in NLP tasks,
including text classification. T5, with as many as
11 billion parameters, utilizes a transformer architec-
ture [Figure 2(d)] and is renowned for tasks like summa-
rization, with its transfer learning approach being
widely recognized in the NLP community. Furthermore,
we incorporate a representative dataset, enwiki. Our
evaluation aims to discern the impact and generalizabil-
ity of high-performance interconnects across these
diverse LLMs.

Parallelization Strategies
In distributed training of LLMs, two key strategies
emerge: model parallelism7 and data parallelism.8 Model
parallelism divides the model across devices, with each

FIGURE 1. Communications and interconnects in distributed

training. IPoIB: Internet Protocol over InfiniBand; RDMA: and

Remote Direct Memory Access; MPI: message passing inter-

face; MSCCL: Microsoft Collective Communication Library.
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computing a model segment. Specifically, this article
focuses on pipeline parallelism,9 a type of model paral-
lelism where the model is split into sequential stages
for processing. In contrast, data parallelism distributes
different data portions across devices, each running
the full model on its assigned subset, expediting train-
ing on large datasets. A summary of the workload
parameters for both data and model parallelism can be
found in Table 1.

Interconnect/Protocol
In our methodology, we evaluate interconnect technolo-
gies such as TCP/IP,10 IPoIB,11 and RDMA protocol12 (with
GPUDirect). Each offers distinct performance traits and
efficiencies. By analyzing their impact on LLMs, we gain
insights into communication patterns and the overall
performance, guiding the selection for LLMworkloads.

Scalability
Scalability is crucial for evaluating LLMs in distributed
settings. We assess strong and weak scaling, examining

LLMs across various interconnects under data parallel-
ism to pinpoint bottlenecks and gauge overall training
efficiency.

Through our methodology’s four dimensions, we
evaluate how high-performance interconnects impact
LLMs, offering insights into interconnect technologies
and LLM performance.

Frameworks and Dataset
Framework
We use the Megatron-LM3 framework, designed for
large-scale language model training, to study the impact
of high-performance interconnects on LLMs. Its support
for various interconnects ensures consistent and reli-
able experiments, aiding in effective comparisons.

Dataset
We use the enwiki dataset (20.4 GB) from English Wiki-
pedia in our methodology, offering diverse text for LLM
training. This dataset helps evaluate LLM performance
with high-performance interconnects and understand

FIGURE 2. Proposed characterization methodology and transformer-based LLMs’ architecture overview. (a) The characterization

methodology. (b) GPT: decoder architecture. (c) BERT: encoder architecture. (d) T5: encoder and decoder architecture.

TABLE 1. Comparison of selected LLMs in data parallelism and model parallelism.

Model Architecture Layers Hidden Size Attention Head

GPT-2 Medium Decoder 24 1024 16

GPT-2 Large Decoder 36"/40"" 1280"/1200"" 20"/24""

BERT Large Encoder 24 1024 16

T5-Large En/Decoder 24 1024 16

*: used only in data parallelism; **:used only in model parallelism.
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the implications of parallelization in large-scale lan-
guage modeling.

PERFORMANCE
CHARACTERIZATION
Experimental Setup
Cluster A
The National Science Foundation (NSF)-funded Pin-
nacles cluster at the University of California, Merced, is
equipped with eight GPU nodes. Each node has two
Intel 28-Core Xeon Gold 6330 CPUs (2 GHz), 256-GB
dynamic random-access memory, 2! Nvidia Tesla A100
40-GB GPUs with PCIe interface and without NVLink,
and interconnected via 100-Gbps Enhanced Data Rate
(EDR) InfiniBand with RDMA and 10-Gbps Ethernet. We
use up to four GPU nodes in the evaluation. All the used
software for four models includes Compute Unified
Device Architecture (CUDA) 11.8.0, PyTorch 2.0.0, NVI-
DIA Collective Communications Library (NCCL) 2.14.3,
Nvidia Apex 22.03, andMegatron-LM v3.0.2. This section
analyzes the influence of interconnects on experiments
involving data andmodel parallelism. We use FP16 preci-
sion training and set a global batch size=16 for strong
scaling and a micro batch size¼4 for weak scaling in
data parallelism. Our experiments encompass configu-
rations with one node equipped with two GPUs, two
nodes with four GPUs, and four nodes with eight GPUs.
The number of GPUs and the batch size have the follow-
ing relationship: number of GPUs ! micro batch size=-
global batch size. In model parallelism, we establish
different micro batch sizes for training various models.

Cluster B
Because of the limitations of the Pinnacles cluster,
we conducted our experiments on another cluster
designed for larger GPU scales. Each node in this clus-
ter is equipped with four A100 GPUs. The configuration
features a 600-GB/s NVLink for high-speed intranode
communication, alongwith a 100-Gbps SlingShot connec-
tion that supports RDMA for internode communication.

Strong Scaling in Data Parallelism on
Cluster A
Evaluation of Training Time
Figure 3(a)–(d) presents a comprehensive analysis of
four different models across various numbers of GPUs
and communication protocols/interconnects. We mainly
report average numbers unless otherwise stated as
models show similar performance trends. Among all
the breakdowns in training iteration time, the three
notable components worth discussing are forward

compute time, backward compute time, and backward
parameters sync time (i.e., AllReduce by NCCL).

As the GPU count rises, the models’ forward com-
putation time decreases, exhibiting 57% strong scaling
efficiency. This underscores efficient multi-GPU utiliza-
tion for faster forward propagation.

Similarly, increasing the GPU count reduces the
backward computation time for all models, achieving
72% strong scaling efficiency. This accelerated back-
ward propagation implies enhanced parallel processing
and quicker gradient computations with more GPUs.

Althoughmore GPUs reduce forward and backward
compute times, the backward parameter synchroniza-
tion via AllReduce becomes a tradeoff. As GPU count
rises, the AllReduce time, essential for gradient syn-
chronization, increases by 4.7!, largely due to added
communication overhead. The efficiency of this syn-
chronization varies with the communication protocol
and interconnects, like RDMA or TCP/IP. With 8 A100
GPUs, AllReduce consumes 53%, 82%, and 92% of itera-
tion time for RDMA, IPoIB, and TCP/IP, respectively.

The results in Figure 3(a)–(d) reveal a tradeoff: more
GPUs lead to faster computations but increased AllRe-
duce time due to communication overhead. A scalabil-
ity analysis for two, four, and eight GPUs underscores
the importance of this balance, offering insights for
optimal configurations.

Evaluation of Interconnect Utilization
As AllReduce for backward parameter synchronization
consumes significant training time, influenced by proto-
cols and interconnects, we proceed to analyze achieved
interconnect utilization using system counters. Illus-
trated here are interconnect utilization figures for eight
GPUs, showcased in Figure 3(e)–(h). This choice high-
lights the experiment with the highest utilization, offer-
ing a clearer performance picture of the interconnect.
The assessment evaluates receiver (Rx) and transmitter
(Tx) speeds while training four models using RDMA,
IPoIB, and TCP/IP. We present only the Rx results in
Figures 3 and 4 as the Tx and Rx speeds were almost
identical in our data parallelism experiment. Due to their
similarity, IPoIB’s results partially represent TCP/IP’s per-
formance on high-speed interconnects.

For the two protocols using 100-Gbps InfiniBand,
RDMA shows the highest speeds, ranging from 30 to

Observation 1: In data parallelism, the compute processes
in LLM training exhibit efficient strong scaling, and
the AllReduce communication process predominates in
training time.
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60 Gbps for both the Rx and Tx. This indicates that
RDMA can efficiently utilize the available bandwidth.
On the other hand, IPoIB exhibits slightly lower speeds,
with the Rx and Tx ranging from 17 to 20 Gbps. In con-
trast, TCP/IP shows the lowest speeds among the

interconnect/protocol options, with the Rx and Tx
speeds ranging from 8 to 9 Gbps.

It is worth noting that occasional drops in Rx
and Tx speeds are observed, resulting from checkpoint-
ing and validation processes during model training.

FIGURE 3. Training time breakdown for each iteration. (a) GPT-2-Medium. (b) GPT-2-Large. (c) T5-Large. (d) BERT-Large. Intercon-

nect utilization using data parallelism under strong scaling on cluster A. (e) GPT-2-Medium. (f) GPT-2-Large. (g) T5-Large. (h)

BERT-Large. params: parameters; misc.: miscellaneous; Rx: receiver.

FIGURE 4. Training time breakdown for each iteration. (a) GPT-2-Medium. (b) GPT-2-Large. (c) T5-Large. (d) BERT-Large. Intercon-

nect utilization using data parallelism under weak scaling on cluster A. (e) GPT-2-Medium. (f) GPT-2-Large. (g) T5-Large. (h) BERT-

Large. params: parameters; misc.: miscellaneous; Rx: receiver; Grad: gradients; Inf: infinite.
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Checkpointing involves saving intermediate states,
and validation assesses model performance on a sepa-
rate dataset. These operations intermittently affect
communication and processing speeds, leading to peri-
odic Rx and Tx speed drops.

We observe GPT-2-Large consistently achieves
higher Rx and Tx speeds (30.47 Gbps) within the
models tested than other models, like GPT-2-Medium
(19.93 Gbps), BERT-Large (26.48 Gbps), and T5-Large
(24.19 Gbps). This is because it is relatively large among
all the models in our experiments and thus necessi-
tates more data communication. T5-Large suffers
more severe periodic utilization drops, albeit in compa-
rable size, which hinders its overall interconnect utiliza-
tion. This suggests that GPT-2-Large is more efficient
in utilizing the interconnect bandwidth and demon-
strates better scaling performance in the given strong
scaling scenario.

To summarize, the overall interconnect utilization is
less than desirable, given that we have 100-Gbps Infini-
Band and 10-Gbps Ethernet. Therefore, future analyses
may explore the interplay among the models, GPU con-
figurations, and interconnect/protocol options to gain
a deeper insight into their performance characteristics
and identify strategies for maximizing interconnect
utilization.

Weak Scaling in Data Parallelism on
Cluster A
Evaluation of Training Time
In this section, we evaluate the weak scaling of those
models across different GPU configurations, specifi-
cally, two, four, and eight GPUs. We report average
numbers due to similar strong scaling trends unless
stated otherwise. From Figure 4(a)–(d), we see that the
training iteration time depends mainly on the forward
compute time, backward compute time, and backward
parameter synchronization time.

Under varying numbers of GPUs, all the models
demonstrated excellent scalability regarding forward
compute time and backward compute time, with 97%
and 99%, respectively. As the GPU count increased
from two to four to eight, these models continued to
scale well, with the forward and backward compute

times remaining relatively constant. This indicates that
all the models can handle larger problem sizes without
significantly increasing compute time.

However, it is worth noting that the models show-
cased varying weak scaling characteristics regarding
AllReduce operation. Across all models, the overall
trend remains the same: AllReduce time is heavily
influenced by the protocols/interconnect. Specifically,
RDMA outperforms IPoIB and TCP/IP by 4.1! and 8.7!,
respectively, leading to 2.5! and 4.8! faster training
iterations, respectively.

Among the models, GPT-2-Large and T5-Large dem-
onstrate longer AllReduce time across all GPU configu-
rations, indicating potential communication challenges
during the parameter synchronization step. On the
other hand, GPT-2-Medium and BERT-Large showcase
a relatively shorter AllReduce time. Using eight A100
GPUs, AllReduce time takes up to 51%, 81%, and 91% of
iteration time for RDMA, IPoIB, and TCP/IP, respectively.

In conclusion, although AllReduce time relies heavily
on interconnect types, all the models’ forward and
backward compute times scale well. These observa-
tions highlight the importance of considering the inter-
connect’s characteristics when assessing the scalability
of distributed training for LLMs while showcasing the
models’ ability to scale efficiently in forward and back-
ward computations.

Evaluation of Interconnect Utilization
Analogously, we showcase the interconnect utilization
under a weak scaling experiment with eight GPUs in
Figure 4(e)–(h), providing insights into the performance
characteristics of different models and interconnect/
protocol options. With our analysis, several pivotal find-
ings emerge.

The weak scaling trend initially follows a similar pat-
tern to the strong scaling experiment across all models
and interconnect/protocol options. As the number of
GPUs increases from four to eight, the interconnect
utilization improves: in an eight-GPU setup, it is 1.1!,
1.4!, and 1.7! higher than in a four-GPU setup for
TCP/IP, IPoIB, and RDMA, respectively. This suggests
that incorporating additional GPUs may necessitate

Observation 2: In data parallelism, the utilization of
interconnects for training LLMs follows the order of
RDMA> IPoIB> TCP/IP. Larger LLMs demonstrate
increased interconnect utilization.

Observation 3: In the weak scaling of data parallelism,
compute times remain consistent as the number of nodes
increases from one node (to GPUs) to four nodes (eight
GPUs). Additionally, AllReduce communication continues
to dominate the training time of LLMs.
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the utilization of additional available interconnect
resources.

Among the tested models, GPT-2-Large con-
sistently exhibits the highest utilization (28.6 Gbps),
reaffirming its demand to utilize the interconnect effec-
tively. This can be attributed to its larger model size
and computational workloads, rendering more use of
the available computational resources and intercon-
nect bandwidth.

Regarding interconnect/protocol options, RDMA
consistently outperforms IPoIB and TCP/IP. RDMA,
with its efficient direct memory-access capabilities,
achieves the highest Rx and Tx speeds (38–56 Gbps).
IPoIB follows with slightly lower speeds (17–20 Gbps),
while TCP/IP exhibits the lowest speeds (8–9 Gbps).
This hierarchy emphasizes again the importance of
choosing the appropriate interconnect/protocol option
for achieving optimal interconnect utilization.

Additionally, periodic drops in Rx and Tx speeds
are observed in the data, analogous to the strong
scaling experiment. These drops occur due to the
checkpointing and loss validation processes necessary
to maintain the training process’s integrity and accu-
racy. A heavier workload of eight GPUs incurs more
pronounced Rx and Tx speed drops. Despite being
temporary, these drops reflect the tradeoff between
performance and ensuring the quality of the training
process.

In conclusion, the weak scaling experiment with
eight GPUs reinforces the importance of interconnect
utilization in scaling scenarios. The result highlights
GPT-2-Large’s higher interconnect utilization, the advan-
tage of RDMA over IPoIB and TCP/IP, and the presence

of periodic drops in receive and send speeds. These
findings contribute to a deeper understanding of the per-
formance characteristics of models and interconnect/
protocol options in the context of weak scaling. Further
analysis and experimentation can build upon these
insights to optimize interconnect utilization in different
scaling scenarios.

Model Parallelism on Cluster A
This section evaluates various models across different
GPU configurations in model parallelism, including two,
four, and eight GPUs. As observed in Figure 5(a)–(d),
the training iteration time depends primarily on the for-
ward compute time, backward compute time, forward
receive time, and backward-embedding synchroniza-
tion time. The forward receive time denotes the duration
to receive input data for the forward pass through the
pipeline stages. The backward-embedding synchroniza-
tion time refers to the time needed for AllReduce relative
to embedding layers during backward passes across the
pipeline stages. The global batch sizes for BERT-Large,
GPT-2-Medium, and T5-Large have been configured to
32, 64, and 128 for systems using two, four, and eight
GPUs, respectively. In the case of GPT-2-Large, the
global batch sizes are specifically set to 16, 32, and 64 for
configurations with two, four, and 8 GPUs, respectively.

With an increase in the number of GPUs, all the
models experience an increase in both forward and
backward compute times.

A consistent trend is observed across all the mod-
els: both the forward receive time and the AllReduce
time are influenced by the protocols or interconnect.
Specifically, RDMA outperforms TCP/IP and IPoIB by
up to 1.4! and 1.2! for the forward receive time,
respectively, and by up to 1.4! and 1.2! for the AllRe-
duce time, respectively.

In model parallelism, network communications are
a key factor in LLM training. Among the models,
the forward receive times and AllReduce times for

Observation 4: The interconnect utilization during weak
scaling continues to follow the order of RDMA> IPoIB>
TCP/IP.

FIGURE 5. Training Time Breakdown for Each Iteration in Model Parallelism on Cluster A. (a) GPT-2-Medium. (b) GPT-2-Large.

(c) T5-Large. (d) BERT-Large. params: parameters; misc.: miscellaneous; recv: receive.
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T5-Large represent the largest fraction of the total
time, which may indicate communication challenges
during the parameter synchronization step.

In conclusion, the execution duration for forward
receive and AllReduce vary across different inter-
connect types, and the computation time in model
parallelism may present scalability challenges. These
observations underscore the importance of selecting
the most efficient interconnect type to circumvent
scalability issues in model parallelism.

Data and Model Parallelism Summary
on Cluster A
As shown in Figure 6(a), data parallelism is examined by
further evaluating these models, incrementally increas-
ing the batch sizes until an out-of-memory (OOM) error

occurs. This analysis shows a consistent trend where
communication consumes a significant portion of the
iteration time. Notably, this figure demonstrates that
even though increasing the batch sizes can result in a
reduced proportion of communication time in the over-
all iteration time (amortized by the prolonged computa-
tion time), the communication time can still occupy at
least 34% of iteration time, except for BERT-Large, which
allows for much larger batch sizes.

In Figure 6(b), we showcase model parallelism and
strong scaling by increasing the number of GPUs while
keeping a consistent global batch size, and expanding
batch sizes until an OOM error arises. We observe that
communication proportion rises with batch-size growth,
contrasting with data parallelism. With the same batch
sizes, more GPUs lead to reduced communication frac-
tions. However, the fraction of communication still
constitutes at least 39% of the iteration time for a
global batch size of 64, and 74% of the iteration time
for a micro global size of 128. This exception applies
to GPT-2-Large, which does not permit a global batch
size of 128 when utilizing eight GPUs.

This observation highlights a lower bound of the
communication time proportion because it investigates
until the maximum batch size a model can train with at
the given scale.

Data Parallelism in Larger-Scale GPU
Configurations on Cluster B
This section expands our evaluation to larger GPU con-
figurations by testing the GPT-2-Large model across
four nodes with 16 A100 GPUs. This model is one of the
most substantial open source models available to
the research community. Due to the constraints of the
Pinnacles cluster, we conducted our experiments on
cluster B, utilizing the RDMA protocol.

FIGURE 6. Fraction of communication versus iteration time with larger batch sizes in different parallelisms on cluster A. (a) Data

parallelism and (b) model parallelism. OOM: out of memory.

Observation 5: During LLM training with model parallelism,
as the number of nodes increases from one node (two
GPUs) to four nodes (eight GPUs), there is a corresponding
increase in compute time. Despite this, communication
time continues to dominate the training duration, and
the training speed hierarchy remains as follows: RDMA>
IPoIB> TCP/IP.

LLMS WITHMORE PARAMETERS
TEND TO SHOWHIGHER
INTERCONNECTUTILIZATION
REQUIREMENTS INDATA
PARALLELISM, BUT THERE IS STILL
ROOMFOR THEOVERALL
INTERCONNECTUTILIZATION.
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Addressing the aspects of data parallelism, our
analysis indicates that the upper limit for the global
batch size of GPT-2-Large on an eight-GPU setup is 96.
There is a direct proportionality between the number
of GPUs and the batch size, governed by the following
formula: number of GPUs ! micro batch size=global
batch size. Based on this relationship, we set the global
batch size to 192 for our current assessment. Our find-
ings highlight that AllReduce operations account for
73% of the iteration time, as shown in Figure 7, which
aligns with the findings from our experiments on eight
GPUs with a global batch size of 96, thereby emphasiz-
ing the consistent impact of communication processes
at varying scales of GPU utilization.

CONCLUSION AND
FUTURE WORK

This article contributes to understanding the per-
formance characteristics of LLMs over high-speed
interconnects. Our exploration and summarization of
communication’s role in distributed LLM training yield
valuable insights. These insights inform efficient sys-
tem design to support the growing demand for LLM
applications.

The evaluation yields noteworthy insights, empha-
sizing trends’ similarity and disparity in data parallelism
and model parallelism experiments. This underscores
interconnects’ and protocols’ impact on distributed
training. Notable takeaways include the following:

Forward and backward computation times exhibit
favorable scaling in the context of data parallelism,

but less so in model parallelism. Nonetheless, com-
bining data parallelism and model parallelism in
distributed LLM training introduces scalability
challenges related to communication.
Faster interconnects/protocols can significantly
reduce the distributed training time for LLMs.
Notably, GPUDirect RDMA surpasses IPoIB and
TCP/IP by 2.5! and 4.8!, on average, in data
parallelism for training performance, respec-
tively. In model parallelism, GPUDirect RDMA
outperforms IPoIB and TCP/IP by 1.1! and 1.2!,
on average, in training performance, respectively.
LLMs with more parameters tend to show
higher interconnect utilization requirements in
data parallelism, but there is still room for the
overall interconnect utilization to be improved,
even under heavy-LLM workloads.
As the number of GPUs scales from two to 16,
the communication time, particularly the time
spent in AllReduce operations, continues to
predominate the total iteration time.

Some of the future work may include investigating
the interconnect utilization in model parallelism, explor-
ing distributed training behavior for even larger models
at larger scales, and developing techniques to further
optimize interconnect utilization.
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FIGURE 7. Training time breakdown for 16 A100 GPUs in data

parallelism on cluster B. params: parameters; misc.:

miscellaneous.

Observation 6: In data parallelism with 16 A100 GPUs, the
communication overhead continues to predominate over
iteration time as the scale of GPU configurations increases.

AS THENUMBEROFGPUS SCALES
FROMTWO TO 16, THE
COMMUNICATION TIME,
PARTICULARLY THE TIME SPENT
IN ALLREDUCEOPERATIONS,
CONTINUES TOPREDOMINATE
THE TOTAL ITERATION TIME.
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