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Abstract—Data compression has become a crucial technique
in addressing performance bottlenecks caused by increasing
data volumes in High-Performance Computing (HPC), Big Data,
and Deep Learning (DL). Despite its potential to boost system
performance, recent studies have identified significant challenges
with existing compression methods, mainly due to their high
computational demands amidst continuously growing data sizes.
Concurrently, the advent of Data Processing Units (DPUs),
equipped with programmable System-on-Chip (SoC) and spe-
cialized compression accelerators, offers a promising opportunity
to alter the landscape of data compression. This paper explores
the complexities and potential of leveraging NVIDIA BlueField
DPUs to accelerate lossy and lossless compression. Towards
this, we introduce PEDAL, an innovative library that leverages
the hardware capabilities of DPUs to unify and optimize data
compression designs. Moreover, we seamlessly co-design PEDAL
with the popular MPICH MPI library, demonstrating up to 101x
speedup in compression time and 88x decrease in communication
latency. Drawing on these achievements, we share our experience
with various research communities about accelerating data com-
pression on DPUs in communication-oriented HPC scenarios.

Index Terms—Data Processing Unit (DPU), BlueField DPU,
Lossy Compression, Lossless Compression

[. INTRODUCTION

Data compression is a technique aimed at effectively re-
ducing the size of the data while maintaining its integrity
or quality to the desired extent. It serves as a fundamental
approach to addressing performance bottlenecks in the realms
of parallel and distributed computing, where scientific and
deep learning (DL) applications can benefit from elevated
efficiency of data storage and movement [1]-[9].

Recent advancements in lossy and lossless data compres-
sion highlight the intense computational demands required to
manage growing data volumes amidst the rise of Big Data,
HPC, and DL technologies. To improve compression algorithm
efficiency, strategies targeting various computing platforms
like x86 CPUs [10]-[12], GPUs [13], [14], and FPGAs [15],
[16] have been proposed, indicating a broad effort to address
these computational challenges across mainstream hardware.

* is the corresponding author.

A. Motivation

In this evolving landscape, the emergence of Data Pro-
cessing Units (DPUs), particularly NVIDIA’s BlueField se-
ries [17], [18], heralds a fresh direction for data compression
research. DPUs enhance the functionalities of traditional net-
work interface cards (NICs) with general-purpose computing
capabilities and dedicated hardware accelerators for compres-
sion algorithms, offering a novel adjunct to performing data
compression on conventional platforms. As DPUs offer inher-
ent proximity to the data transmission pathways, we believe
DPUs present a unique advantage for crafting efficient data
compression methodologies, especially for communication-
oriented application scenarios within the HPC domain.

While our earlier studies [19], [20] have initiated the explo-
ration of characterizing lossy and lossless compression and
decompression performance on DPUs, to the best of our
knowledge, no comprehensive investigation has yet formu-
lated a unified and efficient strategy for accelerating both
lossy and lossless compression and decompression on both
NVIDIA BlueField-2 and BlueField-3 DPUs. Moreover,
there is a notable absence of existing studies on DPU-based
compression tailored for communication-oriented scenarios in
the HPC domain. This notable absence thus forms a critical
motivation for our inquiry, underlining the importance of our
research efforts in this area.

B. Challenges

Yet, leveraging DPUs for lossless and lossy compression in
communication-oriented workloads presents significant obsta-
cles. We highlight three primary challenges that necessitate
creative solutions and careful planning.

(1) Hardware Limitation in BlueField DPUs: The BlueField
DPUs from NVIDIA inherently support a limited set of loss-
less compression algorithms through their specialized hard-
ware compression engine (namely C-Engine), as documented
in [21]. Furthermore, the support for efficient lossy compres-
sion on BlueField DPUs remains unclear. This opens up a
promising avenue for research, prompting the question: How
can the SoC and C-Engine of different BlueField generations
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be harnessed to benefit both lossy and lossless compression
during communication?

(2) Limitations of Existing Compression Designs: State-of-
the-art compression designs, such as DEFLATE [22], zlib [23],
SZ3 [12], SZX [13], cuSZ [14], and WaveSZ [15], primarily
focus on compressing datasets for storage scenarios. None of
these prior works have systematically evaluated both lossy
and lossless compression and decompression performance,
specifically in transmitting datasets with NVIDIA BlueField-2
and BlueField-3 architectures. However, efficient compression
designs for communication are crucial, as the movement of
large data volumes constitutes a major performance bottleneck
in many HPC and Deep Learning (DL) applications [1],
[2], [4], [24]-[30]. Consequently, there is an under-explored
research challenge: How can we leverage DPUs to facilitate
on-the-fly lossy and lossless compression for communication-
oriented workloads?

(3) Complexity in Integrating Compression Designs with
Communication Libraries: Enhancing performance through
compression designs on DPUs for prominent communication
libraries, such as Message Passing Interface (MPI), is a com-
plex task. Moreover, achieving efficient integration while min-
imizing changes to the communication library’s APIs is critical
to ensure wide adoption. This leads us to the question: How
can we efficiently co-design the proposed lossy and lossless
compression schemes with MPI to achieve high performance
and minimal disruptions to the library’s core functionality?

C. Contributions

In response to these challenges, this paper makes the
following contributions.

Firstly, we investigate and harness the SoC and the C-
Engine embedded in BlueField-2 and BlueField-3. These
components become the backbone of our innovative approach,
where multiple compression and decompression algorithms
find a home. Through this method, we enhance the efficiency
of our proposed PEDAL library, seamlessly integrating both
lossy (SZ3 [12]) and lossless (zlib [23], DEFLATE [22], and
LZ4 [31]) compression schemes on these emerging devices.
To optimize these processes, we introduce a repertoire of in-
novative techniques. These include extracting C-Engine initial-
ization and intertwining it with MPICH [32] runtime, employ-
ing a streamlined header design to synchronize compression
and decompression between senders and receivers, caching
memory buffers for efficient reuse, and extending existing
compression schemes to harness the combined capabilities of
DPU’s SoC and C-Engine. The comprehensive framework of
these techniques is detailed in Section III.

Secondly, we incorporate our compression framework into
a co-design with MPICH, focusing on the MPI_Send and
MPI_Recv routines. This endeavor enables applications and
upper-layer communication libraries to effortlessly execute
efficient lossy or lossless compression and decompression.
The significant performance improvements from this co-design
are detailed in Section V, showcasing PEDAL’s exceptional
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capabilities. Notable achievements include a 101-fold increase
in compression efficiency and an 88-fold decrease in commu-
nication latency, marking PEDAL as a transformative element
in enhancing data compression and communication speed.

Lastly, we share insights on accelerating lossy and lossless
compression on BlueField DPUs across multiple communi-
ties, advocating for the re-integration of C-Engine in future
DPU architectures and encouraging the DPU community to
enhance algorithmic diversity and programmability. We sug-
gest the MPI community evaluate strategies for optimizing
data compression tasks offloaded to DPUs, highlighting the
need for improved compression infrastructure within MPI
frameworks. For PEDAL users, we emphasize the seamless
integration of our co-design with MPICH, maintaining the
MPI interface’s consistency. Additionally, we offer the data
compression community a foundation for advancing DPU-
based compression designs, suggesting collaborative efforts for
further performance enhancement.

II. BACKGROUND
A. NVIDIA BlueField DPUs

Data Processing Units (DPUs), or Smart Network Interface
Cards (SmartNICs), represent programmable network interface
components designed to assist servers by offloading computa-
tional tasks. Our study employs the following two DPUs that
span two generations of NVIDIA BlueField DPU series:

NVIDIA BlueField-2: As illustrated in Figure la, the
NVIDIA BlueField-2 DPU features hardware accelerators for
offloading key networking, storage, and security tasks from
the CPU. It incorporates an ARM-based System-on-Chip
architecture and DDR4 memory, paired with a PCle switch
and NVIDIA ConnectX-6 NIC, supporting up to 200 Gb/s
Ethernet or InfiniBand connectivity.

NVIDIA BlueField-3: The BlueField-3 DPU represents a
notable advancement over its predecessor. Illustrated in Fig-
ure 1b, it supports up to 400 Gb/s Ethernet or InfiniBand
via the ConnectX-7 NIC. Upgrading to DDRS5 standards with
more channels enhances RAM throughput by up to 4.2x
compared to BlueField-2. The CPU within the SoC also
sees an upgrade to 16 ARM Cortex-A78 cores, doubling the
core count and quadrupling computational power [33]. With
the addition of AI/HPC accelerators, the BlueField-3 DPU
sets new performance and efficiency benchmarks for handling
complex data and communication-oriented tasks such as data
compression.
BlueField DPUs can operate in two distinct modes:

Separated Host Mode: In this configuration, the System-
on-Chip (SoC) of the DPU serves as an independent host
analogous to external servers. The architecture ensures that
both the host and the DPU’s SoC are allocated with unique
network addresses. This mode mirrors the functionality of off-
path SmartNICs, with the host’s traffic bypassing the SoC.

Embedded CPU Function Mode (SmartNIC Mode): Under
this mode, the SoC oversees the NIC resources and data
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Fig. 1: BlueField DPUs architecture.

pathways. Therefore, the network traffic to and from the host
is channeled through a virtual switch on the SoC cores. In
the SmartNIC mode, the DPU acts as an on-path SmartNIC,
where the SoC within the DPU is utilized to adjust network
packets during data transmission.

Notably, SmartNIC mode results in losing RDMA-IB sup-
port on the host due to hardware limitations up to the latest
BlueField devices [34], i.e., BlueField-3. Therefore, our data
compression methodology in this paper builds upon the Sep-
arated Host Mode for DPUs.

B. Compression

Reducing data volumes through compression techniques
has gained increasing attention, particularly in large-scale
HPC applications. Within the data compression community,
there are two primary research directions: lossy and lossless
compression.

Lossy Compression: This group of algorithms yields high
compression ratios by strategically omitting parts of the data.
In application scenarios where reducing data volumes is
paramount and loss of data integrity and accuracy are tolerable
to some extent, lossy compression methods, such as SZ3 [12],
prove indispensable. SZ3’s compression sequence starts with
a preprocessor that normalizes and conditions the data. Follow-
ing this, a predictor utilizes algorithms to accurately forecast
data values, effectively mitigating prediction errors. Next, the
quantizer approximates these prediction errors, balancing pre-
cision retention with high compression ratios. An encoder then
implements entropy coding. Finally, a lossless compressor is
employed to ensure no additional data loss while maximizing
compression efficiency.

Lossless Compression: This group of compression algorithms
can fully ensure data integrity during the decompression
process by trading off lower compression ratios compared
to lossy compression. DEFLATE [22] exemplifies lossless
compression by integrating LZ77 [35] to remove duplicate
strings from data blocks and Huffman coding [36] for optimal
symbol encoding. Specifically, LZ77 minimizes redundancy
by substituting repeated sequences with references to earlier
instances, and Huffman coding optimizes size reduction by
allocating shorter codes to common symbols and longer codes
to infrequent ones.
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III. PROPOSED DESIGNS FOR PEDAL

Inspired by the performance characterization presented in
our prior studies [19], [20], we have developed a uniform
compression and decompression library, PEDAL, to fully
leverage the SoC and the data compression accelerator, namely
C-Engine, on BlueField-2 and BlueField-3 for multiple com-
pression and decompression designs. In the rest of this section,
we will elaborate our designs towards this uniform compres-
sion and decompression library with the selected compression
designs.

Furthermore, we have also attempted to optimize these
designs by drawing inspiration from our prior studies on DPU
compression characterization, aiming to further enhance the
performance of these designs.

A. Selected Compression Algorithms

We select four prominent compression algorithms as out-
lined in Table I. The chosen lossless algorithms include
DEFLATE [22], zlib [23], and LZ4 [31]. These algorithms
are versatile to accommodate a range of data types such as
text files, images, binary data, and databases. Concurrently,
we also select one lossy design, SZ3 [12], which primarily
targets scientific data compression.

TABLE I: Compression designs and features.

Algorithm Purpose Lossless  Lossy
DEFLATE  General Data Compression v

zlib General Data Compression v

LZ4 General Data Compression v

SZ3 Scientific Data Compression v

All selected algorithms were executed on the SoC. When
leveraging the BlueField DPU’s C-Engine, one must utilize
the NVIDIA DOCA SDK [21]. This SDK enables hardware-
accelerated compression and decompression for DEFLATE
and LZ4. The compression designs supported by BlueField
DPU’s SoC and C-Engine are summarized in Table II. For the
lossless compression algorithms, our experiments employed
their default settings (e.g., compression levels and window
sizes). For the lossy compression design (SZ3), an error bound
of 1e-4 was employed, which is a common configuration in
SZ3 and comparable to lossless compression designs.

TABLE II: Compression algorithms supported by different
hardware on BlueField-2 (BF2) and BlueField-3 (BF3).

Algorithm SoC C-Engine
Compression Decompression

DEFLATE BF2, BF3 BF2 BF2, BF3

zlib BF2, BF3 - -

LZ4 BF2, BF3 - BF3

SZ3 BF2, BF3 - -

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on August 23,2024 at 00:58:08 UTC from IEEE Xplore. Restrictions apply.



B. PEDAL Overview

PEDAL, our proposed uniform compression and decompres-
sion library, has been designed to maximize the utilization of
both BlueField DPU’s SoC and C-Engine for lossy and lossless
compression algorithms. PEDAL encompasses three designs:
1) it optimizes zlib and SZ3, originally only running on the
SoC, to leverage both the SoC and C-Engine; 2) it ports all
compression algorithms in Table I to the SoC; and 3) it wraps
the existing algorithms, i.e., DEFLATE and LZ4, provided by
the C-Engine. Based on this, PEDAL can enumerate up to
eight compression designs. The comprehensive architecture of
PEDAL is showcased in Figure 2.

In the upper layer (blue enclosure), PEDAL provides
streamlined APIs to compress and decompress a range of
data buffers. By co-designing with MPICH (discussed in
Section IV), the data buffer pointer can be passed to PEDAL
compress and decompress APIs to execute the selected com-
pression design. In the default case, different compression
designs have different APIs, limiting broad-range applicability.
Therefore, in the middle layer (green enclosure), we propose
integrating various compression designs into a set of uniform
APIs. Based on this goal, we port algorithms highlighted in
yellow boxes to the SoC and wrap the default compression
designs provided by C-Engine (highlighted in orange boxes)
into the uniform PEDAL APL

In addition, we optimize the lossless zlib and lossy SZ3 by
leveraging both the SoC and C-Engine, as highlighted in green
boxes in zlib (C-Engine) and SZ3 (C-Engine), respectively. As
a result, via the PEDAL_Compress and PEDAL_Decompress
APIs, users can execute SZ3, DEFLATE, zlib, and LZ4 by
combining strategies highlighted in three boxes, constituting
up to eight compression designs that leverage both the SoC
and C-Engine. We highlighted which compression algorithms
can be deployed on which hardware architecture (i.e., the SoC
or the C-Engine) or BlueField DPU generations in Table III.

Subsequent sections provide an in-depth exploration of
PEDAL’s intricacies, encompassing its compression and de-
compression strategies, the signature of PEDAL header, and
its standardized APIs.

Co-design with MPICH
PEDAL_Compress/PEDAL Decompress APIs

4

SoC (BF2/3) C-Engine
DEFLATE zlib DEFLATE || LZ4
s73 1Lz4 (BF2/3) ||(BF3)
[523 (C-Engine)} [zlib (C-Engine)}
(BF2/3) (BF2/3)

Our ported design to SoC Default by C-Engine

Our proposed acceleration by
leveraging both SoC and C-Engine

0

Fig. 2: Architecture overview of PEDAL.
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TABLE III: Compression designs supported by the PEDAL on
different hardware of BlueField-2 and BlueField-3. Compared with
the Table II, we extend more compression designs and support on
BF2/BF3, which are italicized in this table: zlib and SZ3 on C-Engine.

Algorithm  SoC Core C-Engine
Compression Decompression

DEFLATE BF2, BF3 BF2 BF2, BF3

zlib BF2, BF3 BF2 BF2, BF3

LZ4 BF2, BF3 BF3

SZ3 BF2, BF3 BF2 BF2, BF3

C. Compression Designs in PEDAL

In our prior DPU compression characterization efforts, we
noted that the buffer preparation and the DOCA initialization
process collectively consumed approximately 90% of the total
execution time. This observation indicates that using C-Engine
incurs significant overhead. To address this overhead, PEDAL
prearranges all essential buffers through a memory pool, and
sets up the DOCA configuration only at initialization. The
memory pool is devised to reuse intermediate buffers, and
eliminate the frequent need for memory allocation, dealloca-
tion, and mapping between regular and DOCA-operable mem-
ory during each compression and decompression execution.

1) Lossless Compression: PEDAL utilizes DOCA to extend
the lossless compression design from the SoC to the C-Engine.
DOCA supports DEFLATE compression and decompression
operations on BlueField-2; and DEFLATE decompression and
LZ4 decompression operations on BlueField-3. Apart from
these lossless compression algorithms provided by DOCA, we
modify the compression design for zlib to enable it to run
on the C-Engine. This is because zlib uses DEFLATE as a
compression algorithm under the hood, plus an extra header
and a trailer combined with the compressed data. PEDAL
assigns computation to the zlib header and trailer on the SoC,
while diverting the actual data compression execution on the
C-Engine.

In Figure 3, the compression steps for zlib involves: 1)
init_data_env: Initialize the DOCA configurations and
memory pool on the SoC; 2) prepare_data_buffer:
Map the data into DOCA-specific buffer on the SoC; 3)
data_compressing: Submit a compression job via DOCA
to the C-Engine, where the data is scheduled to be compressed.
After the compression job is complete, the compressed data
will be stored in a user-specified buffer on the SoC; and 4)
z1lib_header and z1ib_trailer: Calculate zlib-specific
header and trailer on the SoC, and put them to the head and
tail of the compressed data.

2) Lossy Compression: The modules designed for lossy
compression are illustrated in Figure 4. Since lossy compres-
sion algorithms involve lossless compression, we identify a
potential opportunity to accelerate the original design, where
PEDAL utilizes the C-Engine to perform lossless compression
within a lossy compression process. To exemplify, we detect
that SZ3 utilizes DEFLATE or LZ4 within its compression
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D. Unified APIs

Listing 1 illustrates the streamlined APIs offered by
PEDAL. PEDAL_Init establishes the PEDAL context and
environment, including the memory allocation, deallocation,
mapping between regular and DOCA-operable memory, and
DOCA initialization. By doing so, we can integrate the
PEDAL_Init function into the communication initializa-
tion part of the communication runtime library, such as
MPI_Init . Then, users can utilize PEDAL_compress
and PEDAL_decompress for efficient data compression and
decompression with selected compression designs. To fully
leverage the PEDAL library, it’s crucial to focus on making
the API robust and user-friendly. This ensures it works well
for a variety of hardware, whether running on the SoC, the C-
Engine, or both. For instance, PEDAL_compress processes
a data buffer, outputs a new buffer address with compressed
data, and updates out_count to indicate the compressed
data size. The datatype parameter aids in lossy compression
by specifying the algorithm’s required datatype (e.g., integer,
float, or double), enhancing compression efficiency.

/* PEDAL context and environment initialization =/
int PEDAL_init (void #user_ctx);

/* message compression by PEDAL x*/
const void «in,

int count, int xout_count);

7 /* message decompression by PEDAL x/

o

int
int in_out_count);

void PEDAL_decompress (int datatype, void =in,
in_count, void *in_out_buf,

/* Finalize PEDAL environment =/

int PEDAL_finalize (void =*user_ctx);

Listing 1: The uniformed PEDAL APIs for data compression
and decompression.
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PEDAL allows flexible selection of the proposed compres-
sion designs. As depicted in Table III, while all compression
algorithms can run on the SoC, compatibility with BlueField
DPUs’ C-Engine varies by generation. PEDAL can automat-
ically detect the hardware capability of the BlueField series
to determine supported compression designs, and intelligently
fall back to SoC-based compression designs if a compression
algorithm is unsupported by the C-Engine, thus avoiding
software failures.

E. PEDAL Header

As shown in Figure 5, on the sender side, the original data
buffer pointer will be passed to PEDAL compression. Within
the PEDAL compression, two data types are populated: a tiny
header and the compressed data itself. The header comprises
three bytes, with the first and third bytes acting as indicators
in OxFF to signal whether the data received is compressed.

Additionally, these indicators assist in determining the
appropriate compression design for decompressing on the
receiver side. The number in the second byte, identified
as Algo1ID, specifies the selected compression design. This
header, along with the compressed data, is then transmitted to
the receiver. Upon receiving the data, the receiver’s PEDAL
decompression can determine whether the data is compressed
and, if so, identify the specific compression design used. Sub-
sequently, it applies the corresponding design to decompress
the data.

/" Decompression

| PEDAL
Decompression

PEDAL
Compression

1
1
1
1
'
(1
]
1
1
'
'
1
\
\

Compressed
Original data Data Original data
Sender Receiver

Fig. 5: Overview of the tiny PEDAL header design.

IV. CO-DESIGN WITH MPICH:
A PLUGGABLE APPROACH WITH CODE GENERATION

This section outlines our objective of supporting on-the-fly
compression using the MPI communication runtime library.

Figure 6 illustrates how we integrate PEDAL with MPICH,
one of the most widely used MPI implementations in the
HPC domain. On the sender side, PEDAL sits between the
shim (to bridge the MPI abstraction and lower-level hardware
interfaces) and transport layers (i.e., UCX [37]/OFI [38]).
When a message requires compression, PEDAL is invoked
internally to compress the data and generate a new buffer that
consists of the PEDAL header and the compressed message.
This new buffer is then forwarded to the transport layer
(UCX/OFI) and transmitted across the network to the receiver
side. On the receiver side, PEDAL is integrated within the
MPICH’s binding layer, wherein it calls into the MPICH’s
internal binding function [39]. Instead of using a user-defined
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buffer from MPI_Recv, MPICH posts the receive request
with a PEDAL-generated buffer. Once the complete message
arrives in the PEDAL buffer, PEDAL decompresses it, and
the resultant decompressed message is populated into the user-
defined buffer directly without an additional copy.

s Sender )
:[ MPI_Send ]—’[ Shim Layer] !
comp=0 _— Jcomp=1 |
1
1

' (UCX/OF1}«—{PEDAL compress)

\

e -

pmmm i m——

Fig. 6: Overall architecture for co-design with MPICH.

This co-design approach has two primary benefits: flexibility
in embracing future compression designs and the ability to
choose whether to employ compression designs in the user-
built MPICH library. For instance, future developments could
involve various compression designs using the SoC and C-
Engine to achieve parallel compression and decompression.
Users only need to update PEDAL to support additional
compression designs, eliminating the need to rebuild the entire
MPICH library. Moreover, the streamlined PEDAL APIs
provide flexibility during the MPICH code-building process,
allowing users to decide whether to include PEDAL when
building MPICH on their machines. This flexible approach
caters to diverse performance requirements and preferences
while ensuring extensibility and customization.

In addition to the co-design implementation within the
MPI_Send and MPI_Recv, the PEDAL_init is integrated
into the MPI_Init to minimize the overhead associated with
PEDAL initialization.

Currently, PEDAL operates on MPI's Rendezvous (RNDV)
protocol for larger message sizes rather than the Eager protocol
for smaller message sizes. This is mainly due to the latency
overhead of compression and decompression operation, which
prevent compression techniques from benefiting short mes-
sages. At present, both PEDAL and MPICH run on the DPU
to minimize the data movement overhead across the PCle bus.

V. EVALUATION
A. Dataset

Alongside the compression designs, we selected eight
widely-used datasets with various sizes for benchmarking as
shown in Table IV. For lossless designs, we chose five datasets
from multiple fields, from floating point datasets to XML files.
For lossy compression designs, we chose three datasets with
scientific data from SDRBench [40], [41]. We then describe
the datasets in detail.

silesia [42]: The silesia corpus is a benchmark collection
for testing lossless data compression algorithms, designed to
address limitations in existing standard corpora. It features
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files ranging from 6 MB to 51 MB and covers diverse data
types. In silesia corpus, we choose xml, mr, samba and
mozilla. Notably, it includes database files, concatenated
large projects, executable files, and non-compressible medical
images. It also introduces various text file formats like PDF,
HTML, and XML. It offers a more relevant and up-to-date
evaluation dataset for compression algorithms.

obs_error [43]: obs is a scientific IEEE standard floating-point
dataset, and obs_error specifies the brightness temperature er-
rors from a weather satellite. The high-precision floating point
format and scientific computing characteristics yield a high-
quality dataset for benchmarking the compression designs.

exaalt [40], [41]: is a molecular dynamics simulation dataset
that involves intensive floating points.

TABLE IV: Eight datasets with various sizes and features.

Size Hatches in

Design Dataset Description (MB) Fig. 7-9
silesia/xml XML files, text 5.1 ]
silesia/mr 3-D MRI image, DICOM  9.51

Lossless  gjlesia/samba  source code and graphics 20.61 3
obs_error single Float-Point 30
silesia/mozilla  exe 48.85 Eﬂ

—

Loss ex?élt-d‘ata%etl MD simulation, 10

Y exaalt-datase3  Gpo1o foar-point 31 N
exaalt-dataset2 64 P
B. Testbeds

Evaluations for BlueField-2 and BlueField-3 were con-
ducted on the Thor cluster, which belongs to the HPC Ad-
visory Council High-Performance Center (HPCAC) [44]. The
BlueField-2 DPU within this cluster has 8 ARM Cortex-A72
2.75 GHz cores, accompanied by 16 GB of on-board DDR4
DRAM. The BlueField-3 boasts 16 ARM Cortex-A78 cores
and 16 GB of on-board DDRS memory. Both DPUs operate
under Rocky Linux 9.1 and are equipped with the DOCA
SDK v2.0. Throughout our experiments, we ensure that the
BlueField-2/3 DPUs operate in the Separated Host mode.

C. Evaluation on Compression Designs Supported by PEDAL

1) Lossless Compression Evaluation with PEDAL: Figure 7
provides a detailed analysis of the time distribution across four
fractions (including DOCA initialization, buffer preparation,
data compression, and decompression) engaged in lossless
compression designs on BlueField DPUs on five datasets
as enumerated in Table IV. The fundamental stages include
memory buffer allocation for compressed and decompressed
data, the initialization of the C-Engine, especially if DOCA
is engaged, and the primary task of compressing and decom-
pressing the data itself.

Figure 7a indicates the time distribution of the entire loss-
less compression and decompression execution on the SoC
and C-Engine for BlueField-2. Harnessing the C-Engine of
BlueField-2 results in a noteworthy reduction in the total
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compression and decompression time, with an acceleration
factor reaching 9.67 x for lossless compression designs. How-
ever, when running compressing or decompressing through C-
Engine, it is evident that the initialization stage (DOCA_TInit)
along with memory allocation contribute to approximately
94% of the total execution time, particularly when handling
smaller message sizes, around 5.1 MB.

Figure 7b illustrates the time distribution of compression
and decompression on the SoC and C-Engine for BlueField-
3 DPU. In marked contrast to BlueField-2, the C-Engine
of BlueField-3 exhibits comparable, and in certain instances,
marginally prolonged time consumption in relation to its
SoC. Delving deeper into this observation, it is ascertained
that the C-Engine quipped on BlueField-3 cannot facilitate
compression operations. Instead, it exclusively supports de-
compression functionalities. Consequently, any compression
designs initiated on BlueField-3’s C-Engine are automatically
redirected to execute on the SoC. While the C-Engine is
proficient in delivering expedited decompression time, the
overhead engendered by the DOCA initialization mitigates
the performance advantages conferred by the C-Engine. Con-
sequently, the aggregate time required for compression and
decompression remains relatively consistent across different
lossless compression designs, regardless of whether they are
executed on BlueField-3’s SoC or C-Engine.

=
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;f [ DOCA Init
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=
1

C-Engine
(a) BlueField-2
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(b) BlueField-3

Fig. 7: Time distribution for lossless compression designs on
BlueField-2 and BlueField-3 across varied datasets. Within
each compression design, datasets are arranged in ascending
order of size from left to right.

In Figure 7, one can observe that the potential performance
advantages of BlueField’s SoC and its C-Engine are somewhat
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masked by the pronounced overheads associated with memory
allocation and DOCA initialization. PEDAL addresses this by
sidestepping these overheads at runtime; it delegates memory
allocation and engine initialization tasks to the PEDAL_INIT
phase. This strategic approach empowers upper-layer commu-
nication protocols, such as MPI communication, to capitalize
on the pure compression and decompression capabilities of
BlueField DPUs, as elaborated in SectionsV-D and V-E.

Figure 8 offers a comparative perspective on the raw per-
formance of PEDAL'’s lossless compression and decompres-
sion between BlueField-2 and BlueField-3 DPUs, across five
distinct datasets as enumerated in Table IV. Three insights
emerge from this comparison: 1) regardless of the computation
platforms, whether the SoC or the C-Engine, there is a direct
correlation between the compression and decompression times
and the dataset size; 2) the decompression time is invariably
shorter than the compression time on both BlueField-2 and
BlueField-3 DPUs; and 3) the C-Engine consistently exhibits
superior speed in handling any lossless compression technique
(be it DEFLATE, LZ4, or zlib) compared to the SoC for DPUs.

For instance, the C-Engine for BlueField-2 is remarkably
101.8x and 11.2x swifter than its SoC counterparts when
processing the DEFLATE compression and decompression
design with the 5.1 MB silesia/xml dataset. For the zlib com-
pression design with the 48.84 MB silesia/mozilla dataset, the
compression operation on the C-Engine is 84.6x of on the
SoC, the decompression operation on the C-Engine is 20x of
on the SoC for BlueField-2. Compared with the C-Engine for
BlueField-2 and BlueField-3, the BF3’s C-Engine outperforms
BF2’s 1.78x and 1.28x on DEFLATE decompression opera-
tion with dataset sizes 5.1 MB and 48.84 MB, respectively.

Consequently, to maximize efficiency, PEDAL predomi-
nantly relies on the C-Engine of BlueField (when applicable)
over the SoC, thus ensuring optimal compression and decom-
pression performance.

2) Lossy Compression Evaluation with PEDAL: Figure 9
indicates the time distribution across four fractions engaged
in lossy compression designs on BF2/BF3 on three datasets
ranging from 10MB to 64 MB as enumerated in Table IV.

Interestingly, BF2 exhibits comparable cumulative execution
times for compression and decompression across both the
SoC and the C-Engine. This phenomenon can be attributed
to the architecture of SZ3, where the consumption of time
by the lossless compression component does not significantly
impact SZ3’s performance-critical path. As a result, leveraging
the C-Engine exclusively for its lossless compression doesn’t
markedly amplify the speed compared to using the SoC.
However, this highlights a prospective hybrid design avenue
for exploiting both SoC and C-Engine in parallel, especially
when the SoC is occupied. Importantly, leveraging the C-
Engine does not detrimentally affect the performance metrics
of lossy compression and decompression processes on BF2.

Transitioning to BlueField-3, an observable distinction
emerges. When employing the SoC for lossy compression
techniques, performance improvements are up to 1.58x com-
pared to employing the C-Engine for a 10 MB dataset. The
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Fig. 9: Time distribution for lossy compression designs with
SZ3 running on the BlueField-2/3.

underpinning reason for the relatively diminished speed of the
BF3 C-Engine compared with the BF3 SoC in compression
tasks lies in the BF3’s limitation — it lacks native support for C-
Engine-accelerated compression operation. Consequently, op-
erations redirect to the SoC DEFLATE design. Since the DE-
FLATE design is less optimized than SZ3’s inherent zstandard
compressor in compression latency, the compression speed on
BF3’s C-Engine lags behind that of its SoC counterpart. No-
tably, on BlueField-3, the decompression of datasets subjected
to lossy compression techniques consistently outperforms their
counterparts. This behavior mirrors the trends previously dis-
cerned during the exploration of lossless compression and
decompression dynamics on DPUs.

3) Compression Ratio Evaluation: The efficacy of a com-
pression algorithm is often gauged not just by its speed but
also by its ability to reduce data sizes while maintaining its
integrity or quality to the desired extent. Table V enumerates

the compression ratios achieved across various datasets on
both lossless and lossy compression designs. The compression
ratios are calculated by dividing the size of the original data
size by the compressed data size (the larger the value, the
smaller the size of the compressed data).

Analyzing both the compression ratio and the compression
time shown above reveals that dataset size or compression ratio
alone cannot reliably predict compression time efficiency. For
instance, the silesia/mr dataset, at 9.51 MB, is smaller
than the silesia/samba dataset, which is 20.61 MB, yet
it shows a lower compression ratio across all tests. However,
both datasets demonstrate similar compression times on both
BF2 and BF3’s SoC, as illustrated in Figure 8.

TABLE V: Compression Ratio of compression designs sup-
ported by PEDAL.

Dataset DEFLATE LZ4 zlib
obs_error 1.469 1.204 1.469
silesia/mozilla 2.683 2319  2.683
silesia/mr 2.712 2.348 2712
silesia/samba 3.963 3.517  3.963
silesia/xml 7.769 6.933  7.769

(a) Datasets used for lossless compression design.

Dataset SZ3 SZ3(C-Engine)
exaalt-dataset]l  2.941 2.940
exaalt-dataset3  5.745 5.844
exaalt-dataset2 ~ 5.378 4.971

(b) Datasets used for lossy compression design.
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Insights From PEDAL Compression Designs

Performance Overheads: Overheads from memory allo-
cation and engine initialization achieve up to 94% of total
execution time, especially for smaller datasets like 5.1 MB.
PEDAL’s Efficiency: By tackling overheads during its ini-
tialization, PEDAL showcases efficiency, especially evident
in BlueField-2’s compression acceleration of up to 9.67 x.
BlueField-2 vs. BlueField-3: While BF3’s C-Engine excels
than BF2’s C-Engine in DEFLATE decompression opera-
tion 1.78x with dataset 5.1 MB, BF3 lacks of C-Engine
support in compression operation.

Lossy Compression: On BF2, compression/decompression
times remain consistent across components. For BF3, when
handling lossy compression for a 10 MB dataset, the SoC
designs are up to 1.58 x faster than its C-Engine design due
to the latter’s reliance on the slower DEFLATE design.

\. J

D. Evaluation on MPI Point-to-Point Micro Benchmarks

This section assesses PEDAL’s capability in facilitating on-
the-fly compression and decompression for MPI point-to-point
communication. We benchmark the latency introduced by var-
ious compression designs, contrasting the native compression
algorithms against the optimized designs offered by PEDAL.

Figure 10 delineates the performance metrics for MPI’s
point-to-point operations as gauged by the OSU Micro-
Benchmarks [45]. This is executed across various message
sizes, encompassing lossy and lossless compression config-
urations. For our comparative analysis, the baseline design
epitomizes the compression and decompression duration on
the BlueField-2 platform without PEDAL. Notably, this base-
line does not engage the PEDAL framework, implying that
memory allocation and the DOCA initialization procedure are
invoked during every message transmission.

Lossless Compression: For PEDAL configurations on
BlueField-3 that utilize the SoC, specifically SoC_DEFLATE,
SoC_LZ4, and SoC_zlib, we observe a reduction of communi-
cation time by up to 40% compared with those on BlueField-
2. This enhanced efficiency can be attributed to the superior
computational prowess of BlueField-3’s SoC core compared
to its BlueField-2 counterpart. Meanwhile, PEDAL’s design
based on C-Engine demonstrate an acceleration of up to 88x
relative to the baseline on BlueField-2 for DEFLATE and zlib
methodologies. This substantial performance boost stems from
PEDAL’s design which migrates overheads from the runtime
to the initialization phase. However, it is noteworthy that
BlueField-3’s C-Engine exhibited elongated communication
times for DEFLATE and zlib methods, surpassing even the
baseline. This limitation arises due to the C-Engine’s inability
to support certain compression operations, a detail elucidated
in Section V-C. BlueField-2, with its lack of support for LZ4
on its C-Engine, consequently relegates LZ4 compression to
the SoC core, leading to suboptimal performance.

Lossy Compression: Figure 10f showcases the commu-
nication time when deploying the SZ3 lossy compression
design. With the PEDAL, both BlueField-2 and BlueField-
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3 manifested a substantial decrease in latency, recording
improvements of up to 47.3% and 48% respectively over
the baseline. This is attributed to the architectural design of
PEDAL combined with the robustness of the SoC.

Insights From PEDAL-Optimized
MPI Point-to-Point Communication

Baseline: Without PEDAL, every transmission requires
repetitive memory allocation and DOCA_Init procedure.
Lossless Compression: BF3’s SoC achieved up to a 40%
reduction of BF2’s in communication time; PEDAL at-
tained up to 88x speedup over the baseline by moving
overheads from runtime to initialization.

Lossy Compression: PEDAL yielded latency reductions up
to 47.3% on BF2 and 48% on BF3 over the baseline.

E. Evaluation on MPI Collective Communication — Broadcast

In this section, we assess the enhancement PEDAL offers
for MPI collective communication, specifically focusing on the
Broadcast operation, while incorporating various compression
methods—both lossy and lossless.

Figure 11 presents a comparative analysis of MPI Broadcast
time over four nodes, considering diverse message sizes:
5.1 MB (small), 20.6 MB (medium), and 48.8 MB (large). The
evaluations are based on whether compression is executed
on the SoC or the C-Engine of BlueField-2 and BlueField-
3. As a point of reference, similar to Section V-D, our
baseline configuration operates on BlueField-2 and integrates
compression within the MPI Broadcast. However, this design
is hindered by additional overheads—specifically, repeated
memory allocations and, if engaged, engine initialization.
There are a few critical observations that emerge: utilizing the
C-Engine of BlueField-2, there is a substantial reduction in
broadcast time—achieving a speedup of up to 68x over the
baseline across various compression designs. In the context
of BlueField-3, its SoC contributes to an average decrease in
MPI Broadcast time by about 49% across the tested message
sizes. Conversely, BlueField-3’s C-Engine, tailored exclusively
for decompression and lacks compression operations, defaults
to leveraging its SoC. As a result, compression designs like
DEFLATE and zlib, this setup not only fail to surpass the
performance of BlueField-2’s C-Engine but occasionally even
register a slight increase in latency compared to the baseline.

s N\

Insights From PEDAL-Optimized
MPI Collective Communication

BF2’s C-Engine: Offers a speedup of up to 68x over the
baseline across compression designs.

BF3’s SoC: Reduces MPI Broadcast time by approximately
49% across varied message sizes.

BF3’s C-Engine Limitation: Exclusively for decompres-
sion operation, sometimes resulting in latency higher than
the baseline for specific designs like DEFLATE and zlib.

\ J
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Note that the y-axes are in log scales.

VI. DISCUSSION

Drawing from our findings, we highlight several observa-
tions we eagerly share with the broader community. These in-
sights are intended to contribute constructively to the ongoing
research and developments in DPU-based data compression.

Sharing experiences with the DPU community: Considering
the performance benefits brought by DPU’s C-Engine, we
recommend that the DPU community consider reintegrating
both compression and decompression operations into the C-
Engine in their future products. Additionally, there is a strong
suggestion for the DPU community to explore expanding com-
pression algorithms or providing programmability that allows
developers to customize these C-Engines more extensively.

Sharing experience with the MPI community: Consider
exploring alternative deployment scenarios, such as MPI on the
host while offloading data compression to the DPU. It is cru-
cial to assess the overhead associated with data movement be-
tween the host and DPU, emphasizing the need for a balanced
design between computation and communication efficiency.
Though this scenario deviates from our paper’s primary focus,
evaluating computation and communication overlaps, along
with pipeline designs, can help alleviate potential performance
bottlenecks, particularly in data movement latency.
Furthermore, there is an opportunity for the MPI community
to advance by developing enhanced compression-extensible
infrastructures. Our co-design approach effectively integrates
with MPICH, but further investigation into strategies for seam-
less compression task integration within the MPI framework
could unlock new levels of efficiency and performance.

Sharing experience with PEDAL users: Our current method-
ology centers on improving data compression and decom-
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pression efficiency in evolving DPU architectures, seamlessly
integrating with the MPICH library under the MPI standard.
This ensures the MPI interface remains unchanged, promoting
widespread adoption by MPI-based scientific applications. Ad-
ditionally, the standalone PEDAL library is readily accessible
to these applications, offering user-friendly APIs for added
convenience. Prospective PEDAL users have the option to
either utilize the PEDAL-optimized MPI library or directly
program with PEDAL for designing their data compression
and decompression pipelines.

Sharing experience with the data compression community:
Leveraging our experience optimizing zlib and SZ3 with
SoC and C-Engine synergy, the data compression community
can explore more advanced DPU-based compression designs.
For instance, using the C-Engine for compression and SoC
for metadata generation offers a promising path to enhance
performance and inform more efficient compression and de-
compression schemes.

VII. RELATED WORK

Prior works [12]-[15] on compression and decompression
methods focus on reducing data volume while storing scientific
datasets. SZ3 [12] uses a modular compression framework
on CPUs that allows composing different error-bounded lossy
compressors and tailoring various stages of the compression
pipeline. SZx [13] achieves high-speed compression on both
CPUs and GPUs with error bounds by suppressing expensive
arithmetic operations while compressing data. cuSZ [14] and
WaveSZ [15] utilize GPUs and field programmable gate arrays
(FPGAs), respectively, to parallelize an error-bounded lossy
compression framework, SZ [10], [11]. Also, CEAZ [16]
proposes a lossy compressor for scientific data on FPGAs-
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Fig. 11: MPI Broadcast with four nodes ( “ measured on C-Engine). Note that the y-axes are in log scales.

based SmartNIC. Runway [46] deploys SZ3 lossy compression
on BF2 and evaluates on the SDRBench benchmark. Our
work differs from others as we systematically analyze and
accelerate both lossy and lossless compression schemes on
BF2 & BF3 DPUs with our proposed uniform library and show
its effectiveness for communication-intensive workloads.

On the other hand, some studies evaluated the benefit
of compression techniques for reducing the load on com-
munication fabrics. Zhou et al. [47], [48] use GPU-based
compression to reduce inter-node data movement bottleneck
for HPC applications. cMPI library investigates on-the-fly data
compression using CPUs to reduce the communication time of
individual messages and to improve the overall bandwidth of
large-scale systems [49]. Similarly, CoMPI [50] performs run-
time compression of MPI messages via CPUs and reduces the
execution time of MPI benchmarks and HPC applications.

There are also studies [51]-[54] analyzing performance
attributes of SmartNICs, especially NVIDIA BlueField DPUs.
These works focus on DPU SoC core characterizations but our
work focus on compression and decompression on SoC core
and acceleration. To the best of our knowledge, we are the
first to show that DPUs, which are gaining popularity in data
center and HPC environments, can be efficiently leveraged to
perform data compression and decompression.

VIII. CONCLUSION AND FUTURE WORK

Our research marks a milestone by exploring and harnessing
NVIDIA BlueField DPUs to accelerate lossy and lossless com-
pression design tailored for communication-oriented work-
loads in the HPC domain. This pioneering approach has led to
remarkable advancements, reducing compression time by up
to 101 x and slashing data communication latency by as much
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as 88x through efficient and effective message size reduction.
Our study sheds light on the challenges inherent in implement-
ing compression techniques on BlueField-2 and BlueField-
3 DPUs, predominantly rooted in hardware constraints. In
response to these challenges, we meticulously architected a
harmonized co-design approach, ensuring it aligns with the
specificities of communication-centric scenarios. Our paper
not only identifies these challenges but also presents a unified
methodology meticulously crafted to expedite compression
and decompression processes on BlueField-2 and BlueField-3
DPUs, specifically tailored for data communication scenarios.

Our future endeavors will further optimize PEDAL along
with research directions outlined in Section VI to enhance data
compression performance and expand PEDAL'’s capabilities to
support a broader range of applications.
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