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Abstract: The action of a noise operator on a code transforms it into a distribution on the respective
space. Some common examples from information theory include Bernoulli noise acting on a code
in the Hamming space and Gaussian noise acting on a lattice in the Euclidean space. We aim to
characterize the cases when the output distribution is close to the uniform distribution on the space,
as measured by the Rényi divergence of order α ∈ (1, ∞]. A version of this question is known as the
channel resolvability problem in information theory, and it has implications for security guarantees
in wiretap channels, error correction, discrepancy, worst-to-average case complexity reductions, and
many other problems. Our work quantifies the requirements for asymptotic uniformity (perfect
smoothing) and identifies explicit code families that achieve it under the action of the Bernoulli and
ball noise operators on the code. We derive expressions for the minimum rate of codes required
to attain asymptotically perfect smoothing. In proving our results, we leverage recent results from
harmonic analysis of functions on the Hamming space. Another result pertains to the use of code
families in Wyner’s transmission scheme on the binary wiretap channel. We identify explicit families
that guarantee strong secrecy when applied in this scheme, showing that nested Reed–Muller codes
can transmit messages reliably and securely over a binary symmetric wiretap channel with a positive
rate. Finally, we establish a connection between smoothing and error correction in the binary
symmetric channel.

Keywords: noise operator; uniform distribution; Renyi divergence; wiretap channel

1. Introduction

Many problems of information theory involve the action of a noise operator on a code
distribution, transforming it into some other distribution. For instance, one can think of
Bernoulli noise acting on a code in the Hamming space or Gaussian noise acting on a lattice
in the Euclidean space. We are interested in characterizing the cases when the output
distribution is close to the uniform distribution on the space. Versions of this problem
have been considered under different names, including resolvability [1–3], smoothing [4,5],
discrepancy [6,7], and the entropy of noisy functions [8–10]. Direct applications of smooth-
ing include secrecy guarantees in both the binary symmetric wiretap channel [2,3,11] and
the Gaussian wiretap channel [12,13], error correction in the binary symmetric channel
(BSC) [14,15], converse coding theorems of information theory [1,16–18], strong coordi-
nation [11,19–22], secret key generation [13,23], and worst-to-average case reductions in
cryptography [5,24]. Some aspects of this problem also touch upon approximation problems
in statistics and machine learning [25–27].

Our main results are formulated for the smoothing in the binary Hamming spaceHn.
For r : Hn → R+

0 , and f : Hn → R define

Tr f (x) = (r ∗ f )(x) := ∑
z∈Hn

r(z) f (x− z)
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as the action of r on the functions on the space. We set r to be a probability mass function
(pmf) and call the function Tr f the noisy version of f with respect to r, and refer to r and
Tr as a noise kernel and a noise operator , respectively. By smoothing f with respect to r, we
mean applying the noise kernel r to f . We often assume that r(x) is a radial kernel, i.e., its
value on the argument x ∈ Hn depends only on the Hamming weight of x.

There are several ways to view the smoothing operation. Interpreting it as a shift-
invariant linear operator, we note that, from Young’s inequality, ‖Tr f ‖α = ‖ f ∗ r‖α ≤
‖ f ‖α, 1 ≤ α ≤ ∞, so smoothing contracts the α-norm. Upon applying Tr, the noisy version
of f becomes “flatter”; hence, the designation “smoothing”. Note that if f is a pmf, then
Tr f is also a pmf, and so this view allows us to model the effect of communication channels
with additive noise.

The class of functions that we consider are (normalized) indicators of subsets (codes)
inHn. A code C ⊂ Hn defines a pmf fC = 1C

|C | , and, thus, Tr fC can be viewed as a noisy
version of the code (we also sometimes call it a noisy distribution) with respect to the kernel
r. The main question of interest for us is the proximity of this distribution to Un, or the
“smoothness” of the noisy code distributions. To quantify closeness to Un, we use the
Kullback–Leibler (KL) and Rényi divergences (equivalently, Lα norms), and the smoothness
measured in Dα(·‖·) is termed the Dα-smoothness (Lα-smoothness).

We say that a code is perfectly smoothable with respect to the noise kernel r if the
resultant noisy distribution becomes uniform. Our main emphasis is on the asymptotic
version of perfect smoothing and its implications for some of the basic information-theoretic
problems. A sequence of codes (Cn)n is asymptotically smoothed by the kernel sequence rn
if the distance between (Trn fCn) and Un approaches 0 as n increases. This property is closely
related to the more general problem of channel resolvability introduced by Han and Verdú
in [1]. Given a discrete memoryless channel W (Y|X) and a distribution PX , we observe a
distribution PY on the output of the channel. The task of channel resolvability is to find PX
supported on a subset C ⊂ Hn that approximates PY with respect to the KL divergence.
As shown in [1], there exists a threshold value of the rate such that it is impossible to
approximate PY using codes of lower rate, while any output process can be approximated
by a well-chosen code of a rate larger than the threshold. Other proximity measures
between distributions were considered for this problem in [3,28,29]. Following the setting
in [3], we consider Rényi divergences for measuring the closeness to uniformity. We call the
minimum rate required to achieve perfect asymptotic smoothing the Dα-smoothing capacity
of the noise kernels (rn)n, where the proximity to uniformity is measured by the α-Rényi
divergence. In this work, we characterize the Dα-smoothing capacity of the sequence (rn)n
using its Rényi entropy rate.

Asymptotic smoothing. We will limit ourselves to studying smoothing bounds under
the action of the Bernoulli noise or ball noise kernels, defined formally below. A common
approach to deriving bounds on the norm of a noisy function is through hypercontractivity
inequalities [30–32]. In its basic version, given a code C of size M, it yields the estimate

‖Tδ fC ‖α ≤ ‖ fC ‖α′ = M
1−α′

α′ 2−
n
α′ ,

where Tδ is the Bernoulli kernel (see Section 2 for formal definitions) and α′ = 1 + (1−
2δ)2(α − 1). This upper bound does not differentiate codes yielding higher or lower
smoothness, which in many situations may not be sufficiently informative. Note that other
tools, such as “Mrs. Gerber’s lemma” [30,33] or strong data-processing inequalities, also
suffer from the same limitation.

A new perspective of the bounds for smoothing has recently been introduced in the
works of Samorodnitsky [8–10]. Essentially, his results imply that codes satisfying certain
regularity conditions have good smoothing properties. Their efficiency is highlighted in
recent papers [14,34], which leveraged results for code performance on the binary erasure
channel (BEC) to prove strong claims about the error correction capabilities of the codes
when used on the BSC. Using Samorodnitsky’s inequalities, we show that the duals of some
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BEC capacity-achieving codes achieve Dα-smoothing capacity for α ∈ {2, 3, . . . , ∞} with
respect to the Bernoulli noise. This includes the duals of polar codes and doubly transitive
codes, such as the Reed–Muller (RM) codes.

Smoothing and the wiretap channel. Wyner’s wiretap channel [35] models communi-
cation in the presence of an eavesdropper. Code design for this channel pursues reliable
communication between the legitimate parties, while at the same time leaking as little in-
formation as possible about the transmitted messages to the eavesdropper. The connection
between secrecy in wiretap channels and resolvability was first mentioned by Csiszár [36]
and later developed by Hayashi [2]. It rests on the observation that to achieve secrecy it
suffices to make the distribution of an eavesdropper’s observations conditioned on the
transmitted message nearly independent of the message. The idea of characterizing secrecy
based on smoothness works irrespective of the measure of secrecy [2,3,11], and it was also
employed for nested lattice codes used over the Gaussian wiretap channel in [12].

Secrecy on the wiretap channel can be defined in two ways, measured by the informa-
tion gained by the eavesdropper, and it depends on whether this quantity is normalized to
the number of channel uses (weak secrecy) or not (strong secrecy). This distinction was
first highlighted by Maurer [37], and it has been adopted widely in the recent literature.
Early papers devoted to code design for the wiretap channel relied on random codes, but,
for simple channel models such as BSC or BEC, this has changed with the advent of explicit
capacity-approaching code families. Weak secrecy results based on LDPC codes were
presented in [38], but initial attempts to attain strong secrecy encountered some obstacles.
To circumvent this, the first works on code construction [39,40] had to assume that the
main channel is noiseless. The problem of combining strong secrecy and reliability for
general wiretap channels was resolved in [41], but that work had to assume that the two
communicating parties share a small number of random bits unavailable to the eaves-
dropper. Apart from the polar coding scheme of [41], explicit code families that support
reliable communication with positive rate and strong secrecy have not previously appeared
in the literature. In this work, we show that nested RM codes perform well in binary
symmetric wiretap channels based on their smoothing properties. While our work falls
short of proving that nested RM codes achieve capacity, we show that they can transmit
messages reliably and secretly at rates close to capacity.

Ball noise and decoding error. Ball-noise smoothing provides a tool for estimating the
error probability of decoding on the BSC. We derive impossibility and achievability bounds
for the Dα-smoothness of noisy distributions with respect to the ball noise. Smoothing of
a code with respect to the L2 norm plays a special role because, in this case, the second
norm (the variance) of the resulting distribution can be expressed via the pairwise distance
between codewords, enabling one to rely on tools from Fourier analysis. The recent paper
by Debris-Alazard et al. [4] established universal bounds for the smoothing of codes or
lattices, with cryptographic reductions in mind. The paper by Sprumont and Rao [15]
addressed bounds for error probability of list decoding at rates above BSC capacity. A paper
by one of the present authors [42] studied the variance of the number of codewords in balls
of different radii (a quantity known as the quadratic discrepancy [43,44]).

The main contributions of this paper are the following:

1. Characterizing the Dα-smoothing capacities of noise operators on the Hamming space
for α ∈ (1, ∞].

2. Identifying some explicit code families that attain a smoothing capacity of the Bernoulli
noise for α ∈ {2, 3, . . . , ∞};

3. Obtaining rate estimates for the RM codes used on the BSC wiretap channel under
the strong secrecy condition;

4. Showing that codes possessing sufficiently good smoothing properties are suitable for
error correction.

In Section 2, we set up the notation and introduce the relevant basic concepts. Then,
in Section 3, we derive expressions for the Dα-smoothing capacities for α ∈ (1, ∞], and in
Section 4, we use these results to analyze the smoothing of code families under the action
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of the Bernoulli noise. Section 5 is devoted to the application of these results for the binary
symmetric wiretap channel. In particular, we show that RM codes can achieve rates close
to the capacity of the BSC wiretap channel, while at the same time guaranteeing strong
secrecy. In Section 6, we establish threshold rates for smoothing under ball noise, and derive
bounds for the error probability of decoding on the BSC, including the list case, based
on the distance distribution. Concluding the paper, Section 7 briefly points out that the
well-known class of uniformly packed codes are perfectly smoothable with respect to
“small” noise kernels.

2. Preliminaries
2.1. Notation

Throughout this paper,Hn is the binary n-dimensional Hamming space
Balls and spheres. Denote by B(x, t) := {y ∈ Hn : |y− x| ≤ t} the metric ball of radius t

inHn with center at x, and denote by S(x, t) := {y ∈ Hn : |y− x| = t} the sphere of radius
t. Let Vt = |B(x, t)| be the volume of the ball, and let µt(i) be the intersection volume of
two balls of radius t whose centers are distance i apart:

µt(i) = |B(0, t) ∩ B(x, t)|, where |x| = i. (1)

Codes and distributions. A code C is a subset inHn. The rate and distance of the code
are denoted by R(C ) := log |C |/n and d(C ), respectively. Let

Ai =
1
|C | |{(x, y) ∈ C 2 : d(x, y) = i}| (2)

and let (Ai, i = 0, . . . , n) be the distance distribution of the code. If the code C forms an
F2-linear subspace in Hn, we denote by C⊥ := {y ∈ Hn : ∑i xiyi = 0 for all x ∈ C } its
dual code.

The function 1C denotes the indicator of a subset C ⊂ Hn, and fC = 1C
|C | is the corre-

sponding pmf denoting the uniform distribution over the set, calling it a code distribution.

Let bt denote the uniform distribution on the ball B0,t, given by bt(x) =
1B0,t

Vt
. In the context

of noise operators, we refer to Tbt as the ball noise. Finally, βδ is the binomial distribution on
Hn, given by

βδ(x) = β
(n)
δ (x) = δ|x|(1− δ)n−|x|, (3)

and Un is the uniform distribution, given by Un(x) = 2−n for all x.
Entropies and norms. For a function f : Hn → R, we define its α-norm as follows.

‖ f ‖α =
( 1

2n ∑
x∈Hn

| f (x)|α
)1/α

for α ∈ (0, ∞)

‖ f ‖∞ = max
x∈Hn

| f (x)|.

Given a pmf P, let

H(P) = −∑
i

Pi log Pi, (4)

Hα(P) =
1

1− α
log
(

∑
i

Pα
i

)
(5)

denote its Shannon entropy and Rényi entropy of order α, respectively. If P is supported on
two points, we write h(P) and hα(P) instead (all logarithms are to the base 2). The limiting
cases of α = 0, 1, ∞ are well-defined; in particular, for α = 1, Hα(P) reduces to H(P).
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For two discrete probability distributions P and Q, the α-Rényi divergence (or simply
the α-divergence) is defined as follows:

Dα(P‖Q) =



− log Q({i : Pi > 0}) if α = 0

1
α−1 log ∑i Pα

i Q−(α−1)
i if α ∈ (0, 1) ∪ (1, ∞)

∑i Pi log Pi
Qi

if α = 1

maxi log Pi
Qi

if α = ∞

. (6)

The divergence Dα(P‖Q) is a continuous function of α for α ∈ [0, ∞]. For a pmf f onHn

Dα( f ‖Un) =
α

α− 1
log ‖2n f ‖α, α ∈ (0, 1) ∩ (1, ∞) (7)

D∞( f ‖Un) = log ‖2n f ‖∞. (8)

Note that Dα( f ‖Un) = n− Hα( f ) for all 0 ≤ α ≤ ∞.
Channels. In this paper, a channel is a conditional probability distribution W : {0, 1} →

Y , where Y is a finite set, so that W (y|x) is the conditional probability of the output
y for the input x. We frequently consider the binary symmetric channel with crossover
probability δ and the binary erasure channel with erasure probability λ, abbreviating them
as BSC(δ) and BEC(λ), respectively. We are often interested in the n-fold channel W (n),
i.e., the conditional probability distribution corresponding to n-uses of the channel. For the
input X, let Y(X,W ) be the random output of the channel W (n). If the input sequences are
chosen from a uniform distribution on a code C , we denote the input by XC . Since the
number of uses of the channel is usually clear from the context, we suppress the dependency
on n from the notation for channels and sequences.

Let C be a code of length n. For a channel W and input XC , the block-MAP decoder is
defined as

x̂(y) = argmax
x∈C

Pr(x|y).

For a given code and channel, denote the error probability of the block-MAP decoding by

PB(W , C ) = Pr(XC 6= X̂(Y(XC ,W )).

2.2. Dα- and Lα-Smoothness

Recall that in the introduction, we expressed the smoothness of a distribution as
its proximity to uniformity. Here, we formalize this notion based on two (equivalent)
proximity measures.

Let g be a pmf on Hn. A natural measure of the uniformity of g is Dα(g‖Un) (α ∈
[0, ∞]). We call this the Dα-smoothness of g. Observe that

‖2ng‖α =
‖g‖α

‖g‖1
≥ 1 for α ∈ (1, ∞], and (9)

‖2ng‖α =
‖g‖α

‖g‖1
≤ 1 for α ∈ (0, 1) (10)

with equality iff g = Un. Thus, the better the pmf g approximates uniformity, the closer is
‖2ng‖α to 1 (the denominator is simply a normalization quantity that allows dimension-
agnostic analysis). Therefore, ‖2ng‖α (α ∈ (0, 1) ∪ (1, ∞]) can be considered as another
measure of proximity. We call ‖2ng‖α the Lα-smoothness of g. From (7) and (8), it follows
that the Dα-smoothness and Lα-smoothness are equivalent.
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Remark 1. It is easily seen that Dα(g‖Un) = n − Hα(g); hence, Dα(g‖Un) is an increasing
function of α.

Recall that for a given code C , and a noise kernel r, Tr fC = r ∗ fC is the noisy
distribution of code C with respect to r. We intend to study the smoothing properties of
such noisy distributions of codes. In particular, we characterize the necessary conditions
for Dα(Tr fC ‖Un) to be close to zero (equivalently, for ‖2nTr fC ‖α close to one). In Section 3,
we quantify these requirements in the asymptotic setting.

2.3. Resolvability

The problem of channel resolvability was introduced by Han and Verdú [1] under
the name of approximating the output statistics of the channel. The objective of channel
resolvability is to approximate the output distribution of a given input by the output
distribution of a code with a smaller support size. In this work, we are interested in code
families whose noisy distributions approximate uniformity. Resolvability characterizes the
necessary conditions for this to happen in terms of the rate of the code.

Let W be a (discrete memoryless) channel whose input alphabet is X and whose
output alphabet is Y . Let X = {Xn}∞

n=1 be a discrete-time random process where the
RVs Xn take values in X. Denote by Yn the random output of W with input Xn and let
Y = {Yn}∞

n=1. Denote by PY the distribution of Y and let PY(n) be the pmf of the n-tuple
Y(n) := {Y1, Y2, . . . , Yn}.

For a legitimate (realizable) output process Y , define

J(∆)(W , PY ) = inf
Cn⊂Xn

{lim inf
n

R(Cn) : ∆( fCn , PY(n))→ 0}, (11)

where ∆ is a measure of closeness of a pair of probability distributions. In words, we look
for sequences of distributions ( fCn)n of the smallest possible rate that approximates PY on
the output of W .

The original problem as formulated by Han and Verdú in [1] seeks to find the resolv-
ability of the channel, defined as

C(∆)
r (W ) = inf

PY
{J(∆)(W , PY ) : Y is an output process over W }. (12)

where ∆ is either the variational distance or the normalized KL divergence 1
n D(·‖·).

Hayashi [2] considered the same problem where the proximity was measured by the
unnormalized KL divergence. In each case, the resolvability equals the Shannon capacity
of the channel W .

Theorem 1 ([1,2]). Let W be a discrete memoryless channel. Suppose that ∆ is either the KL
divergence (normalized or not) or the variational distance; then, the resolvability is given by

C(∆)
r (W ) = C(W ),

where C(W ) is the Shannon capacity of the channel.

The authors of [1] proved this result under the additional assumption that the channel
W satisfies strong converse, and Hayashi [2] later showed that this assumption is unessential.

In addition to the proximity measures considered in Theorem 1, the papers [3,28,29]
considered other possibilities. In particular, Yu and Tan [3] studied the resolvability problem
for a specific target distribution PY and for the Rényi divergence ∆ = Dα (6). Their main
result is as follows.
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Theorem 2 ([3], Theorem 2). Let W be a channel and PY be an output distribution. then

J(Dα)(W , PY ) =


minPX∈P(W ,PY ) ∑x PX(x)Dα(W (·|x)‖PY ) if α ∈ (1, 2] ∪ {∞}
minPX∈P(W ,PY )

D(W ‖PY |PX) if α ∈ (0, 1]

0 if α = 0,

where P(W , PY ) is the set of distributions PX consistent with the output PY .

A direct corollary of Theorem 2 is the following:

Corollary 1 ([3], Equation (55)). Let Y∗ be the output process where for each n, Y∗n ∼ Ber(1/2).
Then,

J(Dα)(BSC(δ), PY∗) =


1− hα(δ) if α ∈ (1, 2] ∪ {∞}
1− h(δ) if α ∈ (0, 1]
0 if α = 0.

This corollary gives necessary conditions for the rate of codes that can approximate the
uniform distribution via smoothing. We will connect this result to the problem of finding
smoothing thresholds in Section 4.

3. Perfect Smoothing—The Asymptotic Case

For a given family of noise kernels (Trn)n, there exists a threshold rate such that it is
impossible to approximate uniformity with codes of rate below the threshold irrespective
of the chosen code, while at the same time, there exist families of codes with a rate above
the threshold that allows perfect approximation in the limit of infinite length. For instance,
for the Bernoulli(δ) noise applied to a code C , the smoothed distribution is nonuniform
unless C = Hn or δ = 1/2. At the same time, it is possible to approach the uniform
distribution asymptotically for large n once the code sequence satisfies certain conditions.
Intuitively, it is clear that, for a fixed noise kernel, it is easier to approximate uniformity
if the code rate is sufficiently high. In this section, we characterize the threshold rate
for (asymptotically) perfect smoothing. Of course, the threshold also depends on the
proximity measure ∆ that we are using. In this section, we use perfect smoothing to mean
“asymptotically perfect”. If the proximity measure ∆ for smoothing is not specified, this
means that we are using the KL divergence. We obtain the threshold rates for perfect
smoothing measured with respect to the α-divergence for several values of α. In the
subsequent sections, we work out the details for the Bernoulli and ball noise operators,
which also have some implications for communication problems.

Definition 1. Let (Cn)n be a sequence of codes of increasing length n and let 0 ≤ α ≤ ∞. We say
that the sequence Cn is asymptotically perfectly Dα-smoothable with respect to the noise kernels rn if

lim
n→∞

Dα(Trn fCn‖Un) = 0,

or equivalently (7) and (8) if

lim
n→∞

‖2nTrn fCn‖α = 1 (α 6= 0, 1).

One can also define a dimensionless measure for perfect asymptotic smoothing by
considering the limiting process

‖Trn fCn −Un‖α

‖Trn fCn‖1
= 2n‖Trn fCn −Un‖α → 0. (13)
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Proposition 1. Convergence in (13) implies perfect smoothing for all 1 < α ≤ ∞ and is equivalent
to it for α 6= ∞.

Proof. Let C = Cn ⊂ Hn for some fixed n. Since by the triangle inequality,

2n‖Tr fC ‖α − 1 ≤ 2n‖Tr fC −Un‖α,

(13) is not weaker than the mode of convergence in Definition 1 for all α ∈ [1, ∞]. For
α 6= 1, ∞, we use Clarkson’s inequalities ([45], p. 388). Their form depends on α; namely,
for 2 ≤ α < ∞, we have

1 +
∥∥∥∥2nTr fC − 1

2

∥∥∥∥α

α

≤
∥∥∥∥2nTr fC + 1

2

∥∥∥∥α

α

+

∥∥∥∥2nTr fC − 1
2

∥∥∥∥α

α

≤ 1
2
(‖2nTr fC ‖α

α + 1).

For 1 < α < 2, the inequality has the form

1 +
∥∥∥∥2nTr fC − 1

2

∥∥∥∥α′

α

≤
∥∥∥∥2nTr fC + 1

2

∥∥∥∥α′

α

+

∥∥∥∥2nTr fC − 1
2

∥∥∥∥α′

α

≤
(1

2
(‖2nTr fC ‖α

α + 1)
)α′/α

,

where α′ = α
α−1 is the Hölder conjugate. These equations show that, for α ∈ (1, ∞),

‖2nTrn fCn‖α → 1 implies ‖2nTrn fCn − 1‖α → 0, establishing the claimed equivalence.

Definition 2. Let (rn)n be a sequence of noise kernels. We say that the rate R is achievable for
perfect Dα-smoothing if there exists a sequence of codes (Cn)n such that R(Cn) → R as n → ∞
and (Cn)n is perfectly Dα-smoothable.

Note that if R1 is achievable, then any rate 1 ≥ R2 > R1 is also achievable. Indeed,
consider a (linear) code C1 of rate R1 that has good smoothing properties. Construct C2
by taking the union of 2n(R2−R1) non-overlapping shifts of C1. Then the rate of C2 is R2,
and since each shift has good smoothing properties, the same is true for C2. Therefore, let
us define the main concept of this section.

Definition 3. Given a sequence of kernels r = (rn)n, define the Dα-smoothing capacity as

Sr
α := inf

(Cn)n
{lim inf

n→∞
R(Cn) : lim

n→∞
Dα(Trn fCn‖Un) = 0}. (14)

Note that this quantity is closely related to the resolvability: if, rather than optimizing
on the output process in (12), we set the output distribution to uniform and take ∆ = Dα,
then Sr

α equals J(Dα)(W , Py) for the channel W given by the noise kernel r. To avoid future
confusion, we refer to the capacity of reliable transmission as Shannon’s capacity.

The following lemma provides a lower bound for Dα-smoothness. It follows from
Lemma 2 in [3], and we give a direct proof for completeness.

Lemma 1. Let C ⊂ Hn be a code of size M = 2nR and let r be a noise kernel. Then, for α ∈ [0, ∞]

Dα(Tr fC ‖Un) ≥ n(1− R)− Hα(r).
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Proof. We will first prove that ‖2nTr fC ‖α
α ≥ 2(α−1)[n(1−R)−Hα(r)] for α ∈ (1, ∞):

‖2nTr fC ‖α
α =

2nα

2n ∑
x∈Hn

Tr fC (x)α

= 2n(α−1) ∑
x∈Hn

[ ∑
y∈Hn

r(y) fC (x− y)]α

≥ 2n(α−1) ∑
x∈Hn

∑
y∈Hn

[r(y) fC (x− y)]α

= 2n(α−1) ∑
y∈Hn

r(y)α ∑
x∈Hn

fC (x− y)α

=
2nα

|C |(α−1)
‖r‖α

α

= 2(α−1)[n(1−R)−Hα(r)].

Together with (7), this implies that the claimed inequality holds for α ∈ (1, ∞).
A similar calculation shows that for α ∈ (0, 1), ‖2nTr fC ‖α

α ≤ 2(α−1)[n(1−R)−Hα(r)],
yielding the claim for α ∈ (0, 1). The limiting cases α = 0, α = 1, and α = ∞ follow by
continuity of Dα and Hα for all α ≥ 0.

Define

π(α) = lim inf
n→∞

Hα(rn)

n
(15)

Lemma 1 shows that it is impossible to achieve perfect Dα-smoothing if R < 1− π(α). A
question of interest is whether there exist sequences of codes of R > 1− π(α) that achieve
perfect Dα-smoothing. The next theorem shows that this is the case for α ∈ (1, ∞].

Theorem 3. Let r = (rn)n be a sequence of noise kernels and let α ∈ (1, ∞]. Then,

Sr
α = 1− π(α). (16)

The proof relies on a random coding argument and is given in Appendix B. This
result will be used below to characterize the smoothing capacity of the Bernoulli and ball
noise operators.

Remark 2. Equality (16) does not hold in the case α ∈ [0, 1]. From Theorem 4 below, the Bernoulli
noise does not satisfy (16) for α ∈ [0, 1). To construct a counterexample for α = 1, consider the
noise kernel that is almost uniform except for one distinguished point, for instance, rn(x) = 2−(n+1)

for x 6= 0 and rn(0) = 1
2 + 1

2n+1 . Performing the calculations, we then obtain that Sr
1 = 1 while

π(1) = 1
2 .

Remark 3. It is worth noting that π(α) is a decreasing function of α for 0 ≤ α ≤ ∞.

4. Bernoulli Noise

In this section, we characterize the value Sβδ
α for a range of values of α. Then, we

provide explicit code families that attain the Dα-smoothing capacities.
As already mentioned, the resolvability for βδ with respect to α-divergence was

considered by Yu and Tan [3]. Their results, stated in Corollary 1, yield an expression for
Sβδ

α for α ∈ [0, 2] ∪ {∞}. The next theorem summarizes the current knowledge about Sβδ
α ,

where the claims for 2 < α < ∞ form new results.
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Theorem 4.

Sβδ
α =


0 if α = 0

1− h(δ) if α ∈ (0, 1]

1− hα(δ) if α ∈ (1, ∞].

(17)

Proof. The claims for α ∈ [0, 1] follow from Corollary 1. The results for α = (1, ∞] follow
from Theorem 3 since Hα(βδ)

n = hα(δ).

Having quantified the smoothing capacities, let us examine the code families with
strong smoothing properties. Since the D1-smoothing capacity and the Shannon capacity
coincide, it is natural to speculate that codes that achieve the Shannon capacity when
used on the BSC(δ) would also attain the D1-smoothing capacity. However, the following
result demonstrates that the capacity-achieving codes do not yield perfect smoothing.
For typographical reasons, we abbreviate Tβδ

by Tδ from this section onward.

Proposition 2. Let Cn be a sequence of codes achieving a capacity of BSC(δ). Then,

D(Tδ fCn‖Un)→ ∞, D(Tδ fCn‖Un) = o(n).

Proof. The second part of the statement is Theorem 2 in [46]. The first part is obtained
as follows: Let Cn be a capacity-achieving sequence of codes in BSC(δ). Then, from [47]
(Theorem 49), there exists a constant K > 0 such that nR(Cn) ≤ n(1− h(δ))− K

√
n for

large n. Therefore,

0 ≤ H(XCn |YBSC(δ),X) = n(R(Cn) + h(δ)− 1) + D(Tδ fCn‖Un),

which implies D(Tδ fCn‖Un) ≥ K
√

n.

Apart from random codes, only polar codes are known to achieve D1-smoothing
capacity. Before stating the formal result, recall that polar codes are formed by applying
several iterations of a linear transformation to the input, which results in creating virtual
channels for individual bits with Shannon’s capacity close to zero or to one, plus a vanishing
proportion of intermediate-capacity channels. While by Proposition 2, that polar codes that
achieve the BSC capacity cannot achieve D1-smoothing capacity, adding some intermediate-
bit channels to the set of data bits makes this possible. This idea was first introduced in [39]
and expressed in terms of resolvability in [48].

Theorem 5 ([48], Proposition 1). Let W be the BSC(δ) channel and W
(i)

n be the virtual channels
formed after applying n steps of the polarization procedure. For γ ∈ (0, 1/2), define Gn = {i ∈
{1, . . . , n} : C(W (i)

n ) ≥ 2−nγ}. Let Cn be the polar code corresponding to the virtual channels Gn.
Then, D(Tδ fCn‖Un)→ 0.

Note that limn→∞ R(Cn) = limn→∞
|Gn |

n = 1− h(δ). Hence, the polar code construc-
tion presented above achieves the perfect smoothing threshold with respect to the KL
divergence. Furthermore, since the convergence in the α divergence for α < 1 is weaker
than the convergence in α = 1, the same polar code sequence is perfectly Dα-smoothable
for α < 1. Noting that the smoothing threshold for α < 1 is 1− h(δ) by Theorem 4, we
conclude that the above polar code sequence achieves smoothing capacity in α-divergence
for α < 1.

As mentioned earlier, the smoothing properties of code families other than random
codes and polar codes have not been extensively studied. We show that the duals of
capacity-achieving codes in the BEC exhibit good smoothing properties using the tools
developed in [10]. As the first step, we establish a connection between the smoothing of a
generic linear code and the erasure correction performance of its dual code.
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Lemma 2. Let C be a linear code and let XC⊥ be a random uniform codeword of C⊥. Let
YX

C⊥ ,BEC(λ) be the output of the erasure channel BEC(λ) for the input XC⊥ . Then,

Dα(Tδ fC ‖Un) ≤ H(XC⊥ |YX
C⊥ ,BEC(λ)), (18)

where λ = (1− 2δ)2 for α = 1 and λ = 1− hα(δ) for α ∈ {2, 3, . . . , ∞}.

The proof is given in Appendix D.
Using this lemma, we show that the duals of the BEC capacity-achieving codes (with

growing distance) exhibit good smoothing properties. In particular, they achieve Dα-
smoothing capacities for α ∈ {2, 3, . . . , ∞}.

Theorem 6. Let (Cn)n be a sequence of linear codes with rate Rn → R. Suppose that the dual
sequence (C⊥n )n achieves Shannon’s capacity of the BEC(λ) with λ = R, and assume that d(C⊥n ) =
ω(log n). If R > (1− 2δ)2, then,

lim
n→∞

D(Tδ fCn‖Un) = 0.

Additionally, for α ∈ {2, 3, . . . , ∞}, if R > 1− hα(δ), then,

lim
n→∞

Dα(Tδ fCn‖Un) = 0.

In particular, the sequence Cn achieves Dα-smoothing capacity Sβδ
α for α ∈ {2, 3, . . . , ∞}.

Proof. Since the dual codes achieve the capacity of the BEC, it follows from
([49], Theorem 5.2) that, if their distance grows with n, then their decoding error probability
vanishes. In particular, if d(C⊥n ) = ω(log(n)), then, PB(BEC(R− ε), C⊥n ) = o( 1

n ) for all
ε ∈ (0, R]. Hence, from Fano’s inequality,

lim
n→∞

H(XC⊥n
|YX

C⊥n
,BEC(R−ε)) = 0.

Now, if R > (1 − 2δ)2, then there exists ε0 such that R − ε0 = (1 − 2δ)2. Therefore,
from Lemma 2,

lim
n→∞

D(Tδ fCn‖Un) ≤ lim
n→∞

H(XC⊥n
|YX

C⊥n
,BEC(R−ε0)

) = 0.

Similarly, if R > 1− hα(δ) for α ∈ {2, 3, . . . , ∞}, then, limn→∞ Dα(Tδ fCn‖Un) = 0.
Together with Theorem 4, we have now proved the final claim.

The known code families that achieve the capacity of the BEC include polar codes,
LDPC codes, and doubly transitive codes, such as constant-rate RM codes. LDPC codes do
not fit the assumptions because of low dual distance, but the other codes do. This yields
explicit families of codes that achieve the Dα-smoothing capacity.

We illustrate the results of this section in Figure 1, where the curves show the achiev-
ability and impossibility rates for perfect smoothing with respect to the Bernoulli noise.
Given a code (sequence) of rate R, putting it through a noise βδ below the Shannon ca-
pacity cannot achieve perfect smoothing. The sequence of polar codes from [39], cited in
Theorem 5, is smoothable at rates equal to the Shannon capacity, although these codes
do not provide a decoding guarantee at that noise level. At the second curve from the
bottom, the duals of the codes that achieve Shannon’s capacity in BEC achieve perfect D1-
smoothing; at the third (fourth) curve, these codes are perfectly D2- (or D∞-) smoothable,
and they achieve the corresponding smoothing capacity.
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Figure 1. Capacities and achievable rates for perfect smoothing. The lowermost curve gives the
Shannon capacity of the BSC(δ), the second curve from the bottom is the smoothing threshold for the
duals of the BEC capacity-achieving codes, the third one is Sβδ

2 and the top one is Sβδ
∞ .

Remark 4. Observe that the strong converse of the channel coding theorem does not imply perfect
smoothing. To give a quick example, consider a code Cn = B(0, δ′n) formed of all the vectors
in the ball. Let 0 < δ < 1/2 and let us use this code on a BSC(δ), where h(δ) + h(δ′) > 1
and δ < 1/2. From the choice of the parameters, the rate of Cn is above capacity, and, therefore,
PB(BSC(δ), Cn) ≈ 1 from the strong converse. At the same time,

D(Tδ fCn‖Un) = n− H(bδ′n ∗ βδ) = n− H(βδ′ ∗ βδ) + O(
√

n)

= n(1− h(δ′(1− δ) + δ(1− δ′))) + O(
√

n).

where the transition from the ball noise to the Bernoulli noise (the second equality) is shown
in [30]. Since δ′(1 − δ) + δ(1 − δ′)) < 1/2 for all δ < 1/2, δ′ < 1/2, we conclude that
D(Tδ fCn‖Un) 9 0.

Remark 5. In this paper, we mostly study the trade-off between the rate of codes and the level of
the noise needed to achieve perfect smoothing. A recent work of Debris-Alazard et al. [4] considered
guarantees for smoothing derived from the distance distribution of codes and their dual distance
(earlier, similar calculations were performed in [42,50]). Our approach enables us to find the
conditions for perfect smoothing similar to [4] but relying on fewer assumptions.

Proposition 3. Let Cn be a sequence of codes whose dual distance d(C⊥n ) ≥ ∂⊥n where ∂⊥ ∈
(0, 1). If ∂⊥ > (1− 2δ)2, then,

lim
n→∞

D(Tδ fCn‖Un) = 0.

Proof. Notice that limn→∞ H(XC⊥n
|YX

C⊥ ,BEC(λ)) = 0 if ∂⊥ > λ. With this, the proof is a
straightforward application of Lemma 2.

Compared to [4], this claim removes the restrictions on the support of the dual distance
distribution of the codes Cn.
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5. Binary Symmetric Wiretap Channels

In this section, we discuss applications of perfect smoothing to the BSC wiretap
channel. Wyner’s wiretap channel model V [35] for the case of BSCs is defined as follows:
The system is formed of three terminals, A, B, and E. Terminal A communicates with B
by sending messages M chosen from a finite set M. Communication from A to B occurs
over a BSC Wb with crossover probability δb, and it is observed by the eavesdropper E via
another BSC We with crossover probability δe > δb. A message M ∈M is encoded into a bit
sequence X ∈ Hn and sent from A to B in n uses of the channel Wb. Terminal B observes
the sequence Y = X + Wb, where Wb ∼ Bin(n, δb) is the noise vector, while terminal E
observes the sequence Z = X + We with We ∼ Bin(n, δe). We assume that the messages are
encoded into a subset ofHn, which imposes some probability distribution on the input of
the channels. The goal of the encoding is to ensure reliability and secrecy of communication.
The reliability requirement amounts to the condition Pr(M 6= M̂)→ 0 as n→ ∞, where M̂
is the estimate of M made by B. To ensure secrecy, we require the strong secrecy condition
I(M; Z)→ 0. This is in contrast to the condition 1

n I(M; Z)→ 0 studied in the early works
on the wiretap channel, which is now called weak secrecy. Denote by R = 1

n log |M| the
transmission rate. The secrecy capacity Cs(V ) is defined as the supremum of the rates that
permit reliable transmission, which also conforms to the secrecy condition.

The nested coding scheme, proposed by Wyner [35], has been the principal tool of
constructing well-performing transmission protocols for the wiretap channel [38,39,41].
To describe it, let Ce and Cb be two linear codes such that Ce ⊂ Cb and |M| = |Cb |

|Ce | . We
assign each message m to a unique coset of Ce in Cb. The sequence transmitted by A is
a uniform random vector from the coset. As long as the rate of the code Cb is below the
capacity of Wb, we can ensure the reliability of communication from A to B.

Strong secrecy can be achieved relying on perfect smoothing. Denote by cm a leader of
the coset that corresponds to the message m. The basic idea is that if PZ|M=m = (Tδ fCe)(·+
cm) is close to a uniform distribution Un for all m, these conditional pmfs are almost
indistinguishable from each other, and terminal E has no means of inferring the transmitted
message from the observed bit string Z.

As mentioned earlier, the weak secrecy results for the wiretap channel based on
LDPC codes and on polar codes were presented in [38,39], respectively. The problem that
these schemes faced, highlighted in Theorems 2 and 5, is that code sequences that achieve
BSC capacity have a rate gap of at least 1/

√
n to the capacity value. At the same time,

the rate of perfectly smoothable codes must exceed the capacity by a similar quantity [51].
For this reason, the authors of [39] included the intermediate virtual channels in their
polar coding scheme, which gave them strong secrecy, but interfered with transmission
reliability. A similar general issue arose earlier in attempting to use LDPC codes for the
wiretap channel [40].

Contributing to the line of work connecting smoothing and thewiretap channel [2,3,11],
we show that nested coding schemes Ce ⊂ Cb, where the code Cb is good for error correction
in BSC(δb) and Ce is perfectly smoothable with respect to βδb , attain strong secrecy and
reliability for a BSC wiretap channel (δb, δe). As observed in Lemma 2, the duals of the
good erasure-correcting codes are perfectly smoothable for certain noise levels and, hence,
they form a good choice for Ce in this scenario.

The following lemma establishes a connection between the smoothness of a noisy
distribution of a code and strong secrecy.

Lemma 3. Consider the nested coding scheme for the BSC wiretap channel introduced above. If
D(Tδe fCe‖Un) < ε, then I(M; Z) < ε.
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Proof. We have

D(PZ|M‖Un|PM) = ∑
m∈M
z∈Hn

PMZ(m, z) log
PZ|M(z|m)

Un(z)

= I(M; Z) + D(PZ‖Un).

Now, note that PZ|M=m(z) = (Tδe fCe)(z + cm) = PZ|M=m′(z + cm′ + cm), so D(PZ|M=m‖Un)
is independent of m. Therefore, for all m ∈ M

D(PZ|M=m‖Un) = D(PZ|M‖Un|PM)

= I(M; Z) + D(PZ‖Un) ≥ I(M; Z).

This lemma enables us to formulate conditions for reliable communication while
guaranteeing the strong secrecy condition. Namely, it suffices to take a pair (a sequence
of pairs) of nested codes Ce ⊂ Cb such that D(Tδe fCe‖Un) → 0 as n → ∞. If at the same
time the code Cb corrects errors on a BSC(δb), then the scheme fulfills both the reliability
and strong secrecy requirements under noise levels δb and δe for channels Wb and We,
respectively, supporting transmission from A to B at rate Rb − Re. Together with the results
established earlier, we can now make this claim more specific.

Theorem 7. Let ((C n
e )
⊥)n and (C n

b )n be sequences of linear codes that achieve the capacity of the
BEC for their respective rates. Suppose that C n

e ⊂ C n
b and

1. d((C n
e )
⊥) = ω(log n), R(C n

e )→ Re;

2. d(C n
b ) = ω(log n), R(C n

b )→ Rb.

If Rb < 1− log(1 + 2
√

δb(1− δb)) and Re > 4δe(1− δe), then the nested coding scheme based
on C n

e and C n
b can transmit messages with rate Rb − Re from A to B, satisfying the reliability and

strong secrecy conditions.

Proof. From Corollary A1, the conditions d(C (n)
b ) = ω(log n) and Rb < 1 − log(1 +

2
√

δb(1− δb)) guarantee transmission reliability. Furthermore, by Theorem 6, the condi-
tions d((C n

e )
⊥) = ω(log n) and Re > 4δe(1− δe) imply that D(Tδe fCe‖Un) → 0, which in

its turn implies strong secrecy by Lemma 3.

To give an example of a code family that satisfies the assumptions of this theorem,
consider the RM codes of constant rate. Namely, let C n

e ⊂ C n
b be two sequences of RM

codes whose rates converge to Re and Rb, respectively. Note that the duals of the RM codes
are themselves RM codes. By a well-known result [52], the RM codes achieve the capacity
of the BEC, and for any sequence of constant-rate RM codes, the distance scales as 2Θ(

√
n).

Therefore, the RM codes satisfy the assumptions of Theorem 7.
Note that for the RM codes, we can obtain a stronger result, based on their error

correction properties on the BSC. Involving this additional argument brings them closer to
the secrecy capacity under the strong secrecy assumption.

Theorem 8. Let C n
e and C n

b be two sequences of RM codes satisfying C n
e ⊂ C n

b whose rates
approach Re > 0 and Rb > 0, respectively. If Rb < 1− h(δb) and Re > 4δe(1− δe), then the
nested coding scheme based on C n

e and C n
b supports transmission on a BSC wiretap channel (δb, δe)

with rate Rb − Re, guaranteeing communication reliability and strong secrecy.

Proof. Very recently, Abbe and Sandon [53], building upon the work of Reeves and Pfis-
ter [54], proved that RM codes achieve capacity in symmetric channels. Therefore, the con-
dition Rb < 1 − h(δb) guarantees reliability. The rest of the proof is similar to that of
Theorem 7.
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Theorems 7 and 8 stop short of constructing codes that attain the secrecy capacity of
the channel (this is similar to the results of [14] for the transmission problem over the BSC).
To quantify the gap to capacity, we plot the smoothing and decodability rate bounds in
Figure 2.
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Figure 2. Achievable rates in the BSC wiretap channel with BEC capacity-achieving codes. The bottom
curve is the lower bound on the code rate that guarantees decodability on a BSC(δ). The middle
curve shows Shannon’s capacity and the top one is the D1-smoothing threshold for the Bernoulli
noise Tδ.

As an example, let us set the noise parameters δb = 0.05 and δe = 0.3 and denote the
corresponding secrecy capacity by Cs. Suppose that we use a BEC capacity-achieving code
as code Cb and a dual of a BEC capacity-achieving code as code Ce in the nested scheme.
The value R′ is the largest rate at which we can guarantee both reliability and strong secrecy. In
the example in Figure 2, Cs = R(1)

b − R(1)
e = 0.5949 and R′ = R(2)

b − R(2)
e = 0.3181. The only

assumption required here is that the codes C⊥e and Cb have good erasure correction properties.
As noted, generally, the RM codes support a higher communication rate than the

R′. Let R′′ be their achievable rate. For the same noise parameters as above, we obtain
R′′ = R(1)

b − R(2)
e = 0.5536, which is closer to Cs than R′.

Remark 6. The fact that the RM codes achieve capacity in symmetric channels immediately implies
that nested RM codes achieve the secrecy capacity in the BSC wiretap channel under weak secrecy.
While it is tempting to assume that, coupled with the channel duality theorems of [55,56], this
result also implies that RM codes fulfil the strong secrecy requirement on the BSC wiretap channel,
an immediate proof looks out of reach [57].

Secrecy from α-Divergence

Classically, the (strong) secrecy in the wiretap channel is measured by I(M, Z). In [11],
slightly weaker secrecy measures were considered besides the mutual information. How-
ever, more stringent secrecy measures may be required in certain scenarios; α-divergence-
based secrecy measures were introduced by Yu and Tan [3] as a solution to this problem.

Observe that the secrecy measured by Dα(PZ|M‖Un|M) for α ≥ 1 is stronger than the
mutual-information-based secrecy. This is because for α ≥ 1

I(M; Z) ≤ D(PZ|M‖Un|PM) ≤ Dα(PZ|M‖Un|PM).
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Given a wiretap channel with an encoding-decoding scheme, we say the α-secrecy is
satisfied if

lim
n→∞

Dα(PZ|M‖Un|PM) = 0.

The following theorem establishes that it is possible to achieve the rate C(δb)− Sβδe
α =

hα(δe)− h(δb) with RM codes for α ∈ {2, 3, . . . , ∞}.

Theorem 9. Let α ∈ {2, 3, . . . , ∞}. Let C n
e and C n

b be two sequences of RM codes satisfying
C n

e ⊂ C n
b whose rates approach Re > 0 and Rb > 0, respectively. If Rb < 1 − h(δb) and

Re > 1− hα(δe), then the nested coding scheme based on C n
e and C n

b supports transmission on a BSC
wiretap channel (δb, δe) guaranteeing α-secrecy with rate Rb − Re, provided that hα(δe)− h(δb) > 0.

Evidently, to achieve a stringent version of secrecy, it is necessary to reduce the rate of
the message. The capacity of the (δb, δe)-wiretap channel is h(δe)− h(δb), while the known
highest rate that assures α-secrecy and reliability is hα(δe) − h(δb). Hence, to achieve
α-secrecy, we must give up h(δe)− hα(δe) of the attainable rate.

6. Ball Noise and Error Probability of Decoding

This section focuses on achieving the best possible smoothing with respect to the ball
noise. As an application, we show that codes that possess good smoothing properties with
respect to the ball noise are suitable for error correction in the BSC.

6.1. Ball Noise

Recall that the perfect smoothing of a sequence of codes is only possible if the rate is
greater than the corresponding Dα-smoothing capacity. In addition to characterizing the
Dα-smoothing capacities of the ball noise, we quantify the best smoothing one can expect
with rates below the Dα-smoothing capacity. We will use these results in the upcoming
subsection when we derive upper bounds for the decoding error probability on a BSC.
The next theorem summarizes our main result on smoothing with respect to the ball noise.

Theorem 10. Let (bδn)n be the sequence of ball noise operators, where δn is the radius of the
ball. Let δ ∈ [0, 1/2], α ∈ [0, ∞]. Let Cn be a code of length n and rate Rn. Then, we have the
following bounds:

Dα(Tbδn
fCn‖Un) ≥ 0 (19)

1
n

Dα(Tbδn
fCn‖Un) ≥ 1− Rn − h(δ). (20)

There exist sequences of codes of rate Rn → R that achieve asymptotic equality in (19) for all
R > 1− h(δ). At the same time, if R < 1− h(δ), then there exist sequences of codes achieving
asymptotic equality in (20).

Proof. The inequality in (19) is trivial. Let us prove that asymptotically it can be achieved with
equality. From Theorem 3, there exists a sequence of codes (Cn)n such that D∞(Tbδn

fCn‖Un) =
o(1) given that R > 1− h(δ). Hence, for α ∈ [0, ∞]

0 ≤ Dα(Tbδn
fCn‖Un) ≤ D∞(Tbδn

fCn‖Un) = o(1).

Hence, the equality case in (19) is achievable for all α ∈ [0, ∞].
Let us prove (20). From Lemma 1, we have

Dα(Tbδn
fCn‖Un) ≥ n(1− Rn)− Hα(bδn) ≥ n(1− Rn − h(δ))

because 1
n Hα(bδn) =

1
n log Vδn ≤ h(δ).
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We are left to show that for R < 1− h(δ), (20) can be achieved with equality in the limit
of large n. We use a random coding argument to prove this. Let Cn be an (n, 2nRn) code
whose codewords are chosen independently and uniformly. In Equation (A6), Appendix B,
we define the expected norm of the noisy function. Here, we use this quantity for the ball
noise kernel. For α ∈ [0, ∞), define

Qn(α) = ECn 2(α−1)Dα(Tbδn
‖Un).

From Lemma A2, for any rational α ≥ 1,

Qn(α) ≤
p

∑
k=0

(
p
k

)
2

nk
q (1−Rn−

log Vδn
n )Qn

( p− k
q

)
, (21)

for p, q ∈ Z+
0 such that α = 1 + p

q .

Assume that R < 1 − h(δ). Let us prove that Qn(α) ≤ 2n(α−1)(1−R−h(δ)+o(1)) for
rational values of α using induction. Let α ∈ [1, 2] be rational and note that p ≤ q. Since
Qn(·) ≤ 1 when the argument is less than 1, we can write (21) as follows:

Qn(α) ≤
p

∑
k=0

(
p
k

)
2

nk
q (1−Rn−

log Vδn
n )

= 2n(α−1)(1−R−h(δ)+o(1)).

Now, assume that (21) holds for all rational α ∈ [1, m] for some integer m ≥ 2 and prove
that, in this case, it holds also for α ∈ (m, m + 1]. By the induction hypothesis,

Qn(α) ≤ ∑
0≤k≤p−q

(
p
k

)
2

nk
q (1−Rn−

log Vδn
n )2n p−k−q

q (1−R−h(δ)+o(1))
+

p

∑
k=p−q

(
p
k

)
2

nk
q (1−Rn−

log Vδn
n )

≤ ∑
0≤k≤p−q

(
p
k

)
2n(α−2)(1−R−h(δ)+o(1)) +

p

∑
k=p−q

(
p
k

)
2n(α−1)(1−R−h(δ)+o(1))

= 2n(α−1)(1−R−h(δ)+o(1)).

Therefore, for every rational α ∈ (1, ∞), there exists a sequence of codes satisfying

Dα(Tbδn
fCn‖Un) = n(1− R− h(δ) + o(1)), (22)

which is equivalent to the equality in (20).
Let us extend this result to non-negative reals. Let α ∈ [0, ∞) and let us choose a ratio-

nal α′ ∈ (1, ∞) such that α < α′. We know that there exists a sequence of codes satisfying

Dα′(Tbδn
fCn‖Un) = n(1− R− h(δ) + o(1)).

From (20) and from Remark 1,

n(1− Rn − h(δ)) ≤ Dα(Tbδn
fCn‖Un) ≤ Dα′(Tbδn

fCn‖Un) = n(1− R− h(δ) + o(1)).

Hence, the asymptotic equality in (20) is achievable for all α ∈ [0, ∞).

The above theorem characterizes the Dα-smoothing capacities with respect to ball noise.

Corollary 2. Let δ ∈ [0, 1/2]. Let b(δ) = (bδn)n be a sequence of ball noise operators, where δn is
the radius corresponding to the n-th kernel. Then,

Sb(δ)
α = 1− h(δ) for α ∈ [0, ∞].
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The norms of Tbt fC can be used to bound the decoding error probability on a BSC.
While estimating these norms for a given code is generally complicated, the second norm
affords a compact expression based on the distance distribution of the code. In the next
section, we bound the decoding error probability using the second norm of Tbt fC . The fol-
lowing proposition provides closed-form expressions for ‖2nTbt fC ‖2

2.

Proposition 4.

‖2nTbt fC ‖2
2 =

2n

|C |V2
t

n

∑
i=0

µt(i)Ai =
1

V2
t

n

∑
k=0

Lt(k)2 A⊥k .

where µt(i) is defined in (1) and Lt is the Lloyd polynomial of degree t (A2).

The proof is immediate from Proposition A1 in combination with (A3) and (A4).

6.2. Probability of Decoding Error on a BSC(δ)

The idea that the smoothing of codes under some conditions implies good decoding
performance has appeared in a number of papers using different language. The smoothing
of capacity-achieving codes was considered in [18,46]. Hązła et al. [14] showed that if
a code (sequence) is perfectly smoothable with respect to the Bernoulli noise, then the
dual code is good for decoding (see Theorem A4, Corollary A1). Going from smoothing
to decodability involves representing the D2-smoothness of codes with respect to the
Bernoulli noise as a potential energy form and comparing it to the Bhattacharyya bound
for the dual codes. One limitation of this approach is that it cannot infer decodability
for rates R > 1− log(1 + 2

√
δ(1− δ)) (this is the region above the blue solid curve in

Figure 2). Rao and Sprumont [15] and Hązła [34] proved that sufficient smoothing of codes
implies the decodability of the codes themselves rather than their duals. However, these
results are concerned with list decoding for rates above the Shannon capacity, resulting in an
exponential list size, which is arguably less relevant from the perspective of communication.

Except for [15], the cited papers utilize perfect or near-perfect smoothing to infer
decodability. For codes whose rates are below the capacity, perfect smoothing is impossible.
At the same time, codes that possess sufficiently good smoothing properties are good for
decoding. This property is at the root of the results for list decoding in [15]; however, their
bounds were insufficient to make conclusions about list decoding below capacity.

Consider a channel where, for the input X ∼ fC , the output Y is given by Y = X + W
with W ∼ bt. Define Ft(y) = |C ∩ B(y, t)| as the number of codewords in the ball B(y, t).
Hence, for a received vector y, the possible number of codewords that can yield y is given
by Ft(y). Intuitively, the decoding error is small if Ft(y) ≈ 1 for typical errors. Therefore,
Ft is of paramount interest in decoding problems. Since the typical errors for both ball
noise and the Bernoulli noise are almost the same, this allows us to obtain a bound for
decodability in the BSC channel. Using this approach, we show that the error probability of
decoding on a BSC(δ) can be expressed via the second moment of the number of codewords
in the ball of radius t & δn.

Assume, without loss of generality, that C is a linear code and 0n is used for transmis-
sion. Let Y be the random Bernoulli vector of errors, and note that Y ∼ βδ. The calculation
below does not depend on whether we rely on unique or list decoding within a ball of
radius t, so let us assume that the decoder outputs L ≥ 1 candidate codewords conditioned
on the received vector y, which is a realization of Y.

In this case, the list decoding error can be written as

PL,t(C , BSC(δ)) = Pr{Ft(Y) ≥ L + 1∪ |Y| > t}. (23)
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Theorem 11. Let t and t′ be integers such that 0 < t′ < t < n. Then, for any L ≥ 1,

PL,t(C , BSC(δ)) ≤ βδ(t′)
L

n

∑
w=1

µt(w)Aw + Pr(|Y| ≤ t′ ∪ |Y| ≥ t). (24)

Proof. Define St′ ,t = B(0, t) \ B(0, t′). Clearly,

PL,t(C , BSC(δ)) = Pr{Ft(Y) ≥ L + 1∪ |Y| > t}
≤ Pr{(Ft(Y) ≥ L + 1) ∩ (Y ∈ St′ ,t)}+ Pr(Y 6∈ St′ ,t).

Let us estimate the first of these probabilities.

Pr{(Ft(Y) ≥ L + 1) ∩ (Y ∈ St′ ,t)}
= ∑

y∈St′ ,t

1Ft(y)≥L+1βδ(y)

≤ ∑
y∈St′ ,t

Ft(y)− 1
L

βδ(y)

≤ βδ(t′)
L ∑

y∈St′ ,t

(Ft(y)− 1)

≤ βδ(t′)
L ∑

y∈B(0,t)
(Ft(y)− 1) (because for all y ∈ B(0, t), Ft(y) ≥ 1)

=
βδ(t′)

L

(
∑

y∈Hn

(1C ∗ 1B(0,t))(y)1B(0,t)(y)−Vt

)
=

βδ(t′)
L

(
∑

c∈C

(1B(0,t) ∗ 1B(0,t))(c)−Vt

)
=

βδ(t′)
L

n

∑
i=1

µt(i)Ai.

Remark 7. In the case of L = 1, the bound in (24) can be considered a slightly weaker version of
Poltyrev’s bound [58], Lemma 1. By allowing this weakening, we obtain a bound in a somewhat
more closed form, also connecting the decodability with smoothing. We also prove a simple bound
for the error probability of list decoding expressed in terms of the code’s distance distribution (and,
from (A4), also in terms of the dual distance distribution). The latter result seems not to have
appeared in earlier literature.

The following version of this lemma provides an error bound, which is useful in the
asymptotic setting.

Proposition 5. Let t = δn + nθ , where θ ∈ (1/2, 1). Then,

PL,t(C , BSC(δ)) ≤
√

2n
LVt

(1− δ

δ

)2nθ n

∑
w=1

µt(w)Aw + 2e−n2θ−1
.

In particular,

PL,t(C , BSC(δ)) ≤
√

2n
Vt

(1− δ

δ

)2nθ n

∑
w=1

µt(w)Aw + 2e−n2θ−1
.

Proof. Set t′ = δn− nθ . A direct calculation shows that

βδ(t′)Vt <
√

2n
(1− δ

δ

)2nθ

.



Entropy 2023, 25, 1515 20 of 32

By the Hoeffding bound,

Pr(|Y| ≤ t′ ∪ |Y| ≥ t) ≤ 2e−n2θ−1
.

Together with Lemma 11, this implies our statements.

A question of prime importance is whether the right-hand side quantities in
Proposition 5 converge to 0. For R < 1− h(δ), one can easily see that for random codes,

∑n
w=1

µt(w)
Vt

Aw = 2−Θ(n), where t = δn + nθ , showing that this is, in fact, the case.
From Proposition 4, it is clear that the potential energy ∑n

w=1 µt(w)Aw is a mea-
sure of the smoothness of Tbt fC . This implies that codes that are sufficiently smoothable
with respect to bt are decodable in the BSC with vanishing error probability. In other
words, Proposition 5 establishes a connection between the smoothing and the decoding
error probability.

7. Perfect Smoothing—The Finite Case

In this section, we briefly overview another form of perfect smoothing, which is
historically the earliest application of these ideas in coding theory. It is not immediately
related to the information-theoretic problems considered in the other parts.

We are interested in radial kernels that yield perfect smoothing for a given code. We
often write r(i) instead of r(x) if |x| = i, and call ρ(r) := max(i : r(i) 6= 0) the radius of r.
Note that the logarithm of the support size of r (as a function on the spaceHn) is exactly
the 0-Rényi entropy of r. Therefore, kernels with smaller radii can be perceived as less
random, supporting the view of the radius ρ(r) as a general measure of randomness.

Definition 4. We say a code C is perfectly smoothable with respect to r if Tr fC (x) = 1
2n for all

x ∈ Hn, and, in this case, we say that r is a perfectly smoothing kernel for C .

Intuitively, such a kernel should have a sufficiently large radius. In particular, it should
be as large as the covering radius of the code ρ(C ) or otherwise smoothing does not affect
the vectors that are ρ away from the code. To obtain a stronger condition, recall that the
external distance of code C is d̄(C ) = |{i ≥ 1 : A⊥i 6= 0}|.

Proposition 6. Let r be a perfectly smoothing kernel of code C . Then, ρ(r) ≥ d̄(C ).

Proof. Note that perfect smoothing of C with respect to r is equivalent to

‖2nTr fC ‖2
2 = 1,

which by Proposition A1 is equivalent to the following condition:

n

∑
i=1

r̂(i)2 A⊥i = 0.

Therefore,

d̄(C ) = |{i ≥ 1 : A⊥i 6= 0}| ≤ n− |{i ≥ 1 : r̂(i) 6= 0}|.

By definition,

r̂ =
1
2n Kᵀr,
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where K = (Ki(j))n
i,j=0 is the Krawtchouk matrix. Define I1 = {j ∈ {1, 2, . . . , n} : r̂(j) = 0}

and I2 = {i ∈ {1, 2, . . . , n} : r(i) 6= 0} then,

0 = r̂|I1 =
1
2n Kᵀ|(I1,:)r =

1
2n Kᵀ|(I1,I2)

r|I2 .

This relation implies that there exists a linear combination of Krawtchouk polynomials
of degree at most ρ(r) with |I1| roots. Therefore, d̄(C ) ≤ n− | supp({r̂(i)}n

i=1)| = |I1| ≤
ρ(r).

Since ρ(C ) ≤ d̄(C ), this inequality strengthens the obvious condition ρ(r) ≥ ρ(C ). At
the same time, there are codes that are perfectly smoothable by a radial kernel r such that
ρ(r) = ρ(C ).

Definition 5 ([59]). A code C is uniformly packed in the wide sense if there exists rational numbers
{αi}

ρ
i=0 such that

ρ(C )

∑
i=0

αi Ai(x) = 1 for all x ∈ Hn,

where Ai(x) is the weight distribution of the code C − x.

Our main observation here is that some uniformly packed codes are perfectly smooth-
able with respect to noise kernels that are minimal in a sense. The following proposition
states this more precisely.

Proposition 7. Let C be a code that is perfectly smoothable by a radial kernel of radius ρ(r) =
ρ(C ). Then, C is uniformly packed in the wide sense with αi ≥ 0 for all i.

Proof. By definition, if C is perfectly smoothable with respect to r, then 2nTr fC = 1, which
is tantamount to ∑y∈Hn

2n

|C | r(y)1C (x− y) = 1 for all x ∈ Hn. This condition can be written

as ∑
ρ
i=0

( 2n

|C | r(i)
)

Ai(x) = 1 for all x ∈ Hn, completing the proof.

To illustrate this claim, we list several families of uniformly packed codes ([59–61])
that are perfectly smoothable by a kernel of radius equal to the covering radius of the code.

(i) Perfect codes: r = bρ, where ρ = ρ(C ) is the covering radius.
(ii) 2-error-correcting BCH codes of length 22m+1, m ≥ 2. The smoothing kernel r is

given by

r(0) = r(1) = L, r(2) = r(3) =
3L
n

, r(i) = 0, i ≥ 4.

(iii) Preparata codes. The smoothing kernel r is given by

r(0) = r(1) = L, r(2) = r(3) =
6L

n− 1
, r(i) = 0, i ≥ 4.

(iv) Binary (2m − 1, 22m−3m+2, 7) Goethals-like codes [60]. The smoothing kernel r is
given by

r(0) = r(1) = L, r(2) = r(3) =
65L
2n

, r(4) = r(5) =
30L

n(n− 3)
, r(i) = 0, i ≥ 4.

Here, L is a generic notation for the normalizing factor. More examples are found in a
related class of completely regular codes [62].

Definition 5 does not include the condition that αi ≥ 0, and, in fact, there are codes that
are uniformly packed in the wide sense, but some of the αi’s are negative, and, thus, they are
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not smoothable by a noise kernel of radius ρ(C ). One such family is the 3-error-correcting
binary BCH codes of length 22m+1, m ≥ 2 [60].
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Appendix A. L2 Smoothing

The Fourier transform of a function f : Hn → R is a function on the dual group Ĥn,
which we identify withHn:

f̂ (y) =
1
2n ∑

x∈Hn

f (x)(−1)x·y, y ∈ Hn. (A1)

The Fourier transform of the indicator function of the sphere is given by 1̂S(0,t) =
1

2n Kt,

where Kt(x) = K(n)
t (x) = ∑t

j=0(−1)j(x
j)(

n−x
t−j ) is a Krawtchouk polynomial of degree t.

Then, clearly the Fourier transform of the indicator of the ball is

1̂B(0,t) =
1
2n Lt, (A2)

where Lt(x) := ∑t
i=0 Ki(x) is called the Lloyd polynomial ([63], p. 64). The intersection of

balls in (1) can be written as 1B(0,t) ∗ 1B(x,t), which implies the expression ([42], Lemma 4.1)

µt(i) = 2−n
n

∑
k=0

Lt(k)2Kk(i). (A3)

Given a code C ⊂ Hn, we define the dual distance distribution of C as the set of numbers
A⊥j := 1

|C| ∑n
i=0 AiKj(i), where (Ai)

n
i=0 is the distance distribution of C (2). Note that when

C is linear, the set (A⊥j )
n
j=0 coincides with the distance distribution of its dual code C⊥. For

a radial potential V onHn and a code C , we have

n

∑
i=0

V(i)Ai = |C |
n

∑
k=0

V̂(k)A⊥k . (A4)

The L2-smoothness of a noisy code distribution can be written in terms of the distance
distribution or of the dual distance distribution.

Proposition A1. Let C be a code and r be a noise kernel. Then,

‖2nTr fC ‖2
2 =

2n

|C |
n

∑
i=0

(r ∗ r)(i)Ai = 4n
n

∑
k=0

r̂(k)2 A⊥k .
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Proof. Let us prove the first equality:

‖2nTr fC ‖2
2 =

1
2n ∑

x∈Hn

(2nTr fC (x))2

=
2n

|C |2 ∑
x∈Hn

(r ∗ 1C )(x)2

=
2n

|C |2 ∑
x∈Hn

∑
y∈Hn

r(x− y)1C (y) ∑
z∈Hn

r(x− z)1C (z)

=
2n

|C |2 ∑
y∈C

∑
z∈C

∑
x∈Hn

r(x− y)r(x− z)

=
2n

|C |2 ∑
y∈C

∑
z∈C

(r ∗ r)(y− z)

=
2n

|C |
n

∑
i=0

(r ∗ r)(i)Ai. (A5)

The second equality is immediate by noticing that r̂ ∗ r = 2n r̂2 and using (A4).

Appendix B. Proof of Theorem 3

We will first establish Theorem 3 when α is rational, and then use a density argument
to extend the proof to all real numbers. The case α = ∞ is handled separately at the end of
this appendix.

We will use the following technical claim:

Lemma A1. Let x and y be two non-negative reals. Further, let p and q be positive integers. Then,

(x + y)
p
q ≤

p

∑
k=0

(
p
k

)
x

k
q y

p−k
q .

Proof. Clearly (x + y)
1
q ≤ x

1
q + y

1
q . Therefore,

(x + y)
p
q ≤ (x

1
q + y

1
q )p =

p

∑
k=0

(
p
k

)
x

k
q y

p−k
q .

For M ≥ 1, let C = (c0, c2, . . . , cM−1) be a code whose codewords are chosen randomly
and independently fromHn. For α ∈ [0, ∞), define

Qn(α) = EC 2(α−1)Dα(Tr fC ‖Un). (A6)

For α > 0, Qn(α) = ‖2nTr fC (x)‖α
α. Clearly Qn(1) = 1, Qn(α) ≤ 1 for α ∈ [0, 1), and Qn(α) ≥

1 for α > 1.
In the next lemma, we obtain a recursive bound for Qn. We will then use an induction

argument to show the full result.

Lemma A2. Let α = p
q + 1 and let C ⊂ Hn be a random code of size M = 2nR. Then,

Qn(α) ≤
p

∑
k=0

(
p
k

)
2

nk
q (1−R− 1

n H1+k/q(r))Qn

( p− k
q

)
. (A7)
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Proof. In the calculation below, we write E for EC . Starting with (A6), we obtain

Qn(α) = E
[ 1

2n ∑
x∈Hn

[2n(r ∗ fC )(x)]α
]

= 2n(α−1)E
[

∑
x∈Hn

[
∑

z∈C

r(x− z)
1
M

]α]
=

2n(α−1)

Mα ∑
x∈Hn

E
[ M−1

∑
i=0

r(x− ci)
]α

=
2n(α−1)

Mα ∑
x∈Hn

E
[ M−1

∑
i=0

r(x− ci)
[ M−1

∑
j=0

r(x− cj)
]α−1]

=
2n(α−1)

Mα ∑
x∈Hn

E
[ M−1

∑
i=0

r(x− ci)
[
r(x− ci) +

M−1

∑
j=0,j 6=i

r(x− cj)
] p

q
]

≤ 2n(α−1)

Mα ∑
x∈Hn

E
[ M−1

∑
i=0

r(x− ci)
p

∑
k=0

(
p
k

)
r(x− ci)

k
q
[ M−1

∑
j=0,j 6=i

r(x− cj)
] p−k

q
]

=
2n(α−1)

Mα

p

∑
k=0

(
p
k

)
∑

x∈Hn

E
[ M−1

∑
i=0

r(x− ci)
1+ k

q
[ M−1

∑
j=0,j 6=i

r(x− cj)
] p−k

q
]

=
2n(α−1)

Mα

p

∑
k=0

(
p
k

)
∑

x∈Hn

E
[ M−1

∑
i=0

r(x− ci)
1+ k

q
]
E
[ M−1

∑
j=0,j 6=i

r(x− cj)
] p−k

q
,

where ci, i = 1, . . . , M are random codewords in the code C . Recalling that Er(x− ci)
a =

‖r‖a
a for any a > 0, we continue as follows:

≤ 2n(α−1)

Mα

p

∑
k=0

(
p
k

)
∑

x∈Hn

M‖r‖1+k/q
1+k/q E

[ M−1

∑
j=0

r(x− cj)
] p−k

q

=
2n(α−1)

Mα−1

p

∑
k=0

(
p
k

)
‖r‖1+k/q

1+k/q E
[

∑
x∈Hn

[ M−1

∑
j=0

r(x− cj)
] p−k

q
]

=
2np/q

Mp/q

p

∑
k=0

(
p
k

)
‖r‖1+k/q

1+k/qQn

( p− k
q

) M(p−k)/q

2n((p−k)/q−1)

=
p

∑
k=0

(
p
k

)
2n(1+k/q)

Mk/q ‖r‖
1+k/q
1+k/qQn

( p− k
q

)
=

p

∑
k=0

(
p
k

)
2

nk
q

(
1−R−

H(1+k/q)(r)
n

)
Qn

( p− k
q

)
,

where we used (5) and the fact that r is a pmf.

On account of (14), (A6), and Lemma 1, to prove Theorem 3, we need to prove the
following:

Theorem A1. Consider a sequence of ensembles of random codes of increasing length n and rate
Rn → R. If R > 1− π(α), where π(α) is given by (15), then,

lim
n→∞

Qn(α) = 1 (A8)

for all α ∈ (1, ∞).

We start with the case of rational α.
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Proposition A2. Let α ≥ 0 be rational. If R > 1− π(α), then lim supn Qn(α) ≤ 1.

Proof. This statement is true for all 0 ≤ α < 1, so also true for all rational α in [0,1).
Assume that it holds for all rational α in [0, m), where m ∈ Z+. Let α ∈ [m, m + 1) and

choose p, q ∈ Z+
0 such that α = 1 + p

q . By Lemma A2,

lim sup
n

Qn(α) ≤ lim sup
n

p

∑
k=0

(
p
k

)
2

nk
q

(
1−Rn−

H1+k/q(rn)
n

)
Qn

( p− k
q

)
≤

p

∑
k=0

(
p
k

)
lim sup

n
2

nk
q

(
1−Rn−

H1+k/q(rn)
n

)
lim sup

n
Qn

( p− k
q

)
.

If R > 1− π(α), then evidently, R > 1− π(1 + k/q) for all k ≤ p. Therefore,

lim sup
n→∞

2
nk
q

(
1−Rn−

H1+k/q(rn)
n

)
= 0

for all k > 0. Since p
q < m, by the induction hypothesis, we have lim supn Qn

( p−k
q
)
≤ 1

for k = 0, 1, . . . , p. Therefore, all the terms except the one with k = 0 vanish, yielding
lim supn Qn(α) ≤ 1.

Since Qn(α) ≥ 1 for α > 1, this proves Theorem A1 for all rational α ∈ (1, ∞).
Finally, let us extend this result to all real α > 1. As a first step, let us show that π(α)

is continuous.

Lemma A3. π(α) is continuous for 1 < α < ∞.

Proof. From the monotonicity of the Rényi entropies, for α′ > α > 1,

0 ≤ π(α)− π(α′)

= lim inf
n→∞

1
n

Hα(rn)− lim inf
n→∞

1
n

Hα′(rn).

Now, let us choose a subsequence (rnk )k such that

lim
k→∞

1
nk

Hα′(rnk ) = lim inf
n→∞

1
n

Hα′(rn).

Therefore,

π(α)− π(α′) = lim inf
n→∞

1
n

Hα(rn)− lim
k→∞

1
nk

Hα′(rnk )

≤ lim inf
k→∞

1
nk

(Hα(rnk )− Hα′(rnk )).

Note that Hα is a continuous function of the order α for α > 1. We use the mean value
theorem to claim that there is a value γk ∈ (α, α′ such that Hα′(rnk ) − Hα(rnk ) = (α′ −
α) d

dα Hγk (rnk ). Next, for any probability vector P,

−dHα(P)
dα

=
1

(1− α)2 D(Z‖P) ≤ log |supp(P)|
(1− α)2 ,
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where Zi =
Pα

i
∑j Pα

j
. Taking these remarks together, we obtain

π(α)− π(α′) ≤ lim inf
k→∞

1
nk

(α− α′)H′γk
(rnk )

≤ lim inf
k→∞

1
nk

(α′ − α)
nk

(γk − 1)2

=
α′ − α

(α− 1)2 ,

Therefore, π(α) is continuous on (1, ∞).

Now, let α ∈ (1, ∞) and assume R > 1− π(α). Choose α′ > α such that α′ is rational
and R > 1− π(α′). This is possible from the continuity of π. Therefore,

1 ≤ lim sup
n

Qn(α) ≤ lim sup
n

Qn(α
′) = 1,

which proves that (A8) and Theorem 3 hold for all α ∈ [1, ∞).
It remains to address the case α = ∞. We obtain the following upper bound, whose

proof follows closely an argument in Appendix E of [3].

Lemma A4. Let ε > 0. We have

EC ‖2nTr fC ‖∞ ≤ 1 + ε + 22n−H∞(r)e−
3ε2

2(3+ε)
2−[n(1−R)−H∞(r)]

.

Proof. Let ε > 0, then,

EC ‖2nTr fC ‖∞ = EC

[
‖2nTr fC ‖∞1‖2nTr fC ‖∞≥1+ε}

]
+EC

[
‖2nTr fC ‖∞1‖2nTr fC ‖∞<1+ε}

]
≤ EC

[
‖2nTr fC ‖∞1{‖2nTr fC ‖∞≥1+ε}

]
+ 1 + ε

≤ EC

[
‖2nr‖∞1{‖2nTr fC ‖∞≥1+ε}

]
+ 1 + ε

= ‖2nr‖∞ Pr
C

(
max
y∈Hn

2nTr fC (y) ≥ 1 + ε
)
+ 1 + ε

≤ ‖2nr‖∞2n max
y∈Hn

Pr
C

(
2nTr fC (y) ≥ 1 + ε

)
+ 1 + ε. (A9)

For any y ∈ Hn,

Pr
C
(2nTr fC (y) ≥ 1 + ε) = Pr

C

(2n

M ∑
z∈C

r(y− z) ≥ 1 + ε
)

= Pr
ci∼Un , iid

(2n

M

M

∑
i=1

r(y− ci) ≥ 1 + ε
)

= Pr
(2n

M

M

∑
i=1

r(y− ci) ≥ 1 + ε
)

= Pr
( M

∑
i=1

(2nr(y− ci)− 1) ≥ Mε
)

(A10)
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To bound the last line from above, we use Bernstein’s inequality: For independent, zero-
mean random variables Xi, i = 1, . . . , N such that |Xi| ≤ a for all i,

P
(

∑
i

Xi ≥ t
)
≤ exp

(
− t2/2

∑n
i=1 EX2

i +
1
3 at

)
.

Note that for a random uniform vector ci, the expectation E[r(y − ci)] = 2−n since r(·)
satisfies ∑x∈Hn r(x) = 1, so this inequality applies for (A10). We obtain

Pr
C
(2nTr fC (y) ≥ 1 + ε) ≤ exp

(
−

1
2 M2ε2

∑M
i=1 Var(2nr(y− ·)) + 1

3‖2nr‖∞ Mε

)
≤ exp

(
−

1
2 M2ε2

∑M
i=1 ‖2nr‖2

2 +
1
3‖2nr‖∞ Mε

)
≤ exp

(
−

1
2 M2ε2

M‖2nr‖1‖2nr‖∞ + 1
3‖2nr‖∞ Mε

)
= exp

(
− 3ε2

2(3 + ε)
2−n(1−R)−H∞(r)

)
.

where on the last line, we use the equalities ‖2nr‖1 = 1 and ‖2nr‖∞ = 2D∞(r‖Un). The proof
is concluded by substituting this inequality into (A9).

Now, let us consider a sequence of (ensembles of) random codes of increasing length
n and rate Rn → R. Recalling the definition of π(·) in (15), for n→ ∞, we obtain

lim sup
n

ECn‖2
nTrn fCn‖∞ ≤ 1 + ε (A11)

once R > 1− π(∞). Since ε is arbitrarily small, the left-hand side of (A11) approaches one,
and together with (14) this completes the proof of Theorem 3.

Appendix C. Samorodnitsky’s Inequalities and Their Implications

Samorodnitsky [8,10] recently proved certain powerful inequalities for α-norms of
noisy functions, which permit us to estimate the proximity to uniformity upon action of
the Bernoulli noise kernels. We state some of them in this appendix after introducing a few
more elements of notation. These results are used in Theorem 7 and in Appendix D, where
we prove Lemma 2.

In this proof, we write [n] for {1, . . . , n}. For a subset Γ ⊂ [n], write x|Γ to denote the
coordinate projection of a vector x ∈ Hn on Γ. If the subset Γ is formed by random choice
with Pr(i ∈ Γ) = λ independently for all i ∈ [n], we write Γ ∼ λ. For a function f onHn, let

E( f |Γ)(x) =
1

2n−|Γ| ∑
y:y|Γ=x|Γ

f (y). (A12)

Observe that E( f |Γ) = f ∗ fH[n]\Γ , where HS = {x ∈ Hn : x|[n]\S = 0}. Therefore,
E( f |Γ)(x) is the noisy function of f with respect to the pmf given by the indicator function
of the subcubeH[n]\Γ.

The entropy of a function f : Hn → R is defined as

Ent[ f ] = ‖ f log f ‖1 − ‖ f ‖1 log(‖ f ‖1) =
∥∥ f log

f
‖ f ‖1

∥∥
1. (A13)
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This quantity can be thought of as the KL divergence between the distribution induced by
f onHn and the uniform distribution:

Ent[ f ] = ‖ f ‖1D
( f

∑ f
‖Un

)
. (A14)

If f itself is a pmf, then D( f ‖Un) = 2n Ent( f ) = Ent(2n f ).

Theorem A2 ([8], Corollary 9). Let f be a non-negative function onHn. then,

Ent[Tδ f ] ≤ EΓ∼λ Ent[E( f |Γ)].

where λ = (1− 2δ)2.

Theorem A3 ([10], Theorem 1.1). Let f be a non-negative function on Hn and α ≥ 2 be an
integer. Then,

log ‖Tδ f ‖α ≤ EΓ∼λ log ‖E( f |Γ)‖α. (A15)

where λ = λ(α, δ) = 1 + 1
α−1 log(δα + (1− δ)α) = 1− hα(δ). Furthermore,

log ‖Tδ f ‖∞ ≤ EΓ∼λ log ‖E( f |Γ)‖∞. (A16)

where λ = λ(∞, δ) = 1 + log(1− δ) = 1− h∞(δ)

To interpret the inequalities (A15) and (A16), we note that their left-hand side measures
the smoothness of the noisy version of f with respect to the noise βδ. At the same time,
the right-hand side is the average smoothness of the noisy versions of f with respect to the
sub-cube pmf’s.

Hązła et al. [14] used Theorem A3 to great effect, showing that if a code corrects
erasures up to a certain noise level in a BEC, then, with high probability, it corrects errors
on a BSC channel up to a certain noise level.

Theorem A4 ([14], Corollary 3.4). Let (Cn)n be a sequence of codes whose rate approaches R.
Assume that for some λ ∈ (0, 1− R], PB(BEC(λ), Cn) = o( 1

n ). Then, (Cn)n decodes errors on a
BSC(δ) for any δ that satisfies 2

√
δ(1− δ) < 2λ − 1.

This theorem implies the following corollary:

Corollary A1 ([14]). Let (Cn)n be a sequence of codes with rate Rn ↑ R that recover transmitted
messages with high probability on a BEC(1− R) (i.e., (Cn)n is a capacity-achieving sequence for
BEC(1− R)). Furthermore, assume that d(Cn) = ω(log n). If 2

√
δ(1− δ) < 21−R − 1, then

with high probability, the codes Cn correct errors when used on a BSC(δ) channel.

The authors of [14] then used this result to show that the RM codes of a constant rate
correct a non-vanishing proportion of errors on the BSC.

Appendix D. Proof of Lemma 2

We present the proof as a sequence of lemmas.
Let Γ ⊂ {1, . . . , n} be a subset of coordinates and for z ∈ (0, 1}n let C (Γ, z) :=

{c ∈ C : c|Γ = z|Γ} be the set of codewords that fit z in the positions of Γ. In particular,
C Γc

= C (Γ, 0)|Γc is the shortened code C , i.e., the subcode with zeros in the positions of Γ,
projected on Γc. Let F(C )(Γ, z) := |C (Γ, z)|.

Let us obtain expressions for the norms and the entropy of F(C )(Γ, z).
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Lemma A5. Let C be a linear code and let Γ ⊂ {1, . . . , n}. Then,

‖F(C )(Γ, ·)‖α =

[
|C |
2|Γ|

F(C )(Γ, 0)α−1
]1/α

.

Proof. From the linearity of the code,

F(C )(Γ, z) =

{
F(C )(Γ, 0) if z|Γ is a valid non-erasure pattern
0 otherwise.

.

Furthermore, the number of distinct z ∈ Hn for which C (Γ, z) is nonempty equals
2n−|Γ||C /C (Γ, 0)|. Hence,

‖F(C )(Γ, ·)‖α =

[
1
2n ∑

x∈Hn

F(C )(Γ, x|Γ)α

]1/α

=

[
1
2n

2n|C |
2|Γ|

1
F(C )(Γ, 0)

F(C )(Γ, 0)α

]1/α

=

[
|C |
2|Γ|

F(C )(Γ, 0)α−1
]1/α

.

Lemma A6. Let E( f |Γ) be defined as in (A12). Then,

‖E(2n fC |Γ)‖α =

[
2|Γ|

|C | F
(C )
T (Γ, 0)

](α−1)/α

.

Proof. Using f = 2n fC in (A12), we obtain

E(2n fC |Γ)(x) =
2n

2n−|Γ||C | ∑
y∈C :y|Γ=x|Γ

1 =
2|Γ|

|C | F
(C )(Γ, x|Γ),

and, thus, from Lemma A5,

‖E(2n fC |Γ)‖α =
2|Γ|

|C | ‖F
(C )(Γ, ·)‖α

=
2|Γ|

|C |

[
|C |
2|Γ|

F(C )(Γ, 0)α−1
]1/α

=

[
2|Γ|

|C | F
(C )
T (Γ, 0)

](α−1)/α

.

Lemma A7. Let C be a linear code. For X = XC⊥ , Y = Y(X,BEC(λ)),

H(X|Y) = EΓ∼λ

[
log
(2|Γ|

|C | F
C (Γ, 0)

)]
. (A17)
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Proof. Start with taking X = XC and Y = Y(BEC(λ),XC ); then,

H(X|Y = y) = log[F(C )(y)].

Therefore,

H(X|Y) = EY[log(F(C )(Y))]

= EΓEZ|Γ[log(F(C )(Γ, Z))|Γ]

= EΓ∼1−λ[log F(C )(Γ, 0)].

By a standard identity about dual matroids ([64], p. 72),

dim(C Γc
) = dim(C )− |Γ|+ dim((C⊥)Γ),

or

F(C )(Γ, 0) =
|C |
2|Γ|

FC⊥(Γc, 0),

and, thus, we continue as follows:

H(X|Y) = EΓ∼1−λ

[
log
( |C |

2|Γ|
FC⊥(Γc, 0)

)]
= EΓc∼λ

[
log
( 2|Γ

c |

|C⊥|
FC⊥(Γc, 0)

)]
= EΓ∼λ

[
log
( 2|Γ|

|C⊥|
FC⊥(Γ, 0)

)]
.

Switching to the dual code and taking X = XC⊥ and Y = Y(BEC(λ),X
C⊥ )

now yields
(A17).

Lemma A8.

α

α− 1
EΓ∼λ log ‖E(2n fC |Γ)‖α = EΓ∼λ Ent[E(2n fC |Γ)] = H(XC⊥ |Y(BEC(λ),X

C⊥ )
).

Proof. From Lemmas A6 and A7,

α

α− 1
EΓ∼λ log ‖E(2n fC |Γ)‖α = EΓ∼λ

[
log
(2|Γ|

|C | F
C (Γ, 0)

)]
= H(XC⊥ |Y(BEC(λ),X

C⊥ )
),

which establishes the equality between the first and the third quantities. Since the sec-
ond quantity is a limiting case of the first quantity and the value of the first quantity is
independent of α, we have equality between the first and the second quantities.

Now, Lemma 2 follows by combining Lemma A8 with Theorems A2 and A3.
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